
Adjunct Elimination Through Games

(Extended Abstract)

Anuj Dawar1, Philippa Gardner2, and Giorgio Ghelli3

1Cambridge University; 2Imperial College, London; 3Pisa University

Abstract. Spatial logics are used to reason locally about disjoint data
structures. They consist of standard first-order logic constructs, spa-
tial (structural) connectives and their corresponding adjuncts. Lozes has
shown that the adjuncts add no expressive power to a spatial logic for
analysing tree structures, a surprising and important result. He also
showed that a related logic does not have this adjunct elimination prop-
erty. His proofs yield little information on the generality of adjunct
elimination. We present a new proof of these results based on model-
comparison games, and strengthen Lozes’ results. Our proof is directed
by the intuition that adjuncts can be eliminated when the corresponding
moves are not useful in winning the game. The proof is modular with
respect to the operators of the logic, providing a general technique for
determining which combinations of operators admit adjunct elimination.

1 Introduction

Spatial logics have been introduced to provide local reasoning about disjoint
data structures: O’Hearn and Reynolds have developed a new program logic
(the separation logic) for low-level programs that manipulate RAM data struc-
tures, based on the bunched logic of O’Hearn and Pym [1]; Cardelli, Gardner and
Ghelli have developed techniques for analysing and manipulating tree structures
(such as XML), based on the ambient logic of Cardelli and Gordon [2]. These
logics extend first-order logic with “spatial” connectives and their corresponding
adjuncts. The spatial connectives allow us to reason locally about disjoint sub-
structures. The adjuncts are used to obtain weakest pre-conditions for a Hoare
logic for updating heaps [3], an elegant proof of the Schorr-Waite algorithm [4],
and specifications of security properties of ambients [2].

We study adjunct elimination results for spatial logics. Lozes has recently
proved that adjuncts add no expressive power to the ambient logic for specifying
properties about trees with hidden names [5]. This result is fascinating as, for
the logic without adjuncts, validity is undecidable while model-checking is in
PSPACE, while for the logic with adjuncts, validity can be reduced to model-
checking suggesting that adjuncts are powerful. However, Lozes proof is not
modular with respect to the operators of the logic. This means that the proof
is not particularly illuminating and it is difficult to determine which variants of
the logic enjoy the adjunct-elimination property.

2 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

We take a different approach. We provide a natural adaptation of Ehrenfeucht-
Fräıssé games to the ambient logic, and use these games to provide a modular
proof and an intuitive explanation of Lozes’ results. Ehrenfeucht-Fräıssé games
are two-players games, played on a pair of structures (in our case trees) T1 and
T2, where one player Spoiler aims to show that the two structures are different
while the other player Duplicator aims to show that they are similar. The num-
ber of moves in the game is determined by a fixed rank. Each move corresponds
to an operator in the logic. At each move, Spoiler selects one of the trees and
makes a move to which Duplicator must respond in the other tree. Spoiler wins
if Duplicator has no reply. Duplicator wins if Spoiler runs out of moves without
having forced a win. A winning strategy for Duplicator implies that the two trees
cannot be distinguished by any sentence of the corresponding rank.

Our adaptation of the game to spatial logics is natural, reinforcing our view
that spatial logics are themselves natural. For example, the standard composition
operators A |B or A∗B declare that the data structure can be split into two parts,
one part satisfying A and the other B. The corresponding game move is: Spoiler

chooses one of the boards and splits it into two disjoint boards; Duplicator answers
by splitting the other board into two corresponding boards; Spoiler then chooses
on which pair to continue playing the game. The standard adjoint operators A⊲B
and A −∗ B declare that whenever the data structure is put into a composition
context that satisfies A then the result satisfies B. The corresponding game move
is based on choosing a context to add to each board and going on either with
the contexts or with the extended boards. Our proof is based on the intuition
that adjuncts can be eliminated if extending a tree does not help Spoiler win, as
Duplicator can respond by extending the other tree identically.

We prove soundness and completeness results for our games: that is, Spoiler

has a winning strategy with rank r if and only if there is a logical sentence of rank
r that can distinguish between the two trees. One feature of the games we define
is that the rank (of a formula or a game) is more refined than just a number.
This helps us to extend Lozes’ result, by showing that any sentence admits an
adjunct-less equivalent of the same rank. This preservation of rank is intriguing,
as model-checking for the logic without adjuncts is decidable while that for
the logic with adjuncts is undecidable. This implies that the translation from a
formula with adjuncts to an equivalent one without adjuncts is not computable.
However, the preservation of rank implies that the uncomputability is not due
to an unbounded increase in size of the formula.

Our elimination results focus on a spatial logic for analysing tree structures
with private names (using the hiding quantification and appears construct). A
natural question is whether the result holds in the analogous logic with ex-
istential quantification. We prove adjunct non-elimination in the presence of
existential quantification, regardless of the additional logical operators present.
In contrast, Lozes simply provides a specific counterexample for a logic with
existential quantification and appears, which relies on the absence of equality.
Indeed, our game approach provides an intuitive insight into the interaction of
existential and hiding quantifiers with adjuncts.

Adjunct Elimination Through Games (Extended Abstract) 3

2 Tree Model and Logic

2.1 Trees

We give a simple algebra to describe unordered, edge-labelled trees, where the
labels may be free (public) or hidden (private). These trees have been used to
form the basic structure of ambients [6] for describing public or private firewalls,
and web data [7] (similar to XML) for describing public or private information.

We assume a disjoint set N of names, ranged over by n, m, The set of
trees, denoted T , is defined by the grammar

T ::= 0 the tree consisting of single root node
n[T] the tree with a single edge from root,

labelled with free name n, leading to T
T |T the root-merge of two trees (commutative and associative)
(νn)T the tree T where label n is hidden.

As in the π-calculus, the act of hiding a name is called restriction. The set
of free names of a term is given by fn(T): for example, fn(n[T]) = {n}∪ fn(T)
and fn((νn)T) = fn(T) \ {n}. The congruence on trees, analogous to that given
for π-processes, is an equivalence relation generated by the axioms in Table 2.1
and closed with respect to the tree constructors. It is also possible to give an
equivalent set-theoretic description of these trees, where this congruence corre-
sponds to a natural tree isomorphism for unordered edge-labelled trees which
allows hidden names to be renamed as long as clashes are avoided.

Table 2.1. Congruence

T |U ≡ U |T (T |U) |V ≡ T | (U |V) T |0 ≡ T

m /∈ fn(T)⇒ (νn)T ≡ (νm)T {n←m} (νn1)(νn2)T ≡ (νn2)(νn1)T
n /∈ fn(T)⇒ T | (νn)U ≡ (νn)(T |U) (νn)0 ≡ 0
n1 6= n2 ⇒ n1[(νn2)T] ≡ (νn2)n1[T]

The following decomposition properties of the congruence are used extensively
in the proof of Theorem 1. They are well-known in the literature [6].

Lemma 1 (Decomposition).

1. If T |U ≡ n[V] then either T ≡ n[V] and U ≡ 0, or U ≡ n[V] and T ≡ 0.

2. If T |U ≡ V1 |V2, then ∃T1, T2, U1, U2. T1 |T2 ≡ T , U1 |U2 ≡ U , T1 |U1 ≡ V1,

T2 |U2 ≡ V2.

3. If (νn)T ≡ U |U ′ then ∃V, V ′. ((U = (νn)V ∧U ′ = V ′)∨ (U ′ = (νn)V ∧U =
V ′)), T ≡ V |V ′, n /∈ fn(V ′)

4 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

2.2 Logic

We describe the (static) ambient logic for specifying properties about trees with
hidden names, which we denote in this paper by L. It has been used to analyse
security properties for ambients [2], and to declare typing properties in a pattern-
matching language for manipulating web data [8]. It consists of the Boolean
connectives, additional spatial (structural) connectives and their corresponding
adjuncts from the propositional ambient logic, and the less familiar hiding quan-
tifier Hx. for analysing restrictions and appears operator c©n declaring that n
occurs free [9].

