
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

TaDA Live: Compositional Reasoning for Termination of

Fine-grained Concurrent Programs

EMANUELE D’OSUALDO, Imperial College London and MPI-SWS Saarbrücken
JULIAN SUTHERLAND, Imperial College London
AZADEH FARZAN, University of Toronto
PHILIPPA GARDNER, Imperial College London

We present TaDA Live, a concurrent separation logic for reasoning compositionally about the termination of
blocking fine-grained concurrent programs. The crucial challenge is how to deal with abstract atomic blocking:
that is, abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as found in,
for example, fine-grained spin locks. Our fundamental innovation is with the design of abstract specifications
that capture this blocking behaviour as liveness assumptions on the environment. We design a logic that
can reason about the termination of clients which use such operations without breaking their abstraction
boundaries, and the correctness of the implementations of the operations with respect to their abstract
specifications. We introduce a novel semantic model using layered subjective obligations to express liveness
invariants, and a proof system that is sound with respect to the model. The subtlety of our specifications and
reasoning is illustrated using several case studies.

Additional Key Words and Phrases: fine-grained concurrency, linearizability, busy-waiting, termination,
liveness, concurrent separation logics

1 INTRODUCTION

Compositional reasoning for fine-grained concurrent programs interacting with shared memory is
a fundamental, open research problem. We are beginning to obtain a good understanding of how to
reason about safety properties of concurrent programs: i.e. if the program terminates and the input
satisfies the precondition, then the program does not fault and the result satisfies the postcondition.
O’Hearn and Brookes [4, 34] introduced concurrent separation logic for reasoning compositionally
about course-grained concurrent programs. Since then, there has been a flowering of work on
modern concurrent separation logics for reasoning compositionally about safety properties of
fine-grained concurrent programs: e.g. CAP [10], TaDA [7], Iris [22] and FCSL [32]. With these
modern logics, it is possible to provide abstract specifications that match the intuitive software
interface understood by the developer, and to verify both implementations and client programs.
We have comparatively little understanding of how to reason compositionally about progress

(liveness) properties for fine-grained concurrent algorithms: i.e. something good eventually happens.
Examples of progress properties include termination, livelock-freedom, or that every user request
is eventually served. The intricacies of the design of concurrent programs often arise precisely
from the need to make the program correct with respect to progress properties. The goal of this
paper is to design a program logic to reason compositionally about the safety and termination of
fine-grained concurrent programs: i.e. to be able to prove that if the input satisfies the precondition,
then the program terminates without faulting and the result satisfies the postcondition. As with
safety, the aim is to provide abstract specifications, and to verify implementations and clients.
A truly compositional approach would achieve proof scalability through the reduction of large

complex proofs into a composition of smaller, more tractable proofs, and proof reuse through the
ability to define abstract interfaces between independent sub-proofs. Proof scalability for concurrent

Authors’ addresses: Emanuele D’Osualdo, Imperial College London , MPI-SWS Saarbrücken, dosualdo@mpi-sws.org; Julian
Sutherland, Imperial College London, julian.sutherland10@ic.ac.uk; Azadeh Farzan, University of Toronto, azadeh@cs.
toronto.edu; Philippa Gardner, Imperial College London, pg@doc.ic.ac.uk.

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

systems is achieved through thread-local reasoning: i.e. the proof of the parallel composition of
threads should be the composition of smaller, separate proofs of each thread. Proof reuse is achieved
when the right abstract interface for a module is identified, so that the proof of correctness of the
implementation of the module and the proof of its clients is decoupled: a proof of a client can be
reused when swapping the implementation of the module for one satisfying the same specification;
a proof of an implementation can be reused when the specification is general enough to support
arbitrary correct clients.
For safety, thread-local reasoning can be obtained through rely/guarantee proofs: a protocol

on shared state is specified in terms of the set of allowed updates, and each thread is verified to
respect the protocol under the assumption that the environment respects the protocol. There have
been successful attempts at using rely/guarantee reasoning to prove progress properties, such as
termination, of non-blocking concurrent programs [5, 8, 12, 13, 19, 30], which are the programs
where the progress of a thread does not depend on the progress of other threads. For example, the
Total TaDA concurrent separation logic [8] was introduced to provide compositional reasoning
about the safety and termination of non-blocking programs. It provided thread-local reasoning
and abstract specification of module interfaces, without the need to extend the rely/guarantee
reasoning.
Standard rely/guarantee reasoning is not enough to prove progress properties for blocking

programs. In a blocking program, termination of a thread may depend on other threads performing
some updates to the shared state. For example, if a thread 𝑡 is requesting a lock that has been
acquired by another thread, then the lack of progress of the thread currently owning the lock would
hinder the progress of 𝑡 . Thread 𝑡 is blocked, waiting for the lock owner to release the lock. In such
situation, a safety abstraction of the environment is insufficient to support a termination argument
for 𝑡 : knowing that the release of the lock is always allowed to happen does not imply that it is
eventually happening.

There has been somework [3, 20, 25] on proving progress properties for programs where blocking
is caused solely by blocking primitives such as built-in locks or channels. However, it is very common,
especially for fine-grained programs, to use ad hoc busy-waiting patterns. For example, consider a
thread running while(v≠ 1){vB [x]}. The termination of this thread is entirely dependent on
the environment eventually storing 1 in x. This form of blocking is completely different from a call
to a blocking primitive that cannot take a step in the current state. It instead corresponds to code
executing steps without making real progress. We call this pattern of behaviour abstract blocking.
We have identified two ways to reason about progress in the presence of abstract blocking

in the literature: the history-based approach and the refinement-based approach. The history-
based approach [14, 23, 35] is very general but results in complex and indirect specifications with
complicated reasoning involving explicit trace manipulations. We discuss this approach further
in Section 6. In the refinement-based approach, the LiLi logic [28, 29] is the workmost closely related
to our goals. LiLi extends rely/guarantee with liveness information, to prove a progress-preserving
contextual refinement between the implementation of a module’s operations and simpler code
representing their specifications. LiLi’s extension of rely/guarantee requires, however, heavy use of
global auxiliary shared state manipulated through ghost code, which makes the proofs less local.
Moreover, the specification code associated with abstractly atomic operations that are blocking
is not atomic and exposes implementation details, which hinders scalability and reuse. We give a
detailed comparison with our work and LiLi in Sections 2, 5.4 and 6.

The refinement approach does not prove termination directly, but instead relates termination of
implementation code with termination of specification code. By contrast, our goal is to develop a
program logic with which we are able to verify specifications that describe termination directly,
without the manipulation of histories, with proofs that keep auxiliary state as local as possible

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

TaDA Live 3

without requiring the addition of ghost code, and with specifications that allow the abstraction of
implementation details while representing precisely the abstract termination guarantees.

Contributions. Our starting observation is that just as safety rely/guarantee arguments are centred
around invariants, i.e. facts of the form always P, so liveness rely/guarantee arguments for proving
progress in the presence of blocking should be centered around liveness invariants, i.e. facts of
the form always eventually P. TaDA Live’s design is based on the idea that this is not a fluke: the
dependence on liveness invariants might be considered a definition of abstract blocking. To capture
this observation within a program logic, we introduce a number of key innovations:

• subjective obligations, a new form of logical ghost state to express liveness invariants in a
thread-local way without the need for ghost code;

• obligation layers, to express dependencies between liveness invariants and avoid unsound
circular reasoning;

• abstract specifications for atomic blocking operations, to express termination guaran-
tees conditionally on an environment liveness assumption of the form “always eventually 𝑃”.

We obtain TaDA Live, a concurrent separation logic which uses liveness invariants to provide
compositional reasoning for establishing safety and termination for blocking programs. The logic
makes extensive use of abstract specifications for atomic blocking operations to achieve proof
scalability and reuse. This paper presents the following contributions:

• the TaDA Live logic and its specification format;
• a novel semantic model and soundness proof for the logic: the new model is a substantial
re-definition of the TaDA model to allow for the non-trivial extensions needed to incorporate
the liveness content of the TaDA Live specifications;

• TaDA Live proofs for several paradigmatic case studies: two fine-grained implementations of
locks showcase abstraction in the specifications and the obligation mechanism; a program
mixing locks and busy-waiting illustrates common proof patterns for clients; two counter
modules illustrate TaDA Live’s ability to hide internal blocking and proof reuse; and a set
module using a lock-coupling pattern illustrates the generality of the layer system.

Outline. Section 2 provides an example-driven overview of the main innovations of TaDA Live.
Section 3 introduces the assertion language and the semantics of the TaDA Live specifications.
Section 4 presents the crucial proof rules of TaDA Live, with a running example to illustrate their use.
Section 5 presents TaDA Live proofs of several key case studies and a discussion on the limitations
of the TaDA Live reasoning. Section 6 contains related work and Section 7 ends with conclusions
and future work.

2 AN OVERVIEW OF TADA LIVE

We introduce the main ideas of TaDA Live in this section, leaving the complex technical details for
the following sections. Consider a simple example program with non-primitive blocking behaviour:

C1

var v= 0 in
while(v≠ 1){

vB [x]

}

[x]B 1
}
C2

We use a first-order, fine-grained concurrent while language for manipulating shared state.
The shared state comprises heap cells which have addresses and store values (addresses, integers,
booleans). The [x] notation denotes the value stored at the heap cell with address x. The thread on

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

the left (C1) is busy-waiting on the value stored at the shared heap cell at x. Under fair scheduling,
the program is guaranteed to terminate: eventually, the right-hand thread (C2) will be scheduled,
and will set the heap cell to 1; after that, eventually the left-hand thread will read the value 1 into
the local variable v and the while loop will terminate. Since we are aiming at a thread-local proof
method, we should be able to break the proof of termination of the program into two separate
proofs for the two threads.

We first explore how to provide a thread-local proof of safety for this example program using the
TaDA logic [7]. We then extend the reasoning with the ingredients needed to prove termination.
TaDA is a concurrent separation logic so it uses the standard separation logic assertions. Let us
assume the precondition 𝑃 = ∃𝑣 . x ↦→ 𝑣 and, for simplicity, aim at the postcondition True. TaDA
uses the standard parallel rule for concurrent separation logics, where the precondition is separated
into two preconditions 𝑃 = 𝑃1 ∗ 𝑃2, one for each thread. Since both threads dereference x, we need
a means to share the heap cell in the assertions, turning x ↦→ 𝑣 into a duplicable assertion, called a
shared region in TaDA. For our example, we define a shared region ex𝑟 (x, 𝑣) with an associated
interpretation I(ex𝑟 (𝑥, 𝑣)) ≜ 𝑥 ↦→ 𝑣 , which specifies which resource is being shared. The region
type ex (for “example”) is the name associated with this interpretation, and the region identifier 𝑟 is
an abstract identifier associated with this specific instance of the region type ex. The arguments
(x, 𝑣) of the region are called the abstract state of the region. The definition of a region is completed
by an interference protocol Tex which restricts, in rely/guarantee style, the allowed updates to the
abstract state. Here, we encode the facts that (a) only C2 can update x and (b) 𝑣 can only be updated
to 1. Although such strong invariants are not required to just prove safety, they will be useful
for the termination proof later. To encode fact (a), we introduce a form of ghost state called a
guard, e, which gives exclusive permission to update x. Formally, guards (probably first introduced
in deny-guarantee reasoning [11]) form a partial commutative monoid (PCM), where in this case
e • e is undefined to capture exclusive permission: if a thread owns e then no other thread can
own it at the same time. To link e with the ability to change x, the protocol Tex allows the guarded
update

e : (x, 𝑣) ⇝ (x, 1) (1)

Fact (b) is encoded by this being the only allowed update.
In TaDA and other modern separation logics such as Iris, implication is generalised to the viewshift

construct (⇛) from [9], which can be used to consistently update ghost information, purely within
the logic (as opposed to through ghost code). Here, it can be used to turn the owned resource
𝑥 ↦→ 𝑣 into a shared resource 𝑃 = ∃𝑣 . 𝑥 ↦→ 𝑣 ⇛ ∃𝑟 . (∃𝑣 . ex𝑟 (x, 𝑣) ∗ ⌈e⌉𝑟) ≡ ∃𝑟 . (𝑃1 ∗𝑃2) where 𝑃1 =
∃𝑣 . ex𝑟 (x, 𝑣) and 𝑃2 = ∃𝑣 . ex𝑟 (x, 𝑣) ∗ ⌈e⌉𝑟 . The guard assertion ⌈e⌉𝑟 indicates ownership of the guard
e for the region with identity 𝑟 . Using standard reasoning, one can then prove ⊢

{
𝑃1

}
C1

{
True

}
and ⊢

{
𝑃2

}
C2

{
True

}
, which entails, by the parallel rule ⊢

{
𝑃1 ∗ 𝑃2

}
C1 ∥ C2

{
True ∗ True

}
. By

consequence and existential elimination on 𝑟 , we obtain our goal ⊢
{
𝑃
}
C1 ∥ C2

{
True

}
.

Let us now turn to termination. A thread-local approach would proceed by first proving that C1
and C2 terminate separately, and then concluding that their parallel composition terminates. In the
case of non-blocking code, it is possible to obtain a proof of this form: by definition, a non-blocking
thread does not need the progress of another thread in order to terminate. For non-blocking code,
a rely/guarantee protocol that only asserts safety facts about the extent of the interference of the
threads is all that is needed to prove termination. This is exploited by virtually all the program
logics which prove total specifications for non-blocking programs [5, 8, 19, 30]. The non-blocking

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

TaDA Live 5

case allows the use of a while rule which is essentially the one of total Hoare logics:

∀𝛽 ≤ 𝛽0. ⊢
{
𝑃 (𝛽) ∧ B

}
C

{
∃𝛾 .𝑃 (𝛾) ∧ 𝛾 < 𝛽

}
⊢

{
𝑃 (𝛽0)

}
while(B){C}

{
∃𝛾 .𝑃 (𝛾) ∧ ¬B ∧ 𝛾 ≤ 𝛽0

} WhileNB

Here 𝛽 is an ordinal-valued variant which is shown to strictly decrease after each iteration. By well-
foundedness of ordinals, there can only be finitely many iterations, and hence the loop terminates.
However, this rule is completely inadequate for blocking code: in our example, the loop of C1
admits no variant, since the iterations do not achieve any sort of progress. Indeed, none of the cited
works can handle this simple example. Reasoning about progress for blocking programs requires a
whole set of new reasoning principles, and a genuine extension of rely/guarantee with liveness
information.

In TaDA Live, the while rule has a more general form:1

□𝐿 ⇒ ^□𝑇
∀𝛽 ≤ 𝛽0. ⊢

{
𝑃 (𝛽) ∧ B

}
C

{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛾 ≤ 𝛽

}
∀𝛽 ≤ 𝛽0 . ⊢

{
𝑃 (𝛽) ∗𝑇 ∧ B

}
C

{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛾 < 𝛽

}
⊢

{
𝑃 (𝛽0) ∗ 𝐿

}
while(B){C}

{
∃𝛾 . 𝑃 (𝛾) ∗ 𝐿 ∧ ¬B ∧ 𝛾 ≤ 𝛽0

} WhileB

The crucial difference is that the rule uses a set of target states𝑇 : when an iteration starts in a target
state, the variant must be shown to strictly decrease, 𝛾 < 𝛽 (i.e. the iteration needs to produce
measurable progress); when an iteration starts from a non-target state, the variant is only required
not to increase, 𝛾 ≤ 𝛽 (i.e. no progress is undone). These two conditions alone do not prove the
termination of the loop: the execution may be constantly in a non-target state. In our example, the
𝑇 is ex𝑟 (x, 1). To conclude that the loop terminates, the first premise requires □𝐿 ⇒ ^□𝑇 : that is,
in traces where 𝐿 holds constantly, with the help of the environment, we will be eventually always

in a target state. The assertion 𝐿 captures facts that hold at any point of the iterations of the loop,
as it is in the triple of the conclusion but framed off the triples in the premises. When 𝑇 finally
happens, by fairness of the scheduler the loop will execute, and will do so from a state where, by
the third premise, the iterations will make progress towards termination.

To make this reasoning work, the first problem we encounter is that none of the information in
a standard rely/guarantee specification supports proving ^□𝑇 . Indeed, nothing in the protocol
defined by ex expresses the idea that at some point the environment will help C1 by setting x to 1.
A safety rely merely expresses that an update is allowed, not that it will be eventually executed.
In other words, a safety rely alone is too imprecise an abstraction: it cannot distinguish between
environments that make the local thread terminate from the ones that do not. The first question
we have to answer is: how can “help” from the environment be represented in a rely/guarantee proof?

Innovation 1: Subjective Obligations For Liveness Invariants

Safety arguments are centred around invariants: that is, facts of the form always P, encoded using
regions in TaDA. TaDA Live’s basic observation is that to represent help from the environment, all
that is needed is liveness invariants: that is, facts of the form always eventually P. By combining
liveness invariants and safety invariants one can encode more complex progress conditions such as
^□𝑇 . To represent liveness invariants in a thread-local way, TaDA Live introduces a new kind of
ghost state called obligations. Similarly to guards, they form a PCM. The interference protocol is
augmented by a component that explains how an update affects the obligations. In our example,
we want to represent the liveness invariant always eventually ex𝑟 (x, 1) which, together with the
1We simplify the rule for this introductory section, informally using the standard LTL notation □𝑃 for always P (i.e. 𝑃 holds
at every point of a trace) and ^ 𝑃 for eventually P (i.e. 𝑃 holds at some point of a trace). The full rule is given in Section 4.6.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

invariant that x can only be set to 1, implies ^□(ex𝑟 (x, 1)). We therefore introduce an obligation u
(for update-to-1), where again u • u undefined captures exclusivity, and extend the protocol to link
u to the update:

e : ((x, 𝑣), u) ⇝ ((x, 1), 0) (2)
This transition to update the region can be executed by a thread with both the e guard and the u
obligation; the effect of the update is to “consume” the u resource, as the obligation resulting from
the update is the unit 0. We say the update fulfils the obligation u.

A safety rely, as expressed by specification (1), says: verify a thread under the assumption that the
environment steps will obey the protocol. As a first approximation, our liveness rely, as expressed
by (2), additionally says: verify a thread under the assumption that the environment will always
eventually fulfil the obligations it owns. (We will refine this idea in the next section to avoid
unsound circular reasoning). We say an obligation 𝑂 is assumed live if the environment always
eventually fulfils 𝑂 . In other words: if, at any time, the environment owns 𝑂 , it eventually fulfils 𝑂 .

This idea introduces a complication; we need to locally keep track of which (relevant) obligations
are owned by the environment, in order to make use of the liveness rely assumption. We solve
this problem by taking inspiration from the concept of subjective separation of [27]. We introduce
subjective obligation assertions: local obligations, ⌊u⌋L𝑟 , asserting local ownership of the obligation u
associated with region 𝑟 , and environmental obligations, ⌊u⌋E𝑟 , asserting environment ownership
of the obligation u. What makes these assertions interesting is the way they compose: that is,
⌊u⌋L𝑟 ⇔ ⌊u⌋L𝑟 ∗ ⌊u⌋E𝑟 . If we start with local obligation u and we want to fork into two threads,
we use ∗ to give responsibility of u to one thread and knowledge that the environment has this
responsibility to the other.

To complete the proof sketch for our example, we first need to extend the region interpretation
by adding the obligation protocol:2

I(ex𝑟 (x, 𝑣)) ≜ 𝑥 ↦→ 𝑣 ∗ (𝑣 = 1
.⇒ ⌊u⌋L𝑟)

When the value at x is 1, the obligation u is owned by the interpretation, and hence owned by no
thread. A thread owning u and setting x to 1 fulfils the obligation precisely by leaving it inside
the interpretation. There is no other way of losing ownership of an obligation because we adopt a
classical interpretation of separation: that is, 𝑃 ∗ ⌊u⌋L𝑟 ̸⇒ 𝑃 . For soundness, the interpretation of a
region with id 𝑟 is only allowed to own obligations of 𝑟 .
The TaDA Live proof starts by using viewshift to transform the resource in the precondition

into this new region that is shared between the two threads:

∃𝑣 . 𝑥 ↦→ 𝑣 ⇛ ∃𝑟 .
(
∃𝑣 . ex𝑟 (x, 𝑣) ∗ ⌈e⌉𝑟 ∗ (𝑣 ≠ 1

.⇒ ⌊u⌋L𝑟)
)

≡ ∃𝑟 . (𝑃1 ∗ 𝑃2)

where 𝑃1 = ∃𝑣 . ex𝑟 (x, 𝑣) ∗ 𝑣 ≠ 1
.⇒ ⌊u⌋E𝑟 and 𝑃2 = ∃𝑣 . ex𝑟 (x, 𝑣) ∗ ⌈e⌉𝑟 ∗ 𝑣 ≠ 1

.⇒ ⌊u⌋L𝑟 are the
preconditions of the proofs of C1 and C2 respectively. To discharge ^□(ex𝑟 (x, 1)) in the proof of
the while loop of C1, we can use 𝐿 = ∃𝑣 . ex𝑟 (x, 𝑣) ∗ 𝑣 ≠ 1

.⇒ ⌊u⌋E𝑟 , which holds throughout the
loop: if we are in a state ex𝑟 (x, 𝑣) either 𝑣 = 1, in which case we are in a target state and the value
of 𝑣 will remain 1 forever; or 𝑣 ≠ 1 in which case we know ⌊u⌋E𝑟 . By the liveness rely, when the
environment owns u, it will eventually fulfil it, which by (2) can only be done by setting 𝑣 = 1.
Section 4 explains in detail how this argument is carried out formally in TaDA Live.
At this point, we are able to prove the total triples ⊢

{
𝑃1

}
C1

{
True

}
and ⊢

{
𝑃2

}
C2

{
True

}
.

However, the standard parallel rule is unsound in the sense that the two triples can be proven even
with C2 = skip but, in this case, the parallel composition would not terminate! TaDA Live’s parallel
rule can recover soundness by checking that the postconditions of the two threads do not own
2The assertion B

.⇒ 𝑄 stands for (B ∧𝑄) ∨ (¬B ∧ emp) .

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

TaDA Live 7

pending obligations, which we can show by proving the stronger triples ⊢
{
𝑃1

}
C1

{
ex𝑟 (x, 1)

}
and ⊢

{
𝑃2

}
C2

{
ex𝑟 (x, 1) ∗ ⌈e⌉𝑟

}
. This condition is too restrictive in general, and we will relax it

appropriately in the next section.

Innovation 2: Obligation Layers To Avoid Circular Arguments

Structuring liveness invariants through obligations, as sketched, presents a significant problem for
soundness due to the possibility of making unsound circular liveness assumptions. Consider the
following variant of our busy-waiting example:

C′1

var v1 = 0 in
while(v1 ≠ 1){

v1B [x1]

}

[x2]B 1

var v2 = 0 in
while(v2 ≠ 1){

v2B [x2]

}

[x1]B 1

C′2

There are two shared heap cells at x1 and x2 respectively. The thread on the left (C′1) is busy-waiting
on x1 which is supposed to be set by the thread on the right (C′2), and vice versa, causing a classic
high-level deadlock3 situation: the program does not terminate.

Let us try to replicate the argument we used for the busy-waiting example. We require a region
sharing both cells, dex𝑟 (x1, x2, 𝑣1, 𝑣2), where 𝑣𝑖 is the value stored at x𝑖 . We use two guards e1 and
e2, and two obligations, u1 and u2 linked to the update of x1 and x2 respectively:

e1 : ((x1, x2, 𝑣1, 𝑣2), u1) ⇝ ((x1, x2, 1, 𝑣2), 0) (3)
e2 : ((x1, x2, 𝑣1, 𝑣2), u2) ⇝ ((x1, x2, 𝑣1, 1), 0) (4)

Without additional precautions, we would be able to derive the triples (for 𝑖 = 1, 2)

⊢
{
𝑃𝑖

}
C′𝑖

{
dex𝑟 (x1, x2, 1, 1) ∗ ⌈e𝑖⌉𝑟

}
(5)

where 𝑃𝑖 = ∃𝑣1, 𝑣2 . dex𝑟 (x1, x2, 𝑣1, 𝑣2) ∗ ⌈e𝑖⌉𝑟 ∗
(
𝑣𝑖 ≠ 1

.⇒ ⌊u𝑖⌋E𝑟
)
∗

(
𝑣3−𝑖 ≠ 1

.⇒ ⌊u3−𝑖⌋L𝑟
)
. Given the

interpretation we sketched earlier, these triples mean: thread 𝑖 terminates provided its environment
(i.e. thread 3 − 𝑖) always eventually fulfils obligation u3−𝑖 . This leads, in the application of the
parallel rule, to an unsound circular argument: to show thread 𝑖 fulfils obligation u𝑖 , thread 𝑖 is
relying on the assumption about the eventual fulfilment of u3−𝑖 by the environment, which in
turn relies on the eventual fulfilment of u𝑖 by thread 𝑖 itself. The question is then: how can we rule

out circular arguments, while keeping the proof thread-local? In particular, we want a solution that
allows us to keep the abstraction of the environment as local and abstract as possible, without
revealing unnecessary structure of the other threads.
Our solution is to specify dependencies between liveness invariants. We do this by imposing a

partial order on obligations: each obligation 𝑂 is associated with a layer, denoted lay(𝑂), which
is an element of a user-defined well-founded partial order, L. Using layers, we can refine our
reasoning principle and gain soundness: to be allowed to assume 𝑂 is live, one has to show all the
locally owned obligations have layers greater than lay(𝑂). The intuition is that local fulfilment
of 𝑂2 can depend on the environment’s fulfilment of 𝑂1 only if lay(𝑂1) < lay(𝑂2).

In our deadlocking example, layers expose the circularity issue and prevent the triples (5) from
being derivable. Specifically, the proof of the loop of C′1 requires us to prove ^□(dex𝑟 (x1, x2, 1, _)).
At this point we are continuously holding the obligation u2 so, to be able to assume u1 live, we
3This liveness form of deadlock is also known as “livelock” since every thread is always taking steps, although no global
progress is made by any of those steps. This is not to be confused with the safety property of “global” deadlock as found in
languages with blocking primitives.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

8 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

require lay(u1) < lay(u2). However, the proof of the loop of C′2 would require the symmetric
constraint, lay(u2) < lay(u1), leading to a contradiction.
If we replace C′2 with C′′2 ≜

(
[x1]B 1; var v2 = 0 in while(v2 ≠ 1){v2B [x2]}

)
, the pro-

gramC′1 ∥ C′′2 terminates and indeed the proof goes through with lay(u1) < lay(u2). This is because
the first instruction of C′′2 fulfils u1 so the loop no longer constantly owns it whilst assuming u2
live. The structure of C′′2 does not impose any dependency on the two liveness invariants.

The generalisation of the liveness rely to use obligations with layers, enables us to give a general
parallel rule: instead of just forbidding pending obligations in the postconditions, we require that
the postcondition of each thread only owns obligations with layers greater than the layers of
obligations assumed live in the other thread’s proof.
Let us contrast our layered obligations with other solutions found in the literature. The LiLi

logic cannot verify the above examples as it lacks support for parallel composition.4 LiLi’s while
rule does share the same high-level structure as WhileB, a structure that can be traced as far back
as [35]. The main crucial difference is in how ^□𝑇 is proven. LiLi proposes the idea of definite
actions, a reincarnation of “leads-to” assertions of [35], to build a liveness rely. Definite actions
require the identification of a logical global “queue” of threads where the thread at the front is
always able to execute its action and that action implies global progress. In LiLi, the target states
are the ones where the local thread is at the head of this queue, and the ^□𝑇 condition is proven
by showing that when the head of the queue executes an action, there is some local well-founded
progress measure that decreases. Definite actions have a number of drawbacks:

• they require heavy introduction of ghost code for manipulating globally shared ghost state
in order to construct the queue of threads; and

• the progress reasoning on the queue requires analysing all possible ways the other threads
may finally produce the target states.

Layered obligations are key to resolving these problems:
• they remove the need for ghost code altogether, and make liveness invariants local using the
local/environmental obligation assertions; and

• by only relying on the eventual fulfilment of layered obligations, the proof of ^□𝑇 can
ignore how the environment is going to implement such fulfilment; the only important fact
to retain about the how is which liveness invariants are assumed to guarantee the fulfilment.

There has been work on proving various safety (e.g. global deadlock-freedom) [15, 25] and
progress (e.g. deadlock-freedom, termination) [3, 20, 24, 26] properties of concurrent programs,
which assume the only source of blocking behaviour comes from the use of blocking primitives
(e.g. built-in locks or channels). Although none of them can handle busy-waiting patterns like our
previous examples, they typically detect deadlocks using “tokens” (often also called obligations)
which represent the responsibility to call a blocking primitive. These tokens are arranged in an
acyclic graph of dependencies. Superficially, these tokens are related to our layered obligations in
that they both are devices to rule out cyclical dependencies. There are, however, deep differences
between the two. Tokens are linked (ad hoc in the operational semantics and through ghost code)
to blocking primitive operations calls, and dependencies between the tokens represent causal de-
pendencies between these primitive events. By contrast, our layers represent dependencies between
liveness assumptions, and reflect a purely logical structure. This makes our layered obligations
particularly general and flexible: they are able to express arbitrary high-level blocking patterns and
not just primitive blocking operations, enabling truly abstract specifications.
4Indeed, LiLi’s goal is limited to proving that a module’s implementation refines its specification. The code of the module
cannot fork threads but anymulti-threaded client of themodule is guaranteed not to be able to distinguish the implementation
from the specification.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

TaDA Live 9

Spin Lock� �
1 def lock(x){
2 var d= 0 in
3 while(d= 0){
4 dB CAS(x,0,1)
5 }
6 }
7
8 def unlock(x) { [x]B 0 }
9
10 def makeLock() { var x in
11 xB alloc(1);
12 [x]B 0;
13 retB x
14 }� �

CLH Lock� �
1 def lock(x) { var c,p,v in
2 cB alloc(1); [c]B 1;
3 pB FAS(x+1, c);
4 vB [p];
5 while(v≠ 0) { vB [p] }
6 [x]B c;
7 dealloc(p)
8 }
9 def unlock(x) { var h in hB [x]; [h]B 0 }
10 def makeLock() { var x,h in
11 hB alloc(1); [h]B 0;
12 xB alloc(2); [x]B h; [x+1]B h;
13 retB x
14 }� �

Fig. 1. Two fine-grained lock implementations.

Innovation 3: Abstract Atomic Specifications for Blocking Operations

Understanding blocking behaviour as the need for an abstraction of the environment that includes
liveness invariants unlocks a novel approach in giving abstract, precise and reusable total specifica-
tions for abstractly atomic operations. Building on Total TaDA, we propose a new specification
format that expresses the atomic effect of a linearizable operation, and succinctly states the liveness
invariant required for ensuring termination, at the right level of abstraction. To see the problem
and our solution, let us consider the paradigmatic example of two fine-grained implementations of
a lock module.

Two Lock Implementations. Consider the spin lock and the CLH lock given in Fig. 1. The implemen-
tations enable threads to compete for the acquisition of a lock at address x by running concurrent
invocations of the lock(x) operation. Only one thread will succeed, leaving the others to wait
until the unlock(x) operation is called by the winning thread.
The primitive commands, such as assignment, lookup and mutation, are primitive atomic and

non-blocking: every primitive command, if given a CPU cycle, will terminate in one step. Since
reads and writes may race, the language is equipped with a compare-and-swap primitive command,
CAS(x,𝑣1,𝑣2), which checks if the value stored at x is 𝑣1: if so, it atomically stores 𝑣2 at x and
returns 1; otherwise it just returns 0. Similarly, the fetch-and-set primitive command, FAS(x,𝑣),
stores 𝑣 at x returning the value that was stored at x just before overwriting it.
The spin lock in Fig. 1 is standard. Its state comprises a heap cell at x which stores either 0

(unlocked) or 1 (locked). The Craig-Landin-Hagersten (CLH) lock [17] in Fig. 1 serves threads
competing for the lock in a FIFO order. It queues requests, keeping a head and a tail pointer (at x
and x+1 respectively). The predecessor pointers are stored in each thread’s local state (in p). The
lock can be acquired by a thread once its predecessor signals release of the lock by setting its queue
node to 0. Unlocking the lock corresponds to setting the queue’s head node value to 0.

Let us focus on the lock operation of the CLH lock. The interesting aspect is that lock displays
blocking behaviour that is observable by the client of the module (it is indeed the quintessence of
blocking). We cannot just provide a total triple for it: the operation does not always terminate. The
challenge is to design a specification format that accurately captures the abstract functionality of
the operation and its subtle termination properties.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

First off, one would like a specification that hides the implementation details and only exposes
the abstract state of the lock to the client: a lock instance is represented by an abstract resource
L(x, 𝑙)5 where 𝑙 = 1 indicates the lock is locked, and 𝑙 = 0 means it is unlocked. It is worth
noting that traditional Hoare triples are not able to represent the useful behaviour of lock(x).
The triple ⊢

{
L(x, 0)

}
lock(x)

{
L(x, 1)

}
requires the client to establish that the lock is unlocked

before calling the operation, defying the very purpose of the operation’s functionality. The triple
⊢

{
L(x, 0) ∨ L(x, 1)

}
lock(x)

{
L(x, 1)

}
allows the operation to be called in the locked state, but is

not precise enough since the same triple holds for a simple assignment [x] B 1. It does not express
the property that, upon termination of the operation, we can claim that we have acquired the lock.
A partial specification of a lock is already a challenge; a total specification more difficult still.

Proposed solutions in the literature can be divided into history-based, refinement-based and
abstract atomicity-based approaches. The history-based approach (e.g. [36] for safety, [14, 23] for
progress) is expressive but at the price of complex and indirect specifications; the verification
requires explicit manipulation of the histories, complicating client reasoning. The only progress-
aware refinement-based approach that can modularly verify the CLH lock is the LiLi logic [29].
LiLi’s refinement ⊑ is progress-preserving and contextual, allowing the result to be reused in
arbitrary client contexts. For example, the LiLi proof for CLH lock (under weak fair scheduling)
shows that

lock(x) ⊑ spec_lock(x)

where spec_lock(x) is defined (in pseudocode) as6

spec_lock(x) {

enqueue(x.queue, self);
await (head(x.queue)= self ∧ x.state= 0) {

⟨x.stateB self; x.queueB tail(x.queue)⟩
}

}

The abstract state of the lock is represented by x.state, but to represent the fact that threads will
not be starved, an abstract FIFO queue at x.queue keeps track of the threads to be served; self
is the thread id of the caller. The command await(B){C} is a blocking primitive introduced to
express the non-primitive blocking of the implementation. The potential absence of progress of
the implementation’s busy-waiting steps is represented by potential absence of a step ahead in the
specification.

LiLi’s specification style has three major drawbacks:
(1) the specification code is not much simpler than the original implementation, and is not able

to hide the implementation detail of the thread queue;
(2) the specification code is not atomic: it produces one step for entering the queue, and one step

for acquiring the lock;
(3) since the termination properties are represented through the behaviour of code, a client

proof that wants to make use of these properties must reprove them on the specification code
before being able to use them in the argument.

These problems limit the abstraction capabilities, proof reuse and scalability of the approach.
The abstract atomicity approach has been pioneered by the TaDA logic. It directly influenced

logical atomicity in Iris [22], and was extended to provide total specification for non-blocking
programs in Total TaDA [8]. The aim of the TaDA approach is to keep the Hoare-triple style of
5We omit the region identifier to simplify the discussion.
6In [29], this is the result of applying the appropriate wrapper to the lock specification: wrwfair

PSF
(await(l=0) {l B cid}) .

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

TaDA Live 11

specification, whilst being able to give precise and abstract specifications to fine-grained code
like CLH lock. The TaDA solution is to provide a Hoare triple for lock which embraces the fact
that, between the invocation of the operation and the execution of the atomic update of the lock,
there is a phase of interference where the environment can change the value of the lock. It is
important to be able to distinguish the imprecise precondition that holds during the interference
phase, L(x, 0) ∨L(x, 1), and the precise precondition, L(x, 0), that holds just before the atomic update
performed by the lock operation at its linearization point [?].

The TaDA safety specification for lock is the partial atomic triple:
⊢ A

𝑙 ∈ {0, 1}.
〈
L(x, 𝑙)

〉
lock(x)

〈
L(x, 1) ∧ 𝑙 = 0

〉
(6)

The interference precondition

A

𝑙 ∈ {0, 1}.⟨L(x, 𝑙)⟩ describes the interference phase. It states that
the environment must preserve the existence of the lock at x but may change the value of 𝑙 , and
the implementation of the lock must tolerate these environmental changes. The pseudo-quantifier

A

𝑙 ∈ {0, 1} is unusual, behaving like an evolving universal quantifier in that the environment is able
to keep changing 𝑙 over time and behaving like an existential quantifier in that the implementation
can assume that the lock always exists with 𝑙 ∈ {0, 1}. The triple (6) states that, if the environment
satisfies the interference precondition and the operation terminates, then the implementation
guarantees that, just before the linearization point, the lock must have been available for locking
(𝑙 = 0) and, just afterwards, the lock has been locked by the operation (L(x, 1)). Exclusive ownership
of the lock after the operation terminates can be derived from the 𝑙 = 0 assertion in the postcondition:
just before we locked it, nobody else could claim that they owned the lock. The TaDA safety
specification for unlock is the partial atomic triple

⊢ A
𝑙 ∈ {1}.

〈
L(x, 𝑙)

〉
unlock(x)

〈
L(x, 0)

〉
This triple7 states that, to be used correctly, the unlock operation requires the lock to be locked and
not changed by the environment during the interference phase; in return, the operation promises
to atomically set the lock to be unlocked.
TaDA Live builds on the TaDA specification format. To turn the TaDA triple for lock into a

total specification, the termination guarantee must depend on the environment: if the environment
decides to hold the lock indefinitely, no lock implementation should allow the lock operation to
terminate. Hence, we express blocking as a liveness condition on the environment during the interfer-
ence phase of an abstractly atomic operation. The CLH lock operation will terminate under weak
fairness, provided that, if the lock is locked by the environment during the interference phase, the
environment will eventually unlock it. In general, a blocking operation will require an environment
that is live: it will always eventually bring the abstract state to a good (e.g. unlocked) state.

The TaDA Live total specification of the CLH lock operation is:
⊢ A

𝑙 ∈ {0, 1} ↠ {0}.
〈
L(x, 𝑙)

〉
lock(x)

〈
L(x, 1) ∧ 𝑙 = 0

〉
(7)

The interference precondition is

A

𝑙 ∈ {0, 1} ↠ {0}.⟨L(x, 𝑙)⟩ with the pseudo-quantifier now in-
corporating the environment liveness condition. As well as stating that the environment can
keep changing the lock, the interference precondition also states that if the lock is in a bad state
(𝑙 ∈ {0, 1} \ {0}) then the environment must always eventually change it to a good state (𝑙 ∈ {0}).
The implementation needs to ensure termination under the assumption that the lock always even-
tually returns to the unlocked state. Note that the environment is allowed to change 𝑙 back to 1
arbitrarily many times, provided it always eventually sets it back to 0. To see why this is enough to
ensure termination, consider Fig. 2(a) where we chart the evolution of the abstract state induced
by a live environment in the interference phase of lock. Progress towards termination of lock
7We typically omit the pseudo-quantifier in the case where the set has just one element, e.g. ⊢

〈
L(x, 1)

〉
unlock(x)

〈
L(x, 0)

〉
.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

time

abs. state

L(x, 1)
L(x, 0)

(a)
always eventually good state

time

abs. state

L(x, 1)
L(x, 0)

(c)

x x x

bounded
impedance

always eventually good state

time

variant

2𝑞 + 𝑙
(b)

time

variant

2𝛼 + 𝑙
(d)

Fig. 2. Live environment (a); measure of progress for CLH lock where 𝑞 is the number of threads ahead in the

queue (b); live environment with bounded impedance (c); measure of progress for spin lock (d).

is guaranteed by the progress measure charted in Fig. 2(b): every time the environment unlocks,
the value of 𝑙 decreases from 1 to 0; when the environment locks, although 𝑙 increases to 1, the
number 𝑞 of threads in front of us in the queue decreases. One crucial aspect of our specification
design is that we do not want to expose the progress argument to the client unless part of the
argument needs to be made by the client. With CLH, the part of the argument appealing to the queue
of threads is completely internal to the implementation of the operation, while the argument for
the environment’s liveness must be provided by the client (the implementation has no power over
this). We prove this formally in Section 5.
Now let us consider the spin lock implementation. The spin lock operation cannot promise to

terminate just by relying on a live environment. The problem is that when the environment locks
the lock, there is no measure of progress that decreases: we are genuinely delayed by this action.
We call this effect impedance. We conceptualise impedance as a greater leaking of the progress
argument to the client. In the spin lock example, the whole of the progress argument needs to
be provided by the client: the client needs to ensure that the environment will always eventually
unlock the lock, and that it will only impede the operation a bounded number of times. To represent
this extra bounded impedance requirement (depicted in Fig. 2(c)), we extend the abstract state of the
lock with an ordinal 𝛼 , an impedance budget that strictly decreases when the lock state is set to 1.
We arrive at the following TaDA Live specification for spin lock:

∀𝜙. ⊢ A

𝑙 ∈ {0, 1} ↠ {0}, 𝛼 .
〈
L(x, 𝑙, 𝛼) ∧ 𝜙 (𝛼) < 𝛼

〉
lock(x)

〈
L(x, 1, 𝜙 (𝛼)) ∧ 𝑙 = 0

〉
(8)

The lock is now represented by the predicate assertion L(x, 𝑙, 𝛼) with ordinal 𝛼 , which can also be
changed by the environment during the interference phase. As well as expressing the dependency
on a live environment on 𝑙 , this triple states that every lock operation consumes the budget 𝛼 by
a non-trivial amount, thus providing a logical measure of progress from good to bad states. The
initial value of the budget and the function 𝜙 from ordinals to ordinals is determined by the client,
which must demonstrate that the budget is enough to make all its calls.

The TaDA Live total specification of unlock for the CLH lock is the same as the TaDA partial
specification. By contrast, the TaDA Live specification of unlock for the spin lock needs to incor-
porate the ordinals: ⊢

〈
L(x, 1, 𝛼)

〉
unlock(x)

〈
L(x, 0, 𝛼)

〉
. The impedance budget 𝛼 is preserved

by unlock. This encodes the fact that unlock does not impede the other operations, but also that
by unlocking we cannot increase the budget. By combining these assumptions about the budget
(it decreases when locking, stays constant when unlocking), it is possible to conclude that the
implementation of the spin lock terminates using the progress measure in Fig. 2(d). Crucially, for
spin lock, the whole of the progress argument is provided by (and thus visible to) the client.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

TaDA Live 13

The impedance budget technique was first introduced to concurrent separation logics for non-
blocking operations in Total TaDA [8]. Here, we smoothly integrate ordinals into TaDA Live that
fully supports blocking.

2.1 Abstraction and proof reuse

The TaDA Live program logic works with hybrid triples of the form:
⊢ A

𝑥 ∈ 𝑋 ↠ 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 C 〈
𝑄h (𝑥)

��𝑄a (𝑥)
〉

which generalises both Hoare triples and abstract atomic triples. This triple comprises: a pseudo-
quantifier with its environment liveness condition; atomic pre/post-conditions 𝑃a (𝑥) and𝑄a (𝑥); and
Hoare pre/post-conditions, 𝑃h and 𝑄h (𝑥). The Hoare pre/post-conditions describe stable resources
that are owned locally by C and can be updated non-atomically. Hoare triples correspond to the
case where 𝑋 = 𝑋 ′ = {1} and 𝑃a = 𝑄a = emp. Abstract atomic triples correspond to the case when
𝑃h and 𝑄h (𝑥) are empty. We have omitted some details from the hybrid triples, such as layers
and levels, since they are not important for the ideas of this section; the full details are given in
Section 3.8.

The integration of the liveness annotations in triples achieves the goal of keeping the specification
abstract and atomic. To obtain the goal of reuse of proofs, there are two missing ingredients: a
mechanism to make use of the 𝑋 ↠ 𝑋 ′ assumption in a proof of an implementation of the
specification; and a way to reuse the specification in an arbitrary client context.
Imagine proving the CLH lock implementation correct with respect to specification (7). The

while loop needs to discharge that “finally, the current thread is at the head of the queue, and
the lock is unlocked”. This can only be proven with the help of the 𝑙 ∈ {0, 1} ↠ {0} liveness
assumption coming from the lock specification. To this end, in addition to liveness assumptions
given by obligation assertions, TaDA Live extends judgements to allow contexts with 𝑋 ↠ 𝑋 ′

liveness assumptions, used to discharge the ^□𝑇 condition in the while rule. The full details are
given in Section 3.8.
Now consider proving a client of a lock using the specifications of the lock operations for the

calls to these operations. This requires the Liveness Check rule:
□𝐿 ⇒ □^𝑇 ∀𝑥 ∈ 𝑋 . ⊢ 𝑃a (𝑥) ∗𝑇 ⇒ 𝑥 ∈ 𝑋 ′

⊢ A

𝑥 ∈ 𝑋 ↠ 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 C 〈
𝑄h (𝑥)

��𝑄a (𝑥)
〉

⊢ A

𝑥 ∈ 𝑋 .
〈
𝑃h ∗ 𝐿

�� 𝑃a (𝑥)〉 C 〈
𝑄h (𝑥) ∗ 𝐿

��𝑄a (𝑥)
〉 LiveC’

The rule’s crucial effect is to remove the liveness annotation 𝑋 ↠ 𝑋 ′, which can only be done in a
situation where the corresponding liveness assumption □(𝑥 ∈ 𝑋) ⇒ □^(𝑥 ∈ 𝑋 ′) is satisfied. Just
like the WhileB rule, we frame an assertion 𝐿 which is information that holds for the duration
of the call. Typically, 𝐿 asserts the existence of some shared region and that the environment
holds some obligations depending on the state of the region. We also need to provide a set of
target states 𝑇 capturing when 𝑥 ∈ 𝑋 ′ (second premise). The crucial check of the rule is the first
premise, which examines the traces where 𝐿 holds everywhere, and asks us to prove that in those
traces we see 𝑇 satisfied infinitely often (and thus 𝑥 ∈ 𝑋 ′ infinitely often). If that is true, we can
conclude that the command terminates in the current context without the extra assumption in
the pseudo-quantification. The resulting triple can be then manipulated using standard TaDA
reasoning.
Take the typical use of (CLH) locks C = lock(x);. . .;unlock(x) in a client C ∥ · · · ∥ C. To

share the lock resource L(x, 𝑙), the client proof would specify some region client𝑟 (x, 𝑙) where 𝑙
is the abstract state of the lock. A typical client would include the abstract state of other shared
resources too, but for simplicity we focus here on the lock. The client needs to specify in its protocol

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

that the lock will be always eventually unlocked by the threads sharing it. We therefore introduce
an exclusive obligation k (the key of the lock) which is obtained when locking the lock and fulfilled
when unlocking it:

((x, 0), 0) ⇝ ((x, 1), k) ((x, 1), k) ⇝ ((x, 0), 0)

The protocol is mirrored in the region’s interpretation I(client𝑟 (𝑥, 𝑙)) ≜ L(𝑥, 𝑙) ∗
(
𝑙 = 0

.⇒ ⌊k⌋L𝑟
)
.

With the application of standard TaDA reasoning, it is possible to derive
⊢ A

𝑙 ∈ {0, 1} ↠ {0}.
〈
L(x, 𝑙)

〉
lock(x)

〈
L(x, 1) ∧ 𝑙 = 0

〉
⊢ A

𝑙 ∈ {0, 1} ↠ {0}.
〈
emp

�� client𝑟 (x, 𝑙)〉 lock(x) 〈
⌊k⌋L𝑟

�� client𝑟 (x, 1) ∧ 𝑙 = 0
〉

which amounts to saying that if lock(x) atomically locks the lock region, then it also atomically
updates the client region containing the lock. Notice that the {0, 1} ↠ {0} annotation is propagated
as is. In other words, the update on the lock is put in the context of the current client. In such
context, we can set the frame 𝐿 to be ∃𝑙 ∈ {0, 1}. client𝑟 (x, 𝑙) ∗ 𝑙 = 1

.⇒ ⌊k⌋E𝑟 : according to the
protocol of the current client, the environment holds an obligation k when 𝑙 = 1. Because of the
liveness invariant encoded by k, it is true that the environment will always eventually unlock the
lock, allowing us to discharge the side condition of LiveC’:

□
(
∃𝑙 ∈ {0, 1}. client𝑟 (x, 𝑙) ∗ 𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
⇒ □^(client𝑟 (x, 0))

Indeed, if 𝑙 = 1 the precondition gives us ⌊k⌋E𝑟 which means that the environment owns k and will
therefore eventually fulfil it, which can only be done by setting 𝑙 = 0. The environment is allowed
to then lock x again, but that is fine: as we discussed, a CLH lock can promise termination under
this milder condition.
Thanks to the smooth integration of liveness annotations in the specifications and liveness

invariants expressed as obligations, TaDA Live proofs can properly abstract and encapsulate
behaviour. Consider a module implementing a counter which can be safely used concurrently
thanks to the internal use of locks to protect access to the shared cell holding the value of the
counter. For example, the increment operation can be implemented as

def incr(x){var v in lock(x); vB [x+1]; [x+1]B v+1; unlock(x)}

While the use of locks involves blocking behaviour, the blocking is handled completely internally
and a client of the counter cannot observe it. The TaDA Live specification of the increment operation
thus does not leak this implementation detail:

⊢ A

𝑛 ∈ N.
〈
C(x, 𝑛)

〉
incr(x)

〈
C(x, 𝑛 + 1)

〉
A client of the counter does not need to worry about the internal blocking since the specification
does not entail any liveness proof obligation. The proof of incr discharges the liveness assumption
of the specification of lock by using obligations analogous to k above, specified in an internal
protocol that is not exposed to the client proof. In Section 4.9, we discuss the encapsulation
properties of TaDA Live’s specifications in more detail.
Our approach contrasts significantly with previous work [3, 20] where blocking is represented

in specifications by the acquisition of tokens acting as obligations. In this work, the specification
style fixes an expected protocol to be followed by the client. For example, the axiom for a built-in
lock acquisition operation returns a built-in token representing the need for calling a lock release
primitive.

In contrast, our lock specification does not impose on the client any particular way in which its
environment liveness assumption should be enforced. It is the job of the client to devise a protocol
that ensures the environment liveness assumptions of the lock specifications will be provable.
For locks, this is indeed often achieved by making sure every thread that locks a lock eventually

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

TaDA Live 15

unlocks it. Such a protocol is encoded by the liveness invariants of the client’s region (e.g. client in
the example above) and the k-obligation pattern. The specification of the lock, however, does not
transfer obligations to the client, leaving open the possibility for clients to use completely different
protocols. The following example client illustrates the added flexibility of our approach:

lock(x);

[y]B 1

var b= 0 in
while(b≠ 1){ bB [y] };

unlock(x)

The code assumes a lock has been allocated at x, and y initially stores 0. In the specification style
where the expected (liveness) protocol is built-in, the lock call in the left-hand thread would return
a built-in token which can only be consumed by calling unlock. This in turn requires an extension
of the logic —as done e.g. in [16]— providing some mechanism for the sound delegation of tokens
from one thread to the other. In TaDA Live, there is no need for such an extension. The protocol of
this client does not need to associate obligations with the lock; one can simply define an obligation
(owned initially by the left-hand thread) that is fulfilled when y is set to 1, and use it to prove the
appropriate environment liveness conditions for the proof.
In this informal overview, we used temporal logic formulas to represent the key liveness con-

ditions in theWhileB and LiveC’ rules. The formal versions of these TaDA Live rules, however,
implement those checks with what we call the environment liveness condition, which reduces these
liveness properties to safety checks via a dedicated set of rules (explained in Section 4). Remarkably,
the liveness checks of both rules can be phrased in terms of the environment liveness condition,
which therefore provides a uniform proof principle for blocking termination.

2.2 A Guide For the Reader

The rest of the paper proceeds by introducing the assertion language and the semantic model of
TaDA Live in full detail (Section 3), then presenting the proof rules through the proof of an example
(Section 4), then walking through the proofs of our case studies and commenting on limitations
(Section 5), and finally discussing related work (Section 6). A reader interested in the proof rules
can skim through Sections 3.3 to 3.5 and 3.8 and the beginning of Section 3.9 to familiarise with the
basic definitions, and then move to Section 4 to understand how the rules themselves work, and
the typical proof patterns.

3 THE TADA LIVE SEMANTIC MODEL

We introduce the semantic model which justifies TaDA Live, defining:
• the operational semantics of commands and their fair traces;
• the assertion language, regions, guards, obligations and protocols;
• the semantics of assertions and viewshifts;
• the specification format; and
• the trace semantics of specifications.

In Section 2, we introduced hybrid triples which generalise Hoare and atomic triples. For our
formal semantics, we separate triples into two components: the command C, and the specification S
comprising the pseudo-quantifier, the precondition and the postcondition.We introduce the semantic

judgement, ⊨ C : S with S =

A

𝑥 ∈ 𝑋 ↠ 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 ·
〈
𝑄h (𝑥)

��𝑄a (𝑥)
〉
, which captures the

semantic properties of a command that satisfies a specification: i.e. safety and termination of its
fair traces. This required a complete reformulation of the model of TaDA. First, we give a trace
semantics to specifications independently of commands. This enables us to define the semantic
judgement to hold when JCK ⊆ JSK: that is, when the concrete traces of a command are allowed by

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

C ::= skip (skip)
| xB E (assignment)
| xB [E] (read)
| [E]B E (write)
| xB CAS(E,E,E) (compare-and-swap)
| xB FAS(E,E,E) (fetch-and-set)
| xB alloc(E) (allocate)
| dealloc(E) (deallocate)
| C;C (sequential composition)
| C ∥ C (parallel composition)
| let f(®x)=C in C (function definition)
| var x=E in C (local variable binding)
| if(B){C}else{C} (if)
| while(B){C} (while loop)
| xB f(®E) (function call)
| ⟨C⟩ (primitive atomic block)

E ::= 𝑣 | x | E + E | E * E | · · · (numeric expressions)
B ::= 𝑏 | x | ¬B | E ≤ E | · · · (Boolean expressions)

Domains:
𝑣 ∈ Val ≜ Z ∪ Bool ⊇ Addr ≜ N

𝜎 ∈ Store ≜ PVar ⇀ Val

ℎ ∈ Heap ≜ Addr ⇀
f
Val

𝜑 ∈ FImpl ≜ FName ⇀ (PVar∗,Cmd)
PState ∋ 𝐶 ::= ✓ | C | 𝐶 ∥ 𝐶 | 𝐶 ;C

| (𝜎,𝐶) | let f(®x)=C in~𝐶
𝒄 ∈ PConf ≜ (Store × Heap × PState) ⊎ { }

Fig. 3. Syntax of commands C ∈ Cmd and basic semantic domains.

the specification traces. This approach is unusual for separation logics based on Hoare-style triples,
and brings the semantics nearer to approaches based on refinement. Second, the trace model is an
“open-world” semantics where traces include both individual local steps made by the command and
individual arbitrary environment steps. Other models typically model the environment interference
indirectly, representing a sequence of environment steps as a single big jump. Our “open-world”
approach is crucial to capture the assumptions on the liveness of the environment stipulated by
the specifications. Third, the trace semantics of the specification is given in a style that is closely
related to alternating automata [38]. The specification is seen as an automaton which traverses a
concrete trace and only accepts those traces that satisfy the specification. This enables us to cleanly
separate the (alternating) safety constraints from the (linear time) liveness constraints, imposed by
a specification.

3.1 Notation

We write 𝑋 ⇀ 𝑌 for the set of partial functions from 𝑋 to 𝑌 , and 𝑋 ⇀f 𝑌 for the set of finite
partial functions. Given 𝑓 : 𝑋 ⇀ 𝑌 , we write 𝑓 (𝑥) = ⊥ if 𝑓 is undefined on 𝑥 , and dom(𝑓) ≜
{𝑥 | 𝑓 (𝑥) ≠ ⊥}. We write [𝑥1 ↦→ 𝑦1, . . . , 𝑥𝑛 ↦→ 𝑦𝑛] for the finite function that maps each of the 𝑥𝑖
to 𝑦𝑖 and is undefined on any other input. We write 𝑓 [𝑥 ↦→ 𝑦] for the partial function which
coincides with 𝑓 except on 𝑥 where it returns 𝑦, and write 𝑓 [𝑥 ↦→ ⊥] analogously. The disjoint
union between partial functions 𝑓 ⊎𝑔 is defined if their domains are disjoint. In contexts where the
expected type is a function, we write ∅ for the empty function.

3.2 Fair Trace Semantics of Commands

We present a standard first-order imperative language, calledWhile, with shared-memory con-
currency and fine-grained non-blocking primitives, and define the fair concrete trace seman-
tics of its commands. Our While language is parametrised by the following sets: the Booleans,
Bool ≜ {true, false} ∋ 𝑏; the values, Val ≜ Z ∪ Bool ∋ 𝑣 ; the program variables, PVar ∋ x, y, . . . ;
and the function names, FName ∋ f. The set PVar contains a special element, ret, the name of a
local variable that holds a function’s return value.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

TaDA Live 17

Definition 3.1 (Commands). The set of commands, Cmd ∋ C, is defined by the grammar in Fig. 3
where x ∈ PVar, ®x ∈ PVar

∗ is a list of pairwise distinct variables, and f ∈ FName. The notation
var x1,x2. . .,xn in C denotes var x1= 0 in var x2= 0 in . . . var xn= 0 in C.

We place some restrictions on these commands to simplify exposition. We write pv(C) for
the free program variables of a command. The set mods(C) is the set of free variables that are
potentially modified by a command, i.e. any free x of C appearing in instructions of the form
xB . . .; in particular, mods(var x=E in C) = mods(C) \ {x}. In a command C1 ∥ C2, we apply
the mild syntactic restriction that mods(C1) = mods(C2) = ∅. Each individual thread is still able
to modify variables that are created locally and to modify shared heap cells, but are not allowed
to modify the free variables.8 In a function definition let f(x1,. . .,x𝑛)=C1 in C2, we use the
natural restriction pv(C1) ⊆ {x1, . . . , x𝑛, ret}. Also for simplicity, we assume each function name
is given at most one definition. The function fn : Cmd → ℘(FName) returns the function names
occurring in Cmd that are not bound by a let. Although function definitions may be recursive,
we will disallow recursion in our logical rules to simplify the development. In the programs we
consider, all potentially divergent behaviour stems from while. It is straightforward to reformulate
the While rule into a Let rule that supports terminating recursion.
Commands manipulate heaps ℎ ∈ Heap ≜ Addr ⇀f Val (where Addr ≜ N and ∅ is the empty

heap) and local variable stores, 𝜎 ∈ Store ≜ PVar ⇀ Val. A command can contain free function
names, so we use a function implementation context 𝜑 ∈ FImpl ≜ FName ⇀ (PVar∗,Cmd), to map
function names to pairs comprising a finite list of distinct variables (the formal arguments) and a
command (the body of the function).
A command induces transitions over program configurations 𝒄 ∈ PConf ≜ (Store × Heap ×

PState) ⊎ { } which keep track of the current variable store and global heap, and the program
states 𝐶 ∈ PState (see Fig. 3) which represent the set of the active threads and their execution
state. The program configuration represents a faulty configuration, e.g. the one reached after
dereferencing an unallocated address. For the details of program states we refer to Appendix D;
what is relevant is that ✓ is the program state of a terminated thread, and we can define a function
threads : PConf → ℘(TId) that computes the set of thread identifiers (𝑡 ∈ TId) of the active threads
of a program configuration (details in Appendix).

To model fair traces of commands, we use a small-step operational semantics, parametrised by a
function implementation context 𝜑 and defined by a relation −→𝜑 ⊆ PConf × Sched × PConf. In a
transition (𝒄1, 𝝅, 𝒄2), the scheduling annotation, 𝝅 ∈ Sched, keeps track of who executed the step:

Sched ≜ {loc𝑡 | 𝑡 ∈ TId} ⊎ {env}
that is, either a local active thread 𝑡 or the environment. Environment steps can have arbitrary
effects on the heap and can generate faults at any time:

ℎ′ ∈ Heap

𝜎,ℎ,𝐶
env−−−→𝜑 𝜎,ℎ′,𝐶

𝒄 ∈ PConf

𝒄
env−−−→𝜑

The full definition of the transition semantics is defined in Fig. 35 and Fig. 36 of the Appendix.
We call program traces the infinite sequences of the form 𝒄0 𝝅0 𝒄1 𝝅1 · · · where, for all 𝑖 ∈ N,

𝒄𝑖 ∈ PConf and 𝝅𝑖 ∈ Sched. We use 𝝉 to range over infinite suffixes of program traces and PTrace

for the set of all program traces. We define the set of 𝜑-program traces

PTrace𝜑 ≜ {𝒄0 𝝅0 𝒄1 𝝅1 · · · | ∀𝑖 ∈ N. 𝒄𝑖 𝝅𝑖−−→𝜑 𝒄𝑖+1}.
8To lift this restriction, one can use the “variables as resources” technique [2]. Our restriction simplifies the handling of
the local state without sacrificing expressivity: any local variable in the scope common to both threads that needs to be
modified can be instead implemented by using a shared memory cell.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Definition 3.2 (Fairness). A 𝜑-program trace (𝒄0 𝝅0 𝒄1 𝝅1 · · ·) ∈ PTrace𝜑 is fair if:
∀𝑖 ∈ N.∀𝑡 ∈ threads(𝒄𝑖). ∃ 𝑗 ≥ 𝑖 . (𝝅 𝑗 = loc𝑡 ∨ 𝒄 𝑗 =) (9)

∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 . 𝝅 𝑗 = env (10)
That is: a trace is fair if, at any point in time, every thread that can take a step (and the environment)
will eventually be scheduled.

The open-world program semantics defines the behaviour of a command when run concurrently
with an arbitrary environment. It corresponds to the fair program traces of a command, with the
information about program states and thread identifiers removed.

Definition 3.3 (Open World Semantics). We call traces the infinite sequences 𝑐0 𝜋0 𝑐1 𝜋1 · · · where,
for all 𝑖 ∈ N, 𝑐𝑖 ∈ Conf ≜ (Store × Heap) ∪ { } and 𝜋𝑖 ∈ {loc, env}. We use 𝜏 for ranging over
infinite suffixes of traces and Trace for the set of all traces. For a trace 𝜏 = 𝑐0 𝜋0 𝑐1 𝜋1 · · · , we
define 𝜏 (𝑖) ≜ (𝑐𝑖 , 𝜋𝑖), and 𝜏/𝑖 ≜ 𝑐𝑖 𝜋𝑖 𝑐𝑖+1 𝜋𝑖+1 · · · . The function [·] : PTrace → Trace is defined by
[𝒄0 𝝅0 𝒄1 𝝅1 · · ·] ≜ 𝑐0 𝜋0 𝑐1 𝜋1 · · · where

𝑐𝑖 ≜

{
(𝜎,ℎ) if 𝒄𝑖 = (𝜎,ℎ, _)
 if 𝒄𝑖 =

𝜋𝑖 ≜

{
loc if 𝝅𝑖 ∈ Sched \ {env}
env if 𝝅𝑖 = env

The open-world program semantics function, J · K𝜑 : Cmd → ℘(Trace) is defined by
JCK𝜑 ≜

{
[𝒄0𝝉]

�� (𝒄0𝝉) ∈ PTrace𝜑 , fv(C) ⊆ dom(𝜎0), 𝒄0 = (𝜎0, _,C), 𝒄0𝝉 is fair
}

The notation JCK is syntactic sugar for JCK∅.

The goal of TaDA Live is to prove termination of the local command.

Definition 3.4 (Local termination). A trace 𝜏 ∈ Trace is locally terminating, written lterm(𝜏), if it
contains finitely many occurrences of loc.

It might seem odd that our program semantics only contains infinite traces, since our goal is
proving termination. Traces that locally terminate simply have an infinite tail of environment
steps. To simulate a closed system one can select for the traces where the environment steps are all
identity steps.

Remark 1 (On primitive blocking). It is important to remember that the primitives of our pro-
gramming language are non-blocking, in the sense that they can always take a step if scheduled:
for all ℎ ∈ Heap,𝐶 ∈ PState, for all 𝜎 with dom(𝜎) ⊇ pv(𝐶), and every 𝑡 ∈ threads(𝐶), there is a
𝒄 ∈ PConf such that (𝜎,ℎ,𝐶) loc𝑡−−−→𝜑 𝒄 . Hence, a trace is locally terminating only if all the threads
terminated.

For languages which have blocking primitives (e.g. built-in locks/channels), traces may be locally
terminating because a non-terminated thread may not have a local successor (i.e. it is not enabled)
at any point in the future (e.g. if a built-in lock remains locked forever, an acquire operation would
not have local successors). With blocking primitives, fairness also comes in two variants: strong
and weak. Strong fairness requires that if an operation is infinitely often enabled it is infinitely
often executed. Strong and weak fairness coincide for languages like ours where every primitive is
enabled at all times.
Notice that our lack of blocking primitives does not make our setting less general: blocking

primitives can be implemented on top of non-blocking ones, both with weak and strong fairness
assumptions for termination, as illustrated by our spin and ticket lock examples. In other words,
blocking primitives can be given TaDA Live specifications and be treated uniformly by the logic.
The addition of built-in blocking primitives to the language does not pose new challenges.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

TaDA Live 19

3.3 TaDA Live Assertions and Worlds

We formally introduce the TaDA Live assertion language, and its semantics in terms of its models,
called worlds. The TaDA Live assertions are built from the standard classical connectives and
quantifiers of separation logic,9 TaDA region and guard assertions, and new TaDA Live obligation
and layer assertions. To formalise the assertions, we assume a number of basic domains:

• a set of logical variables, denoted LVar, disjoint from PVar;
• an enumerable set of region types, RType ∋ t;
• an enumerable set of region identifiers, RId ∋ 𝑟 ;
• the set of levels, Lvl ≜ N ∋ _, to stratify regions to avoid the problem of re-entrancy10
(explained in Remark 2);

• a set of abstract states, AState ∋ 𝑎, including sets and lists of values;
• a set of guards, Guard ∋ 𝐺 , which will offer the support for the guard algebras defined later;
• a well-founded partial order (L, ⩽,⊤,⊥) of layers, which will be associated to special guards
called obligations; and

• a set of ordinals, O.
For layers, we use the abbreviations 𝑘1 < 𝑘2 ≜ (𝑘1 ⩽ 𝑘2∧𝑘2 ̸⩽ 𝑘1) and 𝑘 ·⩾ 𝑛 ≜ (∀𝑘 ′ > 𝑘. 𝑘 ′ ⩾ 𝑛).

The set of abstract values is AVal ≜ Val ∪ AState ∪ Guard ∪ RId ∪ L.
As is standard, when used in assertions, we extend numeric and Boolean expressions to use

logical variables and abstract values too. A logical variable store, 𝑙 ∈ LStore ≜ LVar ⇀ AVal, assigns
values to logical variables. Given a logical and a program variable store 𝑙, 𝜎 , the evaluation of
expressions EJEK𝑙,𝜎 ∈ AVal and of Boolean expressions BJBK𝑙,𝜎 ∈ Bool are standard.
Assertions and worlds are built using partial commutative monoids.

Definition 3.5 (PCM). A (multi-unit) partial commutative monoid (PCM) is a tuple (𝑋, •, 𝐸) com-
prising a set 𝑋 , a binary partial composition operation • : 𝑋 × 𝑋 ⇀ 𝑋 and a set of unit elements 𝐸,
such that the following axioms are satisfied (where either both sides are defined and equal, or both
sides are undefined):

∀𝑥,𝑦, 𝑧 ∈ 𝑋 . (𝑥 • 𝑦) • 𝑧 = 𝑥 • (𝑦 • 𝑧) (associativity)
∀𝑥,𝑦 ∈ 𝑋 . 𝑥 • 𝑦 = 𝑦 • 𝑥 (commutativity)

∀𝑥 ∈ 𝑋 .∃𝑒 ∈ 𝐸. 𝑥 • 𝑒 = 𝑥 (identity)

For 𝑥,𝑦 ∈ 𝑋 , we write 𝑥 # 𝑦 if 𝑥 • 𝑦 ≠ ⊥, and 𝑥 ⊑ 𝑦 if ∃𝑥1 . 𝑦 = 𝑥 • 𝑥1. A PCM is cancellative when,
for any 𝑥,𝑦1, 𝑦2 ∈ 𝑋 , if 𝑥 • 𝑦1 = 𝑥 • 𝑦2 then 𝑦1 = 𝑦2.

The partial heaps form a PCM (Heap,⊎, {∅}), as standard in separation logics. We also use guard
algebras and obligation algebras which are PCMs for describing auxilary ghost state, specified by
the user of the logic.

Definition 3.6 (Guard Algebras). A guard algebra is a PCM (Grd, •, {0}) with Grd ⊆ Guard.
TaDA Live is parametrised by a function G(·) mapping a region type t to a guard algebra G(t) =
(Gt, •t, {0t}). The t subscript is omitted from •t and 0t when it is clear from the context.

As discussed, the obligations represent ghost state for describing liveness invariants. They form
an obligation algebra which is little more complicated to define due to the association of obligations
with layers.

9TaDA interprets the separating conjunction intuitionistically. With TaDA Live, we interpret it classically in order to not
lose information about the obligations.
10In Iris, levels roughly correspond to masks.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

𝑃 F B | ∃𝑥 . 𝑃 | E ∈ 𝑋 | 𝑃 ⇒ 𝑄 | 𝑃 ∧𝑄 | emp | 𝑃 ∗𝑄 | E ↦→ E | t_𝑟 (E) | 𝑟 Z⇒ 𝑑

| ⌈E⌉𝑟 | ⌊E⌋L𝑟 | ⌊E⌋E𝑟 | emp
𝑅
Ob

| emp
_
Ob

| 𝑟 Q𝑚

𝑑 F ♦ | ♢ | (E,E) t ∈ RType, _ ∈ Lvl, 𝑟 ∈ RId ∪ LVar, 𝑅 ⊆ RId,𝑚 ∈ L .

Fig. 4. Syntax of Assertions. Logical expressions, E, and logical Boolean expressions, B, are standard.

Definition 3.7 (Obligation Algebras). TaDA Live is parametrised by a set of atoms AOb and
a layered obligation structure: that is, a pair (Oblig, lay) where Oblig = ℘(AOb) ⊆ Guard and
lay : Oblig → L such that ∀𝑂 ∈ Oblig.⊥ < lay(𝑂) ⩽ ⊤. We will implicitly coerce atoms 𝑎 ∈ AOb

into obligations {𝑎} ∈ Oblig. An obligation algebra is a guard algebra (Obl, •, {0}) where Obl ⊆
Oblig, 0 = ∅, • is union of disjoint sets and ∀𝑂1,𝑂2 ∈ Obl. 𝑂1 ⊑ 𝑂2 ⇒ lay(𝑂1) ≥ lay(𝑂2).

TaDA Live is parametrised by a function O(·) mapping a region type t to an obligation algebra
O(t) = (Ot, •t, {0t}). The t subscript is omitted from •t and 0t when its clear from the context.

In Section 2, we have seen examples of obligation algebras. For instance, the C′1 ∥ C′′2 example
used two atoms u1 and u2, giving rise to the obligation algebra with elements {u1}, {u2}, and
{u1, u2}. As mentioned, we make no difference between an atom u1 and the obligation {u1} using
the symbol of the former for both. For our examples, it is enough to assign layers to atoms,
e.g. lay(u1) < lay(u2), and extend the layers to obligations by taking the minimum layer of the
composed atoms, for example lay(u1 • u2) = lay(u1). Note that, by construction, each obligation is
incompatible with itself: 𝑂 •𝑂 = ⊥.

Definition 3.8 (TaDA Live Assertions). The set of TaDA Live assertions, Assrt ∋ 𝑃,𝑄, . . . , is defined
by the grammar in Fig. 4. The only binder is ∃. The function fv : Assrt → (PVar⊎ LVar) returns the
free variables of an assertion and its definition is standard. We also define pv(𝑃) ≜ fv(𝑃) ∩ PVar

and lv(𝑃) ≜ fv(𝑃) ∩ LVar. We write 𝑃 (𝑥1, . . . , 𝑥𝑛) to indicate that lv(𝑃) ⊆ {𝑥1, . . . , 𝑥𝑛} and, for
𝑣1, . . . , 𝑣𝑛 ∈ AVal, write 𝑃 (𝑣1, . . . , 𝑣𝑛) for 𝑃 [𝑣1/𝑥1, . . . , 𝑣𝑛/𝑥𝑛].

We summarise the intuitive meaning of our assertions before giving their formal semantics.
• TaDA region assertion t_𝑟 (𝑎) asserts the existence of a shared region with type t, identity 𝑟 ,
level _ and abstract state 𝑎. Region assertions represent shared resources and, hence, are
duplicable. We have ⊢ t_𝑟 (𝑎) ⇔ t_𝑟 (𝑎) ∗ t_𝑟 (𝑎).

• TaDA atomicity tracking assertion 𝑟 Z⇒ ♦ gives permission to perform a single atomic change
of the state of region 𝑟 . Once the change is performed, the assertion becomes 𝑟 Z⇒ (𝑎1, 𝑎2)
recording the abstract states just before and after the change (the linearization point). The
assertion 𝑟 Z⇒ ♢ asserts that the environment has the permission to do the atomic update.
We have ⊢ 𝑟 Z⇒ ♦ ∗ 𝑟 Z⇒ ♦⇒ False, and ⊢ 𝑟 Z⇒ ♦⇔ (𝑟 Z⇒ ♦ ∗ 𝑟 Z⇒ ♢).

• TaDA guard assertion ⌈𝐺⌉𝑟 asserts that the guard 𝐺 is held locally. Guard composition is
reflected by separation: ⊢ ⌈𝐺1 •𝐺2⌉𝑟 ⇔ ⌈𝐺1⌉𝑟 ∗ ⌈𝐺2⌉𝑟 .

• TaDA Live local obligation assertion ⌊𝑂⌋L𝑟 asserts that obligation 𝑂 is held locally. We have
⊢ ⌊𝑂1 •𝑂2⌋L𝑟 ⇔ ⌊𝑂1⌋L𝑟 ∗ ⌊𝑂2⌋L𝑟 . Separating conjunction is interpreted classically precisely
so that we do not lose local obligation information: that is, ⊢ ⌊𝑂⌋L𝑟 ̸⇒ emp. It is often useful
to use the same guard algebra for guards and obligations. We write [𝑂]L𝑟 ≜ ⌈𝑂⌉𝑟 ∗ ⌊𝑂⌋L𝑟 .

