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Abstract

This thesis tackles problems concerning abstract data structures — expressibil-

ity and decidability results for logics for reasoning about abstract data struc-

tures, and techniques for proving the correctness of programs that implement

abstract data structures. The main expressivity issue addressed is the ques-

tion of whether certain spatial adjunct connectives contribute to the expressive

power of context logic for trees. The question is answered in the affirmative

for context logic in its basic form, but in the negative for a multi-holed variant

of context logic. This result is interesting, since the adjunct connectives play

an important role in expressing the weakest preconditions of programs. The

decidability results show that multi-holed context logic is decidable for trees,

sequences and terms, by encoding logical formulae with automata.

Concerning the correctness of programs that implement abstract data struc-

tures, this thesis presents two techniques for justifying abstract local reasoning

about such implementations in the sequential setting. In the concurrent setting,

this thesis presents an approach to verifying implementations of abstract specifi-

cations that incorporate a fiction of disjointness using a fine-grained permissions

model.
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4.1 Ehrenfeucht-Fräıssé Games . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Ranks of Formulae . . . . . . . . . . . . . . . . . . . . . . 78

4.1.2 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.3 Game Soundness . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.4 Game Completeness . . . . . . . . . . . . . . . . . . . . . 84

4.2 Adjunct (Non)-elimination for CLs
Tree . . . . . . . . . . . . . . . . 85

4.2.1 Adjunct Elimination Counterexample . . . . . . . . . . . 85

4.2.2 Partial Adjunct Elimination . . . . . . . . . . . . . . . . . 87

4.2.3 Adjunct Elimination Counterexample for Trees . . . . . . 87

4.3 Adjunct Elimination for CLc
Tree . . . . . . . . . . . . . . . . . . . 102

4.4 Adjunct Elimination for CLm
Tree . . . . . . . . . . . . . . . . . . . 105

4.5 Quantifier Normalisation for CLm . . . . . . . . . . . . . . . . . 125

5 Decidability 134

5.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6



5.1.2 Basic Constructions . . . . . . . . . . . . . . . . . . . . . 140

5.1.3 Generalisations of Composition . . . . . . . . . . . . . . . 146

5.1.4 Complex Constructions . . . . . . . . . . . . . . . . . . . 148

5.1.5 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2.2 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2.3 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.3 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3.1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3.2 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.3.3 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.4 Infinite Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.5 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

II Reasoning about Programs 204

6 Local Reasoning 206

6.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.1.1 Operational Semantics . . . . . . . . . . . . . . . . . . . . 208

6.1.2 Context Algebras Revisited . . . . . . . . . . . . . . . . . 210

6.1.3 Axiomatic Semantics . . . . . . . . . . . . . . . . . . . . . 214

6.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Locality Refinement 229

7.1 Abstract Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.1.1 Heap Module . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.1.2 Tree Module . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.1.3 List Module . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.1.4 Combining Abstract Modules . . . . . . . . . . . . . . . . 240

7.2 Module Translations . . . . . . . . . . . . . . . . . . . . . . . . . 241

7.2.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.3 Locality-Preserving Translations . . . . . . . . . . . . . . . . . . 243

7.3.1 Proof of Soundness of Locality-Preserving Translations . . 249

7.3.2 Module Translation: τ1 : T→ H + L . . . . . . . . . . . . 254

7.3.3 Module Translation: τ2 : H + H→ H . . . . . . . . . . . . 258

7.4 Locality-Breaking Translations . . . . . . . . . . . . . . . . . . . 260

7.4.1 Proof of Soundness of Locality-Breaking Translations . . 262

7



7.4.2 Module Translation: τ3 : L→ H . . . . . . . . . . . . . . 265

7.5 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

7.5.1 On the Conjunction Rule . . . . . . . . . . . . . . . . . . 269

7.5.2 On Crust . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.5.3 On Locality-Preserving versus Locality-Breaking . . . . . 273