Definition 1 The set A of the formulae of L is defined by the following gram-

mar, where pebble η stands for either a name n∈N or a name variable x∈X :

A, B ::= 0 | η[A] | A |B | A ∧ B | ¬A | T | A@η | A ⊲ B | Hx. A | c©η

The satisfaction relation T � A between trees in T and closed formulae in L is
defined in Table 2.2. The relation T � A |B specifies that T can be split into two
trees satisfying A and B respectively. For example, the formula n[T] | ¬0 means
that a tree can be split into an edge n with an unspecified subtree satisfying the
true formula T , and a non-empty tree satisfying the formula ¬0. The order of
edges is irrelevant, since satisfaction is closed with respect to tree isomorphism.

The location adjunct A@n states that property A holds when the tree is put
under edge (firewall) n. The composition adjunct A⊲B specifies that whenever we
compose a tree satisfying A to the tree being analysed, then the result satisfies
B. For example, if formula attacker specifies what an attacker can do, then
T � attacker⊲A states that, for any attacker O described by attacker, the system
O |T must satisfy A (for example, secret names are not communicated).

A tree satisfies Hx. A if a declared private name can be replaced by a com-
pletely fresh name m and the resulting tree satisfies A{x←m}. It is possible
however to bind a private name that is not in fact used, since T ≡ (νn)T ′ for any
name n that is not free in T ′. The appears construct c©n can be used to prevent
this possibility. In particular, T � Hx. (c©x ∧ A) states that T ≡ (νm)T ′ and
the chosen fresh m appears free in T ′. Thus, the private/public name structure
can be fully analysed by the logic.

The definition of free variables is standard: variable x is free in x[A], c©x,
A@x, and the hiding quantification Hx. A binds x in A. A sentence is a formula
where no variable is free. We use fv(A) to denote all the free variables in A, and
fn(A) to denote all the free names in A. Notice that, while name occurrences
can be bound in a term by (νn) , only variables can be bound in formulae.

Lemma 2 (Basic Properties).

1. Satisfaction relation is closed wrt congruence: T � A ∧ T ≡ U ⇒ U � A.
2. Logical equivalence ≡L equals structural congruence: T ≡L T ′ ⇔ T ≡ T ′.

With the interpretation of hiding quantification Hx. A, it is intuitively clear
the property A{x←m} holds regardless of which fresh m is chosen. This uni-
versal property is formally stated in the following lemma, mimicing a previous
result in Gabbay and Pitts’ seminal work on abstract syntax with binders [10].

Adjunct Elimination Through Games (Extended Abstract) 5

Table 2.2. Satisfaction

T � 0
def
⇔ T ≡ 0

T � n[A]
def
⇔ ∃U ∈ T . T ≡ n[U] ∧ U � A

T � A |B
def
⇔ ∃T1, T2 ∈ T . T ≡ T1 |T2 ∧ T1 � A ∧ T2 � B

T � A ∧ B
def
⇔ T � A ∧ T � B

T � ¬A
def
⇔ T 6� A

T � T always

T � A@n
def
⇔ n[T] � A

T � A ⊲ B
def
⇔ ∀U ∈ T . U � A ⇒ T |U � B

T � Hx. A
def
⇔ ∃n∈(N \ fn(A)), U ∈T . T ≡ (νn)U ∧ U � A{x←n}

T � c©n
def
⇔ n ∈ fn(T)

Lemma 3 (Universal Characterization of H).

T � Hx. A ⇔ ∀n∈N \ (fn(A) ∪ fn(T)). ∃U ∈T . T ≡ (νn)U ∧ U � A{x←n}

The hiding quantifier Hx. A and c©η are taken here as primitive in the original
spirit of [11]. Lozes focuses on the alternative formulation [9, 12], using freshness
quantification Nx. A and revelation η R©A introduced in [2]. The two pairs can
be mutually encoded, as we prove in the full paper. Throughout the paper, we
comment on how our results adapt to the case with revelation. In particular, rev-
elation R© has an accompanying adjunct A�η. As part of our adjunct-elimination
results, we show that the revelation adjunct is also eliminable (Corollary 2).

Definition 2 (Alternative Operators)

T � Nx. A
def
⇔ ∃n ∈ (N \ (fn(T) ∪ fn(A))). T � A{x←n}

T � n R©A
def
⇔ ∃U ∈ T . T ≡ (νn)U and U � A

T � A�n
def
⇔ (νn)T � A

The freshness quantifier Nx. A just declares that A{x←n} holds for some name
n fresh with respect to both the formula and the tree. Revelation n R©A peals off
the fixed private name n from the tree when possible. Notice that n R©A cannot
be satisfied by a tree containing name n free, and in particular c©n corresponds
to ¬n R©T . The freshness quantifier and revelation combine to express the hiding
quantifier as Nx. x R©A. Analogous to the other adjuncts, the revelation adjunct
A�n states that property A holds in the binding context (νn) .

6 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

3 Games

We define an Ehrenfeucht-Fräıssé style game for L. We prove that the game is
sound and complete: that is, Spoiler has a winning strategy for a game on (T1, T2)
with rank r if and only if there is a sentence of rank r that distinguishes T1 from
T2. Each move in the game is associated with a specific operator from the logic.
Our results are modular with respect to these moves, which means that they
automatically extend to sublogics of L (as long as ∧, ¬ and T are present).

3.1 Ranks, Valuation, and Discrimination

The rank of a formula A is a function |A| that maps each operator (other than
∧ , ¬, T) to the depth of nesting of that operator in A. It also maps each name
in A to 1, and any other name to 0. For example, the rank |n[T] ⊲ (n[T] ⊲ 0)| is
the tuple {0 7→ 1; [] 7→ 1; ⊲ 7→ 2; n 7→ 1; else 7→ 0}. The operators ∧ , ¬, and T

are not in the rank domain, since there are no associated game moves. The leaf
operators 0 and c© may only be mapped to 0 or 1, since they do not nest.

We write r + r′, r − r′, r ⊔ r′, r ≥ r′ to denote pointwise sum, subtrac-
tion, lub, and comparison between ranks r and r′. We write δ(Op) for the Kro-
necker delta function: δ(Op) is the tuple {Op 7→ 1; else 7→ 0}. Hence, a rank
{⊲ 7→ 2; n 7→ 1; else 7→ 0} can be written 2δ(⊲) + δ(n).

Table 3.3. Examples of Ranks

|n[0] | (n[0] |n[0])| = 2δ(|) + δ([]) + δ(0) + δ(n)
|Hx.¬0 ∧ m[x[0]]| = δ(H) + δ(0) + 2δ([]) + δ(m)

For rank r, Ops(r)
def
= {Op : r(Op) > 0} and r is finite when Ops(r) is finite,

i.e. when r(n) 6= 0 only for finitely many n. We only work with finite ranks.
We say that a tree T is distinguished from U by a sentence A when T � A and

U 6� A. A sentence identifies a set of trees (those that satisfy it). We therefore
say that two trees are distinguished by a set P if one is in the set and the other
is not. To deal with open formulae, we define a valuation to be a finite partial
function f from N ∪ X into N , such that, for every n∈N , either f(n) = n or
f(n) is undefined. (This extension of valuations to names as well as variables is
used in Section 3.2.) For any valuation f : N ∪ X → N , let A{f} denote the
result of substituting x with f(x) in A for every x ∈ fv(A) for which f is defined.

Definition 3 For any valuation f , T is f -discriminated from U by a formula

A with fv (A) ⊆ dom(f) iff T � A{f} and U 6� A{f}.

The next lemma is standard, but crucial.

Lemma 4. For each finite rank r and finite set of variables Y, there are only

finitely many inequivalent formulae of rank r whose free variables are in Y.

Adjunct Elimination Through Games (Extended Abstract) 7

This lemma is proved by induction on the rank r (see the appendix). The essential
step is that a formula of rank r with free variables among Y is formed by a
Boolean combination of formulae whose rank is immediately below r and whose
free variables consist of Y and at most one more variable. If there are finitely
many of the latter, we can only form finitely many formulae of rank r.