• TaDA Live environment obligation assertion ⌊𝑂⌋E𝑟 asserts that 𝑂 is held by the environment:
⊢ ⌊𝑂1 • 𝑂2⌋E𝑟 ⇔ ⌊𝑂1⌋E𝑟 ∗ ⌊𝑂2⌋E𝑟 . Unlike for local obligations, it is possible to lose this
information, ⊢ ⌊𝑂⌋E𝑟 ⇒ emp, because we do not need to keep track of the full obligations
held by the environment, just a lower bound. The composition of environment and local
obligation assertions is subtle, inspired by the subjective separation of [27]. The existence of

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

TaDA Live 21

the local obligation can be recorded in a frame: ⊢ ⌊𝑂⌋L𝑟 ⇔ ⌊𝑂⌋L𝑟 ∗ ⌊𝑂⌋E𝑟 . We also have the
derived law ⊢ ⌊𝑂1 •𝑂2⌋L𝑟 ⇔ (⌊𝑂1⌋L𝑟 ∗ ⌊𝑂2⌋E𝑟) ∗ (⌊𝑂1⌋E𝑟 ∗ ⌊𝑂2⌋L𝑟), giving knowledge to each
thread of the obligations delegated to the other.

• TaDA Live empty obligation assertion emp
𝑅
Ob

(resp. emp
_
Ob
) asserts that no obligation is locally

held for regions with identifiers in 𝑅 (resp. regions of level < _).
• TaDA Live layer assertion 𝑟 Q 𝑚 asserts that the layer of the obligations held locally for
region with identifier 𝑟 is greater or equal than𝑚. We often use notation such as 𝑟 Q𝑚 ≤ 𝑚′

to denote 𝑟 Q𝑚 ∧𝑚 ≤ 𝑚′.
We introduce the worlds of TaDA Live, which are instrumented heaps providing the models of

the assertions of TaDA Live. A world is a local model in the sense that it reflects the state as seen
from the perspective of a single thread. It is built from a local heap, and a set of shared regions with
associated guards and obligations. Worlds are parametrised by a set of region identifiers R which,
intuitively, are the regions which the current operation is supposed to update abstractly exactly
once. We say the regions in R are tracked for proving atomicity, using special ghost state given by
the atomicity tracking algebra that supports the semantics of the atomicity tracking assertions.
Definition 3.9 (Atomicity Tracking Algebra). The atomicity tracking algebra is a PCM defined

by ATrack ≜
(
(AState × AState) ⊎ {♦, ♢}, ·, Emp♦

)
, where the composition is ♦ · ♢ = ♦ = ♢ · ♦,

♢ · ♢ = ♢ and ∀𝑎, 𝑏 ∈ AState. (𝑎, 𝑏) · (𝑎, 𝑏) = (𝑎, 𝑏) (undefined otherwise), and the set of unit
elements is Emp♦ ≜ (AState × AState) ⊎ {♢}. The expression evaluation function is extended to
map expressions 𝑑 in the atomicity tracking assertions to the corresponding elements of ATrack:
EJ♦K𝜍 = ♦, EJ♢K𝜍 = ♢, EJ(E1,E2)K𝜍 = (EJE1K𝜍 , EJE2K𝜍).

Definition 3.10 (Worlds). Let R ⊆ RId. A world,𝑤 ∈ WorldR , is a tuple𝑤 = (ℎ, 𝜌,𝛾, 𝜒, \, b) where
• ℎ ∈ Heap is the local heap, i.e. the cells owned locally;
• 𝜌 ∈ RMap ≜ RId ⇀f (RType × Lvl × AState) describes the shared regions;
• 𝛾 ∈ GMap ≜ RId ⇀f Guard describes the local guards;
• 𝜒 ∈ AMapR ≜ R → ATrack describes the local atomicity tracking components;
• \ ∈ OMap ≜ RId ⇀f Oblig describes the local obligations;
• b ∈ OMap ≜ RId ⇀f Oblig describes the environment obligations, known to be held locally
by the environment;

satisfying the following well-formedness constraints:
• dom(𝜌) = dom(𝛾) = dom(\) = dom(b) ⊇ R,
• ∀𝑟 ∈ RId. if 𝜌 (𝑟) = (t, _, _) then 𝛾 (𝑟) ∈ Gt, \ (𝑟) ∈ Ot, b (𝑟) ∈ Ot,
• ∀𝑟 ∈ dom(\). \ (𝑟) # b (𝑟).

A shared region with identifier 𝑟 , given by 𝜌 (𝑟) = (t, _, 𝑎), has type t and abstract state 𝑎. For a
world𝑤 , we write ℎ𝑤 and 𝜌𝑤 and so on, for the corresponding components of𝑤 . We also define
rty𝑤 (𝑟) ≜ t, lvl𝑤 (𝑟) ≜ _, and ast𝑤 (𝑟) ≜ 𝑎, if 𝜌𝑤 (𝑟) = (t, _, 𝑎).
We define a PCM on worlds (called world algebra). We define how worlds compose by first

definining composition on each component of a world. Heap composition is disjoint union. Region
maps only compose if they are equal. Given 𝜌 ∈ RMap, the compositions •𝜌 : GMap × GMap ⇀

GMap and ◦R : AMapR × AMapR ⇀ AMapR are:
𝛾1 •𝜌 𝛾1 ≜ 𝝀𝑟 ∈ dom(𝜌). 𝛾1 (𝑟) •t 𝛾2 (𝑟) if ∀𝑟 ∈ dom(𝜌). 𝜌 (𝑟) = (t, _, _) ∧ 𝛾1 (𝑟) •t 𝛾2 (𝑟) ≠ ⊥
𝜒1 ◦R 𝜒2 ≜ 𝝀𝑟 ∈ R . 𝜒1 (𝑟) · 𝜒2 (𝑟) if ∀𝑟 ∈ R . 𝜒1 (𝑟) · 𝜒2 (𝑟) ≠ ⊥

and undefined otherwise. The composition •𝜌 on OMap is defined analogously to •𝜌 on GMap.
The local and environment obligation maps compose in a subtle way inspired by the subjective

separation of [27]. To express this interaction, we define a composition on pairs of local/environment

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

obligation maps. Given \1, \2, b1, b2 ∈ OMap, we define

(\1, b1) ⊙𝜌 (\2, b2) ≜

(\1 •𝜌 \2, b) if b = min⊑ {b | b1 ⊑ (\2 •𝜌 b) ∧ b2 ⊑ (\1 •𝜌 b)}

and (\1 •𝜌 \2) ≠ ⊥
⊥ otherwise

Note that, for obligation algebras, the minimum taken by the definition is always unique if it exists.
Indeed, in general one can set b (𝑟) = b1 (𝑟) \ \2 (𝑟) ∪ b2 (𝑟) \ \1 (𝑟). For example, assuming a, b, c, d,
e, and f are distinct atoms, we have(
[𝑟 ↦→ a • b], [𝑟 ↦→ c • e]

)
⊙𝜌

(
[𝑟 ↦→ c • d], [𝑟 ↦→ a • f]

)
=

(
[𝑟 ↦→ a • b • c • d], [𝑟 ↦→ e • f]

)
provided the composition a•b•c•d is defined. Furthermore, this definition supports the implication
⌊𝑂⌋L𝑟 ⇒ ⌊𝑂⌋L𝑟 ∗ ⌊𝑂⌋E𝑟 since

(
[𝑟 ↦→ 𝑂], [𝑟 ↦→ 0]

)
⊙𝜌

(
[𝑟 ↦→ 0], [𝑟 ↦→ 𝑂]

)
=

(
[𝑟 ↦→ 𝑂], [𝑟 ↦→ 0]

)
.

Definition 3.11 (World Algebras). The PCM of world algebras, (WorldR, ⊙, EmpR), is defined by
the set of worlds WorldR ,

– the subjective world composition, ⊙, given by:

(ℎ1, 𝜌1, 𝛾1, 𝜒1, \1, b1) ⊙ (ℎ2, 𝜌2, 𝛾2, 𝜒2, \2, b2) = (ℎ1 ⊎ ℎ2, 𝜌,𝛾1 •𝜌 𝛾2, 𝜒1 ◦R 𝜒2, \, b)

if ℎ1 # ℎ2, 𝜌 = 𝜌1 = 𝜌2, 𝛾1 •𝜌 𝛾2 ≠ ⊥, 𝜒1 ◦R 𝜒2 ≠ ⊥, and (\1, b1) ⊙𝜌 (\2, b2) = (\, b), undefined
otherwise; and

– the set of unit elements given by:

EmpR ≜

{
(∅, 𝜌,𝛾, 𝜒, \, b) ∈ WorldR

���� ∀𝑟 . 𝜌 (𝑟) = (t, _, _) ⇒ 𝛾 (𝑟) = 0t ∧ \ (𝑟) = 0t,
∀𝑟 ∈ R . 𝜒 (𝑟) ∈ Emp♦

}
Notice that the units are worlds with arbitrary shared regions, atomicity components from Emp♦,

and arbitrary environment obligations.
Subjective composition of worlds (⊙) is lifted to composition of sets of worlds (∗), defined as

𝑝1 ∗ 𝑝2 ≜ {𝑤1 ⊙𝑤2 | 𝑤1 ∈ 𝑝1,𝑤2 ∈ 𝑝2,𝑤1 # 𝑤2}.
We want the region and environment obligations assertions to enjoy the elimination rule,

e.g. t_𝑟 (𝑎) ∗𝑄 ⇒ 𝑄 . Assertions therefore denote sets of worlds that are upward-closed with respect
to adding regions and adding environment obligations. Formally, we define the world ordering ⪯R
as the smallest reflexive and transitive relation such that:

(ℎ, 𝜌,𝛾, 𝜒, \, b) ⪯R (ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎)], 𝛾 [𝑟 ↦→ 0t], 𝜒, \ [𝑟 ↦→ 0t], b [𝑟 ↦→ 0t]) 𝑟 ∉ dom(𝜌)
(ℎ, 𝜌,𝛾, 𝜒, \, b) ⪯R (ℎ, 𝜌,𝛾, 𝜒, \, b [𝑟 ↦→ b (𝑟) •𝑂]) \ (𝑟) # 𝑂 # b (𝑟)

The upward-closed sets of worldsWorld
�
R ≜ { 𝑝 ⊆ WorldR | ∀𝑤,𝑤 ′.𝑤 ⪯R 𝑤 ′ ∧𝑤 ∈ 𝑝 ⇒ 𝑤 ′ ∈ 𝑝 }

are the semantic domain of our assertions.

Definition 3.12 (Satisfaction Relation). Let 𝜍 : (PVar ⊎ LVar) ⇀ AVal be the union of a program
and logic variable store. For a world 𝑤 ∈ WorldR and an assertion 𝑃 , the assertion satisfaction

relation, 𝜍,𝑤 ⊨R 𝑃 , is defined in Fig. 5.

We write ⊢R 𝑃 if, for ∀𝜍 : (PVar ⊎ LVar) ⇀ AVal,𝑤 ∈ World𝑅 we have 𝜍,𝑤 ⊨R 𝑃 , and write
WJ𝑃K𝜍R ≜ {𝑤 | 𝜍,𝑤 ⊨R 𝑃 } for any assertion 𝑃 . It is easy to check that WJ𝑃K𝜍R ∈ World

�
R for

every 𝑃 and 𝜍 .

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

TaDA Live 23

𝜍,𝑤 ⊨R emp iff 𝑤 ∈ EmpR
𝜍,𝑤 ⊨R B iff BJBK𝜍

𝜍,𝑤 ⊨R E1 ↦→ E2 iff ℎ𝑤 = [EJE1K𝜍 ↦→ EJE2K𝜍] ∧ (∅, 𝜌𝑤 , 𝛾𝑤 , 𝜒𝑤 , \𝑤 , b𝑤) ∈ EmpR
𝜍,𝑤 ⊨R 𝑃 ⇒ 𝑄 iff ∀𝑤 ′.𝑤 ⪯R 𝑤 ′ ∧ 𝜍,𝑤 ′ ⊨R 𝑃 ⇒ 𝜍,𝑤 ′ ⊨R 𝑄

𝜍,𝑤 ⊨R ∃𝑥 . 𝑃 iff ∃𝑣 ∈ AVal. 𝜍 [𝑥 ↦→ 𝑣],𝑤 ⊨R 𝑃

𝜍,𝑤 ⊨R E ∈ 𝑋 iff EJEK𝜍 ∈ 𝑋

𝜍,𝑤 ⊨R 𝑃1 ∧ 𝑃2 iff (𝜍,𝑤 ⊨R 𝑃1) ∧ (𝜍,𝑤 ⊨R 𝑃2)
𝜍,𝑤 ⊨R 𝑃1 ∗ 𝑃2 iff ∃𝑤1,𝑤2 .𝑤 = 𝑤1 ⊙𝑤2 ∧ (𝜍,𝑤1 ⊨R 𝑃1) ∧ (𝜍,𝑤2 ⊨R 𝑃2)

𝜍,𝑤 ⊨R t_𝑟 (E) iff 𝜌𝑤 (EJ𝑟K𝜍) = (t, _, EJEK𝜍) ∧𝑤 ∈ EmpR
𝜍,𝑤 ⊨R 𝑟 Z⇒ 𝑑 iff 𝜒𝑤 (EJ𝑟K𝜍) = EJ𝑑K𝜍 ∧ (ℎ𝑤 , 𝜌𝑤 , 𝛾𝑤 , 𝜒𝑤 [EJ𝑟K𝜍 ↦→ ♢], \𝑤 , b𝑤) ∈ EmpR
𝜍,𝑤 ⊨R ⌈E⌉𝑟 iff 𝛾𝑤 (EJ𝑟K𝜍) = EJEK𝜍 ∧ (ℎ𝑤 , 𝜌𝑤 , 𝛾𝑤 [EJ𝑟K𝜍 ↦→ 0], 𝜒𝑤 , \𝑤 , b𝑤) ∈ EmpR

𝜍,𝑤 ⊨R ⌊E⌋L𝑟 iff \𝑤 (EJ𝑟K𝜍) = EJEK𝜍 ∧ (ℎ𝑤 , 𝜌𝑤 , 𝛾𝑤 , 𝜒𝑤 , \𝑤 [EJ𝑟K𝜍 ↦→ 0], b𝑤) ∈ EmpR

𝜍,𝑤 ⊨R ⌊E⌋E𝑟 iff EJEK𝜍 ⊑ b𝑤 (EJ𝑟K𝜍) ∧𝑤 ∈ EmpR

𝜍,𝑤 ⊨R emp
𝑅
Ob

iff ∀𝑟 ∈ 𝑅. 𝜌𝑤 (𝑟) = (t, _, _) ⇒ \𝑤 (𝑟) = 0

𝜍,𝑤 ⊨R emp
_
Ob

iff ∀𝑟, _′ < _. 𝜌𝑤 (𝑟) = (t, _′, _) ⇒ \𝑤 (𝑟) = 0

𝜍,𝑤 ⊨R 𝑟 Q𝑚 iff lay(\𝑤 (EJ𝑟K𝜍)) ≥ 𝑚

Fig. 5. Definition of assertion satisfaction.

3.4 Protocols: Interference and World Rely

A world describes the state of the current thread, both the local state owned by the thread (the
heap, guards, local obligations and atomity tracking components), the shared state (the regions)
and the environment obligations describing obligations owned locally by the environment. We
define the world rely relation which describes how the world may change as a result of the “well-
behaved” interference of the environment characterised by the region interference relations, the
atomicity tracking components and the environment obligations. To define the world rely, we need
to introduce two other components of TaDA Live: the region protocols, expressed by the region
interference function, and atomicity contexts.

The type of each region is associated with a region interference function which establishes which
updates to a shared region are allowed by the owner of which guards.

Definition 3.13 (Region Interference). TaDA Live is parametrised by the region interference func-

tion, T , which takes a region type t ∈ RType and returns a function Tt : Gt → ℘((AState × Ot) ×
(AState × Ot)). Every function Tt is required to satisfy three properties:

• reflexivity: ((𝑎, 0t), (𝑎, 0t)) ∈ Tt (0t), for all 𝑎 ∈ AState;
• monotonicity in the guards: ∀𝐺1,𝐺2 ∈ Gt . 𝐺1 ⊑ 𝐺2 ⇒ Tt (𝐺1) ⊆ Tt (𝐺2);
• closure under obligation frames: for all 𝑂1,𝑂2,𝑂 ∈ Ot, if ((𝑎1,𝑂1), (𝑎2,𝑂2)) ∈ Tt (𝐺) and
𝑂1 # 𝑂 and 𝑂2 # 𝑂 , then ((𝑎1,𝑂1 •t 𝑂), (𝑎2,𝑂2 •t 𝑂)) ∈ Tt (𝐺).

We write Tt (_) for
⋃

𝐺 ∈Gt Tt (𝐺). For any 𝑇 ⊆ (AState × Oblig) × (AState × Oblig), we write
io(𝑇) ≜ {(𝑎, 𝑏) | ((𝑎, _), (𝑏, _)) ∈ 𝑇 }.

The final concept we need before introducing the world rely relation is the atomicity context, A.
In TaDA Live proofs, we keep in the context of the judgment information about which updates we
are currently proving are abstractly atomic. The rule driving this bookkeeping is the MkAtom rule.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Although we will properly explain the rule in Section 4.7, we sketch the main idea as a motivation
for the atomicity context now. The relevant “skeleton” of the rule is as follows:

𝑟 ∉ dom(A) 𝑇 ⊆ Tt (𝐺) 𝑅 = io(𝑇) . . .

𝑚; _′;A[𝑟 ↦→ (𝑋, 𝑘, 𝑋 ′,𝑇)] ⊢
{
∃𝑥 ∈ 𝑋 . t_𝑟 (𝑥) ∗ 𝑟 Z⇒ ♦

}
C

{
∃𝑥,𝑦. 𝑅(𝑥,𝑦) ∧ 𝑟 Z⇒ (𝑥,𝑦)

}
𝑚; _′;A ⊢ A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
t_𝑟 (𝑥) ∗ ⌈𝐺⌉𝑟

〉
C

〈
∃𝑦. t_𝑟 (𝑦) ∗ ⌈𝐺⌉𝑟 ∧ 𝑅(𝑥,𝑦)

〉
The judgments include the context information such as the layer𝑚, the level _′ and the atomicity
context A, and the pseudo-quantifier includes a layer 𝑘 . We formally introduce these details in
Section 3.8. Here, we focus on motivating the use of the atomicity context A. This rule describes
how an update to the state of a region 𝑟 can be declared atomic even if it was realised through a
series of steps. It does this by converting a Hoare triple to an atomic triple, provided the Hoare
triple bears evidence (through the atomicity tracking assertions of the premise) that, although
many steps might have been taken, the abstract state was changed by the command exactly once.
The atomic triple may constrain the environment interference with a non-trivial pseudo-quantifier.
The proof of the premise in general needs to make use of these assumptions about the environment,
but the conversion to a Hoare triple means we cannot use pseudo-quantification to represent them.
These assumptions are instead made available to the proof of the Hoare triple using the atomicity
context, that records the (𝑋, 𝑘, 𝑋 ′) information from the pseudo-quantifier and the relation𝑇 which
stores the update that we are proving happens atomically.

Definition 3.14 (Atomicity Context). An atomicity context A is a finite partial function from RId to
tuples of the form (𝑋, 𝑘, 𝑋 ′,𝑇) where𝑋,𝑋 ′ ⊆ AState, 𝑘 ∈ L, and𝑇 ⊆ (AState×Oblig) × (AState×
Oblig) is closed under obligation frames (as in Definition 3.13).
Assuming A(𝑟) = (𝑋, 𝑘, 𝑋 ′,𝑇), we write safe(A, 𝑟) ≜ 𝑋 , good(A, 𝑟) ≜ 𝑋 ′, live(A, 𝑟) ≜ (𝑋, 𝑘, 𝑋 ′)
whichwewrite𝑋 ↠𝑘 𝑋 ′, and tr(A, 𝑟) ≜ 𝑇 . For every 𝑟 ∈ dom(A), we require {𝑥 | (𝑥, _) ∈ io(𝑇)} ⊆
safe(A, 𝑟). The set dom(A) declares the regions for which we are tracking atomicity: for 𝑟 ∈
dom(A), the environment will only change the abstract state within safe(A, 𝑟) and will obey the
liveness condition given by live(A, 𝑟) that the environment will always eventually return to a good
state in good(A, 𝑟) ≜ 𝑋 ′; and the local thread will only change the abstract state at most once
according to the relation io(tr(A, 𝑟)). We write ⊨A for ⊨dom(A) , and similarly for ⊢A , WJ𝑃K𝜍A ,
WorldA and EmpA .

Definition 3.15 (World Rely). The world rely relation, RA ⊆ WorldA ×WorldA , is the smallest
reflexive and transitive relation satisfying the rules in Fig. 6.
Rule wr1 describes the case where the environment can update the abstract state of a region

according to the interference relation Tt. Notice that, for this rule, when 𝜒 (𝑟) ∈ {♦, ♢}, the envi-
ronment can only change the abstract state to something in safe(A, 𝑟). When 𝜒 (𝑟) is undefined
or a pair of abstract states, then the environment does not have this restriction and can do any
update consistent with Tt. Also, notice how the environment obligations map b is affected by the
transition. Rule wr2 describes the case where the atomic update given by A has been delegated
to the environment (𝜒 [𝑟 ↦→ ♢]) in which case the current thread can observe the abstract state
change corresponding to the update.
So far, we have introduced assertions, and worlds as their models. These structures express

information mostly over ghost state, that is, state that is purely logical and has no representation in
concrete executions. For example, the notion that there is some shared region is purely fictional,
as in the concrete machine there is no special way to mark a portion of the heap as shared. We
introduced interference protocols and the world rely, as a way to specify the expected well-behaved
transformations shared resources may be subjected to. Since well-behaved interference from the

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

TaDA Live 25

𝛾 (𝑟) # 𝐺 ((𝑎1,𝑂1), (𝑎2,𝑂2)) ∈ Tt (𝐺) 𝜒 (𝑟) ∈ {♦, ♢} ⇒ 𝑎2 ∈ safe(A, 𝑟) 𝑂2 # \ (𝑟)
(ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎1)], 𝛾, 𝜒, \, b [𝑟 ↦→ 𝑂1]) RA (ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎2)], 𝛾, 𝜒, \, b [𝑟 ↦→ 𝑂2])

wr1

((𝑎1,𝑂1), (𝑎2,𝑂2)) ∈ tr(A, 𝑟) 𝑂2 # \ (𝑟)
(ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎1)], 𝛾, 𝜒 [𝑟 ↦→ ♢], \ , b [𝑟 ↦→ 𝑂1]) RA (ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎2)], 𝛾, 𝜒 [𝑟 ↦→ (𝑎1, 𝑎2)], \ , b [𝑟 ↦→ 𝑂2])

wr2

Fig. 6. World Rely rules

environment can change the state of shared regions, a single world (describing a single state for
each region) cannot capture the logical state we may be in, when interleaved with environment
actions. Views are the sets of worlds that can explain the logical state we may be in after being
suspended for an arbitrary number of environment steps. Views represent information about the
logical state, that cannot be invalidated by a well-behaved environment.

Definition 3.16 (Views, Stability). An upward-closed set of worlds, 𝑝 ∈ World
�
A , is an A-view if it

is closed under RA : that is, ∀𝑤 ∈ 𝑝,𝑤 ′ ∈ WorldA .𝑤 RA 𝑤 ′ ⇒ 𝑤 ′ ∈ 𝑝 . An assertion 𝑃 is A-stable,
written A ⊨ 𝑃 stable, if and only if, for all 𝜍 : (PVar ⊎ LVar) ⇀ AVal, WJ𝑃K𝜍A is an A-view.

We write ViewA for the set of all A-views and StableA for the set of all A-stable assertions.

Definition 3.17 (View Algebra). The PCM of view algebras, (ViewA, ∗, {EmpA}), is formed from
the set ViewA , and the composition 𝑝1 ∗ 𝑝2 ≜ {𝑤1 ⊙𝑤2 | 𝑤1 ∈ 𝑝1,𝑤2 ∈ 𝑝2,𝑤1 # 𝑤2}.

Notice that the composition of views always gives rise to a view: in the case where there are no
compatible pairs of worlds in the views, the result is the empty view (the denotation of False).

On checking stability. TaDA Live proofs require checking stability of assertions in some crucial
steps. The notion of stability of Definition 3.16 is given in terms of the semantics of assertions, but
it is possible, in principle, to provide a set of lemmas to prove stability of common cases without
reasoning at the level of the model. For example, any traditional separation logic assertion (such
as emp, 𝑥 ↦→ 𝑣 , pure formulas) is always stable; guard and local obligation assertions are also
automatically stable; stability is preserved by ∗, ∧, ∨, and existential quantification. The crucial
sources of instability are region assertions, environment obligation assertions, and 𝑟 Z⇒ ♢. Stability
of the first two can be established by inspecting the protocol of regions. A rule that would be
expressive enough to prove most stability checks for our examples is:

∀𝑥 ∈ 𝑋, 𝑥 ′,𝐺 ′,𝑂 ′. (𝐺 ′ # 𝐺 (𝑥)) ∧ ((𝑥,𝑂 (𝑥)), (𝑥 ′,𝑂 ′)) ∈ Tt (𝐺 ′) ⇒ 𝑥 ′ ∈ 𝑋 ∧𝑂 ′ = 𝑂 (𝑥 ′)
A ⊨ ∃𝑥 ∈ 𝑋 .t_𝑟 (𝑥) ∗ ⌈𝐺 (𝑥)⌉𝑟 ∗ ⌊𝑂 (𝑥)⌋E𝑟 stable

It is similarly easy to extract from Fig. 6 rules involving the atomicity context information:
safe(A, 𝑟) = 𝑋

A ⊨ ∃𝑥 ∈ 𝑋 .t_𝑟 (𝑥) ∗ 𝑟 Z⇒ ♦ stable
𝑟 ∈ dom(A)

A ⊨ 𝑟 Z⇒ ♢ ∨ 𝑟 Z⇒ (_, _) stable

3.5 Linking Levels of Abstraction: Interpretations and Reification

As we mentioned, worlds and views represent ghost information about state. Ultimately, however,
we want to use this information to express properties of concrete execution traces. To do so,
we need to formalise the link between worlds with their logical instrumentation and concrete
states comprising variable stores and heaps. The first component that contributes to this link is a
region interpretation, which specifies the implementation-dependent content of a shared region: for
example, for a shared spin lock, the interpretation of the abstract shared region spin_𝑟 (𝑥, 𝑙) is the
view given by 𝑥 ↦→ 𝑙 , a single cell storing 𝑙 at 𝑥 .

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Definition 3.18 (Region Interpretation). TaDA Live is parametrised by a region interpretation

function ItJ · K : RId × Lvl × AState → View∅ for each t ∈ RType, such that, for every 𝑟 ∈ RId,
_ ∈ Lvl, 𝑎 ∈ AState, ∀𝑤 ∈ ItJ𝑟, _, 𝑎K.∀𝑟 ′ ∈ dom(\𝑤) \ {𝑟 }. \𝑤 (𝑟 ′) = 0. We also require the
interpretation to be _-safe, a technical condition explained in Section 4.3 that is usually immediate
to check (see Lemma 4.2). A region interpretation’s companion is the syntactic region interpretation

It = (𝑟, 𝑙, 𝑎, 𝑃) where 𝑟, 𝑙, 𝑎 ∈ LVar, fv(𝑃) ⊆ {𝑟, 𝑙, 𝑎}, ∅ ⊨ 𝑃 stable, and ⊢∅ 𝑃 [_/𝑙] ⇒ emp
RId\{𝑟 }
Ob

. We
write I(t_E1

(E2)) for 𝑃 [E1/𝑟, _/𝑙, E2/𝑎]. We require that ItJ𝑟, _, 𝑎K = WJI(t_𝑟 (𝑎))K∅; in practice,
we will define region interpretations by writing syntactic interpretations and using the previous
equation as a definition for the corresponding region interpretation functions.

It is important to understand that interpretations are not merely an indirect way of writing
assertions. In our spin lock example, the crucial difference between the two assertions spin_𝑟 (𝑥, 𝑙, 𝛼)
and 𝑥 ↦→ 𝑙 is that the first is subjected to interference, while the latter expresses ownership of the
cell at 𝑥 . The requirement that the interpretation of some region with id 𝑟 must imply emp

RId\{𝑟 }
Ob

forbids an intepretation to own local obligations of other regions. This is necessary for soundness:
if we removed the restriction, we could fool ourselves into thinking that we fulfilled an obligation
⌊𝑂⌋L𝑟 by creating another region with the obligation in its interpretation.

Remark 2 (On “opening” regions and levels). As in TaDA, the region interpretation is used to “open”
a region: that is, import the region interpretation as local state in order to do a single atomic update.
The idea is to obtain instantaneously the ownership of the content of the region for the atomic update,
and to re-establish the region interpretation for the updated abstract state, before immediately
relinquishing ownership by “closing” up the region. As in TaDA, this opening and closingmechanism
depends on the level of the region, which is a device to avoid inconsistencies. With a specification
at level _, the rules enable a region to be opened at level _′ < _ to obtain a resulting specification at
level _′. This means that, although a region can be shared (⊢ t_′𝑟 (𝑎) ⇔ t_

′
𝑟 (𝑎) ∗ t_′𝑟 (𝑎)), it cannot be

opened twice, which would result in I(t_′𝑟 (𝑎)) ∗I(t_′𝑟 (𝑎)) with a potential contradictory duplication
of non-duplicable resources.

The second component that expresses the link between the instrumented worlds and concrete
states is the reification function. Reification has two main purposes. First, at level _, all the regions
with level lower than _ are closed, which means that the resources in their interpretation do not exist
as far as the world is concerned. The concrete heap cells accounted for inside these interpretations
will however correspond to cells in the concrete heap. To bridge this gap, the reification opens
all closed regions importing the resources in their interpretation as local resources, obtaining a
“collapsed” world. Second, all the “ghost” components of collapsed worlds (like regions, guards or
obligations) do not have any representation in memory so reification erases them.

Definition 3.19 (Reification). Let _ ∈ Lvl and let closed(_,𝑤) ≜ {𝑟 ∈ RId | lvl𝑤 (𝑟) < _}. The
region collapse function, (·)↓_ : WorldA → ℘(WorldA), is defined by:

𝑤0↓_ ≜
𝑤0 ⊙𝑤1 ⊙ . . . ⊙𝑤𝑛

������ closed(_,𝑤0) = {𝑟1, . . . , 𝑟𝑛},
𝜌𝑤0 (𝑟𝑖) = (t𝑖 , _𝑖 , 𝑎𝑖),𝑤𝑖 ∈ It𝑖 J𝑟𝑖 , _𝑖 , 𝑎𝑖K,
∀𝑖 ≤ 𝑛.∀𝑟 ∈ dom(b𝑤0⊙...⊙𝑤𝑖

). b𝑤0⊙...⊙𝑤𝑖
(𝑟) = 0

The function ⌊𝑤⌋

_
≜ {ℎ ∈ Heap | (ℎ, _, _, _, _, _) ∈ 𝑤↓_} is called theworld reification of𝑤 at level _.

For any 𝑝 ∈ World
�
A , the function J𝑝 K_ ≜

⋃
𝑤∈𝑝 ⌊𝑤⌋

_
is called reification of 𝑝 at level _.

To understand if a world𝑤1 can represent local resources consistent with some global heap ℎ,
we need to identify if there is a world𝑤2 representing the resources of the environment such that
ℎ ∈ ⌊𝑤1 ⊙𝑤2⌋_ . That would mean that it is possible to factor ℎ as ℎ = ℎ𝑤1 ⊎ℎ′ ⊎ℎ𝑤2 where ℎ𝑤1 are

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

TaDA Live 27

the cells fully owned by the local thread, ℎ𝑤2 are the ones fully owned by the environment, and the
cells in ℎ′ are the ones that are shared and come from opening the interpretations of closed regions
in the world collapse. When collapsing, we are assuming, conceptually, that we are collapsing
a world that represents every resource in the system. Correspondingly, the definitions that use
reification —crucially, Definitions 3.20 and 3.22— always complete the local resources with some
“global” frame before applying reification.

In addition to opening shared regions, the collapse function also checks that no environment
obligations are assumed. To understand this, consider a world𝑤1 representing local resources, and
a world 𝑤2 completing it to a world 𝑤 = 𝑤1 ⊙ 𝑤2 representing the global resources. The global
world𝑤 cannot assert the existence of obligations in the environment: all those have been already
accounted for in𝑤2. The definition of collapse explicitly enforces this constraint by the condition
on the environment obligation map. We explain why this condition is important in Section 3.7.

3.6 Frame preservation

Having established the link between worlds/views and concrete state, we can move to establishing
a link between concrete steps in a trace and their logical justification in terms of logical state. The
fundamental driver of this link is the notion of frame-preserving update, inspired by the frame-
preserving update from [22], which represents the essence of the Rely/Guarantee reasoning in
TaDA Live. The frame-preserving update looks at a specific concrete update from some ℎ1 to ℎ2,
and states under which conditions this logical update can be described as an update from logical
state 𝑝1 to logical state 𝑝2. The 𝑝1 and 𝑝2 are sets of worlds describing local resource, whereas the ℎ1
and ℎ2 are global concrete heaps. We therefore need to complete 𝑝1 with some frame 𝑓 and use
reification to relate this logical state to ℎ1: that is, ℎ1 ∈ J𝑝1 ∗ 𝑓 K_ . There will usually be more than
one such 𝑓 . The frame-preserving update requires that any such 𝑓 that is a view should remain a
valid frame after the update: that is, ℎ2 ∈ J𝑝2 ∗ 𝑓 K_ .

Definition 3.20 (Frame-Preserving Update). Given ℎ1, ℎ2 ∈ Heap, 𝑝1, 𝑝2 ∈ World
�
A and _ ∈ Lvl, we

define (ℎ1, ℎ2) ⊨_;A 𝑝1 _∗ 𝑝2 to hold if and only if
∀𝑓 ∈ ViewA . ℎ1 ∈ J𝑝1 ∗ 𝑓 K_ ⇒ ℎ2 ∈ J𝑝2 ∗ 𝑓 K_ .

TaDA Live implements the Rely/Guarantee proof principle by requiring every update to be
frame-preserving. Views are resources that are preserved by protocol-compliant environment
interference. The idea of a Rely, a set of allowed environment updates, is represented by assuming
environment steps are frame-preserving updates on resources that are compatible with our current
view. By frame preservation, any such update would preserve our view. Conversely, the idea of
a Guarantee, an over-approximation of the effects of local steps under the assumption of Rely, is
encoded by requiring every local step to be a frame-preserving update, and thus unable to disrupt
any view held by the environment.

To see how this works more concretely, let us consider an example. We use the notation ⊨_ 𝑝 _∗ 𝑞
to mean ∀ℎ ∈ J𝑝 ∗ TrueK. ∃ℎ′. (ℎ,ℎ′) ⊨_ 𝑝 _∗ 𝑞, that is, ⊨_ 𝑝 _∗ 𝑞 holds when 𝑝 to 𝑞 can be used to
justify some concrete update.

Example 3.21. Assume we have a region type t with abstract states 𝑎, 𝑏, 𝑐, 𝑑 , a single guard e
(with e • e = ⊥) and interference protocol consisting of transitions e : (𝑎, 0) ⇝ (𝑏, 0) and
e : (𝑏, 0) ⇝ (𝑐, 0) . We want to show that (for _ < _′) ⊨_′ t_𝑟 (𝑎) ∗ ⌈e⌉𝑟 _∗ t_𝑟 (𝑐) ∗ ⌈e⌉𝑟 holds, but
⊨_′ t_𝑟 (𝑎) ∗ ⌈e⌉𝑟 _∗ t_𝑟 (𝑑) ∗ ⌈e⌉𝑟 and ⊨_′ t_𝑟 (𝑎) _∗ t_𝑟 (𝑏) do not. Consider any view 𝑓 that is a frame of
t_𝑟 (𝑎)∗⌈e⌉𝑟 . The 𝑓 cannot hold ⌈e⌉𝑟 because e is not compatible with itself. As a consequence, since 𝑓
is a view, it needs to be closed under world rely, which means that it is closed under the interference,
which can transform 𝑎 into 𝑏 and 𝑏 into 𝑐 . For 𝑓 to be compatible with t_𝑟 (𝑎), it needs to contain

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

28 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

some world associating 𝑎 to 𝑟 ; to be a view, 𝑓 needs to contain some other world associating 𝑐 to 𝑟 ,
which makes it compatible with t_𝑟 (𝑐) ∗ ⌈e⌉𝑟 . Therefore ⊨_′ t_𝑟 (𝑎) ∗ ⌈e⌉𝑟 _∗ t_𝑟 (𝑐) ∗ ⌈e⌉𝑟 holds.

Now, the view 𝑓 above is not required to contain any world associating 𝑑 to 𝑟 . Such an 𝑓 is a
counterexample to ⊨_′ t_𝑟 (𝑎) ∗ ⌈e⌉𝑟 _∗ t_𝑟 (𝑑) ∗ ⌈e⌉𝑟 holding.

Finally, consider t_𝑟 (𝑎); we can construct a frame 𝑓𝑎 in which all worlds associate 𝑎 to 𝑟 and own
the guard e. Such set of worlds can be a view because owning e disables the transition from 𝑎 to 𝑏.
However, 𝑓𝑎 would be compatible with t_𝑟 (𝑎) but not with t_𝑟 (𝑏), which means ⊨_′ t_𝑟 (𝑎) _∗ t_𝑟 (𝑏)
does not hold.

This definition of frame-preserving update simplifies drastically the semantics of TaDA specifica-
tions. For TaDA Live, however, we need to introduce the stronger notion of atomic frame-preserving
update. To see the motivation behind the stronger condition, consider the region interference rela-
tion e : (𝑎, k) ⇝ (𝑏, 0) and e : (𝑏, 0) ⇝ (𝑐, k). The update from 𝑎 to 𝑐 via 𝑏 is very different from a
direct update from 𝑎 to 𝑐 . The intermediate step to 𝑏 fulfils the obligation k, which may be crucial
information for the progress argument. We therefore want to enforce that if we are justifying a
step as going from 𝑝 to 𝑞, all the allowed transitions between region states need to match a single

transition in the interference protocol.
Definition 3.22 (Atomic Frame-Preserving Update). Given ℎ1, ℎ2 ∈ Heap, 𝑝1, 𝑝2 ∈ World

�
A and

_ ∈ Lvl, we define (ℎ1, ℎ2) ⊨_;A 𝑝1 _ 𝑝2 to hold if and only if
∀𝑓 ∈ World

�
A . ℎ1 ∈ J𝑝1 ∗ 𝑓 K_ ⇒ ℎ2 ∈ J𝑝2 ∗ Ra

A (𝑓)K_
where the atomic world rely relation, Ra

A , is defined to be the smallest reflexive relation closed under
the rules of Fig. 6, with the restriction that rules wr1 and wr2 can be applied at most once per
region identifier. It is formally defined in Appendix E.1.

Intuitively, this says that if the environment has some resource 𝑓 compatible with 𝑝1, it should
expect that after a step, the resource 𝑓 might be transformed into Ra

A (𝑓). When 𝑓 is a view, one
gets back Definition 3.20, as views are precisely the resources that cannot be invalidated by any
number of updates of the environment. We will use atomic frame-preserving updates to check the
safety of logical traces with respect to some specification in Definition 3.28.

3.7 Viewshifts and “classical” resources

Before moving to specifications, we define viewshift, a semantic generalisation of implication,
which is a prime example of application of frame-preserving update, used in our Cons rule. They
correspond to “purely logical” updates in that they update the ghost resources without affecting
the concrete memory.
Definition 3.23 (Viewshift). Given 𝑝1, 𝑝2 ∈ World

�
A , the judgement _;A ⊨ 𝑝1 ⇛ 𝑝2, holds if

∀ℎ ∈ Heap. (ℎ,ℎ) ⊨_;A 𝑝1 _∗ 𝑝2. For two assertions 𝑃,𝑄 , the assertion 𝑃 viewshifts to 𝑄 , written
_;A ⊨ 𝑃⇛𝑄 , if and only if, ∀𝜍 : (PVar ⊎ LVar) ⇀ AVal, _;A ⊨WJ𝑃K𝜍A⇛WJ𝑄K𝜍A .

Viewshifts are typically employed to “allocate” a new region by sharing some local resource (a
form of weakening). For example, assume I(t𝑟 (𝑥, 𝑣)) ≜ 𝑥 ↦→ 𝑣 ∗ ⌊a⌋L𝑟 . We have that 𝑃0 = (𝑥 ↦→ 0)
viewshifts to ∃𝑟 . t𝑟 (𝑥, 0): the underlying reification does not change, and any frame of 𝑃0 with
non-empty reification, must only have regions reifying to cells disjoint from 𝑥 ; moreover, such
frame will only have finitely many regions allocated, so it is always possible to draw a fresh 𝑟 from
the infinite set RId to satisfy the existential quantification over 𝑟 .

Viewshifts also ensure that obligation information is not updated inconsistently. For example, in
the “region allocation” step above, we cannot viewshift 𝑃0 to 𝑃1 = ∃𝑟 . t𝑟 (𝑥, 0) ∗ ⌊k⌋E𝑟 , which would
mean we are pretending there is an obligation k in the environment without any evidence of that

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

TaDA Live 29

being true. To show that the viewshift does not hold, we can choose ℎ = [𝑥 ↦→ 𝑣] and show that
(ℎ,ℎ) ⊨_;A 𝑃0 _ 𝑃1 is false. To see this, pick 𝑓 = emp as the global frame; ℎ is in the reification
of 𝑃0 ∗ emp but the reification of ∃𝑟 . t𝑟 (𝑥, 0) ∗ ⌊k⌋E𝑟 ∗ emp is empty: the frame emp has empty local
obligation map, so every world𝑤 considered by the region collapse of 𝑃1 ∗ emp has b𝑤 ≠ 0. The
idiomatic, and correct, pattern of creation of environment obligations would viewshift 𝑃0 to, say,
∃𝑟 . t𝑟 (𝑥, 0) ∗ ⌊b⌋L𝑟 for some relevant obligation b compatible with a, and then with implication
obtain ∃𝑟 . t𝑟 (𝑥, 0) ∗ ⌊b⌋L𝑟 ∗ ⌊b⌋E𝑟 : in this case the environment obligation has been created from the
evidence of the existence of a corresponding local obligation.

It is important to note that, in a logic with the ability to share assertions, as regions in TaDA or
invariants in Iris allow, having classical resources does not have the expected effect. By definition, a
classical resource 𝑃 cannot be “forgotten”, i.e. 𝑃 ∗𝑄 ̸⇒ 𝑄 . By using viewshift, however, it is possible
to create a region with interpretation defined so it contains 𝑃 , and immediately discard it (regions
are not classical resources), obtaining 𝑃 ∗𝑄 ⇛ 𝑄 . This, for example, makes TaDA Live incapable of
proving absence of memory leaks even if its heap assertions are classical. We however manage to
avoid this issue for local obligation assertions ⌊𝑂⌋L𝑟 because of their specific semantics. First, ⌊𝑂⌋L𝑟
can only ever be part of the interpretation for the region 𝑟 , as imposed by our restrictions on region
interpretations. Second, the very notion of fulfilling the obligation is defined as transferring its
ownership to the interpretation. Moreover, the region protocol constrains the loss of an obligation
to happen only in correspondence with some region state change, so the only way to get rid of a
local obligation is to induce the desired state change in the region and transfer the obligation to
the interpretation. We need obligations to be classical resources in order for this to be the only way
of losing them. We made heaps and guards behave classically for the sake of uniformity, but this is
not essential.

The issue of having genuinely classical resources in a logic with regions/invariants has been tack-
led in [1], with the main use cases being proving absence of memory leaks. The techniques presented
there could provide the basis for an alternative way of handling TaDA Live-style obligations.

3.8 Specification format

With all these definitions in place, we can now proceed to define TaDA Live specifications and
their trace semantics. Most of the time, TaDA Live proofs manipulate triples of two forms:

𝑚; _;A ⊢ A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃 (𝑥)

〉
C

〈
𝑄 (𝑥)

〉
(11a)

𝑚; _;A ⊢
{
𝑃
}
C

{
𝑄

}
(11b)

called atomic triples and Hoare triples, respectively. It is however possible for a command to
manipulate some resources 𝑃h non-atomically, and some other resources 𝑃a (𝑥) atomically, at the
same time. In general, specifications use hybrid triples:

𝑚; _;A ⊢ A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄h (𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉

a minor generalisation11 of hybrid triple discussed in Section 2.1. Intuitively, the Hoare precondition
𝑃h is a resource that is owned by the command and, as such, cannot be invalidated by actions of the
environment. The command is allowed to manipulate this owned resource non-atomically, provided
it satisfies the Hoare postcondition𝑄h upon termination. The atomic precondition 𝑃a (𝑥) represents
the resource that can be shared between the command and the environment. The environment can
update it, but only with the effect of going from 𝑃a (𝑥) for some 𝑥 ∈ 𝑋 to 𝑃a (𝑥 ′) for some 𝑥 ′ ∈ 𝑋 .
The command is allowed to update it exactly once from 𝑃a (𝑥) to perform its linearization point,
11The difference is the ∃𝑦, which is used in the uncommon case when the linearization point is non-deterministic and the
Hoare postcondition depends on this non-deterministic choice.

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

transforming it to a resource satisfying the atomic postcondition 𝑄a (𝑥). The atomic postcondition
only needs to be true just after the linearization point as the environment is allowed to update it
immediately afterwards. The pseudo-quantified variable 𝑥 has two important uses: it represents
the “surface” of allowed interference by the environment; it is bound in the postcondition to the
value of the parameter of the atomic precondition just before the linearization point.

The atomic and Hoare triples in (11a) and (11b) are then special cases of the hybrid triple:12

∀®𝑣0 .𝑚; _;A ⊢ A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
®v0 � ®𝑣0

�� 𝑃 ′(𝑥)
〉
C ∃®𝑣1.

〈
®v0 � ®𝑣0 ∧ ®v1 � ®𝑣1

��𝑄 ′(𝑥)
〉

(12a)
𝑚; _;A ⊢

〈
𝑃
��
emp

〉
C

〈
𝑄

��
emp

〉
(12b)

resp., where ®v0 = pv(𝑃 (𝑥)), ®v1 = pv(𝑄 (𝑥))\®v0, 𝑃 ′(𝑥) = 𝑃 (𝑥) [®𝑣0/®v0] and𝑄 ′(𝑥) = 𝑄 (𝑥) [®𝑣0/®v0, ®𝑣1/®v1]
(for technical reasons the atomic pre/post-conditions in the general triples cannot contain program
variables). We omit the pseudo-quantifier from an atomic triple (as above) when the pseudo-
quantified variable does not occur in the triple, and thus could be quantified as

A

𝑥 ∈ {1} ↠⊥ {1}.
We also use the abbreviated form

A

𝑥 ∈ 𝑋 when the liveness assumption is trivial, i.e.

A

𝑥 ∈ 𝑋 ↠⊥ 𝑋 .

Definition 3.24 (Specification). Specifications, S ∈ Spec, have the form:

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 · ∃𝑦.
〈
𝑄h (𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉
𝑚;_;A (✠)

where
• 𝑚 ∈ L, _ ∈ Lvl and A ∈ ACtxt;
• 𝑥,𝑦 ∈ LVar;
• 𝑋 ′ ⊆ 𝑋 ⊆ AVal and 𝑘 ∈ L;
• 𝑃h, 𝑄h (𝑣, 𝑣 ′) ∈ StableA for all 𝑣 ∈ 𝑋 and 𝑣 ′ ∈ AVal;
• 𝑃a (𝑣), 𝑄a (𝑣, 𝑣 ′) ∈ Assrt for all 𝑣 ∈ 𝑋 and 𝑣 ′ ∈ AVal, and pv(𝑃a) = pv(𝑄a) = ∅.
• ∀𝑥 ∈ 𝑋 . ⊢A 𝑃a (𝑥) ⇒ emp

_
Ob
.

• ∀𝑥 ∈ 𝑋,𝑦. ⊢A 𝑄a (𝑥,𝑦) ⇒ emp
_
Ob
.

In addition to the atomicity context A, the context of a specification 𝑚, _,A consists also of
a layer 𝑚, and a level _. These components record information about the proof context of the
judgement. The layer𝑚 indicates that we are in a context where we are forbidden from assuming
as live obligations with layers ≥ 𝑚 (or incomparable to𝑚). The level _ indicates that the regions
with level ≥ _ are open (and cannot be re-opened).

3.9 Trace Semantics of Specifications

Finally, we can define the semantics of a specification. The idea of the semantics is to collect all traces
that are deemed as acceptable to a specification S, so that we can later say a command satisfies S if
its traces are all accepted by the semantics of S. The general principle in accepting a trace is the
following: the local steps are only expected to be correctly implementing the functionality declared
by S if the environment satisfies the assumptions implied by the (safety and liveness) protocols
and S itself. If a trace has gone wrong as a consequence of the environment making moves outside
of the assumptions, that trace is accepted, as the problem is not the responsibility of the local
command itself. If a trace has gone wrong as a consequence of local steps, then the trace is rejected.

The semantics of a specification therefore traverses a trace to decide whether to accept or reject
it, by determining who is to blame for failures. We decouple the traversal needed for checking
the safety constraints, and the one checking the liveness ones. In terms of safety, a specification
like (✠) (in Definition 3.24) expects that:

• the precondition holds: the starting resource satisfies 𝑃h ∗ 𝑃a (𝑥), for some 𝑥 ∈ 𝑋 ;
12We use the standard notation 𝑎 � 𝑏 to mean 𝑎 = 𝑏 ∧ emp.

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

TaDA Live 31

• the interference precondition holds: every step of the environment, before the local lineariza-
tion point takes place goes from a resource satisfying 𝑃a (𝑥1), for some 𝑥1 ∈ 𝑋 , to a resource
satisfying 𝑃a (𝑥2), for some 𝑥2 ∈ 𝑋 .

If any of the above are violated, the blame is on the environment. In return, the local steps are
expected to:

• respect atomicity: transform the resources of 𝑃a (𝑥) exactly once to resources satisfying
𝑄a (𝑥,𝑦), for any 𝑥 ∈ 𝑋 and some 𝑦;

• respect the pre-/postconditions: transform (in possibly many steps) the resources in 𝑃h to
resources satisfying 𝑄h (𝑥,𝑦) at the end of the execution.

In this sense, the resources in 𝑃a (𝑥) should be understood as shared: the environment can use them
to change the value of 𝑥 , and the local steps can use them atomically to perform the linearization
point. Note that 𝑄a (𝑥,𝑦) is only guaranteed to hold immediately after the linearization point.

Key idea of the liveness semantics. In terms of termination, the specification (✠) guarantees local
termination only if the environment is live, i.e it satisfies the layered liveness invariants represented
by the pseudo-quantifiers (of the specification and in A) and the obligations. The idea is again to
identify when non termination is caused by a bad environment or by bad local steps. Consider the
case of liveness invariants encoded by obligations. Imagine we annotate each position of a trace
indicating which obligations are held at that point by the environment and which are held locally.
Now suppose the environment always eventually fulfils every obligation (i.e. for each obligation 𝑂
there are infinitely many positions where 𝑂 is not held by the environment). This environment is
certainly live, so it cannot be blamed for non termination. The layer structure, however, allows
the environment to fulfil obligations of layer 𝑘 by relying on eventual fulfilment of obligations at
layer < 𝑘 . Therefore, if there is an obligation 𝑂 that is locally held forever, the environment is still
considered live if it never fulfills obligations at layer > lay(𝑂). In this scenario, the local steps are
blamed for non termination: by holding 𝑂 forever, the local steps are not allowed to rely on the
environment being live at higher layers than lay(𝑂).

This scheme leads to the following semantic interpretation of layers. The local steps can blame the
environment for non termination, by waiting for the fulfilment of some environment obligation 𝑂1
indefinitely; in turn the environment can blame the local steps for the inability to fulfil 𝑂1 by
claiming to be waiting for the fulfilment of some local obligation 𝑂2 with lay(𝑂1) > lay(𝑂2); the
local step can justify the indefinite postponement of the fulfilment of 𝑂2 by shifting blame on the
environment again, appealing to an environment obligation with even lower layer, and so on. This
blame-shifting cannot be unbounded: every time the blame is shifted, the layers considered are
strictly lower and, by well-foundedness of layers, this cannot happen ad libitum. Ultimately, the
blame is unambiguously placed on the environment or the local steps and the trace is accepted or
rejected accordingly.

This intuition about obligations extends to liveness assumptions attached to pseudo-quantifications
in the triple and in the atomicity context. All these assumptions need to be layered to avoid un-
sound circularities, which is why the pseudo-quantifier carries a layer 𝑘 . The specifications mention
another layer,𝑚, which represents a (strict) upper bound on the layers that we may consider live
when proving some command satisfies the specification. An environment is still considered live by
the specification, if it keeps an obligation of layer ⩾ 𝑚 forever unfulfilled.

We now define the formal semantics of specifications, as set of concrete traces that satisfy the
specification. To check if a concrete trace 𝜏 satisfies a specification, the semantics first collects all
the possible “logical” justifications of the trace in a set T. To justify a trace means to instrument
each step with sets of worlds that show how the trace respects the (safety) logical constraints of

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

32 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

the specification. The set T is then further analysed to check that every instrumented trace where
the environment satisfies the liveness assumptions is locally terminating.
We begin by defining the trace safety judgement, of the form 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : T, the purpose of

which is to check the safety constraints implied by S. The judgement formalises the idea of a
specification S as a trace acceptor, that is, an automaton reading a trace step by step, and either
accepting or rejecting it. If we ignore T for a moment, the trace safety judgement represents a
snapshot of the state of this imaginary automaton at a point when some prefix of the trace has been
already successfully processed, and 𝜏 is the suffix that remains to be processed. The automaton
traverses the trace producing a guess for an instrumentation, i.e. logical resources corresponding to
the concrete memory contents that explains why the trace is acceptable. The instrumentation needs
to describe, for instance, when the linearization point is thought of taking place, what portions
of the state are considered as shared and which owned. Let (𝜎,ℎ) be the current concrete state,
i.e. 𝜏 = (𝜎,ℎ) 𝜏 ′. The triple (𝑝h, 𝑝a, 𝑣) in the judgement encode the automaton’s current state,
representing the current guess for the instrumentation of (𝜎,ℎ). The resources currently considered
as locally owned are represented by the view 𝑝h; the 𝑣 can be either an abstract value, in which
case the automaton thinks that we are still in the interference phase, or it can be a pair ⟨𝑣1, 𝑣2⟩
which means we are past the linearization point, which updated the abstract state from 𝑣1 to 𝑣2; the
𝑝a (𝑣) is a set of worlds parametric on 𝑣 and corresponds to the shared atomic resources if we are
before the linearization point, or it is the empty resource if we are past it. The judgement assumes
that ℎ ∈ J𝑝h ∗ 𝑝a (𝑣) ∗ 𝑓 K_ for some frame 𝑓 , i.e. the current concrete state is consistent with the
current instrumentation guess. The initial state of the automaton will be chosen so that this holds
at the beginning of the trace, and each transition of the automaton will by construction preserve
this correspondence.
As it walks down a trace, the automaton updates 𝑝h, 𝑝a and 𝑣 , trying to construct a consistent

instrumentation for the whole trace. Such a sequence of automaton states constitute its run over
the trace. Specification traces augment each state of a trace with the instrumentation from a run of
the automaton.

Definition 3.25 (Specification Traces). Define AVal′ ≜ AVal ⊎ {⟨𝑣1, 𝑣2⟩ | 𝑣1, 𝑣2 ∈ AVal}, the set of
specification states to be SStateA ≜ ViewA × (AVal′ → World

�
A) ×AVal

′ and the set of specification
configurations to be SConfA ≜ Store × Heap × SStateA . The set of specification traces, STraceA ,
is the set of infinite sequences of the form 𝒄1 𝜋1 𝒄2 𝜋2 · · · where 𝒄𝑖 ∈ SConfA and 𝜋𝑖∈ {loc, env}.
Given a set of specification traces T ⊆ STrace, we write 𝒄 𝜋 T for the set {𝒄 𝜋 𝝉 | 𝝉 ∈ T}.

The trace safety judgement accumulates, as it traverses a trace, all the successful instrumentations
of the trace in T, which we can later check against liveness properties. Let us define the judgement
formally, and then explain it in detail.

Definition 3.26 (Trace Safety). Let S ∈ Spec with components named as (✠), 𝜏 ∈ Trace, T ⊆
STrace, and (𝑝h, 𝑝a, 𝑣) ∈ SState such that

𝑝a (𝑥) = WaJ𝑃aK (𝑥) ≜
{
WJ𝑃a (𝑥) ∧ 𝑥 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise

The trace safety judgement is the relation 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : T defined coinductively in Fig. 7.13 We
write term(𝜏), if the trace 𝜏 contains no local steps.

The judgement 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : T assumes the initial configuration (𝜎0, ℎ0) of the trace 𝜏 satisfies
ℎ0 ∈ J𝑝h ∗𝑝a (𝑣) ∗TrueK_ . Rule Stutter checks that any local step other than the linearization point
13Here 𝜏 ranges over subsequences of traces.

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

TaDA Live 33

(ℎ1, ℎ2) ⊨_;A 𝑝
h
∗ 𝑝a (𝑣) _ 𝑝 ′

h
∗ 𝑝a (𝑣)

(𝜎2, ℎ2) 𝜏 ⊨S 𝑝 ′h, 𝑝a, 𝑣 : T term(𝜏) ⇒ 𝑣 = ⟨𝑣1, 𝑣2⟩ ∧ 𝑝 ′
h
= WJ𝑄

h
(𝑣1, 𝑣2)K𝜎2

A
(𝜎1, ℎ1) loc (𝜎2, ℎ2) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : ((𝜎1, ℎ1, 𝑝h, 𝑝a, 𝑣) loc T)

Stutter

(ℎ1, ℎ2) ⊨_;A 𝑝
h
∗ 𝑝a (𝑣) _ 𝑞′

h
∗WJ𝑄a (𝑣, 𝑣 ′)KA

term(𝜏) ⇒ 𝑞′
h
= WJ𝑄

h
(𝑣, 𝑣 ′)K𝜎2

A (𝜎2, ℎ2) 𝜏 ⊨S 𝑞′h, 𝑝a, ⟨𝑣, 𝑣
′⟩ : T

(𝜎1, ℎ1) loc (𝜎2, ℎ2) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : ((𝜎1, ℎ1, 𝑝h, 𝑝a, 𝑣) loc T)
LinPt

T =
⋃{ (𝜎,ℎ1, 𝑝h, 𝑝a, 𝑣) env T𝑣′ | 𝑣 ′ ∈ 𝑋, 𝐸 (𝑣 ′) }

∀𝑣 ′ ∈ 𝑋 . 𝐸 (𝑣 ′) ⇒ (𝜎,ℎ2) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 ′ : T𝑣′ 𝑣 ∈ AVal

𝐸 (𝑣 ′) ≜
(
∃𝑝e, 𝑝 ′e . ℎ1 ∈ J𝑝

h
∗ 𝑝a (𝑣) ∗ 𝑝eK_ ∧ (ℎ1, ℎ2) ⊨_;A 𝑝a (𝑣) ∗ 𝑝e _ 𝑝a (𝑣 ′) ∗ 𝑝 ′e

)
(𝜎,ℎ1) env (𝜎,ℎ2) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : T

Env

if ∃𝑝e, 𝑝 ′e . ℎ1 ∈ J𝑝
h
∗ 𝑝eK_ ∧ (ℎ1, ℎ2) ⊨_;A 𝑝e _ 𝑝 ′

e
then (𝜎,ℎ2) 𝜏 ⊨S 𝑝h, 𝑝a, ⟨𝑣, 𝑣 ′⟩ : T else T = ∅

(𝜎,ℎ1) env (𝜎,ℎ2) 𝜏 ⊨S 𝑝h, 𝑝a, ⟨𝑣, 𝑣 ′⟩ : ((𝜎1, ℎ1, 𝑝h, 𝑝a, ⟨𝑣, 𝑣 ′⟩) env T)
Env’

(𝜎,ℎ) env 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : ∅
Env

Fig. 7. Safety Specification Semantics

updates the local Hoare view (to some 𝑝 ′
h
) in a frame-preserving manner; this implies that, before the

linearization point, the abstract state 𝑣 needs to be preserved by such step. Rule LinPt checks that
the linearization point is frame-preserving and consistent with the atomic postcondition 𝑄a. Both
rules Stutter and LinPt check that the Hoare postcondition is satisfied if we are considering the
last local step of the trace (i.e. if term(𝜏) holds). Rule Env checks whether the current environment
step, assumed to happen before the linearization point, can be seen as a transition changing the
abstract state from 𝑣 to 𝑣 ′ in a way that does not disrupt any frame (including 𝑝h). If that is the
case, the rest of the trace is checked for safety. Rule Env’ performs the same check but after the
linearization point. In both cases, if the environment step cannot be seen as frame-preserving, then
the trace is accepted since the environment did not respect the assumptions. Similarly, Rule Env
accepts the trace after a fault caused by the environment.

Aswe brieflymentioned, Definition 3.26 is inspired by alternating automata [38]. The “alternation”
aspect is necessary because of the angelic/demonic duality between local and environment steps:
when processing an environment step, we need to be prepared to handle every possible interpretation
of the update that took place; for local steps, we are allowed to pick any interpretation of the update.
Note that these ambiguities arise purely from the fact that we are instrumenting the trace with
“ghost” logical state: at each step there is no ambiguity in a trace about how the concrete state has
been updated. This dual interpretation gives rise to the two kinds of transitions in an alternating
automaton. An automata-based presentation of the trace safety judgement would use existentially
branching transitions for local steps, and universally branching transitions for environment steps.
We further mimic alternating automata in the way we factor safety and liveness constraints.
Alternating automata impose safety constraints by constructing sets of runs that linearise the
choices for the existential transitions and the branching due to universal transitions. In our setting
these sets of runs correspond to T. The liveness constraints can be then checked by, for example,
requiring each run in the set to visit final states infinitely often, the usual Büchi-style acceptance
condition. Here we also examine the instrumented traces of T individually and impose a liveness
acceptance condition; the condition in our case is more complex as it has to take into account

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

34 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

layers, pseudo-quantifiers and obligations. One key simplification introduced by this approach
is that we can cleanly separate the branching (safety) aspect —the quantifier alternation due to
duality environment/local steps— from the linear-time liveness aspect.
Building on trace safety, we can now define the semantics of a specification JSK as the set of

traces that are safe and that additionally satisfy the liveness constraints implied by the obliga-
tions and the liveness assumptions of S. Conceptually, we want to require local termination, if
the environment satisfies the layered liveness invariants represented by pseudo-quantifiers and
obligations. To harmonise the pseudo-quantification and obligation-related liveness assumptions
of a specification, S, we collect all of them in a set of so-called pseudo-obligations:

POb
S ≜ { (𝑟,𝑂) | 𝑟 ∈ RId,𝑂 ∈ AOb } ⊎ { (𝑟, live(A, 𝑟)) | 𝑟 ∈ dom(A) } ⊎ {𝑋 ↠𝑘 𝑋 ′}

where A, 𝑋, 𝑋 ′ and 𝑘 are taken from the specification.
We extend the layer function to lay : PObS → L by setting lay(𝑎) = 𝑘 if 𝑎 = (𝑟,𝑂) and

lay(𝑂) = 𝑘 , or 𝑎 = (𝑟, 𝑋 ↠𝑘 𝑋 ′), or 𝑎 = (𝑋 ↠𝑘 𝑋 ′). Furthermore, define
POb

S
<𝑘
≜ {𝑶 ∈ POb

S | lay(𝑶) < 𝑘} AOb<𝑘 ≜ {𝑂 ∈ AOb | lay(𝑂) < 𝑘}
Now we want to understand, for each position of a specification trace, which pseudo-obligations

we are holding locally and which are held by the environment. This information is contained in
the single worlds so as a first step we extract, from a specification trace, the set of traces of worlds
that it represents.

Definition 3.27 (World Traces). Given an atomicity context, A, we call world traces, WTraceA ,
ranged over by𝝉 ,𝝉 ′, . . ., the infinite sequences of the form (ℎ0,𝑤

0
h
,𝑤0

a
,𝑤0

e
, 𝑣0) 𝜋0 (ℎ1,𝑤

1
h
,𝑤1

a
,𝑤1

e
, 𝑣1) 𝜋1

. . ., where, for all 𝑖 ∈ N, ℎ𝑖 ∈ Heap,𝑤 𝑖
h
,𝑤 𝑖

a
,𝑤 𝑖

e
∈ WorldA and 𝑣𝑖 ∈ AVal

′. We define the function:

W_ (𝜎,ℎ, 𝑝h, 𝑝a, 𝑣) ≜
{
(ℎ,𝑤h,𝑤a,𝑤e, 𝑣)

�� 𝑤h ∈ 𝑝h,𝑤a ∈ 𝑝a (𝑣), ℎ ∈ ⌊𝑤h ⊙𝑤a ⊙𝑤e⌋_
}

whichwe extend to specification traces byW_ (𝒄0 𝜋0 𝒄1 𝜋1 . . .) ≜ {𝑐0 𝜋0 𝑐1 𝜋1 . . . | ∀𝑖 . 𝑐𝑖 ∈ W_ (𝒄𝑖)}.
A world trace (ℎ0,𝑤

0
h
,𝑤0

a
,𝑤0

e
, 𝑣0) 𝜋0 (ℎ1,𝑤

1
h
,𝑤1

a
,𝑤1

e
, 𝑣1) 𝜋1 . . . is Ra

A-respecting if for all 𝑖 ∈ N:

𝜋𝑖 = env ⇒ 𝑤 𝑖
h
Ra

A 𝑤 𝑖+1
h

∧ 𝜋𝑖 = loc ⇒ 𝑤 𝑖
e
Ra

A 𝑤 𝑖+1
e

Given specification trace 𝝉 ∈ STraceA , the set T𝝉U_;A is the set of world traces of 𝝉 , defined by
T𝝉U_;A ≜ {𝝉 ∈ W_ (𝝉) | 𝝉 is Ra

A-respecting}
We lift T · U_;A to apply to sets of specification traces in the obvious way.

We can now define two predicates indicating when a pseudo-obligation is considered to be held
by the environment (envheld_) or locally (locheld_) in a position of a world trace.

envheld_ (𝑶, (_,𝑤h, _, _, 𝑣)) ≜

b𝑤h

(𝑟) ⊒ O ∧ lvl𝑤h
(𝑟) < _ if 𝑶 = (𝑟,O)

ast𝑤h
(𝑟) ∉ 𝑋2 ∧ lvl𝑤h

(𝑟) < _ if 𝑶 = (𝑟, 𝑋1 ↠𝑘 𝑋2)
𝑣 ∈ 𝑋1 \ 𝑋2 if 𝑶 = (𝑋1↠𝑘𝑋2)

locheld_ ((𝑟,O), (_,𝑤h, _, _, _)) ≜ \𝑤h
(𝑟) ⊒ O ∧ lvl𝑤h

(𝑟) < _

Equipped with these definitions, we can state the liveness constraints associated with a specifica-
tion. The idea is that one can assign the “blame” for local non-termination either to the environment
or to the local behaviour. If we deem the environment responsible for non-termination then the
specification will classify the trace as acceptable, otherwise it will reject it. The idea behind this
“blame” assignment is to examine the world traces justifying the safety of a trace and consider,
for each position, which obligations are held by the environment and which are held locally. To
understand the intuition, consider the case of liveness invariants encoded by obligations. Suppose

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

TaDA Live 35

the environment always eventually fulfills every obligation, i.e. for each obligation 𝑂 there are
infinitely many positions where𝑂 is not held by the environment. This environment is certainly live,
i.e. it respects the liveness assumptions and the local code is responsible for any non-terminating
behaviour. But what if the environment itself is blocking on some locally held obligation, and as a
consequence is not able to fulfill some 𝑂? Whether the environment or the local code is to blame
depends on the layers. The environment is to blame if, from some point in the trace, it never fulfills
some 𝑂 but the local steps always eventually fulfill every obligation of layer strictly lower than
lay(𝑂). Conversely, an environment which keeps 𝑂 unfulfilled because of some forever-unfulfilled
obligation 𝑂 ′ held locally with lay(𝑂) > lay(𝑂 ′) cannot be blamed for local non-termination.

This intuition about obligations extends to liveness assumptions attached to pseudo-quantifications
in the triple and in the atomicity context. The liveEnv predicate given in Definition 3.28 formalises
the above blame-assigning mechanism. A world trace which satisfies liveEnv is one where the
environment cannot be blamed for local non-termination. The specification semantics then is the
set of safe traces where, if liveEnv is satisfied, then the trace is locally terminating.

Definition 3.28 (Specification Semantics). Fix a specification S ∈ Spec with components named
as in (✠). The liveEnvS (𝝉) predicate checks whether the environment is satisfying the liveness
assumptions of the specification:

liveEnvS (𝝉) ≜ ∀𝑶 ∈ POb
S
<𝑚 . if ∀𝑟,𝑂 ∈ AOb≤lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld_ ((𝑟,𝑂),𝝉 (𝑗))

then ∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ envheld_ (𝑶,𝝉 (𝑗))

Let 𝑝h = WJ𝑃hK𝜎0
A , and 𝑝a = WaJ𝑃aK. We define the trace semantics JSK ⊆ Trace of specifica-

tion S as the set:

JSK ≜

 (𝜎0, ℎ0) 𝜏

�������
∀𝑣0 ∈ 𝑋 . if ℎ0 ∈ J𝑝h ∗ 𝑝a (𝑣0) ∗ TrueK_

then ∃T. (𝜎0, ℎ0) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣0 : T
∧ ∀𝝉 ∈ TTU_;A . liveEnvS (𝝉) ⇒ lterm((𝜎0, ℎ0) 𝜏)

where _ and A are the level and atomicity context from the specification S.

The more precise intuition behind the specification semantics is as follows. Once it has been
established that there is a way to instrument the trace to justify why the local steps satisfy the safety
constraints of S, we consider the set of valid instrumentations T. First, we extract the set of world
traces represented by the traces of T. Each such world trace should either be locally terminating, in
which case the trace is accepted or, if it is non-terminating, the non-termination should be due to
the environment not satisfying the liveness assumptions of S. The predicate liveEnvS (𝝉) holds for a
specification trace 𝝉 if the environment always eventually fulfills any pseudo-obligation with layer 𝑘
and if no obligation of layer < 𝑘 is constantly held by the local thread. Blame for non-termination can
be unambiguously assigned thanks to well-foundedness of layers: if there is a forever-unfulfilled
local obligation𝑂0, we can try to blame the environment by identifying a lower-layer obligation𝑂1
that is forever-unfulfilled by the environment; the environment can shift the blame back to the local
steps if one can find a lower-layer local obligation 𝑂2 that is forever-unfulfilled. Well-foundedness
implies this blame-shifting game must be bounded in length and the ultimate culprit can always be
identified. This effectively encodes the acyclicity of the layered termination argument.

3.10 The Semantic Judgement

We are now ready to define the semantic version of our judgements, ⊨Φ C : S, indexed by a function
specification context, Φ, which, for each function, provides the arguments of the function and the
specification of the function body.

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

36 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Definition 3.29 (Function Specification Context). A function specification context, Φ, is a partial
function Φ ∈ FSpec ≜ FName ⇀ (PVar∗, Spec).
Definition 3.30 (Semantic Triple). Given 𝜑 ∈ FImpl and Φ ∈ FSpec, a function implementation

context 𝜑 is a correct implementation of Φ, written ⊨ 𝜑 : Φ, if and only if ∀f, ®x, S.Φ(f) = (®x, S) ⇒
∃C. 𝜑 (f) = (®x,C) ∧ JCK𝜑 ⊆ JSK. The semantic triple ⊨Φ C : S, stating that command C satisfies
specification S under any correct implementation of the functions specified in Φ, is defined by:

⊨Φ C : S if and only if ∀𝜑. ⊨ 𝜑 : Φ ⇒ JCK𝜑 ⊆ JSK

Note that when C has no free function names, the judgement ⊨Φ C : S is equivalent to JCK ⊆ JSK.
Since the semantics of our triples is a complex conditional termination statement, it is useful

to show when it corresponds to unconditional termination. Intuitively, to state facts about the
behaviour of a command in an “empty” environment, we should be using a Hoare triple (no resource
needs to be shared, no interference experienced) and there should be no assumption of obligations
being owned by the environment. We characterise the preconditions that ensure this as the ones
that always admit emp

_
Ob

as a global frame.
Definition 3.31 (Grounded view). Fix an arbitrary level _. We say 𝑝 ∈ View∅ is _-grounded if

∀ℎ. ℎ ∈ J𝑝 ∗ TrueK_ ⇒ ℎ ∈ J𝑝 ∗ emp
_
Ob
K_

We say a stable assertion 𝑃 is _-grounded if, for all 𝜎 ∈ Store, the view WJ𝑃K𝜎∅ is _-grounded.
Examples of grounded assertions are standard separation logic assertions like emp or 𝑥 ↦→ 𝑣 .
Unconditional termination applies to programs running in isolation. Note that, technically, we

cannot consider traces without environment steps as the fairness constraint requires infinitely
many of those. We therefore model the isolated executions of a command as the executions where
the environment steps do not modify the current state. It is easy to check that, for each finite or
infinite sequence of local steps of C, there is a corresponding fair trace of C with only identity
environment steps, and vice versa.

Definition 3.32 (Closed-World Semantics). Given a command C, its closed-world semantics CJCK ⊆
Trace is the subset of the open-world semantics JCK of the traces where every environment step is
an identity step, i.e. of the form 𝑐

env−−−→ 𝑐 . Additionally, for an assertion 𝑃 , we define CJCK(𝑃)_ ≜{
(𝜎,ℎ)𝜏 ∈ CJCK

�� ℎ ∈ JWJ𝑃K𝜎∅ ∗ TrueK_
}
, that is the closed-world traces of C that start from a

state satisfying the precondition 𝑃 .
Theorem 3.33 (Adeqacy). For every _-grounded assertion 𝑃 , if 𝑚; _; ∅ ⊨

{
𝑃
}
C

{
𝑄

}
then all

traces in CJCK(𝑃)_ are locally terminating.

Proof. Take a trace (𝜎,ℎ)𝜏 ∈ CJCK(𝑃)_ and let 𝑝 = WJ𝑃K𝜎∅ . From the semantic triple we
know that CJCK(𝑃)_ ⊆ JCK ⊆ J

{
𝑃
}
·
{
𝑄

}
K. We have ℎ ∈ J𝑝 ∗ TrueK_ and, since 𝑃 is _-grounded,

ℎ ∈ J𝑝 ∗ emp
_
Ob
K_ . By the definition of the specification trace semantics, we therefore know that

(𝜎,ℎ) 𝜏 ⊨S 𝑝, emp, 1 : T for some T. Note that a frame-preserving update on a grounded view keeps
it grounded, and that identity environment steps can always be justified as a frame-preserving
update that does not update the resources. In particular, from these facts we can deduce that
there is some 𝝉 ∈ T such that at each point in time the global frame is emp

_
Ob
. From this we can

extract a world-trace 𝝉 ∈ TTU_;∅ such that ∀𝑶 ∈ POb<𝑚 .∀𝑖 ∈ N.¬ envheld_ (𝑶,𝝉 (𝑖)) which implies
liveEnv(𝝉). By the definition of the specification’s semantics this implies local termination of our
concrete trace (𝜎,ℎ)𝜏 . □

As a corollary, we have that if𝑚; _; ∅ ⊨
{
emp

}
C

{
True

}
holds, then every isolated execution

of C from the empty heap and arbitrary store terminates.