7.5.4 On Abstract Predicates . . . . . . . . . . . . . . . . . . . 274

7.5.5 On Data Refinement . . . . . . . . . . . . . . . . . . . . . 275

7.5.6 On Concurrency . . . . . . . . . . . . . . . . . . . . . . . 275

8 Concurrent Abstract Predicates 277

8.1 Informal Development . . . . . . . . . . . . . . . . . . . . . . . . 279

8.1.1 Lock Specification . . . . . . . . . . . . . . . . . . . . . . 279

8.1.2 A Compare-and-Swap Lock Implementation . . . . . . . . 281

8.1.3 The Proof System . . . . . . . . . . . . . . . . . . . . . . 288

8.1.4 A Ticketed Lock Implementation . . . . . . . . . . . . . . 291

8.1.5 Disposable Locks . . . . . . . . . . . . . . . . . . . . . . . 293

8.2 Composing Abstract Specifications . . . . . . . . . . . . . . . . . 296

8.2.1 Set Specification . . . . . . . . . . . . . . . . . . . . . . . 296

8.2.2 A Coarse-grained Set Implementation . . . . . . . . . . . 297

8.2.3 A Lock-coupling List Implementation . . . . . . . . . . . 300

8.3 Semantics and Soundness . . . . . . . . . . . . . . . . . . . . . . 309

8.3.1 State Model . . . . . . . . . . . . . . . . . . . . . . . . . . 310

8.3.2 Interference Model . . . . . . . . . . . . . . . . . . . . . . 316

8.3.3 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

8.3.4 Programming Language and Proof System . . . . . . . . . 325

8.3.5 Language Semantics . . . . . . . . . . . . . . . . . . . . . 330

8.3.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

9 Conclusions 347

Bibliography 349

8



List of Figures

2.1 An HTML document . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 A rendering of the HTML document of Figure 2.1 . . . . . . . . 28

2.3 Tree representation of the HTML document of Figure 2.1 . . . . 28

3.1 A graphical illustration of the tree (3.4), with the decomposition

(3.12) indicated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Schematic diagrams of u(i, j) (left) and v(i, j). . . . . . . . . . . 89

4.2 In left-to-right order, the three cases for splitting c = d1 ⊗ d2 . . 112

4.3 Splitting type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Splitting type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Splitting type 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Splitting type 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 Representation of an ε-NFA . . . . . . . . . . . . . . . . . . . . . 138

5.2 Representation of ε-NFA A1 ∪ A2 . . . . . . . . . . . . . . . . . . 141

5.3 Representation of ε-NFA A1 · A2 . . . . . . . . . . . . . . . . . . 145

5.4 Partial representation of ε-NFA A1 (left) and A2 . . . . . . . . . 150

5.5 Partial representation of ε-NFA A1 �x A2 . . . . . . . . . . . . . 150

5.6 Representation of running an ε-NFTA on the term c(c(b,a),

c(b,b)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.7 Representation of a possible accepting run of an automatonA1�x
A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1 Operational semantics rules for LCmd (non-faulting cases) . . . . 211

6.2 Operational semantics rules for LCmd (faulting cases) . . . . . . . 212

6.3 Local Hoare logic rules for LCmd . . . . . . . . . . . . . . . . . . . 217

7.1 Module translations . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.2 An abstract tree from T (a), and representations of the tree in H
(b), and in H + L (c). . . . . . . . . . . . . . . . . . . . . . . . . 243