A key outcome of Lemma 4 is that we can define, for each finite rank r and
finite set of variables Y, a finite set AY

r of formulae such that every formula
of rank r whose free variables are in Y is equivalent to a formula in AY

r . For
each valuation f : N ∪ X → N such that Y ⊆ dom(f), the conjunction Dr

T,f =
∧
{A : A∈AY

r . T � A{f}} is itself a formula of rank r and has the property
that if U � Dr

T,f{f} then U and T cannot be f -discriminated by a formula of
rank r (Lemma 5). We refer to Dr

T,f as the rank r descriptor of T for f .

Lemma 5. For any pair of trees (T, U), valuation f and rank r,

1. (∀A∈AY
r . T � A{f} ⇒ U � A{f})⇔ U � Dr

T,f{f}

2. (∃A∈AY
r . T � A{f} ∧ U 6� A{f})⇔ U 6� Dr

T,f{f}

3. (∀A∈AY
r . T � A{f} ⇔ U � A{f})⇔ U � Dr

T,f{f}
4. U � Dr

T,f{f}⇔ T � Dr
U,f{f}

Before proceeding to define the games, we present a final lemma. Assume
we want to prove that a formula exists which defines a set of trees P . We can
first prove that Spoiler wins with any pair (T, U) which is P -discriminated. This
implies that for any such pair a discriminating formula AT,U exists, but any pair
may in principle need a different formula. The next lemma closes the loop by
proving that, if all such formulas are bounded by a fixed rank, a single formula
exists at the same rank that discriminates all and only the P -discriminated pairs.

Lemma 6. Let P be a set of trees such that, for any P -discriminated pair

(T, U), there is a sentence AT,U of rank r that discriminates T from U . Then,

P is defined by a rank-r sentence A.

3.2 Games

We define a game parametrised by a finite rank r. The game is played by two
players, Spoiler and Duplicator. At any stage of the game, the position consists of
a quadruple (T1, T2, f, r) where T1 and T2 are trees, f is an injective valuation,
and r is a rank. Initially, f coincides with fr, the function that sends every n
with r(n) 6= 0 into itself, and is undefined otherwise. Hence, the initial position of
any game is determined by the triple (T1, T2, r). While a complete game position
is given by (T1, T2, f, r), we will just write (T1, T2, f) or (T1, T2) when the rest
is clear, or irrelevant.

At each turn, Spoiler makes a move and Duplicator responds. Spoiler can
choose any move Op such that r(Op) > 0, provided that the move preconditions
are met. Either the Op move terminates the game, as described below, or the
game goes on with the Ti’s and f updated as prescribed by the move and with

8 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

r(Op) decreased by one. Spoiler wins if it plays a move which Duplicator cannot
answer (0, c©, and sometimes []). Duplicator wins when Spoiler has no move left
to play, because r has become zero on every Op which can be played.

In the description below, most moves begin with Spoiler choosing a tree T
between T1 and T2; in these cases, U is used for the other tree.

0 move Spoiler chooses T so that T ≡ 0 and U 6≡ 0, and wins.
[] move Spoiler chooses a tree T and a pebble η such that T ≡ f(η)[T ′]. If

U ≡ f(η)[U ′], the game continues with (T ′, U ′); otherwise, Spoiler wins.
| move Spoiler chooses T , and two trees T ′ and T ′′ such that T ≡ T ′ |T ′′.

Duplicator chooses U ′ and U ′′ such that U ≡ U ′ |U ′′. Spoiler decides whether
the game will continue with (T ′, U ′), or with (T ′′, U ′′).

⊲ move Spoiler chooses T and new tree T ′; Duplicator chooses new tree U ′.
Spoiler decides whether the game will continue with (T |T ′, U |U ′) or (T ′, U ′).

@ move Spoiler chooses a pebble η, and replaces T with f(η)[T] and U with
f(η)[U].

H move Spoiler chooses T , a name n not in fn(T) ∪ fn(U) ∪ ran(f), a variable
x /∈ dom(f), and a tree T ′ such that (νn)T ′ ≡ T . Duplicator chooses a tree
U ′ such that (νn)U ′ ≡ U . The game continues with (T ′, U ′, (f ; x 7→n)).

c© move Spoiler chooses T and η so that f(η) is in T but not in U , and wins.

The definition is easily extended to the operators for freshness, revelation
and the revelation adjunct:

N move Spoiler chooses a name n not in fn(T) ∪ fn(U) ∪ ran(f) and a variable
x, and extends f with x 7→n.

R© move Spoiler chooses T , a pebble η such that f(η) /∈ fn(T) , and a tree T ′

such that (νf(η))T ′ ≡ T . If f(η) is in U , Spoiler wins. Otherwise, Duplicator

chooses a tree U ′ such that (νf(η))U ′ ≡ U (such a U ′ exists if, and only if,
f(η) /∈ fn(U)). The game continues with (T ′, U ′).

� move Spoiler chooses η, and substitutes T with (νf(η))T and U with (νf(η))U .

We may classify the moves according to their effect on the state of the game:

– [], 0, c© may end the game;

– H may extend f and change h-names to names;

– |, [] reduce the size of the board; @ and ⊲ may increase the board.

Indeed, one begins to see why adjunct moves may be useless. Spoiler is trying to
show that the two boards are different, while Duplicator aims to show that they
are similar enough. In a challenging game, Spoiler plays with a small rank over
two large boards with a small difference buried somewhere. A typical strategy
for Spoiler is “zooming in”: splitting the boards, removing edges, until the small
difference is exposed. In this setting, adjunct moves are quite useless: ⊲ and @
blur the difference between the two boards by extending both with isomorphic
trees (in a ⊲ move, Duplicator will typically choose a U ′ isomorphic to the T ′

chosen by Spoiler). This is the intuition that we are going to exploit in our
adjunct-elimination proof.

Adjunct Elimination Through Games (Extended Abstract) 9

3.3 Soundness and Completeness

We state soundness and completeness results for our game. The proofs are given
in the appendix. The proofs are completely “modular”; for each move, they only
depend on the properties of the corresponding operator in the logic. This means
that the result holds for any sublogic of L, provided that it includes all the
operators that appear in r. Similarly, our results easily extend to the logic with
operators N, R© and�.

Lemma 7 (Game Soundness). If there exists a sentence A of rank r such

that T � A ∧ U 6� A, then Spoiler has a winning strategy for the game (T, U, r).

Lemma 8 (Game Completeness). If Spoiler has a winning strategy for the

game (T, U, r) where r is finite, then there exists a sentence A of rank ≤ r that

discriminates T from U , i.e. such that T � A ∧ U 6� A.

4 Adjunct Elimination

We prove that any sentence can be transformed in an equivalent adjunct-free
sentence of the same rank, hence extending Lozes result which does not express
rank preservation. The basic idea is that, when Spoiler adds a context around one
board, Duplicator can answer by adding the same context around the other board;
whatever Spoiler does on the new context, Duplicator can mimic on the other
copy. Our result requires that r(0) is non-zero. This condition is not surprising,
since, for example, the formula n[T]⊲n[T] is logically equivalent to 0, and cannot
be expressed without adjuncts and without 0 itself. Recall that we focus on the
logic L with hiding and appears. Since our proofs are modular, the results also
hold for the logic without these constructs. We include hiding and appears to link
more closely to Lozes’ original work, and to make the comparison with the non-
eliminability of adjuncts in the presence of existential quantification (Section 5).
Our results simply extend to the logic L with the additional revelation adjunct
� (see theorem 5 in the Appendix). We use DW (and SW) to denote the sets
of game positions such that Duplicator (and Spoiler) has a winning strategy.

Lemma 9. If (T, U, f, r)∈DW and r(0) > 0, then T ≡ 0 ⇔ U ≡ 0.

Theorem 1. If (T, U, f, r)∈DW and (T ′, U ′, f, r)∈DW for {0} ⊆ Ops(r) and

η ∈ dom(f), then:

(f(η)[T], f(η)[U], f, r) ∈ DW (1)

(T |T ′, U |U ′, f, r)∈DW (2)

Proof. The proof is by induction on r, and by cases on the possible moves of
Spoiler. We analyse each move Op that Spoiler may take on the bigger board,
and show that he cannot win under the hypothesis that he could not win on
the original boards. We only show here the cases Op = | and Op = ⊲, assuming
that Spoiler chooses T ; the complete proof is in the full paper. We let r− denote
r − δ(|).