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

TaDA Live 37

4 TADA LIVE RULES

We now introduce the rules of TaDA Live, summarised in Fig. 9, using a simple but tricky running
example to motivate and explain them.

Example 4.1 (Distinguishing client). Consider the following client of a lock module:

lock(x);

[done]B true;

unlock(x);

var d= false in

while(¬d){
lock(x); dB [done]; unlock(x);

}

The code is interesting in that it can distinguish whether the lock implementation is a spin or CLH
lock. Under weak fairness, when x is a spin lock, this client program does not always terminate. It
is possible for the lock invocation of the left thread to be scheduled infinitely often but always in
a state in which the lock is locked. As a result, done will never be set to true, making the while
loop spin forever. The spin lock has been starved by the other thread. In contrast, when x is a CLH
lock, this client program is guaranteed to terminate: a fair scheduler will eventually allow the left
thread to enqueue itself in the internal queue of the lock; from then on, the thread on the right
can only acquire the lock at most once; after unlocking, the next lock(x) call of the right thread
would enqueue it after the left thread, which is now the only unblocked thread. The CLH lock is
starvation free.

It is worth noting that none of the proof principles of [5, 8, 12, 13, 19, 30] are powerful enough to
handle this example due to the blocking behaviour it displays. Even replacing locks with primitive
locks, due to the mix of busy-waiting blocking and locks, the example cannot be handled by any of
the proof systems of [3, 20, 24, 26]. Since LiLi does not have a rule for parallel, this client cannot be
proven within the LiLi logic.

We show that the distinguishing client terminates with the CLH lock, by proving the Hoare triple
⊤ ⊢

{
L(x, 0) ∗ done ↦→ false

}
Cℓ ∥ C𝑟

{
True

}
, where Cℓ and C𝑟 are the left and right threads of

the example, respectively. Since our triples are total, this triple immediately guarantees termination
of the program. Our overall argument is as follows. The CLH specification guarantees termination
of a call to lock(x) if the lock is always eventually unlocked by the environment. This is intuitively
true for both threads: they always unlock the lock after having acquired it. The call to lock(x)
will therefore terminate in both threads. The only other potentially non-terminating operation
is the while loop in the right thread. The loop is implementing a busy-wait pattern on done, and
needs the help of the left thread to terminate. We will be able to prove that since done is going to
be eventually set to true (and never reset to false), the loop will terminate.

4.1 The Basics: Regions

Let us formalise the argument in TaDA Live, introducing the proof rules as they are needed. Recall
the specifications of CLH lock:

1 ⊢ A

𝑙 ∈ {0, 1} ↠0 {0}.
〈
L(x, 𝑙)

〉
lock(x)

〈
L(x, 1) ∧ 𝑙 = 0

〉
0 ⊢

〈
L(x, 1)

〉
unlock(x)

〈
L(x, 0)

〉
where we make explicit the previously omitted layers 1 > 0 (we justify the choice of layers in
the proof of CLH lock). These specifications will be available in the proof as “axioms” stored
in a function specification context Φ parametrising every triple of the client proof; we omit the
parametrisation to aid readability. The predicate L(x, 𝑙) is given a definition in the proof of the
lock module, and, in the spirit of CAP, the client proof should not be relying on the definition of
the predicate but in its abstract properties. Here we rely on the fact that L(x, _) ∗ L(x, _) is false,

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

38 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

expressing that a lock is an exclusively owned resource —see Section 4.8 for the other properties of
L exposed to the client.
The two threads of the distinguishing client both access the lock x and the heap cell done.

Consider the precondition L(x, 0) ∗ done ↦→ false. Both resources in the precondition are non-
duplicable, so if we give them to Cℓ , the other thread would not be able to also have them. As
we anticipated, shared state in TaDA is handled using regions. We therefore introduce a new
region type dc (for distinguishing client) which encapsulates the resources in the precondition:
dc𝑟 (𝑥, done, 𝑙, 𝑑) is the shared resource encapsulating a lock at 𝑥 with state 𝑙 and a cell at done
storing the Boolean 𝑑 . Although in this case the abstract state is not hiding any detail, since both 𝑙
and 𝑑 are visible, in general the abstraction of the contents is an essential mechanism for reasoning
about abstract atomicity. In the proof of CLH lock, for example, to be able to see the operations as
abstractly atomic, it is essential to hide the queue from the abstract state.
Assuming the lock region encapsulated by the L predicate has level _, the lock specifications

will have level _ + 1 in the context, indicating they consider the lock region closed. To allow dc
to encapsulate the lock region and use the lock specifications to derive updates to its own state,
we let it have level _ + 1. The top-level triples for the distinguishing client have level _ + 2 as a
consequence. We will elide all details about levels as they can be mechanically inferred from the
applications of the LiftA and UpdReg rules.
We now design the protocol of the region, with the intent of encoding the following safety

invariants:
(I1) the addresses of the lock and the flag never change;
(I2) only the thread which acquired the lock can unlock it;
(I3) only the left thread will ever modify done, and at most once from false to true;

and the following liveness invariants:
(I4) the lock will always eventually be unlocked;
(I5) the value at done will always eventually be true.

Note that, together, invariants (I3) and (I5) imply that eventually the value at done will always be
true. To encode invariants (I2) and (I3) we introduce a guard algebra for dc generated from two
guards k (for key) and d (for done), with k • k = ⊥ and d • d = ⊥ to represent exclusivity of the
permissions they give on the lock and flag respectively. We can reuse the same guard algebra for
the obligation algebra associated with dc: the atom obligations k and d will represent liveness
invariants (I4) and (I5) respectively. The protocol Tdc formalises all the invariants:

0 : ((𝑥, done, 0, 𝑑), 0) ⇝ ((𝑥, done, 1, 𝑑), k) (13)
k : ((𝑥, done, 1, 𝑑), k) ⇝ ((𝑥, done, 0, 𝑑), 0) (14)
d : ((𝑥, done, 𝑙 , false), d) ⇝ ((𝑥, done, 𝑙 , true), 0) (15)

The fact that no transition can change 𝑥 and done encodes (I1); this is such a common pattern
that we adopt the convention to declare which are the fixed components of the abstract state and
omit them from the protocol transitions completely. The choice for the guards of (14) and (15)
reflects (I2) and (I3), respectively; we will give d to the left-hand thread, and k will be obtained by
locking the lock. The obligation k is obtained by locking and fulfilled by unlocking; the obligation d
is fulfilled by setting done to true; these facts encode (I4) and (I5).
We assign layers to the obligations to reflect the intuitive dependency: the lock needs to be

assumed live in the process of fulfilling the obligation on the flag. We therefore set ⊥ < 0 =

lay(k) < lay(d) = 1 < ⊤.

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

TaDA Live 39

⊤ ⊢{
L(x, 0) ∗ done ↦→ false

}{
∃𝑟, 𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)}

∃E
li
m

{(∃𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
) ∗ (∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∗

(
¬𝑑 .⇒ ⌊d⌋E𝑟

)
)}

⊤ ⊢{
∃𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)}

St
ep

1

A

𝑙 ∈ {0, 1}.〈
𝐿
��∃𝑑. dc𝑟 (x, done, 𝑙, 𝑑)〉

Li
ve

C

A

𝑙 ∈ {0, 1} ↠ {0}.〈
emp

��∃𝑑. dc𝑟 (x, done, 𝑙, 𝑑)〉

St
ep

2

A

𝑙 ∈ {0, 1} ↠ {0}.〈
L(x, 𝑙)

〉
lock(x);〈
L(x, 1) ∧ 𝑙 = 0

〉〈
[k]L𝑟

��∃𝑑. dc𝑟 (x, done, 1, 𝑑)〉〈
𝐿 ∗ [k]L𝑟

��∃𝑑. dc𝑟 (x, done, 1, 𝑑)〉{
dc𝑟 (x, done, 1, false) ∗ [d]L𝑟 ∗ [k]L𝑟

}
[done]B true;{
dc𝑟 (x, done, 1, true) ∗ [k]L𝑟

}
unlock(x);{
∃𝑙 . dc𝑟 (x, done, 𝑙, true)

}

⊤ ⊢{
∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∗

(
¬𝑑 .⇒ ⌊d⌋E𝑟

)}
var d= false in{
∃𝛽0, 𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∧

d ⇒ 𝑑 ∧ 𝛽0 = (d ? 0 : 1) ∗
(
¬𝑑 .⇒ ⌊d⌋E𝑟

) }

∃E
li
m

{
∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∧

d ⇒ 𝑑 ∧ 𝛽0 = (d ? 0 : 1) ∗
(
¬𝑑 .⇒ ⌊d⌋E𝑟

) }

W
hi
le

while(¬d) { ∀𝛽, 𝑏.{
∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∧

d ⇒ 𝑑 ∧ 𝛽 = (d ? 0 : 1) ∧ 𝑏 ⇒ 𝑑 ∧ ¬d

}
lock(x);
dB [done];
unlock(x);{
∃𝛾, 𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∧

d ⇒ 𝑑 ∧ 𝛾 = (d ? 0 : 1) ∧ 𝛾 ≤ 𝛽 ∧ 𝑏 ⇒ 𝛾 < 𝛽

}
}{

∃𝛾, 𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∧

d ⇒ 𝑑 ∧ 𝛾 = (d ? 0 : 1) ∗
(
¬𝑑 .⇒ ⌊d⌋E𝑟

)
∧ d ∧ 𝛾 ≤ 𝛽0

}
{
∃𝑙 . dc𝑟 (x, done, 𝑙, true)

}
{∃𝑙 . dc𝑟 (x, done, 𝑙, true) ∗ ∃𝑙 . dc𝑟 (x, done, 𝑙, true)}{

∃𝑟, 𝑙 . dc𝑟 (x, done, 𝑙, true)
}

Fig. 8. Proof Sketch of the Distinguishing Client. Here 𝐿 =
(
∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
))
.

To complete the definition of shared region dc, we link its abstract state to the actual heap
content that it encapsulates using the region interpretation:

I(dc𝑟 (𝑥, done, 𝑙, 𝑑)) ≜ L(𝑥, 𝑙) ∗ done ↦→ 𝑑 ∗
(
𝑙 = 0

.⇒ [k]L𝑟
)
∗

(
𝑑

.⇒ [d]L𝑟
)

This assertion describes a portion of the heap being shared (the lock at 𝑥 and the cell at done) and
the linking of the ghost state (the guards and obligations) with the abstract state. The assertion [k]L𝑟
is an abbreviation for ⌈k⌉𝑟 ∗ ⌊k⌋L𝑟 , which indicates local ownership of the guard k and obligation k.
The interpretation of a region establishes the invariant that, when 𝑙 = 0, the guard and obligation k
will be “owned” by the region (and by no thread as a consequence). Similar links are established
between the value of 𝑑 and d.

Now that we set the scene, we can proceed with the proof, outlined in Fig. 8. The first operation to
do is to transform the precondition L(x, 0)∗done ↦→ false to an assertion about the dc𝑟 (x, done, 𝑙, 𝑑)
region. We can do that by using the consequence rule:

A ⊨ 𝑃 stable A ⊨ 𝑄 stable

_;A ⊨ 𝑃⇛ 𝑃 ′ 𝑚; _;A ⊢Φ
{
𝑃 ′} C {

𝑄 ′} _;A ⊨ 𝑄 ′⇛𝑄

𝑚; _;A ⊢Φ
{
𝑃
}
C

{
𝑄

} ConsH

which allows the use of viewshift to logically manipulate the assertions. Since triples are only
well-defined if the Hoare pre-/postconditions are stable, the rule asks to check stability of the
assertions of the conclusion as this does not follow from stability of the assertions of the triple in
the premise. An analogous rule, called Cons, holds for hybrid triples —with no stability checks on
the atomic pre-/postconditions— so viewshifting is available at any point in a derivation.

In our example, we want to create the guards and obligations needed to match the interpretation
of dc𝑟 (x, done, 𝑙, 𝑑) and create the region, replacing its interpretation. Here we might be tempted to

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

40 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

match the interpretation with 𝑙 = 0 and 𝑑 = false, L(x, 0) ∗done ↦→ false∗ [k]L𝑟 ∗ [d]L𝑟 to viewshift
to dc𝑟 (x, done, 0, false) ∗ ⌊d⌋L𝑟 . While this viewshift holds, there is an issue: in TaDA Live, all the
assertions in Hoare triples (or in Hoare position in hybrid triples) need to be stable for the triple to
have well-defined semantics. The proof system enforces the stability of these assertions, by inserting
stability checks in crucial rules. This means that if we viewshift now to a non-stable assertion, then
we would fail at some point in the derivation to satisfy a stability check. While L(x, 0) ∗ done ↦→
false is stable, as we own these resources, the assertion dc𝑟 (x, done, 0, false) ∗ ⌊d⌋L𝑟 is not stable:
a region is subjected to the transitions of the protocol. Since we have the guard d (from [d]L𝑟) the
environment cannot own it, hence cannot fire the transitions guarded by d; this makes 𝑑 = false
stable. The transitions changing the state of the lock, however, can affect the region. This leads
us to14 ∃𝑟, 𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
where we also add ⌊k⌋E𝑟 when 𝑙 = 1, a

stable fact.

4.2 The Parallel Rule

We now want to proceed with an application of the parallel rule:

𝑚1; _;A ⊢Φ
{
𝑃1

}
C1

{
𝑄1

}
⊢A 𝑄1 Q𝑚2 ⩽ 𝑚

𝑚2; _;A ⊢Φ
{
𝑃2

}
C2

{
𝑄2

}
⊢A 𝑄2 Q𝑚1 ⩽ 𝑚

𝑚; _;A ⊢Φ
{
𝑃1 ∗ 𝑃2

}
C1 ∥ C2

{
𝑄1 ∗𝑄2

} Par

The abbreviation ⊢A 𝑃 Q 𝑘 means ∀𝑟 ∈ RId. ⊢A 𝑃 ⇒ 𝑟 Q 𝑘 , that is, all the obligations owned
by 𝑃 have layer ⩾ 𝑘 . ⊢A 𝑃 Q 𝑘 ⩽ 𝑘 ′ means ⊢A 𝑃 Q 𝑘 and 𝑘 ⩽ 𝑘 ′. The intuition behind these
constraints is as follows. The layer in the context of the triples indicates a strict upper bound on the
layers that can be assumed live in the proofs of the triples. If thread 2 needs layers lower than𝑚2,
then if thread 1 has unfulfilled obligations by the end of its execution, these cannot conflict with
the assumptions made by the proof of thread 2. It is not however sound to leave an obligation 𝑂2
of layer < 𝑚2 unfulfilled by thread 1: if thread 1 terminates first, leaving 𝑂2 unfulfilled in its
postcondition, thread 2 may be assuming 𝑂2 live in a situation where it will never be fulfilled.
In our example we need to apply consequence again to massage the viewshifted precondition

into an assertion of the form 𝑃1 ∗ 𝑃2. The region assertion is duplicable, as is 𝑙 = 1
.⇒ ⌊k⌋E𝑟 , but we

want to give the non-duplicable resource [d]L𝑟 to the thread on the left, as it is the one that will
fulfill the d obligation. This has a side-effect though: since the d guard is given to the left thread,
the value of 𝑑 from the right thread’s perspective is not stably false. Moreover, we want to know
that the left thread has the obligation d. So we use [d]L𝑟 ⇔ [d]L𝑟 ∗ ⌊d⌋E𝑟 to give ⌊d⌋E𝑟 to the thread
on the right, and we stabilise the assertion to ¬𝑑 .⇒ ⌊d⌋E𝑟 . All in all we obtain:(

∃𝑟, 𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
))

⇒ ∃𝑟 . 𝑃1 ∗ 𝑃2

𝑃1 ≜ ∃𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)

𝑃2 ≜ ∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∗

(
¬𝑑 .⇒ ⌊d⌋E𝑟

)
Which allows us to apply consequence and the standard ∃Elim rule to obtain a precondition in the
form required by the Par rule. For both threadswe are aiming at postcondition∃𝑙 . dc𝑟 (x, done, 𝑙, true)
which has no obligation so it satisfies the layer conditions trivially.

To see why the layer conditions are important for soundness, imagine we forgot to unlock x in
the left thread, obtaining a non-terminating program. We would obtain ⌊k⌋L𝑟 in the postcondition
of Cℓ , but the check would fail as 0 = lay(k) ̸⩾ ⊤. Choosing 0 for the context layer of the triple
for C𝑟 would not work: in its proof we need to assume d live, and lay(d) = 1.

14Recall that B
.⇒ 𝑄 stands for (B ∧𝑄) ∨ (¬B ∧ emp) .

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

TaDA Live 41

4.3 Handling a call to lock

Let us focus on the proof of the left-hand thread first. The difficult step is the execution of the first
instruction, since this is the only potentially non-terminating instruction of the thread. If we let
𝐿 = ∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
, Step 1 can be derived as follows:

1 ⊢ A

𝑙 ∈ {0, 1}.
〈
𝐿
�� ∃𝑑. dc𝑟 (x, done, 𝑙, 𝑑)〉 lock(x) 〈

𝐿 ∗ [k]L𝑟
�� ∃𝑑. dc𝑟 (x, done, 1, 𝑑)〉

1 ⊢
〈
𝐿
�� ∃𝑙, 𝑑. dc𝑟 (x, done, 𝑙, 𝑑)〉 lock(x) 〈

𝐿 ∗ [k]L𝑟
�� ∃𝑑. dc𝑟 (x, done, 1, 𝑑)〉 A∃Elim

1 ⊢
{
𝐿 ∗ ∃𝑙, 𝑑. dc𝑟 (x, done, 𝑙, 𝑑)

}
lock(x)

{
𝐿 ∗ [k]L𝑟 ∗ ∃𝑑. dc𝑟 (x, done, 1, 𝑑)

} AtomW

1 ⊢
{
∃𝑙, 𝑑. dc𝑟 (x, done, 𝑙, 𝑑) ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)}

lock(x)
{
∃𝑑. dc𝑟 (x, done, 1, 𝑑) ∗ [k]L𝑟

} Cons

1 ⊢
{
∃𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)}

lock(x)
{
dc𝑟 (x, done, 1, false) ∗ [d]L𝑟 ∗ [k]L𝑟

} FrameH

⊤ ⊢
{
∃𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟 ∗

(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)}

lock(x)
{
dc𝑟 (x, done, 1, false) ∗ [d]L𝑟 ∗ [k]L𝑟

} LayWH

Let us unpack the derivation. As a first step, we would like to frame the irrelevant resources, in
this case ⌊d⌋L𝑟 . In TaDA Live, this step is more subtle and interesting than usual, because of the
layer-related side-conditions of rule FrameH (a special case of rule Frame):

fv(𝑅) ∩ mod(C) = ∅
⊢A 𝑅 Q𝑚 𝑚; _;A ⊢Φ

{
𝑃

}
C

{
𝑄

}
A ⊨ 𝑅 stable

𝑚; _;A ⊢Φ
{
𝑃 ∗ 𝑅

}
C

{
𝑄 ∗ 𝑅

} FrameH

With this rule, one can only frame obligations if they are of layer greater or equal the context layer.
Here we can use consequence (omitted) to obtain a stable frame 𝑅 = ∃𝑙 . dc𝑟 (x, done, 𝑙, false) ∗ [d]L𝑟
of the pre- and postconditions. We have ⊢ 𝑅 Q 1 but ̸⊢ 𝑅 Q ⊤; since the layer in the context of the
goal is ⊤, before we can apply FrameH we need to artificially lower the layer using rule LayWH
before applying frame:

𝑚1 ⩽ 𝑚2
𝑚1; _;A ⊢Φ

{
𝑃
}
C

{
𝑄

}
𝑚2; _;A ⊢Φ

{
𝑃
}
C

{
𝑄

} LayWH

Notice that lowering the layer in the context is always sound (even for hybrid triples): if we can
prove the triple assuming live only layers < 𝑘1 ⩽ 𝑘2, then the proof is valid in contexts where
layers up to 𝑘2 can be assumed live.

The layer constraint of Frame is crucial for soundness. Suppose we remove the constraint. Then
we would be able to frame a locally held obligation 𝑂 with layer 𝑘 < 𝑚, i.e. one of the layers
that might be assumed live by the proof. This would allow the proof to assume live environment
obligations that have layer ⩾ 𝑘 , the eventual fulfilment of which might depend on the eventual
fulfilment of 𝑂 . But since 𝑂 is in the frame, it is constantly held and not fulfilled for the whole
duration of the execution of the command we are proving. The frame condition forces us to record
the “minimum” layer of the frame in the context, ruling out unsound circular reasoning.

After framing, we use the rule of consequence to massage the assertions to prepare them to the
form required for the later application of LiveC.
The rest of the derivation does not involve liveness reasoning, and follows a standard TaDA

proof pattern. We use A∃Elim and AtomW to turn the Hoare triple into an atomic triple:

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′, 𝑧 ∈ 𝑍 .
〈
𝑃h

�� 𝑃a (𝑥, 𝑧)〉 C 〈
𝑄h

��𝑄a (𝑥, 𝑧)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃h

��∃𝑧 ∈ 𝑍 . 𝑃a (𝑥, 𝑧)
〉
C

〈
𝑄h

��∃𝑧 ∈ 𝑍 .𝑄a (𝑥, 𝑧)
〉 A∃Elim

A ⊨ 𝑃 ′
stable 𝑚; _;A ⊢Φ

〈
𝑃

�� 𝑃 ′〉 C 〈
𝑄

�� 𝑄 ′〉 A ⊨ 𝑄 ′
stable

𝑚; _;A ⊢Φ
{
𝑃 ∗ 𝑃 ′} C {

𝑄 ∗𝑄 ′} AtomW

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

42 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Rule A∃Elim says that if one can prove the command is resilient to interference on 𝑧 and does not
affect the resource on 𝑧 until its atomic update, then we can relax the specification to state that the
command allows changes to 𝑧 and might also affect 𝑧 during the interference phase. Rule AtomW
says that if you prove a command is atomic, you can relax the specification not to insist on atomicity;
this can be done provided the atomic pre- and postcondition are stable, as required for the Hoare
triple to be well-defined.

The combination of A∃Elim and AtomW simply states that if we can prove a command performs
an update atomically, and the pre- and postconditions are stable, then we can prove that the
command also performs the update non-atomically.
Now let us consider the derivation for Step 2, which lifts the specification of CLH lock to the

context of the client:
1 ⊢ A

𝑙 ∈ {0, 1} ↠ {0}.
〈
L(x, 𝑙)

〉
lock(x)

〈
L(x, 1) ∧ 𝑙 = 0

〉
1 ⊢ A

𝑙 ∈ {0, 1} ↠ {0}, 𝑑 ∈ Bool.
〈
L(x, 𝑙)

〉
lock(x)

〈
L(x, 1) ∧ 𝑙 = 0

〉 SubPqA

1 ⊢ A

𝑙 ∈ {0, 1} ↠ {0}, 𝑑 ∈ Bool.
〈
I(dc𝑟 (x, done, 𝑙, 𝑑))

〉
lock(x)

〈
I(dc𝑟 (x, done, 1, 𝑑)) ∗ [k]L𝑟

〉 Frame

1 ⊢ A

𝑙 ∈ {0, 1} ↠ {0}, 𝑑 ∈ Bool.
〈
emp

�� dc𝑟 (x, done, 𝑙, 𝑑)〉 lock(x) 〈
[k]L𝑟

�� dc𝑟 (x, done, 1, 𝑑)〉 LiftA

1 ⊢ A

𝑙 ∈ {0, 1} ↠ {0}.
〈
emp

�� ∃𝑑. dc𝑟 (x, done, 𝑙, 𝑑)〉 lock(x) 〈
[k]L𝑟

�� ∃𝑑. dc𝑟 (x, done, 1, 𝑑)〉 A∃Elim

Rule SubPqA simply gives a way to manipulate the pseudo-quantified variable and its domain:
𝑓 : 𝑋 → 𝑌 𝑌 ′ = 𝑓 (𝑋 ′)

∀𝑥 ∈ 𝑋 . ⊢A 𝑃 ′(𝑥) ⇔ 𝑃 (𝑓 (𝑥)) ∀𝑥 ∈ 𝑋 . ⊢A 𝑄 (𝑓 (𝑥)) ⇔ 𝑄 ′(𝑥)
𝑚; _;A ⊢Φ

A

𝑦 ∈ 𝑌 ↠𝑘 𝑌 ′.
〈
𝑃 (𝑦)

〉
C

〈
𝑄 (𝑦)

〉
𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃 ′(𝑥)

〉
C

〈
𝑄 ′(𝑥)

〉 SubPqA

These are manipulations that would normally be carried out using consequence, but need to be
done specially since the pseudo-quantifier is a component of triples and not of assertions. In our
example we simply use it to remove the unused variable 𝑑 , choosing 𝑓 : {0, 1} × Bool → {0, 1} to
be the first projection.

The interesting step of the derivation of Step 2 is the application of rule LiftA:
𝑟 ∈ dom(A) ⇒ 𝑅 = 𝑖𝑑 A ⊨ 𝑃 (𝑥),𝑄 (𝑥, 𝑧) _-safe

A ⊨ 𝑃 (𝑥),𝑄 (𝑥, 𝑧) _+1-obl. free { ((𝑥,𝑂1), (𝑧,𝑂2)) | 𝑥 ∈ 𝑋 ∧ 𝑅 (𝑥, 𝑧) } ⊆ Tt (𝐺)
𝑚;_; A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
I(t_𝑟 (𝑥)) ∗ ⌈𝐺 ⌉𝑟 ∗ 𝑃 (𝑥) ∗ ⌊𝑂1 ⌋L𝑟

〉
C

〈
∃𝑧. I(t_𝑟 (𝑧)) ∗𝑄 (𝑥, 𝑧) ∧ 𝑅 (𝑥, 𝑧) ∗ ⌊𝑂2 ⌋L𝑟

〉
𝑚;_+1; A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
⌊𝑂1 ⌋L𝑟

�� t_𝑟 (𝑥) ∗ ⌈𝐺 ⌉𝑟 ∗ 𝑃 (𝑥)
〉
C

〈
⌊𝑂2 ⌋L𝑟

�� ∃𝑧. t_𝑟 (𝑧) ∗𝑄 (𝑥, 𝑧)
〉 LiftA

Let us unpack it. The purpose of the rule is to take an atomic specification that applies to some
resource, and lift it to the effect the atomic update has on some region that contains that resource
in its interpretation. In our example, it says: you have proven that the command locks the lock; the
lock is part of the interpretation of dc𝑟 (𝑠, x, done, 𝑙, 𝑑) and the update to the lock amounts to going
from the interpretation with 𝑙 = 0 to the interpretation with 𝑙 = 1. The rule needs to make sure that
the region update is among the ones permitted by the associated protocol. It does so by checking:
(1) that there is a transition in the protocol matching the update;
(2) that such transition is guarded by a guard that is owned;
(3) that the local obligations are updated as the protocol mandates.

To check the first condition, the rule uses a relation 𝑅 between abstract states of the region; by the
fourth premise, 𝑅 can only include updates that the owner of 𝐺 is allowed to perform. The second
condition is enforced by requiring the precondition to own 𝐺 . The third condition is ensured by
going from owning𝑂1 to owning𝑂2, which, according to the fourth premise, is the expected update
of obligations. In our example we have 𝑂1 = 0 and 𝑂2 = k and the update matches transition (13).
The third premise uses the abbreviation ‘A ⊨ 𝑃 _-obl. free’ which stands for ⊢A 𝑃 ⇒ emp

_
Ob
. This

2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

TaDA Live 43

implies that 𝑃 and𝑄 cannot own obligations of 𝑟 , and so𝑂1 and𝑂2 capture the whole of the updated
obligations. Note that because of the well-formedness restrictions on triples, in the conclusion of
the rule the obligations are transferred to the Hoare pre/post-conditions: there they belong to a
closed region. The first premise says: if the region we are updating is tracked by the atomicity
context, this needs to be a trivial update, or else it would count as a linearisation point (which is
instead handled using rule UpdReg). In our example A = ∅ as we are not proving atomicity of the
client, so we are allowed any protocol compliant update.
Finally, the second premise A ⊨ 𝑄 (𝑥, 𝑧) _-safe requires 𝑄 to preserve its meaning at level _+1.

The formal definition of _-safety is given in Appendix B.2.1; all the _-safety conditions in our proofs
can be immediately discharged by applications of the following lemma.

Lemma 4.2. The properties below hold, for arbitrary _ ∈ Lvl:

(1) emp, E1 ↦→ E2 and B are _-safe.

(2) ⌈𝐺⌉𝑟 and ⌊𝑂⌋L𝑟 are both _-safe.

(3) If _′ < _, then t_
′

𝑟 (𝑎) ∗ ⌊𝑂⌋E𝑟 is _-safe.

(4) If 𝑃,𝑄 are both _-safe, then so are 𝑃 ∧𝑄 , 𝑃 ∨𝑄 , and 𝑃 ∗𝑄 .
(5) If 𝑃 (𝑣) is _-safe for all 𝑣 ∈ AVal, then ∃𝑥 . 𝑃 (𝑥) is _-safe.

4.4 The LiveC rule

In a TaDA safety proof, the derivations of Step 1 and Step 2 could be plugged together: the safety
specification of the lock operation does not contain the {0, 1} ↠ {0} component, and the premise
of Step 1 matches exactly the conclusion of Step 2 (modulo framing 𝐿, which would anyway not
be used in a safety proof). In TaDA Live, the discrepancy between the two steps expresses the need
for a termination argument for this call. What needs to be proven is the fact that, in the current
context of the dc protocol, during the interference phase of this call to lock(x), the environment
will always eventually unlock the lock. The LiveC rule allows to remove the liveness condition of
the specification, in a context where the corresponding liveness invariant can be proven to hold:

𝑛; _;A ⊢ 𝐿 𝑀−−↠ 𝑇 𝑚 ⩾ 𝑛 𝑘 ·⩾ 𝑛 ∀𝑥 ∈ 𝑋 . ⊢_;A 𝑃a (𝑥) ∗𝑇 ⇒ 𝑥 ∈ 𝑋 ′

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄h (𝑥,𝑦)

��𝑄a (𝑥)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 .
〈
𝑃h ∗ 𝐿

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄h (𝑥,𝑦) ∗ 𝐿

��𝑄a (𝑥)
〉 LiveC

The first premise 𝑛; _,A ⊢ 𝐿 𝑀−−↠ 𝑇 is called the environment liveness condition, and it roughly
corresponds to checking □𝐿 ⇒ □^𝑇 (with 𝑀 acting as a certificate of the property holding,
explained later). Here, we pick:

𝐿 ≜ ∃𝑙 ∈ {0, 1}, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)

(16)
𝑇 ≜ ∃𝑑. dc𝑟 (x, done, 0, 𝑑) (17)

and we can conclude □𝐿 ⇒ □^𝑇 because when 𝑇 does not hold, i.e. 𝑙 = 1, we know, from 𝐿,
that ⌊k⌋E𝑟 holds; if we can show k is live, the protocol says that if the environment holds k, it will
eventually fulfil it; under the protocol the transition fulfilling it is setting 𝑙 = 0 which brings us
to 𝑇 . The environment can always set 𝑙 = 1 again after that, but the same argument then applies.
To show k is live we have to look at the layers. Here we have𝑚 = 1 and 𝑘 = 0 = lay(k). Recall

that 𝑘 ·⩾ 𝑛 holds if ∀𝑘 ′ > 𝑘. 𝑘 ′ ⩾ 𝑛. We can therefore set 𝑛 = 1: 0 ·⩾ 1 holds since ∀𝑘 ′ > 0. 𝑘 ′ ⩾ 1.
Since we don’t own any obligation locally (d has been framed, recording this fact in the context
layer𝑚) we can consider k live when proving the environment liveness condition.
The environment liveness condition is the central component of both LiveC and While; we

explain it in depth now, and then resume our proof of the distinguishing client.

2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156

44 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

𝑛; _;A ⊢ 𝐿 𝑀−−−↠ 𝑇 𝑚 ⩾ 𝑛 𝑘 ·⩾ 𝑛 ∀𝑥 ∈ 𝑋 . ⊢_;A 𝑃a (𝑥) ∗𝑇 ⇒ 𝑥 ∈ 𝑋 ′

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 .
〈
𝑃
h
∗ 𝐿

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦) ∗ 𝐿

��𝑄a (𝑥)
〉 LiveC

∀𝛽 ≤ 𝛽0 .𝑚(𝛽); _;A ⊢ 𝐿 𝑀−−−↠ 𝑇 (𝛽) ∀𝛽 ≤ 𝛽0 . ⊢A 𝑃 (𝛽) Q𝑚(𝛽) ⩽ 𝑚
∀𝛼.A ⊨ ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 stable pv(𝑇, 𝐿,𝑀) ∩ mod(C) = ∅

∀𝛽 ≤ 𝛽0 .∀𝑏 ∈ Bool.𝑚; _;A ⊢Φ
{
𝑃 (𝛽) ∗ (𝑏 .⇒ 𝑇 (𝛽)) ∧ B

}
C

{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛾 ≤ 𝛽 ∗ (𝑏 .⇒ 𝛾 < 𝛽)

}
𝑚; _;A ⊢Φ

{
𝑃 (𝛽0) ∗ 𝐿

}
while(B){C}

{
∃𝛾 . 𝑃 (𝛾) ∗ 𝐿 ∧ ¬B ∧ 𝛾 ≤ 𝛽0

} While

𝑚1; _;A ⊢Φ
{
𝑃1

}
C1

{
𝑄1

}
⊢A 𝑄1 Q𝑚2 ⩽ 𝑚

𝑚2; _;A ⊢Φ
{
𝑃2

}
C2

{
𝑄2

}
⊢A 𝑄2 Q𝑚1 ⩽ 𝑚

𝑚; _;A ⊢Φ
{
𝑃1 ∗ 𝑃2

}
C1 ∥ C2

{
𝑄1 ∗𝑄2

} Par

𝑚1 ⩽ 𝑚2
𝑚1; _;A ⊢Φ

{
𝑃
}
C

{
𝑄

}
𝑚2; _;A ⊢Φ

{
𝑃
}
C

{
𝑄

} LayWH

∀𝑥 ∈ 𝑋 . ⊢A 𝑅
h
∗ 𝑅a (𝑥) Q𝑚

pv(𝑅
h
, 𝑅a (𝑥)) ∩ mod(C) = ∅ A ⊨ 𝑅

h
stable ∀𝑥 ∈ 𝑋 .A ⊨ 𝑅a (𝑥) stable

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h

�� 𝑃a (𝑥) 〉
C ∃𝑦.

〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h
∗ 𝑅

h

�� 𝑃a (𝑥) ∗ 𝑅a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦) ∗ 𝑅

h

��𝑄a (𝑥,𝑦) ∗ 𝑅a (𝑥)
〉 Frame

A ⊨ 𝑃 ′ stable 𝑚; _;A ⊢Φ
〈
𝑃

�� 𝑃 ′〉 C 〈
𝑄

�� 𝑄 ′〉 A ⊨ 𝑄 ′
stable

𝑚; _;A ⊢Φ
{
𝑃 ∗ 𝑃 ′

}
C

{
𝑄 ∗𝑄 ′} AtomW

_ < _′ 𝑟 ∉ dom(A) A ′ = A[𝑟 ↦→ (𝑋, 𝑘, 𝑋 ′,𝑇)]
𝑇 ⊆ Tt (𝐺) 𝑅 = io(𝑇) ∀𝑥 ∈ 𝑋 .A ⊨ t_𝑟 (𝑥) ∗ ⌈𝐺⌉𝑟 stable

𝑚; _′;A ′ ⊢Φ
{
∃𝑥 ∈ 𝑋 . t_𝑟 (𝑥) ∗ 𝑟 Z⇒ ♦

}
C

{
∃𝑥,𝑦. 𝑅(𝑥,𝑦) ∧ 𝑟 Z⇒ (𝑥,𝑦)

}
𝑚; _′;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
t_𝑟 (𝑥) ∗ ⌈𝐺⌉𝑟

〉
C

〈
∃𝑦. t_𝑟 (𝑦) ∗ ⌈𝐺⌉𝑟 ∧ 𝑅(𝑥,𝑦)

〉 MkAtom

𝑟 ∈ dom(A) A′ = A[𝑟 ↦→ ⊥] A ⊨ 𝑃 (𝑥),𝑄1 (𝑥, 𝑦),𝑄2 (𝑥, 𝑦) _-safe
A ⊨ 𝑃 (𝑥),𝑄1 (𝑥, 𝑦),𝑄2 (𝑥, 𝑦) _+1-obl. free { ((𝑥,𝑂1), (𝑧,𝑂2 (𝑥))) | 𝑥 ∈ 𝑋 } ⊆ tr(A, 𝑟)

𝑚;_; A′ ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
I(t_𝑟 (𝑥)) ∗ 𝑃 (𝑥) ∗ ⌊𝑂1 ⌋L𝑟

〉
C

〈
∃𝑧. I(t_𝑟 (𝑧)) ∗ ⌊𝑂2 (𝑥) ⌋L𝑟 ∗

(
𝑅 (𝑥, 𝑧) ∧𝑄1 (𝑥, 𝑧)

∨ 𝑥 = 𝑧 ∧𝑄2 (𝑥)

)〉
𝑚;_+1; A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
⌊𝑂1 ⌋L𝑟

��� t_𝑟 (𝑥) ∗ 𝑃 (𝑥) ∗ 𝑟 Z⇒ ♦〉 C 〈
⌊𝑂2 (𝑥) ⌋L𝑟

��� ∃𝑧. t_𝑟 (𝑧) ∗
(

𝑄1 (𝑥, 𝑧) ∗ 𝑟 Z⇒ (𝑥, 𝑧)
∨ 𝑄2 (𝑥) ∗ 𝑟 Z⇒ ♦

)〉 UpdReg

𝑟 ∈ dom(A) ⇒ 𝑅 = 𝑖𝑑 A ⊨ 𝑃 (𝑥), 𝑄 (𝑥, 𝑧) _-safe
A ⊨ 𝑃 (𝑥), 𝑄 (𝑥, 𝑧) _+1-obl. free { ((𝑥,𝑂1), (𝑧,𝑂2)) | 𝑥 ∈ 𝑋 ∧ 𝑅(𝑥, 𝑧) } ⊆ Tt (𝐺)

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
I(t_𝑟 (𝑥)) ∗ ⌈𝐺⌉𝑟 ∗ 𝑃 (𝑥) ∗ ⌊𝑂1⌋L𝑟

〉
C

〈
∃𝑧.I(t_𝑟 (𝑧)) ∗𝑄 (𝑥, 𝑧) ∧ 𝑅(𝑥, 𝑧) ∗ ⌊𝑂2⌋L𝑟

〉
𝑚; _+1;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
⌊𝑂1⌋L𝑟

�� t_𝑟 (𝑥) ∗ ⌈𝐺⌉𝑟 ∗ 𝑃 (𝑥)
〉
C

〈
⌊𝑂2⌋L𝑟

�� ∃𝑧. t_𝑟 (𝑧) ∗𝑄 (𝑥, 𝑧)
〉 LiftA

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′, 𝑧 ∈ 𝑍 .
〈
𝑃
h

�� 𝑃a (𝑥, 𝑧)〉 C 〈
𝑄
h

��𝑄a (𝑥, 𝑧)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h

��∃𝑧 ∈ 𝑍 . 𝑃a (𝑥, 𝑧)
〉
C

〈
𝑄
h

��∃𝑧 ∈ 𝑍 .𝑄a (𝑥, 𝑧)
〉 A∃Elim

Fig. 9. Key TaDA Live rules. Abbreviations:

⊢A 𝑃 Q 𝑘 means ∀𝑟 ∈ RId. ⊢A 𝑃 ⇒ 𝑟 Q 𝑘 ;

A ⊨ 𝑃 _-safe can be discharged using Lemma 4.2;

A ⊨ 𝑃 _-obl. free means ⊢A 𝑃 ⇒ emp
_
Ob

;

𝑘 ·⩾ 𝑛 means (∀𝑘 ′ > 𝑘. 𝑘 ′ ⩾ 𝑛).

2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

TaDA Live 45

;A ⊨ 𝐿 stable ⊢;A 𝐿 ⇒ 𝐿 ∗ ∃𝛼.𝑀 (𝛼)
𝑚; _;A ⊢ 𝐿 ∗𝑀 (𝛼) : 𝐿 ∗𝑀 (𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿 𝑀−−−↠ 𝑇

EnvLive

𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿1 (𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿2 (𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿1 (𝛼) ∨ 𝐿2 (𝛼) −−↠ 𝑇
ECase

∀𝑥 ∈ 𝑋 .𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿(𝑥, 𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : ∃𝑥 ∈ 𝑋 . 𝐿(𝑥, 𝛼) −−↠ 𝑇
EQuant

∀𝛼. ⊢A 𝑇 ′(𝛼) ⇒ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : 𝑇 ′(𝛼) −−↠ 𝑇
LiveT

imprA (𝐿′, 𝐿,𝑇) ∀𝛼. ⊢A 𝐿′(𝛼) ▷ lay(𝑂 (𝑥))
_ < _′ ∀𝛼. ⊢A 𝐿′(𝛼) ⇒ ∃𝑥 . t_𝑟 (𝑥) ∗ ⌊𝑂 (𝑥)⌋E𝑟 ∗ True ∧𝑚 > lay(𝑂 (𝑥))

𝑚; _′;A ⊢ 𝐿(𝛼) : 𝐿′(𝛼) −−↠ 𝑇
LiveO

imprA (𝐿′, 𝐿,𝑇) 𝑚 > 𝑘 ∀𝛼. ⊢A 𝐿′(𝛼) ▷ 𝑘
(𝑋 ↠𝑘 𝑋 ′) = live(A, 𝑟) _ < _′ ⊢A 𝐿′(𝛼) ⇒ ∃𝑥 ∈ 𝑋 \ 𝑋 ′. t_𝑟 (𝑥) ∗ 𝑟 Z⇒ ♢ ∗ True

𝑚; _′;A ⊢ 𝐿(𝛼) : 𝐿′(𝛼) −−↠ 𝑇
LiveA

Fig. 10. Environment Liveness Condition Rules

4.5 The Environment Liveness Condition

The essence of the termination argument is captured in LiveC and While by the conditions of
the form 𝑚; _;A ⊢ 𝐿

𝑀−−↠ 𝑇 . They establish “always eventually 𝑇 holds” facts. The condition
is parametrised by 𝐿, an assertion that holds at any point in the traces we are considering, an
assertion 𝑇 , characterising the so-called target states, and an assertion𝑀 (𝛼) parametric on some
ordinal 𝛼 , which represents the environment progress measure. Intuitively, the condition states that,
from any state satisfying 𝐿 ∗𝑀 (𝛼), for some 𝛼 , we can find an environment transition that must

eventually happen that would take us either to𝑇 , or to some state satisfying 𝐿 ∗𝑀 (𝛼 ′) with 𝛼 ′ < 𝛼 .
Additionally, any transition from 𝐿 to 𝐿 that may happen does not strictly increase the progress
measure, unless they end in a target state. The transitions that must happen are characterised by
being those that either: (1) fulfil some obligation known to be in the environment and with layer
lower than the ones we may hold locally, or (2) fulfil some environment liveness assumption stored
in A with layer lower than the ones we may hold locally. This entails that, under an environment
that always eventually fulfils the obligations we are assuming live, □𝐿 ⇒ □^𝑇 holds, as desired.

In theWhile rule, an environment liveness condition is combined with the condition

∀𝛼.A ⊨ ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 stable

which requires us to prove that any protocol compliant step from a state satisfying 𝐿 ∗𝑀 (𝛼0) for
some 𝛼0 will take us to a state satisfying 𝐿 ∗𝑀 (𝛼1) for some 𝛼1 ≤ 𝛼0. In other words, in traces
satisfying □𝐿 the progress measure never increases. This, in conjunction with𝑚; _;A ⊢ 𝐿 𝑀−−↠ 𝑇 ,
entails □𝐿 ⇒ ^□𝑇 , as needed for soundness of rule While.

Take the environment liveness condition required by the application of LiveC in the proof of the
distinguishing client. Given𝑚 = 1 and𝑀 (𝛼) = (𝛼 = 0) we have to prove:

𝑚; _;A ⊢ ∃𝑙 ∈ {0, 1}. dc𝑟 (x, done, 𝑙, _) ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
) 𝑀−−↠ dc𝑟 (x, done, 0, _)

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

46 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

𝐿

𝑇
𝐿1

𝐿2 𝐿3

𝑤0
𝛼1

𝛼1

𝛼 ′
1

𝛼1

𝛼1

𝛼2

𝛼 ′
2

𝛼2

𝛼3

𝑤1

a

ab

b

𝛼1 > 𝛼2, 𝛼
′
1

𝛼3 > 𝛼2 > 𝛼 ′
2

Fig. 11. Illustration of rule EnvLive and the imprA condition.

That is, during the interference phase, we know that at any point in time the lock will be in some
state 𝑙 ∈ {0, 1}; we want to prove that the environment will always eventually set 𝑙 to 0. Here this
is particularly easy to show: 𝐿 states that when 𝑙 = 1 the obligation k is held by the environment;
since lay(k) = 0 < 1 =𝑚 (and 𝐿 does not hold obligations) we can assume the obligation will be
eventually fulfilled; the only transition that can fulfil it, is the one that sets 𝑙 = 0, so in exactly one
such step we reach 𝑇 . This justifies the trivial definition of 𝑀 : we do not need to keep track of
progress towards 𝑇 as we reach it in exactly one of the steps that must eventually happen.
The environment liveness condition can be proven using the rules in Fig. 10. The only rule

that applies directly is EnvLive, which checks that in a state satisfying 𝐿 one can always mea-
sure progress (second premise), and then asks to discharge an auxiliary judgement of the form
𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿(𝛼) 𝑀−−↠ 𝑇 which is best explained with the help of the illustration in Fig. 11. The
condition works under the hypothesis that the assertion 𝐿 holds at any point of the traces under
consideration, so in the picture we are considering infinite sequences of steps within the outer
rectangle. The target states𝑇 describe some subset of 𝐿, which we want to show is visited infinitely
often15 by any infinite trace that complies with the liveness rely as specified by the region protocols
and pseudo-quantifiers. Rule ECase allows the splitting of the invariant 𝐿 into a disjunction of, say,
𝐿1, 𝐿2, 𝐿3 and 𝑇 as in the picture. We need to prove there is going to be eventual progress towards
reaching 𝑇 from each of these cases. If we start from 𝑇 we already reached the target, and this
case can be discharged by rule LiveT. The other cases are covered by Rule LiveO which justifies
progress by appealing to an environment-owned atomic obligation 𝑂 which is live (premises two
and three); and Rule LiveA which justifies progress by appealing to a liveness assumption stored
in the atomicity context. The EQuant rule is a generalisation of rule ECase.
To see how progress is justified, consider the trace of Fig. 11 starting from 𝑤0. Assume the

progress measure at𝑤0 is 𝛼1 (i.e. 𝐿 ∗𝑀 (𝛼1) holds in𝑤0). Each case 𝐿𝑖 can be discharged with either
rule LiveO or rule LiveA. Imagine 𝐿1 is discharged using LiveO: the rule requires us to find an
obligation a which, in every state of 𝐿1, is necessarily owned by the environment (⌊a⌋E𝑟) for some
region t𝑟 (_). Then the imprA condition checks that the progress measure will improve when the
environment will fulfil a; formally:

15Notice that “𝑇 is visited infinitely often” is equivalent to □^𝑇 .

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

TaDA Live 47

Definition 4.3 (imprA). Given assertions 𝐿(𝛼), 𝐿′(𝛼) and 𝑇 , the condition imprA (𝐿′, 𝐿,𝑇) holds
if and only if, for arbitrary 𝜎 ∈ Store, letting

𝑙 (𝛼) = WJ𝐿(𝛼)K𝜎A 𝑙 ′(𝛼) = WJ𝐿′(𝛼)K𝜎A 𝑡 = WJ𝑇 ∗ TrueK𝜎A
the following holds:

∀𝛼1, 𝛼2 ≥ 𝛼1. Ra

A (𝑙 ′(𝛼1)) ∩ 𝑙 (𝛼2) ⊆ 𝑙 ′(𝛼1) ∪ 𝑡

Intuitively, the imprA condition considers an arbitrary transition (𝑤1,𝑤2) from the current
case 𝐿′ to 𝐿, obeying the atomic rely (thus allowed by the safety constraints of the protocols). It
then compares the progress measure 𝛼1 and 𝛼2, taken before and after the transition, checking that:
(1) the measure strictly improved (𝛼1 > 𝛼2); or
(2) the measure stalled (𝛼1 = 𝛼2) but we remained within case 𝐿′, and thus the pending obliga-

tion 𝑂/liveness assumption are still pending; or
(3) we reached 𝑇 (allowing the measure to vary arbitrarily)
Examine the trace from𝑤0 in Fig. 11. While the trace stays within 𝐿1 the environment obligation a

stays unfulfilled, (steps are labelled with the obligation they fulfil, if any) and imprA requires the
measure 𝛼1 to decrease, or in the worst case stay constant. Since a is live, the environment will
eventually fulfill it, thus taking us outside of 𝐿1. If such transition takes us to another case, 𝐿2 in
the illustration, imprA requires the measure to strictly decrease to some 𝛼2 < 𝛼1. This process
cannot repeat ad libitum: the progress measure is an ordinal and hence well-founded. The effect is
that eventually, the only option is to reach the target. Note that transitions that end in the target
are allowed by imprA to increase the progress measure: in the picture the transition reaching 𝑇
increases the measure from 𝛼2 to 𝛼3. This allows the “reset” of the measure so that the trace can go
outside of 𝑇 and the whole process of reaching 𝑇 again can be repeated an unbounded number of
times.
The idea behind Rule LiveA is analogous to the above description, but progress is justified by

appealing to an environment liveness assumption stored in A. The layer of the assumption needs
to be lower than any layer we may be holding. Since the environment liveness assumptions only
hold in the interference phase of an update, the rule needs evidence that the linearisation point
on 𝑟 has not occurred yet, which is provided by 𝑟 Z⇒ ♢.

In the proof of the distinguishing client, the environment liveness condition for the application
of rule LiveC between Step 1 and Step 2, is proved by:

∀𝛼. ⊢∅ 𝐿0 (𝛼) ⇒ 𝑇

1; ∅ ⊢ 𝐿(𝛼) : 𝐿0 (𝛼) −−↠ 𝑇
LiveT

impr∅ (𝐿1, 𝐿,𝑇)
1; ∅ ⊢ 𝐿(𝛼) : 𝐿1 (𝛼) −−↠ 𝑇

LiveO

1; ∅ ⊢ 𝐿(𝛼) : 𝐿0 (𝛼) ∨ 𝐿1 (𝛼) −−↠ 𝑇
ECase

1; ∅ ⊢ 𝐿 𝑀−−−↠ 𝑇

EnvLive

where 𝐿 and𝑇 are defined in (16) and (17), and𝑀 (𝛼) = (𝛼 = 0). Since 𝐿 trivially implies 𝐿∗∃𝛼.𝑀 (𝛼),
we can apply EnvLive, setting 𝐿(𝛼) = (𝐿 ∧ 𝛼 = 0). Then we apply ECase to split on the value
of 𝑙 : 𝐿(𝛼) = 𝐿0 (𝛼) ∨ 𝐿1 (𝛼) where 𝐿0 (𝛼) = dc𝑟 (x, done, 0, _) ∧ 𝛼 = 0 and 𝐿1 (𝛼) = dc𝑟 (x, done, 1, _) ∗
⌊k⌋E𝑟 ∧ 𝛼 = 0. If 𝑙 = 0 we can apply LiveT as we are already in 𝑇 ; if 𝑙 = 1, 𝐿1 entails ⌊k⌋E𝑟 so we can
apply LiveO with t𝑟 = dc𝑟 and 𝑂 = k. The atomic obligation k is live: 1 > lay(k) = 0, and 𝐿1 holds
no obligations. To check that the imprA condition is satisfied, we need to consider the transitions
allowed by the protocol dc:

• 𝑙 = 1 to 𝑙 = 1 keeps the measure constant but keeps us in 𝐿1,
• 𝑙 = 1 to 𝑙 = 0 brings us directly in 𝑇 .

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

48 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Although in this case the progress measure is trivial and the proof of the environment liveness
condition simple, the generality provided by non-trivial progress measures is needed for more
interesting examples. For instance, our proofs of spin lock (Section 5.1) and CLH lock (Section 5.2)
do make use of this added generality.

We chose to state the imprA condition as a semantic check; while this achieves full generality, in
typical proofs the environment liveness condition only involves a single region, and imprA can be
checked by examining the region’s protocol.

4.6 The while rule

By using the rules we described so far, one can justify most of the proof outline of the distinguishing
client in Fig. 8. For instance, the proof of lock(x) for the left thread can be reused as is to prove
the lock(x) call in the body of the loop of the right-hand thread.

The main missing step is the application of the While rule:

∀𝛽 ≤ 𝛽0 .𝑚(𝛽); _;A ⊢ 𝐿 𝑀−−↠ 𝑇 (𝛽) ∀𝛽 ≤ 𝛽0. ⊢A 𝑃 (𝛽) Q𝑚(𝛽) ⩽ 𝑚
∀𝛼.A ⊨ ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 stable pv(𝑇, 𝐿,𝑀) ∩ mod(C) = ∅

∀𝛽 ≤ 𝛽0.∀𝑏 ∈ Bool.𝑚; _;A ⊢Φ
{
𝑃 (𝛽) ∗ (𝑏 .⇒ 𝑇 (𝛽)) ∧ B

}
C

{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛾 ≤ 𝛽 ∗ (𝑏 .⇒ 𝛾 < 𝛽)

}
𝑚; _;A ⊢Φ

{
𝑃 (𝛽0) ∗ 𝐿

}
while(B){C}

{
∃𝛾 . 𝑃 (𝛾) ∗ 𝐿 ∧ ¬B ∧ 𝛾 ≤ 𝛽0

} While

Let us review the main differences with the simplifiedWhileB rule presented in Section 2. First,
the two triples in the premises of WhileB (corresponding to the blocked and unblocked case) are
compressed here in a single triple: this is convenient in proofs as the proof of the two triples only
differs on the treatment of the variant. When 𝑏 = false, (𝑏 .⇒ 𝑇) = emp = (𝑏 .⇒ 𝛾 < 𝛽), obtaining
the first triple of WhileB, when 𝑏 = true we obtain the other triple. Second, the target states 𝑇
are parametrised over the variant 𝛽 : each value of the variant may represent a different “phase” of
the local progress of the while loop; in each of these phases the loop may be blocked waiting for
a different set of target states to be reached. Third, as anticipated, the □𝐿 ⇒ ^□𝑇 condition is
expressed as the conjunction of the first and third premise.

There are two additional side-conditions. Since𝑇, 𝐿 and𝑀 assert facts about arbitrary intermedi-
ate states of an iteration, they cannot refer to any local variable that may be modified by the body
of the loop, hence the fourth premise.
The most important addition is the layer condition of the second premise. The idea is that we

should be forbidden from constantly owning obligations of layers that we might assume live in
the proof of the environment liveness condition. By requiring 𝑃 (𝛽) Q𝑚(𝛽) we make sure that the
loop invariant only owns obligations of layer higher than𝑚(𝛽), and the𝑚(𝛽) in the context of the
environment liveness condition indicates that only layers lower than that may be assumed live.
The layer𝑚 in the context of the triple in the conclusion is an upper bound for any layer that may
be assumed live in the proof of the loop.
Consider the application of While in the proof of the distinguishing client. The while loop

of the right-hand thread is busy-waiting until done is set to true. The target states are therefore
𝑇 ≜ dc𝑟 (x, done, _, true). In this example, the target states do not depend on the variant 𝛽 , which
itself is quite trivial: when the loop is finally unblocked, it needs at most one iteration to terminate.
The local variant can simply be 𝛽 = (d ? 0 : 1), i.e. when d is false there needs to be one unblocked
iteration to terminate, and when d is finally true the loop will take no more iterations. The loop
invariant is

𝑃 (𝛽) ≜ ∃𝑙, 𝑑 . dc𝑟 (x, done, 𝑙, 𝑑) ∗
(
𝑙 = 1

.⇒ ⌊k⌋E𝑟
)
∧ d ⇒ 𝑑 ∧ 𝛽 = (d ? 0 : 1)

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401

TaDA Live 49

on which we can frame the stable assertion

𝐿 ≜ 𝑇 ∨ dc𝑟 (x, done, _, false) ∗ ⌊d⌋E𝑟
Since the loop invariant owns no obligations, we can set𝑚(𝛽) = ⊤ = 𝑚, and we need to prove
the environment liveness condition ⊤; ∅ ⊢ 𝐿 𝑀−−↠ 𝑇 ; here, as for the application of LiveC, with the
fulfilment of the environment obligation d we immediately reach the target, so 𝑀 can be trivial
(𝑀 (𝛼) = (𝛼 = 0)). The derivation is as follows:

⊤; ∅ ⊢ 𝐿(𝛼) : 𝑇 −−↠ 𝑇
LiveT

imprA (dc𝑟 (x, done, _, false) ∗ ⌊d⌋E𝑟 , 𝐿,𝑇)
⊤; ∅ ⊢ 𝐿(𝛼) : dc𝑟 (x, done, _, false) ∗ ⌊d⌋E𝑟 −−↠ 𝑇

LiveO

⊤; ∅ ⊢ 𝐿(𝛼) : 𝐿(𝛼) −−↠ 𝑇
ECase

⊤; ∅ ⊢ 𝐿 𝑀−−−↠ 𝑇

EnvLive

where 𝐿(𝛼) = 𝐿 ∧ 𝛼 = 0. We split 𝐿 into two cases using ECase. In the first case 𝑇 holds, so LiveT
applies. In the second, 𝑑 = false and since lay(d) = 1 < ⊤, d is a live obligation. The imprA
condition is satisfied: the allowed transitions either keep 𝑑 constant or set it to false, taking us
directly to 𝑇 .

The stability of ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 holds trivially as 𝛼 is constantly 0. The condition is this
trivial in this case because it checks that transitions to and from 𝑇 are not resetting the progress
measure; here, once done is set to true, it will not be set to false any more, so once 𝑇 is reached
there is no way to leave it.

Non termination of distinguishing client with spin lock. If the lock at x is implemented as a spin
lock, the distinguishing client may not terminate. Indeed, there is no TaDA Live proof for the
distinguishing client if one assumes the spin lock specifications: in the precondition we need to
specify an impedance budget 𝛼 for the lock L(x, 0, 𝛼); whatever ordinal we may choose for 𝛼 , there
is no way to consume some budget at every potential iteration of the loop of C𝑟 and never exhaust
the budget, as the number of iterations is effectively unbounded.

4.7 Other rules

The rules in Fig. 9 are the most important TaDA Live-specific rules. We have omitted standard rules
like the axioms for primitive atomic commands, the rules handling sequencing, function calls (recall
that for simplicity we restrict to non-recursive function definitions) and structural manipulations.
They are reproduced in full in the Appendix.

Let us conclude with an explanation of the two TaDA Live-specific rules of Fig. 9 which are
not illustrated by the proof of distinguishing client: rules UpdReg andMkAtom. While the goal
of LiftA is to lift an atomic update on a resource inside the interpretation of a region to the
corresponding update on the region itself, UpdReg obtains the same effect but on a region 𝑟 that is
supposed to be updated once atomically (i.e. 𝑟 ∈ dom(A)). While LiftA applies to regions with
𝑟 ∈ dom(A), the update allowed in that case needs to be an identity step from the point of view of
the abstract state of the region. A genuine update to the region needs to be recorded as the unique
linearization point on that region; this is precisely the purpose of UpdReg. Most of the premises of
UpdReg have the same function as in LiftA: checking that the update of the abstract state and
the obligations comply with the protocol. The difference is that here the update expected to take
place in the linearization point is recorded in tr(A, 𝑟) (i.e. the components of A(𝑟) recording the
expected update to abstract state and obligations of 𝑟). To be able to claim the linearization point
took place exactly once, the precondition of the triple requires the 𝑟 Z⇒ ♦ resource which represents
the unique permission to perform the linearization point. The postcondition allows for two cases:

2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450

50 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

either the update was successful, in which case the atomicity tracking component is recording the
update (𝑥, 𝑧); or the update was not performed (𝑥 = 𝑧) and the 𝑟 Z⇒ ♦ resource is still available for
future updates.

Rule MkAtom is another crucial rule for proving abstract atomicity: it states that a Hoare triple
can be promoted to an atomic triple if it contains a “certificate”, in the form of 𝑟 Z⇒ ♦ being
updated to 𝑟 Z⇒ (𝑥,𝑦), that the region in question was updated atomically exactly once, with the
expected update. The expected update, and the additional interference assumptions given by the
pseudo-quantifiers need to be stored in the atomicity context so that the triple in the premise
can make use of the interference precondition assumptions, and certificate the right update took
place. Any expected update must be protocol compliant (𝑇 ⊆ Tt (𝐺)). Notice how the atomicity
context records the liveness assumption expressed by the pseudo-quantifier, so that it is available
for termination proofs in the proof of the triple in the premise; in particular they can be used by
applications of LiveA. The proof of spin lock and CLH lock in Section 5 illustrate applications of
MkAtom and UpdReg.

4.8 Abstract Predicates

In the spirit of CAP, abstract resources provided by a library should be presented to clients by only
exposing their abstract properties, and not their definition.
In our example, the L(𝑥, 𝑙) predicate is defined internally to the proof of the lock module, say

using internal regions (of some maximum level _) expressing the internal protocols of the module.
The proof of our distinguishing client only relies on the following abstract properties:

(L1) L(x, _) ∗ L(x, _) is false, expressing that a lock is an exclusively owned resource;
(L2) L(x, 𝑙) is stable for all 𝑙 ;
(L3) L(x, 𝑙) is _-safe for all 𝑙 ;
(L4) L(x, 𝑙) is obligation-free, i.e. L(x, 𝑙) ⇒ emp

RId

Ob

(which also entails L(x, 𝑙) ⇒ 𝑟 Q𝑚 for all 𝑟 ∈ RId and𝑚 ∈ L).
For instance, the interpretationI(dc𝑟 (𝑥, done, 𝑙, 𝑑)) is well-formed thanks to properties (L2) and (L4).
The proof also involves side conditions on layers, stability and _′-safety which can be discharged
by appealing to (L2) (L3) and (L4).
More generally, a module would typically expose to clients viewshifts representing separation

properties of the abstract predicates (e.g. duplicability), stability properties, _-safety, obligation
freedom and relevant 𝑃 Q𝑚 facts.

4.9 What is leaked by TaDA Live specifications?

TaDA Live’s triples are rather expressive: they support strong specifications of updates via logical
atomicity, and conditional termination properties via liveness assumptions. It is natural to ask
whether our triples force the leak of any unnecessary detail about the implementation. In particular,
there are three components of the proof system that have a “global” flavour: the level and layer
in the context of the judgment, and the layer decorating the liveness assumption of the pseudo-
quantification. Although necessary for soundness, the management of levels is tedious but relatively
straightforward. Iris introduced namespaces for invariants to ease the management of so-called
masks, which serve essentially the same function as levels in TaDA. A similar construction could
be used to ease management of layers. Here we keep it simple and require proofs of clients to use
layers high enough to be able to reuse the libraries specifications.
The layers decorating a triple, on the other hand, are a more delicate matter. The main com-

plication arises from the choice of parametrising TaDA Live with a global layer structure. If a
specification insists on the use of a specific subset of layers, that could seem like an unnecessary

2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499

TaDA Live 51

leak of implementation details. For example, there could be two valid implementations of a module
that use wildly different internal layer structures to justify their internal blocking behaviour. Should
the abstract specification of the module insist on a specific layer structure for the internal layers,
that would rule out valid implementations for no good reason. In TaDA Live modularity of the
layers can be achieved by exploiting a crucial property of derivations: their validity is invariant
under a strict-ordering-preserving remapping of layers. This allows a style of specification which
generalises the one we have seen in our examples until now, where the layer structure relevant
for the proof of an implementation is parametrised over a client-provided remapping of layers. To
avoid cluttering the proofs we do not explicitly parametrise the proofs in Section 5. In Section 5.5,
where the construction becomes relevant and used in a non-trivial way, we explain how to convert
a proof so that it is parametric on the layer remapping.

In terms of behaviour, TaDA Live’s specifications are able to hide internal blocking, as showed by
the blocking counter example of Section 2.1 (formalised in Section 5.3). There is, in fact, one progress
property leaked by the specification layers that is currently not exploited by TaDA Live. In the special
case when the layer in the context is the globally smallest layer⊥, the proof of the triple cannot rely
on any liveness assumption at all. This can be used to differentiate, for example, a wait-free counter
implemented as an hardware-atomic fetch-and-add (which admits a proof with ⊥ in the context)
and a blocking counter (which only admits proofs with layer > ⊥). This is a useful distinction:
wait-freedom is an important progress property, asserting termination without assumptions on
liveness of other threads and without fairness assumptions on the scheduler [18]. Currently, however,
TaDA Live’s semantics does not support deriving wait-freedom as a consequence of⊥ as the context
layer: the current triple semantics only implies termination of the fair traces. Extending TaDA
Live’s semantics to encompass wait-freedom is left as future work.

4.10 Soundness

We have proven soundness of TaDA Live rules against the semantic judgement of Definition 3.30.

Theorem 4.4 (Soundness). If ⊢Φ C : S then ⊨Φ C : S.

The detailed proofs of the liveness-related rules are produced in Appendix E. The soundness
of most rules is an adaptation of the soundness arguments of the corresponding TaDA rules. The
rules that drive the liveness argument are rule Par, rule LiveC and rule While.
The soundness of the parallel rule follows from the layered liveness invariants semantics ex-

plained in Section 3.9. The argument is roughly as follows. There are two possible ways the parallel
composition C1 ∥ C2 may fail to terminate: either one thread terminates and the other does not,
or they both do not terminate. In the first case, when the terminating thread, say C1, terminated,
we are in a state where thread 1 does not own any obligation of layers that may be assumed live
by C2 (this is from the conditions on the layers of the postcondition of C1). By the triple about C2
in the premises, C2 is only allowed not to terminate if the environment is constantly owning an
obligation 𝑂 of layer lower than𝑚2. Since C1 cannot do that, we obtain that said 𝑂 must be owned
by the overall environment of the parallel composition. In such case the triple of the conclusion
allows the program to diverge.
In the second case, both threads are not terminating. Each of the threads, say 1, is allowed to

keep an obligation constantly unfulfilled, as long as it can blame thread 2 by showing an obligation
of strictly lower layer that is kept constantly unfulfilled by 2. Since layers are well-founded there
needs to be some thread that will not be justified in not fulfilling some of its obligations. This
cannot be as we were able to prove the two triples in the premises.

The soundness of ruleWhile considers the worst-case scenario for progress: an infinite sequence
of iterations, all of which do not start from a target state in𝑇 (𝛽), and therefore do not decrease the

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

52 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

variant 𝛽 . In such case we know that the assertion 𝐿 holds at every point of the trace: it has been
framed so the local steps and the environment steps must preserve it, and it is stable (as checked by
EnvLive). We are thus within the hypothesis of the environment liveness condition, which proves,
together with the premise asking the progress measure 𝛼 to never increase, that eventually the
target states will be reached. Although they may be reached in the middle of an iteration, instead
of at the beginning as it would be required to invoke the triple that decreases the variant 𝛽 , in
the worst case this can happen boundedly many times (the progress measure is well-founded and
must always decrease). Therefore we eventually reach 𝑇 (𝛽) and not leave it until the next iteration
starts from a state satisfying 𝑃 (𝛽) ∗𝑇 (𝛽) ∧ B, which matches the premise that ensures the variant
decreases. This can only happen boundedly many times as the variant is well-founded.

Rule LiveC’s soundness argument is a variation of the one for While.

As a simple corollary of soundness and Theorem 3.33, if we can prove𝑚; _; ∅ ⊢
{
emp

}
C

{
True

}
then C run in isolation terminates from the empty heap. For our distinguishing client (Example 4.1)
for instance, we can wrap up the proof by initialising the state and prove

⊤ ⊢
{
emp

}
var done= false, x in xB makeLock();(Cℓ ∥ C𝑟)

{
True

}
which implies termination of the program.

5 EVALUATION

In the previous section, we introduced the TaDA Live proof system, explaining the rules on the
distinguishing client, which showcases in a simple setting the proof mechanics of the logic.
In this section we consider more challenging case studies, to demonstrate how TaDA Live

achieves proof scalability and reuse in practice.
We start by proving correctness of the spin and CLH lock implementations against the specifica-

tions we discussed in Section 2. The proof of spin lock highlights the use of the liveness assumption
of a pseudo-quantifier in a proof, and the handling of impedance through the impedance budget.
The proof of CLH has a number of interesting features. The CLH code exhibits both internal block-

ing, i.e. blocking that is resolved internally and does not leak to the client, and external blocking,
i.e. blocking that has to be resolved by the client and thus leaks in the liveness assumption of the
pseudo-quantifier. As a consequence, the termination argument requires using a combination of
obligations (for internal blocking) and the liveness assumption of the pseudo-quantifier (for external
blocking). Moreover, the obligations (and their layers) are not simple tokens like the ones for the
simple examples of Sections 2 and 4, but form an infinite set. This reflects the unboundedness of
the internal queue of threads.

The two lock examples demonstrate TaDA Live’s ability to abstract from implementation details,
and only leak to the client the parts of the termination argument which depend on the choices of
the clients. In the same vein, we will follow this with a counter module using a spin lock to protect
access to a cell holding the value of the counter. Interestingly, since the blocking due to the use of a
lock is internal, the specification of the counter will not be blocking. The impedance suffered by
the internal spin lock does however leak to the interface for the counter: the counter will have its
own impedance budget which will be internally spent to call operations on the lock.

To exhibit TaDA Live’s ability to reason about liveness locally, we will verify a double blocking
counter, showing that for simple common programming patterns, the layer system leads to natural
and modular client proofs.
Finally, we comment on a proof of a lock-coupling set, produced in full in Appendix C. The

example considers a data structure implemented as a linked list with CLH locks guarding the single
cells. The example is challenging for the presence of a dynamic number of locks. At first sight it

2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597

TaDA Live 53

def makeLock() {

retB alloc(1);

[ret]B 0;

}

def lock(x) {

var d= 0 in

while(d= 0){

dB CAS(x,0,1);

}

}

def unlock(x) {

[x]B 0;

}

Fig. 12. Code of spin lock operations.

might seem it is impossible to represent this using the static association of layers to obligations of
TaDA Live.

Obligations however, as demonstrated in this case study, are a very general form of ghost state
and can easily represent dynamic properties of state.

Other case studies. Ticket lock and MCS lock [17] are alternative implementations of starvation-
free locks; they can be given the same specification as the CLH lock, and their liveness argument
can be carried out in the same way as the one we present for CLH.16 A paradigmatic example of
fine-grained data structure is the Treiber stack [17] which, in its standard form, is non-blocking and
has been proven in Total TaDA already. It is easy to adapt the code to have a pop operation which
blocks on an empty stack. Such operation would be blocking and suffers impedance. Its specification
and proof mirrors closely the proof of the spin lock. Challenging variants of the lock-coupling set
are the “optimistic” and “lazy” sets. The proof of optimistic set uses a combination of the proof of
the lock-coupling set and the impedance budget technique (optimisic set operations impede each
other).
These case studies cover all the proof patterns needed to prove all the examples of the LiLi

papers [28, 29]. Notably, proofs in LiLi involving modules that use locks, require in-lining some
non-atomic implementation of the lock operations in the client, resulting in non-modular proofs
and unnecessarily intertwined termination arguments.

5.1 Spin lock

Code. The spin lock module implements a lock by storing a single bit in a heap cell; locking is
implemented by trying to CAS the heap cell from 0 to 1 until the CAS succeeded; unlocking simply
sets the cell back to 0. In Fig. 12 we give all the operations of a spin lock module.

Specifications. We will prove the module satisfies the following specifications:
∀𝛼. 0 ⊢

{
emp

}
makeLock()

{
∃𝑟 . L(𝑟, ret, 0, 𝛼)

}
∀𝜙. 1 ⊢ A

𝑙 ∈ {0, 1} ↠0 {0}, 𝛼 .
〈
L(𝑟, x, 𝑙, 𝛼) ∧ 𝛼 > 𝜙 (𝛼)

〉
lock(x)

〈
L(𝑟, x, 1, 𝜙 (𝛼)) ∧ 𝑙 = 0

〉
0 ⊢

〈
L(𝑟, x, 1, 𝛼)

〉
unlock(x)

〈
L(𝑟, x, 0, 𝛼)

〉
where L(𝑟, x, 𝑙, 𝛼) abstractly represents the lock resource at abstract location 𝑟 (omitted for read-
ability in Section 2) and concrete address x, with abstract state 𝑙 ∈ {0, 1} and impedance budget 𝛼
(an ordinal). The purpose of the impedance budget, as described in Section 2, is to prevent the
environment from taking possession of the lock an unbounded number of times. Without this
bound, the CAS operation in the implementation of lock could be indefinitely preempted by the
environment locking the lock, preventing it from ever taking its possession and terminating, even
16The proof of ticket lock requires some minor ghost code to side-step the lack of support for helping.

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

54 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

if the environment always unlocks the lock when it is locked. This is enforced by requiring the lock
operation to strictly decrease the impedance budget using 𝜙 : O→ O, a function that can be freely
instantiated by the client upon usage of the specification, which indicates precisely how much the
budget will decrease after this call (which is client dependent information). The specification of
makeLock then allows the client to pick an arbitrary ordinal as the initial budget.

Shared Region. The abstract shared lock resource will be represented by a region spin𝑟 (𝑥, 𝑙, 𝛼)
where 𝑥 ∈ Addr, 𝑙 ∈ {0, 1}, 𝛼 ∈ O. Here 𝑥 is a fixed parameter of the region.

Convention 1. An exclusive guard, e, is very commonly used to express some exclusive permission
on some shared resource, which cannot be composed with itself: i.e. e • e = ⊥. Local ownership of
e is exclusive in that no other thread can at the same time assert ownership of e. A ubiquitous use
of this guard is in representing the resource offered by a module.