9



7.3 Procedures for the list-based implementation of trees . . . . . . . 255

7.4 Proof outline for getUp implementation . . . . . . . . . . . . . . 259

7.5 Representation of the list store a1 Z⇒ [v1 · v2 · v3] ∗ a2 Z⇒ [w1 · v1]

as singly linked lists in the heap . . . . . . . . . . . . . . . . . . . 260

7.6 Linked-list-based list store implementation . . . . . . . . . . . . . 267

7.7 Linked-list-based list store implementation . . . . . . . . . . . . . 268

7.8 Proof outline for getNext implementation (common part) . . . . 269

7.9 Proof outline for getNext implementation (success case) . . . . . 270

7.10 Proof outline for getNext implementation (failure case) . . . . . 270

8.1 Proof outline for compare-and-swap lock (lock and unlock) . . . 286

8.2 Proof outline for compare-and-swap lock (makelock) . . . . . . . 287

8.3 Proof outline for the ticketed lock (lock and unlock) . . . . . . 294

8.4 Proof outline for compare-and-swap lock (disposelock) . . . . . 296

8.5 Proof outline for the coarse-grained set (add — out case) . . . . . 300

8.6 Lock-coupling list implementation of the set module . . . . . . . 301

8.7 Auxiliary predicates for lock-coupling list . . . . . . . . . . . . . 305

8.8 Proof outline for locate . . . . . . . . . . . . . . . . . . . . . . . 306

8.9 Proof outline for locate loop body . . . . . . . . . . . . . . . . . 307

8.10 Proof outline for the fine-grained set (remove — in case) . . . . . 308

8.11 Representation of the structure of a world . . . . . . . . . . . . . 314

8.12 Example of a well-formed world . . . . . . . . . . . . . . . . . . . 315

8.13 Example that is not a well-formed world . . . . . . . . . . . . . . 315

8.14 The rules of the concurrent abstract predicates proof system . . . 328

8.15 Small-step operational semantics . . . . . . . . . . . . . . . . . . 331

10



List of Definitions

Notation (Sets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Notation (Relations) . . . . . . . . . . . . . . . . . . . . . . . . . 22

Notation (Partial Functions) . . . . . . . . . . . . . . . . . . . . 22

Notation (Functions) . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Definition (Trees) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Definition (Tree Contexts) . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Definition (Context Application) . . . . . . . . . . . . . . . . . . 51

3.4 Definition (CLs
Tree Formulae) . . . . . . . . . . . . . . . . . . . . 52

Notation (Derived Formulae) . . . . . . . . . . . . . . . . . . . . 53

Notation (Precedence and Associativity) . . . . . . . . . . . . . . 54

3.5 Definition (CLs
Tree Sorts) . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Definition (CLs
Tree Satisfaction Relations) . . . . . . . . . . . . . 55

3.7 Definition (Context Composition) . . . . . . . . . . . . . . . . . . 56

3.8 Definition (CLc
Tree Formulae) . . . . . . . . . . . . . . . . . . . . 57

3.9 Definition (CLc
Tree Sorts) . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Definition (CLc
Tree Satisfaction Relations) . . . . . . . . . . . . . 57

3.11 Definition (Multi-holed Tree Contexts) . . . . . . . . . . . . . . . 58

3.12 Definition (Hole Labels) . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Definition (Substitution) . . . . . . . . . . . . . . . . . . . . . . . 59