10 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

|, property (1): Spoiler splits f(η)[T] into two trees, which must be congruent
to f(η)[T] and 0 by Lemma 1(1). Duplicator splits f(η)[U] into f(η)[U] and
0. The game (0,0, f, r−) is in DW by game completeness (Lemma 8) (Nil is
logically equivalent to 0). (T, U, f, r) ∈ DW implies that (T, U, f, r−) ∈ DW ,
hence (f(η)[T], f(η)[U], f, r−) ∈ DW by induction.
|, (2): Spoiler splits T |T ′ into two trees T1 and T2 which, by Lemma 1(2),

can be written expressed as T1 ≡ T ′
1 |T

′′
1 and T2 ≡ T ′

2 |T
′′
2 such that T ′

1 |T
′
2 ≡ T

and T ′′
1 |T

′′
2 ≡ T ′. Since (T, U, f, r) ∈ DW and (T ′, U ′, f, r) ∈ DW , Duplicator

has a response to a move by Spoiler in the game (T, U, f, r) where Spoiler splits
T into T ′

1 and T ′
2 and similarly for the game (T ′, U ′, f, r). Suppose the moves

for Duplicator in these two games involve splitting U into U ′
1 |U

′
2 (respectively

U ′ into U ′′
1 |U

′′
2), then by hypothesis Duplicator wins each of the four games

(T ′
1, U

′
1, f, r−), (T ′

2, U
′
2, f, r−), (T ′′

1 , U ′′
1 , f, r−) and (T ′′

2 , U ′′
2 , f, r−). By induction

hypothesis, this means that (T ′
1 |T

′
2, U

′
1 |U

′
2, f, r−)∈DW and (T ′′

1 |T
′′
2 , U ′′

1 |U
′′
2 , f, r−)∈

DW . Thus, splitting the tree U |U ′ as (U ′
1 |U

′′
1) | (U ′

2 |U
′′
2) is a winning move for

Duplicator as required.
⊲ (1,2): Let C{T } be either T |T ′, or f(η)[T] and C{U} denote U |U ′, or

f(η)[U], respectively. Spoiler chooses a tree V to compose with C{T }. Dupli-

cator responds by adding the same tree to C{U}. If Spoiler chooses to pro-
ceed with (V, V), then Duplicator wins by game completeness (Lemma 8). As-
sume that Spoiler chooses to proceed with (C{T } |V, C ′{U} |V, f, r−). Since
(T, U, f, r−) ∈ DW and (T ′, U ′, f, r−) ∈ DW , by downward closure of DW
(Lemma 10), (C{T }, C ′{U}, f, r−) ∈ DW follows by induction, and hence
(C{T } |V, C ′{U} |V, f, r−) ∈ DW also follows by induction.

Corollary 1 (Move Elimination) If (T, U, f, r) ∈ DW , r⊔
def
= r ⊔ δ(0), and

{⊲, @} ⊇ Ops(radj), then:

(T, U, f, r⊔) ∈ DW ⇒ (T, U, f, r + radj) ∈ DW

(T, U, f, r + radj) ∈ SW ⇒ (T, U, f, r⊔) ∈ SW

We can finally show that adjuncts do not add expressive power to the logic.
Not only that but, for each sentence containing adjuncts, there is an equivalent
adjunct-less sentence of a related rank. There are only a finite number of in-
equivalent sentences for each rank (Lemma 4), but it remains an undecidable
problem to determine which one is equivalent to a given sentence with adjuncts.

Corollary 2 (Adjunct Elimination) Any property which can be expressed by

a sentence of rank r + radj , where {⊲, @} ⊇ Ops(radj), can be expressed by a

sentence of rank r ⊔ δ(0).

Proof. Let r⊔ abbreviate r⊔ δ(0). Let P be defined by a sentence A of rank r +
radj . For each T ∈P and U /∈P , by Game Soundness (Lemma 7), (T, U, r+radj) ∈
SW . By Corollary 1, (T, U, r⊔) ∈ SW . By Game Completeness (Lemma 8), this
implies that, for each P -discriminated pair T, U , there is a sentence BTU with
rank r⊔ that discriminates T from U . By Lemma 6, there is a sentence B of rank
r⊔ that defines P .

Adjunct Elimination Through Games (Extended Abstract) 11

In the full paper we use the same technique to prove adjunct elimination
for the logic extended with revelation adjunct (see theorem 5 in the Appendix).
Revelation adjunct allows c©η to be expressed as η[T] ⊲¬((η[T] |T)�η). For this
reason, in the revelation-adjunct version of Theorem 1 the hypothesis {0} ⊆
Ops(r) must be strengthened to {0, c©} ⊆ Ops(r), and δ(c©) appears in the
statement of the adjunct elimination result, as follows.

Theorem 2 (Adjunct Elimination With �). Any property which can be ex-

pressed by a sentence of rank r + radj, where {⊲, @,�} ⊇ Ops(radj), can be

expressed by a sentence of rank r ⊔ δ(c©) ⊔ δ(0).

5 Adjunct Non-Eliminability for ∃

The hiding quantifier H is similar to existential quantification ∃. A natural ques-
tion is whether a similar adjunct elimination result holds for the logic with
existential quantification. In [5], Lozes gives a counterexample to show that ad-
juncts cannot be eliminated in a logic with both existential quantification and

c©. This result, although interesting, is perhaps a little weak since existential
quantification is not usually associated with c© and the counterexample relies
on the absence of primitive equality from the logic. Here we complete the analy-
sis, by proving that adjuncts cannot be eliminated in a logic with ∃ and without
c©, regardless of the presence of equality.

Let L∃,⊲ denote the (static) ambient logic with existential quantification and
the composition adjunct, and let L∃,= denote the corresponding logic without
the composition adjunct and with equality. We have shown that the parity of
trees is not definable in L∃,= (and, hence, neither in L∃), using a standard
game inexpressivity argument which we give in the full paper (Theorem 3). It
is however definable in L∃,⊲, a result due to Hongseok Yank and reported here
(Theorem 4).

Theorem 3 (No Parity in L∃,=). No sentence A in L∃,= expresses the prop-

erty that T is flat,1 differently-labelled, and has an even number of edges.

The L∃,⊲ sentence used in Theorem 4 to describe parity in L∃,⊲ is based on the
following sentences:

EachEdge(A)
def
= ¬(T | ∃x. x[T] ∧ ¬A)

Flat
def
= EachEdge(∃x. x[0])

Diff
def
= ¬(∃x. x[0] |x[0] |T)

Pairs
def
= EachEdge(∃x, y. c[x[0] | y[0]])

DiffP
def
= ¬∃x. (c[x[0] |x[0]] |T) ∨ (c[x[0] |T] | c[x[0] |T] |T)

A ∝ B
def
= ¬(A ⊲ ¬B)

1 A ‘flat’ tree looks like n1[] | . . . |nj []; ‘differently labelled’ means ni 6= nj for i 6= j.

12 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

T � EachEdge(A) denotes that every top-level edge of T satisfies A. Hence,
T � Flat states that T is a flat-tree, and Flat ∧ Diff means that its edges have
different labels. Similarly, T � Pairs means that T is composed of c[n[0] |m[0]]
edges, while Pairs ∧ DiffP means that all second-level labels are mutually dif-
ferent. Finally, T � A ∝ B iff exists U such that U � A and T |U � B.

Theorem 4 (Yang: Parity in L∃,⊲). The sentence

Even
def
= (Flat ∧Diff) ∧ ((Pairs ∧ DiffP) ∝ (∀x. x[0] |T ⇔ c[x[0] |T]))

defines the set of flat, differently-labelled trees with an even number of edges.

Proof. T � Even iff T is a flat tree where all the labels are different (expressed
formally by T � Flat ∧ Diff), and there exists U such that U � Pairs ∧ DiffP

and T |U � ∀x. x[0] |T ⇔ c[x[0] |T]. Hence, U has a shape

c[n1[0] |n2[0]] | . . . | c[n2k−1[0] |n2k[0]],

all the ni’s are different, and U contains an even number of them. Finally, T |U �

∀x. x[0] |T ⇔ c[x[0] |T] says that the labels of T are exactly the same as the
second-level labels of U , hence T has an even number of edges.