Take for example the current spin lock module. Since this is a concurrent module it uses internally
shared resources. We therefore have a region spin𝑟 (𝑥, 𝑙, 𝛼) encapsulating the shared internal
resources of the counter. From the perspective of the client, however, at the moment of creation
of a lock by, say, a makeLock() operation, the lock is exclusively owned by the client. This, for
example, is reflected in the fact that, until the client shares the lock or invokes operations on it,
it remains unlocked. To represent this fact, one typically defines an exclusive guard e guarding
each transition of the region interference: e.g. e : (0,𝑂1) ⇝ (1,𝑂2), e : (1,𝑂1) ⇝ (0,𝑂2). Then the
makeLock() operation can be given the specification above, which gives to the client the stable
assertion spin𝑟 (ret, 0, 𝛼) ∗ ⌈e⌉𝑟 , wrapped in the predicate L(𝑟, ret, 0, 𝛼). (Note how spin𝑟 (ret, 0, 𝛼)
is not stable on its own.) To re-share the lock, the client will create its own region encoding
the invariants governing the interaction over the lock (and the other resources of the client) the
interpretation of which will contain the guard ⌈e⌉𝑟 .
Note that assertions have very different meanings if occurring in the atomic precondition of a

triple, as opposed to the Hoare precondition: the resources in the atomic precondition are not owned
by the local thread, but only acquired instantaneously at the linearization point. For example, in
the triple
∀𝜙. ⊢ A

𝑙 ∈ {0, 1} ↠0 {0}, 𝛼 .
〈
spin𝑟 (x, 𝑙, 𝛼) ∗ ⌈e⌉𝑟 ∧ 𝛼 > 𝜙 (𝛼)

〉
lock(x)

〈
spin𝑟 (x, 1, 𝜙 (𝛼)) ∗ ⌈e⌉𝑟 ∧ 𝑙=0

〉
the exclusivity of e is only granted instantaneously to the thread acting on it atomically, i.e. either
the environment during the interference phase as allowed by the pseudo-quantifier, or the local
thread at the linearization point.
Since this pattern is ubiquitous, we reserve the e guard constructor for this use, and will omit

the e • e = ⊥ axiom when specifying guard algebras.

Guards and Obligations. For the spin region we only have the exclusive guard e, and no obliga-
tion constructors, as the implementation has no internal blocking. All the blocking behaviour is
represented by the liveness assumption in the pseudo-quantifier of the specification of lock. Note
that without the exclusive guard, the specification of makeLock would not hold as the lock would
not be stably unlocked.

Region protocol. The interference protocol for spin is very simple:
e : ((0, 𝛼), 0) ⇝ ((1, 𝛽), 0) only if 𝛽 < 𝛼

e : ((1, 𝛼), 0) ⇝ ((0, 𝛼), 0)
It states that whoever owns e can freely acquire or release the lock, provided that at each acquisition,
some budget is spent (𝛽 < 𝛼), preventing the lock from being locked an unbounded number of
times.

2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

TaDA Live 55

∀𝜙. 1; ∅ ⊢ A

𝑙 ∈ {0, 1} ↠0 {0}, 𝛼 .〈
L(𝑟, x, 𝑙, 𝛼) ∧ 𝛼 > 𝜙 (𝛼)

〉
Co

ns

〈
spin𝑟 (x, 𝑙, 𝛼) ∗ ⌈e⌉𝑟 ∧ 𝛼 > 𝜙 (𝛼)

〉
M
kA

to
m

1; [𝑟 ↦→
(
{0, 1} × O, 0, {0} × O, ((0, 𝛼), 0) ⇝ ((1, 𝜙 (𝛼)), 0)

)
] ⊢{

∃𝑙, 𝛼 . spin𝑟 (x, 𝑙, 𝛼) ∧ 𝛼 > 𝜙 (𝛼) ∗ 𝑟 Z⇒ ♦
}

var d= 0 in{
∃𝑙, 𝛼 . spin𝑟 (x, 𝑙, 𝛼) ∗ (d = 0 ∧ 𝑟 Z⇒ ♦ ∧ 𝛼 > 𝜙 (𝛼))

}
Co

ns
;∃

El
im

{
𝑃 (𝛽0)

}
W
hi
le

while(d= 0){
∀𝑏 ∈ Bool, 𝛽 .{
𝑃 (𝛽) ∗ 𝑏 .⇒ 𝑇 (𝛽) ∧ d = 0

}
dB CAS(x,0,1);{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛽 ≥ 𝛾 ∧ 𝑏 ⇒ 𝛾 < 𝛽

}
}{

∃𝛾 . 𝑃 (𝛾) ∧ 𝛽0 ≥ 𝛾 ∧ d ≠ 0
}{

∃𝑙, 𝛼 . 𝑟 Z⇒ ((𝑙, 𝛼), (1, 𝜙 (𝛼))) ∧ 𝑙 = 0
}〈

spin𝑟 (x, 1, 𝜙 (𝛼)) ∗ ⌈e⌉𝑟 ∧ 𝑙 = 0
〉〈

L(𝑟, x, 1, 𝜙 (𝛼)) ∧ 𝑙 = 0
〉

Fig. 13. Spin lock: proof of lock.

Region interpretation. The implementation uses a single cell stored in the heap, and we have no
non-trivial guards/obligations; the interpretation is thus straightforward:

I(spin𝑟 (𝑥, 𝑙, 𝛼)) ≜ 𝑥 ↦→ 𝑙

Note how 𝛼 is pure ghost state in that it is not linked to any information in the concrete memory.

Predicates. The lock resource is abstractly represented by the predicate
L(𝑟, 𝑥, 𝑙, 𝛼) ≜ spin𝑟 (𝑥, 𝑙, 𝛼) ∗ ⌈e⌉𝑟

Verification of lock. Figure 13 is the proof of the lock operation. The only step that involves
reasoning about liveness is the application of the While rule. To apply this rule, we must first
define the loop invariant, 𝑃 (𝛽), the target states, 𝑇 (𝛽), the persistent loop invariant, 𝐿,𝑚(𝛽), and
the environmental progress measure,𝑀 (𝛼).
The loop invariant is

𝑃 (𝛽) ≜ ∃𝑙, 𝛼 . spin𝑟 (x, 𝑙, 𝛼) ∧ 𝛽 ≥ 𝛼 ∗
((

d = 0 ∧ 𝑟 Z⇒ ♦ ∧ 𝛼 > 𝜙 (𝛼)
)

∨
(
∃𝑙 ′, 𝛼 ′. d = 1 ∧ 𝑟 Z⇒ ((𝑙 ′, 𝛼 ′), (1, 𝜙 (𝛼 ′))) ∧ 𝑙 ′ = 0

))
which contains:

• the safety information to prove the uniqueness of the linearization point, namely that if the
CAS failed, i.e. d = 0, then we have not touched the resource yet and we still have permission
to perform the linearization point (𝑟 Z⇒ ♦); whereas if the CAS succeeded, i.e. d = 1, then we
did perform the linearization point with the expected effect.

• the definition of the local variant 𝛽 as an upper bound on the impedance budget 𝛼 .
Indeed, whenever some budget is spent, the loop approaches termination as eventually, the exhaus-
tion of the budget prevents further interference, allowing the CAS operation to succeed and the
loop to terminate. Therefore decreasing the upper bound to the interference budget corresponds
to progress for the while operation. Without additional information however, we cannot show
the local variant must eventually strictly decrease, indeed, in the case 𝑙 = 1 we cannot exit the
loop and the environment is not forced to spend budget. Therefore, the termination argument
will need the assumption that the environment always eventually unlocks the lock to allow the

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

56 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

termination of the while loop or further decrease of the variant due to the environment locking
the lock. This guarantee is given by the atomicity context A = [𝑟 ↦→ ({0, 1} × O, 0, {0} × O, 𝑅)]
with 𝑅 = ((0, 𝛼), 0) ⇝ ((1, 𝜙 (𝛼)), 0).

The target states, 𝑇 , must clearly include unlocked states, where 𝑙 = 0, but, as it must eventually
be stable, this is insufficient, since once the lock is unlocked, the environment can lock it again.
However, when the lock is unlocked, if the environment takes possession of it, the environment
must also simultaneously decrease the impedance budget, i.e. 𝛽 > 𝛼 .
The argument that 𝑇 is always eventually true, relies on the assumption from the atomicity

context that the environment will always eventually unlock the lock. However, this assumption
only holds before the linearization point. In particular, as the loop variant must contain 𝑟 Z⇒ ♦,
since the loop body may perform the linearization point, the persistent loop invariant cannot, and
therefore 𝑇 must also contain a disjunct where the linearization point has occurred and 𝑇 holds a
witness 𝑟 Z⇒ (_, _).

We therefore declare the target states as the ones where, either the linearization point has been
performed, or the lock is unlocked, or some budget was spent:

𝑇 (𝛽) ≜ ∃𝑙, 𝛼 . spin𝑟 (x, 𝑙, 𝛼) ∧ (𝑟 Z⇒ (_, _) ∨ 𝑙 = 0 ∨ 𝛽 > 𝛼)
The persistent loop invariant here is simply 𝐿 = spin𝑟 (x, _, _), which is a valid stable frame of

the loop.
To apply While we also need to specify𝑚(𝛽), which in this case is simply 1, which satisfies the

layer constraints of the rule; and the environment progress measure𝑀 :
𝑀 (𝛼e) ≜ ∃𝑙, 𝛼 . spin𝑟 (x, 𝑙, 𝛼) ∧ 𝛼e = 2𝛼 + 𝑙

(here we use the variable 𝛼e for the environment progress measure variable, to avoid clashes
with the impedance budget 𝛼 .) This environmental progress measure is decreased by both the
environment locking and unlocking the lock:

• Unlocking the lock decreases 𝑙 from 1 to 0, so as 2𝛼 + 1 > 2𝛼 + 0, the environmental progress
measure decreases.

• Locking the lock decreases the impedance budget from 𝛼 to 𝛼 ′ < 𝛼 , while also increasing 𝑙
from 0 to 1. Since 𝛼 ′ < 𝛼 implies 𝛼 ′ + 1 ≤ 𝛼 , 2𝛼 + 0 ≥ 2𝛼 ′ + 2 > 2𝛼 ′ + 1, the environmental
progress measure decreases.

Given these parameters, the proof first establishes the loop invariant holds at the beginning for
some 𝛽0, by applying Cons:

∃𝑙, 𝛼 . spin𝑟 (x, 𝑙, 𝛼) ∧ 𝛼 > 𝜙 (𝛼) ∗ 𝑟 Z⇒ ♦ ∧ d = 0 =⇒ ∃𝛽0. 𝑃 (𝛽0) ∗ 𝐿
∃𝛽0, 𝛽 . 𝑃 (𝛽) ∗ 𝐿 ∧ d ≠ 0 ∧ 𝛽0 ≥ 𝛽 =⇒ ∃𝛼. spin𝑟 (x, _, _) ∗ 𝑟 Z⇒ ((0, 𝛼), (1, 𝜙 (𝛼))) ∧ 𝑙 = 0

Note that we will often implicitly apply the Cons rule in proofs, only detailing the application
when emphasis is desired. Next, ∃Elim on 𝛽0 gets rid of the existential quantification, so we are
ready to apply While.

To complete the application of the rule we need to show

1;A ⊢ 𝐿 𝑀−−↠ 𝑇 (𝛽) (18)
∀𝛼.A ⊨ ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 stable (19)

pv(𝑇, 𝐿,𝑀) ∩ mod(C) = ∅ (20)
Condition (19) is easily seen to hold, as we showed above, all possible environmental interference

on the region decreases the environmental progress metric, which is sufficient for this to hold.

2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793

TaDA Live 57

Condition (20) is also easily seen to hold as the only program variable predicated over in 𝑇 , 𝐿
and𝑀 is x, which is not modified by the body of the loop.
Finally, condition (18) is proven as follows. We observe that:

𝐿(𝛼e) = 𝐿 ∗𝑀 (𝛼e) ≡
(
∃𝑙, 𝛼 . spin𝑟 (x, 𝑙 , 𝛼) ∗ (𝑟 Z⇒ (_, _) ∨ 𝑙 � 0) ∧ 𝛼e = 2𝛼 + 𝑙

)
(𝐿1 (𝛼e))

∨ (∃𝛼. spin𝑟 (x, 1, 𝛼) ∗ 𝑟 Z⇒ ♢ ∧ 𝛼e = 2𝛼 + 1) (𝐿2 (𝛼e))
We can then derive the environment liveness condition:

∀𝛼e. ⊢A 𝐿1 (𝛼e) ⇒ 𝑇 (𝛽)
∀𝛼e. 1;A ⊢ 𝐿(𝛼e) : 𝐿1 (𝛼e) −−↠ 𝑇 (𝛽)

LiveT
imprA (𝐿2, 𝐿,𝑇 (𝛽))

∀𝛼e. 1;A ⊢ 𝐿(𝛼e) : 𝐿2 (𝛼e) −−↠ 𝑇 (𝛽)
LiveA

∀𝛼e. 1;A ⊢ 𝐿(𝛼e) : 𝐿(𝛼e) −−↠ 𝑇 (𝛽)
ECase

1;A ⊢ 𝐿 𝑀−−↠ 𝑇 (𝛽)
EnvLive

Formally, the application of EnvLive requires us to prove ⊢A 𝐿 ⇒ 𝐿 ∗∃𝛼e. 𝑀 (𝛼e) which is trivial.
An application of the ECase rule then splits between the cases where 𝐿1 and 𝐿2 hold. Intuitively,
𝐿1 represents the case where we performed the linearization point or the lock is unlocked, while
𝐿2 the case where we still have not performed the linearization point and the lock is locked. If
𝐿1 holds, then 𝑇 holds, so no progress of the environment is required, therefore, this case can be
discharged via an application of rule LiveT. In the case where 𝐿2 holds we can apply rule LiveA to
invoke the liveness assumption stored in A: if the lock is unlocked, the metric strictly decreases.
To show that the liveness assumption encoded in the atomicity context for the region spin𝑟 ,

live(A, 𝑟) = {0, 1} × O↠𝑘 {0} × O is active, the LiveA rule requires that in the current case:
• The abstractly atomic update being tracked on 𝑟 has yet to occur:

∀𝛼𝑒 . ⊢A 𝐿2 (𝛼𝑒) ⇒ ∃(𝑙, 𝛼) ∈ ({0, 1} × O) \ ({0} × O). spin𝑟 (x, 𝑙, 𝛼) ∗ 𝑟 Z⇒ ♢ ∗ True
• No obligations of layer less than or equal to 𝑘 is continuously held locally:

𝑚 > 𝑘

∀𝛼. ⊢A 𝐿′(𝛼) ▷ 𝑘
If these hold, then the imprA (𝐿2, 𝐿,𝑇 (𝛽)) predicate shows that discharging the liveness invariant
will strictly decrease 𝛼𝑒 . To show this holds, taking 𝜎 ∈ Store arbitrary and letting

𝑙 (𝛼) = WJ𝐿(𝛼)K𝜎A 𝑙 ′(𝛼) = WJ𝐿2 (𝛼)K𝜎A 𝑡 = WJ𝑇 (𝛽) ∗ TrueK𝜎A
we need to show

∀𝛼1, 𝛼2 ≥ 𝛼1. Ra

A (𝑙 ′(𝛼1)) ∩ 𝑙 (𝛼2) ⊆ 𝑙 ′(𝛼1) ∪ 𝑡

This holds, as, given an arbitrary 𝛼1 ∈ O, any step taken from 𝑙 ′(𝛼1) by the atomic world rely
relation either leaves the state of the region spin𝑟 unchanged, preserving the state 𝑙 ′(𝛼1), or releases
the lock, decreasing the metric. Therefore, for any 𝛼2 ≥ 𝛼1, Ra

A (𝑙 ′(𝛼1)) ∩ 𝑙 (𝛼2) ⊆ 𝑙 ′(𝛼1) holds,
which implies the goal.

To conclude the argument, we briefly comment on the proof of the body of the while loop. The
full proof of the body can be found in figure 14. The applications of rules UpdReg and Frame lift
the concrete atomic CAS to a (potential) update to the spin𝑟 region. An application of Cons allows
us to introduce 𝛾 as an upper bound to the impedance budget, initially 𝛿 after the linearization
point.

Then, we apply rule A∃Elim to remove the pseudo-quantification on 𝑙 and 𝛼 . At this point, the
abstract state 𝑙, 𝛼 of the region spin𝑟 in the postcondition is weakened to any state that might be
reached before or after the linearization point. However, we keep record of what happened exactly
at the linearization point because of the 𝑟 Z⇒ _ assertions. The later application of MkAtom will be

2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

58 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

∀𝑏 ∈ {0, 1}, 𝛽 .{
∃𝑙, 𝛼 . spin𝑟 (x, 𝑙, 𝛼) ∗ 𝑟 Z⇒ ♦ ∧ 𝛼 > 𝜙 (𝛼) ∧ 𝛽 ≥ 𝛼

∧ 𝑏 ⇒ (𝑙 = 0 ∨ 𝛽 > 𝛼) ∧ d = 0

}
At

om
W
;A

∃E
li
m

A

𝑙 ∈ {0, 1}, 𝛼 .〈
spin𝑟 (x, 𝑙, 𝛼) ∗ 𝑟 Z⇒ ♦ ∧ 𝛼 > 𝜙 (𝛼) ∧ 𝛽 ≥ 𝛼 ∧
𝑏 ⇒ (𝑙 = 0 ∨ 𝛽 > 𝛼) ∧ d = 0

〉
Co

ns

〈
spin𝑟 (x, 𝑙, 𝛼) ∗ 𝑟 Z⇒ ♦ ∧ 𝛼 > 𝜙 (𝛼) ∧ 𝛽 ≥ 𝛼 ∧
𝑏 ⇒ (𝑙 = 0 ∨ 𝛽 > 𝛼) ∧ d = 0

〉
Up

dR
eg

〈
x ↦→ 𝑙 ∧ 𝛼 > 𝜙 (𝛼) ∧ 𝛽 ≥ 𝛼 ∧
𝑏 ⇒ (𝑙 = 0 ∨ 𝛽 > 𝛼)

〉
Fr
am

e

〈
x ↦→ 𝑙

〉
dB CAS(x,0,1);〈
x ↦→ 1 ∧ ((d = 0 ∧ 𝑙 = 1) ∨ (d = 1 ∧ 𝑙 = 0))

〉〈
∃𝛿. x ↦→ 1 ∧

(
(d = 1 ∧ 𝑙 = 0 ∧ 𝛿 = 𝜙 (𝛼) ∧ 𝛽 > 𝜙 (𝛼))

∨ (d = 0 ∧ 𝑙 = 1 ∧ 𝛿 = 𝛼 ∧ 𝛼 > 𝜙 (𝛼) ∧ 𝑏 ⇒ 𝛽 > 𝛼)

)
∧ 𝛽 ≥ 𝛼

〉
〈
∃𝛿. spin𝑟 (x, 1, 𝛿) ∗

(
(d = 1 ∧ 𝑙 = 0 ∧ 𝛽 > 𝛿 ∧ 𝑟 Z⇒ ((𝑙, 𝛼), (1, 𝜙 (𝛼))))

∨ (d = 0 ∧ 𝑙 = 1 ∧ 𝛿 > 𝜙 (𝛿) ∧ 𝑏 ⇒ 𝛽 > 𝛿 ∧ 𝑟 Z⇒ ♦)

)
∧ 𝛽 ≥ 𝛿

〉
〈∃𝛾, 𝛿 . spin𝑟 (x, 1, 𝛿) ∧ 𝛽 ≥ 𝛾 ≥ 𝛿 ∧ 𝑏 ⇒ 𝛽 > 𝛾

∗
(

(d = 0 ∧ 𝛿 > 𝜙 (𝛿) ∧ 𝑟 Z⇒ ♦)
∨ (d = 1 ∧ 𝑙 = 0 ∧ 𝑟 Z⇒ ((𝑙, 𝛼), (1, 𝜙 (𝛼))))

)〉

∃𝑙, 𝛼,𝛾 . spin𝑟 (x, 𝑙, 𝛼) ∧ 𝛽 ≥ 𝛾 ≥ 𝛼 ∧ 𝑏 ⇒ 𝛽 > 𝛾

∗
((

d = 0 ∧ 𝛼 > 𝜙 (𝛼) ∧ 𝑟 Z⇒ ♦
)

∨
(
∃𝑙′, 𝛼′. d = 1 ∧ 𝑟 Z⇒ ((𝑙′, 𝛼′), (1, 𝜙 (𝛼′))) ∧ 𝑙′ = 0

))
Fig. 14. Spin lock: Proof of while loop body.

Proof of makeLock():
0; ∅ ⊢{
emp

}

Co
ns

{
emp

}
retB alloc(1);
[ret]B 0;{
ret ↦→ 0

}{
∃𝑟 . L(𝑟, ret, 0, 𝛼)

}

Proof of unlock(x):
0; ∅ ⊢〈
L(𝑟, x, 1, 𝛼)

〉

Co
ns

〈
spin𝑟 (x, 1, 𝛼) ∗ ⌈e⌉𝑟

〉

St
ep

3

〈
x ↦→ 1

〉
[x]B 0;〈
x ↦→ 0

〉〈
spin𝑟 (x, 0, 𝛼) ∗ ⌈e⌉𝑟

〉〈
L(𝑟, x, 0, 𝛼)

〉
Fig. 15. Spin lock: proof of makeLock and unlock. Here Step 3 is LiftA, Frame, SubPq .

able to fetch the atomic update witness 𝑟 Z⇒ ((𝑙, 𝛼), (1, 𝜙 (𝛼))) and declare the appropriate atomic
update in the overall specification. Note that the overall Hoare postcondition after the application
of AtomW is stable.
Finally, Fig. 15 shows the proof outlines for the makeLock and unlock operations. The only

notable step of the proof of makeLock is the last application of Cons to viewshift the postcondition
from ret ↦→ 0 to ∃𝑟 . spin𝑟 (𝑥, 0, 𝛼) ∗ ⌈e⌉𝑟 , which is possible because the interpretation of the region
matches with this resource, so the reifications of the two assertions coincide.

The proof of unlock is a straightforward lifting of the atomic reset of the cell at x to the region
spin𝑟 . Neither proof involves a liveness argument.

5.2 CLH lock

Code. A CLH lock is an implementation of a fair lock module that guarantees fairness by queuing
the threads that are waiting to take its possession. Its implementation is shown in Fig. 17.

2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891

TaDA Live 59

x head tail

𝑙

𝑐𝑒𝑙𝑙0

1
𝑐𝑒𝑙𝑙1

1
𝑐𝑒𝑙𝑙2

· · · 1
𝑐𝑒𝑙𝑙𝑛−1

1
𝑐𝑒𝑙𝑙𝑛

p c

𝑡1

p c

𝑡2

· · · p c

𝑡𝑛

Fig. 16. Illustration of the memory layout of CLH lock.

1 def makeLock() {

2 var x,h in
3 hB alloc(1); [h]B 0;

4 xB alloc(2);
5 [x]B h;

6 [x + 1]B h;

7 retB x;

8 }

1 def lock(x) {

2 var c,p,v in
3 cB alloc(1); [c]B 1;

4 pB FAS(x + 1, c);

5 vB [p];

6 while(v≠ 0) { vB [p]; }

7 [x]B c

8 dealloc(p)
9 }

1 def unlock(x) {

2 var h in
3 hB [x];

4 [h]B 0;

5 }

Fig. 17. Code of CLH lock operation.

The diagram in Fig. 16 describes the state of the queued threads, 𝑡1, 𝑡2, . . . , 𝑡𝑛 , waiting to take
possession of the lock, as well as the module’s head and tail pointers into the queue.

As described in Section 2, this queue is represented by associating each of the 𝑛 threads queuing
on the lock with the heap cells 𝑐𝑒𝑙𝑙1, 𝑐𝑒𝑙𝑙2, . . . , 𝑐𝑒𝑙𝑙𝑛−1, 𝑐𝑒𝑙𝑙𝑛 in memory. Each thread executing the
lock operation to take possession of the lock then holds in its local state the address of its cell and
that of its predecessor’s cell. These are held in the program variables c and p respectively in the
implementation of lock. The local instance of these program variables for each queued threads
and the cells they are pointing to can be seen in Fig. 16.
The thread associated with the cell at the head of the queue is said to hold the lock, and the

value stored in its cell determines the state of the lock, 𝑙 . When a thread first takes possession of
the lock, the lock will be locked. Therefore, the initial value in these cells, when the associated
threads join the queue, is 1. This can be seen in the implementation of the lock operation which
allocates and sets its associated cell to value 1 on line 3 before enqueuing itself. Once the thread
holding the lock wishes to release it, it can do so by setting the value of its cell to 0, unlocking the
lock and signalling to the next thread in the queue that it can now take possession of the lock. This
can be seen in the implementation of the unlock operation which fetches the address of the cell
associated with the lock’s owner from the queue’s head pointer and then sets its value to 0.

In Fig. 16 the thread 𝑡1 is at the head of the queue, waiting for the lock to be released. If the lock
is released by its owner, 𝑡1 then gains the exclusive permission to take possession of the lock by
setting the value of the module’s head pointer to the address of its associated cell. 𝑡1 detects the

2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940

60 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

lock has been released by repeatedly reading the value of its predecessor’s cell in the while loop
on line 6 and then sets the head pointer to the address of its cell, c, on line 7.
Once the lock is released, only the thread at the head of the queue (if any) has the permission

to take possession of the lock next. Due to this, if the owners of the lock continuously eventually
release it, the threads waiting on the lock take possession of it in the order they are enqueued.
To enqueue itself, the lock operation performs a FAS operation on the tail pointer, placing the

cell it has allocated with value 1 at the tail of the queue, and writting the address of its predecessor
to the p program variable. The order in which the lock operations are enqueued is then the order
in which they executed line 4. Any weakly fair scheduler will eventually give each thread executing
the lock operation the opportunity to execute this FAS operation, allowing it to enqueue itself.
As long as the client then guarantees that every thread holding the lock eventually releases it,

the thread will eventually take possession of the lock once it reaches the front of the queue and the
lock operation will terminate, guaranteeing fairness.

To be able to provide the same guarantee, that every thread requesting the lock will eventually
be able to take its possession as long as the lock is always eventually released, the spin lock requires
that its client only call the lock operation concurrently a finite number of times. This is exposed in
the spin lock specification via ordinals bounding the impedance on the lock.
An interesting aspect of this example is that it features a combination of internal and external

blocking: the client needs to always eventually unlock the lock —external blocking, requiring
the client to provide a guarantee— and the lock operation needs to eventually take possession
of the lock once the previous thread signals its release —internal blocking, guaranteed by the
implementation. This second guarantee will be enforced using obligations not exposed in the
specification. The proof will therefore involve an environment liveness condition discharged using
both LiveO and LiveA.

Specifications. We will prove the following fair lock module specifications:

1 ⊢ A

𝑙 ∈ {0, 1} ↠0 {0}.
〈
L(𝑠, x, 𝑙)

〉
lock(x)

〈
L(𝑠, x, 1) ∧ 𝑙 = 0

〉
0 ⊢

〈
L(𝑠, x, 1)

〉
unlock(x)

〈
L(𝑠, x, 0)

〉
where L(𝑠, x, 𝑙) abstractly represents the lock resource at abstract location 𝑠 (omitted for readability
in Section 2) and concrete address x, with abstract state 𝑙 ∈ {0, 1}.
To abstract the representation of a thread’s position in the queue, we will associate, through

ghost state, to each thread requesting the lock, a ticket number 𝑡 ∈ N which corresponds to the
order of arrival of the lock implementation at line 4. Every time a thread joins the queue, it gets
assigned the next available ticket.

This example shows a common proof pattern of TaDA Live: there is an inner region that exposes
all the information needed for the termination argument (here the value of the next ticket to
be handed out, 𝑡 , so that individual threads can reason about the threads queuing on the lock)
and an outer one that hides enough information to make the operation abstractly atomic. This
pattern nicely separates the concerns in the proof: proving atomicity is done via the outer region,
termination via the inner one. Because of this, the abstract location of the lock 𝑠 will consist of the
pair of inner and outer region identifiers. This is not a concern for modularity however: the type
of 𝑠 can be made opaque to the client, which just threads it through the proof unmodified.

Shared Regions. The abstract shared lock resource will be represented by a region clh𝑟 (𝑟 ′, 𝑥, ℎ, 𝑙, 𝑜)
where 𝑟 ′ ∈ RId, 𝑥, ℎ ∈ Addr, 𝑙 ∈ {0, 1}, 𝑜 ∈ N. Here 𝑟 ′, the region identifier of the inner region and
𝑥 , the address of the lock, are the fixed parameters of the region. The abstract state of the region

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989

TaDA Live 61

includes 𝑙 , which represents the lock’s state, 𝑜 , which is the ticket number of the thread holding
the lock, and ℎ is the address of the cell associated with the owner.

Once a lock operation has enqueued itself, the difference between the ticket of the lock’s owner, 𝑜
and the operation’s ticket, 𝑡 , 𝑡 − 𝑜 , corresponds to the thread’s current position in the queue.

The internal region lclh𝑟 ′ (𝑥, ℎ, 𝑙, 𝑜, 𝑡) also exposes the next ticket to be handed to the next thread
queuing on the lock, 𝑡 ∈ N.

Notation. Lists will frequently be used in the ghost state for the proof of the CLH lock. We
introduce notation to manipulate lists so as to simplify the exposition of the reasoning. Given
𝑛 ∈ 𝑋 and 𝑛𝑠, 𝑛𝑠 ′ ∈ 𝑋 ∗ lists of elements of 𝑋 , we write 𝑛 ⊕ 𝑛𝑠 , 𝑛𝑠 ⊕ 𝑛, and 𝑛𝑠 ⊕ 𝑛𝑠 ′ for prepend,
append, and concatenation, respectively; |𝑛𝑠 | is the length of 𝑛𝑠 , and 𝑛𝑠 (𝑖) = 𝑛 states that the 𝑖-th
element (from 0) in 𝑛𝑠 is 𝑛 and 𝑖 < |𝑛𝑠 |; fst(𝑛𝑠) and last(𝑛𝑠) are the first and the last element of 𝑛𝑠 ,
respectively and tail(𝑛𝑠) represents the list 𝑛𝑠 without the first element when 𝑛𝑠 is non empty.

Guard algebra: Take 𝑝, 𝑐 ∈ Addr, 𝑛𝑠 ∈ Addr
∗, 𝑜, 𝑡 ∈ N arbitrary. For this proof, two guards will

be necessary. First t(𝑝, 𝑐, 𝑡), which encodes the current thread’s ticket, 𝑡 , once it has joined the
queue, as well as 𝑝, 𝑐 ∈ Addr, pointers to the thread’s predecessor’s cell in the queue and its own
respectively. The second guard we require is q(𝑛𝑠, 𝑜), which is used to track the overall queue,
by tracking the cells associated with enqueued threads, 𝑛𝑠 ∈ Addr

∗, and the ticket number of the
current owner, 𝑜 ∈ N.
To use this as intended, a few axioms on the guard algebra will be required. First, an axiom to

create new tickets, adding a new cell to the queue and associating a new, unique ticket number to
the thread:

q(𝑛𝑠 ⊕ [𝑝], 𝑜) = q(𝑛𝑠 ⊕ [𝑝, 𝑐], 𝑜) • t(𝑝, 𝑐, 𝑜 + |𝑛𝑠 | + 1)

This will be used to create the relevant guard resources t, when a lock operation enqueues itself
on line 4. Similarly, an axiom to remove a thread’s predecessor from the queue once it can take
possession of the lock:

q([𝑝, 𝑐] ⊕ 𝑛𝑠, 𝑜) • t(𝑝, 𝑐, 𝑜 + 1) = q([𝑐] ⊕ 𝑛𝑠, 𝑜 + 1)

This will be used to update the relevant guard resources qwith the relevant t, when a lock operation
takes possession of the lock on line 7, placing its associated cell, 𝑐 , at the head of the queue. Finally,
an axiom to guarantee that a ticket guard, t is well-formed with respect to the queue in a guard q:

q(𝑛𝑠, 𝑜) • t(𝑝, 𝑐, 𝑡) ≠ ⊥ ⇔ 𝑛𝑠 (𝑡 − 𝑜 − 1) = 𝑝 ∧ 𝑛𝑠 (𝑡 − 𝑜) = 𝑐

Obligation algebra: Take 𝑜, 𝑜 ′, 𝑡, 𝑡 ′ ∈ N arbitrary. As mentioned above, to verify the totality of
the CLH lock operation, once a thread is enqueued, if its predecessor relinquishes possession of
the lock, it must eventually take its possession. Otherwise, although the lock will be permanently
unlocked, no other thread waiting for the lock can take its possession, as they are not at the head
of the queue.
To encode this liveness invariant which must be fulfilled, we associate an atom obligation p(𝑡)

with the ownership of the ticket 𝑡 ∈ N. The CLH lock’s transition system will then require that this
obligation be discharged by taking possession of the lock once it is unlocked by the thread with
ticket 𝑡 − 1.
The layer associated with p(𝑡) is then 𝑡 , so that these obligations are resolved in the order the

associated threads are enqueued. Finally, as with the guard algebra, we have an obligation o(𝑜, 𝑡),
which will remain in the shared region’s state and track the owner’s ticket, 𝑜 , and the next ticket to

2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038

62 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

be handed out, 𝑡 , associated with the obligation p via the obvious axioms.

o(𝑜, 𝑡) = o(𝑜, 𝑡 + 1) • p(𝑡) o(𝑜 + 1, 𝑡) = o(𝑜, 𝑡) • p(𝑜 + 1)
o(𝑜, 𝑡) • p(𝑡 ′) ≠ ⊥ ⇔ 𝑜 ≤ 𝑡 ′ < 𝑡

L ≜ N ∪ {1, 0} ∀𝑖 ∈ N. 1 > 𝑖 > 0 lay(o(𝑜, 𝑡)) = 0 lay(p(𝑡)) = 𝑡

Region protocols. The interference protocol for the lclh region is as follows:

e : ((ℎ, 𝑙, 𝑜, 𝑡), 0) ⇝ ((ℎ, 𝑙, 𝑜, 𝑡 + 1), p(𝑡))
e : ((ℎ, 0, 𝑜, 𝑡), p(𝑜 + 1)) ⇝ ((ℎ′, 1, 𝑜 + 1, 𝑡), 0)
e : ((ℎ, 1, 𝑜, 𝑡), 0) ⇝ ((ℎ, 0, 𝑜, 𝑡), 0)

The first transition allows a thread to place itself in the queue waiting to obtain the CLH lock,
updating the next ticket to be handed out from 𝑡 to 𝑡 + 1. While doing so, the threads acquires
an obligation, p(𝑡), requiring it to eventually take possession of the lock once it is at the head
of the queue. The second, allows the thread at the head of the queue to take possession of the
lock, by changing the state, 𝑙 , incrementing the owner ticket, 𝑜 , to its own (tracked by the thread’s
obligation) and changing the owner pointer of the lock to that of its own associated cell. This
discharges the obligation p(𝑜 + 1), as the thread then leaves the queue, to take possession of the
lock. Finally, the third transition allows the lock to be unlocked.

The interference protocol for the clh region is then:

e : ((ℎ, 𝑙, 𝑜), 0) ⇝ ((ℎ, 𝑙, 𝑜), 0)
e : ((ℎ, 0, 𝑜), 0) ⇝ ((ℎ′, 1, 𝑜 + 1), 0)
e : ((ℎ, 1, 𝑜), 0) ⇝ ((ℎ, 0, 𝑜), 0)

This hides the enqueuing step of the lock operation, allowing the operation to appear atomic.

Region interpretation. As explained above, the CLH lock associates a cell with each thread queuing
on it, as well as its owner. The list of each of these cells in the order in which the associated threads
are queued, with the owner’s cell as the head, will be denoted ns. tail(𝑛𝑠) is then the list of cells
queueing on the lock. While threads are queuing, the associated cells must have value 1; this is
represented using the predicate ones:

ones(𝑛𝑠) ≜ 𝑛𝑠 (1) ↦→ 1 ∗ · · · ∗ 𝑛𝑠 (|𝑛𝑠 | − 1) ↦→ 1

The inner shared region, lclh, holds the cells associated with each queued thread, this is represented
by the resource ones(ns) in the region interpretatio.
The shared region also holds a pointer to the tail of the queue, ns, as well as a pointer to its

owner’s cell, whose value is the state of the lock, 𝑙 , as described above. This is represented by the
resource:

𝑥 ↦→ ℎ, last(𝑛𝑠) ∗ ℎ ↦→ 𝑙

The shared region’s ghost state is then comprised of:
• ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ′ the guard keeping track of the list of cells, 𝑛𝑠 ∈ Addr

∗ and the current owner of
the lock, 𝑜 ∈ N.

• ⌊o(𝑜, 𝑡)⌋L
𝑟 ′ the obligation keeping track of the next ticket to hand out, 𝑡 ∈ N, and the current

owner’s ticket, 𝑜 ∈ N.
Finally, the invariant 𝑡−𝑜 = |ns | is used to guarantee that each thread that holds a ticket is associated
with a cell in the queue ns and ℎ = 𝑛𝑠 (0), associates the head of 𝑛𝑠 and the address of the owner’s

3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087

TaDA Live 63

1; ∅ ⊢ A

𝑙 ∈ {0, 1} ↠0 {0}.〈
L(𝑠, x, 𝑙)

〉
𝑠 = (𝑟, 𝑟 ′)

A
∃E

li
m

1; ∅ ⊢

A

𝑙 ∈ {0, 1} ↠0 {0}, 𝑜, ℎ.〈
clh𝑟 (𝑟 ′, 𝑥, ℎ, 𝑙, 𝑜) ∗ ⌈e⌉𝑟 ′

〉

M
kA

to
m

1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢{
∃𝑙, 𝑜, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ 𝑟 Z⇒ ♦

}
cB alloc(1); [c]B 1;{
∃𝑙, 𝑜, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ 𝑟 Z⇒ ♦ ∗ c ↦→ 1

}
pB FAS(x + 1, c);
vB [p];{
∃𝛽, 𝑡 ′. 𝑃 (𝛽) ∗ 𝐿

}
while(v≠ 0) { vB [p]; }{
∃𝑡 ′. 𝑃 (0) ∗ 𝐿 ∧ v = 0

}
[x]B c;{
∃𝑜 ∈ N, ℎ,ℎ′. 𝑟 Z⇒ ((ℎ, 0, 𝑜), (ℎ′, 1, 𝑜 + 1)) ∗ p ↦→ 0 ∧ 𝑙 = 0

}
dealloc(p){
∃𝑜. 𝑟 Z⇒ ((_, 0, 𝑜), (_, 1, 𝑜 + 1)) ∧ 𝑙 = 0

}〈
∃ℎ′. clh𝑟 (𝑟 ′, x, ℎ′, 1, 𝑜 + 1) ∗ ⌈e⌉𝑟 ′ ∧ 𝑙 = 0

〉〈
L(𝑠, x, 1) ∧ 𝑙 = 0

〉

𝑋1 ≜ {(ℎ, 𝑙, 𝑜) | ℎ ∈ Addr, 𝑙 ∈ {0, 1}, 𝑜 ∈ N}
𝑋2 ≜ {(ℎ, 0, 𝑜) | ℎ ∈ Addr, 𝑜 ∈ N}
𝑅 ≜ {((ℎ, 0, 𝑜), (ℎ′, 1, 𝑜)) | ℎ,ℎ′ ∈ Addr, 𝑜 ∈ N}

𝑃 (𝛽) ≜ ∃𝑙, 𝑜, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌈t(p, c, 𝑡 ′) ⌉𝑟 ′ ∧
(v = 0 ⇒ (𝑡 ′ = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p)) ∧
𝑜 < 𝑡 ′ ∧ 𝛽 = v

𝐿 = ∃𝑙 ∈ {0, 1}, 𝑜, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌊p(𝑡 ′) ⌋L
𝑟 ′ ∗

∗𝑡′−1
𝑖=𝑜+1 ⌊p(𝑖) ⌋

E

𝑟 ′ ∗ 𝑟 Z⇒ ♦ ∧ 𝑜 < 𝑡 ′

Fig. 18. Outline of CLH lock proof.

cell. All of this ties together to give the following region interpretation:

I(lclh𝑟 ′ (𝑥, ℎ, 𝑙, 𝑜, 𝑡)) ≜ ∃𝑛𝑠 ∈ Addr
∗ . 𝑥 ↦→ ℎ, last(𝑛𝑠) ∗

ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡)⌋L𝑟 ′ ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧ 𝑛𝑠 (0) = ℎ

The outer shared region then holds full permission to update the inner region, ⌈e⌉𝑟 ′ , and asserts that
each thread queuing on the lock, with tickets 𝑜 + 1 to 𝑡 − 1, holds an obligation to take possession
of the lock once their predecessor releases it,∗𝑡−1

𝑖=𝑜+1⌊p(𝑖)⌋
E

𝑟 ′ , where 𝑟 ′ is the identifier of the inner
region:

I(clh𝑟 (𝑟 ′, 𝑥, ℎ, 𝑙, 𝑜)) ≜ ∃𝑡 ∈ N. lclh𝑟 ′ (𝑥, ℎ, 𝑙, 𝑜, 𝑡) ∗ ⌈e⌉𝑟 ′ ∗∗𝑡−1
𝑖=𝑜+1⌊p(𝑖)⌋

E

𝑟 ′

Predicates. The lock resource is then abstractly represented by the predicate:

L(𝑠, 𝑥, 𝑙) ≜ ∃𝑟, 𝑟 ′. 𝑠 = (𝑟, 𝑟 ′) ∧ ∃𝑜 ∈ N. ∃ℎ ∈ Addr. clh𝑟 (𝑟 ′, 𝑥, ℎ, 𝑙, 𝑜) ∗ ⌈e⌉𝑟 ′

which abstracts away the CLH lock’s implementation details: the ticket and cell address associated
with the lock’s current owner.

Proof of lock. Figure 18 gives an outline of the proof of the clh lock operation implementation,
the definition of the loop invariant 𝑃 (𝛽) will be given later. The steps involving liveness are the
FAS operation, which enqueues the thread, hence obtaining the obligation to take possesion of
the lock once the previous thread relinquishes possession of it, the while loop which waits for the
previous thread to release the lock, whose liveness depends on the previous threads in the queue
taking possession and then releasing the lock in turn and the write operation at line 7 which takes
possession of the lock. We begin with the details of the FAS operation’s proof, shown in Fig. 19.
There, Step 4 is composed of the rules: FrameH, AtomW, A∃Elim, LiftA, A∃Elim, LiftA,

A∃Elim. The application of the FrameH rule frames off the view 𝑟 Z⇒ ♦, the AtomW rule transfers
all the remaining resources to the atomic precondition and postcondition, the A∃Elim rule pseudo-
quantifies 𝑙 , 𝑜 and ℎ, LiftA then opens up the region clh𝑟 , the applications of A∃Elim and LiftA

3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136

64 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢{
∃𝑙 ∈ {0, 1}, 𝑜 ∈ N, ℎ ∈ Addr. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ 𝑟 Z⇒ ♦ ∗ c ↦→ 1

}
St

ep
4

1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢A

𝑙 ∈ {0, 1}, 𝑜, 𝑡 ∈ N, ℎ ∈ Addr, 𝑛𝑠 ∈ Addr
∗ .〈

x ↦→ ℎ, last(𝑛𝑠) ∗ ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜) ⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡) ⌋L
𝑟 ′ ∗∗𝑡−1

𝑖=𝑜+1 ⌊p(𝑖) ⌋
E

𝑟 ′ ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧ 𝑛𝑠 (0) = ℎ ∗ c ↦→ 1

〉

Co
ns

〈
x ↦→ ℎ, last(𝑛𝑠) ∗ ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜) ⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡) ⌋L

𝑟 ′ ∗∗𝑡−1
𝑖=𝑜+1 ⌊p(𝑖) ⌋

E

𝑟 ′ ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧ 𝑛𝑠 (0) = ℎ ∗ c ↦→ 1

〉

La
yW

H
;F
ra

me 0; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢〈
x + 1 ↦→ last(𝑛𝑠)

〉
pB FAS(x + 1, c);〈
x + 1 ↦→ c ∧ p = last(𝑛𝑠)

〉〈
x ↦→ ℎ, c ∗ ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠) ∗ c ↦→ 1 ∗ ⌈q(𝑛𝑠, 𝑜) ⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡) ⌋L

𝑟 ′ ∗∗𝑡−1
𝑖=𝑜+1 ⌊p(𝑖) ⌋

E

𝑟 ′ ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧ 𝑛𝑠 (0) = ℎ

〉
〈∃𝑛𝑠′ ∈ Addr

∗ . x ↦→ ℎ, last(𝑛𝑠′) ∗ ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠′) ∗ ⌈q(𝑛𝑠′, 𝑜) ⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡 + 1) ⌋L
𝑟 ′ ∗∗𝑡

𝑖=𝑜+1 ⌊p(𝑖) ⌋
E

𝑟 ′ ∧ (𝑡 + 1) − 𝑜 = |𝑛𝑠′ | ∧ 𝑛𝑠 (0) = ℎ ∧ 𝑛𝑠′ = 𝑛𝑠 ⊕ c ∗ (⌈t(p, c, 𝑡) ⌉𝑟 ′ ∗
⌊p(𝑡) ⌋L

𝑟 ′ ∗∗𝑡−1
𝑖=𝑜+1 ⌊p(𝑖) ⌋

E

𝑟 ′ ∧ 𝑜 < 𝑡)

〉
{
∃𝑙 ∈ {0, 1}, 𝑜, 𝑡 ′ ∈ N, ℎ ∈ Addr. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ 𝑟 Z⇒ ♦ ∗ ⌈t(p, c, 𝑡 ′) ⌉𝑟 ′ ∗ ⌊p(𝑡 ′) ⌋L

𝑟 ′ ∗∗𝑡′−1
𝑖=𝑜+1 ⌊p(𝑖) ⌋

E

𝑟 ′ ∧ 𝑜 < 𝑡 ′
}

Fig. 19. Proof outline of the FAS call of CLH lock.

then pseudo-quantify 𝑡 and open the region lclh and the final application of A∃Elim rule pseudo-
quantifies ns.

After using LayWH to decrease the level of the assertion to 0 and Frame to frame off everything
except the region interpretation’s tail pointer, the FAS operation atomically updates it. After
everything is framed back on, the consequence rule is then applied to the postcondition so as to
re-establish the invariant. The axioms

q(𝑛𝑠 ⊕ [𝑝], 𝑜) = q(𝑛𝑠 ⊕ [𝑝, 𝑐], 𝑜) • t(𝑝, 𝑐, 𝑜 + |𝑛𝑠 | + 1)
o(𝑜, 𝑡) = o(𝑜, 𝑡 + 1) • p(𝑡)

are used to update the queue 𝑛𝑠 , by enqueuing c —the local thread’s cell— at its tail, and updating
the next ticket to 𝑡 ′ + 1. While doing so, the thread acquires the guard t(p, c, 𝑡 ′), the obligation,
p(𝑡 ′), which represent the thread’s position in the queue and its obligation to take possession of
the lock once its predecessor reliquishes it respectively.

As environmental obligations can always be duplicated, the thread also obtains∗𝑡 ′−1
𝑖=𝑜+1⌊p(𝑖)⌋

E

𝑟 ′

locally. These environmental assertions will be necessary for the application of the While rule. To
finish reestablishing the invariant, as the thread is retaining ⌊p(𝑡 ′)⌋L𝑟 locally, it can leave ⌊p(𝑡 ′)⌋E

𝑟 ′

in the region invariant. Finally, using the axiom
o(𝑜, 𝑡) • p(𝑡 ′) ≠ ⊥ ⇔ 𝑜 ≤ 𝑡 ′ < 𝑡

as we hold p(𝑡 ′) locally, the assertion 𝑜 < 𝑡 ′ holds stably.
Next, consider the proof of the while loop. The loop invariant is:

𝑃 (𝛽) ≜ ∃𝑙, 𝑜, 𝑡 ′, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌈t(p, c, 𝑡 ′)⌉𝑟 ′ ∧ 𝑜 < 𝑡 ′

∧ (v = 0 ⇒ (𝑡 ′ = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p)) ∧ 𝛽 = v

which asserts that:
• ⌈t(p, c, 𝑡 ′)⌉𝑟 ′ , the local thread is queueing for the lock with ticket 𝑡 ′ and with the address of
the predecessor’s cell and the current thread’s cell in p and c respectively.

3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

TaDA Live 65

• 𝑜 < 𝑡 ′, the current owner must come before the local thread with ticket 𝑡 ′. This is stable due
to the t guard.

• v = 0 ⇒ (𝑡 ′ = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p), if v, the last read of the value of the predecessor cell,
is 0, then the owner is the predecessor of the current thread has unlocked the lock, as only
then can it set its cell to 0. Therefore 𝑡 ′ = 𝑜 + 1, and, consequently the lock is unlocked, 𝑙 = 0.
The owner’s cell, ℎ, will also take the value of that of the predecessor.

• 𝛽 = v which asserts that 𝛽 = 0 once the thread has observed that its predecessor has taken
possession of and then unlocked the lock (by reading the cell at address p into v). 𝛽 will have
value 1 otherwise.

A thread with ticket 𝑡 ′ can take possession of a CLH lock once its predecessor has taken possession
of and relinquished the lock. Once the lock reaches this state, 𝑜 = 𝑡 ′ − 1 and 𝑙 = 0 hold stabily as all
transitions from this state would set 𝑜 ≥ 𝑡 ′, however we know that, 𝑜 < 𝑡 ′.

The intent of this loop is to wait till this occurs, allowing the thread to safely take possession of
the lock once the loop terminates. Hence, the goal state is:

𝑇 = ∃𝑙 ∈ {0, 1}, 𝑜 ∈ N, ℎ ∈ Addr. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∧ 𝑡 ′ = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p

Once the lock reaches this state, a subsequent iteration of this while loop will terminate with v = 0,
breaking the loop. To reach the goal state, threads that come before the current thread must both
take possession and then unlock the lock. The first is guaranteed due to obligations p(𝑡 ′) for 𝑡 ′ < 𝑡

and the second due to the pseudo-quantifier, guaranteeing that the lock must always eventually be
released. The progress measure

𝑀 (𝛼) = ∃𝑙 ∈ {0, 1}, 𝑜 ∈ N, ℎ ∈ Addr. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∧ 𝛼 = 2(𝑡 ′ − 𝑜 − 1) + 𝑙

is decreased by both of these actions, and as 𝑡 ′ > 𝑜 implies 2(𝑡 ′ − 𝑜 − 1) + 𝑙 ≥ 0, the progress
measure, 𝛼 , is a natural number, and therefore well-founded.

The use of the difference between 𝑡 ′, the local thread’s ticket and the owner’s ticket, 𝑜 , to bound
the number of threads that can take possession of the lock before the local thread removes the
necessity for the impedance bound, 𝛼 , required in the proof of the spin lock module, and that must
leak in the associated specification (as it imposses a restriction on any client).
To support this argument, the persistent loop invariant, 𝐿, must contain the resource 𝑟 Z⇒ ♦ to

make use of the liveness assumptions of the pseudo-quantifier, guaranteeing that the lock is always
eventually unlocked, and the relevant environmental liveness assertions guaranteeing the threads
queued before the current thread will take possession of it once their predecessor relinquishes it:

𝐿 = ∃𝑙 ∈ {0, 1}, 𝑜, 𝑡 ′ ∈ N, ℎ ∈ Addr. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌊p(𝑡 ′)⌋L𝑟 ′ ∗∗𝑡 ′−1
𝑖=𝑜+1⌊p(𝑖)⌋

E

𝑟 ′ ∗ 𝑟 Z⇒ ♦ ∧ 𝑜 < 𝑡 ′

The While rule is applied as in ??. The rule ∃Elim is applied to quantify 𝑡 and 𝛽0 over the
antecedent. To complete the application of the rule we need to show

1;A ⊢ 𝐿 𝑀−−↠ 𝑇 (𝛽) (21)
∀𝛼.A ⊨ ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 stable (22)

Condition (22) holds trivially, as seen above all the possible operations on the module decrease the
environmental metric.

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

66 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢{
∃𝑡 ′ ∈ N. ∃𝛽0 . 𝑃 (𝛽0) ∗ 𝐿

}
Co

ns
;∃

El
im

∀𝛽0, 𝑡 ∈ N.
1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢{
𝑃 (𝛽0) ∗ 𝐿

}
W
hi
le

while(v≠ 0) {
∀𝛽 ≤ 𝛽0, 𝑏 ∈ B.{
𝑃 (𝛽) ∗ 𝑏 .⇒ 𝑇 (𝛽) ∧ v ≠ 0

}
vB [p];{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛾 ≤ 𝛽 ∧ 𝑏

.⇒ 𝛾 < 𝛽
}

}{
∃𝛾 . 𝑃 (𝛾) ∗ 𝐿 ∧ 𝛾 ≤ 𝛽0 ∧ v = 0

}{
∃𝑜 ∈ N. clh𝑟 (𝑟 ′, x, p, 0, 𝑜) ∗ 𝑟 Z⇒ ♦ ∗ ⌈t(p, c, 𝑜 + 1) ⌉𝑟 ′ ∗ ⌊p(𝑜 + 1) ⌋L

𝑟 ′
}

𝑋1 ≜ {(ℎ, 𝑙, 𝑜) | ℎ ∈ Addr, 𝑙 ∈ {0, 1}, 𝑜 ∈ N}
𝑋2 ≜ {(ℎ, 0, 𝑜) | ℎ ∈ Addr, 𝑜 ∈ N}
𝑅 ≜ {((ℎ, 0, 𝑜), (ℎ′, 1, 𝑜)) | ℎ,ℎ′ ∈ Addr, 𝑜 ∈ N}

Fig. 20. Application ofWhile in the CLH lock proof.

∀𝛽0, 𝑡 ∈ N, 𝛽, 𝑏 ∈ B.
1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢{
(∃𝑙 ∈ {0, 1}, 𝑜 ∈ N, ℎ ∈ Addr. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌈t(p, c, 𝑡)⌉𝑟 ′ ∧
𝑜 < 𝑡 ∧ (v = 0 ⇒ (𝑡 = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p)) ∧ 𝛽 = v ∧ 𝑏 ⇒ (𝑡 = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p) ∧ (v ≠ 0)

}

At
om

W
;L

if
tA

;A
∃E

li
m;

Li
ft
A
;A

∃E
li
m;

Co
ns

1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢A

𝑙 ∈ {0, 1}, ℎ ∈ Addr, 𝑛𝑠 ∈ Addr
∗, 𝑜, 𝑛𝑡 ∈ N.〈

x ↦→ ℎ, last(𝑛𝑠) ∗ ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ∗ ⌊o(𝑜, 𝑛𝑡)⌋L
𝑟 ′ ∗∗𝑛𝑡−1

𝑖=𝑜+1 ⌊p(𝑖)⌋
E

𝑟 ′ ∧ 𝑛𝑡 − 𝑜 = |𝑛𝑠 | ∧
𝑛𝑠 (0) = ℎ ∗ (⌈t(p, c, 𝑡)⌉𝑟 ′ ∧ 𝑜 < 𝑡 ∧ 𝛽 ≥ 1 ∧ 𝑏 ⇒ (𝑡 = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p) ∧ p ∈ 𝑛𝑠)

〉

La
yW

H
;F
ra

me 0; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢A

𝑣 ∈ {0, 1}.〈
p ↦→ 𝑣

〉
vB [p];〈
p ↦→ 𝑣 ∧ v = 𝑣

〉〈
x ↦→ ℎ, last(𝑛𝑠) ∗ ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ∗ ⌊o(𝑜, 𝑛𝑡)⌋L

𝑟 ′ ∗∗𝑛𝑡−1
𝑖=𝑜+1 ⌊p(𝑖)⌋

E

𝑟 ′ ∧ 𝑛𝑡 − 𝑜 = |𝑛𝑠 | ∧
𝑛𝑠 (0) = ℎ ∗ (⌈t(p, c, 𝑡)⌉𝑟 ′ ∧ 𝛽 = 1 ∧
∃𝑣 ∈ {0, 1}. v = 𝑣 ∧ 𝑏 ⇒ v = 0 ∧ (v = 0 ⇒ (𝑡 = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p)))

〉
{
∃𝑙 ∈ {0, 1}, 𝑜 ∈ N, ℎ ∈ Addr, 𝛾 . clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌈t(p, c, 𝑡)⌉𝑟 ′ ∧
𝑜 < 𝑡 ∧ (v = 0 ⇒ (𝑡 = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p)) ∧ 𝛾 = v ∧ 𝛾 ≤ 𝛽 ∧ 𝑏 ⇒ 𝛾 = 0

}
Fig. 21. Proof outline of the CLH lock’s loop body.

To prove (21), take

𝐿′′
𝑜 (𝛼) =

(
∃𝑙 ∈ {0, 1}, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌊p(𝑡 ′)⌋L

𝑟 ′ ∗∗𝑡 ′−1
𝑖=𝑜+2⌊p(𝑖)⌋

E

𝑟 ′ ∗ 𝑟 Z⇒ ♦ ∧ 𝑙 = 0 ∧ 𝑜 + 1 < 𝑡 ′

)
∗𝑀 (𝛼)

𝐿′
0 (𝛼) =

(
∃𝑙 ∈ {0, 1}, 𝑜, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌊p(𝑡 ′)⌋L

𝑟 ′ ∗∗𝑡 ′−1
𝑖=𝑜+2⌊p(𝑖)⌋

E

𝑟 ′ ∗ 𝑟 Z⇒ ♦ ∧ 𝑙 = 0 ∧ 𝑜 + 1 < 𝑡 ′

)
∗𝑀 (𝛼)

𝐿′
1 (𝛼) =

(
∃𝑙 ∈ {0, 1}, 𝑜, ℎ. clh𝑟 (𝑟 ′, x, ℎ, 𝑙, 𝑜) ∗ ⌊p(𝑡 ′)⌋L

𝑟 ′ ∗∗𝑡 ′−1
𝑖=𝑜+1⌊p(𝑖)⌋

E

𝑟 ′ ∗ 𝑟 Z⇒ ♦ ∧ 𝑙 = 1

)
∗𝑀 (𝛼)

𝐿(𝛼) = 𝐿 ∗𝑀 (𝛼)

3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283

TaDA Live 67

First split on 𝛼 = 0 ∨ 𝛼 > 0:
∀𝛼. ⊢A 𝐿(𝛼) ∧ 𝛼 = 0 ⇒ 𝑇

1;A ⊢ 𝐿(𝛼) : 𝐿(𝛼) ∧ 𝛼 = 0 −−↠ 𝑇
LiveT

(23) (24)
1;A ⊢ 𝐿(𝛼) : (𝐿′0 (𝛼) ∨ 𝐿′1 (𝛼)) ∧ 𝛼 > 0 −−↠ 𝑇

ECase

1;A ⊢ 𝐿(𝛼) : 𝐿(𝛼) −−↠ 𝑇
ECase

1;A ⊢ 𝐿 𝑀−−−↠ 𝑇

EnvLive

In the case 𝛼 = 0, the rule LiveT applies directly. To show 1;A ⊢ 𝐿(𝛼) : 𝐿′(𝛼) ∧ 𝛼 > 0 𝑀−−↠ 𝑇 holds,
split on the state of the lock, 𝑙 = 0 ∨ 𝑙 = 1.

In the case 𝑙 = 0, for each 𝑜 ∈ N, the ticket of the current owner of the lock, the environment is
guaranteed to eventually take possession of the lock due to the environmental obligation assertion
⌊p(𝑜 + 1)⌋E

𝑟 ′ . To consider each case for 𝑜 ∈ N, we first apply the rule EQuant and then the LiveO
rule:

imprA (𝐿′′
𝑜 , 𝐿,𝑇) ∀𝛼. ⊢A 𝐿′′

𝑜 (𝛼) ⇒ clh𝑟 (_, _, _, 𝑜) ∗ ⌊p(𝑜 + 1)⌋E𝑟 ′ ∗ True
∀𝛼. ⊢A 𝐿′′

𝑜 (𝛼) ▷ lay(p(𝑜 + 1)) 1 > lay(p(𝑜 + 1))
∀𝑜 ∈ N. 1;A ⊢ 𝐿(𝛼) : 𝐿′′

𝑜 (𝛼) −−↠ 𝑇
LiveO

1;A ⊢ 𝐿(𝛼) : ∃𝑜 ∈ N. 𝐿′′
𝑜 (𝛼) −−↠ 𝑇

EQuant
(23)

With the exception of imprA (𝐿′
0 (𝑜), 𝐿,𝑇), all of these conditions hold trivially. This last condition

holds as, given 𝛼0 ∈ O, all possible transitions either preserve 𝐿′
0 (𝛼) or decrease the metric.

In the case 𝑙 = 1, progress is guaranteed due to the assumptions in the atomicity context, A, that
eventually, the lock must be released, so the LiveA rule is applied:

imprA (𝐿′
1, 𝐿,𝑇) 1 > 0 ∀𝛼. ⊢A 𝐿′

1 (𝛼) ▷ 𝑘
(𝑋1 ↠0 𝑋2) = live(A, 𝑟) ⊢A 𝐿′

1 (𝛼) ⇒ ∃𝑥 ∈ 𝑋1 \ 𝑋2 . clh𝑟 (𝑟 ′, x, 𝑥) ∗ 𝑟 Z⇒ ♢ ∗ True
1;A ⊢ 𝐿(𝛼) : 𝐿′

1 (𝛼) −−↠ 𝑇
LiveA

(24)

Once again, with the exception of imprA (𝐿′
1, 𝐿,𝑇), all of these conditions hold trivially. This last

condition holds as, given 𝛼0 ∈ O, all possible transitions either preserve 𝐿′
1 (𝛼) or decrease the

metric.
To conclude the proof of lock, the argument for the body of the while loop’s proof is purely a

safety argument, the full proof is in Fig. 20.
The key step uses the axiom

q(𝑛𝑠, 𝑜) • t(𝑝, 𝑐, 𝑡) ≠ ⊥ ⇔ 𝑛𝑠 (𝑡 − 𝑜 − 1) = 𝑝 ∧ 𝑛𝑠 (𝑡 − 𝑜) = 𝑐

Since we hold the guard t(p, c, 𝑡), we can infer p ∈ 𝑛𝑠 . Then, after the value of the cell at p has
been read, if the value, v, is 0, then, since only the thread holding the lock can change the value of
their associated cell to 0, then, 𝑡 = 𝑜 + 1 ∧ 𝑙 = 0 ∧ ℎ = p. As a consequence, if 𝑏 holds initially, then
v = 0 after the body of the loop is executed, therefore the loop variant in the postcondition, 𝛾 = 0.
As initially, we know v ≠ 0 from the loop condition, 𝛽 = 1, therefore 𝛾 < 𝛽 .

Finally, in Fig. 21 we consider the details of the linearization point, when the lock operation
takes possession of the lock. First ∃Elim rule is applied to quantify the ticket of the current owner,
𝑜 , (the predecessor of the current thread) over the antecedent. Then the AtomW and UpdReg
rules are applied to atomically update the region state by acting on its interpretation. The rules
A∃Elim, LiftA and A∃Elim are then applied to pseudo-quantify 𝑡 and 𝑛𝑠 , the two variables that are
existentially quantified within the region invariants and open the region lclh. Finally the Cons rule
is applied to re-establish the invariant in the postcondition by adjusting the ghost state. Specifically,

3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332

68 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

1; [𝑟 ↦→ (𝑋1, 0, 𝑋2, 𝑅)] ⊢{
∃𝑜 ∈ N. clh𝑟 (𝑟 ′, x, p, 0, 𝑜) ∗ 𝑟 Z⇒ ♦ ∗ ⌈t(p, c, 𝑜 + 1)⌉𝑟 ∗ ⌊p(𝑜 + 1)⌋L

𝑟 ′
}

St
ep

5

1; ∅ ⊢

A

𝑡 ∈ N, 𝑛𝑠 ∈ Addr
∗ .〈

x ↦→ p, last(𝑛𝑠) ∗ p ↦→ 0 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡)⌋L
𝑟 ′ ∗∗𝑡−1

𝑖=𝑜+1 ⌊p(𝑖)⌋
E

𝑟 ′ ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧
𝑛𝑠 (0) = p ∗ (⌈t(p, c, 𝑜 + 1)⌉𝑟 ′ ∗ ⌊p(𝑜 + 1)⌋L

𝑟 ′ ∧ 𝑛𝑠 (1) = c)

〉

Co
ns

〈
x ↦→ p, last(𝑛𝑠) ∗ p ↦→ 0 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡)⌋L

𝑟 ′ ∗∗𝑡−1
𝑖=𝑜+1 ⌊p(𝑖)⌋

E

𝑟 ′ ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧
𝑛𝑠 (0) = p ∗ (⌈t(p, c, 𝑜 + 1)⌉𝑟 ′ ∗ ⌊p(𝑜 + 1)⌋L

𝑟 ′ ∧ 𝑛𝑠 (1) = c)

〉

La
yW

H
;F
ra

me 0; ∅ ⊢〈
x ↦→ p

〉
[x]B c;〈
x ↦→ c

〉〈
𝑥 ↦→ c, last(𝑛𝑠) ∗ p ↦→ 0 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ′ ∗ ⌊o(𝑜, 𝑡)⌋L

𝑟 ′ ∗∗𝑡−1
𝑖=𝑜+1 ⌊p(𝑖)⌋

E

𝑟 ′ ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧ 𝑛𝑠 (0) = p ∗ (⌈t(p, c, 𝑜 + 1)⌉𝑟 ′ ∗ ⌊p(𝑜 + 1)⌋L
𝑟 ′ ∧ 𝑛𝑠 (1) = c)

〉
〈
∃𝑛𝑠 ′ ∈ Addr

∗ . 𝑥 ↦→ c, last(𝑛𝑠 ′) ∗ c ↦→ 1 ∗ ones(𝑛𝑠 ′) ∗ ⌈q(𝑛𝑠 ′, 𝑜 + 1)⌉𝑟 ′ ∗ ⌊o(𝑜 + 1, 𝑡)⌋L
𝑟 ′ ∗∗𝑡−1

𝑖=𝑜+2 ⌊p(𝑖)⌋
E

𝑟 ′ ∧ 𝑡 − (𝑜 + 1) = |𝑛𝑠 ′ | ∧ 𝑛𝑠 ′(0) = c ∗ (p ↦→ 0 ∗ 𝑛𝑠 = p ⊕ 𝑛𝑠 ′)

〉
{
∃𝑜 ∈ N, ℎ, ℎ′ ∈ Addr. 𝑟 Z⇒ ((ℎ, 0, 𝑜), (ℎ′, 1, 𝑜 + 1)) ∗ p ↦→ 0 ∧ 𝑙 = 0

}
Fig. 22. Proof outline for the linearization point of CLH lock.

Step 5 is Cons, ∃Elim, AtomW, UpdReg, A∃Elim, LiftA, A∃Elim, Cons

the guard T and the obligation P are reabsorbed into Q and O respectively, to update the list of
threads waiting on the lock and increment the owner. This is done using the axioms:

q([𝑝, 𝑐] ⊕ 𝑛𝑠, 𝑜) • t(𝑝, 𝑐, 𝑜 + 1) = q(𝑐 ⊕ 𝑛𝑠, 𝑜 + 1)
o(𝑜, 𝑡) • p(𝑜 + 1) = o(𝑜 + 1, 𝑡)

The inner part of the proof then decreases the layer and frames off unecessary resources to
apply the update. Note that this step of the proof discharges the obligation p(𝑡 ′). This concludes
the verification of the lock operation.
The CLH lock proof is able to internally encode the impedance bound enforced by thread

queueing using ghost state: the local ticket numbers of each thread queueing for the lock and the
owner’s ticket number which is visible in the abstract state of the region clh, but hidden from the
client.

Proof of unlock. Let𝑋 = {(ℎ, 1, 𝑜) | ℎ ∈ Addr, 𝑜 ∈ N} and𝑅 = {((ℎ, 1, 𝑜), (ℎ, 0, 𝑜)) | ℎ ∈ Addr, 𝑜 ∈ N}.
The proof of the unlock operation is as follows:

0; ∅ ⊢〈
L(𝑟, x, 1)

〉

Co
ns

;A
∃E

li
m;

M
kA

to
m

0; [𝑟 ↦→ (𝑋, 0, 𝑋, 𝑅)] ⊢{
∃𝑜 ∈ N, ℎ ∈ Addr. clh𝑟 (𝑥, ℎ, 1, 𝑜) ∗ 𝑟 Z⇒ ♦

}
hB [x];{
∃𝑜 ∈ N. clh𝑟 (𝑥, h, 1, 𝑜) ∗ 𝑟 Z⇒ ♦

}
[h]B 0;{
∃𝑜 ∈ N. 𝑟 Z⇒ ((h, 1, 𝑜), (h, 0, 𝑜))

}〈
L(𝑟, x, 0)

〉

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381

TaDA Live 69

5.3 Blocking Counter

We sketch the proof of a blocking counter module: a single cell storing a natural number that can
be incremented, guarded by a non-fair lock for concurrent access. The example illustrates how the
TaDA Live specifications and proofs neatly support hiding blocking when it is unobservable by the
client, while still leaking the requirement of bounded impedance from the lock. This requires any
client to only call operations making use of the lock (in this case the incr operation) a bounded
number of times.

Code. The implementation of the module’s operations is:

1 def makeCounter(x) {

2 var x, l in

3 xB alloc(2);

4 lB makeLock();

5 [x]B l;

6 [x + 1]B 0;

7 retB x;

8 }

1 def incr(x) {

2 var l in

3 lB [x];

4 lock(l);

5 vB [x + 1];

6 [x + 1]B v + 1;

7 unlock(l);

8 retB v;

9 }

1 def read(x) {

2 var l in

3 lB [x];

4 lock(l);

5 retB [x + 1];

6 unlock(l)

7 }

Specifications. The abstract predicate C(𝑠, 𝑥, 𝑛, 𝛼) represents a blocking counter at address 𝑥 with
value 𝑛 and impedance bound 𝛼 .

∀𝛼. 1 ⊢
{
emp

}
makeCounter()

{
∃𝑠 .C(𝑠, ret, 0, 𝛼)

}
∀𝜙. 1 ⊢ A

𝑛 ∈ N, 𝛼 .
〈
emp

��
C(𝑠, x, 𝑛, 𝛼) ∧ 𝛼 > 𝜙 (𝛼)

〉
incr(x)

〈
ret = 𝑛

��
C(𝑠, x, 𝑛 + 1, 𝜙 (𝛼))

〉
1 ⊢ A

𝑛 ∈ N, 𝛼 .
〈
emp

��
C(𝑠, x, 𝑛, 𝛼)

〉
read(x)

〈
ret = 𝑛

��
C(𝑠, x, 𝑛, 𝛼)

〉
Shared Regions. This proof will use two region types: cnt𝑟 (𝑟 ′, 𝑥, 𝑠, 𝑙𝑎, 𝑛, 𝛼) and lcnt𝑟 ′ (𝑥, 𝑠, 𝑙𝑎, 𝑙, 𝑛, 𝛼)

where 𝑟, 𝑟 ′ ∈ RId, 𝑥, 𝑙𝑎 ∈ Addr, 𝑙 ∈ {0, 1}, 𝑛 ∈ N, 𝛼 ∈ O and 𝑠 is the abstract location of the
lock guarding the counter resource. Here 𝑟 ′, 𝑥 , 𝑠 and 𝑙𝑎 are the fixed parameters of the regions,
representing respectively the region identifier of the inner region, the address of the blocking
counter and the abstract location and address of the associated lock.

As in the CLH lock example, we will use two nested regions. The region type lcnt will be used as
an inner region revealing sufficient information to prove desired liveness properties, in particular,
exposing the state of the lock, 𝑙 . The region type cnt will be used to prove linearizability of our
operations; to this end, it only exposes the value of the blocking counter 𝑛, and the lock’s impedence
bound 𝛼 .

Guards and Obligations. We associate the exclusive guard e with both cnt and lcnt. Besides this,
this proof will also require the guards u, l(𝑛, 𝑛′) and k(𝑛, 𝑛′), where 𝑛, 𝑛′ ∈ N, for the latter region.
These guards will be used to record the update to the value of the counter that will occur at the
moment the module’s lock is locked in the proof of incr. Since other threads cannot observe the
value of the counter without first holding the lock, performing this abstract update on the state of
the outer region, cnt, and then updating the concrete state of the counter before releasing the lock
results in a linearizable implementation.

To allow this, once the lock is locked, the concrete value of the counter, 𝑛′ ∈ N, and the updated
value of the counter, 𝑛 ∈ N, are stored in the guard l(𝑛, 𝑛′) within the region cnt. The thread

3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430

70 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

holding the lock then holds the guard k(𝑛, 𝑛′), which keeps a local record of the concrete and
updated counter values; the values are required to match with those stored in l(𝑛, 𝑛′) within the
region by the axiom:

l(𝑛, 𝑛′) • k(𝑚,𝑚′) is defined ⇔ 𝑛 =𝑚 ∧ 𝑛′ =𝑚′

When the lock is unlocked, the guard u is stored within the region cnt. When a thread takes
possession of the lock, it can be split into the guards l(𝑛, 𝑛′) and k(𝑛, 𝑛′) using the axiom:

u = l(𝑛, 𝑛′) • k(𝑛, 𝑛′)

Finally, if a thread holds the guard k(𝑛, 𝑛′), it holds the lock, which can be inferred from the axiom:

u • k(𝑛, 𝑛′) is undefined.

This pattern of three guards is often used as a TaDA pattern to encode mutual exclusion on some
resource when a thread has possession of a shared lock.

We also associate a single atom obligation k with the region type lcnt. This obligation encodes
ownership of the blocking counter’s lock, as well as the obligation to unlock it. We set lay(k) = 0.

Region Protocols. The guard-labelled transition system of the region cnt is:

e : ((𝑛, 𝛼), 0) ⇝ ((𝑛 + 1, 𝛽), 0) 𝛼 > 𝛽

and the guard-labelled transition system of the region lcnt is:

e : ((0, 𝑛, 𝛼), 0) ⇝ ((1, 𝑛, 𝛽), k) 𝛼 > 𝛽

e : ((1, 𝑛, 𝛼), 0) ⇝ ((1, 𝑛 + 1, 𝛼), 0)
e : ((1, 𝑛, 𝛼), k) ⇝ ((0, 𝑛, 𝛼), 0)

Region Intepretations. The interpretation of the locked counter region lcnt links the state of the
lock and counter to the abstract state of the region and the ownership of k.
The region cnt is a wrapper around the lcnt region that hides the state of the lock and allows

the counter value of the region lcnt to be disconnected from that of the outer region when the lock
is locked.