3.14 Definition (Multi-holed Context Composition) . . . . . . . . . . . 59

3.15 Definition (CLm
Tree Formulae) . . . . . . . . . . . . . . . . . . . . 60

Notation (Free Variables) . . . . . . . . . . . . . . . . . . . . . . 60

Notation (Derived Formulae) . . . . . . . . . . . . . . . . . . . . 61

3.16 Definition (Logical Environment) . . . . . . . . . . . . . . . . . . 61

Notation (Domain of Definition and Range of a Partial Function) 61

3.17 Definition (CLm
Tree Sorts) . . . . . . . . . . . . . . . . . . . . . . . 61

3.18 Definition (CLm
Tree Satisfaction Relations) . . . . . . . . . . . . . 62

Notation (Freshness) . . . . . . . . . . . . . . . . . . . . . . . . . 62

11



3.19 Definition (Freshness Quantification) . . . . . . . . . . . . . . . . 62

3.20 Definition (Simple Context Algebra) . . . . . . . . . . . . . . . . 63

3.21 Definition (CLs Formulae) . . . . . . . . . . . . . . . . . . . . . . 64

3.22 Definition (CLs Sorts) . . . . . . . . . . . . . . . . . . . . . . . . 64

3.23 Definition (CLs Satisfaction Relations) . . . . . . . . . . . . . . . 64

3.24 Definition (Compositional Context Algebra) . . . . . . . . . . . . 65

3.25 Definition (CLc Formulae) . . . . . . . . . . . . . . . . . . . . . . 66

3.26 Definition (CLc Sorts) . . . . . . . . . . . . . . . . . . . . . . . . 66

3.27 Definition (Satisfaction Relations) . . . . . . . . . . . . . . . . . 66

3.28 Definition (Multi-holed Context Algebra) . . . . . . . . . . . . . 67

3.29 Definition (Context Hole Substitution) . . . . . . . . . . . . . . . 68

3.30 Definition (CLm Formulae) . . . . . . . . . . . . . . . . . . . . . 68

3.31 Definition (CLm Sorts) . . . . . . . . . . . . . . . . . . . . . . . . 69

3.32 Definition (CLm Satisfaction Relations) . . . . . . . . . . . . . . 69

3.33 Property (Environment Extendability) . . . . . . . . . . . . . . . 70

3.34 Property (Hole Subsitutition) . . . . . . . . . . . . . . . . . . . . 70

3.35 Definition (Sequence Context Algebra) . . . . . . . . . . . . . . . 71

3.36 Definition (Sequence-specific Formulae) . . . . . . . . . . . . . . 71

3.37 Definition (Heap Context Algebra) . . . . . . . . . . . . . . . . . 72

3.38 Definition (Heap-specific Formulae) . . . . . . . . . . . . . . . . . 72

3.39 Definition (Term Context Algebra) . . . . . . . . . . . . . . . . . 73

3.40 Definition (Term-specific Formulae) . . . . . . . . . . . . . . . . . 73

3.41 Definition (Modalities for CLc
Tree) . . . . . . . . . . . . . . . . . . 74

3.42 Definition (Modalities for CLm
Tree) . . . . . . . . . . . . . . . . . . 75

3.43 Property (Environment Neutrality) . . . . . . . . . . . . . . . . . 76

3.44 Property (Hole Neutrality) . . . . . . . . . . . . . . . . . . . . . 76

4.1 Definition (Ranking) . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Definition (Rank of a Formula) . . . . . . . . . . . . . . . . . . . 78

4.3 Definition (Characteristic) . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Definition (Game) . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Property (Downward Closure) . . . . . . . . . . . . . . . . . . . . 82

4.6 Definition (Downwardly-Closed Ranking) . . . . . . . . . . . . . 82

4.7 Definition (u and v Trees) . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Definition (Adjunct-Distinction Ranking for CLs
Tree) . . . . . . . 89

4.9 Definition (Adjunct-Distinction Ranking for CLm
Tree) . . . . . . . 105

5.1 Definition (ε-NFA) . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Definition (Forms of Automata) . . . . . . . . . . . . . . . . . . . 135

12



5.3 Definition (ε-closure) . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Definition (Automaton-induced Mappings) . . . . . . . . . . . . . 137

5.5 Definition (Acceptance) . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 Definition (Reachable States) . . . . . . . . . . . . . . . . . . . . 139

5.7 Definition (Union Construction) . . . . . . . . . . . . . . . . . . . 140

5.8 Definition (Product Pre-automaton) . . . . . . . . . . . . . . . . 142

5.9 Definition (Intersection Construction) . . . . . . . . . . . . . . . 143

5.10 Definition (Concatenation Construction) . . . . . . . . . . . . . . 144

5.11 Definition (Complementation Construction) . . . . . . . . . . . . 145

5.12 Definition (Non-deterministic Linear Substitution) . . . . . . . . 146

5.13 Definition (Uniform Substitution) . . . . . . . . . . . . . . . . . . 147

5.14 Definition (Non-uniform Substitution) . . . . . . . . . . . . . . . 147

5.15 Definition (� Construction) . . . . . . . . . . . . . . . . . . . . . 148

5.16 Definition (�−∃ Construction) . . . . . . . . . . . . . . . . . . . 154

5.17 Definition (−�∃ Construction) . . . . . . . . . . . . . . . . . . . 157

5.18 Definition (CLm
Seq Automata) . . . . . . . . . . . . . . . . . . . . 160

5.19 Definition (ε-NFTA) . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.20 Definition (Automaton-induced Mapping) . . . . . . . . . . . . . 163