Games offer an explanation why L∃,⊲ is more expressive than L∃,=. Consider
a L∃,⊲ strategy that corresponds to Yang’s sentence. Spoiler must distinguish
between even board T = n1[] | . . . |n2k[] and odd board U = m1[] | . . . |m2k+1[].
Spoiler adds the context V = c[n1[0] |n2[0]] | . . . | c[n2k−1[0] |n2k[0]] to the even
board. Now Duplicator is lost. He may add c[m1[0] |m2[0]] | . . . | c[m2k−1[0] |m2k[0]]
to the other board, but in this case there will be a name m2k+1 which appears
once in U |V , while every name (but c) appears exactly twice in T |V . Now
Spoiler can use ∃ to pebble that name and win.

In a game for L (with hiding and appears), such a strategy is not available
to Spoiler because only hidden names can be pebbled in that game, and no
hidden name can be shared between T and V above. Indeed, the key is that
a counterpart to Theorem 1(2) does not hold for L∃,⊲ games. It is possible for
Duplicator to have a winning strategy on each of (T, U) and (T ′, U ′) while Spoiler

wins on (T |T ′, U |U ′) because of names shared between T and T ′.

6 Conclusions

We have investigated adjunct elimination results for spatial logics, by intro-
ducing game techniques for such logics. Our work provides a modular proof of
adjunct elimination which helps our understanding of why some combinations
of operators admit adjunct elimination while others do not. In particular, we
show the adjunct elimination results hold for a logic with hiding quantification
and appears (for reasoning about private and public names), and do not hold for
the analogous logic with existential quantification (for analysing shared names).
Another consequence of our proof is a rank preservation result that shows that
the elimination of adjuncts does not increase the rank of a sentence, which is
surprising as adjuncts cannot be computably eliminated.

Adjunct Elimination Through Games (Extended Abstract) 13

References

1. O’Hearn, P., Pym, D.: The logic of bunched implications. Bulletin of Symbolic
Logic 5 (1999) 215–244

2. Cardelli, L., Gordon, A.: Anytime, anywhere: modal logics for mobile ambients.
In: Proc. of POPL’00. (2000) 365–377

3. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: Proc. of POPL’01. (2001) 14–26

4. Yang, H.: An example of local reasoning in BI pointer logic: the Schorr-Waite
graph marking algorithm. In: Proc. of SPACE’01 Workshop, London. (2001)

5. Lozes, E.: Adjuncts elimination in the static ambient logic. In: Proc. of Express’03,
Marseille. (2003)

6. Cardelli, L., Gordon, A.: Mobile ambients. In: Proc. of FOSSACS’98, Springer-
Verlag (1998) 140–155

7. Cardelli, L., Ghelli, G.: TQL: A query language for semistructured data based
on the ambient logic. Mathematical Structures in Computer Science (2004) To
appear.

8. Cardelli, L., Gardner, P., Ghelli, G.: Manipulating trees with hidden labels. In:
Proc. of FOSSACS’03, Warsaw, Poland. (2003)

9. Cardelli, L., Gordon, A.D.: Logical properties of name restriction. In: Proc. of
TCLA’01, Krakow, Poland. Volume 2044 of LNCS., Springer (2001) 46–60

10. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects of Computing (2002)

11. Caires, L.: A specification logic for mobility. Technical Report 4/2000,
DI/FCT/UNL (2000)

12. Caires, L., Cardelli, L.: A spatial logic for concurrency (Part I). In: Proc. of
TACS’01. Volume 2215 of LNCS. (2001) 1–37

14 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

A Proofs

A.1 Proofs for Section 2

Re-Statement of Lemma 1 (Decomposition).

1. If T |U ≡ n[V] then either T ≡ n[V] and U ≡ 0, or U ≡ n[V] and T ≡ 0.
2. If T |U ≡ V1 |V2, then ∃T1, T2, U1, U2. T1 |T2 ≡ T , U1 |U2 ≡ U , T1 |U1 ≡ V1,

T2 |U2 ≡ V2.
3. If (νn)T ≡ 0 then T ≡ 0
4. If (νn)T ≡ m[U] then ∃U ′. T ≡ m[U ′], U ≡ (νn)U ′

5. If (νn)T ≡ U |U ′ then ∃V, V ′. ((U = (νn)V ∧U ′ = V ′)∨ (U ′ = (νn)V ∧U =
V ′)), T ≡ V |V ′, n /∈ fn(V ′)

6. If (νn)T ≡ (νm)U and n 6= m, then either (i) T ≡ U{m ← n} or (ii)
∃U ′. U ≡ (νn)U ′, T ≡ (νm)U ′.

A.2 Proofs for Section 3

Re-Statement of Lemma 4. For each finite rank r and finite set of variables Y,

there are only finitely many inequivalent formulae of rank r whose free variables

are in Y.

Proof. By induction on the rank r and by cases on the outermost operator. If it
is 0, T, or c©η, the result is immediate. If it is η[], |, @, ⊲, Hx. , the subformu-
las have a strictly smaller rank, hence we only have finitely many equivalence
classes from which to choose the subformulas, and a finite number of pebbles
from which to choose η (in the Hx. case we apply induction to the set of all
formulas with smaller rank and free variables in Y ∪ x). Any other formula is
a Boolean combination of the finitely-many rank r formulas whose outermost
operator is not Boolean. And, up to equivalence, there are only finitely many
Boolean combinations that can be formed from a finite set.

Re-Statement of Lemma 5. For any game position (T, U, f, r),

1. (∀A∈AY
r . T � A{f} ⇒ U � A{f})⇔ U � Dr

T,f{f}

2. (∃A∈AY
r . T � A{f} ∧ U 6� A{f})⇔ U 6� Dr

T,f{f}

3. (∀A∈AY
r . T � A{f} ⇔ U � A{f})⇔ U � Dr

T,f{f}
4. U � Dr

T,f{f}⇔ T � Dr
U,f{f}

Proof. 1. (⇔). By definition:

U � Dr
T,f{f}⇔ U � (

∧
{A : A∈AY

r . T � A{f}}){f}

⇔ U �
∧
{A{f} : A∈AY

r . T � A{f}}

⇔ ∀A∈AY
r . T � A{f} ⇒ U � A{f}

2. immediate by (1).
3 (⇐) (⇒ is immediate by (1)): Assume U � Dr

T,f{f} and U � A{f}, hence
U 6� ¬(A{f}). By (1), T 6� ¬(A{f}), hence T � A{f}.
4. By (3, ⇐), U � Dr

T,f{f} implies ∀A∈AY
r . U � A{f} ⇒ T � A{f}, hence,

by (1, ⇒), T � Dr
U,f{f}.

Adjunct Elimination Through Games (Extended Abstract) 15

Re-Statement of Lemma 6. Let P be a set of trees such that, for any P -

discriminated pair (T, U), there is a sentence AT,U of rank r that discriminates

T from U . Then, P is defined by a rank-r sentence A.

Proof. Taking Y = ∅, we have that A∅
r is a finite collection of sentences of rank

r such that every sentence of rank r is equivalent to some element of A∅
r , and we

write Dr
T for the corresponding rank r descriptor of the tree T .

Consider the set

SP = {B ∈ A∅
r | ∃U ∈ P. B ⇔ Dr

U}.

SP is a finite set of sentences, as it is a subset of A∅
r . Thus A =

∨
SP is itself a

sentence of rank r. We argue that T � A if and only if T ∈ P .
Suppose T ∈ P . Since A∅

r enumerates all the rank-r sentences, there is a
B′ ∈ A∅

r such that B′ ⇔ Dr
T , hence T � B′ and B′ ∈ SP and hence T � A. For

the converse, if T � A then T � B for some B ∈ SP . Hence, T � Dr
U for some

U ∈ P . Now, if T 6∈ P , there must be some rank r sentence that distinguishes T
from U and we could not have T � Dr

U . Thus, we conclude that T ∈ P .