I(lcnt𝑟 (𝑥, 𝑠, 𝑙𝑎, 𝑙, 𝑛, 𝛼)) ≜ 𝑥 ↦→ 𝑙𝑎, 𝑛 ∗ L(𝑠, 𝑙𝑎, 𝑙, 𝛼) ∗ (𝑙 = 0
.⇒ ⌊k⌋L𝑟)

I(cnt𝑟 (𝑟 ′, 𝑥, 𝑠, 𝑙𝑎, 𝑛, 𝛼)) ≜ ∃𝑛′ ∈ N, 𝑙 ∈ {0, 1}. lcnt𝑟 ′ (𝑥, 𝑠, 𝑙𝑎, 𝑙, 𝑛′, 𝛼) ∗ ⌈e⌉𝑟 ′
∗

(
(𝑙 = 0 ∧ 𝑛 = 𝑛′ ∧ ⌈u⌉𝑟) ∨ (𝑙 = 1 ∧ ⌈l(𝑛, 𝑛′)⌉𝑟 ∗ ⌊k⌋E𝑟 ′)

)
Predicates. The counter resource is abstractly represented by the predicate

C((𝑟, 𝑟 ′, 𝑠, 𝑙𝑎), 𝑥, 𝑛, 𝛼) ≜ cnt𝑟 (𝑟 ′, 𝑥, 𝑠, 𝑙𝑎, 𝑛, 𝛼) ∗ ⌈e⌉𝑟

Verification of incr. The proof of incr can be found in Fig. 23. The only step requiring liveness
reasoning is the call lock(x), which is handled very similarly to the same call in the left thread of
the distinguishing client where the environment liveness condition of the LiveC rule application is
discharged using the fact that when 𝑙 = 1 holds, then ⌊k⌋E𝑟 , which, in this case, is obtained from the
interpretation of the outer region, cnt. The details of the proof of the lock operation cab be found
in Fig. 22.

3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479

TaDA Live 71

{
∃𝑛, 𝛼, 𝑙 . cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛, 𝛼) ∗ 𝑟 Z⇒ ♦ ∗ lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, _, _) ∗ 𝑙 = 1

.⇒ ⌊K⌋E
𝑟 ′ ∧ 𝛼 > 𝜙 (𝛼)

}
At

om
W
;A

∃E
li
m

A

𝑛 ∈ N, 𝛼 .〈
∃𝑙 . lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, _, _) ∗ 𝑙 = 1

.⇒ ⌊K⌋E
𝑟 ′

�� cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛, 𝛼) ∗ 𝑟 Z⇒ ♦ ∧ 𝛼 > 𝜙 (𝛼)
〉

Up
dR

eg

〈
∃𝑙 . lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, _, _) ∗ 𝑙 = 1

.⇒ ⌊K⌋E
𝑟 ′

������
∃𝑛′, 𝑙 . lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, 𝑛′, 𝛼) ∗ ⌈e⌉𝑟 ′ ∗(

(𝑙 = 0 ∧ 𝑛 = 𝑛′ ∧ ⌈u⌉𝑟) ∨
(𝑙 = 1 ∧ ⌈l(𝑛,𝑛′) ⌉𝑟 ∗ ⌊k⌋E

𝑟 ′)

)
∧ 𝛼 > 𝜙 (𝛼)

〉
A
∃E

li
m

A

𝑛,𝑛′ ∈ N, 𝑙 ∈ {0, 1}, 𝛼 .〈
∃𝑙 . lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, _, _) ∗ 𝑙 = 1

.⇒ ⌊K⌋E
𝑟 ′

������
lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, 𝑛′, 𝛼) ∗ ⌈e⌉𝑟 ′ ∗(

(𝑙 = 0 ∧ 𝑛 = 𝑛′ ∧ ⌈u⌉𝑟) ∨
(𝑙 = 1 ∧ ⌈l(𝑛,𝑛′) ⌉𝑟 ∗ ⌊k⌋E

𝑟 ′)

)
∧ 𝛼 > 𝜙 (𝛼)

〉

Li
ve

C

A

𝑛,𝑛′ ∈ N, 𝑙 ∈ {0, 1} ↠0 {0}, 𝛼 .〈
lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, 𝑛′, 𝛼) ∗ ⌈e⌉𝑟 ′ ∗

(
(𝑙 = 0 ∧ 𝑛 = 𝑛′ ∧ ⌈u⌉𝑟) ∨

(𝑙 = 1 ∧ ⌈l(𝑛,𝑛′) ⌉𝑟 ∧ ⌊k⌋E
𝑟 ′)

)
∧ 𝛼 > 𝜙 (𝛼)

〉

St
ep

6

A

𝑙 ∈ {0, 1} ↠0 {0}, 𝛼 .〈
L(𝑠′, l, 𝑙, 𝛼) ∧ 𝛼 > 𝜙 (𝛼)

〉
lock(l);〈
L(𝑠′, l, 1, 𝛼) ∧ 𝑙 = 0

〉〈
⌊k⌋L

𝑟 ′

���� lcnt𝑟 ′ (x, 𝑠′, l, 1, 𝑛′, 𝛼) ∗ ⌈e⌉𝑟 ′ ∗
(

(𝑙 = 0 ∧ 𝑛 = 𝑛′ ∧ ⌈u⌉𝑟) ∨
(𝑙 = 1 ∧ ⌈l(𝑛,𝑛′) ⌉𝑟 ∧ ⌊k⌋E

𝑟 ′)

)
∧ 𝑙 = 0

〉
〈
⌊k⌋L

𝑟 ′
�� lcnt𝑟 ′ (x, 𝑠′, l, 1, 𝑛′, 𝛼) ∗ ⌈e⌉𝑟 ′ ∗ ⌈u⌉𝑟 ∧ 𝑛 = 𝑛′

〉〈
⌊k⌋L

𝑟 ′

���� ∃𝑛′, 𝑙 . lcnt𝑟 ′ (x, 𝑠′, l, 1, 𝑛′, 𝛼) ∗ ⌈e⌉𝑟 ′ ∗
(

(𝑙 = 0 ∧ 𝑛 + 1 = 𝑛′ ∧ ⌈u⌉𝑟) ∨
(𝑙 = 1 ∧ ⌈l(𝑛 + 1, 𝑛′) ⌉𝑟 ∧ ⌊k⌋E

𝑟 ′)

)
∗ ⌈k(𝑛 + 1, 𝑛) ⌉𝑟

〉
〈
⌊k⌋L

𝑟 ′
�� cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛 + 1, 𝛼) ∗ 𝑟 Z⇒ ⟨(𝑛, 𝛼), (𝑛 + 1, 𝜙 (𝛼)) ⟩ ∗ ⌈k(𝑛 + 1, 𝑛) ⌉𝑟

〉{
∃𝑛, 𝛼. cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛 + 1, 𝜙 (𝛼)) ∗ 𝑟 Z⇒ ⟨(𝑛, 𝛼), (𝑛 + 1, 𝜙 (𝛼)) ⟩ ∗ ⌊k⌋L

𝑟 ′ ∗ ⌈k(𝑛 + 1, 𝑛) ⌉𝑟
}

Fig. 23. Details of the proof of the lock(l) call of incr. Step 6 is LiftA, Frame.

Verification of the makeCounter and read operations. The proof of makeCounter proceeds, us-
ing standard steps on Hoare triples, by establishing the postcondition ∃𝑥, 𝑙𝑎, 𝑙𝑟, 𝛼 . 𝑥 ↦→ 𝑙𝑎, 0 ∗
L(𝑙𝑟 , 𝑙𝑎, 0, 𝛼) which can be viewshifted to ∃𝑥, 𝑙𝑎, 𝑟, 𝑟 ′, 𝑙𝑟 , 𝛼 .C((𝑟, 𝑟 ′, 𝑙𝑟 , 𝑙𝑎), 𝑥, 0, 𝛼).

The proof of read is almost identical to the proof in Fig. 23. The reader might wonder if the lock
acquisition in the code is strictly necessary. Indeed, it is not given the current set of operations
available to the client. To prove the version where read does not acquire the lock, however, we
would need to change the region’s protocol to encode the fact that while holding a lock a single
write to it is possible. Since one would conceivably want to extend the module with other operations
that write to the counter multiple times while holding the lock, we formalised the more general
protocol. In the presence of such additional operations, read would need to acquire the lock to be
correct.

5.4 Double Blocking Counter

We now develop the proof of a double blocking counter module, that is, a module encapsulating
two integers each protected by a fair lock. The module offers linearizable operations to incremen-
t/read each counter in isolation and an incrBoth operation to atomically increment both. The
implementation of incrBoth needs to deal with the ubiquitous pattern of locking multiple locks
in a nested fashion, which is one of the most common sources of deadlocks in coarse-grained
concurrent programs. The example illustrates how the specification format and layer system of
TaDA Live allow for modular proofs of deadlock-freedom. In particular, verifying the example in
LiLi would require: (i) replacing the calls to the lock operations with some non-atomic abstract
code (ii) building a termination argument that talks about the queues of the two fair locks; in
particular the variant argument would need to consider both queues at the same time and argue
about all the possible ways the threads in the environment may enter and exit both queues. We

3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528

72 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Proof of incr(x):
∀𝜙. 1; ∅ ⊢ A

𝑛 ∈ N, 𝛼 .〈
emp

��
C(𝑠, x, 𝑛, 𝛼) ∧ 𝛼 > 𝜙 (𝛼)

〉
Co

ns
;𝑠

=
(𝑟
,𝑟′
,𝑠′
,𝑙𝑎

)

〈
emp

�� cnt𝑟 (𝑟 ′, x, 𝑠′, 𝑙𝑎, 𝑛, 𝛼) ∗ ⌈e⌉𝑟 ∧ 𝛼 > 𝜙 (𝛼)
〉

M
kA

to
m

1; [𝑟 ↦→ (N × O, 0,N × O, {((𝑛, 𝛼), (𝑛 + 1, 𝛽)) | 𝑛 ∈ N, 𝛼, 𝛽 ∈ O, 𝛼 > 𝛽 })] ⊢{
∃𝑛, 𝛼. cnt𝑟 (𝑟 ′, x, 𝑠′, 𝑙𝑎, 𝑛, 𝛼) ∗ 𝑟 Z⇒ ♦ ∧ 𝛼 > 𝜙 (𝛼)

}
lB [x];{
∃𝑛, 𝛼, 𝑙 . cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛, 𝛼) ∗ 𝑟 Z⇒ ♦ ∗ lcnt𝑟 ′ (x, 𝑠′, l, 𝑙, _, _) ∗ 𝑙 = 1

.⇒ ⌊K⌋E
𝑟 ′ ∧ 𝛼 > 𝜙 (𝛼)

}
lock(l);{
∃𝑛, 𝛼. cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛 + 1, 𝜙 (𝛼)) ∗ 𝑟 Z⇒ ⟨(𝑛, 𝛼), (𝑛 + 1, 𝜙 (𝛼)) ⟩ ∗ ⌊k⌋L

𝑟 ′ ∗ ⌈k(𝑛 + 1, 𝑛) ⌉𝑟
}

vB [x + 1];{
∃𝑛, 𝛼. cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛 + 1, 𝜙 (𝛼)) ∗ 𝑟 Z⇒ ⟨(𝑛, 𝛼), (𝑛 + 1, 𝜙 (𝛼)) ⟩ ∗ ⌊k⌋L

𝑟 ′ ∗ ⌈k(𝑛 + 1, 𝑛) ⌉𝑟 ∧ v = 𝑛
}

[x + 1]B v + 1;{
∃𝑛, 𝛼. cnt𝑟 (𝑟 ′, x, 𝑠′, l, 𝑛 + 1, 𝜙 (𝛼)) ∗ 𝑟 Z⇒ ⟨(𝑛, 𝛼), (𝑛 + 1, 𝜙 (𝛼)) ⟩ ∗ ⌊k⌋L

𝑟 ′ ∗ ⌈k(𝑛 + 1, 𝑛 + 1) ⌉𝑟 ∧ v = 𝑛
}

unlock(l);{
∃𝑛, 𝛼. 𝑟 Z⇒ ⟨(𝑛, 𝛼), (𝑛 + 1, 𝜙 (𝛼)) ⟩ ∧ v = 𝑛

}
retB v;{
∃𝑛, 𝛼. 𝑟 Z⇒ ⟨(𝑛, 𝛼), (𝑛 + 1, 𝜙 (𝛼)) ⟩ ∧ ret = 𝑛

}〈
ret = 𝑛

�� cnt𝑟 (𝑟 ′, x, 𝑠′, 𝑙𝑎, 𝑛 + 1, 𝜙 (𝛼)) ∗ ⌈e⌉𝑟
〉〈

ret = 𝑛
��
C(𝑠, x, 𝑛 + 1, 𝜙 (𝛼))

〉
Fig. 24. Blocking counter: proof of incr.

avoid these complications by: (i) reusing the (fair) lock specifications which are truly atomic and
properly hide the queues (ii) arguing about termination by means of two obligations with layers
the order of which reflect the order of acquisition of locks. These obligations only represent the
liveness invariant that each lock is always eventually released, the layers represent the dependency
between the two locks. The proof requires no detail about why, thanks to the internal queues, this
is sufficient to ensure global progress: that part of the argument has already been made in proving
the lock specifications!

Code. The implementation of the module’s operations is in Fig. 24 using the following abbrevia-
tions for readability:

x.lock1 ≜ [x] x.lock2 ≜ [x+1] x.cnt1 ≜ [x+2] x.cnt2 ≜ [x+3]

Specifications. The fair lock module specifications assumed in this example are

1𝑟 ⊢

A

𝑙 ∈ {0, 1} ↠0𝑟 {0}.
〈
L(𝑟, x, 𝑙)

〉
lock(x)

〈
L(𝑟, x, 1) ∧ 𝑙 = 0

〉
0𝑟 ⊢

〈
L(𝑟, x, 1)

〉
unlock(x)

〈
L(𝑟, x, 0)

〉
where 1𝑟 and 0𝑟 are layers parametrised on the region identifier 𝑟 of the shared lock. It is a common
TaDA Live pattern to parametrise the layers of specifications so that they can be instantiated with
differently for each instance of the module. In Section 5.5 we explain this parametrisation in general,
and how to parametrise the implementation proof accordingly.
The abstract predicate DC(𝑡, 𝑥, 𝑛,𝑚) represents a double counter at address 𝑥 with abstract

location 𝑡 and values 𝑛 and 𝑚 respectively. We wish to the show the implementations of the

3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577

TaDA Live 73

1 def makeDCounter() {

2 var x,l1,l2 in

3 xB alloc(4);

4 l1B makeLock();

5 l2B makeLock();

6 x.lock1B l1;

7 x.lock2B l2;

8 x.cnt1B 0;

9 x.cnt2B 0;

10 retB x

11 }

1 def incr1(x) {

2 var l,v in

3 lB x.lock1;

4 lock(l);

5 vB x.cnt1;

6 x.cnt1B v + 1;

7 unlock(l);

8 retB v

9 }

1 def incr2(x) {

2 var l,v in

3 lB x.lock2;

4 lock(l);

5 vB x.cnt2;

6 x.cnt2B v + 1;

7 unlock(l);

8 retB v

9 }

1 def incrBoth(x) {

2 var l1,l2,v in

3 l1B x.lock1;

4 l2B x.lock2;

5 lock(l1);

6 lock(l2);

7 vB x.cnt1;

8 x.cnt1B v + 1;

9 vB x.cnt2;

10 x.cnt2B v + 1;

11 unlock(l2);

12 unlock(l1)

13 }

Fig. 25. Code of the double blocking counter operations.

module’s operations satisfy the following specifications:
1 ⊢

{
emp

}
makeDCounter()

{
∃𝑡 .DC(𝑡, ret, 0, 0)

}
1 ⊢ A

𝑛,𝑚 ∈ N.
〈
DC(𝑡, x, 𝑛,𝑚)

〉
incrBoth(x)

〈
DC(𝑡, x, 𝑛 + 1,𝑚 + 1)

〉
1 ⊢ A

𝑛,𝑚 ∈ N.
〈
emp

��
DC(𝑡, x, 𝑛,𝑚)

〉
incr1(x)

〈
ret = 𝑛

��
DC(𝑡, x, 𝑛 + 1,𝑚)

〉
1 ⊢ A

𝑛,𝑚 ∈ N.
〈
emp

��
DC(𝑡, x, 𝑛,𝑚)

〉
incr2(x)

〈
ret =𝑚

��
DC(𝑡, x, 𝑛,𝑚 + 1)

〉
It is important to note here that we are making explicit the parametrisation of the layers in the

region identifiers 𝑠 , because we will need to associate different layers with the two instances of the
lock. As we will see later, we will have two region identifiers 𝑠1 and 𝑠2, one per lock, with associated
layers 1𝑠1 , 0𝑠1 , 1𝑠2 , 0𝑠2 . The lock specifications themselves only require 1𝑠1 > 0𝑠1 and 1𝑠2 > 0𝑠2 but
we will additionally impose, for this client proof, 0𝑠1 > 1𝑠2 . This represents the fact that, in this
client, the release of lock 1 will depend on the acquisition of lock 2.

Shared Regions. Like for the single counter example, we need two nested regions, one to prove
the atomicity of the operation (dcnt) and an inner one to prove termination (ldcnt). They differ
in that dcnt only records the abstract states of the counters, while ldcnt includes the abstract
states of the locks. Formally: dcnt𝑟1 ((𝑟0, 𝑡0), 𝑥, 𝑛,𝑚) and ldcnt𝑟0 (𝑡0, 𝑥, 𝑙1, 𝑙2, 𝑛,𝑚) where 𝑟0, 𝑟1 ∈ RId,
𝑥 ∈ Addr, 𝑙1, 𝑙2 ∈ {0, 1} and 𝑛,𝑚 ∈ N, and 𝑡0 is a tuple (𝑙𝑎1, 𝑙𝑎2, 𝑠1, 𝑠2) with 𝑙𝑎1, 𝑙𝑎2 ∈ Addr and
𝑠1, 𝑠2 ∈ RId. Here (𝑟0, 𝑡0), 𝑥 , and 𝑡0, 𝑥 are the fixed parameters of the two regions respectively. The
double blocking counter resource is abstractly represented by the predicate DC((𝑟1, 𝑡1), 𝑥, 𝑛,𝑚) ≜
dcnt𝑟1 (𝑡1, 𝑥, 𝑛,𝑚) ∗ ⌈e⌉𝑟1 .

Guards and Obligations. We introduce the guard constructors b𝑖 , c𝑖 , and w𝑖 , for 𝑖 ∈ {1, 2}, for
bookkeeping of the value of the counters. We need this ghost state because in incrBoth there is an
intermediate state where one counter has been updated but the other hasn’t; we cannot update
the abstract state in two steps because we are proving atomicity of the operation, so we need to
update both counter values in the abstract state in one go. We record the intermediate concrete
state in these guards so the information is there locally without affecting the shared abstract state
prematurely. The guard composition satisfies the axioms

b1 = c1 (𝑛, 𝑛′) •w1 (𝑛, 𝑛′) b2 = c2 (𝑛, 𝑛′) •w2 (𝑛, 𝑛′)

3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626

74 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Here c𝑖 (𝑛, 𝑛′) tracks the reference value (left in the region interpretation) for the 𝑖-th counter’s
abstract (𝑛) and concrete (𝑛′) value and w𝑖 is a local “witness” for the same information about the
𝑖-th counter, which can only be obtained when locking the 𝑖-th lock (otherwise it would not be
stable information). This is enforced by the interpretation given later.

We associate two atom obligations k1 and k2 with the region type ldcnt, encoding ownership of
the double counter’s locks respectively, as well as the obligation to unlock them.
As anticipated, we choose the layers of the lock specifications in a way that represents the

dependency between the two locks. We have a (double-counter-local) top (1) and a bottom (0) layer,
and intermediate layers for the locks:17

0 = 0𝑠2 = lay(k2) < 1𝑠2 < 0𝑠1 = lay(k1) < 1𝑠1 = 1

Region Protocols. The interference protocol of the region dcnt trivially allows for any change to
the counter values:

e : ((𝑛,𝑚), 0) ⇝ ((𝑛′,𝑚′), 0)

The interference protocol of the region ldcnt encodes the constraint that we can update a counter
only by holding the corresponding lock:

e : ((0, 𝑙, 𝑛,𝑚), 0) ⇝ ((1, 𝑙, 𝑛,𝑚), k1) e : ((𝑙, 0, 𝑛,𝑚), 0) ⇝ ((𝑙, 1, 𝑛,𝑚), k2)
e : ((1, 𝑙, 𝑛,𝑚), k1) ⇝ ((0, 𝑙, 𝑛,𝑚), 0) e : ((𝑙, 1, 𝑛,𝑚), k2) ⇝ ((𝑙, 0, 𝑛,𝑚), 0)
e : ((1, 𝑙, 𝑛,𝑚), k1) ⇝ ((1, 𝑙, 𝑛′,𝑚), k1) e : ((𝑙, 1, 𝑛,𝑚), k2) ⇝ ((𝑙, 1, 𝑛,𝑚′), k2)

Region Intepretations. The interpretation of dcnt formalises the fact that the outer region simply
hides the state of the locks for the atomicity argument, while the actual internal protocol of the
module is encoded in the interpretation of the inner region ldcnt:

I(dcnt𝑟1 ((𝑟0, 𝑡0), 𝑥, 𝑛,𝑚)) ≜ ∃𝑙1, 𝑙2 ∈ {0, 1}. ldcnt𝑟0 (𝑡0, 𝑥, 𝑙1, 𝑙2, 𝑛,𝑚) ∗ ⌈e⌉𝑟0 ∗
𝑙1 = 1

.⇒ ⌊k1⌋E𝑟0 ∗ 𝑙2 = 1
.⇒ ⌊k2⌋E𝑟0

I(ldcnt𝑟0 ((𝑙𝑎1, 𝑙𝑎2, 𝑠1, 𝑠2), 𝑥, 𝑙1, 𝑙2, 𝑛,𝑚)) ≜ ∃𝑛′,𝑚′ ∈ N.
𝑥 ↦→ 𝑙𝑎1, 𝑙𝑎2, 𝑛

′,𝑚′ ∗ L(𝑠1, 𝑙𝑎1, 𝑙1) ∗ L(𝑠2, 𝑙𝑎2, 𝑙2)

∗
(

(𝑙1 = 0 ∧ ⌊k1⌋L𝑟0 ∗ ⌈b1⌉𝑟0 ∧ 𝑛 = 𝑛′)
∨ (𝑙1 = 1 ∧ ⌈c1 (𝑛, 𝑛′)⌉𝑟0)

)
∗

(
(𝑙2 = 0 ∧ ⌊k2⌋L𝑟0 ∗ ⌈b2⌉𝑟0 ∧𝑚 =𝑚′)

∨ (𝑙2 = 1 ∧ ⌈c2 (𝑚,𝑚′)⌉𝑟0)

)
Proof of incrBoth. The proof outline of incrBoth is reproduced in Fig. 25. Most of the proof is

routine; the derivation for the acquisition of the first lock follows closely the pattern we already
explained in Sections 4 and 5.3. We show the proof of the acquisition of the second lock in more
detail, to show the interplay between the layers. At that point we are continuously holding the
obligation of the first lock, with layer greater than 1𝑠2 , so apply LayWH to lower the layer to 1𝑠2
enabling the application of Frame to frame 𝑟1 Z⇒ ♦ ∗ ⌊k1⌋L𝑟0 ∗ ⌈w1 (𝑛, 𝑛)⌉𝑟0 . The obligation k2 has
layer lower than 1𝑠2 so we are allowed to invoke it to discharge the environment liveness condition
of the LiveC application, in a way that is analogous to the derivations of the distinguishing client
and Section 5.3.

17The proof works with 1𝑠2 = 0𝑠1 too, but the ordered version better emphasizes the dependency between the locks.

3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675

TaDA Live 75

Proof of incrBoth(x):
1; ∅ ⊢ A

𝑛,𝑚 ∈ N.〈
emp

��
DC(𝑡, x, 𝑛,𝑚)

〉
Co

ns
;S
ub

𝑡
=
(𝑟

1,
𝑡 1
),
𝑡 1

=
(𝑟

0,
𝑡 0
),
𝑡 0

=
(𝑙𝑎

1,
𝑙𝑎

2,
𝑠

1,
𝑠

2)

〈
dcnt𝑟1 (𝑡1, x, 𝑛,𝑚) ∗ ⌈e⌉𝑟1

〉
M
kA

to
m

1; A ≜ [𝑟1 ↦→ (N2, 0,N2, {((𝑛,𝑚), (𝑛 + 1,𝑚 + 1)) | 𝑛,𝑚 ∈ N})] ⊢{
∃𝑛,𝑚. dcnt𝑟1 (𝑡1, x, 𝑛,𝑚) ∗ 𝑟1 Z⇒ ♦

}
l1B [x];
l2B [x + 1];
// 𝑡 ′1 ≜ (𝑟0, 𝑡 ′0), 𝑡 ′0 ≜ (l1, l2, 𝑠1, 𝑠2){
∃𝑛,𝑚. dcnt𝑟1 (𝑡 ′1, x, 𝑛,𝑚) ∗ 𝑟1 Z⇒ ♦ ∗
∃𝑙1, 𝑙2 . ldcnt𝑟0 (𝑡 ′0, x, 𝑙1, 𝑙2, _, _) ∗ 𝑙1 = 1

.⇒ ⌊k1 ⌋E𝑟0 ∗ 𝑙2 = 1
.⇒ ⌊k2 ⌋E𝑟0

}
lock(l1);{
∃𝑛,𝑚. dcnt𝑟1 (𝑡 ′1, x, 𝑛,𝑚) ∗ 𝑟1 Z⇒ ♦ ∗ ⌊k1 ⌋L𝑟0 ∗ ⌈w1 (𝑛,𝑛) ⌉𝑟0 ∗
∃𝑙2 . ldcnt𝑟0 (𝑡 ′0, x, _, 𝑙2, _, _) ∗ 𝑙2 = 1

.⇒ ⌊k2 ⌋E𝑟0

}

La
yW

H
;F
ra

me
;A

to
mW

;A
∃E

li
m

1𝑠2 ; A ⊢

A

𝑛,𝑚 ∈ N.〈
∃𝑙2 . ldcnt𝑟0 (𝑡 ′0, x, _, 𝑙2, _, _) ∗ 𝑙2 = 1

.⇒ ⌊k2 ⌋E𝑟0

�� dcnt𝑟1 (𝑡 ′1, x, 𝑛,𝑚)
〉

Li
ft
A
;A

∃E
li
m;

Fr
am

e

A

𝑙1, 𝑙2 ∈ {0, 1}.〈
∃𝑙2 . ldcnt𝑟0 (𝑡 ′0, x, _, 𝑙2, _, _) ∗ 𝑙2 = 1

.⇒ ⌊k2 ⌋E𝑟0

�� ldcnt𝑟0 (𝑡 ′0, x, 𝑙1, 𝑙2, 𝑛,𝑚) ∗ ⌈e⌉𝑟0
〉

Li
ve

C

1𝑠2 ; A ⊢

A

𝑛,𝑚 ∈ N, 𝑙1 ∈ {0, 1}, 𝑙2 ∈ {0, 1} ↠0𝑠2 {0}.〈
ldcnt𝑟0 (𝑡 ′0, x, 𝑙1, 𝑙2, 𝑛,𝑚) ∗ ⌈e⌉𝑟0 ∗ 𝑙2 = 1

.⇒ ⌊k2 ⌋E𝑟0
〉

St
ep

7

1𝑠2 ; A ⊢

A

𝑙2 ∈ {0, 1} ↠0𝑠2 {0}.〈
L(𝑠2, l2, 𝑙2)

〉
lock(l2);〈
L(𝑠2, l2, 1) ∧ 𝑙2 = 0

〉〈
⌊k2 ⌋L𝑟0

�� ldcnt𝑟0 (𝑡 ′0, x, 𝑙1, 1, 𝑛,𝑚) ∗ ⌈e⌉𝑟0 ∗ ⌈w2 (𝑚,𝑚) ⌉𝑟0
〉〈

⌊k2 ⌋L𝑟0

�� ldcnt𝑟0 (𝑡 ′0, x, 𝑙1, 1, 𝑛,𝑚) ∗ ⌈e⌉𝑟0 ∗ ⌈w2 (𝑚,𝑚) ⌉𝑟0
〉〈

⌊k2 ⌋L𝑟0

�� dcnt𝑟1 (𝑡 ′1, x, 𝑛,𝑚) ∗ ⌈w2 (𝑚,𝑚) ⌉𝑟0
〉{

∃𝑛,𝑚. dcnt𝑟1 (𝑡 ′1, x, 𝑛,𝑚) ∗ 𝑟1 Z⇒ ♦ ∗
⌊k1 ⌋L𝑟0 ∗ ⌈w1 (𝑛,𝑛) ⌉𝑟0 ∗ ⌊k2 ⌋L𝑟0 ∗ ⌈w2 (𝑚,𝑚) ⌉𝑟0

}
vB x.cnt1; x.cnt1B v + 1; vB x.cnt2; x.cnt2B v + 1;{
∃𝑛,𝑚. dcnt𝑟1 (𝑡 ′1, x, 𝑛,𝑚) ∗ 𝑟1 Z⇒ ♦ ∗
⌊k1 ⌋L𝑟0 ∗ ⌈w1 (𝑛,𝑛 + 1) ⌉𝑟0 ∗ ⌊k2 ⌋L𝑟0 ∗ ⌈w2 (𝑚,𝑚 + 1) ⌉𝑟0

}
unlock(l2);{
∃𝑛,𝑚. dcnt𝑟1 (𝑡 ′1, x, 𝑛,𝑚) ∗ 𝑟1 Z⇒ ((𝑛,𝑚), (𝑛 + 1,𝑚 + 1)) ∗
⌊k1 ⌋L𝑟0 ∗ ⌈w1 (𝑛 + 1, 𝑛 + 1) ⌉𝑟0

}
unlock(l1);{
∃𝑛,𝑚. 𝑟1 Z⇒ ⟨(𝑛,𝑚⟩, (𝑛 + 1,𝑚 + 1))

}〈
dcnt𝑟1 (𝑡1, x, 𝑛 + 1,𝑚 + 1) ∗ ⌈e⌉𝑟1

〉〈
DC(𝑡, x, 𝑛 + 1,𝑚 + 1)

〉
Fig. 26. Double blocking counter: proof of incrBoth.

Step 7 is LiftA, Frame.

3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724

76 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

A comparison with LiLi. As we have seen in Section 2 (Innovation 3), the call of a CLH lock in
LiLi involves two distinct atomic actions: requesting the lock, and acquiring it. Requesting a lock x
is a non-blocking action as it just enqueues the current thread in the (concrete) queue for x, but the
acquisition is represented with a (primitive) blocking operation that waits until the current thread
is at the head of the lock’s queue, and the lock is unlocked. When proving the call to lock(l1) in
incrBoth, the LiLi proof would require arguing about termination of acquisition by appealing to
progress of the threads in the environment.
To do so, in the LiLi methodology, one has to identify the threads in the environment that will

be able to make progress, and show how this progress is bringing us closer to acquiring lock l1.
Consider the case when there are 𝑛1 > 0 threads ahead of us in the queue for l1. Assume thread 𝑡1
is the head of the queue for l1. It can make progress in three ways:

• if l1 is unlocked it can acquire it;
• if l1 is locked it can unlock it;
• if l1 is locked it can request l2.

How do these actions represent progress for us? The first case makes progress by moving to the
second or third case. The second case removes 𝑡1 from the queue of l1 bringing us closer to the
front of the queue. The third case complicates matters: in this case 𝑡1 is enqueued in the queue of l2
with a non-deterministic number 𝑛2 of threads ahead of it. The thread 𝑡1 is now blocked, and to
track progress we need to consider the head of the queue for l2, which can only make progress by
acquiring the lock when unlocked, or releasing the lock when locked. What progress had been made
towards us acquiring l1? The measure of progress needs to consider the contents of the queues
for both threads: the measure before 𝑡1 requests l2 needs to be (𝑛1, 𝜔) (ordered lexicographically)
so that we can lower the measure to (𝑛1, 𝑛2) once 𝑡1 joined the queue of l2. Whenever 𝑡1 reaches,
finally, the head of the queue of l2, the measure of progress would become (𝑛1, 0), and the only
option for 𝑡1 is to release l2. Now thread 𝑡1 is back to the three options as above. This is a problem
because nothing would prevent 𝑡1 from requesting l2 again. This could repeat ad libitum, leaving
us to starve on l1. To rule this out, the argument needs to place a bound 𝑏 on the number of times
l2 can be acquired while holding l1; in our example this bound can be 1. By mixing this bound in
the measure (𝑛1, 𝑏, 𝑛2), the action of 𝑡1 releasing l2 brings real progress by taking 𝑏 from 1 to 0.
When that happens, the only option for 𝑡1 is to release the lock. This brings down 𝑛1, the number
of threads ahead of us; at the same time we want to reset 𝑛2 to 𝜔 and 𝑏 to 1 to allow the new head
of the queue of l1 to request l2.
This substantiates our claim that LiLi’s rely/guarantee reasoning lacks in scalability; the key

reason for this is that the progress argument is forced to walk through all the possible ways the
environment could be implementing progress. This in turn requires to expose the internal state
of both locks (their queues) to be used in the client’s proof. In other words, the abstraction of the
environment is not abstract enough. By comparison, TaDA Live’s atomic specifications allow for
the termination of the lock calls in the double blocking counter to be reasoned about individually,
without direct reference to the termination of the other, nor to internal state, using layers to prevent
circular reasoning. The appeal to obligation k1 being live to justify why the call to lock(l1)
terminates, abstracts away how the environment may be keeping it live. The layers capture the
essential information: the only thing that is important is that to keep k2 live, the environment does
not assume k1 live.

5.5 Lock-Coupling Set

To conclude this series of examples, we present a challenging fine-grained lock-based implementa-
tion of a linearizable finite set. A lock-coupling set implements a set by maintaining an ordered

3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773

TaDA Live 77

linked list of the elements with fair locks (here CLH locks) guarding each individual element. The
module exposes an add and remove operation to add and remove elements from the abstract set
it represents. To make modifications to the nodes of the linked list, the operations traverse the
list using a lock-coupling pattern. In this pattern, all threads start the traversal at the head of the
list. To be at position 𝑖 a thread must acquire the lock at that position. To move to position 𝑖 + 1
the thread would first acquire the lock at 𝑖 + 1, and then release the lock at position 𝑖 . This way,
the threads cannot overtake each other, and owning a lock allows the owner to safely perform
modifications at that position. We sketch here the main points of interest of our proof, the full
details can be found in Appendix C.
This example is challenging because it makes use of a dynamically changing list of locks with

non-trivial liveness dependencies between them. In particular, the termination of the acquisition of
each lock depends on the usage of the locks further down the list. Although these dependencies
are acyclic, they change over time as the list grows or shrinks. At first sight, it is unclear how the
seemingly static layer structure of TaDA Live, and the fixed layers decorating the specifications of
lock operations can cope with this complexity, without breaking modularity.

The TaDA Live proof of this example relies on solving two key challenges:
• How can we modularly coordinate the choice of layers needed for the proof of a module and
the ones needed for the proofs of its clients?

• How can we dynamically reassign layers to resources?
We solve the first challenge by introducing a style of specification that allows the client to

“remap” the layers of the implementation into a larger layer structure, and the implementation
to prove correctness with respect to a “local” layer structure which is opaque to the client. The
key observation is that a TaDA Live derivation’s validity is preserved by transformations of the
layer structure that preserve the strict order between layers. This leads to the following proof
style. Given two partial orders (L1, ⩽1,⊤1,⊥1) and (L2, ⩽2,⊤2,⊥2), a function [: L1 → L2 is
strictly monotone if ∀𝑚,𝑛 ∈ L1 .𝑚 <1 𝑛 ⇒ [(𝑚) <2 [(𝑛). A layer map [: L1 →lay L2 is a strictly
monotone function between the two partial orders. Using this notion, we generalise the client-facing
CLH lock specifications as follows:

∃(Lclh, ⩽clh,⊤clh,⊥clh).∀[: Lclh →lay L .

[(⊤clh) ⊢

A

𝑙 ∈ {0, 1} ↠[(⊥clh) {0}.
〈
L[(𝑠, x, 𝑙)

〉
lock(x)

〈
L[(𝑠, x, 1) ∧ 𝑙 = 0

〉
[(⊥clh) ⊢

〈
L[(𝑠, x, 1)

〉
unlock(x)

〈
L[(𝑠, x, 0)

〉
From the perspective of the implementation, a proof of correctness would start by defining the

partial order of the “internal” layers. In the case of CLH, as we have seen in Section 5.2, we would
let Lclh = N∪ {1, 0} with ⊤clh = 1 and ⊥clh = 0. Then, to be able to prove the triples with the layers
remapped by the arbitrary layer map [we would reproduce the derivation presented in Section 5.2
but with [applied to every occurrence of an internal layer. For example, the lclh region type would
also be parametrised by the layer map, lclh𝑟 ′ ([, 𝑥, ℎ, 𝑙, 𝑜, 𝑡), so that its associated obligations and
their layers can depend on [, e.g. lay(p[(𝑡)) = [(𝑡). Since the map preserves the strict order of Lclh,
the proof goes through exactly as in the un-parametrised case.
From the perspective of the client, to use these specifications one would first obtain the arbi-

trary Lclh from the existential quantification. Then the client would be able to choose a layer map
from Lclh to L. Here L could be the global layer structure, in the case of a closed proof, or itself
being the internal layer structure of a module using the lock module internally. Note that the client
needs to define [parametrically on Lclh, since it has no control on the inner structure of Lclh. For
example, in the case of a client with a static list of locks, one would use as L the lexicographically
ordered set of pairs from (N∪{⊤,⊥}) ×Lclh where the first component corresponds to the position

3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822

78 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

of the lock from the end of the list. Then, for the lock at position 𝑖 ∈ N, the client would instantiate
the specifications choosing [𝑖 (𝑘) ≜ (𝑖, 𝑘).

The second challenge is also solved by a slight generalisation of the lock specifications, following
a proof pattern that, if adopted, always increases the generality of module specifications: adding
some fractional permissions to control the update of ghost parameters of the resource. The idea is
that the layer map is ghost state, and as such we should be able to update it using a viewshift. To do
this without invalidating the other thread’s information about the region we are updating, we add
standard fractional permissions to the lock specifications.We introduce the abstract predicate P(𝑠, 𝜋)
representing ownership of the fraction 0 ≤ 𝜋 ≤ 1 of permissions for a lock at abstract location 𝑠 . To
split permissions, the predicate satisfies, for 0 ≤ 𝜋1+𝜋2, 𝜋1, 𝜋2 ≤ 1, P(𝑠, 𝜋1+𝜋2) ⇔ P(𝑠, 𝜋1)∗P(𝑠, 𝜋2).
The generalised lock specifications would then be:

∃(Lclh, ⩽clh,⊤clh,⊥clh) .∀[: Lclh →lay L .

[(⊥clh) ⊢
{
emp

}
makeLock()

{
∃𝑠 . L[(𝑠, x, 0) ∗ P(𝑠, 1)

}
∀𝜋>0.[(⊤clh) ⊢

A

𝑙 ∈ {0, 1} ↠[(⊥clh) {0}.
〈
P(𝑠, 𝜋)

��
L[(𝑠, x, 𝑙)

〉
lock(x)

〈
P(𝑠, 𝜋)

��
L[(𝑠, x, 1) ∧ 𝑙 = 0

〉
[(⊥clh) ⊢

〈
L[(𝑠, x, 1)

〉
unlock(x)

〈
L[(𝑠, x, 0)

〉
When creating a new lock, one gets a local resource representing an unlocked lock and full
permissions. Typically then permissions are distributed to the threads by splitting the full permission
into smaller fractions. A non-trivial fraction of permission is now needed to perform the lock
operation. We can then provide the viewshift L[(𝑠, 𝑙) ∗ P(𝑠, 1) ⇛ L[′ (𝑠, 𝑙) ∗ P(𝑠, 1) which allows
to change the layer map without invalidating the knowledge about it in any other thread: if we
own P(𝑠, 1) then no other thread can race on the lock. Adapting the proof of CLH to support
permissions and the viewshift above follows standard (safety) proof patterns which we explain in
Appendix C.

Let us briefly explain how we can use this viewshift in the lock-coupling set example. Conceptu-
ally, we want to organise the layers of the lock-coupling set module as for a static list of locks: they
go in decreasing order from the head of the list to the tail. A thread holding a lock at position 𝑖 will
be able to eventually acquire the lock at position 𝑖 + 1 because the release of such lock is associated
with an obligation of strictly lower layer than the one associated with the lock at 𝑖 . Each operation
of the module inserts at most one element to the set per traversal of the list. We therefore arrange
the proof invariants so that each thread traversing the list will shift up the layer of the lock at the
thread’s current position by one. This way, when the thread finally finds the position where the
new element has to be inserted, there is already a gap of 1 between the layers associated with the
positions being altered by the thread. The layer sitting at the gap will be the one we associate with
the lock of the new element. The layer-map-altering viewshift we explained above is used at each
step of the traversal, to shift up the layer of the current lock. This is possible without breaking the
information owned by other threads because when the current thread holds the lock at position 𝑖

and the lock at 𝑖 + 1 finally becomes available, the current thread is the only thread with access to
the reference (and the associated resources) of the lock at 𝑖 + 1. Formally, this means that when we
obtain the lock at 𝑖 + 1 we are able to obtain full permissions for it until we unlock the lock at 𝑖 .
With the full permissions we can apply the viewshift and effectively shift up the layers associated
with the lock at 𝑖 + 1.

The only exception to this scheme is the lock at the head of the queue: this is the only lock which
does not need a remapping of layers as its associated layer can be (⊤,⊥clh) which is always bigger
than any layer ever associated with the locks at the other positions.

3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871

TaDA Live 79

It is worth noting that the LiLi proof of the same example does not use the specifications of the
fair locks modularly, but instead inlines the code of the lock operations, allowing for a non-modular
handling of the internal state.

Interestingly, the same lock-coupling set specifications can be implemented by using spin locks
instead of CLH locks, for each element except the one at the head. In fact, the locks in the tail of
the list do not experience any impedance. At first sight, it seems impossible to represent this fact
using our specifications for spin lock: the lock operation needs to consume non-trivial budget, but
there is no bound on the number of calls to it. The TaDA Live way of expressing the absence of
impedance in this example uses a viewshift similar to the one we introduced above, which allows
us to reset the budget (and the layer map) when we own full permissions. The proof in LiLi of this
variant of the lock-coupling set again inlines the lock code, with the effect of being able to redefine
which internal steps are susceptible of impedance and which do not, breaking modularity.

5.6 Limitations

Non-local linearization points. As with other total program logics, TaDA Live does not support
helping/speculation. Such patterns are challenging for the identification of the linearization point,
which is entirely a safety property. Extensions to TaDA that could support such patterns are
discussed in [6]. Such extensions are orthogonal to the termination argument. We therefore choose,
in line with the related literature, to explore termination in a simpler logic.

Non-structural thread creation. TaDA Live currently supports only structural parallel composition.
We believe the support of non-structural fork/join would not require substantial new ideas. For
comparison, LiLi does not support parallel nor fork/join.

Scheduling non-determinism. Amore interesting limitation comes from our approach to specifying
impedance. For non-blocking programs, the ordinal-based approach is complete. It is not complete
for blocking programs. Consider C2 ≜ (C1 ∥ [done]B true) where C1 is the distinguishing client
with a spin lock. Scheduler fairness guarantees the right-hand thread of C2 will be eventually
executed. The specification of spin lock, however, states that every call to lock needs to consume
budget, forcing the client to provide an upper bound for the total number of calls to initialise the
budget. Unfortunately, C2 will call lock an arbitrary unbounded number of times, determined only
by the choices of the scheduler. It is, thus, not possible to provide the initial budget, and TaDA
Live cannot prove that the program terminates. The impedance on the lock is only relevant when
the client is unblocked (i.e. done is true) but the specifications do not allow for the distinction. To
accommodate this behaviour, we could introduce 𝛼 (d) to represent a prophecy of the number of
steps it will take to fulfil live obligation d. This would solve the problem for C2, because 𝛼 (d) + 1
(where d is fulfilled by setting done to true) would be the required budget. How to introduce this
extension soundly is future work. To the best of our knowledge, none of the approaches in the
literature can handle this example.

Loop body specifications. Consider a loop invariant asserting the possession of obligation k. We
cannot distinguish, by only looking at the specification of the loop body, the case where k is
continuously held throughout the execution of the body, from the case where k is fulfilled and then
reacquired before the end of an iteration. The current While rule conservatively rules out the use
of assumptions with layer higher than or equal to lay(k); doing otherwise would be unsound in the
case when k is held continuously. A solution would be to introduce an assertion live(k), certifying
that an obligation is fulfilled at some point in a block of code. It would allow the While rule to
only forbid layers which may depend on obligations one holds in the loop invariant and for which
it was not possible to prove live(k).

3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920

80 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

More Expressive Layers. Advanced examples like the lock-coupling set of Section 5.5 need powerful
parametric specifications in order to work around the fact that the lay function is statically specified.
We are not aware of any example that cannot be proved using static layers and critically requires
more expressive layers. Even for current proofs, however, being able to constrain layers through
assertions and allowing them to change as result of interference would allow for more concise and
intuitive proofs. The lay function could in principle be encoded as “regular” ghost state and the
crucial relative order between layers be enforced through invariants. It is however not clear how to
ensure soundness if interference on layers is allowed. We leave this exploration as future work.

6 RELATEDWORK

Primitive Blocking. There has been work on termination and deadlock-freedom of concurrent
programs with primitive blocking constructs. Starting from the seminal work of [25], the idea of
tracking dependencies between blocking actions and ensuring their acyclicity has been used to prove
deadlock-freedom of shared-memory concurrent programs using primitive locks and (synchronous)
channels [3, 26]. Similar techniques have been used in [15] to prove global deadlock-freedom (a
safety property requiring that at least some thread can take a step), and [20] to prove termination.
This entire line of work assumes the invocation of lock/channel primitives as the only source of
blocking. As a consequence, this methodology provides no insight on the issue of understanding
abstract blocking patterns arising from busy waiting and shared memory interference. Moreover,
the specifications for blocking built-ins (hardcoded in the logic as ad hoc axioms) impose a usage
protocol in the client, instead of just capturing the abstract effect of the operation: for instance, a call
to lock(x) always entails an obligation to unlock the lock, regardless of how the client intends to
use the lock. This has had the side effect of requiring ad hoc extensions of the reasoning principles
to increase the expressivity of this hard-coded protocol, to allow, for example, for delegation of
obligations [16]. Our solution uniformly handles programs that mix blocking primitives and ad-hoc
synchronisation patterns, and is not imposing any specific protocol on the client.

The notion of “obligations” found in [3, 15, 20, 26] is only superficially related to our obligations.
First, obligations found in the literature represent primitive blocking events (like the acquisition of
a lock). They are also typically equipped with a structure to represent causal dependencies between
these events, to detect deadlocks. Our layered obligations are associated with arbitrary abstract

state changes, removing the need for ad-hoc treatment of primitives, and supporting abstraction
and abstract atomicity. Moreover, our layers do not represent causal dependencies between events,
but rather dependencies between liveness assumptions in a termination argument. This reflects in
our specifications, e.g. a lock operation does not return an obligation in its post-condition. Whether
there is a need for an obligation linked to that lock is entirely dependent on how the client will
decide to use the lock. Nevertheless, the specification precisely captures the termination guarantees
of lock operations. Finally, obligations in the literature have a purely safety semantics, from which
one can only derive safety properties as non-blocking or deadlock-freedom. Our obligations explain
how to express proper liveness invariants, how to blend them with the layers, and how to use them
for proving termination.

Temporal Logics. There is substantial literature on using temporal logics to prove liveness and
termination of concurrent programs, e.g. [35]. By working directly at the level of traces with liveness
properties stated as temporal logic formulas, this approach is very general. It does however provide
less guidance on how to prove programs, and does not tackle the problem of abstract interfaces
and proof reuse. Our adoption of concurrent separation logic as the basis of our reasoning achieves
superior compositionality of the reasoning including proof reuse.

3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969

TaDA Live 81

History-based methods. The CertiKOS project [14, 23] developed mechanised techniques for
the specification and verification of fine-grained low-level code with explicit support for abstract
atomicity and progress verification. The approach is based on histories: the abstract state is a log
of the abstract events of a trace; and the specification of an atomic operation inserts exactly one
event in the log. Local reasoning is achieved by rely/guarantee through complex automata product
constructions. The framework is very expressive,
with the downside that specifications are more complex and difficult to read, and verification

requires manipulation of abstract traces/interleavings. Our work is similar in aim and scope,
but our strategy is different. We try to specify/verify programs using the minimal machinery
possible, keeping the specifications as close to the developer’s intuition as we can. As a result,
our specifications are more readable (compare our fair-lock specification with the corresponding
30-line specification from Fig. 7 in [23]), and our reasoning is simpler (the layered obligation system
leads to a more intuitive proof compared to the proof of MCS locks in [23]).18

Contextual refinement. Another approach to specify and prove progress of concurrent systems is
to prove refinement between the implementation and simpler, abstract code acting as a specifica-
tion [28, 29, 37]. By making sure the refinement preserves progress properties, one can represent
the salient termination properties of the implementation by the termination properties of the
specification code. The Iris implementation of this idea [37] uses a non-contextual refinement,
which means that the refinement is proven between the closed-world behaviour of implementation
and specification code, and does not necessarily carry over contexts. This severely hinders proof
reuse. The only refinement-based work that is able to modularly verify blocking code is the LiLi
logic discussed below.
There has been work on extending linearizability, characterised as a contextual refinement,

to support reasoning about progress properties, e.g. [13]. This work only supports non-blocking
operations. Liang et al. [31] studies the exact relationship between common progress properties of
fine-grained operations and contextual refinement. The study of the contextual refinement induced
by our triple semantics is future work.

LiLi. The work closest to ours is LiLi [28, 29]. LiLi was the first concurrent separation logic to
prove progress specifications for linearizable concurrent objects with internal blocking [28], and it
was then extended to handle external blocking [29]. Although we share most of our goals with
LiLi, our approach differs in two important ways.

First, LiLi’s goal is to prove a progress-preserving contextual refinement between the implemen-
tation of a module and its specification. Termination properties of implementation code are not
represented directly, but in terms of the termination properties of the specification code. Although
proof of clients of the module have to be done outside of the LiLi logic (there is no rule for parallel,
nor for calling a module’s operation) such proofs would need to reprove the relevant termination
properties of the specification code so that the properties themselves become available in the proof.
Moreover, as we outlined in Section 2 for CLH lock, the specification code for blocking operations
may be non-atomic even in the case of linearizable operations. Instead we aim at specifications
that directly represent termination properties as a logical statement that can be readily used in
a client proof, and in the proof of the implementation. Our specification format obtains a crucial
advantage: it achieves abstraction and can represent atomicity for blocking operations, enabling
more scalable and reusable reasoning.

Second, LiLi’s rely/guarantee incorporates a form of liveness invariants through so-called definite
actions. Definite actions require the identification of a logical global “queue” of threads where the

18The proof is a variation of the one for CLH.

3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018

82 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

thread at the front is always able to execute its action and that action implies global progress. This
queue is maintained as shared auxiliary state manipulated through ghost code. It is due to this
global view that definite actions can side-step the issue of circular reasoning. Our layered subjective
obligations push the idea much further, obtaining sound liveness invariants that can be represented
thread-locally and without the need for ghost code, improving proof scalability. The design choice
of making both rely/guarantee and specification represent blocking via liveness assumptions is the
key to making the blocking specifications directly usable in the proof system.

7 CONCLUSIONS AND FUTUREWORK

We have introduced TaDA Live, a concurrent separation logic for reasoning compositionally
about the termination of fine-grained blocking concurrent programs, and proved a substantial
soundness result. Our key contribution is our approach to abstract atomic blocking as the reliance
of termination on the liveness properties of the environment. By wholly embracing this point
of view, we have designed a rely/guarantee principle that incorporates liveness invariants using
layered subjective obligations, a new form of local ghost state, and have extended TaDA’s abstract
atomic specifications to provide total specifications for blocking programs using environment
liveness assumptions. Through several case studies, we have illustrated how our formalisation of
abstract blocking allows for the right level of abstraction in specification, and strong thread-locality
of the proofs. The result is a verification system with scalable and reusable proofs.
The work presented in this paper opens a number of immediate directions for future work on

concurrent separation logics. A first direction is to extend TaDA Live to prove general liveness
properties beyond termination. A possible way to achieve this is to wrap a refinement calculus
around TaDA Live’s atomic specifications, as was done in the safety case in TaDA Refine [33].
Specifications would be able to sequentially compose atomic triples and take fixpoints, thus being
able to specify linear-time temporal properties of infinite traces. A second direction is to study
general fork/join concurrency and provide a generalisation of the liveness rely/guarantee necessary
to accommodate patterns typical of distributed/reactive systems, where long-lived maintenance
threads interact with an environment to realise an operation’s effect. A third direction is to transfer
ideas from TaDA Live to the Iris framework [21], to provide a Coq-mechanised environment for
reasoning about the termination of concurrent programs. More widely, we hope that our emphasis
on environment liveness invariants for proving termination will transfer to other forms of reasoning
about blocking concurrent programs.

ACKNOWLEDGMENTS

We would like to thank Hongjin Liang, Xinyu Feng, Martin Bodin, Shale Xiong and Petar Maksi-
movic, for the helpful discussions and comments. We also thank the anonymous reviewers for their
thorough critical reading of the paper and insightful feedback. This research was supported by: the
EPSRC Programme Grant “REMS: Rigorous Engineering for Mainstream Systems” (EP/K008528/1);
by the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie project “VeSPA”, grant agreement no. 795218; by a Department of Computing
PhD Scholarship from Imperial; by the UKRI Established Fellowship “VeTSpec: Verified Trustworthy
Software Specification” (EP/R034567/1); and in the final stages by the ERC Consolidator Grant for
the project “RustBelt”, also funded under EU Horizon 2020, grant agreement no. 683289.

REFERENCES

[1] Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: managing obligations in higher-order
concurrent separation logic. Proc. ACM Program. Lang. 3, POPL (2019), 65:1–65:30.

4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067

TaDA Live 83

[2] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. 2005. Variables as Resource in Separation Logic. In MFPS

(Electronic Notes in Theoretical Computer Science), Vol. 155. Elsevier, 247–276.
[3] Pontus Boström and Peter Müller. 2015. Modular Verification of Finite Blocking in Non-terminating Programs. In

ECOOP. 639–663.
[4] Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR (Lecture Notes in Computer

Science), Vol. 3170. Springer, 16–34.
[5] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2007. Proving thread termination. In PLDI. ACM, 320–330.
[6] Pedro da Rocha Pinto. 2016. Reasoning with Time and Data Abstractions. Ph.D. Dissertation. Imperial College London.
[7] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data

Abstraction. In ECOOP 2014–Object-Oriented Programming. Springer Berlin Heidelberg, 207–231.
[8] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland. 2016. Modular Termination

Verification for Non-blocking Concurrency. In ESOP (Lecture Notes in Computer Science), Vol. 9632. Springer, 176–201.
[9] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views:

compositional reasoning for concurrent programs. In POPL. ACM, 287–300.
[10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP (Lecture Notes in Computer Science), Vol. 6183. Springer, 504–528.
[11] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Deny-Guarantee Reasoning. In ESOP

(Lecture Notes in Computer Science), Vol. 5502. Springer, 363–377.
[12] Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Proving that non-blocking algorithms

don’t block. In POPL. ACM, 16–28.
[13] Alexey Gotsman and Hongseok Yang. 2011. Liveness-Preserving Atomicity Abstraction. In ICALP. 453–465.
[14] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David

Costanzo, and Tahina Ramananandro. 2018. Certified concurrent abstraction layers. In PLDI. ACM, 646–661.
[15] Jafar Hamin and Bart Jacobs. 2018. Deadlock-Free Monitors. In ESOP (Lecture Notes in Computer Science), Vol. 10801.

Springer, 415–441.
[16] Jafar Hamin and Bart Jacobs. 2019. Transferring Obligations Through Synchronizations. In ECOOP (LIPIcs), Vol. 134.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 19:1–19:58.
[17] Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor programming. Morgan Kaufmann.
[18] Maurice Herlihy and Nir Shavit. 2011. On the Nature of Progress. In Principles of Distributed Systems - 15th International

Conference, OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings. 313–328.
[19] Jan Hoffmann, Michael Marmar, and Zhong Shao. 2013. Quantitative Reasoning for Proving Lock-Freedom. In LICS.

IEEE Computer Society, 124–133.
[20] Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. 2018. Modular Termination Verification of Single-Threaded and

Multithreaded Programs. ACM Trans. Program. Lang. Syst. 40, 3 (2018), 12:1–12:59.
[21] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
[22] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637–650.
[23] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao. 2017. Safety and Liveness of MCS Lock – Layer by Layer.

In APLAS (Lecture Notes in Computer Science), Vol. 10695. Springer, 273–297.
[24] Naoki Kobayashi. 2000. Type Systems for Concurrent Processes: From Deadlock-Freedom to Livelock-Freedom,

Time-Boundedness. In IFIP TCS (Lecture Notes in Computer Science), Vol. 1872. Springer, 365–389.
[25] Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In CONCUR (Lecture Notes in Computer

Science), Vol. 4137. Springer, 233–247.
[26] K. Rustan M. Leino, Peter Müller, and Jan Smans. 2010. Deadlock-Free Channels and Locks. In ESOP (Lecture Notes in

Computer Science), Vol. 6012. Springer, 407–426.
[27] Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In POPL.

ACM, 561–574.
[28] Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In POPL. 385–399.
[29] Hongjin Liang and Xinyu Feng. 2018. Progress of concurrent objects with partial methods. PACMPL 2, POPL (2018),

20:1–20:31.
[30] Hongjin Liang, Xinyu Feng, and Zhong Shao. 2014. Compositional verification of termination-preserving refinement

of concurrent programs. In CSL-LICS. 65:1–65:10.
[31] Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. 2013. Characterizing Progress Properties of Concurrent

Objects via Contextual Refinements. In CONCUR (Lecture Notes in Computer Science), Vol. 8052. Springer, 227–241.
[32] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In ESOP. 290–310.

4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116

84 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

[33] Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner. 2018. A Concurrent Specification of POSIX
File Systems. In ECOOP (LIPIcs), Vol. 109. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 4:1–4:28.

[34] Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR (Lecture Notes in Computer Science),
Vol. 3170. Springer, 49–67.

[35] Susan S. Owicki and Leslie Lamport. 1982. Proving Liveness Properties of Concurrent Programs. ACM Trans. Program.

Lang. Syst. 4, 3 (1982), 455–495.
[36] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and Verifying Concurrent Algorithms with

Histories and Subjectivity. In ESOP (Lecture Notes in Computer Science), Vol. 9032. Springer, 333–358.
[37] Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In ESOP (Lecture Notes in Computer Science), Vol. 10201. Springer, 909–936.
[38] Moshe Y. Vardi. 1995. Alternating Automata and Program Verification. In Computer Science Today. Lecture Notes in

Computer Science, Vol. 1000. Springer, 471–485.

TaDA Live 85

Appendix
We present here omitted definitions and details of proofs. An extended version of this paper is

also available at https://arxiv.org/abs/1901.05750 [?].

A SOME PROOFS CONVENTIONS

A.1 Specification abbreviations

Here is a summary of all the abbreviations we use in writing specifications. The full hybrid
specification format is

𝑚; _;A ⊨ A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄h (𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉

The ∃𝑦 quantification is a normal existential quantification but its scope extends over both the
Hoare and the atomic postconditions. We omit it when 𝑦 does not occur in the triple.

A

𝑥 ≜

A

𝑥 ∈ Val

A

𝑥 ∈ 𝑋 ≜

A

𝑥 ∈ 𝑋 ↠⊥ 𝑋

A

𝑥1 ∈ 𝑋1 ↠𝑘 𝑋 ′
1, 𝑥2 ∈ 𝑋2 ↠𝑘 𝑋 ′

2 . ≜

A(𝑥1, 𝑥2) ∈ (𝑋1 × 𝑋2) ↠𝑘 (𝑋 ′
1 × 𝑋 ′

2).
An omitted pseudo-quantifier is to be understood as the trivial pseudo-quantifier

A

𝑥 ∈ AVal↠⊥ AVal,
for an unused 𝑥 .
The triples

𝑚, _,A ⊢
{
𝑃
}
C

{
𝑄

}
𝑚, _,A ⊢ A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃 (𝑥)

〉
C

〈
𝑄 (𝑥)

〉
are abbreviated with

𝑚; _;A ⊢
〈
𝑃
��
emp

〉
C

〈
𝑄

��
emp

〉
∀®𝑣0.𝑚; _;A ⊢ A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
®v0 � ®𝑣0

�� 𝑃 ′(𝑥)
〉
C ∃®𝑣1.

〈
®v0 � ®𝑣0 ∧ ®v1 � ®𝑣1

��𝑄 ′(𝑥)
〉

respectively, where ®v0 = pv(𝑃 (𝑥)), ®v1 = pv(𝑄 (𝑥)) \ ®v0, 𝑃 ′(𝑥) = 𝑃 (𝑥) [®𝑣0/®v0] and 𝑄 ′(𝑥) =

𝑄 (𝑥) [®𝑣0/®v0, ®𝑣1/®v1] (for technical reasons the atomic pre/post-conditions in the general triples
cannot contain program variables). In other words, the program variables mentioned in the atomic
pre/post-conditions refer to the value stored in them at the beginning of the execution of the
command. Most commonly, the program variables used this way are actually not modified by the
command.

A.2 Guard and Obligation Algebras

Defining a guard algebra can be tedious. In program proofs, we will define guard algebras by
generating them from some guard constructors and some axioms defining the guard operation.

Consider two common guard patterns in TaDA Live: the use of an exclusive guard and the u, l, k
pattern used to represent possession of a lock in ghost state.
An exclusive guard, e, is very commonly used to express some exclusive permission on some

shared resource, which cannot be composed with itself: i.e. e • e = ⊥. Local ownership of e is
exclusive in that no other thread can at the same time assert ownership of e. A ubiquitous use of
this guard is in representing the resource offered by a module.

The u, l, k pattern is commonly used to represent ownership of a lock guarding a resource. The
thread records its ownership of a lock by holding the ghost state k, which cannot be composed
with the guard u, recording the lock is unlocked: u • k = ⊥ The region holds the associated guard

https://arxiv.org/abs/1901.05750

86 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

l, which can be recombined with the guard k once the thread releases the lock to form the guard u:
u = l • k.

We explain the construction of a guard or obligations algebra from these axioms by introducing
some unsurprising auxiliary definitions.
Given a set 𝑋 , the set M(𝑋) ≜ 𝑋 → N is the set of multisets over 𝑋 ; ∅ is the empty multi-

set (i.e. the function mapping every element to 0) and ⊕ : M(𝑋) × M(𝑋) → M(𝑋) is multiset
union (i.e. the pointwise lifting of +). The expression H𝑥1, . . . , 𝑥𝑛I denotes the multiset contain-
ing the elements 𝑥1, . . . , 𝑥𝑛 . Given a set 𝑋 , the free commutative monoid over 𝑋 is the monoid
(M(𝑋), ⊕, ∅). Given a commutative monoid (𝑋, •, 0) and a congruence relation � ⊆ 𝑋 × 𝑋 , the
quotient (𝑋/�, •/�, [0]�) is a commutative monoid. Given a commutative monoid (𝑋, •, 0) and a
set𝑈 ⊆ 𝑋 with 0 ∉ 𝑈 , the PCM over 𝑋 induced by𝑈 is (𝑋 |𝑈 , •𝑈 , 0) where

𝑋 |𝑈 ≜ {𝑥 ∈ 𝑋 | ∀𝑢 ∈ 𝑈 . �𝑦 ∈ 𝑋 . 𝑥 = 𝑢 • 𝑦}
and for 𝑥,𝑦 ∈ 𝑋 |𝑈 , 𝑥 •𝑈 𝑦 = 𝑥 • 𝑦 if 𝑥 • 𝑦 ∈ 𝑋 |𝑈 , otherwise undefined.

For each guard algebra to be defined, we will introduce a number of symbols G1, . . . ,G𝑛 , called
guard constructors each with some guard domain dom(G𝑖) ⊆ AVal

𝑘𝑖 for some 𝑘𝑖 ∈ N. They induce
the set of guard terms GT ≜

⋃𝑛
𝑖=1 {G𝑖 (®𝑎) | ®𝑎 ∈ dom(G𝑖)}. By specifying some guard constructors,

a congruence � ⊆ M(GT) × M(GT) and a set 𝑈 ⊆ M(GT)/� one obtains the guard algebra
((M(GT)/�) |𝑈 , (⊕/�)𝑈 , [∅]�).
The guard constructors are specified by listing their domains, writing G𝑖 : 𝐷𝑖 to mean dom(G𝑖) =

𝐷𝑖 ⊆ AVal
𝑘𝑖 , as, in certain cases, we may want to further restrict the domain of the guard construc-

tors to simplify the reasoning.
The congruence � is specified as the smallest congruence satisfying given axioms of the form

HG𝑖1 (®𝑎𝑖1), . . . ,G𝑖𝑘 (®𝑎𝑖𝑘)I � HG𝑗1 (®𝑎 𝑗1), . . . ,G𝑗𝑘′ (®𝑎 𝑗𝑘′)I
which we write using the syntax

G𝑖1 (®𝑎𝑖1) • · · · • G𝑖𝑘 (®𝑎𝑖𝑘) = G𝑗1 (®𝑎 𝑗1) • · · · • G𝑗𝑘′ (®𝑎 𝑗𝑘′)
The set𝑈 is specified as the smallest set satisfying given axioms of the form[

HG𝑖1 (®𝑎𝑖1), . . . ,G𝑖𝑘 (®𝑎𝑖𝑘)I
]
�
∈ 𝑈

which we write using the syntax
G𝑖1 (®𝑎𝑖1) • · · · • G𝑖𝑘 (®𝑎𝑖𝑘) = ⊥

Example A.1. The guard algebra used in Example 4.1, is expressed by using two guard constructors
with empty domain, k and d, and axioms: k • k = ⊥, d • d = ⊥ Note that with no congruence
axioms, the induced congruence relation is equality. These induce the guard algebra with elements{
∅, HkI, HdI, Hk, dI

}
.

A.3 Levels

Region levels are used to remove the possibility of unsound duplication of resources by opening
regions. The presentation of the program proofs omits the level annotations to ease readability. The
levels can be unambiguously derived from the sequence of application of rules UpdReg and LiftA.
To see the problem consider a generic region t_𝑟 (𝑎); we have t_𝑟 (𝑎) ≡ t_𝑟 (𝑎) ∗ t_𝑟 (𝑎): this is the

essence of what it means for a region to be a shared resource. When we open a region however,
we obtain ownership of the contents of its interpretation I(t_𝑟 (𝑎)); the interpretation can contain
resources that are not shared, for example heap assertions, in which case we have I(t_𝑟 (𝑎)) .
I(t_𝑟 (𝑎)) ∗ I(t_𝑟 (𝑎)) ≡ False. Without constraining levels, one could start with t_𝑟 (𝑎), produce the
equivalent t_𝑟 (𝑎) ∗ t_𝑟 (𝑎), open the first region assertion with UpdReg or LiftA, then open the

TaDA Live 87

second region assertion and end up with False. Levels are a mean to avoid unsound derivations
that use the above chain of implications. A level _ in the context of a judgement records that all the
regions of level _ or higher might have been already opened and should not be opened again. The
rules that do open regions (rules UpdReg and LiftA) can only open a region of level _ if the level
in the context is _ + 1, and they record the operation by setting the context level to _, so that the
region cannot be opened again.

A.4 Region type specifications

— Abstract state domain. It can be tedious (and detrimental to readability) to always explicitly
write the domains of quantified variables in the assertions of program proofs, especially when
they can be easily inferred from context. Consider the case of regions. Some of the rules, for
exampleMkAtom, need the precise domain of the abstract state (∃𝑥 ∈ 𝑋) because it needs to match
the pseudo-quantifier’s domain (

A

𝑥 ∈ 𝑋). To improve readability, we adopt the following strategy.
Suppose the region type t has abstract state in the domain 𝐴. We can define the interpretation
function so that it constrains the domain of the abstract state accordingly: I(t_𝑟 (𝑎)) = 𝑎 ∈ 𝐴 ∧ · · · .
Then we trivially have that _′;A ⊨ ∃𝑎. t_𝑟 (𝑎) ⇛ ∃𝑎 ∈ 𝐴. t_𝑟 (𝑎). We thus can omit the domains
from existential quantification and implicitly apply rule Cons whenever the domain information is
needed in the proof.
To further ease the specification of region types, when defining a new region type we will

introduce the domain of the corresponding abstract state, and omit the obvious constraint from the
interpretation definition.

— Fixed parameters. It is very common to have a product domain as abstract state of regions, as
one needs to assemble in an abstract state many bits of information that characterise region’s
state. Typically, the abstract state domain 𝐴 can be seen as the product of two domains 𝐹 × 𝑆 , the
domain of the fixed parameters 𝐹 and the domain of the non-fixed parameters 𝑆 . (Both 𝐹 and 𝑆 can be
themselves products of simpler domains.) The fixed parameters are set at the point of creation of the
region, and can never be updated; they typically define the “interface” of the region. For example, if
the address of a lock module instance 𝑥 is the fixed parameter of a hypothetical region lock𝑟 (𝑥, 𝑙)
and 𝑙 ∈ {0, 1} the non-fixed parameter representing the state of the lock. When introducing a
new region type we will specify which parameters are fixed, and they will be omitted from the
region interference specification, as they are left untouched by every transition. For example, for
the region lock𝑟 (𝑥, 𝑙) above, we may write g : (0, 0) ⇝ (1, k) and g : (1, k) ⇝ (0, 0) to denote
g : ((𝑥, 0), 0) ⇝ ((𝑥, 1), k) and g : ((𝑥, 1), k) ⇝ ((𝑥, 0), 0).

— Interference protocols and atomicity contexts. Definition 3.13 requires Tt to be monotone in the
guards, reflexive and closed under obligation frames. Since writing the whole function can be
tedious and redundant, we will only write a number of expressions of the form

𝐺 : (𝑎1,𝑂1) ⇝ (𝑎2,𝑂2) (25)

which will set Tt (𝐺) ∋ {
(
(𝑎1,𝑂1), (𝑎2,𝑂2)

)
}, and implicitly complete the function by closing Tt

under the properties above.
Similarly, atomicity contexts associate to some region identifier recordsA(𝑟) = (𝑋, 𝑘, 𝑋 ′, 𝑅) that

have (unguarded) transition relations as their last component 𝑅. We therefore borrow the syntax
from (25), and write 𝑅 = (𝑎1,𝑂1) ⇝ (𝑎2,𝑂2) to specify 𝑅 as the minimal relation that include such
relations and is closed under obligation frames.

88 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

A.5 Proof patterns

There are some recurring patterns in TaDA Live proofs, which we summarise here to help the
reader navigate the examples.

— The exclusive guard. Take for example a concurrent counter module. Abstractly we have a (fixed)
location 𝑥 for the module instance and an abstract state 𝑛 ∈ N representing the current value of
the counter. Since this is a concurrent counter it uses internally shared resources. We therefore
have a region cnt𝑟 (𝑥, 𝑛) encapsulating the shared internal resources of the counter. From the
perspective of the client, however, at the moment of creation of the counter with, say, an operation
makeCounter(), the counter is exclusively owned by the client. This, for example, is reflected in
the fact that, until the client shares the counter or invokes operations on it, the value of the counter
will be stably 0. To represent this fact, one typically defines an exclusive guard e guarding each
transition of the region interference: e.g. e : (𝑛,𝑂1) ⇝ (𝑚,𝑂2). Then the makeCounter() operation
can be given the specification

⊢
{
emp

}
xB makeCounter()

{
∃𝑟 . cnt𝑟 (x, 0) ∗ ⌈e⌉𝑟

}
which gives to the client the stable assertion cnt𝑟 (𝑥, 0) ∗ ⌈e⌉𝑟 . (Note how cnt𝑟 (𝑥, 0) is not stable.)
To re-share the counter, the client will create its own region encoding the invariants governing the
interaction over the counter (and the other resources of the client) the interpretation of which will
contain cnt𝑟 (𝑥, 0) ∗ ⌈e⌉𝑟 .

Note that the assertion cnt𝑟 (𝑥, 0) ∗ ⌈e⌉𝑟 has a very different meaning if occurring in the atomic

precondition of a triple, as opposed to the Hoare precondition: the resources in the atomic precon-
dition are not owned by the local thread, but only acquired instantaneously at the linearisation
point. For example, in the triple

⊢ A

𝑛 ∈ N.
〈
cnt𝑟 (x, 𝑛) ∗ ⌈e⌉𝑟

〉
incr(x)

〈
cnt𝑟 (x, 𝑛 + 1) ∗ ⌈e⌉𝑟

〉
the exclusivity of e is only granted instantaneously to the thread acting on it atomically, i.e. either
the environment during the interference phase as allowed by the pseudo-quantifier, or the local
thread at the linearisation point.
Since this pattern is ubiquitous, we reserve the e guard constructor for this use, and will omit

the e • e = ⊥ axiom when specifying guard algebras.

A.6 Modules

TaDA Live is a logics that emphasizes modularity of the proofs. One aspect of this is that when a
program is naturally structured as a collection of modules, one would want the proof of correctness
to be decomposed into independent proofs of each module exporting some specifications for the
externally accessible operations, and a proof that the client of these modules is correct, which
depends only on these abstract module specifications.
In our model, a module is nothing but a conceptually related set of operations f1, . . . , f𝑛 that

are defined in a let statement: let f1(®x1)=C1 in . . .let f𝑛(®x𝑛)=C𝑛 in C. Here C is what
we call “client” of a module offering operations f1, . . . , f𝑛 . The operation deals with let statements
by populating a function 𝜑 associating each function name f𝑖 to its formal parameters ®x𝑖 and its
implementation C𝑖 .
Similarly, the proof of correctness of C, will need to fetch the abstract specifications of the

functions (which appear as free names in C) from some mapping Φ from function names to their
specifications. The fact that the implementation of each operation satisfies its specification is
checked in the proof derivation for the let statement (rule Let) but then the proof of the client and
of the module are done separately.

TaDA Live 89

For this reason, we present proofs of just a module against its abstract specifications, which
can be used as if they were axioms in the proof of any client using them. To talk about modules
independently of their clients we introduce the notation def f(x) {C} which can be understood
as populating an entry of 𝜑 for f. We will then prove some specification for f which will populate
an entry of Φ for f.
In the proof of some client, we will recall the module specifications that are assumed in Φ, and

use rule Call to handle the calls to the operations of the module. We will omit from the proof
outlines Φ and the applications of rule Call for readability.

A.7 Proof outlines

In program proof outlines, we adopt a number of notational conventions. First, unless it involves a
viewshift or we want to highlight it, we will apply rule Cons without mentioning it. Similarly, we
omit the obvious applications of rules Var, Call and SubPq and the axioms (i.e. the rules associated
with primitive commands).