5.21 Definition (Acceptance) . . . . . . . . . . . . . . . . . . . . . . . 163

5.22 Definition (Non-deterministic Linear Substitution) . . . . . . . . 165

5.23 Definition (� Construction) . . . . . . . . . . . . . . . . . . . . . 165

5.24 Definition (�−∃ Construction) . . . . . . . . . . . . . . . . . . . 170

5.25 Definition (−�∃ Construction) . . . . . . . . . . . . . . . . . . . 174

5.26 Definition (CLm
Term Automata) . . . . . . . . . . . . . . . . . . . . 178

5.27 Definition (ε-NFFA) . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.28 Definition (Automaton-induced Mappings) . . . . . . . . . . . . . 180

5.29 Definition (Acceptance) . . . . . . . . . . . . . . . . . . . . . . . 180

5.30 Definition (Non-deterministic Linear Substitution) . . . . . . . . 181

5.31 Definition (� Construction) . . . . . . . . . . . . . . . . . . . . . 182

5.32 Definition (�−∃ Construction) . . . . . . . . . . . . . . . . . . . 190

5.33 Definition (−�∃ Construction) . . . . . . . . . . . . . . . . . . . 196

5.34 Definition (CLm
Tree Automata) . . . . . . . . . . . . . . . . . . . . 199

6.1 Definition (Programming Language Syntax) . . . . . . . . . . . . 207

6.2 Definition (Scope) . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.3 Definition (Procedure Definition Environment) . . . . . . . . . . 209