DW is downward closed with respect to r. This lemma holds for all the games
we will introduce.

Lemma 10 (Downward Closure). If (T, U, f+, r+)∈DW , r+≥ r, and f+

extends f , then (T, U, f, r) ∈ DW .

In the proofs below, for each possible game move Op at rank r, we write r−

for the rank after the move, i.e. r − δ(Op).

Re-Statement of Lemma 7 (Game Soundness). Game equivalence implies

sentence equivalence: if there exists a sentence A of rank r such that T � A ∧
U 6� A, then Spoiler has a winning strategy for the game (T, U, r).

Proof. The proof is by induction on the structure of the sentence A. Indeed, we
prove a somewhat stronger statement. We prove by induction that if T � A{f}
and U 6� A{f} then (T, U, f, r) ∈ SW . The lemma then follows from the special
case when A is closed and f = fr.

– The case 0 is trivial,
– If A is η[A1], then, since T � A, it must be that T ≡ n[T1] with f(η) = n.

Either there is no U1 such that U ≡ n[U1] and Spoiler wins immediately,
or there is such a U1 and U1 6� A1{f}. Thus, by induction hypothesis,
(T1, U1, f, r−) ∈ SW .

– If A is A1 |A2, Spoiler can choose T1 and T2 so that T ≡ T1 |T2 and T1 �

A1{f} and T2 � A2{f}. If Duplicator splits U into U1 and U2, it must be
the case that either U1 6� A1{f} or U2 6� A2{f}. In the former case, Spoiler

chooses to continue the game with (T1, U1, f, r−) and in the latter case with
(T2, U2, f, r−).

16 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

– If A is A1 ⊲ A2, Spoiler chooses U and a tree U ′ such that U ′
� A1{f}

but U |U ′ 6� A2{f}. Duplicator responds witha tree T ′ for which it must
be the case that either T ′ 6� A1{f} of T |T ′

� A2{f}. In the former case,
(U ′, T ′, f, r−) ∈ SW and in the latter case (T |T ′, U |U ′, f, r−) ∈ SW .

– If A is η[A1], Spoiler chooses η so that f(η)[T] � A1{f}. Since, by hypothesis,
f(η)[U] 6� A1{f}, (f(η)[T], f(η)[U], f, r−) ∈ SW .

– If A is Hx. A1, let x′ be a variable which is not free in A1 nor in the domain
of f , and let A′

1 = A1{x←x′}. Hx′. A′
1 is equivalent to Hx. A1, hence, T �

(Hx′. A′
1){f} and U 6� (Hx′. A′

1){f}; moreover, fn(A′
1) = fn(A1) = fn(A). By

T � (Hx′. A′
1){f}, by ran(f) ⊇ fn((Hx′. A′

1){f}), and by Lemma 3, for any
n /∈ fn(T) ∪ fn(U) ∪ ran(f), there is a T1 ∈ T such that T ≡ (νn)T1, and
Spoiler chooses such an n, and the corresponding T1. Duplicator chooses a
tree U1 such that (νn)U1 ≡ U . (νn)U1 ≡ U , n /∈ fn(A′

1) ∪ ran(f), and U 6�
(Hx′. A′

1){f} imply that U1 6� A′
1{f ; x′ 7→ n} and therefore (T1, U1, (f ; x′ 7→

n), (f ; x′ 7→ n))r− ∈ SW .
– If A is c©η, then T � c©η{f} and U 6� c©η{f} imply that f(η) ∈ fn(T) and

f(η) /∈ fn(U), hence Spoiler plays c© with η and wins.

In the proof of the next lemma we are going to use the De Morgan dual of ⊲,

the operator ∝ defined as A ∝ B
def
⇔ ¬(A ⊲ ¬B).

Re-Statement of Lemma 8 (Game Completeness). Sentence equivalence

implies game equivalence: if Spoiler has a winning strategy for the game (T, U, r)
where r is finite, then there exists a sentence A of rank ≤ r that discriminates

T from U , i.e. such that

T � A ∧ U 6� A

Proof. As r is finite, the ordering of ranks is well-founded, and we proceed by
induction on rank. In the inductive hypothesis we will always use Lemma 5,
which states that the existence of a rank r f -discriminating formula for T and
U implies that U 6� Dr

T,f{f}.
We proceed by cases, depending on the first move in Spoiler’s strategy. In

each move, Spoiler may choose either T or U ; we only consider the first case.
We only consider the most interesting moves. In the other cases, the proof is

similar.

0 move If Spoiler can win by playing a 0 move, then the two trees are distin-
guished by the formula 0.

[] move Spoiler selects η such that T ≡ f(η)[T ′] and either Spoiler wins because
U 6≡ f(η)[U ′] for any U ′, in which case the formula η[T] suffices to distinguish

T from U or Spoiler wins on the game (T ′, U ′, f, r−). Thus, U ′ 6� Dr−

T ′,f{f}

and we can take A to be η[Dr−

T ′,f].
| move If Spoiler can win by splitting T into trees T1 and T2, we take the formula

A to be Dr−

T1,f |D
r−

T2,f . Clearly |A| = r. If U � A{f}, then U ≡ U1 |U2 with

Adjunct Elimination Through Games (Extended Abstract) 17

U1 � Dr−

T1,f{f} and U2 � Dr−

T2,f{f}. But, this would mean that Duplicator

would have a winning strategy on either of the games (T1, U1, f, r−) and
(T2, U2, f, r−), which is a contradiction. We conclude that U 6� A{f}

⊲ move If Spoiler’s strategy is to choose the new tree T ′, we can take the
formula A to be Dr−

T ′,f ∝ Dr−

T | T ′,f
. Assume, toward a contradiction, that

U � (Dr−

T ′,f ∝ Dr−

T |T ′,f
){f}, i.e. U � Dr−

T ′,f{f} ∝ Dr−

T |T ′,f
{f}. Then, U ′

exists such that U ′
� Dr−

T ′,f{f} and U |U ′
� Dr−

T |T ′,f{f}. But, this would
mean that Duplicator would have a winning strategy on either of the games
(T ′, U ′, f, r−) and (T |T ′, U |U ′, f, r−), which is a contradiction.

H move Spoiler chooses T , a name n not in fn(T) ∪ fn(U) ∪ ran(f) ∪ ran(f), a
variable x /∈ dom(f), and a tree T ′ such that (νn)T ′ ≡ T . Duplicator chooses
a tree U ′ such that (νn)U ′ ≡ U . If no such U ′ exists, Spoiler wins. Otherwise,
the game goes on with with (T ′, (f ; x 7→ n)) and (U ′, (f ; x 7→ n)). Let A be

Hx. Dr−

T ′,(f ;x 7→n). By definition,

T ′
� Dr−

T ′,(f ;x 7→n){(f ; x 7→ n)}, i.e. T ′
� (Dr−

T ′,(f ;x 7→n){f}){x←n} (1). Since

f extends fr, n /∈ ran(f) implies that r(n) = 0, hence n /∈ fn(Dr−

T ′,(f ;x 7→n));

now, n /∈ ran(f) implies that n /∈ fn(Dr−

T ′,(f ;x 7→n)){f} (2). (1), (2), and

(νn)T ′ ≡ T imply that T � Hx. (Dr−

T ′,(f ;x 7→n){f}), hence, by x /∈ dom(f), T �

(Hx. Dr−

T ′,(f ;x 7→n)){f} = A{f}. Suppose, toward a contradiction, that U �

(Hx. Dr−

T,(f ;x 7→n)){f}. By x /∈ dom(f), U � Hx. (Dr−

T,(f ;x 7→n){f}). Reasoning

as above, we have that n /∈ fn(U) ∪ fn(Dr−

T,(f ;x 7→n){f}), hence, by Lemma 3,

U ′ exists such that (νn)U ′ ≡ U and U ′
� (Dr−

T,(f ;x 7→n){f}){x ← n}, i.e.