Next, in outline such as
𝑚; _;A ⊢

A

𝑥 ∈ 𝑋 ↠ 𝑋 ′.〈
𝑃 (𝑥)

〉

ou
te

r

〈
𝑃 ′(𝑥)

〉

in
ne

r ...〈
𝑄 ′(𝑥)

〉〈
𝑄 (𝑥)

〉

...

𝑚; _;A ⊢ A

𝑥 ∈ 𝑋 ↠ 𝑋 ′.
〈
𝑃 ′(𝑥)

〉
C

〈
𝑄 ′(𝑥)

〉 inner

𝑚; _;A ⊢ A

𝑥 ∈ 𝑋 ↠ 𝑋 ′.
〈
𝑃 (𝑥)

〉
C

〈
𝑄 (𝑥)

〉 outer

the specification of the inner step inherits the context and the pseudo-quantifier of the specifica-
tion of the outer step, as in the derivation on the right.

B THE TADA LIVE PROOF SYSTEM

In this section, we present the full proof system of TaDA Live.
For brevity we use the metavariable

↠
𝑋 to range over expressions of the form 𝑋1 ↠𝑘 𝑋2 and is

used in rules when the pseudo-quantification is simply copied verbatim from premise to conclusion.
In the rules we use the following abbreviation:

⊢A 𝑃 Q 𝑘 ≜ ∀𝑟 ∈ RId. ⊢A 𝑃 ⇒ 𝑟 Q 𝑘

𝑘 ·⩾ 𝑛 ≜ ∀𝑘 ′ > 𝑘. 𝑘 ′ ⩾ 𝑛

The _-safety condition is defined in Appendix B.2.1 and can be typically proven by using Lemma 4.2.

B.1 Liveness rules

For reference we reproduce the liveness-related rules.
∀𝑥 ∈ 𝑋 . ⊢_;A 𝑃a (𝑥) ∗𝑇 ⇒ 𝑥 ∈ 𝑋 ′

𝑛; _;A ⊢ 𝐿 𝑀−−−↠ 𝑇 𝑚 ⩾ 𝑛 𝑘 ·⩾ 𝑛 pv(𝐿) ∩ mod(C) = ∅
𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 .
〈
𝑃
h
∗ 𝐿

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦) ∗ 𝐿

��𝑄a (𝑥)
〉 LiveCG

∀𝛽 ≤ 𝛽0 .𝑚(𝛽); _;A ⊢ 𝐿 𝑀−−−↠ 𝑇 (𝛽) ∀𝛽 ≤ 𝛽0 . ⊢A 𝑃 (𝛽) Q𝑚(𝛽) ⩽ 𝑚
∀𝛼.A ⊨ ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 stable pv(𝑇, 𝐿,𝑀) ∩ mod(C) = ∅

∀𝛽 ≤ 𝛽0 .∀𝑏 ∈ Bool.𝑚; _;A ⊢Φ
{
𝑃 (𝛽) ∗ (𝑏 .⇒ 𝑇 (𝛽)) ∧ B

}
C

{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛾 ≤ 𝛽 ∗ (𝑏 .⇒ 𝛾 < 𝛽)

}
𝑚; _;A ⊢Φ

{
𝑃 (𝛽0) ∗ 𝐿

}
while(B){C}

{
∃𝛾 . 𝑃 (𝛾) ∗ 𝐿 ∧ ¬B ∧ 𝛾 ≤ 𝛽0

} While

90 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

𝑚1; _;A ⊢Φ
{
𝑃1

}
C1

{
𝑄1

}
⊢A 𝑄1 Q𝑚2 ⩽ 𝑚

𝑚2; _;A ⊢Φ
{
𝑃2

}
C2

{
𝑄2

}
⊢A 𝑄2 Q𝑚1 ⩽ 𝑚

𝑚; _;A ⊢Φ
{
𝑃1 ∗ 𝑃2

}
C1 ∥ C2

{
𝑄1 ∗𝑄2

} Par

B.1.1— The Environment liveness rules. The Environment liveness rules use the imprA condition
(Definition 4.3) recalled here for convenience:

Definition B.1 (imprA). Given assertions 𝐿(𝛼), 𝐿′(𝛼) and 𝑇 , the condition imprA (𝐿′, 𝐿,𝑇) holds
if and only if, for arbitrary 𝜎 ∈ Store, letting

𝑙 (𝛼) = WJ𝐿(𝛼)K𝜎A 𝑙 ′(𝛼) = WJ𝐿′(𝛼)K𝜎A 𝑡 = WJ𝑇 ∗ TrueK𝜎A
the following holds:

∀𝛼1, 𝛼2 ≥ 𝛼1. Ra

A (𝑙 ′(𝛼1)) ∩ 𝑙 (𝛼2) ⊆ 𝑙 ′(𝛼1) ∪ 𝑡

We reproduce below for completeness the rules to prove the environment liveness condition.
;A ⊨ 𝐿 stable ⊢;A 𝐿 ⇒ 𝐿 ∗ ∃𝛼.𝑀 (𝛼)

𝑚; _;A ⊢ 𝐿 ∗𝑀 (𝛼) : 𝐿 ∗𝑀 (𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿 𝑀−−−↠ 𝑇

EnvLive

𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿1 (𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿2 (𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿1 (𝛼) ∨ 𝐿2 (𝛼) −−↠ 𝑇
ECase

∀𝑥 ∈ 𝑋 .𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿(𝑥, 𝛼) −−↠ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : ∃𝑥 ∈ 𝑋 . 𝐿(𝑥, 𝛼) −−↠ 𝑇
EQuant

∀𝛼. ⊢A 𝑇 ′(𝛼) ⇒ 𝑇

𝑚; _;A ⊢ 𝐿(𝛼) : 𝑇 ′(𝛼) −−↠ 𝑇
LiveT

imprA (𝐿′, 𝐿,𝑇) ∀𝛼. ⊢A 𝐿′(𝛼) ▷ lay(𝑂 (𝑥))
_ < _′ ∀𝛼. ⊢A 𝐿′(𝛼) ⇒ ∃𝑥 . t_𝑟 (𝑥) ∗ ⌊𝑂 (𝑥)⌋E𝑟 ∗ True ∧𝑚 > lay(𝑂 (𝑥))

𝑚; _′;A ⊢ 𝐿(𝛼) : 𝐿′(𝛼) −−↠ 𝑇
LiveO

imprA (𝐿′, 𝐿,𝑇) 𝑚 > 𝑘 ∀𝛼. ⊢A 𝐿′(𝛼) ▷ 𝑘
(𝑋 ↠𝑘 𝑋 ′) = live(A, 𝑟) _ < _′ ⊢A 𝐿′(𝛼) ⇒ ∃𝑥 ∈ 𝑋 \ 𝑋 ′. t_𝑟 (𝑥) ∗ 𝑟 Z⇒ ♢ ∗ True

𝑚; _′;A ⊢ 𝐿(𝛼) : 𝐿′(𝛼) −−↠ 𝑇
LiveA

B.2 Atomicity rules

We first give the formal definition of _-safety and prove its properties, and then give the general
forms of rules LiftA, MkAtom and UpdReg, which are the ones dealing with proving atomicity.

B.2.1— The _-safety condition. The rules of TaDA Live dealing with opening and closing regions
(rules UpdReg and LiftA) require the _-safety side condition for the postcondition. While the
definition of _-safety is technical, its intuition is simple: those are the assertions that preserve their
meaning when interpreted at level _ or at level _ + 1. The only possible contradictions arising by
increasing the level come from assertions about the state and environment obligations of regions
that are open at _ but not at _ + 1.

Definition B.2 (Havoc). Let _ ∈ Lvl. The set closed_2
_1
(𝜌) ≜ {𝑟 | 𝜌 (𝑟) = (_, _, _), _1 ≤ _ < _2} is

the set of region ids of 𝜌 that are closed at level _2 but not at level _1. We define the function on

TaDA Live 91

worlds:

havoc_ (ℎ, 𝜌,𝛾, 𝜒, \, b) ≜

 (ℎ, 𝜌 ′, 𝛾, 𝜒, \, b ′)

��������
closed_+1

_
(𝜌) = {𝑟1, . . . , 𝑟𝑛},

𝜌 (𝑟𝑖) = (t𝑖 , _, _), 𝑏𝑖 ∈ AVal,𝑤𝑖 ∈ It𝑖 J𝑟𝑖 , _, 𝑏𝑖K,
𝜌 ′ = 𝜌 [𝑟1 ↦→ (t1, _, 𝑏1), . . . , 𝑟1 ↦→ (t𝑛, _, 𝑏𝑛)],
𝑂 ′
𝑖 • \𝑤𝑖

(𝑟𝑖) = b (𝑟𝑖), b ′ ⊒ b [𝑟1 ↦→ 𝑂 ′
1, . . . , 𝑟𝑛 ↦→ 𝑂 ′

𝑛]

We extend it to a function on sets of worlds in the obvious way: havoc_ (𝑝) ≜

⋃
𝑤∈𝑝

havoc_ (𝑤).

Definition B.3 (_-safety). A set 𝑝 ∈ World
�
A is _-safe if 𝑝 = havoc_ (𝑝). An assertion 𝑃 is _-safe,

written A ⊨ 𝑃 _-safe if, for all 𝜍 ,WJ𝑃K𝜍A is _-safe.

Since proving _-safety in general involves meddling with the semantics of assertions, we provide
the following lemma that can be used to immediately prove all the _-safety side conditions involved
in our program proofs.

Lemma B.4. The properties below hold, for arbitrary _ ∈ Lvl:

(1) emp, E1 ↦→ E2 and B are _-safe.

(2) ⌈𝐺⌉𝑟 and ⌊𝑂⌋L𝑟 are both _-safe.

(3) If _′ < _, then t_
′

𝑟 (𝑎) ∗ ⌊𝑂⌋E𝑟 is _-safe.

(4) If 𝑃,𝑄 are both _-safe, then so are 𝑃 ∧𝑄 , 𝑃 ∨𝑄 , and 𝑃 ∗𝑄 .
(5) If 𝑃 (𝑣) is _-safe for all 𝑣 ∈ AVal, then ∃𝑥 . 𝑃 (𝑥) is _-safe.

B.2.2— Generalised atomicity rules. The following rules are the general forms of rules LiftA,
MkAtom and UpdReg of Fig. 9.

_ < _′ 𝑟 ∉ dom(A)
A ′ = A[𝑟 ↦→ (𝑋, 𝑘, 𝑋 ′,𝑇)] 𝑇 ⊆ Tt (G) 𝑅 = io(𝑇) ∀𝑥 ∈ 𝑋 .A ⊨ t_𝑟 (𝑥) ∗ ⌈G⌉𝑟 stable

𝑚; _′;A ′ ⊢Φ
{
𝑃
h
∗ ∃𝑥 ∈ 𝑋 . t_𝑟 (𝑥) ∗ 𝑟 Z⇒ ♦

}
C

{
∃𝑥,𝑦. 𝑅(𝑥,𝑦) ∗𝑄

h
(𝑥,𝑦) ∗ 𝑟 Z⇒ (𝑥,𝑦)

}
𝑚; _′;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h

�� t_𝑟 (𝑥) ∗ ⌈G⌉𝑟
〉
C ∃𝑦.

〈
𝑄
h
(𝑥,𝑦)

�� t_𝑟 (𝑦) ∗ ⌈G⌉𝑟 ∗ 𝑅(𝑥,𝑦)
〉 MkAtomG

𝑟 ∈ dom(A) A′ = A[𝑟 ↦→ ⊥]
⊢A 𝑃

h
⇒ emp

𝑟
Ob

⊢A 𝑃a (𝑥) ⇒ emp
_+1
Ob

⊢A 𝑄
h
(𝑥, 𝑦) ⇒ emp

𝑟
Ob

⊢A 𝑄𝑖 (𝑥, 𝑦, 𝑧) ⇒ emp
_+1
Ob

A ⊨ 𝑃
h
_-safe A ⊨ 𝑃a (𝑥) _-safe

A ⊨ 𝑄
h
(𝑥, 𝑦) _-safe A ⊨

(
(𝑅 (𝑥, 𝑧) ∧𝑄1 (𝑥, 𝑦, 𝑧))

∨(𝑥 = 𝑧 ∧𝑄2 (𝑥, 𝑦))

)
_-safe

{ ((𝑥,O0), (𝑧,O1 (𝑥, 𝑦))) | 𝑥 ∈ 𝑋 ∧ (𝑅 (𝑥, 𝑧) ∨ 𝑥 = 𝑧) ∧ 𝑦 ∈ 𝑌 (𝑥) } ⊆ tr(A, 𝑟)

𝑚;_; A′ ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

������ I(t_𝑟 (𝑥))
∗ 𝑃a (𝑥) ∗ ⌊O0 ⌋L𝑟

〉
C ∃𝑦.

〈
𝑄

h
(𝑥, 𝑦) ∧ 𝑦 ∈ 𝑌 (𝑥)��� ∃𝑧. I(t_𝑟 (𝑧)) ∗ ⌊O1 (𝑥, 𝑦) ⌋L𝑟 ∗

(
(𝑅 (𝑥, 𝑧) ∧𝑄1 (𝑥, 𝑦, 𝑧))

∨(𝑥 = 𝑧 ∧𝑄2 (𝑥, 𝑦))

)〉

𝑚;_+1; A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
∗ ⌊O0 ⌋L𝑟�� t_𝑟 (𝑥) ∗ 𝑃a (𝑥) ∗ 𝑟 Z⇒ ♦

〉
C ∃𝑦.

〈
𝑄

h
(𝑥, 𝑦) ∗ ⌊O1 (𝑥, 𝑦) ⌋L𝑟 ∧ 𝑦 ∈ 𝑌 (𝑥)��� ∃𝑧. t_𝑟 (𝑧) ∗ (

(𝑅 (𝑥, 𝑧) ∧𝑄1 (𝑥, 𝑦, 𝑧) ∗ 𝑟 Z⇒ (𝑥, 𝑧))
∨ (𝑥 = 𝑧 ∧ 𝑄2 (𝑥, 𝑦) ∗ 𝑟 Z⇒ ♦)

)〉 UpdRegG

92 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

⊢A 𝑃
h
⇒ emp

𝑟
Ob

⊢A 𝑄
h
(𝑥,𝑦) ⇒ emp

𝑟
Ob

⊢A 𝑃a (𝑥) ⇒ emp
_+1
Ob

⊢A 𝑄a (𝑥,𝑦, 𝑧) ⇒ emp
_+1
Ob

A ⊨ 𝑃
h
_-safe A ⊨ 𝑃a (𝑥) _-safe

A ⊨ 𝑄
h
(𝑥,𝑦) _-safe A ⊨ 𝑄a (𝑥,𝑦, 𝑧) ∧ 𝑅(𝑥, 𝑧) _-safe

𝑟 ∈ dom(A) ⇒ 𝑅 = 𝑖𝑑 { ((𝑥,O1), (𝑧,O2 (𝑥,𝑦))) | 𝑥 ∈ 𝑋 ∧ 𝑅(𝑥, 𝑧) ∧ 𝑦 ∈ 𝑌 (𝑥) } ⊆ Tt (G)

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

������I(t_𝑟 (𝑥)) ∗ 𝑃a (𝑥) ∗ ⌈G⌉𝑟 ∗ ⌊O1⌋L𝑟

〉
C ∃𝑦.

〈𝑄
h
(𝑥,𝑦) ∧ 𝑦 ∈ 𝑌 (𝑥)�� ∃𝑧.I(t_𝑟 (𝑧)) ∗𝑄a (𝑥,𝑦, 𝑧)
∗ ⌊O2 (𝑥,𝑦)⌋L𝑟 ∧ 𝑅(𝑥, 𝑧)

〉
𝑚; _+1;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
∗ ⌊O1⌋L𝑟

���� t_𝑟 (𝑥) ∗ 𝑃a (𝑥) ∗ ⌈G⌉𝑟
〉
C ∃𝑦.

〈
𝑄
h
(𝑥,𝑦) ∗ ⌊O2 (𝑥,𝑦)⌋L𝑟 ∧ 𝑦 ∈ 𝑌 (𝑥)�� ∃𝑧. t_𝑟 (𝑧) ∗𝑄a (𝑥,𝑦, 𝑧) ∧ 𝑅(𝑥, 𝑧)

〉 LiftAG

B.3 General forms

The following rules are the general forms of some of the rules in Fig. 9.
∀𝑥 ∈ 𝑋 . ⊢A 𝑅

h
∗ 𝑅a (𝑥) Q𝑚

pv(𝑅
h
, 𝑅a (𝑥)) ∩ mod(C) = ∅ A ⊨ 𝑅

h
stable ∀𝑥 ∈ 𝑋 .A ⊨ 𝑅a (𝑥) stable

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

�� 𝑃a (𝑥) 〉
C ∃𝑦.

〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
∗ 𝑅

h

�� 𝑃a (𝑥) ∗ 𝑅a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦) ∗ 𝑅

h

��𝑄a (𝑥,𝑦) ∗ 𝑅a (𝑥)
〉 Frame

A ⊨ 𝑃
h
∗ 𝑃 stable ∀𝑥 ∈ 𝑋,𝑦.A ⊨ 𝑄 (𝑥,𝑦) stable

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

�� 𝑃 ∗ 𝑃a (𝑥)
〉
C ∃𝑦.

〈
𝑄
h
(𝑥,𝑦)

��𝑄 (𝑥,𝑦) ∗𝑄a (𝑥,𝑦)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
∗ 𝑃

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦) ∗𝑄 (𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉 AtomWG

𝑚; _;A ⊢Φ
A

𝑥 ∈
↠
𝑋, 𝑧 ∈ 𝑍 .

〈
𝑃
h

�� 𝑃a (𝑥, 𝑧)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦, 𝑧)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

��∃𝑧 ∈ 𝑍 . 𝑃a (𝑥, 𝑧)
〉
C ∃𝑦.

〈
𝑄
h
(𝑥,𝑦)

��∃𝑧 ∈ 𝑍 .𝑄a (𝑥,𝑦, 𝑧)
〉 A∃ElimG

𝑘1; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉

𝑘1 ⩽ 𝑘2

𝑘2; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉 LayWG

B.4 Logical manipulation rules

The rules below allow for basic logical manipulation.
A ⊨ 𝑃

h
stable

_;A ⊨ 𝑃
h
⇛ 𝑃 ′

h

∀𝑥 ∈ 𝑋 . _;A ⊨ 𝑃a (𝑥)⇚⇛ 𝑃 ′
a
(𝑥)

∀𝑥 ∈ 𝑋,𝑦. A ⊨ 𝑄
h
(𝑥,𝑦) stable

∀𝑥 ∈ 𝑋,𝑦. _;A ⊨ 𝑄 ′
h
(𝑥,𝑦)⇛𝑄

h
(𝑥,𝑦)

∀𝑥 ∈ 𝑋,𝑦. _;A ⊨ 𝑄 ′
a
(𝑥,𝑦)⇛𝑄a (𝑥,𝑦)

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃 ′
h

�� 𝑃 ′
a
(𝑥)

〉
C ∃𝑦.

〈
𝑄 ′
h
(𝑥,𝑦)

��𝑄 ′
a
(𝑥,𝑦)

〉
𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉 Cons

∀𝑣 ∈ 𝑋 . 𝑚; _;A ⊢Φ
{
𝑃 (𝑣)

}
C

{
𝑄

}
𝑚; _;A ⊢Φ

{
∃𝑥 ∈ 𝑋 .𝑃 (𝑥)

}
C

{
𝑄

} ∃Elim

∀𝑘 ⩽ 𝑚.𝑘 ; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
(𝑘) ∧ 𝑘 ⩽ 𝑚

�� 𝑃a (𝑘, 𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑘, 𝑥,𝑦)

��𝑄a (𝑘, 𝑥,𝑦)
〉

∀𝑘 ⩽ 𝑚.𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
(𝑘)

�� 𝑃a (𝑘, 𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑘, 𝑥,𝑦)

��𝑄a (𝑘, 𝑥,𝑦)
〉 QL

𝑓 : 𝑋 → 𝑌 𝑌 ′ = 𝑓 (𝑋 ′) ∀𝑥 ∈ 𝑋 . ⊢A 𝑃 ′
a
(𝑥) ⇔ 𝑃a (𝑓 (𝑥))

∀𝑥 ∈ 𝑋, 𝑧. ⊢A 𝑄
h
(𝑓 (𝑥), 𝑧) ⇒ 𝑄 ′

h
(𝑥, 𝑧) ∀𝑥 ∈ 𝑋, 𝑧. ⊢A 𝑄a (𝑓 (𝑥), 𝑧) ⇒ 𝑄 ′

a
(𝑥, 𝑧)

𝑚; _;A ⊢Φ

A

𝑦 ∈ 𝑌 ↠𝑘 𝑌 ′.
〈
𝑃
h

�� 𝑃a (𝑦)〉 C ∃𝑧.
〈
𝑄
h
(𝑦, 𝑧)

��𝑄a (𝑦, 𝑧)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h

�� 𝑃 ′
a
(𝑥)

〉
C ∃𝑧.

〈
𝑄 ′
h
(𝑥, 𝑧)

��𝑄 ′
a
(𝑥, 𝑧)

〉 SubPq

TaDA Live 93

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′′.
〈
𝑃
h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉

𝑋 ′ ⊆ 𝑋 ′′ ⊆ 𝑋

𝑚; _;A ⊢Φ

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃
h

�� 𝑃a (𝑥)〉 C ∃𝑦.
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉 LiveW

B.5 Axioms

𝑚; _;A ⊢Φ
{
E ¤≥ 0

}
xB alloc(E)

{∗E−1
𝑖=0 x + i ↦→ _

} Alloc

𝑚; _;A ⊢Φ
{
E ↦→ _

}
dealloc(E)

{
emp

} Dealloc

𝑚; _;A ⊢Φ

A

𝑣 .
〈
E ↦→ 𝑣

〉
xB [E]

〈
E ↦→ 𝑣 ∧ x = 𝑣

〉 Read

𝑚; _;A ⊢Φ

A

𝑣 .
〈
E1 ↦→ 𝑣

〉
[E1]B E2

〈
E1 ↦→ E2

〉 Mutate

𝑚; _;A ⊢Φ

A

𝑣 .

〈
E1 ↦→ 𝑣

〉
xB CAS(E1,E2,E3)

〈
(x = 1 ∧ E1 ↦→ E3 ∧ 𝑣 = E2) ∨
(x = 0 ∧ E1 ↦→ 𝑣 ∧ 𝑣 ≠ E2)

〉 CAS

𝑚; _;A ⊢Φ

A

𝑣 .
〈
E1 ↦→ 𝑣

〉
xB FAS(E1,E2)

〈
E1 ↦→ E2 ∧ x = 𝑣

〉 FAS

B.6 Standard Hoare rules

𝑚; _;A ⊢Φ
{
𝑃
}
C1

{
𝑅
}

𝑚; _;A ⊢Φ
{
𝑅
}
C2

{
𝑄

}
𝑚; _;A ⊢Φ

{
𝑃
}
C1;C2

{
𝑄

} Seq

𝑚; _;A ⊢Φ
{
𝑃 ∧ B

}
C1

{
𝑄

}
𝑚; _;A ⊢Φ

{
𝑃 ∧ ¬B

}
C2

{
𝑄

}
𝑚; _;A ⊢Φ

{
𝑃
}
if(B){C1}else{C2}

{
𝑄

} If

x ∉ fv(𝑃
h
) ∪ fv(𝑄

h
) ∪ fv(E) 𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
∧ x = E

�� 𝑃a (𝑥)〉 C 〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

�� 𝑃a (𝑥)〉 var x=E in C
〈
𝑄
h
(𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉 Var

(
®x, A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h

�� 𝑃a (𝑥)〉 · ∃𝑦.
〈
𝑄
h
(𝑥,𝑦, ret)

��𝑄a (𝑥,𝑦)
〉
𝑚;_;A

)
∈ Φ(f)

𝑚; _;A ⊢Φ

A

𝑥 ∈
↠
𝑋 .

〈
𝑃
h
[®E/®x]

�� 𝑃a (𝑥)〉 zB f(®E) ∃𝑦.
〈
𝑄
h
(𝑥,𝑦, z)

��𝑄a (𝑥,𝑦)
〉 Call

pv(S) ⊆ ®x ∪ {ret} f ∉ dom(Φ) Φ′ = Φ[f ↦→ (®x, S)] ⊢Φ C1 : S1 ⊢Φ′ C2 : S2

⊢Φ let f(®x)=C1 in C2 : S2
Let

𝑃,𝑄 ∈ SL ∀𝑥 ∈ 𝑋 .⊥; 0; ∅ ⊢Φ
{
𝑃 (𝑥)

}
C

{
𝑄 (𝑥)

}
⊥; 0; ∅ ⊢Φ

A

𝑥 ∈ 𝑋 .
〈
𝑃 (𝑥)

〉
⟨C⟩

〈
𝑄 (𝑥)

〉 PrAt

B.7 On Stablity Checks

A triple is well-defined, according to Definition 3.24, if the Hoare pre- and post-conditions are both
stable assertions. The rules all assume the triples in the premises are well-defined and ensure that
the triple in the conclusion is well-defined as well. The only exceptions are rulesMkAtomG, SubPq,
and ∃Elim, where the Hoare pre-/post-conditions should be checked for stability to ensure the
conclusion is a well-defined triple. We omitted these stability checks from these rules to improve
readability.

In practice, however, this way of handling stability has a drawback: if one starts with a goal that
has unstable pre-/post-conditions, one would only see the mistake much further up in the proof,
typically at applications of AtomW or Frame (which requires stability of the frames) just before

94 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

applications of the axioms. Therefore, in practice, to make the proof fail early in case of mistakes,
one would want to additionally check stability at the top-level goal, and applications of Par.

C CASE STUDY: LOCK-COUPLING SET

We develop the proof of a lock-coupling set module, which represents a set of integer numbers
using an ordered linked list. The module interface presents three operations, add, remove and
member for adding and removing elements from the abstract set representing the module’s state, as
well as checking membership of an integer in this set.

Each cell of the linked list contains either a value from this set or ±∞ (representing dummy
beginning and end nodes respectively), a pointer to a lock and a pointer to the next cell of the
linked list (null for the final cell, with value ∞). The values of the cells in the linked list are sorted
in strictly increasing order.

The value and lock associated with a cell in the linked list are immutable, however, the module’s
protocol allows a thread holding the lock associated with a cell to change the value of the pointer
to the next cell, allowing cells to be added and removed from the linked list.
The internal operation locate performs a traversal of the linked list using hand-over-hand

locking so as to, given some value 𝑣 , find and lock the two adjacent cells with values 𝑣 ′ and 𝑣 ′′ such
that 𝑣 ′ < 𝑣 ≤ 𝑣 ′′. All the operations would use locate to obtain ownership of the nodes that they
need to modify.

To perform this hand-over-hand locking, the locate operationmust hold the lock associated with
a cell while locking the lock associated with the next, therefore the layers of the locks associated
with each cell of the linked list must strictly decrease as the list is traversed.

As we explained in Section 5.5, the example is challenging for the handling of layers. Intuitively,
we want to associate layers with each lock in the list, in strictly decreasing order. This represent
the dependecies between the locks introduced by the order of the traversal: the release of lock
at position 𝑖 from the head depends on the liveness of the lock at position 𝑖 + 1. This introduces
two challenges: we need to associate different layers to each instance of a lock while the lock
specifications mention fixed layers; and we need to dynamically reassign layers to locks as the list
grows. As we already anticipated, we can solve both challenges by a suitable generalisation of the
lock specifications. Let us first introduce this generalisation formally, and then use it for the proof
of the lock-coupling set.

C.1 Interlude: a Generalisation of Fair Lock Specifications

We generalise the fair lock specifications we used for the CLH lock in three ways:

(1) we parametrise the specifications with client-definable layer maps;
(2) we provide a viewshift to the client with which it is possible to reassign layers;
(3) we add the deleteLock operation since the lock-coupling set’s remove operation disposes

of the removed cells; we omit its implementation and proof as it is standard.

First let us recall the definition of a layer map. Given two partial orders (L1, ⩽1,⊤1,⊥1) and
(L2, ⩽2,⊤2,⊥2), a function [: L1 → L2 is strictly monotone if ∀𝑚,𝑛 ∈ L1.𝑚 <1 𝑛 ⇒ [(𝑚) <2
[(𝑛). A layer map [: L1 →lay L2 is a strictly monotone function between the two partial orders.

TaDA Live 95

Let _clh − 2 be the level of the lclh region used in the proof of the CLH lock. We generalise the
client-facing CLH lock specifications as follows:

∃(Lclh, ⩽clh,⊤clh,⊥clh).∀[: Lclh →lay L .

[(⊤clh); _clh ⊢ A

𝑙 ∈ {0, 1} ↠[(⊥clh) {0}.
〈
P(𝑠, 𝜋)

��
L[(𝑠, x, 𝑙)

〉
lock(x)

〈
P(𝑠, 𝜋)

��
L[(𝑠, x, 1) ∧ 𝑙 = 0

〉
[(⊥clh); _clh ⊢

〈
L[(𝑠, x, 1)

〉
unlock(x)

〈
L[(𝑠, x, 0)

〉
[(⊥clh); _clh ⊢

{
emp

}
makeLock()

{
∃𝑠 . L[(𝑠, ret, 0) ∗ P(𝑠, 1)

}
[(⊥clh); _clh ⊢

{
L[(𝑠, x, _) ∗ P(𝑠, 1)

}
deleteLock(x)

{
emp

}
In particular, the abstract predicate L[(𝑠, x, 𝑙) represents a lock resource with abstract identifier 𝑠 ∈
Sclh (i.e. a pair of region identifiers; the client will treat this type opaquely), concrete address 𝑥 ∈
Addr, and abstract state 𝑙 ∈ {0, 1}.

Moreover, the specifications would export to the client the following viewshifts, for every _ ≥ _clh,
and every [, [′ : Lclh →lay L:

_ ⊨ L[(𝑠, 𝑥, 𝑙) ∗ L[′ (𝑠, 𝑥 ′, 𝑙 ′)⇛ False (26)
_ ⊨ L[(𝑠, 𝑥, 𝑙) ∗ P(𝑠, 1)⇛ L[′ (𝑠, 𝑥, 𝑙) ∗ P(𝑠, 1) (27)

Note that the naming choice here suggests CLH as the implementation to keep the discussion
grounded, but the specification would be the same for any other fair lock implementation.

We now sketch the modifications needed to adapt the proof of CLH presented in Section 5.2 to
prove the generalised specification.
First, we pick, just as in Section 5.2, Lclh = N ⊎ {⊥clh,⊤clh}. We then need to parametrise the

two regions with a layer map [: Lclh →lay L, for an arbitrary L. We include it in the regions
abstract state: clh𝑟 (𝑟 ′, 𝑥, [, ℎ, 𝑙, 𝑜) and lclh𝑟 ′ (𝑥, [, ℎ, 𝑙, 𝑜, 𝑡). The abstract predicate for the lock can
the be defined as:

L[(𝑠, 𝑥, 𝑙) ≜ ∃𝑟, 𝑟 ′. 𝑠 = (𝑟, 𝑟 ′) ∧ ∃𝑜, ℎ. clh𝑟 (𝑟 ′, 𝑥, [, ℎ, 𝑙, 𝑜) ∗ ⌈e⌉𝑟 ′

We similarly parametrise every obligation with a layer map as well, obtaining obligations o[(𝑜, 𝑡)
and p[(𝑡) with layers lay(o[(𝑜, 𝑡)) = [(⊥clh) lay(p[(𝑡)) = [(𝑡).
The protocol of the regions is extended by having each transition preserve the layer map.

Before extending the protocol with a transition that can update the layer map, we motivate the
need for fractional permissions by showing what goes wrong without them. Suppose we just
provide a transition, guarded by e, to update the current layer map to an arbitrary new one, and
define P(𝑠, 𝜋) = emp. With this protocol it would be impossible to prove the layer-map-altering
viewshift (27). The reason lies in the definition of the interpretation of clh:

I(clh𝑟 (𝑟 ′, 𝑥, [, ℎ, 𝑙, 𝑜)) ≜ ∃𝑡 ∈ N. lclh𝑟 ′ (𝑥, [, ℎ, 𝑙, 𝑜, 𝑡) ∗ ⌈e⌉𝑟 ′ ∗∗𝑡−1
𝑖=𝑜+1⌊p[(𝑖)⌋

E

𝑟 ′

In the case where 𝑡 ≠ 𝑜 , which represents the case where there are threads enqueued waiting to
acquire the lock, the interpretation ensures that the environment will contain obligations p[(𝑖)
for each issued ticket 𝑖 . When we try to prove the viewshift, we need to obtain ⌊p[′ (𝑖)⌋E𝑟 ′ with the
new layer map, which can be obtained only by creating out-of-thin-air the corresponding ⌊p[′ (𝑖)⌋L𝑟 ′
resources. These would be created in the local state, leaving us with clh𝑟 (𝑟 ′, 𝑥, [, ℎ, 𝑙, 𝑜) ∗ ⌈e⌉𝑟 ′ ∗∗𝑡−1

𝑖=𝑜+1⌊p[′ (𝑖)⌋
L

𝑟 ′ which cannot be viewshifted to the desired L[′ (𝑠, 𝑥, 𝑙) ∗ P(𝑠, 1) since there is no
way to get rid of the local obligations. Conceptually this encodes the following fact: if we were to
remap the layers of the lock when other threads are queued, the obligations held by those thread
would become unfulfillable, and we would inherit copies of them with the new mapping, which we
also would not be able to fulfil on behalf of the other threads.

96 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

To resolve this impasse, we need to allow the layer map to be update only when there is no
thread queued to acquire the lock. This way we would have 𝑡 = 𝑜 and so no environment obligation
laying around. We cannot achieve this by exposing the queue in the abstract state of the lock,
however, without loosing the atomicity of the lock specifications. With the introduction of fractional
permissions, giving the right to enqueue to the lock, we can encode the emptiness of the queue by
asserting we are the only one with that right.
To achieve this technically, we start by encoding fractional permissions as a guard algebra. We

introduce guards f𝜋 with the axioms f0 = 0 and f𝜋1+𝜋2 = f𝜋1 • f𝜋2 . We then define the abstract
predicate P(𝑠, 𝜋) =

(
∃𝑟, 𝑟 ′. 𝑠 = (𝑟, 𝑟 ′) ∧ ⌈f𝜋 ⌉𝑟 ′

)
.

For technical reasons explained later we introduce guards g𝜋 with exactly the same axioms as the
f guards. To encode the fact that full permissions imply empty queue, we adapt the interpretation
of lclh as follows:

I(lclh𝑟 ′ (𝑥, [, ℎ, 𝑙, 𝑜, 𝑡)) ≜ ∃𝑛𝑠. 𝑥 ↦→ ℎ, last(𝑛𝑠) ∗ ℎ ↦→ 𝑙 ∗ ones(𝑛𝑠) ∗ ⌈q(𝑛𝑠, 𝑜)⌉𝑟 ′ ∗ ⌊o[(𝑜, 𝑡)⌋L𝑟 ′ ∗
∃𝜋. ⌈f𝜋 ⌉𝑟 ′ ∗ ⌈r1−𝜋 ⌉𝑟 ′ ∗ (𝜋 = 0

.⇒ 𝑡 = 𝑜) ∧ 𝑡 − 𝑜 = |𝑛𝑠 | ∧ 𝑛𝑠 (0) = ℎ

From lclh𝑟 ′ (𝑥, [, ℎ, 𝑙, 𝑜, 𝑡) ∗ ⌈f1⌉𝑟 ′ we can deduce that 𝜋 = 0 inside the region interpretation, and
hence 𝑡 = 𝑜 .
Finally, we add to the protocol of lclh the possibility of updating the layer map when owning

full permissions:

f1 : (([,ℎ, 𝑙, 𝑜, 𝑡), 0) ⇝ (([′, ℎ, 𝑙, 𝑜, 𝑡), 0)

The reason for including the r𝜋 is as follows. When a thread enqueues on the lock, it gives up
a non-trivial fraction of the f𝜋 permission it owns to be able to make 𝑡 ≠ 𝑜 . When it dequeues,
it should get back that fraction; the r𝜋 guards are obtained as “leftovers” when putting f𝜋 in the
region’s interpretation. Those are proof that the region interpretation has at least f𝜋 in it when we
want to get it back.

Adapting the proof of Section 5.2 to use these generalised definitions is a routine application of
standard TaDA patterns. The satisfiability of the layer constraints is preserved by strict monotonicity
of layer maps.

C.2 Correctness of the Lock-Coupling Set

— Code. The implementation of the module’s operations is in Fig. 26 with the implementation of the
constructor makeSet in Fig. 27. We write dealloc(c,3) for the deallocation of the 3 contiguous
cells from address c. The auxiliary operation locate (also in Fig. 27) is meant to only be used
internally. The code uses a “record” syntax for readability, desugared as follows:

x.lock ≜ [x] x.val ≜ [x + 1] x.next ≜ [x + 2]

— Specifications. The abstract predicate LCSet(𝑠, 𝑥, 𝑆) represents a lock-coupling set at address 𝑥
abstractly representing the set 𝑆 .

⊥lc ⊢
{
emp

}
makeSet()

{
∃𝑠 . LCSet(𝑠, ret, ∅)

}
⊤lc ⊢

A

𝑆 ∈ ℘(Z).
〈
LCSet(𝑠, x, 𝑆) ∧ e ∈ Z

〉
add(x,e)

〈
LCSet(𝑠, x, 𝑆 ∪ {e})

〉
⊤lc ⊢

A

𝑆 ∈ ℘(Z).
〈
LCSet(𝑠, x, 𝑆) ∧ e ∈ Z

〉
remove(x,e)

〈
LCSet(𝑠, x, 𝑆 \ {e})

〉
⊤lc ⊢

A

𝑆 ∈ ℘(Z).
〈
LCSet(𝑠, x, 𝑆) ∧ e ∈ Z

〉
member(x,e)

〈
LCSet(𝑠, x, 𝑆) ∧ ret = (e ∈ 𝑆)

〉

TaDA Live 97

1 def add(x, e) {

2 var p, c, v, n,

3 nl, pl, cl in

4 pB locate(x, e);

5 cB p.next;

6 vB c.val;

7

8 if(v≠ e) {

9 nB alloc(3);

10 nlB makeLock();

11 n.lockB nl;

12 n.valB e;

13 n.nextB c;

14 p.nextB n;

15 }

16

17 plB p.lock;

18 clB c.lock;

19 unlock(cl);

20 unlock(pl)

21 }

1 def remove(x, e) {

2 var p, c, v,

3 n, pl, cl in

4 pB locate(x, e);

5 cB p.next;

6 vB c.val;

7 plB p.lock;

8 clB c.lock;

9

10 if(v= e) {

11 p.next= c.next;

12 deleteLock(cl);

13 dealloc(c,3);

14 } else {

15 unlock(cl);

16 }

17 unlock(pl);

18 }

1 def member(x, e) {

2 var p, c, v,

3 n, pl, cl in

4 pB locate(x, e);

5 cB p.next;

6 vB c.val;

7

8 plB p.lock;

9 clB c.lock;

10 unlock(cl);

11 unlock(pl);

12

13 retB (v= e)

14 }

Fig. 27. Implementation of the lock-coupling set operations.

1 def makeSet() {

2 var x,y in

3 yB alloc(3);

4 y.nextB null;

5 y.valB∞;

6 y.lockB makeLock();

7 xB alloc(3)

8 x.nextB y;

9 x.valB −∞;

10 x.lockB makeLock();

11 retB x

12 }

1 def locate(x, e) {

2 var p, c, c', v,

3 pl, cl, cl' in

4 pB x;

5 plB p.lock;

6 lock(pl);

7 cB p.next;

8 clB c.lock;

9 lock(cl);

10 vB c.value;

11 // continues. . .

12 // . . .locate

13 while(v < e) {

14 plB p.lock;

15 c'B c.next;

16 cl'B c'.lock;

17 lock(cl');

18 vB c'.val;

19 unlock(pl);

20 pB c;

21 cB c';

22 }

23 retB p;

24 }

Fig. 28. Implementation of makeSet and the internal locate operation.

— Region Types. This proofwill utilise two region types: lcset𝑟 (𝑟 ′, 𝑥, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) and lclist𝑟 (𝑥, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠)
where 𝑟 ′ ∈ RId, 𝑥, ℎ𝑙 ∈ Addr, 𝑠ℎ𝑙 ∈ Sclh, 𝑆 ∈ ℘(Z), 𝑙𝑠 ∈ ((Z∪ {∞,−∞}) × {0, 1} × (N∪ {1}))∗. Here
𝑟 ′, 𝑥 , ℎ𝑙 and 𝑠ℎ𝑙 are fixed parameters of both regions. The lock-coupling set resource is abstractly
represented by the predicate

LCSet(𝑠, 𝑥, 𝑆) ≜ ∃𝑟, 𝑟 ′, ℎ𝑙, 𝑠ℎ𝑙 . 𝑠 = (𝑟, 𝑟 ′, ℎ𝑙, 𝑠ℎ𝑙) ∧ lcset𝑟 (𝑟 ′, 𝑥, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈e⌉𝑟

98 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

— Guards. We introduce a number of guards that are used to represent ownership of information
regarding nodes of the linked list. To ease readability, we will adopt a record notation for tuples
(i.e. tuples with named positions). In particular, we will make a record 𝑛 with the following
information for each node: an address (𝑛.addr ∈ Addr), a lock address (𝑛.lck ∈ Addr), a lock
abstract identifier (𝑛.lid ∈ Sclh), a value (𝑛.val ∈ Z ∪ {∞,−∞}), and a layer (𝑛.lay ∈ N ∪ {1}).
A guard c(𝑣𝑠) records the list 𝑣𝑠 of values represented by the linked list. An unlocked node is
represented by the guard u(𝑛) where 𝑛 is a record of the value, lock address/id, layer associated
with the node of the list at address 𝑛.addr. So in particular, the cell at 𝑛.addr would store the tuple
(𝑛.lck, 𝑛.val, 𝑛.nxt) and we will have the resource L[𝑛.lay (𝑛.lck, 𝑛.lid, 𝑙) associated with its lock (we
will explain the layer map [𝑛.lay when introducing the region interpretations). A locked node is
represented by two guards l(𝑛, 𝑎) and k(𝑛, 𝑎), following the usual pattern for locks. These guards
additionally store the address 𝑎 of the next node which is stable if we hold the lock at𝑛.lck. Moreover,
assuming𝑚 is the node following 𝑛, if we hold the lock at 𝑛.lck, we know that all the information
in𝑚 is stable (i.e. everything but the address of the node following𝑚). To represent this we make
use of a guard w(𝑚).

The following axioms reflect the operations we desire to perform on the nodes. For locking/un-
locking a non-terminal node, when vs

′ ≠ []:

c(vs ⊕ [𝑛.val,𝑚.val] ⊕ vs
′) • u(𝑛) • l(𝑚,𝑎′) =

c(vs ⊕ [𝑛.val,𝑚.val] ⊕ vs
′) • l(𝑛,𝑚.addr) • k(𝑛,𝑚.addr) • l(𝑚,𝑎′) •w(𝑚)

For locking/unlocking the last node:

c(vs ⊕ 𝑣) • u(𝑛) = c(vs ⊕ 𝑣) • l(𝑛, null) • k(𝑛, null)

For inserting a node𝑚 between 𝑛1 and 𝑛2:

c(vs ⊕ [𝑛1.val, 𝑛2 .val] ⊕ vs
′) • l(𝑛1, 𝑛2 .addr) • k(𝑛1, 𝑛2.addr) •w(𝑛2) =

c(vs ⊕ [𝑛1.val,𝑚.val, 𝑛2 .val] ⊕ vs
′) • l(𝑛1,𝑚.addr) • k(𝑛1,𝑚.addr) • u(𝑚) •w(𝑚)

For deleting a node𝑚:

c(vs ⊕ [𝑛.val,𝑚.val] ⊕ vs
′) • l(𝑛,𝑚.addr) • k(𝑛,𝑚.addr) • l(𝑚,𝑎) • k(𝑚,𝑎) =

c(vs ⊕ [𝑛.val] ⊕ vs
′) • l(𝑛, 𝑎) • k(𝑛, 𝑎)

Then the following axioms keep the guard’s information for the nodes consistent:

𝑛.val ∉ vs ⇒ c(vs) • k(𝑛) = ⊥
𝑛.val = 𝑛′.val ⇒ k(𝑛, _) • u(𝑛′) = ⊥
𝑛.val = 𝑛′.val ⇒ k(𝑛, _) • k(𝑛′, _) = ⊥

(𝑛.val = 𝑛′.val ∧ (𝑎 ≠ 𝑎′ ∨ 𝑛 ≠ 𝑛′)) ⇒ k(𝑛, 𝑎) • l(𝑛′, 𝑎′) = ⊥
(𝑛.addr = 𝑛′.addr ∧ 𝑛 ≠ 𝑛′) ⇒ k(_, 𝑛.addr) •w(𝑛) • l(𝑛′, _) = ⊥

— Layers and Obligations. We use the layer structure Llc ≜ (N ∪ {1, 0}) × Lclh (where ∀𝑛 ∈ N. 1 >

𝑛 > 0), ordered by the lexicographic ordering ≤ and with ⊤lc ≜ (1,⊤clh) and ⊥lc ≜ (0,⊥clh).
Roughly, take a non-initial node 𝑛 which is at position ℓ from the end of the list; we will associate
with it the layer (ℓ,⊤clh), which is guaranteed to be strictly greater than any layer associated with
the nodes following 𝑛 in the list. Intuitively, no matter what Lclh has been chosen for the proof of
the implementation of locks, there are enough layers between (ℓ,⊤clh) and (ℓ + 1,⊤clh) to allow the
proof of the lock of 𝑛 not to conflict with the lock of the node ahead.

TaDA Live 99

We construct obligations out of the atoms k(ℓ) (representing the “key” of the lock associated with
the layer ℓ) and f(ℓ) (representing a “free” spot at layer ℓ) for ℓ ∈ N∪{1}.We set lay(k(ℓ)) ≜ (ℓ,⊥clh)
and lay(f(ℓ)) = ⊤lc. We also define an obligation acting as a “reservoir” of atoms:

r(ℓ̄) ≜ {k(ℓ) | ℓ̄ ≤ ℓ ∈ N} ∪ {f(ℓ) | ℓ̄ ≤ ℓ ∈ N} lay(r(ℓ̄)) = (ℓ̄,⊥clh)

We can always split a pair of f and k atoms from the reservoir: r(ℓ̄) = r(ℓ̄ + 1) • k(ℓ̄) • f(ℓ̄).

— Interference protocol. The guard-labelled transition system of the region lcset𝑟 (𝑟 ′, 𝑥, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) is:
e : ∀𝑣 . (𝑆, 0) ⇝ (𝑆 ∪ {𝑣}, 0)
e : ∀𝑣 . (𝑆, 0) ⇝ (𝑆 \ {𝑣}, 0)

and the guard-labelled transition system of the region lclist𝑟 (𝑥, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠) is:
e : ((−∞, 0, 1) ⊕ 𝑙𝑠, 0)
⇝ ((−∞, 1, 1) ⊕ 𝑙𝑠, k(1) • f(ℓ))

k(𝑛, _) : (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣 ′, 0, ℓ ′) ⊕ 𝑙𝑠 ′, 0)
⇝ (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣 ′, 1, ℓ ′) ⊕ 𝑙𝑠 ′, k(ℓ ′))

k(𝑛, _) : (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣 ′, 1, ℓ ′) ⊕ 𝑙𝑠 ′, k(ℓ) • f(ℓ†) • k(ℓ ′))
⇝ (𝑙𝑠 ⊕ (𝑛.val, 0, ℓ) ⊕ (𝑣 ′, 1, ℓ†) ⊕ 𝑙𝑠 ′, k(ℓ†) • f(ℓ ′)) ℓ > ℓ† > ℓ ′

k(𝑛, _) : (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣 ′, 1, ℓ ′) ⊕ 𝑙𝑠 ′, k(ℓ) • f(ℓ†) • k(ℓ ′))
⇝ (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣†, 0, ℓ†) ⊕ (𝑣 ′, 1, ℓ ′) ⊕ 𝑙𝑠 ′, k(ℓ) • k(ℓ ′)) ℓ > ℓ† > ℓ ′, 𝑣 < 𝑣† < 𝑣 ′

k(𝑛, _) : (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣 ′, 1, ℓ ′) ⊕ 𝑙𝑠 ′, k(ℓ) • f(ℓ†) • k(ℓ ′))
⇝ (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ 𝑙𝑠 ′, k(ℓ))

k(𝑛, _) : (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣 ′, 1, ℓ ′) ⊕ 𝑙𝑠 ′, k(ℓ) • f(ℓ†) • k(ℓ ′))
⇝ (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ (𝑣 ′, 1, ℓ ′) ⊕ 𝑙𝑠 ′, k(ℓ) • k(ℓ ′)) ℓ > ℓ† > ℓ ′

k(𝑛, _) : (𝑙𝑠 ⊕ (𝑛.val, 1, ℓ) ⊕ 𝑙𝑠 ′, k(ℓ))
⇝ (𝑙𝑠 ⊕ (𝑛.val, 0, ℓ) ⊕ 𝑙𝑠 ′, 0)

They represent, in order: the acquisition of the first lock, obtaining both the key for that lock and a
“free” layer spot; the acquisition of a next lock, obtaining its key; the release of the previous lock,
swapping layer of the next with the free one; the insertion of a node which gets assigned the free
layer between the two adjacent locks held (used by add); the deletion of a node that also drops the
non-needed free layer spot (used by remove); the drop of a non-needed free layer spot (used by
member); the release of a lock.

— Region interpretation. The lock-coupling set internally respresents the elements of the set with a
lock-coupling linked list. To represent these in ghost state, we will use a list of quadruples of each
cells value, the state of the associated lock, as well as its layer and region identifier. We introduce
the predicate ord which verifies that the value in the list are in strictly increasing order, while the
layers of the associated locks are in strictly decreasing order:

ord (𝑙𝑠) ≜
{
True if 𝑙𝑠 = [_]
𝑣 < 𝑣 ′ ∧ ℓ > ℓ ′ ∧ ord ((𝑣 ′, 𝑙 ′, ℓ ′) : 𝑙𝑠 ′) if 𝑙𝑠 = (𝑣, _, ℓ) : (𝑣 ′, 𝑙 ′, ℓ ′) : 𝑙𝑠 ′

We also introduce a function that allows us to extract the associated set of values from such a list,
vals, and a function that similarly allows us to extract a list of just the values, retaining their order,

100 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

lvals:

vals(𝑙𝑠) ≜
{
∅ if 𝑙𝑠 = []
{𝑣} ⊎ vals(𝑙𝑠 ′) if 𝑙𝑠 = (𝑣, _, _) ⊕ 𝑙𝑠 ′

lvals(𝑙𝑠) ≜
{
[] if 𝑙𝑠 = []
𝑣 ⊕ vals(𝑙𝑠 ′) if 𝑙𝑠 = (𝑣, _, _) ⊕ 𝑙𝑠 ′

The interpretation of the outer region is a straightforward wrapper around the inner one.

I(lcset𝑟 (𝑟 ′, 𝑥, ℎ𝑙, 𝑠ℎ𝑙, 𝑆)) ≜ ∃𝑙𝑠 . lclist𝑟 ′ (𝑥, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠) ∗ ⌈e⌉𝑟 ′ ∗ envK𝑟 ′ (𝑙𝑠) ∧
𝑆 ⊎ {−∞,∞} = vals(𝑙𝑠) ∧ ord (𝑙𝑠) ∧ 𝑙𝑠 = ((−∞, _, 1) ⊕ _)

envK𝑟 (𝑙𝑠) ≜
{
emp if 𝑙𝑠 = []
(𝑙 = 1

.⇒ ⌊k(ℓ)⌋E𝑟) ∗ envK𝑟 (𝑙𝑠 ′) if 𝑙𝑠 = (𝑣, 𝑙, ℓ) ⊕ 𝑙𝑠 ′

As usual, the outer region has two purposes: hiding internal state so that the operations can be
seen as abstractly atomic, and keeping track of the obligations held by threads.

The interpretation of the inner region encapsulates the concrete heap cells and the lock-related
guards and obligations:

I(lclist𝑟 (𝑥, ℎ𝑙, shl, ls)) ≜ ∃𝑛0, 𝑙0, . . . , 𝑛𝑘+1, 𝑙𝑘+1 . ∃ℓ̄ ∈ N.
⌈c(lvals(ls))⌉𝑟 ∗ ls = [(𝑛0.val, 𝑙0, 𝑛0.lay), . . . , (𝑛𝑘+1 .val, 𝑙𝑘+1, 𝑛𝑘+1.lay)] ∧
𝑛0 .val = −∞ ∧ 𝑛𝑘+1.val = ∞∧ 𝑛0 .lay = 1 ∧ 𝑛𝑘+1 .lay = 0 ∧
𝑛0.addr = 𝑥 ∧ 𝑛0.lck = ℎ𝑙 ∧ 𝑛0 .lid = shl ∧
⌊r(ℓ̄)⌋L𝑟 ∧ ℓ̄ > 𝑛1 .lay ∗ Node0

𝑟 (𝑛0, 𝑙0, 𝑛1.addr) ∗
Nodes𝑟 (ℓ̄, 𝑙0, [(𝑛1, 𝑙1), . . . , (𝑛𝑘+1, 𝑙𝑘+1)], ℓ̄)

where the resources associated with each node are described by the following auxiliary predicates:

Node
0
𝑟 (𝑛, 𝑙, 𝑎) ≜ (𝑛.addr ↦→ 𝑛.lck,−∞, 𝑎)∗

L[1 (𝑛.lid, 𝑛.lck, 𝑙) ∗ ∃𝜋 > 0. P(𝑛.lid, 𝜋) ∗ ⌊f(1)⌋L𝑟 ∗(
(𝑙 = 0 ∧ ⌈u(𝑛)⌉𝑟 ∗ ⌊k(1)⌋L𝑟) ∨ (𝑙 = 1 ∧ ⌈l(𝑛, 𝑎)⌉𝑟)

)
Nodes𝑟 (ℓ𝑝 , 𝑙𝑝 , [(𝑛, 𝑙)]) ≜ (𝑛.addr ↦→ 𝑛.lck, 𝑛.val, null) ∗ Gaps𝑟 (ℓ𝑝 , 𝑛.lay) ∗

L[𝑛.lay (𝑛.lid, 𝑛.lck, 𝑙) ∗ P(𝑛.lid, (𝑙𝑝=1 ? ½ : 1)) ∗ ⌊f(𝑛.lay)⌋L𝑟 ∗(
(𝑙 = 0 ∧ ⌈u(𝑛)⌉𝑟 ∗ ⌊k(𝑛.lay)⌋L𝑟) ∨ (𝑙 = 1 ∧ ⌈l(𝑛, null)⌉𝑟)

)
Nodes𝑟 (ℓ𝑝 , 𝑙𝑝 , [(𝑛, 𝑙), (𝑛′, 𝑙 ′)] ⊕ ns) ≜ (𝑛.addr ↦→ 𝑛.lck, 𝑛.val, 𝑛′.addr) ∗ Gaps𝑟 (ℓ𝑝 , 𝑛.lay) ∗

L[𝑛.lay (𝑛.lid, 𝑛.lck, 𝑙) ∗ P(𝑛.lid, (𝑙𝑝=1 ? ½ : 1)) ∗ ⌊f(𝑛.lay)⌋L𝑟 ∗(
(𝑙 = 0 ∧ ⌈u(𝑛)⌉𝑟 ∗ ⌊k(𝑛.lay)⌋L𝑟) ∨ (𝑙 = 1 ∧ ⌈l(𝑛, 𝑛′.addr)⌉𝑟)

)
∗

Nodes𝑟 (𝑛.lay, 𝑙, (𝑛′, 𝑙 ′) ⊕ ns)

Gaps𝑟 (ℓ1, ℓ2) ≜∗ℓ2−1
ℓ=ℓ1+1

(
⌊k(ℓ)⌋L𝑟 ∨ ⌊k(ℓ) • f(ℓ)⌋L𝑟

)
The layer map [ℓ maps the layers of Lclh to the ones of Llc as follows:

[ℓ (𝑘) = (ℓ, 𝑘)

TaDA Live 101

— Proof of locate. We use the following specification for the internal operation locate:

⊤lc ⊢
{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆)

}
locate(x,e)

{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ Loc(𝑟 ′, x, e, ret)

}
where Loc(𝑟 ′, x, e, 𝑝) represents the ownership of two adjacent list nodes representing value 𝑣
and 𝑣 ′ with 𝑣 < e ≤ 𝑣 ′ (where e is the value we wanted to locate in the list):

Loc(𝑟 ′, x, e, 𝑝) ≜ ∃𝑛1, 𝑛2, 𝑛3, ℓ . 𝑛1.addr = 𝑝 ∧
𝑛1.val < e ≤ 𝑛2.val ∧ 𝑛1.lay > ℓ > 𝑛2.lay ∧
⌈k(𝑛1, 𝑛2.addr)⌉𝑟 ′ ∗ ⌊k(𝑛1.lay)⌋L𝑟 ′ ∗ ⌊f(ℓ)⌋L𝑟 ′ ∗
⌈k(𝑛2, 𝑛3.addr)⌉𝑟 ′ ∗ ⌊k(𝑛2.lay)⌋L𝑟 ′ ∗ ⌈w(𝑛2)⌉𝑟 ′ ∗ P(𝑛2.lid,½) ∗
(𝑛3.addr ≠ null

.⇒ (⌈w(𝑛3)⌉𝑟 ′ ∗ P(𝑛3.lid,½)))

The proof of locate is shown in Fig. 30. In the outlines, we expand the record notation to tuples,
e.g. k(𝑛.addr, 𝑛.lck, 𝑛.lid, 𝑛.val, 𝑛.lay, 𝑎). We detail here the application of LiveC. The associated
environment liveness condition is proved by:

∀𝛼. ⊢A 𝑇 ′(𝛼) ⇒ 𝑇

(ℓ ′,⊤clh); _;A ⊢ 𝐿(𝛼) : 𝑇 ′(𝛼) −−↠ 𝑇
LiveT

(28)
(ℓ ′,⊤clh); _;A ⊢ 𝐿(𝛼) : 𝐿1 (𝛼) −−↠ 𝑇

EQuant

(ℓ ′,⊤clh); _;A ⊢ 𝐿(𝛼) : 𝐿(𝛼) −−↠ 𝑇
ECase

(ℓ ′,⊤clh); _;A ⊢ 𝐿 𝑀−−↠ 𝑇

EnvLive

where 𝐿(𝛼) ≜ 𝐿 ∗𝑀 (𝛼) and

𝑀 (𝛼) ≜ ∃𝑙 . lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣 ′′, 𝑙, _) ⊕ _) ∧ 𝛼 = 𝑙

𝐿 ≜ ∃𝑙, ℓ ′′. lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣 ′′, 𝑙, ℓ ′′) ⊕ _) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣 ′′, ℓ ′′)⌉𝑟 ′
∗ 𝑙 = 1

.⇒ ⌊k(ℓ ′′)⌋E𝑟 ∧ ℓ ′ > ℓ ′′

𝐿1 (𝛼) ≜ ∃ℓ ′′. 𝐿′
ℓ′′ (𝛼)

𝐿′
ℓ′′ (𝛼) ≜ lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣 ′′, 1, ℓ ′′) ⊕ _) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣 ′′, ℓ ′′)⌉𝑟 ′

∗ ⌊k(ℓ ′′)⌋E𝑟 ∧ ℓ ′ > ℓ ′′ ∧ 𝛼 = 1
𝑇 ′(𝛼) ≜ ∃ℓ ′′. lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣 ′′, 0, ℓ ′′) ⊕ _) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣 ′′, ℓ ′′)⌉𝑟 ′ ∧

ℓ ′ > ℓ ′′ ∧ 𝛼 = 0

imprA (𝐿′ℓ′′, 𝐿,𝑇) ∀𝛼. ⊢A 𝐿′ℓ′′ (𝛼) ▷ lay(k(ℓ ′′))
∀𝛼. ⊢A 𝐿′ℓ′′ (𝛼) ⇒ lclist_

′
𝑟 ′ (x, hl, 𝑠ℎ𝑙, _ ⊕ (𝑣 ′′, 1, ℓ ′′) ⊕ _) ∗ ⌊k(ℓ ′′)⌋E𝑟 ∗ True ∧ (ℓ ′,⊤

clh
) > lay(k(ℓ ′′))

(ℓ ′,⊤
clh

); _;A ⊢ 𝐿(𝛼) : 𝐿′ℓ′′ (𝛼) −−↠ 𝑇
LiveO

(ℓ ′,⊤
clh

); _;A ⊢ 𝐿(𝛼) : 𝐿1 (𝛼) −−↠ 𝑇
EQuant

(28)

— Proof of add. The proof of the add operation builds on the specification of locate. We show
its outline in Fig. 31 with a more detailed derivation showing how the first unlock operation is
handled in Fig. 32.

— Proof of makeSet, member and remove. We omit the proofs of the makeSet, member and remove
operations as they do not add much to the presentation. makeSet can be proved as standard by
keeping track of the nodes created locally and with a final viewshift to create the two nested regions

102 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Proof of locate(x,e):
⊤
lc

; ∅ ⊢{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆)

}
pB x;{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∧ p = x

}
plB p.lock;{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ∃𝜋 > 0. P(𝑠ℎ𝑙, 𝜋) ∗
∃𝑙 . lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, (−∞, 𝑙, 1) ⊕ _) ∗ 𝑙 = 1

.⇒ ⌊k(1) ⌋E
𝑟 ′ ∧ p = x ∧ pl = ℎ𝑙

}
lock(pl);{
∃ℓ†, ℓ′, 𝑆, 𝑐, 𝑠𝑐𝑙 . lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, ℎ𝑙, 𝑠ℎ𝑙,−∞, 1, 𝑐) ⌉𝑟 ′ ∗ ⌊k(1) ⌋L

𝑟 ′ ∗
⌈w(𝑐, _, 𝑠𝑐𝑙, _, ℓ′) ⌉𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌊f(ℓ†) ⌋L

𝑟 ′ ∧ 1 > ℓ† > ℓ′

}
cB p.next;{
∃ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙 . lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, ℎ𝑙, 𝑠ℎ𝑙,−∞, 1, c) ⌉𝑟 ′ ∗ ⌊k(1) ⌋L

𝑟 ′ ∗
⌈w(c, _, 𝑠𝑐𝑙, _, ℓ′) ⌉𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌊f(ℓ†) ⌋L

𝑟 ′ ∧ 1 > ℓ† > ℓ′

}
clB c.lock;
∃ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑣′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, ℎ𝑙, 𝑠ℎ𝑙,−∞, 1, c) ⌉𝑟 ′ ∗ ⌊k(1) ⌋L

𝑟 ′ ∗
⌈w(c, cl, 𝑠𝑐𝑙, 𝑣′, ℓ′) ⌉𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌊f(ℓ†) ⌋L

𝑟 ′ ∧ 1 > ℓ† > ℓ′ ∗
∃𝑙 . lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣′, 𝑙, ℓ′) ⊕ _) ∗ 𝑙 = 1

.⇒ ⌊k(ℓ′) ⌋E
𝑟 ′

lock(cl);
∃ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, ℎ𝑙, 𝑠ℎ𝑙,−∞, 1, c) ⌉𝑟 ′ ∗ ⌊k(1) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, cl, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ 1 > ℓ† > ℓ′

vB c.value;
∃ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, ℎ𝑙, 𝑠ℎ𝑙,−∞, 1, c) ⌉𝑟 ′ ∗ ⌊k(1) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, cl, 𝑠𝑐𝑙, v, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ 1 > ℓ† > ℓ′

∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, _, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ∧ 𝑣 < v

while(v < e) {

plB p.lock;
c'B c.next;
cl'B c'.lock;
lock(cl’);
vB c'.val;
unlock(pl);
pB c;
cB c';

}
∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑐, 𝑛, 𝑣, 𝑣′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, _, _, 𝑣, ℓ, 𝑐) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(𝑐, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(𝑐, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ≤ 𝑣′

retB p;
∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑐, 𝑛, 𝑣, 𝑣′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(ret, _, _, 𝑣, ℓ, 𝑐) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(𝑐, _, _, _) ⌉𝑟 ′ ∗ ⌈k(𝑐, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ≤ 𝑣′

Fig. 29. Proof outline of locate.

TaDA Live 103

⊤
lc

; ∅ ⊢
∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, _, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ∧ 𝑣 < v

while(v < e) {
∀𝛽. ⊤

lc
; ∅ ⊢

∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, _, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L
𝑟 ′ ∗

⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L
𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗

⌊f(ℓ†) ⌋L
𝑟 ′ ∧ 𝛽 ≥ ℓ > ℓ† > ℓ′ ∧ 𝑣 < v < e

plB p.lock;
c'B c.next;
cl'B c'.lock;
∃ℓ, ℓ†, ℓ′, ℓ′′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑣, 𝑣′′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, pl, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣′′, ℓ′′) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗
⌊f(ℓ†) ⌋L

𝑟 ′ ∗ ∃𝑙 . lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣′′, 𝑙, ℓ′′) ⊕ _) ∗ 𝑙 = 1
.⇒ ⌊k(ℓ′′) ⌋E

𝑟 ′ ∧
𝛽 ≥ ℓ > ℓ† > ℓ′ > ℓ′′ ∧ v < e ∧ v < 𝑣′′

lock(cl');
∃ℓ, ℓ†, ℓ′, ℓ′′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣, 𝑣′′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, pl, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣′′, ℓ′′) ⌉𝑟 ′ ∗
⌈k(c′, _, 𝑠𝑛𝑙, 𝑣′′, ℓ′′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′′) ⌋L

𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗
𝑛 ≠ null

.⇒ (∃𝑠𝑛𝑙′. ⌈w(𝑛, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½)) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧

𝛽 ≥ ℓ > ℓ† > ℓ′ > ℓ′′ ∧ v < e ∧ v < 𝑣′′

vB c'.val;
∃ℓ, ℓ†, ℓ′, ℓ′′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣, 𝑣′, v. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, pl, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, c’) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, v, ℓ′′) ⌉𝑟 ′ ∗
⌈k(c′, _, 𝑠𝑛𝑙, v, ℓ′′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′′) ⌋L

𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗
𝑛 ≠ null

.⇒ (∃𝑠𝑛𝑙′. ⌈w(𝑛, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½)) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧

𝛽 ≥ ℓ > ℓ† > ℓ′ > ℓ′′ ∧ 𝑣′ < e ∧ 𝑣′ < v

unlock(pl);
∃ℓ, ℓ†, ℓ′, ℓ′′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣, 𝑣′, v. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗
⌈k(c, _, 𝑠𝑐𝑙, 𝑣′, ℓ†, c’) ⌉𝑟 ′ ∗ ⌊k(ℓ†) ⌋L

𝑟 ′ ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣′′, ℓ′′) ⌉𝑟 ′ ∗
⌈k(c′, _, 𝑠𝑛𝑙, v, ℓ′′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′′) ⌋L

𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗
𝑛 ≠ null

.⇒ (∃𝑠𝑛𝑙′. ⌈w(𝑛, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½)) ∗ ⌊f(ℓ′) ⌋L
𝑟 ′ ∧

𝛽 ≥ ℓ > ℓ† > ℓ′ > ℓ′′ ∧ 𝑣′ < e ∧ 𝑣′ < v

pB c;
cB c';
∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, _, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ∧ 𝑣 < v

}
∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑐, 𝑛, 𝑣, 𝑣′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, _, _, 𝑣, ℓ, 𝑐) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(𝑐, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(𝑐, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ≤ 𝑣′

Fig. 30. Details of while loop in locate.

104 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

⊤
lc

; ∅ ⊢
∃ℓ, ℓ†, ℓ′, ℓ′′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑣, 𝑣′′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(p, pl, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣′′, ℓ′′) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗
⌊f(ℓ†) ⌋L

𝑟 ′ ∗ ∃𝑙 . lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣′′, 𝑙, ℓ′′) ⊕ _) ∗ 𝑙 = 1
.⇒ ⌊k(ℓ′′) ⌋E

𝑟 ′ ∧
𝛽 ≥ ℓ > ℓ† > ℓ′ > ℓ′′ ∧ v < e ∧ v < 𝑣′′

St
ep

8

(ℓ′,⊤
clh

) ; ∅ ⊢

A

𝑙𝑠, 𝑙𝑠′ ∈ Z∗, ℓ′′, 𝑙 ∈ {0, 1}.〈
∃𝑙, ℓ′′. lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣′′, 𝑙, ℓ′′) ⊕ _) ∗ P(𝑠𝑛𝑙,½) ∗
⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣′′, ℓ′′) ⌉𝑟 ′ ∗ 𝑙 = 1

.⇒ ⌊k(ℓ′′) ⌋E
𝑟 ′ ∧ ℓ′ > ℓ′′

���� lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠 ⊕ ((𝑣′′, 𝑙, ℓ′′) ⊕ 𝑙𝑠′)) ∗ ⌈e⌉𝑟 ′ ∗
⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∧ ℓ′ > ℓ′′

〉

Li
ve

C

(ℓ′,⊤
clh

) ; ∅ ⊢

A

𝑙𝑠, 𝑙𝑠′ ∈ Z∗, 𝑙 ∈ {0, 1} ↠(ℓ′′,⊥
clh

) {0}.〈
P(𝑠𝑛𝑙,½)

���� lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠 ⊕ ((𝑣′′, 𝑙, ℓ′′) ⊕ 𝑙𝑠′)) ∗ ⌈e⌉𝑟 ′ ∗
⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣′′, ℓ′′) ⌉𝑟 ′ ∧ ℓ′ > ℓ′′

〉

St
ep

9

(ℓ′′,⊤
clh

) ; ∅ ⊢

A

𝑙 ∈ {0, 1} ↠(ℓ′′,⊥
clh

) {0}.〈
P(𝑠𝑛𝑙,½)

��
L[ℓ′′ (𝑠𝑛𝑙, cl’, 𝑙)

〉
lock(cl');〈
P(𝑠𝑛𝑙,½)

��
L[ℓ′′ (𝑠𝑛𝑙, cl’, 1) ∧ 𝑙 = 0

〉〈
P(𝑠𝑛𝑙,½)

������
∃𝑛. lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠 ⊕ ((𝑣′′, 1, ℓ′′) ⊕ 𝑙𝑠′)) ∗ ⌈e⌉𝑟 ′ ∗
⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∗ ⌈k(c′, _, 𝑠𝑛𝑙, 𝑣′′, ℓ′′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′′) ⌋L

𝑟 ′ ∗
𝑛 ≠ null

.⇒ (∃𝑠𝑛𝑙′. ⌈w(𝑛, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½))

〉
〈∃𝑙, ℓ′′. lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, _ ⊕ (𝑣′′, 𝑙, ℓ′′) ⊕ _) ∗
P(𝑠𝑛𝑙,½) ∗ ⌈w(c’, cl’, 𝑠𝑛𝑙, 𝑣′′, ℓ′′) ⌉𝑟 ′ ∗
𝑙 = 1

.⇒ ⌊k(ℓ′′) ⌋E
𝑟 ′ ∧ ℓ′ > ℓ′′

������
∃𝑛. lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠 ⊕ ((𝑣′′, 1, ℓ′′) ⊕ 𝑙𝑠′)) ∗ ⌈e⌉𝑟 ′ ∗
⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∗ ⌈k(c′, _, 𝑠𝑛𝑙, 𝑣′′, ℓ′′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′′) ⌋L

𝑟 ′ ∗
𝑛 ≠ null

.⇒ (∃𝑠𝑛𝑙′. ⌈w(𝑛, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½))

〉

∃ℓ, ℓ†, ℓ′, ℓ′′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑛, 𝑣, 𝑣′′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗
⌈k(p, pl, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗
⌈k(c, _, 𝑠𝑐𝑙, v, ℓ′, c’) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌈w(c’, _, _, _, _) ⌉𝑟 ′ ∗
⌈k(c′, _, 𝑠𝑛𝑙, 𝑣′′, ℓ′′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′′) ⌋L

𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗
𝑛 ≠ null

.⇒ (∃𝑠𝑛𝑙′. ⌈w(𝑛, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½)) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧

𝛽 ≥ ℓ > ℓ† > ℓ′ > ℓ′′ ∧ v < e ∧ v < 𝑣′′

Fig. 31. Details of lock in while loop of locate.

Step 8 is ∃Elim, AtomW, A∃Elim, LiftA, QL, Frame.
Step 9 is LiftA, QL, Cons, Frame.

representing an empty set. The hard part of the proofs of member and remove is the call to locate
which has been already presented in detail. The rest is handled analogously to add.

TaDA Live 105

Proof of add(x,e):
⊤
lc

; ∅ ⊢ A

𝑆 ∈ P(Z) .〈
LCSet(𝑠, x, 𝑆)

〉
Co

ns
;S
ub

𝑠
=
(𝑟
,𝑟′
,ℎ
𝑙)

〈
lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑆) ∗ ⌈e⌉𝑟

〉
M
kA

to
m

⊤
lc

; A = [𝑟 ↦→ (℘(Z),⊥,℘(Z), {((𝑆, 0), (𝑆 ∪ {e}, 0)) | 𝑆 ⊆ Z})] ⊢{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑆) ∗ 𝑟 Z⇒ ♦

}
pB locate(x, e);
∃ℓ, ℓ†, ℓ′, 𝑆, 𝑠𝑐𝑙, 𝑠𝑛𝑙, 𝑐, 𝑛, 𝑣, 𝑣′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ 𝑟 Z⇒ ♦ ∗ ⌈k(p, _, _, 𝑣, ℓ, 𝑐) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(𝑐, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(𝑐, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ≤ 𝑣′

∃E
li
m

∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ 𝑟 Z⇒ ♦ ∗ ⌈k(p, _, _, 𝑣, ℓ, 𝑐) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(𝑐, _, _, _, _) ⌉𝑟 ′ ∗ ⌈k(𝑐, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ≤ 𝑣′

Fr
am

e

{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ 𝑟 Z⇒ ♦ ∗ ⌈k(p, _, _, 𝑣, ℓ, 𝑐) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(𝑐, _, _, _, _) ⌉𝑟 ′ ∗
⌈k(𝑐, _, 𝑠𝑐𝑙, 𝑣′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ≤ 𝑣′

}
cB p.next;
vB c.val;{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ 𝑟 Z⇒ ♦ ∗ ⌈k(p, _, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗
⌈k(c, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e ≤ 𝑣′ ∧ v = 𝑣′

}
if(v≠ e) {{

∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ 𝑟 Z⇒ ♦ ∗ ⌈k(p, _, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L
𝑟 ′ ∗ ⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗

⌈k(c, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L
𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌊f(ℓ†) ⌋L

𝑟 ′ ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e < 𝑣′

}
nB alloc(3);
nlB makeLock();
n.lockB nl;
n.valB e;
n.nextB c;
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ 𝑟 Z⇒ ♦ ∗ ⌈k(p, _, _, 𝑣, ℓ, c) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(c, _, _, _, _) ⌉𝑟 ′ ∗
⌈k(c, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗ P(𝑠𝑐𝑙,½) ∗ ⌊f(ℓ†) ⌋L
𝑟 ′ ∗

∃𝑠. n ↦→ nl, e, c ∗ L[
ℓ†
(𝑠, nl, 0) ∗ P(𝑠, 1) ∧ ℓ > ℓ† > ℓ′ ∧ 𝑣 < e < 𝑣′

p.nextB n;{
∃𝑆, 𝑆′, 𝑠𝑛𝑙 . lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆′) ∗ 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e}) ∗ ⌈k(p, _, _, 𝑣, ℓ, n) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(n, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ∗ ⌈k(c, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∧ ℓ > ℓ′

}
}{
∃𝑆, 𝑆′, 𝑠𝑛𝑙 . lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆′) ∗ 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e}) ∗ ⌈k(p, _, _, 𝑣, ℓ, n) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(n, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ⌈k(c, _, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∧ ℓ > ℓ′

}
plB p.lock;
clB c.lock;{
∃𝑆, 𝑆′, 𝑠𝑛𝑙 . lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆′) ∗ 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e}) ∗ ⌈k(p, pl, _, 𝑣, ℓ, n) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗
⌈w(n, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½) ⌈k(c, cl, 𝑠𝑐𝑙, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∧ ℓ > ℓ′

}

∃𝑆, 𝑆, 𝑠𝑛𝑙′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆′) ∗ 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e}) ∗
⌈k(p, pl, _, 𝑣, ℓ, n) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(n, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½) ∗
⌈k(c, cl, _, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∧ ℓ > ℓ′

unlock(cl);{
∃𝑆, 𝑆′, 𝑠𝑛𝑙′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆′) ∗ 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e}) ∗
⌈k(p, pl, _, 𝑣, ℓ, n) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(n, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½)

}
unlock(pl);{
∃𝑆. 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e})

}{
∃𝑆. 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e})

}〈
lcset𝑟 (𝑟 ′, ℎ𝑙, 𝑥, 𝑆 ∪ {e}) ∗ ⌈e⌉𝑟

〉〈
LCSet(𝑠, x, 𝑆 ∪ {e})

〉
Fig. 32. Proof outline of add operation.

106 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

⊤
lc

; A ⊢
∃𝑆, 𝑆′, 𝑠𝑛𝑙′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆′) ∗ 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e}) ∗
⌈k(p, pl, _, 𝑣, ℓ, n) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(n, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½)
⌈k(c, cl, _, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½))) ∧ ℓ > ℓ′

Q
L;

Co
ns

;F
ra

me
;∃

El
im

(ℓ′,⊥
clh

) ; A ⊢{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(c, cl, _, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½)))

}
A
∃E

li
m

(ℓ′,⊥
clh

) ; A ⊢

A

𝑆 ∈ P(Z) .〈
lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆) ∗ ⌈k(c, cl, _, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½)))

〉

Li
ft
A
;A

∃E
li
m;

Fr
am

e (ℓ
′,⊥

clh
) ; A ⊢

A

𝑙𝑠, 𝑙𝑠′ ∈ ((Z ⊎ {−∞,∞}) × {0, 1} × N)∗ .〈
lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠 ⊕ (𝑣′, 1, ℓ′) ⊕ 𝑙𝑠′) ∗ ⌈k(c, cl, _, 𝑣′, ℓ′, 𝑛) ⌉𝑟 ′ ∗ ⌊k(ℓ′) ⌋L

𝑟 ′ ∗
(𝑛 ≠ null

.⇒ (⌈w(𝑛, _, 𝑠𝑛𝑙, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙,½)))

〉

St
ep

10

(ℓ′,⊥
clh

) ; A ⊢〈
L[ℓ′ (𝑠, 𝑙𝑎, 1)

〉
unlock(cl);〈
L[ℓ′ (𝑠, 𝑙𝑎, 0)

〉〈
lclist𝑟 ′ (x, ℎ𝑙, 𝑠ℎ𝑙, 𝑙𝑠 ⊕ (𝑣′, 0, ℓ′) ⊕ 𝑙𝑠′)

〉〈
lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆)

〉{
∃𝑆. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆)

}{
∃𝑆, 𝑆′, 𝑠𝑛𝑙′. lcset𝑟 (𝑟 ′, x, ℎ𝑙, 𝑠ℎ𝑙, 𝑆′) ∗ 𝑟 Z⇒ (𝑆, 𝑆 ∪ {e}) ∗
⌈k(p, pl, _, 𝑣, ℓ, n) ⌉𝑟 ′ ∗ ⌊k(ℓ) ⌋L

𝑟 ′ ∗ ⌈w(n, _, 𝑠𝑛𝑙′, _, _) ⌉𝑟 ′ ∗ P(𝑠𝑛𝑙′,½)

}
Fig. 33. Details of unlock(cl) in add. Step 10 is LiftA, Cons, Frame.

TaDA Live 107

D PROGRAMMING LANGUAGE DEFINITION

We will make regular use of partial functions. We write 𝑋 ⇀ 𝑌 for the set of partial function from
𝑋 to 𝑌 , and 𝑋 ⇀f 𝑌 for the set of finite partial function. Given 𝑓 : 𝑋 ⇀ 𝑌 , we write 𝑓 (𝑥) = ⊥ if 𝑓 is
undefined on 𝑥 , and dom(𝑓) ≜ {𝑥 | 𝑓 (𝑥) ≠ ⊥}. We will use the notation [𝑥1 ↦→ 𝑦1, . . . , 𝑥𝑛 ↦→ 𝑦𝑛]
for the finite function that maps each of the 𝑥𝑖 to 𝑦𝑖 and is undefined on any other input. Given
elements 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , and functions 𝑓 : 𝑋 ⇀ 𝑌 and 𝑔 : 𝑋 ′ ⇀ 𝑌 ′, we define the functions
𝑓 [𝑥 ↦→ 𝑦] and 𝑓 ⊎ 𝑔 by:

(𝑓 [𝑥 ↦→ 𝑦]) (𝑧) ≜
{
𝑦 if 𝑧 = 𝑥

𝑓 (𝑧) otherwise

(𝑓 ⊎ 𝑔) (𝑥) ≜
{
𝑓 (𝑥) if 𝑥 ∈ dom(𝑓)
𝑔(𝑥) if 𝑥 ∈ dom(𝑔)

if dom(𝑓) ∩ dom(𝑔) = ∅

We write 𝑓 [𝑥 ↦→ ⊥] for the partial function that is undefined on 𝑥 but otherwise behaves like 𝑓 .
The union of two partial function 𝑓 ∪ 𝑔 is a well-defined partial function as long as 𝑓 (𝑥) = 𝑔(𝑥)
where their domains overlap.

We use the set of Booleans, Bool ≜ {True, False} ∋ 𝑏, 𝑏1, 𝑏2, a set of values, Val ≜ Z ∪ Bool ∋
𝑣, 𝑣1, 𝑣2, · · · , a set of program variables, PVar ∋ x, y, · · · , and a set of function names, FName ∋ f, g, · · · .
The set PVar contains a special element, ret, that holds a function’s return value. Heap addresses
are represented by natural numbers, Addr ≜ N. The natural numbers in Val represent both numeric
values and heap addresses.

Definition D.1 (Numeric and Boolean Expressions). Let Vars be an arbitrary set of variables, and
Values and arbitrary set of values. The set of numerical expressions, Exp(Vars,Values) ∋ E,E1,E2, · · · ,
and the set of boolean expressions, BExp(Vars,Values) ∋ B,B1,B2, · · · , are defined by the grammars:

EF 𝑣 | 𝑥 | E + E | E − E | E ∗ E | · · · where 𝑣 ∈ Values, 𝑥 ∈ Vars

BF 𝑏 | 𝑥 | ¬B | B ∧ B | E = E | E < E | · · · where 𝑏 ∈ Bool, 𝑥 ∈ Vars

The numeric and Boolean program expressions are defined by the sets Exp(PVar,Val) and
BExp(PVar,Val) respectively. In Section 3.3, we also work with logical expressions built from both
program and logical variables and values, hence the reason for the expression definition defined
over an arbitrary variable and value sets.
The functions fvE and fvB provide the sets of free variables for the numeric and Boolean

expressions respectively. They are defined inductively on the structure of expressions by:

fvE (𝑣) = ∅ 𝑣 ∈ Values

fvE (x) = {x} x ∈ Vars

fvE (E1 + E2) = fvE (E1) ∪ fvE (E2)
fvE (E1 − E2) = fvE (E1) ∪ fvE (E2)
fvE (E1 ∗ E2) = fvE (E1) ∪ fvE (E2)
· · ·

fvB (𝑏) = ∅ 𝑏 ∈ {True, False}
fvB (x) = {x} x ∈ Vars

fvB (¬B) = fvB (B)
fvB (B1 ∧ B2) = fvB (B1) ∪ fvB (B2)
fvB (E1 = E2) = fvE (E1) ∪ fvE (E2)
fvB (E1 < E2) = fvE (E1) ∪ fvE (E2)
· · ·

Definition D.2 (Commands). The set of commands, Cmd ∋ C, is defined by the grammar in Fig. 33
where E ∈ Exp(PVar,Val), B ∈ BExp(PVar,Val), x ∈ PVar, ®x ∈ PVar

∗ is a list of pairwise distinct
variables, and f ∈ FName.

We use [E] to denote the value of the heap cell with address given by E. In Fig. 34, we define
operators fv and mods, which identify the variables that a command can access and the variables

108 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

C ::= skip (skip)
| xB E (assignment)
| xB [E] (read)
| [E]B E (write)
| xB CAS(E,E,E) (compare-and-swap)
| xB FAS(E,E,E) (fetch-and-set)
| xB alloc(E) (allocate)
| dealloc(E) (deallocate)
| C;C (sequential composition)
| C ∥ C (parallel composition)
| let f(®x)=C in C (function definition)
| var x=E in C (local variable binding)
| if(B){C}else{C} (if)
| while(B){C} (while loop)
| xB f(®E) (function call)
| ⟨C⟩ (primitive atomic block)

Fig. 34. Syntax of commands

pv(skip) = ∅
pv(x B E) = {x} ∪ fvE (E)
pv(x B [E]) = {x} ∪ fvE (E)
pv([E1] B E2) = fvE (E1) ∪ fvE (E2)
pv(x B CAS(E1,E2,E3)) =

{x} ∪ fvE (E1) ∪ fvE (E2) ∪ fvE (E3)
pv(x B alloc(E)) = {x} ∪ fvE (E)
pv(dealloc(E)) = fvE (E)
pv(let f(®x) =Cf in C) = pv(C)
pv(var x = E in C) = (pv(C) \ {x}) ∪ fvE (E)
pv(if(B){C1}else{C2}) = fvB (B) ∪ pv(C1) ∪ pv(C2)
pv(while(B){C}) = fvB (B) ∪ pv(C)
pv(x B f(®E)) = {x} ∪ fvE (E)
pv(C1;C2) = pv(C1) ∪ pv(C2)
pv(C1 ∥ C2) = pv(C1) ∪ pv(C2)

mods(skip) = ∅
mods(x B E) = {x}
mods(x B [E]) = {x}
mods([E1] B E2) = ∅
mods(x B CAS(E1,E2,E3)) = {x}
mods(x B alloc(E)) = {x}
mods(dealloc(E)) = ∅
mods(let f(®x) = Cf in C) = mods(C)
mods(var x = E in C) = mods(C) \ {x}
mods(if(B){C1}else{C2}) = mods(C1) ∪ mods(C2)
mods(while(B){C}) = mods(C)
mods(x B f(®E)) = {x}
mods(C1;C2) = mods(C1) ∪ mods(C2)
mods(C1 ∥ C2) = mods(C1) ∪ mods(C2)

Fig. 35. The sets of free and modified program variables

that are potentially modified by a command, respectively. In a command C1 ∥ C2, we apply a strong
syntactic restriction that mods(C1) = mods(C2) = ∅. Each individual thread is still able to modify
variables that are created locally and to modify shared heap cells, but are not allowed to modify
the free variables.19 In a function definition let f(x1,. . .,x𝑛)=C1 in C2, we use the natural
restriction fv(C1) ⊆ {x1, . . . , x𝑛, ret}. Also for simplicity, we assume each function name is given a
definition at most once. The function fn : Cmd → ℘(FName) returns the function names occurring
in Cmd that are not bound by a let.

Definition D.3 (Variable Store). A program variable store, 𝜎 ∈ Store ≜ PVar ⇀ Val, is a finite
partial function from program variables to values. The right-biased union of variable stores, 𝜎1 ⊳ 𝜎2,

19To lift this restriction, one could use standard techniques, such as “variables as resources” [2]. Our restriction minimises
the noise generated by handling local state in the formalisation of the model and the assertions. Note that expressivity is
not really limited by our restriction: any local variable in the scope common to both threads, that needs to be modified, can
be instead implemented by using a shared memory cell.

TaDA Live 109

is defined by:

(𝜎1 ⊳ 𝜎2) (x) =
{
𝜎2 (x) if x ∈ dom(𝜎2)
𝜎1 (x) otherwise

Definition D.4 (Expression evaluation). Let 𝜍 : Vars ⇀f Values be an arbitrary function from an ar-
bitray set of variables to values. The numeric expression evaluation function, EJ · K𝜍 : Exp(Vars,Values) →
Values, and the Boolean expression evaluation function, BJ · K𝜍 : BExp(Vars,Values) → Bool, are de-
fined by:

EJ𝑣K𝜍 = 𝑣 BJ𝑏K𝜍 = 𝑏

EJxK𝜍 = 𝜍 (x) BJ¬BK𝜍 = ¬BJBK𝜍
EJE1 + E2K𝜍 = EJE1K𝜍 + EJE2K𝜍 BJB1 ∧ B2K𝜍 = BJB1K𝜍 ∧ BJB2K𝜍
EJE1 − E2K𝜍 = EJE1K𝜍 − EJE2K𝜍 BJE1 = E2K𝜍 = (EJE1K𝜍 = EJE2K𝜍)
EJE1 · E2K𝜍 = EJE1K𝜍 · EJE2K𝜍 BJE1 < E2K𝜍 = (EJE1K𝜍 < EJE2K𝜍)

· · · · · ·

The program expressions are evaluated using program store 𝜎 ∈ Store. In Section 3.3, we also
work with logical expressions which are evaluated over both program and logical variables and
values. The right-biased union of stores is used to describe how, when nesting scopes, a variable
occurrence is bound by the innermost binder surrounding it. The notation var x1,x2. . .,xn in C
denotes var x1= 0 in var x2= 0 in . . . var xn= 0 in C.

Definition D.5 (Heap). A heap, ℎ ∈ Heap ≜ Addr ⇀f Val, is a finite partial function from
addresses to values. The set of heaps, Heap, forms a PCM (Heap,⊎, {∅}) with ℎ1 ⊎ ℎ2 defined only
if dom(ℎ1) ∩ dom(ℎ2) = ∅.

Definition D.6 (Function Implementation Context). A function implementation context,𝜑 ∈ FImpl ≜
FName ⇀ (PVar∗,Cmd), is a finite partial function from function names to pairs comprising a
finite list of distinct variables and a command.

We write 𝜑 (f) = (®x,C), where variable list ®x represents the function arguments and C represents
the function body. We use the notation 𝜑var and 𝜑cmd to refer to the arguments and function body
of f respectively.

In order to describe the behaviour of local variable binding and function calls, we define program
states which extends commands with variable stores. For example, the program state (𝜎,C) indicates
that the command C is evaluated in the current store updated with the variables in 𝜎 .

Definition D.7 (Program States). The set of program states, PState ∋ 𝐶,𝐶1,𝐶2, · · · is defined by
the grammar:

𝐶 F ✓ | (𝜎,𝐶) | 𝐶;C | let f(®x)=C in 𝐶 | 𝐶 ∥ 𝐶 | C

The ✓ indicates a terminated program. It is a technical device so that every C ∈ Cmd, including
skip, takes at least one step.
In the operational semantics, we need to keep track of which thread is originating each step

to be able to define later concepts of fairness of the scheduling. We do this tracking using thread
identifiers 𝑡 ∈ TId ≜ {l, r}∗ which are strings of letters l (for the left thread) and r (for the right
thread). 𝜖 will be used to denote the thread identifier which is an empty sequence. Intuitively, such
a string identifies a single thread as the path in the syntax tree of parallel compositions at which
the thread is found.

110 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Definition D.8 (Command Semantics). A scheduler annotation 𝒕 is an element of the set
Sched ≜ {loc𝑡 | 𝑡 ∈ TId} ⊎ {env}.

A program configuration 𝒄 is an element of the set PConf ≜ (Store × Heap × PState) ⊎ { }. Let
𝜑 ∈ FImpl. The operational semantics of the commands is given by the labelled relation, −→𝜑 ⊆
PConf × Sched × PConf, defined in Fig. 35 and Fig. 36. We write 𝑎 𝒕−→𝜑 𝑏 for (𝑎, 𝒕, 𝑏) ∈ −→𝜑 . We
also define loc ∗−−→𝜑 ≜ (∪𝑡 ∈TId

loc𝑡−−−→𝜑)∗.

To simplify the development, in our programming language the initial state’s store assigns
arbitrary values to the free variables of a program. With such assumption, every reference to a
local variable will be in the domain of the current store. This ensures that in every application of
the rules in Fig. 35 and Fig. 36 to construct a trace, the evaluations of (boolean) expressions are
well-defined.

Definition D.9 (Threads). Given a program state 𝒄 ∈ PConf, the set threads(𝒄) is the set of threads
of 𝒄 that can take a step. The function threads : PConf → ℘(TId) is defined as follows:

threads() ≜ ∅

threads(𝒄) ≜ {𝑡 ∈ TID | 𝒄 loc𝑡−−−→𝜑 _}

Definition D.10 (Program Traces and Fairness). We call program traces, the infinite sequences of
the form 𝒄0 𝝅0 𝒄1 𝝅1 · · · where, for all 𝑖 ∈ N, 𝒄𝑖 ∈ PConf, 𝝅𝑖 ∈ Sched. We use 𝝉 for ranging over
infinite suffixes of program traces and PTrace for the set of all program traces. For a program trace
𝝉 = 𝒄0 𝝅0 𝒄1 𝝅1 · · · , we define 𝝉 (𝑖) ≜ (𝒄𝑖 , 𝝅𝑖), and 𝝉/𝑖 ≜ 𝒄𝑖 𝝅𝑖 𝒄𝑖+1 𝝅𝑖+1 · · · . We define the set of
𝜑-program traces

PTrace𝜑 ≜ {𝒄0 𝝅0 𝒄1 𝝅1 · · · | ∀𝑖 ∈ N. 𝒄𝑖 𝝅𝑖−−→𝜑 𝒄𝑖+1}.
A program trace (𝒄0 𝝅0 𝒄1 𝝅1 · · ·) ∈ PTrace𝜑 is (weakly) fair if and only if:

∀𝑖 ∈ N.∀𝑡 ∈ threads(𝒄𝑖). ∃ 𝑗 ≥ 𝑖 . (𝝅 𝑗 = loc𝑡 ∨𝒄 𝑗 =) (29)
∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 . 𝝅 𝑗=env (30)

That is: a trace is fair if, at any point in time, every thread that can take a step (and the environment)
will eventually be scheduled.

The open-world program semantics defines the behaviour of a command when run concurrently
with an arbitrary environment. This semantics interleaves steps from two “players”: the local thread
given by the loc relation; and its environment given by the env relation, respectively.

Definition D.11 (Open World Semantics). We call traces the infinite sequences 𝑐0 𝜋0 𝑐1 𝜋1 · · ·
where, for all 𝑖 ∈ N, 𝑐𝑖 ∈ Conf ≜ (Store × Heap) ∪ { }, 𝜋𝑖 ∈ {loc, env}. We use 𝜏 for ranging over
infinite suffixes of traces and Trace for the set of all traces. For a trace 𝜏 = 𝑐0 𝜋0 𝑐1 𝜋1 · · · , we
define 𝜏 (𝑖) ≜ (𝑐𝑖 , 𝜋𝑖), and 𝜏/𝑖 ≜ 𝑐𝑖 𝜋𝑖 𝑐𝑖+1 𝜋𝑖+1 · · · . The function [·] : PTrace → Trace is defined by
[𝒄0 𝝅0 𝒄1 𝝅1 · · ·] ≜ 𝑐0 𝜋0 𝑐1 𝜋1 · · · where

𝑐𝑖 ≜

{
(𝜎,ℎ) if 𝒄𝑖 = (𝜎,ℎ, _, _)
 if 𝒄𝑖 =

𝜋𝑖 ≜

{
loc if 𝝅𝑖 ∈ Sched \ {env}
env if 𝝅𝑖 = env

The open-world program semantics function, J · K𝜑 : Cmd → ℘(Trace) is the function such that

JCK𝜑 ≜
{
[𝒄0𝝉]

�� (𝒄0𝝉) ∈ PTrace𝜑 , fv(C) ⊆ dom(𝜎0), 𝒄0 = (𝜎0, _,C), 𝒄0𝝉 is fair
}

The notation JCK is syntactic sugar for JCK∅.

𝜎,ℎ, skip
loc𝜖−−−−→𝜑 𝜎,ℎ,✓ 𝜎,ℎ, x B E

loc𝜖−−−−→𝜑 𝜎 [x ↦→ EJEK𝜎], ℎ,✓

EJEK𝜎 ∈ dom(ℎ)

𝜎,ℎ, x B [E]
loc𝜖−−−−→𝜑 𝜎 [x ↦→ ℎ (EJEK𝜎)], ℎ,✓

EJE1K𝜎 ∈ dom(ℎ)

𝜎,ℎ, [E1] B E2
loc𝜖−−−−→𝜑 𝜎,ℎ

[
EJE1K𝜎 ↦→ EJE2K𝜎

]
,✓

EJE1K𝜎 ∈ dom(ℎ) ℎ (EJE1K𝜎) = EJE2K𝜎

𝜎,ℎ, x B CAS(E1,E2,E3)
loc𝜖−−−−→𝜑 𝜎 [x ↦→ 1], ℎ [EJE1K𝜎 ↦→ EJE3K𝜎],✓

EJE1K𝜎 ∈ dom(ℎ) ℎ (EJE1K𝜎) ≠ EJE2K𝜎

𝜎,ℎ, x B CAS(E1,E2,E3)
loc𝜖−−−−→𝜑 𝜎 [x ↦→ 0], ℎ,✓

𝑎 = EJE1K𝜎 ∈ dom(ℎ) 𝑣 = EJE2K𝜎

𝜎,ℎ, x B FAS(E1,E2)
loc𝜖−−−−→𝜑 𝜎 [x ↦→ ℎ (𝑎)], ℎ [𝑎 ↦→ 𝑣],✓

𝑙 = EJEK𝜎 𝑙 > 0 {𝑟, 𝑟 + 1, · · · , 𝑟 + 𝑙 − 1} ∩ dom(ℎ) = ∅ 𝑣0, 𝑣1, · · · , 𝑣𝑙−1 ∈ Val

𝜎,ℎ, x B alloc(E)
loc𝜖−−−−→𝜑 𝜎 [x ↦→ 𝑟], ℎ

[
𝑟 ↦→ 𝑣0, 𝑟 + 1 ↦→ 𝑣1, · · · , 𝑟 + 𝑙 − 1 ↦→ 𝑣𝑙−1

]
,✓

EJEK𝜎 ∈ dom(ℎ)

𝜎,ℎ, dealloc(E)
loc𝜖−−−−→𝜑 𝜎,ℎ [EJEK𝜎 ↦→ ⊥],✓

𝜎,ℎ,𝐶
loc𝑡−−−−→𝜑′ 𝜎′, ℎ′,𝐶′ 𝜑′ = 𝜑 [f ↦→ (®x,Cf)]

𝜎,ℎ, let f(®x) =Cf in 𝐶
loc𝑡−−−−→𝜑 𝜎′, ℎ′, let f(®x) =Cf in 𝐶′ 𝜎,ℎ, let f(®x) =Cf in ✓

loc𝜖−−−−→𝜑 𝜎,ℎ,✓

𝜎,ℎ, var x = E in C
loc𝜖−−−−→𝜑 𝜎,ℎ, ([x ↦→ EJEK𝜎],C) 𝜎,ℎ, (𝜎′,✓) loc𝜖−−−−→𝜑 𝜎,ℎ,✓

𝜎 ⊳ 𝜎1, ℎ,𝐶
loc𝑡−−−−→𝜑 𝜎′ ⊳ 𝜎′

1, ℎ
′,𝐶′ dom(𝜎) = dom(𝜎′) dom(𝜎1) = dom(𝜎′

1)

𝜎,ℎ, (𝜎1,𝐶)
loc𝑡−−−−→𝜑 𝜎′, ℎ′, (𝜎′

1,𝐶
′)

BJBK𝜎

𝜎,ℎ, if(B){C1}else{C2}
loc𝜖−−−−→𝜑 𝜎,ℎ,C1

¬ BJBK𝜎

𝜎,ℎ, if(B){C1}else{C2}
loc𝜖−−−−→𝜑 𝜎,ℎ,C2

BJBK𝜎

𝜎,ℎ, while(B){C}
loc𝜖−−−−→𝜑 𝜎,ℎ,C;while(B){C}

¬ BJBK𝜎

𝜎,ℎ, while(B){C}
loc𝜖−−−−→𝜑 𝜎,ℎ,✓

𝜑 (f) = (®x,C)

𝜎,ℎ, y B f(®E) loc𝜖−−−−→𝜑 𝜎,ℎ, var ret=0 in (var ®x = ®E in C); y B ret

𝜎,ℎ,𝐶1
loc𝑡−−−−→𝜑 𝜎′, ℎ′,𝐶′

1

𝜎,ℎ,𝐶1;C2
loc𝑡−−−−→𝜑 𝜎′, ℎ′,𝐶′

1;C2

𝜎,ℎ,✓;C
loc𝜖−−−−→𝜑 𝜎,ℎ,C

𝜎,ℎ,𝐶1
loc𝑡−−−−→𝜑 𝜎′, ℎ′,𝐶′

1

𝜎,ℎ,𝐶1 ∥ 𝐶2
locl𝑡−−−−−→𝜑 𝜎′, ℎ′,𝐶′

1 ∥ 𝐶2

𝜎,ℎ,𝐶2
loc𝑡−−−−→𝜑 𝜎′, ℎ′,𝐶′

2

𝜎,ℎ,𝐶1 ∥ 𝐶2
locr𝑡−−−−−→𝜑 𝜎′, ℎ′,𝐶1 ∥ 𝐶′

2

𝜎,ℎ,✓ ∥ ✓ loc𝜖−−−−→𝜑 𝜎,ℎ,✓

𝜎,ℎ,C
loc ∗−−−→𝜑 𝜎′, ℎ′,✓

𝜎,ℎ, ⟨C⟩ loc𝜖−−−−→𝜑 𝜎′, ℎ′,✓

ℎ′ ∈ Heap

𝜎,ℎ,𝐶
env−−−−→𝜑 𝜎,ℎ′,𝐶

Fig. 36. The small-step operational semantics

112 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

EJEK𝜎 ∉ dom(ℎ)

𝜎,ℎ, x B [E]
loc𝜖−−−−→𝜑

EJE1K𝜎 ∉ dom(ℎ)

𝜎,ℎ, [E1] B E2
loc𝜖−−−−→𝜑

EJE1K𝜎 ∉ dom(ℎ)

𝜎,ℎ, x B CAS(E1,E2,E3)
loc𝜖−−−−→𝜑

EJE1K𝜎 ∉ dom(ℎ)

𝜎,ℎ, x B FAS(E1,E2)
loc𝜖−−−−→𝜑

EJEK𝜎 ∉ dom(ℎ)

𝜎,ℎ, dealloc(E)
loc𝜖−−−−→𝜑

𝜎,ℎ,𝐶
loc𝑡−−−−→𝜑′ 𝜑′ = 𝜑 [f ↦→ (®x,Cf)]

𝜎,ℎ, let f(®x) =Cf in 𝐶
loc𝑡−−−−→𝜑

𝜎 ⊳ 𝜎′, ℎ,𝐶
loc𝑡−−−−→𝜑

𝜎,ℎ, (𝜎′,𝐶) loc𝑡−−−−→𝜑

f ∉ dom(𝜑)

𝜎,ℎ, y B f(®E) loc𝜖−−−−→𝜑

𝜎,ℎ,𝐶1
loc𝑡−−−−→𝜑

𝜎,ℎ,𝐶1;C2
loc𝑡−−−−→𝜑

𝜎,ℎ,𝐶1
loc𝑡−−−−→𝜑

𝜎,ℎ,𝐶1 ∥ 𝐶2
locl𝑡−−−−−→𝜑

𝜎,ℎ,C
loc ∗−−−→𝜑

𝜎,ℎ, ⟨C⟩ loc𝜖−−−−→𝜑

𝜎,ℎ,𝐶2
loc𝑡−−−−→𝜑

𝜎,ℎ,𝐶1 ∥ 𝐶2
locr𝑡−−−−−→𝜑

𝒄 ∈ PConf

𝒄
env−−−−→𝜑

Fig. 37. The small-step operational semantics, failure cases

Definition D.12. A trace 𝜏 ∈ Trace is locally terminating, written lterm(𝜏), if it contains finitely
many occurrences of loc.

Remark 3 (Design of semantics). Wemade some design choices in crafting this semantics, with the
motivation of making manipulation easier in the proofs. The first choice is to model environmental
steps explicitly. These steps drive the argument about progress in the presence of blocking, where
the local thread is not able to make progress in isolation but is relying on the environment actively
performing some state changes that would lead to local progress.

The second choice we highlight is that the semantics of a program only contains infinite traces.
This might seem odd when the goal is proving termination. Traces that locally terminate simply
have an infinite tail of environment steps. To simulate a closed system one can select for the traces
where the environment steps preserve the heaps. More importantly, we strip the information about
threads and program state, which means that information about when the local thread terminated
(in the form of ✓ or end𝑡) has been erased. However, by construction, traces obtained from fair
program traces can only contain finitely many local steps if the program terminated, justifying our
definition of local termination.

Example D.13. The traces in J[x] B yK can be characterised as follows. They all start from
some configuration (𝜎,ℎ0) with 𝑥,𝑦 ∈ dom(𝜎). A (possibly zero) finite number of environment
steps follow; these steps preserve the store, but arbitrarily alter the heap, or they lead to a fault,
terminating the trace with an infinite tail of env env · · · steps. If no fault happened, a local
step is taken from some configuration (𝜎,ℎ) for an arbitrary ℎ ∈ Heap. If 𝜎 (𝑥) ∉ dom(ℎ) then
the local step leads to a fault, leading again to a env env · · · tail. Otherwise, it leads to the
configuration (𝜎,ℎ[𝜎 (𝑥) ↦→ 𝜎 (𝑦)]). After that there is an infinite number of environment steps,
which again preserve the store but arbitrarily mutate the heap, or lead to an infinite fault tail.

E SOUNDNESS

In this section, we provide the details of the soundness of three rules: LiveC, Par, While, Frame,
LiveO and LiveA. These are the only proof rules in TaDA-Live that bring in non-trivial liveness
information. All other proof rules follow in the same way as for TaDA, with the liveness constraints

TaDA Live 113

on the traces being identical between the antecedent and consequent of such rules or being trivial
in the case of command axioms. We will focus particularly on the liveness argument for these rules.

We start by giving some technical definitions omitted from the main text, and then move to the
soundness argument.

E.1 Atomic World Rely

Recall that the atomic world rely relation, Ra

A , coincides with the smallest reflexive relation closed
under the rules of the world rely (Fig. 6), with the restriction that rules wr1 andwr2 can be applied
at most once per region identifier.

Definition E.1 (Atomic World Rely Relation). The atomic world rely relation, Ra

A , is defined as
Ra

A=R∅
A , where R𝑅

A , taking 𝑅 ⊆ RId, is defined to be the smallest reflexive relation closed under:

𝛾 (𝑟) # 𝐺 ((𝑎1,𝑂1), (𝑎2,𝑂2)) ∈ Tt (𝐺) 𝜒 (𝑟) ∈ {♦, ♢} ⇒ 𝑎2 ∈ safe(A, 𝑟)
𝑂2 # \ (𝑟) 𝑟 ∉ 𝑅 (ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎2)], 𝛾, 𝜒, \, b [𝑟 ↦→ 𝑂2]) R𝑅⊎{𝑟 }

A 𝑤 ′

(ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎1)], 𝛾, 𝜒, \, b [𝑟 ↦→ 𝑂1]) R𝑅
A 𝑤 ′ wr1

((𝑎1,𝑂1), (𝑎2,𝑂2)) ∈ tr(A, 𝑟)
𝑂2 # \ (𝑟) 𝑟 ∉ 𝑅 (ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎2)], 𝛾, 𝜒 [𝑟 ↦→ (𝑎1, 𝑎2)], \, b [𝑟 ↦→ 𝑂2]) R𝑅⊎{𝑟 }

A 𝑤 ′

(ℎ, 𝜌 [𝑟 ↦→ (t, _, 𝑎1)], 𝛾, 𝜒 [𝑟 ↦→ ♢], \, b [𝑟 ↦→ 𝑂1]) R𝑅
A 𝑤 ′ wr2

E.2 Environment Liveness Judgement Semantics

We give semantics to the judgements defined in Fig. 10.

Definition E.2 (Auxiliary Environment Liveness Judgement Semantics). Let𝑚 ∈ L, _ ∈ Lvl,A ∈
𝐴𝐶𝑡𝑥𝑡, 𝐿, 𝐿′ ∈ O→ Assrt,𝑇 ∈ Assrt such that

• _;A ⊨ ∃𝛼. 𝐿(𝛼) stable.
• ∀𝛼. _;A ⊨ 𝐿′(𝛼)⇛ 𝐿(𝛼).

and let

𝑡𝜎 = WJ𝑇 ∗ TrueK𝜎A 𝑙𝜎 (𝛼) = WJ𝐿(𝛼)K𝜎A 𝑙 ′𝜎 (𝛼) = WJ𝐿′(𝛼)K𝜎A
Then, the auxiliary semantic environmental liveness judgement𝑚; _;A ⊨ 𝐿 : 𝐿′ −−↠ 𝑇 holds when,
for arbitrary 𝜎 ∈ Store, there exist 𝑃 ⊆ ℘(O → World

�
A) such that 𝑙 ′𝜎 (𝛼) =

⋃
lf ∈𝑃

lf (𝛼) and for all

lf ∈ 𝑃 , either ∀𝛼. lf (𝛼) ⊆ 𝑡 or there exists some 𝑟 ∈ RId and

𝑶 ∈ AOb<𝑚 ⊎ { live(A, 𝑟) | lay(live(A, 𝑟)) < 𝑚 }

such that
• ∀𝛼 ∈ O,𝑤 ∈ lf (𝛼). active𝑟 ;_ (𝑤,𝑶)
• ∀𝛼1, 𝛼2 ≥ 𝛼1. Ra

A (lf (𝛼1)) ∩ 𝑙𝜎 (𝛼2) ⊆ lf (𝛼1) ∪ 𝑡

hold, where:

active𝑟 ;_ (𝑤,𝑶) ≜
{

dep𝑟 ;_ (𝑤,𝑶) ∧ b𝑤 (𝑟) ⊒ 𝑶 𝑶 ∈ AOb

dep𝑟 ;_ (𝑤,𝑶) ∧ 𝜒𝑤 (𝑟) # ♢ ∧ ast𝑤 (𝑟) ∈ 𝑋 \ 𝑋 ′ 𝑶 = 𝑋 ↠𝑘 𝑋 ′

and
dep𝑟 ;_ (𝑤,𝑶) ≜ ∀𝑟 ′ ∈ dom(\𝑤). lay(\𝑤 (𝑟 ′)) > lay(𝑶) ∧ lvl𝑤 (𝑟) < _

114 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Definition E.3 (Environment Liveness Judgement Semantics). The semantic environmental liveness
judgement:

𝑚; _;A ⊨ 𝐿 𝑀−−↠ 𝑇

where𝑚 ∈ L, _ ∈ Lvl,A ∈ 𝐴𝐶𝑡𝑥𝑡, 𝐿 ∈ Assrt, 𝑀 ∈ O→ Assrt,𝑇 ∈ Assrt, holds when

_;A ⊨ 𝐿 stable

⊢_;A 𝐿 ⇒ ∃𝛼. 𝐿 ∗𝑀 (𝛼)
𝑚; _;A ⊨ 𝐿 ∗𝑀 (𝛼) : 𝐿 ∗𝑀 (𝛼) −−↠ 𝑇

Theorem E.4. For arbitrary𝑚 ∈ L, _ ∈ Lvl,A an atomicity context, 𝐿, 𝐿′ ∈ O→ Assrt,𝑇 ∈ Assrt

such that

_;A ⊨ ∃𝛼. 𝐿(𝛼) stable (31)
∀𝛼. _;A ⊨ 𝐿′(𝛼)⇛ 𝐿(𝛼) (32)

if 𝑚; _;A ⊢ 𝐿 : 𝐿′ −−↠ 𝑇 , then𝑚; _;A ⊨ 𝐿 : 𝐿′ −−↠ 𝑇 .

Proof. Assuming 𝑚; _;A ⊢ 𝐿 : 𝐿′ −−↠ 𝑇 and taking 𝜎 ∈ Store arbitrary, the proof proceeds by
induction on the structure of derivation trees of the auxiliary environmental liveness condition.
We start of with the bases cases: LiveO, LiveA and LiveT.

— case LiveO. In this case, for some 𝑟 ∈ RId, t ∈ RType, _′ ∈ Lvl,O ∈ AOb,

imprA (𝐿′, 𝐿,𝑇) (33)
𝑚 > lay(𝑂) (34)
∀𝛼. ⊢A 𝐿′(𝛼) ▷ lay(𝑂) (35)
_′ < _ (36)

∀𝛼. ⊢A 𝐿′(𝛼) ⇒ ∃𝑥 . t_′𝑟 (𝑥) ∗ ⌊𝑂⌋E𝑟 ∗ True (37)

hold. From this, we need to show𝑚; _;A ⊨ 𝐿(𝛼) : 𝐿′(𝛼) −−↠ 𝑇 .
Let 𝑃 = {𝑙 ′𝜎 (𝛼)}, clearly the union of the elements of this set equals 𝑙 ′𝜎 (𝛼) as required. Assuming

𝑙 ′𝜎 (𝛼) ⊈ 𝑡𝜎 and setting 𝑶 = O, which is in AOb<𝑚 given (34), it suffices to show

∀𝛼 ∈ O,𝑤 ∈ 𝑙 ′𝜎 (𝛼). active𝑟 ;_ (𝑤,O) (38)
∀𝛼1, 𝛼2 ≥ 𝛼1. Ra

A (𝑙 ′𝜎 (𝛼1)) ∩ 𝑙𝜎 (𝛼2) ⊆ 𝑙 ′𝜎 (𝛼1) ∪ 𝑡 (39)

hold to complete the proof.
We start off by showing that (38) holds. Taking 𝛼 ∈ O and𝑤 ∈ 𝑙 ′𝜎 (𝛼) arbitrary, given (35), it is

clear that lay(\𝑤 (𝑟)) ≥ lay(O) holds and, given (36) and (37), lvl𝑤 (𝑟) < _ holds. From these two
conclusions, we can infer that dep𝑟 ;_ (𝑤,O) holds. Then, from (37), it is clear that b𝑤 (𝑟) ⊒ O holds,
and therefore, active𝑟 ;_ (𝑤,O).
Finally, (39) follows immediately from (33) and the definition of imprA .

TaDA Live 115

— case LiveA. In this case, for some 𝑟 ∈ RId, t ∈ RType, _′ ∈ Lvl,

imprA (𝐿′, 𝐿,𝑇) (40)
𝑚 > 𝑘 (41)
∀𝛼. ⊢A 𝐿′(𝛼) ▷ 𝑘 (42)
live(A, 𝑟) = 𝑋 ↠𝑘 𝑋 ′ (43)
_′ < _ (44)

∀𝛼. ⊢A 𝐿′(𝛼) ⇒ ∃𝑥 . t_′𝑟 (𝑥) ∗ 𝑟 Z⇒ ♢ ∧ 𝑥 ∈ 𝑋 \ 𝑋 ′ ∗ True (45)

hold. From this, we need to show𝑚; _;A ⊨ 𝐿(𝛼) : 𝐿′(𝛼) −−↠ 𝑇 .
Let 𝑃 = {𝑙 ′𝜎 (𝛼)}, clearly the union of the elements of this set equals 𝑙 ′𝜎 (𝛼) as required. Assuming

𝑙 ′𝜎 (𝛼) ⊈ 𝑡𝜎 and setting 𝑶 = 𝑋 ↠𝑘 𝑋 ′, which is in { live(A, 𝑟) | lay(live(A, 𝑟)) < 𝑚 } given (41)
and (43), it suffices to show

∀𝛼 ∈ O,𝑤 ∈ 𝑙 ′𝜎 (𝛼). active𝑟 ;_ (𝑤,𝑋 ↠𝑘 𝑋 ′) (46)
∀𝛼1, 𝛼2 ≥ 𝛼1. Ra

A (𝑙 ′𝜎 (𝛼1)) ∩ 𝑙𝜎 (𝛼2) ⊆ 𝑙 ′𝜎 (𝛼1) ∪ 𝑡 (47)

to complete the proof.
We start off by showing that (46) holds. Taking 𝛼 ∈ O and 𝑤 ∈ 𝑙 ′𝜎 (𝛼) arbitrary, given (42), it

is clear that lay(\𝑤 (𝑟)) ≥ lay(𝑋 ↠𝑘 𝑋 ′) holds and, given (44) and (45), lvl𝑤 (𝑟) < _ holds. From
these two conclusions, we can infer that dep𝑟 ;_ (𝑤,𝑋 ↠𝑘 𝑋 ′) holds. Then, from (45), it is clear that
𝜒𝑤 (𝑟) # ♢ holds, and therefore, active𝑟 ;_ (𝑤,𝑋 ↠𝑘 𝑋 ′).
Finally, (47) follows immediately from (40) and the definition of imprA .

— case LiveT. In this case ∀𝛼. ⊢A 𝐿′(𝛼) ⇒ 𝑇 holds. From this, we need to show𝑚; _;A ⊨ 𝐿(𝛼) :
𝐿′(𝛼) −−↠ 𝑇 . Let 𝑃 = {𝑙 ′𝜎 (𝛼)}, clearly the union of the elements of this set equals 𝑙 ′𝜎 (𝛼) as required.
From ∀𝛼. ⊢A 𝐿′(𝛼) ⇒ 𝑇 , clearly 𝑙 ′𝜎 (𝛼) ⊆ 𝑡𝜎 , therefore 𝑚; _;A ⊨ 𝐿(𝛼) : 𝐿′(𝛼) −−↠ 𝑇 holds, as
required.
Finally, we complete this theorem’s proof with a proof of the soundness of the one inductive

case, EQuant. Note that ECase can be derived directly from EQuant.

— case EQuant. In this case, 𝐿′(𝛼) = ∃𝑥 ∈ 𝑋 . 𝐿′′(𝑥, 𝛼) for some 𝐿′′ ∈ 𝑋 × O→ Assrt and

∀𝑥 ∈ 𝑋 .𝑚; _;A ⊢ 𝐿(𝛼) : 𝐿′′(𝑥, 𝛼) −−↠ 𝑇 (48)

hold. Letting
𝑙 ′𝑥,𝜎 (𝛼) = WJ𝐿′′(𝑥, 𝛼)K𝜎A

From (48), for any𝑥 ∈ 𝑋 there exists 𝑃𝑥 ⊆ P(WorldA) such that 𝑙 ′𝑥,𝜎 (𝛼) =
⋃

𝑃𝑥 with the appropriate
conditions holding for each lf ∈ ⋃

𝑥 ∈𝑋
𝑃𝑥 .

Setting 𝑃 =
⋃
𝑥 ∈𝑋

𝑃𝑥 , given the definition of 𝐿′(𝛼), clearly 𝑙 ′𝜎 (𝛼) =
⋃

𝑃 and for each 𝑙 ∈ 𝑃 , there

exists some 𝑥 ∈ 𝑋 such that 𝑙 ∈ 𝑃𝑥 and therefore, the appropriate properties hold due to (48) as
required.

By induction on the structure of derivation trees of the auxiliary environmental liveness condition,
𝑚; _;A ⊨ 𝐿 : 𝐿′ −−↠ 𝑇 holds, as required.

□

Theorem E.5. If𝑚; _;A ⊢ 𝐿 𝑀−−↠ 𝑇 then𝑚; _;A ⊨ 𝐿 𝑀−−↠ 𝑇 .

Proof. This theorem follows trivially from theorem E.4. □

116 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

E.3 Soundness of Frame

For the rest of the section, we let

S =

A

𝑥 ∈
↠
𝑋 .

〈
𝑃h

�� 𝑃a (𝑥)〉 · ∃𝑦.
〈
𝑄h (𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉
𝑚;_;A

S′ =

A

𝑥 ∈
↠
𝑋 .

〈
𝑃h ∗ 𝑅h

�� 𝑃a (𝑥) ∗ 𝑅a (𝑥)〉 · ∃𝑦.
〈
𝑄h (𝑥,𝑦) ∗ 𝑅h

��𝑄a (𝑥,𝑦) ∗ 𝑅a (𝑥)
〉
𝑚;_;A

such that

A ⊨ 𝑅h stable
∀𝑥 ∈ 𝑋 .A ⊨ 𝑅a (𝑥) stable

Lemma E.6. For arbitrary _ ∈ Lvl, A and atomicity context, ℎ0, ℎ1 ∈ Heap, 𝑝, 𝑞 ∈ World
�
A and

𝑟 ∈ ViewA :

(ℎ0, ℎ1) ⊨_;A 𝑝 _ 𝑞 ⇒ (ℎ0, ℎ1) ⊨_;A 𝑝 ∗ 𝑟 _ 𝑞 ∗ 𝑟

Proof. Assume (ℎ0, ℎ1) ⊨_;A 𝑝 _ 𝑞, which is equivalent to:

∀𝑓 ∈ World
�
A . ℎ1 ∈ J𝑝1 ∗ 𝑓 K_ ⇒ ℎ2 ∈ J𝑝2 ∗ Ra

A (𝑓)K_

Substituting 𝑓 = 𝑟 ∗ 𝑓 ′, this is equivalent to:

∀𝑓 ′ ∈ World
�
A . ℎ1 ∈ J𝑝1 ∗ 𝑟 ∗ 𝑓 ′K_ ⇒ ℎ2 ∈ J𝑝2 ∗ Ra

A (𝑟 ∗ 𝑓 ′)K_

As 𝑟 ∈ ViewA , Ra

A (𝑟 ∗ 𝑓 ′) = 𝑟 ∗ Ra

A (𝑓 ′) holds, and therefore, as required:

∀𝑓 ′ ∈ World
�
A . ℎ1 ∈ J𝑝1 ∗ 𝑟 ∗ 𝑓 ′K_ ⇒ ℎ2 ∈ J𝑝2 ∗ 𝑟 ∗ Ra

A (𝑓 ′)K_ □

Lemma E.7. For arbitrary _ ∈ Lvl, A and atomicity context, ℎ0, ℎ1 ∈ Heap, 𝑝, 𝑞 ∈ World
�
A and

𝑓 ∈ ViewA :

ℎ0 ∈ J𝑝 ∗ 𝑓 K ∧ (ℎ0, ℎ1) ⊨_;A 𝑝 _ 𝑞 ⇒ ℎ1 ∈ J𝑞 ∗ 𝑓 K

Proof. To start off, assume ℎ0 ∈ J𝑝 ∗ 𝑓 K and (ℎ0, ℎ1) ⊨_;A 𝑝 _ 𝑞. Clearly, this second assumption
entails (ℎ0, ℎ1) ⊨_;A 𝑝 _∗ 𝑞, which is equivalent to:

∀𝑓 ∈ ViewA . ℎ0 ∈ J𝑝 ∗ 𝑓 K⇒ ℎ1 ∈ J𝑞 ∗ 𝑓 K

Chosing the initial 𝑓 and applying the first assumption yields ℎ1 ∈ J𝑞 ∗ 𝑓 K as required. □

Definition E.8. For arbitrary 𝑉 ⊂ PVar and 𝜏 ∈ Trace, we define the predicate noMods𝑉 (𝜏),
indentifying traces that only modify the program variables in 𝑉 :

noMods𝑉 ((𝜎0, ℎ0) 𝜋 (𝜎1, ℎ1)𝜏 ′) ≜ noMods𝑉 ((𝜎1, ℎ1)𝜏 ′) ∧ ∀v ∈ 𝑉 . 𝜎0 (v) = 𝜎1 (v)

Definition E.9. For 𝑉 ⊆ PVar: Trace𝑉 ≜ {𝜏 ∈ Trace | noMods𝑉 (𝜏)}.

Lemma E.10. Given C ∈ Cmd, 𝜑 ∈ FImpl and 𝑉 ⊆ PVar arbitrary such that 𝑉 ∩ mods(C) = ∅,
then: JCK𝜑 ⊆ Trace𝑉 .

Proof. Easy coinduction on the small-step operational semantics of commands. □

TaDA Live 117

Definition E.11. We define an auxiliary operation that takes a Hoare frame 𝑟h ∈ ViewA and an
atomic frame 𝑟a ∈ World

�
A and applies the frames at each position of a specification trace, if the

heaps at each position are compatible with said frames (and returns the empty set otherwise).

((𝜎,ℎ, 𝑝h, 𝑝a, 𝑣) 𝜋 𝝉) ⊛ (𝑟h, 𝑟a) ≜{
(𝜎,ℎ, 𝑝h ∗ 𝑟h, 𝑝a ∗ 𝑟a, 𝑣) 𝜋 𝝉 ′

���� 𝝉 ′ ∈ (𝝉 ⊛ (𝑟h, 𝑟a)) ∧
ℎ ∈ J𝑝h ∗ 𝑟h ∗ 𝑝a (𝑣) ∗ 𝑟a (𝑣) ∗ TrueK_

}
This can be lifted to sets of specification traces, T ⊆ STrace:

T ⊛ (𝑟h, 𝑟a) ≜
⋃̂
𝝉 ∈T

𝝉 ⊛ (𝑟h, 𝑟a)

Lemma E.12. For arbitrary (𝜎0, ℎ0)𝜏 ∈ Tracefv(𝑅h) , 𝑝ℎ ∈ ViewA , 𝑣0 ∈ AVal
′
and T ∈ P(STrace),

then

ℎ0 ∈ J𝑝h ∗ 𝑟h ∗ 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) ∗ TrueK ∧ (𝜎0, ℎ0) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣0 : T⇒
(𝜎0, ℎ0) 𝜏 ⊨S′ 𝑝h ∗ 𝑟h, 𝑝a ∗ 𝑟a, 𝑣0 : T ⊛ (𝑟h, 𝑟a)

holds, where

𝑟h = WJ𝑅hK𝜎0
A

𝑝a (𝑣) =
{
WJ𝑃a (𝑣) ∧ 𝑣 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise

𝑟a (𝑣) =
{
WJ𝑅a (𝑣) ∧ 𝑣 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise

Proof. Taking (𝜎0, ℎ0)𝜏 ∈ Tracefv(𝑅h)∩PVar, 𝑝ℎ ∈ ViewA , 𝑣0 ∈ AVal
′ and T ∈ P(STrace) arbitrary

such that:
ℎ0 ∈ J𝑝h ∗ 𝑟h ∗ 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) ∗ TrueK (49)
(𝜎0, ℎ0) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣0 : T (50)

The proof proceeds by coinduction on the structure of 𝜏 . We consider the rules can apply from
the trace safety judgement: Stutter, LinPt, Env, Env’ and Env .

— Case Stutter. In this case, (𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0) loc (𝜎1, ℎ1)𝜏 ′ and T = (𝜎0, ℎ0, 𝑝h, 𝑝a, 𝑣) loc T′.
From (50), for some 𝑝 ′

h
∈ ViewA , the following hold:

(ℎ0, ℎ1) ⊨_;A 𝑝h ∗ 𝑝a (𝑣0) _ 𝑝 ′
h
∗ 𝑝a (𝑣0) (51)

(𝜎1, ℎ1) 𝜏 ′ ⊨S 𝑝 ′
h
, 𝑝a, 𝑣0 : T′ (52)

term(𝜏 ′) ⇒ ∃𝑣1, 𝑣2 . 𝑣 = ⟨𝑣1, 𝑣2⟩ ∧ 𝑝 ′
h
= WJ𝑄h (𝑣1, 𝑣2)K𝜎1

A (53)
Given that 𝑟h, 𝑟a (𝑣0) ∈ ViewA , using Lemma E.6, (51) implies

(ℎ0, ℎ1) ⊨_;A 𝑝h ∗ 𝑟h ∗ 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) _ 𝑝 ′
h
∗ 𝑟h ∗ 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) (54)

By Lemma E.7, (49) and (51) imply:
ℎ1 ∈ J𝑝 ′

h
∗ 𝑟h ∗ 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) ∗ TrueK (55)

Given that (𝜎0, ℎ0)𝜏 ∈ Tracefv(𝑅h)∩PVar, ∀v ∈ fv(𝑅h) ∩ PVar. 𝜎𝑜 (v) = 𝜎1 (v) holds, and therefore:
𝑟h = WJ𝑅hK𝜎1

A (56)

118 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

From this, given (56), (55) and (52) and using the inductive assumption, we derive:

(𝜎1, ℎ1) 𝜏 ′ ⊨S′ 𝑝 ′
h
∗ 𝑟h, 𝑝a ∗ 𝑟a, 𝑣0 : T′ ⊛ (𝑟h, 𝑟a) (57)

Finally, assuming term(𝜏 ′), given (53), we know ∃𝑣1, 𝑣2. 𝑣 = ⟨𝑣1, 𝑣2⟩ ∧ 𝑝 ′
h
= WJ𝑄h (𝑣1, 𝑣2)K𝜎1

A .
From this and (56), we infer that 𝑝 ′

h
∗ 𝑟h = WJ𝑄h (𝑣, 𝑣 ′) ∗ 𝑅hK𝜎1

A and therefore,

term(𝜏 ′) ⇒ ∃𝑣1, 𝑣2. 𝑣 = ⟨𝑣1, 𝑣2⟩ ∧ 𝑝 ′
h
∗ 𝑟h = WJ𝑄h (𝑣, 𝑣 ′) ∗ 𝑅hK𝜎1

A (58)

From (54), (57) and (58) by Stutter, (𝜎0, ℎ0) 𝜏 ⊨S′ 𝑝h ∗𝑟h, 𝑝a ∗𝑟a, 𝑣0 : T⊛ (𝑟h, 𝑟a) holds as required.

— Case LinPt. In this case, (𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0) loc (𝜎1, ℎ1)𝜏 ′ and T = (𝜎0, ℎ0, 𝑝h, 𝑝a, 𝑣) loc T′. From
(50), the following hold for some 𝑣 ′ ∈ AVal:

(ℎ0, ℎ1) ⊨_;A 𝑝h ∗ 𝑝a (𝑣0) _ 𝑞′
h
∗WJ𝑄a (𝑣0, 𝑣

′)KA (59)
(𝜎1, ℎ1) 𝜏 ′ ⊨S 𝑞′h, emp, ⟨𝑣0, 𝑣

′⟩ : T′ (60)
term(𝜏 ′) ⇒ 𝑞′

h
= WJ𝑄h (𝑣0, 𝑣

′)K𝜎1
A (61)

Given that 𝑟h, 𝑟a (𝑣0) ∈ ViewA , using Lemma E.6, (59) implies

(ℎ0, ℎ1) ⊨_;A 𝑝h ∗ 𝑟h ∗ 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) _ 𝑞′
h
∗ 𝑟h ∗WJ𝑄a (𝑣, 𝑣 ′)KA ∗ 𝑟a (𝑣0) (62)

By Lemma E.7, (49) and (59) imply:

ℎ1 ∈ J𝑞′
h
∗ 𝑟h ∗WJ𝑄a (𝑣0, 𝑣

′)KA ∗ 𝑟a (𝑣0) ∗ TrueK (63)

Given that (𝜎0, ℎ0)𝜏 ∈ Tracefv(𝑅h)∩PVar, ∀v ∈ fv(𝑅h) ∩ PVar. 𝜎𝑜 (v) = 𝜎1 (v) holds, and therefore:

𝑟h = WJ𝑅hK𝜎1
A (64)

From this, given (64), (63) and (60) and using the inductive assumption, we derive:

(𝜎1, ℎ1) 𝜏 ′ ⊨S′ 𝑞′h ∗ 𝑟h, 𝑝a ∗ 𝑟a, ⟨𝑣0, 𝑣
′⟩ : T′ ⊛ (𝑟h, 𝑟a) (65)

Finally, assuming term(𝜏 ′), given (61), we know 𝑞′
h
= WJ𝑄h (𝑣0, 𝑣

′)K𝜎1
A . From this and (64), we

infer that 𝑞′
h
∗ 𝑟h = WJ𝑄h (𝑣0, 𝑣

′) ∗ 𝑅hK𝜎1
A and therefore,

term(𝜏 ′) ⇒ 𝑞′
h
∗ 𝑟h = WJ𝑄h (𝑣0, 𝑣

′) ∗ 𝑅hK𝜎1
A (66)

From (62), (65) and (66) by LinPt, (𝜎0, ℎ0) 𝜏 ⊨S′ 𝑝h ∗ 𝑟h, 𝑝a ∗ 𝑟a, 𝑣0 : T ⊛ (𝑟h, 𝑟a) holds as required.

— case Env. In this case, (𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0) env (𝜎1, ℎ1)𝜏 ′ and

T =
⋃{

(𝜎,ℎ1, 𝑝h, 𝑝a, 𝑣0) env T′𝑣′
�� 𝑣 ′ ∈ 𝑋, 𝐸 (𝑣 ′)

}
.

From (50) we have that ∀𝑣 ′ ∈ 𝑋 . 𝐸 (𝑣 ′) ⇒ (𝜎,ℎ2) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 ′ : T𝑣′ . Taking 𝑣 ′ ∈ 𝑋 arbitrary and,
assuming 𝐸 (𝑣 ′) given some 𝑝e, 𝑝e ′, for the goal specification:

ℎ0 ∈ J𝑝h ∗ 𝑟h ∗ 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) ∗ 𝑝eK_
(ℎ0, ℎ1) ⊨_;A 𝑝a (𝑣0) ∗ 𝑟a (𝑣0) ∗ 𝑝e _ 𝑝a (𝑣 ′) ∗ 𝑟a (𝑣 ′) ∗ 𝑝e ′

It then suffices to show that (𝜎1, ℎ1) 𝜏 ′ ⊨S′ 𝑝h ∗𝑟h, 𝑝a ∗𝑟a, 𝑣 ′ : T𝑣′ holds. This follows from Lemma E.6
by using 𝑝e = 𝑝e ∗ 𝑟h ∗ 𝑟a (𝑣0) and 𝑝 ′

e
= 𝑝e

′ ∗ 𝑟h ∗ 𝑟a (𝑣 ′), yielding:

ℎ1 ∈ J𝑝h ∗ 𝑝a (𝑣) ∗ 𝑝eK_ (ℎ1, ℎ2) ⊨_;A 𝑝a (𝑣) ∗ 𝑝e _ 𝑝a (𝑣 ′) ∗ 𝑝 ′
e

as required.

— Case Env’. This case follows similarly to the Env case.

TaDA Live 119

— Case Env . This case is trivially true. □

Lemma E.13. Letting

𝑟h = WJ𝑅hK𝜎0
A

𝑟a (𝑣) =
{
WJ𝑅a (𝑣) ∧ 𝑣 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise

and assuming ⊢A 𝑅h ∗ 𝑅a (𝑥) Q𝑚, then, given T ⊆ STrace:

∀𝝉 ′ ∈ TT ⊛ (𝑟h, 𝑟a)U. liveEnvS′ (𝝉 ′) ⇒ ∃𝝉 ∈ TTU. liveEnvS (𝝉)

Proof. Taking 𝝉 ′ ∈ TT ⊛ (𝑟h, 𝑟a)U arbitrary such that liveEnvS′ (𝝉 ′). This implies that:

∀𝑶 ∈ POb
S′
<𝑚 . if ∀𝑟,𝑂 ∈ AOb≤lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld_ (𝑟,𝑂,𝝉 ′(𝑗))

then ∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ envheld_ (𝑶,𝝉 ′(𝑗))

As 𝝉 ′ ∈ TT ⊛ (𝑟h, 𝑟a)U, there must be some 𝝉 ∈ T such that 𝝉 ′ ∈ T𝝉 ⊛ (𝑟h, 𝑟a)U. Taking 𝝉 ∈ T𝝉U
arbitrary, to show liveEnvS (𝝉), take 𝑶 ∈ POb

S
<𝑚 arbitrary such that

∀𝑟,𝑂 ∈ AOb≤lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld_ (𝑟,𝑂,𝝉 (𝑗))

Given ⊢A 𝑅h ∗ 𝑅a (𝑥) Q𝑚 and the definition of ⊛, the following holds:

∀𝑟,𝑂 ∈ AOb≤lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld_ (𝑟,𝑂,𝝉 ′(𝑗))

Now, from liveEnvS′ (𝝉 ′):

∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ envheld_ (𝑶,𝝉 ′(𝑗))

From this, as required:
∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ envheld_ (𝑶,𝝉 (𝑗))

□

Theorem E.14 (Soundness of Frame). Assuming

∀𝑥 ∈ 𝑋 . ⊢A 𝑅h ∗ 𝑅a (𝑥) Q𝑚 (67)

and given arbitrary C ∈ Cmd such that

pv(𝑅h) ∩ mod(C) = ∅ (68)

and arbitrary Φ ∈ FSpec such that

⊨Φ C : S
then

⊨Φ C : S′

Proof. To start off, as A ⊨ 𝑅h stable, clearly 𝑃h ∗ 𝑅h ∈ StableA and therefore, S′ ∈ Spec.
Taking C ∈ Cmd arbitrary such that (68) holds, Φ ∈ FSpec arbitrary such that ⊨Φ C : S holds

and arbitrary 𝜑 ∈ FImpl such that ⊨ 𝜑 : Φ holds, then JCK𝜑 ⊆ JSK. From Lemma E.10 and (68), we
can also infer that JCK𝜑 ⊆ Tracepv(𝑅h) and therefore, it is clear that JCK𝜑 ⊆ Tracepv(𝑅h) ∩ JSK. From
this, we know that it is sufficient to show that Tracepv(𝑅h) ∩ JSK ⊆ JS′K, to show that JCK𝜑 ⊆ JS′K
holds, and therefore, ⊨Φ C : S′, as required.

Therefore, taking (𝜎0, ℎ0)𝜏 ∈ JSK ∩ Tracepv(𝑅h) arbitratry, it is sufficient to show (𝜎0, ℎ0)𝜏 ∈ JS′K.

120 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Let
𝑝h = WJ𝑃hK𝜎0

A
𝑟h = WJ𝑅hK𝜎0

A

𝑝a (𝑣) =
{
WJ𝑃a (𝑣) ∧ 𝑣 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise

𝑟a (𝑣) =
{
WJ𝑅a (𝑣) ∧ 𝑣 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise

To show (𝜎0, ℎ0)𝜏 ∈ JS′K, for some arbitrary 𝑣0 ∈ 𝑋 , assume ℎ0 ∈ J𝑝h ∗𝑟h ∗𝑝a (𝑣0) ∗𝑟a (𝑣0) ∗TrueK_ ,
from which it follows that ℎ0 ∈ J𝑝h ∗𝑝a (𝑣0) ∗TrueK_ . Then, as (𝜎0, ℎ0)𝜏 ∈ JSK, for some T ⊆ STrace:

(𝜎0, ℎ0) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣0 : T (69)
∀𝝉 ∈ TTU. liveEnvS (𝝉) ⇒ lterm(𝝉) (70)

From Lemma E.12 and (69), (𝜎0, ℎ0) 𝜏 ⊨S 𝑝h ∗ 𝑟h, 𝑝a ∗ 𝑟a, 𝑣0 : T ⊛ (𝑟h, 𝑟a). To reach the goal now, it
suffices to show that for some arbitrary 𝝉 ′ ∈ TT ⊛ (𝑟h, 𝑟a)U:

liveEnvS′ (𝝉 ′) ⇒ lterm(𝝉 ′)
This holds trivially from Lemma E.13, (67) and (70).

□

Note that Theorem E.14 has the side condition pv(𝑅h) ∩ mod(C) = ∅ rather than ∀𝑥 ∈
𝑋 . pv(𝑅h, 𝑅a (𝑥)) ∩ mod(C) = ∅ as in Frame. This is because this theorem applies to TaDA Live
specifications without the syntactic sugar that permits program variables to be directly referenced
in the atomic precondition and postcondition of a TaDA Live hybrid triple. The side condition
present in the Frame rule permits it to be applied directly to sugared hybrid specifications, as it
guarantees that the necessary side condition for the corresponding desugared specification holds.

E.4 Soundness of LiveC

Let
S↠ =

A

𝑥 ∈ 𝑋 ↠𝑘 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 · ∃𝑦.
〈
𝑄h (𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉
𝑚;_;A

S =

A

𝑥 ∈ 𝑋 .
〈
𝑃h ∗ 𝐿

�� 𝑃a (𝑥)〉 · ∃𝑦.
〈
𝑄h (𝑥,𝑦) ∗ 𝐿

��𝑄a (𝑥,𝑦)
〉
𝑚;_;A

where 𝐿 ∈ StableA .

Definition E.15. For atomicity context A and layer𝑚 from the context of S and sets 𝑋 and 𝑋 ’ as
well as the layer 𝑘 from the pseudo-quantifier of S, let

POb
S ≜ { (𝑟,𝑂) | 𝑟 ∈ RId,𝑂 ∈ AOb } ⊎ { (𝑟, live(A, 𝑟)) | 𝑟 ∈ dom(A) } ⊎ {𝑋 ↠𝑘 𝑋 ′}

Then liveEnvS (𝝉) predicate checks whether the environment is satisfying the liveness assumptions
of the specification:

liveEnvS (𝝉) ≜ ∀𝑶 ∈ POb
S
<𝑚 . if ∀𝑟,𝑂 ∈ AOb≤lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld_ (𝑟,𝑂,𝝉 (𝑗))

then ∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ envheld_ (𝑶,𝝉 (𝑗))

Lemma E.16. Given𝑀 ∈ O→ World
�
A,𝑇 ∈ Assrt, 𝑛 ≤ 𝑚,𝑘 such that

𝑛; _;A ⊨ 𝐿 𝑀−−↠ 𝑇 (71)
∀𝑥 ∈ 𝑋 . ⊢_;A 𝑃 (𝑥) ∗𝑇 ⇒ 𝑥 ∈ 𝑋 ′ (72)

TaDA Live 121

hold. Take (𝜎0, ℎ0)𝜏 ∈ Trace and let

𝑝a (𝑣) =
{
WJ𝑃a (𝑣) ∧ 𝑣 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise

𝑙 = WJ𝐿K𝜎0
A

𝑙 (𝛼) = WJ𝐿 ∗𝑀 (𝛼)K𝜎0
A

𝑡 = WJ𝑇 ∗ TrueK𝜎0
A

Taking arbitrary 𝑝 ′
h
∈ ViewA,T ⊆ STrace and 𝑣0 ∈ 𝑋 such that

ℎ0 ∈ J𝑝 ′
h
∗ 𝑙 ∗ 𝑝a (𝑣0) ∗ TrueK_ (73)

(𝜎0, ℎ0)𝜏 ⊨S↠ 𝑝 ′
h
, 𝑝a, 𝑣0 : T (74)

(𝜎0, ℎ0)𝜏 ⊨S 𝑝 ′
h
∗ 𝑙, 𝑝a, 𝑣0 : T ⊛ (𝑙, emp) (75)

for arbitrary 𝝉 ′ ∈ TT ⊛ (𝑙, emp)U_;A such that

liveEnvS (𝝉 ′) (76)
there exists 𝝉 ∈ TTU_;A , such that, if

∀𝑶 ′ ∈ RId × AOb≤𝑘 .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld_ (𝑶
′
,𝝉 (𝑗)) (77)

then ∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ envheld_ (𝑋 ↠𝑘 𝑋 ′,𝝉 (𝑗)) .

Proof. Taking (𝜎0, ℎ0)𝜏 ∈ Trace, 𝑝 ′
h
∈ ViewA,T ⊆ STrace and 𝑣0 ∈ 𝑋 arbitrary such that (73),

(74) and (75) hold and 𝝉 ′ ∈ TT ⊛ (𝑙, emp)U_;A satisfying (76). From this, we know that, there exists
𝝉 ∈ TTU_;A and ls ∈ 𝑙𝜔 , such that, for all 𝑖 ∈ N:

ls(𝑖) Ra

A ls(𝑖 + 1) (78)

∃ℎ ∈ Heap,𝑤h,𝑤a,𝑤e ∈ ViewA, 𝑣 ∈ Val
′.

𝝉 (𝑖) = ((ℎ,𝑤h,𝑤a,𝑤e ⊙ ls(𝑖), 𝑣), _) ∧
𝝉 ′(𝑖) = ((ℎ,𝑤h ⊙ ls(𝑖),𝑤a,𝑤e, 𝑣), _)

(79)

hold. If (77) does not hold, our proof is complete, otherwise, from (71), there exists some 𝑃 ⊆
℘(O→ World

�
A) such that ∀𝛼. 𝑙 (𝛼) = ⋃

lf ∈𝑃 lf (𝛼).
We now show by transfinite induction on 𝛼 ∈ O, that

∀𝛼 ∈ O, 𝑖 ∈ N. ls(𝑖) ∈ 𝑙 (𝛼) ⇒ ∃ 𝑗 ≥ 𝑖 .¬ envheld_ (𝑋 ↠𝑘 𝑋 ′,𝝉 (𝑗))
Base case (𝛼 = 0): Take 𝑖 ∈ N and assume ls(𝑖) ∈ 𝑙 (0). Since 𝑙 (0) = ⋃

lf ∈𝑃 lf (0), for some lf ∈ 𝑃

we have ls(𝑖) ∈ lf (0). We now assume, towards a contradiction, that ∀𝑗 ≥ 𝑖 . envheld_ (𝑋 ↠𝑘

𝑋 ′,𝝉 (𝑗)) and therefore ∀𝑗 ≥ 𝑖 . ∃𝑣 ∈ 𝑋 \ 𝑋 ′.𝝉 (𝑗) = ((_, _, _, _, 𝑣), _). We now demonstrate,
that under this assumption, by induction on 𝑗 ≥ 𝑖 that

∀𝑗 ≥ 𝑖 . ls(𝑗) ∈ lf (0) (80)
Assume that for 𝑗 ≥ 𝑖 , ls(𝑗) ∈ lf (0) holds. From (78), ls(𝑗+1) ∈ Ra

A (lf (0)) holds and from (71),
setting 𝛼1 = 0, Ra

A (lf (0)) ⊆ lf (0) ∪ 𝑡 , therefore, either ls(𝑗 + 1) ∈ lf (0) or ls(𝑗 + 1) ∈ 𝑡 hold.
In the latter case, from (72), ∃𝑣 ∈ 𝑋 ′.𝝉 (𝑗 + 1) = ((_, _, _, _, 𝑣), _), a contradiction. Therefore,
ls(𝑗 + 1) ∈ lf (0) holds, proving (80).
From (71), there exists some 𝑟 ∈ RId and 𝑶 ∈ AOb<𝑛 ⊎ { live(A, 𝑟) | lay(live(A, 𝑟)) < 𝑛 }
such that:

∀𝑤 ∈ lf (0). active𝑟 ;_ (𝑤,𝑶) (81)

Taking 𝑟 ′ ∈ RId and O ∈ AOb≤lay(𝑶) arbitrary, since lay(𝑶) < 𝑛, lay(O) < 𝑛 and therefore
lay(O) < 𝑘 and lay(O) < 𝑚 hold. As lay(O) < 𝑘 holds, given (77), for some 𝑗 ′ ≥ 𝑖 ,

122 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

¬ locheld_ ((𝑟 ′,O),𝝉 (𝑗 ′)) holds. Given (79), we know 𝝉 (𝑗 ′) = (ℎ,𝑤h,𝑤a,𝑤e ⊙ ls(𝑗 ′), 𝑣) and
𝝉 ′(𝑗 ′) = (ℎ,𝑤h ⊙ ls(𝑗 ′),𝑤a,𝑤e, 𝑣) for some ℎ ∈ Heap,𝑤h,𝑤a,𝑤e ∈ WorldA, 𝑣 ∈ 𝑋 \ 𝑋 ′, and
therefore, \𝑤h

(𝑟 ′) ̸⊒ O. Given (80), ls(𝑗 ′) ∈ lf (0) holds, and, therefore, given (81), we know
that:

lay(\ ls (𝑗 ′) (𝑟 ′)) > lay(𝑶) (82)
lvlls (𝑗 ′) (𝑟) < _ (83)

Given (82), \ ls (𝑗 ′) (𝑟 ′) ̸⊒ O, as otherwise, lay(\ ls (𝑗 ′) (𝑟 ′)) ≤ lay(O) and therefore, as lay(O) <
lay(𝑶), we reach a contradiction. Then, from \𝑤h

(𝑟) ̸⊒ O and \ ls (𝑗 ′) (𝑟) ̸⊒ O, we know
\𝑤h⊙ls (𝑗 ′) (𝑟) ̸⊒ O, as O ∈ AOb, and therefore, ¬ locheld_ ((𝑟 ′,O),𝝉 ′(𝑗 ′)). From this, it follows
that

∀𝑶 ′ ∈ RId × AOb≤lay(𝑶) , 𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld_ (𝑶
′
,𝝉 ′(𝑗)) (84)

holds.
Letting 𝝉 ′(𝑖) = ((ℎ𝑖 ,𝑤 𝑖

h
⊙ ls(𝑖),𝑤 𝑖

a
,𝑤 𝑖

e
, 𝑣𝑖), _), first, consider the case 𝑶 ∈ AOb<𝑛 . As an

obligation’s composition with itself within the obligation algebra of the region type of the
shared region 𝑟 must be undefined, one of

locheld_ (𝑶,𝝉 ′(𝑖)) ∧ ¬ envheld_ (𝑶,𝝉 ′(𝑖))
¬ locheld_ (𝑶,𝝉 ′(𝑖)) ∧ envheld_ (𝑶,𝝉 ′(𝑖))

¬ locheld_ (𝑶,𝝉 ′(𝑖)) ∧ ¬ envheld_ (𝑶,𝝉 ′(𝑖))

holds, as if both the environment and local worlds hold 𝑶 , their composition would be
undefined.
If¬ locheld_ (𝑶,𝝉 ′(𝑖))∧¬ envheld_ (𝑶,𝝉 ′(𝑖)) holds, then\𝑤𝑖

h
⊙ls (𝑖) (𝑟) ̸⊒ 𝑶 and b𝑤𝑖

h
⊙ls (𝑖) (𝑟) ̸⊒ 𝑶

hold. From (80), we know that ls(𝑖) ∈ lf (0), which, given (81) and 𝑶 ∈ AOb<𝑛 implies that
bls (𝑖) (𝑟) ̸⊒ 𝑶 . Given b𝑤𝑖

h
⊙ls (𝑖) (𝑟) ̸⊒ 𝑶 and bls (𝑖) (𝑟) ̸⊒ 𝑶 and the definition of ⊙, we know that

\𝑤𝑖
h

(𝑟) ⊒ 𝑶 , which in turn implies \𝑤𝑖
h
⊙ls (𝑖) (𝑟) ⊒ 𝑶 , a contradiction, as required.