U ′
� Dr−

T,(f ;x 7→n){(f ; x 7→ n)}. But then, by induction hypotesis, Duplicator

could win the game by choosing this U ′, contradicting the hypothesis.
c© move Spoiler chooses T and η so that f(η) is in T but f(η) is not in U , and

wins. Let A be c©η. T � (c©η){f} = c©f(η), and U 6� (c©η){f} = c©f(η).

A.3 Proofs for Section 4

Re-Statement of Lemma 9. If (T, U, f, r) ∈ DW and r(0) ≥ 0, then T ≡
0 ⇔ U ≡ 0.

Lemma 11. If (T, U, f, r) ∈ DW , r(c©) > 0, and f(η) is defined, then f(η) ∈
fn(T) ⇔ f(η) ∈ fn(U).

Proof. Assume f(η) ∈ fn(T) and f(η) /∈ fn(U). In this case, Spoiler would win
by playing c©, and choosing T and η.

We now prove a version of Theorem 1 for the logic extended with�, to show how
our techniques extend to a logic that is as expressive as the one studied in [5].

Theorem 5 (Congruence, in the Game With �). In the games enriched

with the � move, (T, U, f, r) ∈ DW , (T ′, U ′, f, r) ∈ DW ,{0, c©} ⊆ Ops(r) and

18 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

η ∈ dom(f), imply that:

(f(η)[T], f(η)[U], f, r) ∈ DW (1)

(T |T ′, U |U ′, f, r)∈DW (2)
((νf(η))T, (νf(η))U, f, r) ∈ DW (3)

Proof. The proof is by induction on r, and by cases on the possible moves of
Spoiler. For every move Op, we use r− to denote r− δ(Op) (that is, r decreased
by the appropriate move given by the context). We analyse each move that
Spoiler may take on the bigger board, and show that he cannot win under the
hypothesis that he could not win on the original boards. We always assume that
Spoiler chooses to play with T ; the other case is symmetrical.

0, property (1): Spoiler cannot play 0, since f(η)[T] 6≡ 0.
0, property (2): This means that T |T ′ ≡ 0 and therefore, T ≡ T ′ ≡ 0.

Thus, by the hypothesis that (T, U, f, r)∈DW and (T ′, U ′, f, r)∈DW , we have
U |U ′ ≡ 0.

0, property (3): Spoiler cannot play 0. Assume he can (for a contradiction).
Hence (νf(η))T ≡ 0, (νf(η))U 6≡ 0 and Spoiler wins. By Lemma 1(3), U 6≡ 0 and
T ≡ 0. This means that Spoiler could have played the same move on (T, U, f, r),
which contradicts the hypothesis.

[], (1): In this case, Spoiler reduces f(η)[T] to T . Duplicator answers by
reducing f(η)[U] to U , and the thesis (T, U, f, r−) ∈ DW follows by downward
closure of DW (Lemma 10).

[], (2): In this case, T |T ′ ≡ f(η′)[T ′′], for some η′ and T ′′. By Lemma 1(1)
either T ≡ 0 or T ′ ≡ 0; we assume the first (the second case is symmetric). By
Lemma 9, U ≡ 0, hence the thesis reduces to (T ′, U ′, f, r)∈DW .

[], (3): In this case, (νf(η))T must be congruent to f(η′)[T ′] for some
f(η′) 6= f(η). The Spoiler move reduces it to T ′. By Lemma 1(4), (νf(η))T ≡
f(η′)[T ′] implies that T ′ ≡ (νf(η))T ′′ for some T ′′ and T ≡ f(η′)[T ′′]. By
(T, U, f, r) ∈ DW , T ≡ f(η′)[T ′′] implies that U ≡ f(η′)[U ′′] for some U ′′ such
that (T ′′, U ′′, f, r−) ∈ DW . Hence, (νf(η))U ≡ (νf(η))f(η′)[U ′′] ≡ f(η′)[(νf(η))U ′′]
since f(η) 6= f(η′). Hence the game continues with ((νf(η))T ′′, (νf(η))U ′′, f, r−)
which is in DW by induction.
|, property (1): Spoiler splits f(η)[T] into two trees, which must be congruent

to f(η)[T] and 0 by Lemma 1(1). Duplicator splits f(η)[U] into f(η)[U] and 0.
The game (0,0, f, r−) is in DW by game completeness (Lemma 8) (the trees 0
and 0 are logically equivalent). The game (f(η)[T], f(η)[U], f, r−) ∈ DW since,
by downward closure of DW (Lemma 10), we have (T, U, f, r−) ∈ DW , and the
result follows by induction.
|, (2): Spoiler splits T |T ′ into two trees T1 and T2 which, by Lemma 1(2),

can be written expressed as T1 ≡ T ′
1 |T

′′
1 and T2 ≡ T ′

2 |T
′′
2 such that:

T ′
1 |T

′
2 ≡ T

T ′′
1 |T

′′
2 ≡ T ′

Since (T, U, f, r) ∈ DW and (T ′, U ′, f, r) ∈ DW , Duplicator has a response to a
move by Spoiler in the game (T, U, f, r) where Spoiler splits T into T ′

1 and T ′
2 and

Adjunct Elimination Through Games (Extended Abstract) 19

similarly for the game (T ′, U ′, f, r). Suppose the moves for Duplicator in these
two games involve splitting U into U ′

1 |U
′
2 (respectively U ′ into U ′′

1 |U
′′
2), then by

hypothesis Duplicator wins each of the four games (T ′
1, U

′
1, f, r−), (T ′

2, U
′
2, f, r−),

(T ′′
1 , U ′′

1 , f, r−) and (T ′′
2 , U ′′

2 , f, r−). By induction hypothesis, this means that
(T ′

1 |T
′
2, U

′
1 |U

′
2, f, r−)∈DW and (T ′′

1 |T
′′
2 , U ′′

1 |U
′′
2 , f, r−)∈DW . Thus, splitting

the tree U |U ′ as (U ′
1 |U

′′
1) | (U ′

2 |U
′′
2) is a winning move for Duplicator as required.

|, (3): Spoiler splits (νf(η))T into two trees which, by Lemma 1(5), can
be written as (νf(η))T ′ and T ′′ with f(η) /∈ fn(T ′′) and T ≡ T ′ |T ′′. Since
(T, U, f, r) ∈ DW and Spoiler can play the | move (T ′, T ′′), Duplicator has
an answer (U ′, U ′′) with U ≡ U ′ |U ′′ such that (T ′, U ′, f, r−) ∈ DW and
(T ′′, U ′′, f, r−) ∈ DW . By f(η) /∈ fn(T ′′), r(c©) > 0, and Lemma 11, f(η) /∈
fn(U ′′) and hence (νf(η))U ≡ ((νf(η))U ′) |U ′′. Hence, ((νf(η))U ′) |U ′′ ≡ (νf(η))U
can be Duplicator answer to Spoiler’s original move. Whichever board Spoiler

chooses, Duplicator has a winning strategy: (T ′′, U ′′, f, r−) ∈ DW from above;
((νf(η))T ′, (νf(η))U ′, f, r−) ∈ DW from above and induction.

⊲ (1,2,3): Let C{T } be either f(η)[T], T |T ′, or (νf(η))T , and C{U} de-
note f(η)[U], U |U ′, or (νf(η))U , respectively. Spoiler chooses a tree V to com-
pose with C{T }. Duplicator responds by adding the same tree to C{U}. If
Spoiler chooses to proceed with (V, V), then Duplicator wins by game complete-
ness (Lemma 8) (since V is logical equivalent to itself). Assume that Spoiler

chooses to proceed with (C{T } |V, C ′{U} |V, f, r−). Since (T, U, f, r−) ∈ DW
and (T ′, U ′, f, r−) ∈ DW , by downward closure of DW (Lemma 10), (C{T }, C ′{U}, f, r−) ∈
DW follows by induction, and hence (C{T } |V, C ′{U} |V, f, r−) ∈ DW also fol-
lows by induction.