Otherwise, if ¬ locheld_ (𝑶,𝝉 ′(𝑖)) ∧ envheld_ (𝑶,𝝉 ′(𝑖)) holds, from (76)

if ∀𝑶 ′ ∈ RId × AOb≤lay(𝑶) , 𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld(𝑶 ′
,𝝉 ′(𝑗))

then ∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ envheld(𝑶,𝝉 ′(𝑗))
holds, and therefore, given (84), there exists someminimal 𝑗 ≥ 𝑖 , such that¬ envheld(𝑶,𝝉 ′(𝑗+
1)) holds. Since 𝑗 is minimal, ∀𝑘 ∈ N. 𝑖 ≤ 𝑘 ≤ 𝑗 ⇒ envheld(𝑶,𝝉 ′(𝑘)) also holds. From this,
letting

𝝉 ′(𝑗) = ((ℎ 𝑗 ,𝑤
𝑗

h
⊙ ls(𝑗),𝑤 𝑗

a
,𝑤

𝑗
e
, 𝑣 𝑗), 𝜋)

𝝉 ′(𝑗 + 1) = ((ℎ 𝑗+1,𝑤 𝑗+1
h

⊙ ls(𝑗 + 1),𝑤 𝑗+1
a

,𝑤
𝑗+1
e

, 𝑣 𝑗+1), _)

we know that b
𝑤

𝑗

h
⊙ls (𝑗) (𝑟) ⊒ 𝑶 and, given (81), b

𝑤
𝑗+1
h

⊙ls (𝑗+1) (𝑟) ̸⊒ 𝑶 . Then, given (83) and the
invariant on atomic resources, we know \

𝑤
𝑗
a

(𝑟) = 0 and \
𝑤

𝑗+1
a

(𝑟) = 0, and therefore, by the
definition of ⊙, b

𝑤
𝑗

h
⊙ls (𝑗) ⊙𝑤 𝑗

a

(𝑟) ⊒ 𝑶 and b
𝑤

𝑗+1
h

⊙ls (𝑗+1) ⊙𝑤 𝑗+1
a

(𝑟) ̸⊒ 𝑶 .
If 𝜋=loc, by construction of 𝝉 ′,𝑤 𝑗

e
Ra

A 𝑤
𝑗+1
e

holds, and therefore, from the definition of Ra

A ,
\
𝑤

𝑗
e

(𝑟) = \
𝑤

𝑗+1
e

(𝑟). By construction of 𝝉 ′, we know ℎ 𝑗 ∈ J𝑤 𝑗

h
⊙ ls(𝑗) ⊙𝑤 𝑗

a
⊙𝑤 𝑗

e
K_ and therefore,

b
𝑤

𝑗

h
⊙ls (𝑗) ⊙𝑤 𝑗

a
⊙𝑤 𝑗

e

(𝑟) = 0, given the definition of reification. Similarly, b
𝑤

𝑗+1
h

⊙ls (𝑗+1) ⊙𝑤 𝑗+1
a

⊙𝑤 𝑗+1
e

(𝑟) =
0. From this, we can infer \

𝑤
𝑗
e

(𝑟) ⊒ 𝑶 and \
𝑤

𝑗+1
e

(𝑟) ̸⊒ 𝑶 , a contradiction.

TaDA Live 123

Otherwise, if 𝜋=env, by construction of 𝝉 ′,𝑤 𝑗

h
⊙ ls(𝑗) Ra

A 𝑤
𝑗+1
h

⊙ ls(𝑗 +1) holds, and therefore,
from the definition of Ra

A , \𝑤 𝑗

h
⊙ls (𝑗) (𝑟) = \

𝑤
𝑗+1
h

⊙ls (𝑗+1) (𝑟). Given (78), \ ls (𝑗) (𝑟) = \ ls (𝑗+1) (𝑟),
and therefore, from the definition of ⊙, \

𝑤
𝑗

h

(𝑟) = \
𝑤

𝑗+1
h

(𝑟). From b
𝑤

𝑗

h
⊙ls (𝑗) (𝑟) ⊒ 𝑶 , we know

that \
𝑤

𝑗

h

(𝑟) ̸⊒ 𝑶 . Given (80) and (81), bls (𝑗+1) (𝑟) ⊒ 𝑶 holds and therefore b
𝑤

𝑗+1
h

⊙ls (𝑗+1) (𝑟) ̸⊒ 𝑶

implies \
𝑤

𝑗+1
h

(𝑟) ⊒ 𝑶 , a contradiction.
Finally, the case locheld_ (𝑶,𝝉 ′(𝑖)) ∧ ¬ envheld_ (𝑶,𝝉 ′(𝑖)) reaches a contradiction similarly.
To finish the base case, it now suffices to consider the case 𝑶 = 𝑋 ↠𝑘 𝑋 ′. Given (76) and
(84), we know that for some 𝑗 ≥ 𝑖 , ¬ envheld_ (𝑶,𝝉 ′(𝑗)) holds. Letting 𝝉 ′(𝑗) = ((_,𝑤 𝑗

h
⊙

ls(𝑗), _, _, _), _), given (81), lvlls (𝑗) (𝑟) < _ and astls (𝑗) (𝑟) ∈ 𝑋 \ 𝑋 ′ hold. Given lvlls (𝑗) (𝑟) < _

and ¬ envheld_ (𝑶,𝝉 ′(𝑗)), astls (𝑗) (𝑟) ∈ 𝑋 ′ holds, a contradiction.
By contradiction, the base case holds as required.

Inductive case: Take 𝛼 ∈ O, 𝑖 ∈ N and assume ls(𝑖) ∈ 𝑙 (𝛼). Since 𝑙 (𝛼) =
⋃

lf ∈𝑃 lf (𝛼) holds
for some lf ∈ 𝑃 , we have ls(𝑖) ∈ lf (𝛼). Now assume, towards a contradiction, that ∀𝑗 ≥
𝑖 . envheld_ (𝑋 ↠𝑘 𝑋 ′,𝝉 (𝑗)) and therefore ∀𝑗 ≥ 𝑖 . ∃𝑣 ∈ 𝑋 \ 𝑋 ′.𝝉 (𝑗) = ((_, _, _, _, 𝑣), _). We
now demonstrate, that under this assumption the following holds:

(∀𝑗 ≥ 𝑖 . ls(𝑗) ∈ lf (𝛼)) ∨ (∃ 𝑗 > 𝑖, 𝛽 < 𝛼. ls(𝑗) ∈ 𝑙 (𝛽)) (85)

To show this, it is sufficient to show that ¬(∃ 𝑗 > 𝑖, 𝛽 < 𝛼. ls(𝑗) ∈ 𝑙 (𝛽)) implies ∀𝑗 ≥ 𝑖 . ls(𝑗) ∈
lf (𝛼). We proceed to prove ∀𝑗 ≥ 𝑖 . ls(𝑗) ∈ lf (𝛼) by induction on 𝑗 ≥ 𝑖 . The base case
holds by our assumptions. Now for the inductive case, assume that for 𝑗 ≥ 𝑖 , ls(𝑗) ∈ lf (𝛼)
holds. From (78), ls(𝑗 + 1) ∈ Ra

A (lf (𝛼)) holds and from (71), setting 𝛼1 = 𝛼 , Ra

A (lf (𝛼)) ⊆
lf (𝛼) ∪⋃

𝛽<𝛼 𝑙 (𝛽) ∪ 𝑡 , therefore, either ls(𝑗 + 1) ∈ lf (𝛼), ls(𝑗 + 1) ∈ ⋃
𝛽<𝛼 𝑙 (𝛽) or ls(𝑗 + 1) ∈ 𝑡

hold. In the case where ls(𝑗 + 1) ∈ 𝑡 holds, from (72), ∃𝑣 ∈ 𝑋 ′.𝝉 (𝑗 + 1) = ((_, _, _, _, 𝑣), _), a
contradiction and in the case where ls(𝑗 + 1) ∈ ⋃

𝛽<𝛼 𝑙 (𝛽) holds, we reach a contradiction
with ¬(∃ 𝑗 > 𝑖, 𝛽 < 𝛼. ls(𝑗) ∈ 𝑙 (𝛽)) which implies ∀𝑗 > 𝑖, 𝛽 < 𝛼. ls(𝑗) ∉ 𝑙 (𝛽). Therefore,
ls(𝑗 + 1) ∈ lf (0) holds, as required, completing the proof by induction.
The inductive case then follows from (85). The goal follows similarly to the base case for the
first disjunct and by inductive assumption in the second. □

Lemma E.17. Given𝑀 ∈ O→ World
�
A,𝑇 ∈ Assrt, 𝑛 ≤ 𝑚,𝑘 such that

𝑛; _;A ⊨ 𝐿 𝑀−−↠ 𝑇 (86)
∀𝑥 ∈ 𝑋 . ⊢_;A 𝑃 (𝑥) ∗𝑇 ⇒ 𝑥 ∈ 𝑋 ′ (87)

hold. Take (𝜎0, ℎ0)𝜏 ∈ Trace and let

∀𝑣 ∈ AVal. 𝑝a (𝑣) = WJ𝑣 ∈ 𝑋 ∧ 𝑃a (𝑣)KA
𝑙 = WJ𝐿K𝜎0

A
𝑡 = WJ𝑇 ∗ TrueK𝜎0

A

Taking arbitrary 𝑝 ′
h
, 𝑝e ∈ ViewA,T ⊆ STrace and 𝑣0 ∈ 𝑋 such that

ℎ0 ∈ J𝑝 ′
h
∗ 𝑙 ∗ 𝑝a (𝑣0) ∗ True ∗ 𝑝eK_ (88)

(𝜎0, ℎ0)𝜏 ⊨S↠ 𝑝 ′
h
, 𝑝a, 𝑣0 : T (89)

(𝜎0, ℎ0)𝜏 ⊨S 𝑝 ′
h
∗ 𝑙, 𝑝a, 𝑣0 : T ⊛ (𝑙, emp) (90)

and arbitrary 𝝉 ′ ∈ TT ⊛ (𝑙, emp)U such that

liveEnvS (𝝉 ′) (91)

124 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

holds, then, there exists 𝝉 ∈ TTU, such that:

liveEnvS↠ (𝝉)

Proof. This lemma follows straightforwardly from lemma E.16. □

Theorem E.18. Taking 𝑛 ∈ L,𝑇 ∈ Assrt and𝑀 ∈ O→ Assrt such that𝑚 ⩾ 𝑛, 𝑘 ·⩾ 𝑛 and

𝑛; _;A ⊨ 𝐿 𝑀−−↠ 𝑇 (92)
∀𝑥 ∈ 𝑋 . ⊢_;A 𝑃a (𝑥) ∗𝑇 ⇒ 𝑥 ∈ 𝑋 ′ (93)

Then, for any Φ ∈ FSpec and C ∈ Cmd, if

pv(𝐿) ∩ mod(C) = ∅ (94)
⊨Φ C : S↠ (95)

then

⊨Φ C : S

Proof. Taking 𝑛 ∈ L,𝑇 ∈ Assrt and𝑀 ∈ O→ Assrt arbitrary such that𝑚 ⩾ 𝑛, 𝑘 ·⩾ 𝑛, (92) and
(93) hold. Then, to start off, given (92), A ⊨ 𝐿 stable holds, and therefore, 𝑃h ∗ 𝐿 ∈ StableA . From
this we can infer, S ∈ Spec.
Then, taking C ∈ Cmd arbitrary such that (68) holds, Φ ∈ FSpec arbitrary such that ⊨Φ C : S↠

holds and arbitrary 𝜑 ∈ FImpl such that ⊨ 𝜑 : Φ holds, then JCK𝜑 ⊆ JS↠K. From Lemma E.10 and
(94), we can also infer that JCK𝜑 ⊆ Tracepv(𝐿) and therefore, it is clear that JCK𝜑 ⊆ Tracepv(𝐿)∩JS↠K.
From this, we know that it is sufficient to show that Tracepv(𝑅h) ∩ JS↠K ⊆ JSK, to show that
JCK𝜑 ⊆ JSK holds, and therefore, ⊨Φ C : S, as required.

Therefore, taking (𝜎0, ℎ0)𝜏 ∈ JS↠K ∩ Tracepv(𝐿) arbitratry, it is sufficient to show (𝜎0, ℎ0)𝜏 ∈ JSK.
Let

𝑝h = WJ𝑃hK𝜎0
A 𝑝a (𝑣) =

{
WJ𝑃a (𝑣) ∧ 𝑣 ∈ 𝑋 KA if 𝑥 ∈ AVal

EmpA otherwise
𝑚(𝛼) = WJ𝑀 (𝛼)K𝜎0

A 𝑙 (𝛼) = WJ𝐿 ∗𝑀 (𝛼)K𝜎0
A

𝑙 = WJ𝐿K𝜎0
A 𝑡 = WJ𝑇 K𝜎0

A

To show (𝜎0, ℎ0)𝜏 ∈ JSK, assume for some 𝑣0 ∈ 𝑋 , ℎ0 ∈ J𝑝h ∗ 𝑝a (𝑣0) ∗ 𝑙 ∗ TrueK_ . Then, given
(𝜎0, ℎ0)𝜏 ∈ JS↠K, for some T ∈ ℘(STrace):

(𝜎0, ℎ0) 𝜏 ⊨S↠ 𝑝h, 𝑝a, 𝑣0 : T ∧ ∀𝝉 ∈ TTU. liveEnvS↠ (𝝉) ⇒ lterm(𝝉)
Given Lemma E.12 and that the definition of the trace safety judgement does not depend on the
good states of a specification,𝑋 ′, clearly, (𝜎0, ℎ0) 𝜏 ⊨S 𝑝h ∗ 𝑙, 𝑝a, 𝑣0 : T⊛ (𝐿, emp) holds. To complete
the proof, it suffices show that

∀𝝉 ∈ TT ⊛ (𝐿, emp)U . liveEnvS↠ (𝝉) ⇒ liveEnvS (𝝉)
This follows straightfowardly from Lemma E.17. □

E.5 Soundness of While

Definition E.19 (Concrete trace sequence operator).

𝜏 = 𝜏1#𝜏2 ⇔
(¬ lterm(𝜏1) ∧ 𝜏 = 𝜏1) ∨(
∃𝜎 ∈ Store, ℎ ∈ Heap, 𝜏 ′1 loc (𝜎,ℎ)𝜏 ′′1 , (𝜎,ℎ)𝜏 ′2 ∈ Trace.

𝜏1 = 𝜏 ′1 loc (𝜎,ℎ)𝜏 ′′1 ∧ 𝜏2 = (𝜎,ℎ)𝜏 ′2 ∧ term((𝜎,ℎ)𝜏 ′′1) ∧ 𝜏 = 𝜏 ′1 loc (𝜎,ℎ) loc (𝜎,ℎ)𝜏 ′2

)

TaDA Live 125

A similarly defined overloading of this operator exists for specification traces, 𝝉1 # 𝝉2 and the
obvious lifting to sets T1 # T2.

Lemma E.20. For arbitrary 𝜑 ∈ FImpl, (𝜎0, ℎ0)𝜏 ∈ Jwhile(B){C}K𝜑 , either ¬BJBK𝜎0 and

(𝜎0, ℎ0)𝜏 ∈ JskipK𝜑 , or BJBK𝜎0 and there exists (𝜎0, ℎ0)𝜏 ′ ∈ JCK𝜑 and 𝜏 ′′ ∈ Jwhile(B){C}K𝜑 ,
such that (𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0)𝑙𝑜𝑐 (𝜎0, ℎ0)𝜏 ′ # 𝜏 ′′.

Proof. Straightforward by induction on _−→𝜑 . □

Lemma E.21. Given an arbitrary specification

S =

A

𝑥 ∈ 𝑋 ↠ 𝑋 ′.
〈
𝑃h

�� 𝑃a (𝑥)〉 · ∃𝑦.
〈
𝑄h (𝑥,𝑦)

��𝑄a (𝑥,𝑦)
〉
_;A

for an arbitrary trace (𝜎0, ℎ0)𝜏 ∈ Trace, let

𝑝h = WJ𝑃hK𝜎0
A 𝑝a (𝑣) = WJ𝑃a (𝑣)K𝜎0

A

If for some 𝑣 ∈ 𝑋 and T ∈ P(STrace), ℎ0 ∈ J𝑝h ∗ 𝑝a (𝑣) ∗ TrueK and (𝜎0, ℎ0)𝜏 ⊨S 𝑝h, 𝑝a, 𝑣 : T, then:

∀𝝉 ∈ T.∀𝑖 ∈ N. term(𝝉/𝑖) ⇒ ∃ℎ ∈ Heap, 𝜎 ∈ Store, 𝑝h ∈ ViewA, 𝑣 ∈ 𝑋, 𝑣 ′ ∈ AVal.

𝝉 (𝑖) = (𝜎,ℎ, 𝑝h, emp, ⟨𝑣, 𝑣 ′⟩) ∧ 𝑝h = WJ𝑄h (𝑣, 𝑣 ′)K𝜎A ∧ ℎ ∈ J𝑝h ∗ TrueK_ (96)

Proof. Straightforward by induction on the specification semantics rules. □

For the rest of the section, let
S′(𝛽, 𝑏) =

{
𝑃 (𝛽) ∗ (𝑏 .⇒ 𝑇 (𝛽)) ∧ B

}
·
{
∃𝛾 . 𝑃 (𝛾) ∧ 𝛾 ≤ 𝛽 ∗ (𝑏 .⇒ 𝛾 < 𝛽)

}
𝑚;_;A

S(𝛽0) =
{
𝑃 (𝛽0) ∗ 𝐿

}
·
{
∃𝛽. 𝑃 (𝛽) ∗ 𝐿 ∧ ¬B ∧ 𝛽0 ≥ 𝛽

}
𝑚;_;A

Lemma E.22. Take 𝜑 ∈ FImpl and 𝛽0 ∈ O arbitrary and take (𝜎0, ℎ0)𝜏 ∈ Jwhile(B){C}K𝜑 such

that BJBK𝜎0 . Let

𝑝 ′(𝛽, 𝑏) = WJ𝑃 (𝛽) ∗ (𝑏 .⇒ 𝑇)K𝜎0
A 𝑙 = WJ𝐿K𝜎0

A

As BJBK𝜎0 , by lemma E.20, there exists (𝜎0, ℎ0)𝜏 ′ ∈ JCK𝜑 and (𝜎1, ℎ1)𝜏 ′′ ∈ Jwhile(B){C}K𝜑 , such
that (𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0)𝜏 ′ # (𝜎1, ℎ1)𝜏 ′′. If, for arbitrary 𝛽 ′ ≤ 𝛽 ≤ 𝛽0 and T

′,T′′ ∈ P(STrace), there
exists 𝑏 ∈ Bool, such that:

ℎ0 ∈ J𝑝 ′(𝛽, 𝑏) ∗ 𝑙 ∗ TrueK_
(𝜎0, ℎ0)𝜏 ′ ⊨S′ (𝛽,𝑏) 𝑝 ′(𝛽, 𝑏), emp, 1 : T′

(𝜎1, ℎ1)𝜏 ′′ ⊨S(𝛽′) 𝑝 ′(𝛽 ′, False) ∗ 𝑙, emp, 1 : T′′

then:

(𝜎0, ℎ0)𝜏 ⊨S(𝛽) 𝑝 ′(𝛽, False) ∗ 𝑙, emp, 1 : T′ # T′′

and one of the following hold:

lterm((𝜎0, ℎ0)𝜏)
∀𝝉 ∈ TT′ # T′′U .¬ liveEnvS(𝛽) (𝝉)

∀𝝉 ∈ T′ # T′′.∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖, 𝛽 .𝝉 (𝑗) = (𝜎,ℎ, 𝑝 ′(𝛽, False), emp, 1)

Proof. This lemma is proven by coinduction on the structure of (𝜎0, ℎ0)𝜏 . First, assume:
ℎ0 ∈ J𝑝 ′(𝛽, 𝑏) ∗ 𝑙 ∗ TrueK_ (97)
(𝜎0, ℎ0)𝜏 ′ ⊨S′ (𝛽,𝑏) 𝑝 ′(𝛽, 𝑏), emp, 1 : T′ (98)
(𝜎1, ℎ1)𝜏 ′′ ⊨S(𝛽′) 𝑝 ′(𝛽 ′, False) ∗ 𝑙, emp, 1 : T′′ (99)

126 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

As, clearly, ∀𝛽. 𝑝 ′(𝛽, True) ⊆ 𝑝 ′(𝛽, False), using (97), (98), (99), Lemma E.12 and Lemma E.21, by
coinduction, we can derive:

(𝜎0, ℎ0)𝜏 ⊨S(𝛽) 𝑝 ′(𝛽, False) ∗ 𝑙, emp, 1 : T′ # T′′

Now, split on lterm((𝜎0, ℎ0)𝜏). If lterm((𝜎0, ℎ0)𝜏), then the goal holds, otherwise, split again on
lterm((𝜎0, ℎ0)𝜏 ′). If¬ lterm((𝜎0, ℎ0)𝜏 ′), thenT′#T′′ = T′, so from (98),∀𝝉 ∈ TT′#T′′U. liveEnvS′ (𝛽,𝑏) (𝝉) ⇒
lterm(𝝉), from this we infer that ∀𝝉 ∈ TT′ # T′′U .¬ liveEnvS′ (𝛽,𝑏) (𝝉). Given that the definition of
liveEnv only reference the pseudo-quantifier, context layer and atomicity context of the parametris-
ing specification, this clearly implies our goal, ∀𝝉 ∈ TT′ # T′′U.¬ liveEnvS(𝛽) (𝝉), as required.
Otherwise, ¬ lterm((𝜎1, ℎ1)𝜏 ′′). To not terminate, the while loop must iterate at least one more
time, as (𝜎1, ℎ1)𝜏 ′′ is a fair trace, therefore BJBK𝜎1 holds. We can then use lemma E.20 and our
coinductive assumption to obtain ℎ1 ∈ J𝑝 ′(𝛽, 𝑏) ∗ 𝑙 ∗ TrueK_ and that one of the following holds:

∀𝝉 ∈ TT′′U .¬ liveEnvS(𝛽′) (𝝉)
∀𝝉 ∈ T′′.∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖, 𝛽 .𝝉 (𝑗) = (𝜎,ℎ, 𝑝 ′(𝛽, False), emp, 1)

If the first holds, then ∀𝝉 ∈ T′ # T′′. liveEnvS(𝛽) (𝝉) ⇒ lterm(𝝉), so the goal is proven; if the second
holds, then from ℎ1 ∈ J𝑝 ′(𝛽, 𝑏) ∗ 𝑙 ∗ TrueK_ :

∀𝝉 ∈ T′ # T′′.∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖, 𝛽 .𝝉 (𝑗) = (𝜎,ℎ, 𝑝 ′(𝛽, False), emp, 1) □

Theorem E.23. Given
∀𝛽 ≤ 𝛽0.∀𝑏 ∈ {0, 1}. ⊨Φ C : S′(𝛽, 𝑏) (100)

∀𝛽 ≤ 𝛽0.𝑚(𝛽); _;A ⊨ 𝐿 𝑀−−↠ 𝑇 (𝛽) (101)
∀𝛼.A ⊨ ∃𝛼 ′. 𝐿 ∗𝑀 (𝛼 ′) ∧ 𝛼 ′ ≤ 𝛼 stable (102)
A ⊨ 𝐿 stable (103)
∀𝛽 ≤ 𝛽0. ⊢A 𝑃 (𝛽) Q𝑚(𝛽) ⩽ 𝑚 (104)
pv(𝑇, 𝐿,𝑀) ∩ mod(C) = ∅ (105)

then:

⊨Φ while(B){C} : S(𝛽0)

Proof. Taking 𝜑 ∈ FImpl arbitrary such that ⊨ 𝜑 : Φ and (𝜎0, ℎ0)𝜏 ∈ Jwhile(B){C}K𝜑 arbitary.
We need to show (𝜎0, ℎ0)𝜏 ∈ JS(𝛽0)K. Let

𝑝 ′(𝛽, 𝑏) = WJ𝑃 (𝛽) ∗ (𝑏 .⇒ 𝑇)K𝜎0
A 𝑙 = WJ𝐿K𝜎0

A

To reach the goal, assume ℎ0 ∈ J𝑝 ′(𝛽0, False) ∗ 𝑙 ∗ TrueK_ . By lemma E.22, in the case that BJBK𝜎0 ,
and our assumptions, there exists T ⊆ STrace:

(𝜎0, ℎ0)𝜏 ⊨S WJ𝑃 (𝛽0) ∗ 𝐿K𝜎0
A, emp, 1 : T

and one of the following holds:
lterm((𝜎0, ℎ0)𝜏)

∀𝝉 ∈ T.¬ liveEnvS (𝝉)
∀𝝉 ∈ T.∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖, 𝛽 .𝝉 (𝑗) = (𝜎,ℎ, 𝑝 ′(𝛽, False), emp, 1)

In the first case, ∀𝝉 ∈ T. lterm(𝝉), therefore, ∀𝝉 ∈ T. liveEnvS(𝛽0) (𝝉) ⇒ lterm(𝝉), as required. In
the second, ∀𝝉 ∈ T. liveEnvS(𝛽0) (𝝉) ⇒ lterm(𝝉) clearly also holds. Finally, we consider the third
case. Take 𝝉 ∈ T arbitrary and asume liveEnvS(𝛽0) (𝝉). Now, for a contradiction, assume ¬ lterm(𝝉).
In this case, due to (101), with an argument similar to that in the soundness of (LiveC), at every

TaDA Live 127

point, every 𝝉 ∈ T eventually reaches a state satisfying 𝑇 (𝛽0). This must eventually be stable due
to the metric stabily decreasing due to assumption (102), holding till the next iteration, at which
point, the loop variant decreases due to (100) with 𝑏 = True. By repeating this argument with the
continuation, by well-foundness of ordinals, the while loop must eventually terminate if liveEnv(𝝉)
holds, leading to a contradiction. Therefore, in all cases, ∀𝝉 ∈ T. liveEnvS(𝛽0) (𝝉) ⇒ lterm(𝝉) holds,
as required, concluding the proof. □

E.6 Soundness of Par

Definition E.24 (Bowtie operator). The bowtie operator, ⊲⊳, which interleaves the subjective traces
of two commands executed in parallel into a command from their combined perspective:

(𝜎,ℎ) env 𝜏 ′1 ⊲⊳ (𝜎,ℎ) env 𝜏 ′2 = (𝜎,ℎ) env (𝜏 ′1 ⊲⊳ 𝜏 ′2)
(𝜎,ℎ) env 𝜏 ′1 ⊲⊳ (𝜎,ℎ) loc 𝜏 ′2 = (𝜎,ℎ) loc (𝜏 ′1 ⊲⊳ 𝜏 ′2)
(𝜎,ℎ) loc 𝜏 ′1 ⊲⊳ (𝜎,ℎ) env 𝜏 ′2 = (𝜎,ℎ) loc (𝜏 ′1 ⊲⊳ 𝜏 ′2)

All other cases are undefined.

Definition E.25 (Specification Bowtie operator). The specification bowtie operator, s

⊲⊳, which
interleaves the subjective specification traces of two commands executed in parallel into a command
from their combined perspective:

(𝜎,ℎ, 𝑝1, emp, 1) env 𝜏 ′1
s

⊲⊳ (𝜎,ℎ, 𝑝2, emp, 1) env 𝜏 ′2 = (𝜎,ℎ, 𝑝1 ∗ 𝑝2, emp, 1) env (𝜏 ′1
s

⊲⊳ 𝜏 ′2)

(𝜎,ℎ, 𝑝1, emp, 1) env 𝜏 ′1
s

⊲⊳ (𝜎,ℎ, 𝑝2, emp, 1) loc 𝜏 ′2 = (𝜎,ℎ, 𝑝1 ∗ 𝑝2, emp, 1) loc (𝜏 ′1
s

⊲⊳ 𝜏 ′2)

(𝜎,ℎ, 𝑝1, emp, 1) loc 𝜏 ′1
s

⊲⊳ (𝜎,ℎ, 𝑝2, emp, 1) env 𝜏 ′2 = (𝜎,ℎ, 𝑝1 ∗ 𝑝2, emp, 1) loc (𝜏 ′1
s

⊲⊳ 𝜏 ′2)
All other cases are undefined.

Lemma E.26. For any 𝜑 ∈ FImpl:

∀𝜏 ∈ JC1 | |C2K𝜑 . ∃𝜏1 ∈ JC1K𝜑 , 𝜏2 ∈ JC2K𝜑 . 𝜏 = 𝜏1 ⊲⊳ 𝜏2

Proof. Straightforward by induction on _−→𝜑 . □

Lemma E.27. For any trace (𝜎0, ℎ0) 𝜏 (𝜎1, ℎ1) 𝜏 ′ ∈ JCK𝜑 , we have ∀x ∈ PVar \ mods(C). 𝜎0 (x) =
𝜎1 (x).

Proof. Straightforward by induction on the length of the trace. □

For the rest of the section, we name the specifications involved in the Par rule as follows:

S1 =
{
𝑃1

}
·
{
𝑄1

}
𝑚1;_;A S2 =

{
𝑃2

}
·
{
𝑄2

}
𝑚2;_;A S =

{
𝑃1 ∗ 𝑃2

}
·
{
𝑄1 ∗𝑄2

}
𝑚;_;A

Lemma E.28. For arbitrary (𝜎0, ℎ0)𝜏, (𝜎0, ℎ0)𝜏1, (𝜎0, ℎ0)𝜏2 ∈ Trace, T1,T2 ∈ P(STrace), 𝑣1, 𝑣2 ∈
{1, ⟨1, 1⟩}, and, 𝑝 ′

1, 𝑝
′
2 ∈ ViewA , then:

(𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0)𝜏1 ⊲⊳ (𝜎0, ℎ0)𝜏2

(𝜎0, ℎ0)𝜏1 ⊨S1 𝑝
′
1, emp, 𝑣1 : T1

(𝜎0, ℎ0)𝜏2 ⊨S2 𝑝
′
2, emp, 𝑣2 : T2

ℎ0 ∈ J𝑝 ′
1 ∗ 𝑝 ′

2 ∗ TrueK_
term((𝜎0, ℎ0)𝜏1) ⇒ 𝑝 ′

1 = WJ𝑄1K𝜎A
term((𝜎0, ℎ0)𝜏2) ⇒ 𝑝 ′

2 = WJ𝑄2K𝜎A

⇒

∃T ∈ P(STrace), 𝑣 ∈ {1, ⟨1, 1⟩}.
(𝜎,ℎ)𝜏 ⊨S 𝑝 ′

1 ∗ 𝑝 ′
2, emp, 𝑣 : T ∧

∀𝝉 ∈ T. ∃𝝉1 ∈ T1,𝝉2 ∈ T2.𝝉 = 𝝉1
s
⊲⊳ 𝝉2 ∧

(𝑣1 = ⟨1, 1⟩ ∧ 𝑣2 = ⟨1, 1⟩) ⇔ 𝑣 = ⟨1, 1⟩

128 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

Proof. This lemma is proven by coinduction on the structure of (𝜎0, ℎ0)𝜏 .
The trace either starts with a local, or an environment step. We split on the two cases:

Case (𝜎,ℎ)𝜏 = (𝜎,ℎ) env (𝜎,ℎ′)𝜏 ′: Take (𝜎0, ℎ0)𝜏1, (𝜎0, ℎ0)𝜏2 ∈ Trace, T1,T2 ∈ P(STrace), 𝑣1, 𝑣2 ∈
{1, ⟨1, 1⟩}, and, 𝑝 ′

1, 𝑝
′
2 ∈ ViewA arbitrary, and assume:

(𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0)𝜏1 ⊲⊳ (𝜎0, ℎ0)𝜏2 (106)
(𝜎0, ℎ0)𝜏1 ⊨S1 𝑝

′
1, emp, 𝑣1 : T1 (107)

(𝜎0, ℎ0)𝜏2 ⊨S2 𝑝
′
2, emp, 𝑣2 : T2 (108)

ℎ0 ∈ J𝑝 ′
1 ∗ 𝑝 ′

2 ∗ TrueK_ (109)
term((𝜎0, ℎ0)𝜏1) ⇒ 𝑝 ′

1 = WJ𝑄1K𝜎A (110)
term((𝜎0, ℎ0)𝜏2) ⇒ 𝑝 ′

2 = WJ𝑄2K𝜎A (111)

Given (106) and the definition of ⊲⊳:

(𝜎0, ℎ0)𝜏1 = (𝜎0, ℎ0) env (𝜎0, ℎ
′)𝜏 ′1

(𝜎0, ℎ0)𝜏2 = (𝜎0, ℎ0) env (𝜎0, ℎ
′)𝜏 ′2

(𝜎0, ℎ
′)𝜏 ′ = (𝜎0, ℎ

′)𝜏 ′1 ⊲⊳ (𝜎0, ℎ
′)𝜏 ′2

Now to prove the goal, consider the case 𝑣1 = ⟨1, 1⟩ and 𝑣2 = ⟨1, 1⟩. In this case, take
𝑣 = ⟨1, 1⟩, so Env’ must hold for the goal as well as (107) and (108). Note that this choice of 𝑣
immediately satisfies the third conjunct of the goal. To show Env’ holds for the goal, given
some 𝑝e, 𝑝 ′

e
∈ ViewA , assume:

ℎ0 ∈ J𝑝 ′
1 ∗ 𝑝 ′

2 ∗ 𝑝eK ∧ (ℎ0, ℎ
′) ⊨_;A 𝑝 ′

1 ∗ 𝑝 ′
2 ∗ 𝑝e _ 𝑝 ′

1 ∗ 𝑝 ′
2 ∗ 𝑝 ′

e

By substitution, this implies both:

∃𝑝e, 𝑝 ′
e
. ℎ0 ∈ J𝑝 ′

1 ∗ 𝑝eK ∧ (ℎ,ℎ′) ⊨_;A 𝑝 ′
1 ∗ 𝑝e _ 𝑝 ′

1 ∗ 𝑝 ′
e

∃𝑝e, 𝑝 ′
e
. ℎ0 ∈ J𝑝 ′

2 ∗ 𝑝eK ∧ (ℎ,ℎ′) ⊨_;A 𝑝 ′
2 ∗ 𝑝e _ 𝑝 ′

2 ∗ 𝑝 ′
e

Given 107 and 108, these imply:

(𝜎0, ℎ
′)𝜏 ′1 ⊨S1 𝑝

′
1, emp, 𝑣1 : T′1 T1 = (𝜎0, ℎ0, 𝑝1, emp, ⟨1, 1⟩) env T′1

(𝜎0, ℎ
′)𝜏2 ⊨S2 𝑝

′
2, emp, 𝑣2 : T′2 T2 = (𝜎0, ℎ0, 𝑝2, emp, ⟨1, 1⟩) env T′2

Assumption (109) and (ℎ0, ℎ
′) ⊨_;A 𝑝 ′

1 ∗ 𝑝 ′
2 ∗ 𝑝e _ 𝑝 ′

1 ∗ 𝑝 ′
2 ∗ 𝑝 ′

e
yield:

ℎ′ ∈ J𝑝 ′
1 ∗ 𝑝 ′

2 ∗ TrueK_ (112)

Now, by using the inductive assumption, as (110) and (111) clearly imply the same assertions
for (𝜎0, ℎ

′)𝜏 ′1 and (𝜎0, ℎ
′)𝜏 ′2 respectively, for some T′ ∈ P(STrace):
(𝜎0, ℎ

′)𝜏 ′ ⊨S 𝑝 ′
1 ∗ 𝑝 ′

2, emp, 𝑣 : T′ (113)

∀𝝉 ∈ T′. ∃𝝉1 ∈ T′1,𝝉2 ∈ T′2.𝝉 = 𝝉1
s

⊲⊳ 𝝉2 (114)

From this first consequence:

(𝜎0, ℎ)𝜏 ⊨S 𝑝 ′
1 ∗ 𝑝 ′

2, emp, 𝑣 : T

holds, where T = (𝜎0, ℎ, 𝑝
′
1 ∗ 𝑝 ′

2, emp, 𝑣) env T′. This is the first conjunct of the goal.
Finally, taking 𝝉 ∈ T arbitrary, there exists 𝝉 ′ ∈ T′ such that 𝝉 = (𝜎0, ℎ, 𝑝

′
1 ∗ 𝑝 ′

2, emp, 𝑣) env
𝝉 ′. From the second consequence of our inductive assumption, it follows that there exist
𝝉 ′

1 ∈ T′1 and 𝝉 ′
2 ∈ T′2 such that 𝝉 ′

= 𝝉 ′
1

s

⊲⊳ 𝝉 ′
2. Then, from the definitions of T1 and T2,

TaDA Live 129

(𝜎0, ℎ0, 𝑝1, emp, ⟨1, 1⟩) env 𝝉 ′
1 ∈ T1 and (𝜎0, ℎ0, 𝑝2, emp, ⟨1, 1⟩) env 𝝉 ′

2 ∈ T2 hold, and 𝝉 =

(𝜎0, ℎ0, 𝑝1, emp, ⟨1, 1⟩) env 𝝉 ′
1

s

⊲⊳ (𝜎0, ℎ0, 𝑝2, emp, ⟨1, 1⟩) env 𝝉 ′
2 ∈ T2 holds as required.

Other cases for 𝑣1, 𝑣2 follow similarly.
Case (𝜎,ℎ)𝜏 = (𝜎,ℎ) loc (𝜎,ℎ′)𝜏 ′: Here the variable store does not change as mods(C1 | |C2) = ∅,

due to Lemma E.27 and the syntactic restriction on parallel commands, requiring both threads
to not modify the value of any variable. To prove the goal, take (𝜎0, ℎ0)𝜏1, (𝜎0, ℎ0)𝜏2 ∈ Trace,
T1,T2 ∈ P(STrace), 𝑣1, 𝑣2 ∈ {1, ⟨1, 1⟩}, and, 𝑝 ′

1, 𝑝
′
2 ∈ ViewA arbitrary, and assume:

(𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0)𝜏1 ⊲⊳ (𝜎0, ℎ0)𝜏2 (115)
(𝜎0, ℎ0)𝜏1 ⊨S1 𝑝

′
1, emp, 𝑣1 : T1 (116)

(𝜎0, ℎ0)𝜏2 ⊨S2 𝑝
′
2, emp, 𝑣2 : T2 (117)

ℎ0 ∈ J𝑝 ′
1 ∗ 𝑝 ′

2 ∗ TrueK_ (118)
term((𝜎0, ℎ0)𝜏1) ⇒ 𝑝 ′

1 = WJ𝑄1K𝜎A (119)
term((𝜎0, ℎ0)𝜏2) ⇒ 𝑝 ′

2 = WJ𝑄2K𝜎A (120)

Given (115) and the definition of ⊲⊳, either:

(𝜎0, ℎ0)𝜏1 = (𝜎0, ℎ0) loc (𝜎0, ℎ
′)𝜏 ′1

(𝜎0, ℎ0)𝜏2 = (𝜎0, ℎ0) env (𝜎0, ℎ
′)𝜏 ′2

or:

(𝜎0, ℎ0)𝜏1 = (𝜎0, ℎ0) env (𝜎0, ℎ
′)𝜏 ′1

(𝜎0, ℎ0)𝜏2 = (𝜎0, ℎ0) loc (𝜎0, ℎ
′)𝜏 ′2

and in both cases:
(𝜎0, ℎ

′)𝜏 ′ = (𝜎0, ℎ
′)𝜏 ′1 ⊲⊳ (𝜎0, ℎ

′)𝜏 ′2
Consider the first case, the second will follow symmetrically. Assume that the Stutter rule
holds for (𝜎,ℎ) loc (𝜎,ℎ′)𝜏1 ⊨S1 𝑝

′
1, emp, 𝑣1 : T1, then, for some 𝑝 ′′

1 ∈ ViewA :

(ℎ0, ℎ
′) ⊨_;A 𝑝 ′

1 _ 𝑝 ′′
1

(𝜎0, ℎ
′) 𝜏 ′1 ⊨S1 𝑝

′′
1 , emp, 𝑣1 : T′1

term((𝜎0, ℎ
′)𝜏 ′1) ⇒ 𝑣1 = ⟨1, 1⟩ ∧ 𝑝 ′′

1 = WJ𝑄1K𝜎0
A

where T1 = (𝜎0, ℎ0, 𝑝1, emp, 𝑣1) loc T′1. Given 118 and (ℎ0, ℎ
′) ⊨_;A 𝑝 ′

1 _ 𝑝 ′′
1 , ℎ′ ∈ J𝑝 ′′

1 ∗ 𝑝 ′
2 ∗

TrueK_ holds. Given (ℎ0, ℎ
′) ⊨_;A 𝑝 ′

1 _ 𝑝 ′′
1 , (ℎ0, ℎ

′) ⊨_;A 𝑝 ′
1 ∗ 𝑝2 _ 𝑝 ′′

1 ∗ 𝑝2, also holds. Using
this and Env or Env’:

(𝜎,ℎ′) 𝜏 ′2 ⊨S2 𝑝
′
2, emp, 𝑣2 : T′2

where T2 = (𝜎0, ℎ0, 𝑝2, emp, 𝑣2) loc T′2. Now using the inductive assumption, as, once again,
(119) and (120) clearly imply the same assertions for (𝜎0, ℎ

′)𝜏 ′1 and (𝜎0, ℎ
′)𝜏 ′2 respectively, for

some T′ ∈ P(STrace):

(𝜎0, ℎ
′)𝜏 ′ ⊨S 𝑝 ′′

1 ∗ 𝑝 ′
2, emp, 𝑣 : T′ ∧ (121)

∀𝝉 ∈ T′. ∃𝝉1 ∈ T′1,𝝉2 ∈ T′2 .𝝉 = 𝝉1
s

⊲⊳ 𝝉2 ∧ (122)
(𝑣1 = ⟨1, 1⟩ ∧ 𝑣2 = ⟨1, 1⟩) ⇔ 𝑣 = ⟨1, 1⟩ (123)

The second and third consequents imply the equivalent conjuncts of the goal with the same
method as in the env case and directly respectively. As we have shown (ℎ,ℎ′) ⊨_;A 𝑝 ′

1 ∗ 𝑝2 _

130 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

𝑝 ′′
1 ∗ 𝑝2 holds, using the Stutter rule, to show that (𝜎0, ℎ0)𝜏 ⊨S 𝑝 ′

1 ∗ 𝑝 ′
2, emp, 𝑣 : T holds,

where T = (𝜎0, ℎ0, 𝑝
′
1 ∗ 𝑝 ′

2, emp, 𝑣) loc T′, it suffices to show:
term((𝜎0, ℎ

′)𝜏 ′) ⇒ 𝑣 = ⟨1, 1⟩ ∧ 𝑝 ′′
1 ∗ 𝑝 ′

2 = WJ𝑄1 ∗𝑄2K𝜎0
A

Assuming term((𝜎0, ℎ
′)𝜏 ′) holds, then term((𝜎0, ℎ

′)𝜏 ′1) and term((𝜎0, ℎ
′)𝜏 ′2) hold. From this

it follows that 𝑣1, 𝑣2 = ⟨1, 1⟩, so, due to (123), 𝑣 = ⟨1, 1⟩.
Finally, due to term((𝜎0, ℎ

′)𝜏 ′1) and term((𝜎0, ℎ
′)𝜏 ′2), 𝑝 ′′

1 = WJ𝑄1K𝜎0
A and 𝑝 ′

2 = WJ𝑄2K𝜎A hold
respectively, yielding 𝑝 ′′

1 ∗ 𝑝 ′
2 = WJ𝑄1 ∗𝑄2K𝜎0

A , as required.
The LinPt rule follows similarly. □

Theorem E.29. Given
𝑚1; _;A ⊨Φ

{
𝑃1

}
C1

{
𝑄1

}
(124)

𝑚2; _;A ⊨Φ
{
𝑃2

}
C2

{
𝑄2

}
(125)

_;A ⊢ 𝑄1 Q𝑚2 ⩽ 𝑚 (126)
_;A ⊢ 𝑄2 Q𝑚1 ⩽ 𝑚 (127)

then:

𝑚; _;A ⊨Φ
{
𝑃1 ∗ 𝑃2

}
C1 | |C2

{
𝑄1 ∗𝑄2

}
Proof. Taking 𝜑 ∈ FImpl arbitrary such that ⊨ 𝜑 : Φ, from (124) and (125), JC1K𝜑 ⊆ JS1K and

JC2K𝜑 ⊆ JS2K hold. Given an arbitrary (𝜎0, ℎ0)𝜏 ∈ JC1 | |C2K𝜑 , need to show (𝜎0, ℎ0)𝜏 ∈ JSK. Let
𝑝1 = WJ𝑃1K𝜎0

A 𝑝2 = WJ𝑃2K𝜎0
A

To reach the goal, assume ℎ0 ∈ J𝑝1 ∗ 𝑝2 ∗ TrueK_ . Then ℎ0 ∈ J𝑝1 ∗ TrueK_ and ℎ0 ∈ J𝑝2 ∗ TrueK_
hold. From E.26 and the definition of ⊲⊳, there exists (𝜎0, ℎ0)𝜏1 ∈ JC1K𝜑 and (𝜎0, ℎ0)𝜏2 ∈ JC2K𝜑
such that (𝜎0, ℎ0)𝜏 = (𝜎0, ℎ0)𝜏1 ⊲⊳ (𝜎0, ℎ0)𝜏2. As JC1K𝜑 ⊆ JS1K and JC2K𝜑 ⊆ JS2K, (𝜎0, ℎ0)𝜏1 ∈ JS1K
and (𝜎0, ℎ0)𝜏2 ∈ JS2K hold. Now, as ℎ0 ∈ J𝑝1 ∗ TrueK_ and ℎ0 ∈ J𝑝2 ∗ TrueK_ , then for some
T1,T2 ∈ P(STrace):

(𝜎0, ℎ0)𝜏1 ⊨S 𝑝1, emp, 1 : T1 ∀𝝉1 ∈ TT1U. liveEnvS (𝝉1) ⇒ lterm(𝝉1)
(𝜎0, ℎ0)𝜏2 ⊨S 𝑝2, emp, 1 : T2 ∀𝝉2 ∈ TT2U. liveEnvS (𝝉2) ⇒ lterm(𝝉2)

As all commands must take at least one step, ¬ term((𝜎0, ℎ0)𝜏1) and ¬ term((𝜎0, ℎ0)𝜏2) hold, there-
fore:

term((𝜎0, ℎ0)𝜏1) ⇒ 𝑝1 = WJ𝑄1K𝜎A
term((𝜎0, ℎ0)𝜏2) ⇒ 𝑝2 = WJ𝑄2K𝜎A

hold. Now, using lemma E.28, there exists T ∈ P(STrace) such that:
(𝜎0, ℎ0)𝜏 ⊨S 𝑝1 ∗ 𝑝2, emp, 1 : T

and for any 𝝉 ∈ T, there exist 𝝉1 ∈ T1 and 𝝉2 ∈ T2, such that 𝝉 = 𝝉1
s

⊲⊳ 𝝉2. It now suffices to show
that ∀𝝉 ∈ TTU. liveEnvS (𝝉) ⇒ lterm(𝝉). Take 𝝉 ∈ T arbitrary and 𝝉1 ∈ T1 and 𝝉2 ∈ T2 such that
𝝉 = 𝝉1

s

⊲⊳ 𝝉2 and 𝝉 ∈ T𝝉U,𝝉1 ∈ T𝝉1U,𝝉2 ∈ T𝝉2U. From above:
liveEnvS1 (𝝉1) ⇒ lterm(𝝉1) (128)
liveEnvS2 (𝝉2) ⇒ lterm(𝝉2) (129)

holds. To reach the goal, split on lterm(𝝉1) and lterm(𝝉2).
Case lterm(𝝉1) ∧ lterm(𝝉2): In this case, clearly lterm(𝝉) holds, therefore liveEnvS (𝝉) ⇒ lterm(𝝉)

holds trivially, as required.

TaDA Live 131

Case lterm(𝝉1) ∧ ¬ lterm(𝝉2): From ¬ lterm(𝝉2), by (129), ¬ liveEnvS2 (𝝉2) holds:

∃𝑶 ∈ POb
S2
<𝑚2 . (∀𝑂 ∈ AOb<lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld(𝑂,𝝉2 (𝑗))) ∧

(∃𝑖 ∈ N.∀𝑗 ≥ 𝑖 . envheld(𝑶,𝝉2 (𝑗)))

As lterm(𝝉1), by Lemma E.21, there exists some 𝑖1 ∈ N, an index after which the trace 𝝉1
only performs env steps, in particular, for any 𝑗 ≥ 𝑖1, 𝝉1 (𝑗) = (𝜎,ℎ,𝑤1

h
,𝑤1

a
, ⟨1, 1⟩), where

𝑤1
h
∈ WJ𝑄1KA𝜎 and 𝑤1

a
∈ EmpA . Therefore 𝝉 (𝑗) = (𝜎,ℎ,𝑤1

h
⊙ 𝑤2

h
,𝑤1

a
⊙ 𝑤2

a
, ⟨1, 1⟩), where

𝝉2 (𝑗) = (𝜎,ℎ,𝑤2
h
,𝑤2

a
, ⟨1, 1⟩), such that𝑤2

a
∈ EmpA . Given _;A ⊢ 𝑄1 Q𝑚2, it is clear that:

(∀𝑂 ∈ AOb<lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld(𝑂,𝝉2 (𝑗))) ⇒
(∀𝑂 ∈ AOb<lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld(𝑂,𝝉 (𝑗)))

and similarly as 𝑶 ∈ POb
S2
<𝑚2 :

(∃𝑖 ∈ N.∀𝑗 ≥ 𝑖 . envheld(𝑶,𝝉2 (𝑗))) ⇒ (∃𝑖 ∈ N.∀𝑗 ≥ 𝑖 . envheld(𝑶,𝝉 (𝑗)))

As 𝑚2 ≤ 𝑚, 𝑶 ∈ POb
S
<𝑚 . Finally, from this ¬ liveEnvS (𝝉) holds, implying liveEnvS (𝝉) ⇒

lterm(𝝉), as required.
Case ¬ lterm(𝝉1) ∧ lterm(𝝉2): Similarly to the previous case.
Case ¬ lterm(𝝉1) ∧ ¬ lterm(𝝉2): Given (128) and (129), we can infer¬ liveEnvS1 (𝝉1) and¬ liveEnvS2 (𝝉2).

Assume liveEnvS (𝝉) for a contradiction. From ¬ liveEnvS1 (𝝉1), for some 𝑶 ∈ POb
S
<𝑚1 :

(∀𝑂 ∈ AOb<lay(𝑶) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld(𝑂,𝝉1 (𝑗))) ∧ (∃𝑖 ∈ N.∀𝑗 ≥ 𝑖 . envheld(𝑶,𝝉1 (𝑗)))

From this and liveEnvS (𝝉), there is some 𝑖 ∈ N such that:

∀𝑗 ≥ 𝑖 . locheld(𝑶,𝝉2 (𝑗))

From ¬ liveEnvS2 (𝝉2), for some 𝑶 ′ ∈ POb
S2
<𝑚2 :

(∀𝑂 ∈ AOb<lay(𝑶′) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld(𝑂,𝝉2 (𝑗))) ∧ (∃𝑖 ∈ N.∀𝑗 ≥ 𝑖 . envheld(𝑶 ′
,𝝉2 (𝑗)))

Given that∀𝑗 ≥ 𝑖 . locheld(𝑶,𝝉2 (𝑗)), for∀𝑂 ∈ AOb<lay(𝑶′) .∀𝑖 ∈ N. ∃ 𝑗 ≥ 𝑖 .¬ locheld(𝑂,𝝉2 (𝑗))
to hold, it must be the case that lay(𝑶) > lay(𝑶 ′). This argument can be repeated ad-infinitum,
which, by the well-foundedness of layers, leads to a contradiction, and therefore¬ liveEnvS (𝝉)
holds. This implies liveEnvS (𝝉) ⇒ lterm(𝝉).

From these cases, we deduce that ∀𝝉 ∈ TTU. liveEnvS (𝝉) ⇒ lterm(𝝉).
From this, we can infer (𝜎0, ℎ0)𝜏 ∈ JSK and consequently, JC1 | |C2K𝜑 ⊆ JSK, as required. □

E.7 Soundness of LiftAG

Recall the triples of the premise and conclusion of rule LiftAG:

S =

A

𝑥 ∈
↠
𝑋 .

〈
𝑃h

������I(t_𝑟 (𝑥)) ∗ 𝑃a (𝑥) ∗ ⌈G⌉𝑟 ∗ ⌊O1⌋L𝑟

〉
· ∃𝑦.

〈
𝑄h (𝑥,𝑦) ∧ 𝑦 ∈ 𝑌 (𝑥)�� ∃𝑧.I(t_𝑟 (𝑧)) ∗𝑄a (𝑥,𝑦, 𝑧)

∗ ⌊O2 (𝑥,𝑦)⌋L𝑟 ∧ 𝑅(𝑥, 𝑧)

〉
𝑚;_;A

S′ =

A

𝑥 ∈
↠
𝑋 .

〈
𝑃h ∗ ⌊O1⌋L𝑟

���� t_𝑟 (𝑥) ∗ 𝑃a (𝑥) ∗ ⌈G⌉𝑟
〉
· ∃𝑦.

〈
𝑄h (𝑥,𝑦) ∗ ⌊O2 (𝑥,𝑦)⌋L𝑟 ∧ 𝑦 ∈ 𝑌 (𝑥)�� ∃𝑧. t_𝑟 (𝑧) ∗𝑄a (𝑥,𝑦, 𝑧) ∧ 𝑅(𝑥, 𝑧)

〉
𝑚;_+1;A

132 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

and let us name the semantic counterparts of their atomic pre/postconditions as follows:

𝑝a (𝑣) =
{
WJI(t_𝑟 (𝑣)) ∗ 𝑃a (𝑣) ∗ ⌈G⌉𝑟 ∗ ⌊O1⌋L𝑟 ∧ 𝑣 ∈ 𝑋 KA if 𝑣 ∈ AVal

EmpA otherwise

𝑝a (𝑣) =
{
WJt_𝑟 (𝑣) ∗ 𝑃a (𝑣) ∗ ⌈G⌉𝑟 ∧ 𝑣 ∈ 𝑋 KA if 𝑣 ∈ AVal

EmpA otherwise

𝑞a (𝑣, 𝑣 ′, 𝑧) = WJI(t_𝑟 (𝑧)) ∗𝑄a (𝑣, 𝑣 ′, 𝑧) ∗ ⌊O2 (𝑣, 𝑣 ′)⌋L𝑟 ∧ 𝑅(𝑣, 𝑧)K∅A
𝑞a (𝑣, 𝑣 ′, 𝑧) = WJt_𝑟 (𝑧) ∗𝑄 ′

a
(𝑣, 𝑣 ′, 𝑧) ∧ 𝑅(𝑣, 𝑧)K∅A

Definition E.30 (lift).

lift((𝜎,ℎ, 𝑝h, 𝑝a, 𝑣) 𝜋 𝝉) ≜
 (𝜎,ℎ, 𝑝h ∗ ⌊O1⌋L𝑟 , 𝑝 ′

a
, 𝑣) 𝜋 𝝉 ′

������ 𝝉 ′ ∈ lift(𝝉),
∀𝑣 . 𝑝 ′

a
(𝑣) ∗ ⌊O1⌋L𝑟 ∗ ItJ𝑟, _, 𝑣K =

havoc_ (𝑝a (𝑣)) ∗ t_𝑟 (𝑣)

lift((𝜎,ℎ, 𝑝h, 𝑝a, ⟨𝑣, 𝑣 ′⟩) 𝜋 𝝉) ≜

{
(𝜎,ℎ, 𝑝h ∗ ⌊O2 (𝑣, 𝑣 ′)⌋L𝑟 , 𝑝a, ⟨𝑣, 𝑣 ′⟩) 𝜋 𝝉 ′ �� 𝝉 ′ ∈ lift(𝝉)

}
This can be lifted to sets of specification traces, T ⊆ STrace:

lift(T) ≜
⋃̂
𝝉 ∈T

lift(𝝉)

As a technical tool of our proofs, we use the function obliv_ (𝑤) which removes the information
about states of regions that are open at level _ from𝑤 .

Definition E.31 (obliv). Let _ ∈ Lvl, we then define the function on worlds:

obliv_ (ℎ, 𝜌,𝛾, 𝜒, \, b) ≜
 (ℎ, 𝜌 ′, 𝛾, 𝜒, \, b)

������ closed_+1
_

(𝜌) = {𝑟1, . . . , 𝑟𝑛},
𝜌 (𝑟𝑖) = (t𝑖 , _, _), 𝑏𝑖 ∈ AVal,

𝜌 ′ = 𝜌 [𝑟1 ↦→ (t1, _, 𝑏1), . . . , 𝑟1 ↦→ (t𝑛, _, 𝑏𝑛)]

We extend it to a function on sets of worlds in the obvious way: obliv_ (𝑝) ≜

⋃
𝑤∈𝑝 obliv_ (𝑤).

Lemma E.32. For arbitrary 𝑝, 𝑓 ∈ World
�
A, 𝑣 ∈ AVal:

J𝑝 ∗ t_𝑟 (𝑣) ∗ 𝑓 K_+1 ⊆ Jhavoc_ (𝑝) ∗ t_𝑟 (𝑣) ∗ 𝑓 K_+1

Lemma E.33. For arbitrary ℎ,ℎ′ ∈ Heap, 𝑝, 𝑝 ′ ∈ ViewA, 𝑣 ∈ AVal such that

(ℎ,ℎ′) ⊨_;A 𝑝 ∗ 𝑝a (𝑣) _ 𝑝 ′ ∗ 𝑝a (𝑣) (130)

then (ℎ,ℎ′) ⊨_+1;A havoc_ (𝑝 ∗ ⌊O1⌋L𝑟 ∗ 𝑝a (𝑣)) ∗ t_𝑟 (𝑣) _ havoc_ (𝑝 ′ ∗ ⌊O1⌋L𝑟 ∗ 𝑝a (𝑣)) ∗ t_𝑟 (𝑣).
Proof. Given arbitrary 𝑓 ∈ World

�
A , take ℎ ∈ Jhavoc_ (𝑝 ∗ ⌊O1⌋L𝑟 ∗𝑝a (𝑣)) ∗ t_𝑟 (𝑣) ∗ 𝑓 K_+1 arbitrary.

Then, there exists𝑤𝑙 ∈ havoc_ (𝑝 ∗ ⌊O1⌋L𝑟 ∗ 𝑝a (𝑣)) ∗ t_𝑟 (𝑣) and𝑤 𝑓 ∈ 𝑓 such that ℎ ∈ ⌊𝑤𝑙 ⊙𝑤 𝑓 ⌋A_+1.
Given that𝑤𝑙 # 𝑤 𝑓 :

𝑤𝑙 = (ℎ𝑙 , 𝜌𝑙 , 𝛾𝑙 , 𝜒𝑙 , \𝑙 , b𝑙) (131)
𝑤 𝑓 = (ℎ𝑓 , 𝜌𝑙 , 𝛾𝑓 , 𝜒𝑓 , \ 𝑓 , b 𝑓) (132)
∀𝑟 ∈ dom(𝜌𝑙). ℎ𝑙 # ℎ𝑓 ∧ 𝛾𝑙 (𝑟) # 𝛾𝑓 (𝑟) ∧ 𝜒𝑙 (𝑟) # 𝜒𝑓 (𝑟) ∧ \𝑙 (𝑟) # \ 𝑓 (𝑟) (133)

We also know that 𝜌𝑙 (𝑟) = (t, _, 𝑣). Now, letting closed_+1
_

(𝜌𝑙) = {𝑟, 𝑟1, . . . , 𝑟𝑛} and 𝜌𝑙 (𝑟𝑖) = (t𝑖 , _, 𝑎𝑖),
from the definition of ⌊_⌋A

_+1 and ⊙, we also know:
∀𝑟 ∈ dom(𝜌𝑙). \𝑙 (𝑟) ⊒ b 𝑓 (𝑟) ∧ \ 𝑓 (𝑟) ⊒ b𝑙 (𝑟) (134)
ℎ ∈ ⌊𝑤𝑙 ⊙𝑤𝑟 ⊙𝑤1 ⊙ . . . ⊙𝑤𝑛 ⊙𝑤 𝑓 ⌋A_ (135)

TaDA Live 133

for some𝑤𝑟 ∈ ItJ𝑟, _, 𝑣K and𝑤𝑖 ∈ It𝑖 J𝑟𝑖 , _, 𝑎𝑖K.
Given that𝑤𝑙 ∈ havoc_ (𝑝 ∗ ⌊O1⌋L𝑟 ∗𝑝a (𝑣)) ∗t_𝑟 (𝑣), there exists,𝑤h ∈ 𝑝,𝑤𝑜 ∈ ⌊O1⌋L𝑟 ,𝑤a ∈ 𝑝a (𝑣),𝑤𝑙

such that𝑤𝑙 ∈ havoc_ (�̄�𝑙) and �̄�𝑙 = 𝑤h ⊙𝑤𝑜 ⊙𝑤a. From the definition of havoc_ , we know that
�̄�𝑙 = (ℎ𝑙 , 𝜌𝑙 , 𝛾𝑙 , 𝜒𝑙 , \𝑙 , b̄𝑙), where 𝜌𝑙 and b̄𝑙 are such that dom(𝜌𝑙) = dom(𝜌𝑙) and

∀𝑟 ∈ dom(𝜌𝑙) \ closed_+1
_

(𝜌𝑙). 𝜌𝑙 (𝑟) = 𝜌𝑙 (𝑟) (136)

∀𝑟 ∈ closed_+1
_

(𝜌𝑙). rty𝑤𝑙
(𝑟) = rty�̄�𝑙

(𝑟) ∧ lvl�̄�𝑙
(𝑟) = _ (137)

∀𝑟 ∈ closed_+1
_

(𝜌𝑙). ∃𝑤𝐼 ∈ Irty𝑤𝑙
(𝑟)J𝑟, _, ast𝑤𝑙

(𝑟)K,O. b̄𝑙 (𝑟) = O • \𝑤𝐼
(𝑟) ∧ O ⊑ b𝑙 (𝑟) (138)

Let 𝑓 = obliv_ (𝑓). From the definition of obliv_ , and from (136) and (137), we know that
(ℎ𝑓 , 𝜌𝑙 , 𝛾𝑓 , 𝜒𝑓 , \ 𝑓 , b 𝑓) ∈ 𝑓 .
Then, since all our the region interpretations at level _ are _-safe, there exists �̄�𝑖 ∈ It𝑖 J𝑟𝑖 , _, 𝑎𝑖K,

such that ℎ ∈ ⌊𝑤h ⊙ (�̄�𝑜 ⊙ 𝑤a ⊙ �̄�𝑟) ⊙ �̄�1 ⊙ . . . ⊙ �̄�𝑛 ⊙ �̄� 𝑓 ⌋A_ . As �̄�𝑜 ⊙ �̄�a ⊙ �̄�𝑟 ∈ 𝑝a (𝑣),
ℎ ∈ J𝑝 ∗ 𝑝a (𝑣) ∗ ItJ𝑟, _, 𝑣K ∗∗𝑛

𝑖=1 It𝑖 J𝑟𝑖 , _, 𝑎𝑖K ∗ 𝑓 K_ . By (130), this implies that ℎ′ ∈ J𝑝 ′ ∗ 𝑝a (𝑣)∗ Ra

A
(I_

A,_+1 ∗ 𝑓)K_ . As I
_
A,_+1 ∈ ViewA , this is equivalent to ℎ′ ∈ J𝑝 ′ ∗ 𝑝a (𝑣) ∗ I_

A,_+1∗ R
a

A (𝑓)K_ .
From this we can infer there exists 𝑤h

′ ∈ 𝑝 ′,𝑤𝑜
′ ∈ ⌊O1⌋L𝑟 ,𝑤a

′ ∈ 𝑝a (𝑣), �̄� ′
𝑟 ∈ ItJ𝑟, _, 𝑣K, �̄� ′

𝑖 ∈
It𝑖 J𝑟𝑖 , _, 𝑎𝑖K and �̄� ′

𝑓
∈Ra

A (𝑓) such that:

ℎ′ ∈ ⌊𝑤h

′ ⊙𝑤𝑜
′ ⊙𝑤a

′ ⊙ �̄� ′
𝑟 ⊙ �̄� ′

1 ⊙ . . . ⊙ �̄� ′
𝑛 ⊙ �̄� ′

𝑓
⌋A
_

The there exists some𝑤 ′
𝑙
∈ havoc_ (𝑤h

′⊙𝑤𝑜
′⊙𝑤a

′) and𝑤 ′
𝑓
∈Ra

A (𝑓), such that, from the definition
of reification and the fact that �̄� ′

𝑟 ∈ ItJ𝑟, _, 𝑣K, this implies:

ℎ′ ∈ ⌊𝑤 ′
𝑙
⊙𝑤 ′

𝑓
⌋A
_+1

where 𝜌𝑤′
𝑙
(𝑟) = (t, _, 𝑣) and therefore:

ℎ′ ∈ Jhavoc_ (𝑝 ′ ∗ ⌊O1⌋L𝑟 ∗ 𝑝a (𝑣)) ∗ t_𝑟 (𝑣)K_+1

as required. □

Lemma E.34. For arbitrary ℎ,ℎ′ ∈ Heap, 𝑞, 𝑞′ ∈ AVal × AVal → ViewA, 𝑣, 𝑣 ′ ∈ AVal such that

(ℎ,ℎ′) ⊨_;A 𝑞(𝑣, 𝑣 ′) _ 𝑞′(𝑣, 𝑣 ′) (139)

then (ℎ,ℎ′) ⊨_+1;A havoc_ (𝑞(𝑣, 𝑣 ′) ∗ ⌊O2 (𝑣, 𝑣 ′)⌋L𝑟) _ havoc_ (𝑞′(𝑣, 𝑣 ′) ∗ ⌊O2 (𝑣, 𝑣 ′)⌋L𝑟).

Proof. Proof follows similarly to Lemma E.33. □

Lemma E.35. For arbitrary ℎ,ℎ′ ∈ Heap, 𝑞 ∈ ViewA, 𝑞′ ∈ AVal × AVal → ViewA, 𝑣, 𝑣 ′𝑧, ∈ AVal

such that

(ℎ,ℎ′) ⊨_;A 𝑞 ∗ 𝑝a (𝑣) _ 𝑞′(𝑣, 𝑣 ′) ∗ 𝑞a (𝑣, 𝑣 ′, 𝑧) (140)

then

(ℎ,ℎ′) ⊨_+1;A havoc_ (𝑞∗ ⌊O1⌋L𝑟 ∗𝑝a (𝑣)) ∗t_𝑟 (𝑣) _ havoc_ (𝑞′(𝑣, 𝑣 ′) ∗ ⌊O2 (𝑣, 𝑣 ′)⌋L𝑟 ∗𝑞a (𝑣, 𝑣 ′, 𝑧)) ∗t_𝑟 (𝑧)

Proof. Proof follows similarly to Lemma E.33. □

Lemma E.36. For arbitrary ℎ,ℎ′ ∈ Heap, 𝑝e, 𝑝
′
e
∈ ViewA, 𝑣, 𝑣 ′ ∈ AVal such that

(ℎ,ℎ′) ⊨_+1;A 𝑝e ∗ havoc_ (𝑝a (𝑣)) ∗ t_𝑟 (𝑣) _ 𝑝 ′
e
∗ havoc_ (𝑝a (𝑣 ′)) ∗ t_𝑟 (𝑣 ′) (141)

134 E. D’Osualdo, J. Sutherland, A. Farzan, P. Gardner

then there exists 𝑝e, 𝑝
′
e
∈ ViewA such that:

(ℎ,ℎ′) ⊨_;A 𝑝e ∗ 𝑝a (𝑣) _ 𝑝 ′
e
∗ 𝑝a (𝑣 ′)

Lemma E.37. For arbitrary ℎ,ℎ′ ∈ Heap, 𝑝e, 𝑝
′
e
∈ ViewA such that

(ℎ,ℎ′) ⊨_+1;A 𝑝e _ 𝑝 ′
e

(142)
then there exists 𝑝e, 𝑝

′
e
∈ ViewA such that (ℎ,ℎ′) ⊨_;A 𝑝e _ 𝑝 ′

e
.

Lemma E.38. For arbitrary T:
(∃𝝉 ∈ Tlift(T)U. liveEnvS′ (𝝉)) ⇒ (∃𝝉 ∈ TTU. liveEnvS (𝝉))

Theorem E.39 (Soundness of rule LiftAG). Assuming

⊢A 𝑃h ⇒ emp
𝑟
Ob

⊢A 𝑄h (𝑥,𝑦) ⇒ emp
𝑟
Ob

⊢A 𝑃a (𝑥) ⇒ emp
_+1
Ob

⊢A 𝑄a (𝑥,𝑦, 𝑧) ⇒ emp
_+1
Ob

A ⊨ 𝑄h (𝑥,𝑦) _-safe A ⊨ 𝑄a (𝑥,𝑦, 𝑧) ∧ 𝑅(𝑥, 𝑧) _-safe
𝑟 ∈ dom(A) ⇒ 𝑅 = 𝑖𝑑

for 𝑅 ⊆ AVal × AVal such that

{ ((𝑥,O1), (𝑧,O2 (𝑥,𝑦))) | 𝑥 ∈ 𝑋 ∧ 𝑅(𝑥, 𝑧) ∧ 𝑦 ∈ 𝑌 (𝑥) } ⊆ Tt (G)
then, given arbitrary Φ ∈ FSpec such that

⊨Φ C : S (143)
then

⊨Φ C : S′

Proof. To reach the goal, it suffices to show that JSK ⊆ JS′K. Taking (𝜎0, ℎ0)𝜏 ∈ JSK arbitrary, let
𝑝h = WJ𝑃hK𝜎0

A

𝑝h = WJ𝑃h ∗ ⌊O1⌋L𝑟 K
𝜎0
A

Then, assume that for arbitrary 𝑣0 ∈ 𝑋 , ℎ ∈ J𝑝h ∗ 𝑝a (𝑣0) ∗ TrueK_+1 holds. Then, clearly ℎ ∈
J𝑝h ∗ 𝑝a (𝑣0) ∗ TrueK_ , and therefore, from (143), for some T:

(𝜎0, ℎ0) 𝜏 ⊨S 𝑝h, 𝑝a, 𝑣0 : T (144)
∀𝝉 ∈ TTU_;A . liveEnvS (𝝉) ⇒ lterm((𝜎0, ℎ0) 𝜏) (145)

From (144), by coinduction over the structure of the trace safety judgement, using our assumptions
and Lemmas E.32 to E.37, the following holds:

(𝜎0, ℎ0) 𝜏 ⊨S′ 𝑝h, 𝑝a, 𝑣0 : lift(T)
Finally, taking𝝉 ∈ lift(T) arbitrary such that liveEnvS′ (𝝉) holds, fromLemmaE.38,∃𝝉 ∈ TTU. liveEnvS (𝝉).
By (145), the following holds, as required:

∀𝝉 ∈ Tlift(T)U_;A . liveEnvS′ (𝝉) ⇒ lterm((𝜎0, ℎ0) 𝜏)
□

	Abstract
	1 Introduction
	2 An Overview of TaDA Live
	2.1 Abstraction and proof reuse
	2.2 A Guide For the Reader

	3 The TaDA Live Semantic Model
	3.1 Notation
	3.2 Fair Trace Semantics of Commands
	3.3 TaDA Live Assertions and Worlds
	3.4 Protocols: Interference and World Rely
	3.5 Linking Levels of Abstraction: Interpretations and Reification
	3.6 Frame preservation
	3.7 Viewshifts and ``classical'' resources
	3.8 Specification format
	3.9 Trace Semantics of Specifications
	3.10 The Semantic Judgement

	4 TaDA Live Rules
	4.1 The Basics: Regions
	4.2 The Parallel Rule
	4.3 Handling a call to lock
	4.4 The LiveC rule
	4.5 The Environment Liveness Condition
	4.6 The while rule
	4.7 Other rules
	4.8 Abstract Predicates
	4.9 What is leaked by TaDA Live specifications?
	4.10 Soundness

	5 Evaluation
	5.1 Spin lock
	5.2 CLH lock
	5.3 Blocking Counter
	5.4 Double Blocking Counter
	5.5 Lock-Coupling Set
	5.6 Limitations

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References
	A Some Proofs Conventions
	A.1 Specification abbreviations
	A.2 Guard and Obligation Algebras
	A.3 Levels
	A.4 Region type specifications
	A.5 Proof patterns
	A.6 Modules
	A.7 Proof outlines

	B The TaDA Live proof system
	B.1 Liveness rules
	B.2 Atomicity rules
	B.3 General forms
	B.4 Logical manipulation rules
	B.5 Axioms
	B.6 Standard Hoare rules
	B.7 On Stablity Checks

	C Case Study: Lock-Coupling Set
	C.1 Interlude: a Generalisation of Fair Lock Specifications
	C.2 Correctness of the Lock-Coupling Set

	D Programming Language Definition
	E Soundness
	E.1 Atomic World Rely
	E.2 Environment Liveness Judgement Semantics
	E.3 Soundness of Frame
	E.4 Soundness of LiveC
	E.5 Soundness of While
	E.6 Soundness of Par
	E.7 Soundness of LiftAG

	RULES INDEX
	wr1
	wr2
	Stutter
	LinPt
	Env
	Env'
	Env
	LiveC
	While
	Par
	LayWH
	Frame
	AtomW
	MkAtom
	UpdReg
	LiftA
	AElim
	EnvLive
	ECase
	EQuant
	LiveT
	LiveO
	LiveA
	LiveCG
	While
	Par
	EnvLive
	ECase
	EQuant
	LiveT
	LiveO
	LiveA
	MkAtomG
	UpdRegG
	LiftAG
	Frame
	AtomWG
	AElimG
	LayWG
	Cons
	Elim
	QL
	SubPq
	LiveW
	Alloc
	Dealloc
	Read
	Mutate
	CAS
	FAS
	Seq
	If
	Var
	Call
	Let
	PrAt