@ (1,2,3): Let C{T } be either f(η)[T], T |T ′, or (νf(η))T , and C ′{U} denote
f(η)[U], U |U ′, or (νf(η))U , respectively. Spoiler chooses a pebble η′, and re-
places C{T }with f(η′)[C{T }] and C ′{U}with f(η′)[C′{U}]. Since (T, U, f, r−) ∈
DW , by downward closure of DW (Lemma 10), (C{T }, C ′{U}, f, r−) ∈ DW
follows by induction, and hence (f(η′)[C{T }], f(η′)[C′{U}], f, r−) ∈ DW also
follows by induction (2).

H (1): Spoiler chooses a name n not in fn(f(η)[T]) ∪ fn(f(η)[U]) ∪ ran(f), a
variable x /∈ dom(f), and a tree T ′ such that (νn)T ′ ≡ f(η)[T]. Duplicator has
to choose a tree U ′ such that (νn)U ′ ≡ f(η)[U].

By Lemma 1(4), (νn)T ′ ≡ f(η)[T] implies that, for some T ′′, (a) T ′ ≡
f(η)[T ′′] and (b) T ≡ (νn)T ′′. By (b) and since (T, U, f, r) ∈ DW , there exists
U ′′ such that U ≡ (νn)U ′′ and (T ′′, U ′′, f+, r−) ∈ DW , where f+ = (f ; x 7→
n). By induction, (f(η)[T ′′], f(η)[U ′′], f+, r−) ∈ DW . Moreover, U ≡ (νn)U ′′

implies that f(η)[U] ≡ f(η)[(νn)U ′′] ≡ (νn)f(η)[U ′′] since n /∈ ran(f). Hence,
f(η)[U ′′] is a legitimate answer to Spoiler’s move.

H (2): Spoiler chooses a name n not in fn(T |T ′)∪fn(U |U ′)∪ran(f), a variable
x /∈ dom(f), and a tree V such that (νn)V ≡ T |T ′. Duplicator has to choose a
tree V ′ such that (νn)V ′ ≡ U |U ′.

By Lemma 1(5), (νn)V ≡ T |T ′ implies that either (a1) T ≡ (νn)T1 and
(a2) V ≡ T1 |T ′, or (b1) T ′ ≡ (νn)T2 and (b2) V ≡ T |T2. In the first case,
by (a1) and (T, U, f, r) ∈ DW , there exists U1 such that U ≡ (νn)U1 and

20 Anuj Dawar, Philippa Gardner, and Giorgio Ghelli

(T1, U1, f
+, r−) ∈ DW , where f+ = (f ; x 7→n). By induction, (T ′ |T1, U

′ |U1, f
+, r−) ∈

DW . Moreover, U ≡ (νn)U1 and n /∈ fn(U ′) imply U ′ |U ≡ U ′ | (νn)U1 ≡
(νn)(U ′ |U1). Hence, U ′ |U1 is a legitimate answer to Spoiler’s move. The second
case is entirely symmetric.

H (3): Spoiler chooses a name n not in fn((νf(η))T)∪ fn((νf(η))U)∪ ran(f),
a variable x /∈ dom(f), and a tree T ′ such that (νn)T ′ ≡ (νf(η))T . Duplicator

has to choose a tree U ′ such that (νn)U ′ ≡ (νf(η))U . f(η) 6= n since n /∈ ran(f).
Lemma 1(6) gives us two possibilities: either (i) T ′ ≡ T {f(η)← n} or, (ii) for
some T ′′, (a) T ′ ≡ (νf(η))T ′′ and (b) T ≡ (νn)T ′′.

Before continuing with the proof directly, we first show that (T {f(η) ←
n}, U{f(η)←n}, f+, r−) is in DW , where f+ = (f ; x 7→n). Since n /∈ fn((νf(η))T)∪
ran(f), n /∈ fn(T) and Spoiler can play a H move on the board (T, U, f, r), with
x and n, using the equivalence (νn)T ≡ T . Since (T, U, f, r) ∈ DW , there exists
U ′ such that (νn)U ′ ≡ U and (T, U ′, f+, r−) ∈ DW . By Lemma 11, n /∈ fn(T)
implies that n /∈ fn(U ′), hence U ′ ≡ (νn)U ′ ≡ U , hence (T, U, f+, r−) ∈ DW .
It is easy to prove that Duplicator’s strategy for (T, U, f+, r−) can be updated
to a strategy for (T {f(η)←n}, U{f(η)←n}, f+, r−), since both f(η) and n are
labels that are pebbled by f+, hence (T {f(η)←n}, U{f(η)←n}, f+, r−) ∈ DW .

Now we move to case (i). In this case, Spoiler is just using H to dismantle
the added context (νf(η)) , renaming f(η) to n. Duplicator choses U{f(η)←n}.
Since (νf(η))U ≡ (νn)(U{f(η)←n}), and reaches the game position (T {f(η)←
n}, U{f(η)←n}, (f ; x 7→n), r−) that we have just shown to be in DW .

In case (ii), using (b) and since (T, U, f, r) ∈ DW , there exists U ′′ such that
U ≡ (νn)U ′′ and (T ′′, U ′′, f, r−) ∈ DW . By induction, ((νf(η))T ′′, (νf(η))U ′′, f, r−) ∈
DW . Moreover, U ≡ (νn)U ′′ implies that (νf(η))U ≡ (νf(η))(νn)U ′′ ≡ (νn)(νf(η))U ′′.
Hence (νf(η))U ′′ is a legitimate answer to Spoiler’s move.

c© (1,2,3): Let C{T } be either T |T ′, f(η)[T], or (νf(η))T , and C ′{U} denote
U |U ′, f(η)[U], or (νf(η))U , respectively. By Lemma 11 we know that, for any
η′, f(η′) ∈ fn(T) ⇔ f(η′) ∈ fn(U) and f(η′) ∈ fn(T ′) ⇔ f(η′) ∈ fn(U ′). By
adding the same context around T and U , we are adding and removing the same
names from fn(T) and fn(U). Hence, for any η′, f(η′) ∈ fn(C{T }) ⇔ f(η′) ∈
fn(C′{U}). Hence, Spoiler cannot play c© to win.

�(1,2,3): Identical to case @ (1,2,3), after f(η′)[] is substituted by (νf(η′)) .
The last inductive step exploits case (3) of the thesis.

Re-Statement of Theorem 1. If (T, U, f, r) ∈DW , (T ′, U ′, f, r) ∈DW , 0 ∈
Ops(r) and η ∈ dom(f), then:

(f(η)[T], f(η)[U], f, r) ∈ DW (1)
(T |T ′, U |U ′, f, r)∈DW (2)

Proof. The proof is identical to the proof of cases (1) and (2) of Theorem 5. The
assumption c©∈Ops(r) is not needed since it was only used to prove (3) (cases
H and |). Case (3) is only involved in the inductive prove of case (3) itself, and
in cases� (1,2,3), which we do not consider here.

Adjunct Elimination Through Games (Extended Abstract) 21

Re-Statement of Corollary 1 (Move Elimination). If (T, U, f, r) ∈ DW,

r⊔
def
= r ⊔ δ(0), and {⊲, @} ⊇ Ops(radj), then:

(T, U, f, r⊔) ∈ DW ⇒ (T, U, f, r + radj) ∈ DW (1)
(T, U, f, r + radj) ∈ SW ⇒ (T, U, f, r⊔) ∈ SW (2)

Proof. We prove (1) by induction on r + radj and by cases on the first move Op

of Spoiler on the configuration (T, U, f, r + radj); (2) follows immediately.
By (T, U, f, r⊔) ∈ DW , Op cannot be 0. If Op is not an adjunct move then

r(Op) > 0 hence Duplicator has an answer to Op that reduces (T, U, f, r⊔), to
(T ′, U ′, f ′, r⊔ − δ(Op)) ∈ DW . The same answer brings (T, U, f, r + radj) to
(T ′, U ′, f ′, r − δ(Op) + radj), and (T ′, U ′, f ′, r − δ(Op) + radj) ∈ DW holds by
induction.

If Spoiler plays ⊲ and adds V , Duplicator answers by adding V , producing a
configuration (T |V, U |V, f, r+radj−δ(⊲)). By Theorem 1, (T |V, U |V, f, r⊔) ∈
DW ; (T |V, U |V, f, r + radj − δ(⊲)) follows by induction on r + radj .

Case @ is similar.