6.4 Definition (Operational Semantics) . . . . . . . . . . . . . . . . . 210

6.5 Definition (Left-Cancellative Context Algebra) . . . . . . . . . . 213

6.6 Definition (Context Algebra with Zero) . . . . . . . . . . . . . . 213

13



6.7 Definition (Predicate) . . . . . . . . . . . . . . . . . . . . . . . . 214

6.8 Definition (Procedure Specification Environment) . . . . . . . . . 214

6.9 Definition (Predicate-Valued Semantics of Boolean Expressions) . 215

6.10 Definition (Safety Predicates) . . . . . . . . . . . . . . . . . . . . 215

6.11 Definition (Axiomatic Proof Judgement) . . . . . . . . . . . . . . 216

6.12 Definition (Operational Triples) . . . . . . . . . . . . . . . . . . . 219

7.1 Definition (Abstract Module) . . . . . . . . . . . . . . . . . . . . 231

7.2 Definition (Heap Update Commands) . . . . . . . . . . . . . . . 232

7.3 Definition (Heap Context Algebra) . . . . . . . . . . . . . . . . . 232

7.4 Definition (Heap Axiomatisation) . . . . . . . . . . . . . . . . . . 232

7.5 Definition (Tree Update Commands) . . . . . . . . . . . . . . . . 233

7.6 Definition (Uniquely-Labelled Tree Context Algebra) . . . . . . . 233

7.7 Definition (Tree Axiomatisation) . . . . . . . . . . . . . . . . . . 234

7.8 Definition (List Update Commands) . . . . . . . . . . . . . . . . 235

7.9 Definition (List Stores and Contexts) . . . . . . . . . . . . . . . . 237

7.10 Definition (Application and Composition) . . . . . . . . . . . . . 238

7.11 Definition (List Context Algebra) . . . . . . . . . . . . . . . . . . 238

7.12 Definition (List Axiomatisation) . . . . . . . . . . . . . . . . . . 239

7.13 Definition (Abstract Module Combination) . . . . . . . . . . . . 240

7.14 Definition (Module Translation) . . . . . . . . . . . . . . . . . . . 241

7.15 Definition (Sound Module Translation) . . . . . . . . . . . . . . . 242

7.16 Definition (Pre-Locality-Preserving Translation) . . . . . . . . . . 247

7.17 Definition (Intermediate Translation Functions) . . . . . . . . . . 248

7.18 Property (Application Preservation) . . . . . . . . . . . . . . . . 249

7.19 Property (Crust Inclusion) . . . . . . . . . . . . . . . . . . . . . . 249

7.20 Property (Axiom Correctness) . . . . . . . . . . . . . . . . . . . . 249

7.21 Definition (Locality Preserving Translation) . . . . . . . . . . . . 249

7.22 Definition (τ1 : T→ H + L) . . . . . . . . . . . . . . . . . . . . . 254

7.23 Definition (τ2 : H + H→ H) . . . . . . . . . . . . . . . . . . . . . 258

7.24 Definition (Locality-Breaking Translation) . . . . . . . . . . . . . 261

7.25 Definition (τ3 : L→ H) . . . . . . . . . . . . . . . . . . . . . . . . 265

8.1 Definition (World) . . . . . . . . . . . . . . . . . . . . . . . . . . 310

8.2 Definition (Shared State) . . . . . . . . . . . . . . . . . . . . . . 311

8.3 Definition (Action Model) . . . . . . . . . . . . . . . . . . . . . . 311

8.4 Definition (Token) . . . . . . . . . . . . . . . . . . . . . . . . . . 311

8.5 Definition (Action) . . . . . . . . . . . . . . . . . . . . . . . . . . 311

8.6 Definition (Action Model Combination) . . . . . . . . . . . . . . 312

14



8.7 Definition (Logical State) . . . . . . . . . . . . . . . . . . . . . . 312

8.8 Definition (Permission Assignment) . . . . . . . . . . . . . . . . . 312

8.9 Definition (LState Collapse) . . . . . . . . . . . . . . . . . . . . . 313

8.10 Definition (Well-formedness) . . . . . . . . . . . . . . . . . . . . . 313

8.11 Definition (World Separation Algebra) . . . . . . . . . . . . . . . 314

8.12 Definition (Semantic Predicate) . . . . . . . . . . . . . . . . . . . 316

8.13 Definition (Guarantee Relation) . . . . . . . . . . . . . . . . . . . 317

8.14 Definition (Rely Relation) . . . . . . . . . . . . . . . . . . . . . . 319

8.15 Definition (Stability) . . . . . . . . . . . . . . . . . . . . . . . . . 319

8.16 Definition (Assertions) . . . . . . . . . . . . . . . . . . . . . . . . 319

8.17 Definition (Assertion Semantics) . . . . . . . . . . . . . . . . . . 324

8.18 Definition (Programming Language) . . . . . . . . . . . . . . . . 325

8.19 Definition (Predicate Entailment Judgement) . . . . . . . . . . . 326

8.20 Definition (Predicate Definition Safety Judgement) . . . . . . . . 327

8.21 Definition (Proof System) . . . . . . . . . . . . . . . . . . . . . . 327

8.22 Definition (Operational Semantics) . . . . . . . . . . . . . . . . . 330

8.23 Definition (Configuration Safety) . . . . . . . . . . . . . . . . . . 330

8.24 Definition (Judgement Semantics) . . . . . . . . . . . . . . . . . 332

15



List of Theorems

1 Lemma (Associativity of Composition) . . . . . . . . . . . . . . . 56

2 Lemma (Quasi-associativity of Composition) . . . . . . . . . . . 59

3 Lemma (Quasi-commutativity of Composition) . . . . . . . . . . 60

4 Lemma (Universal Characterisation of Fresh Quantification) . . . 70

5 Lemma (Upward Closure for Formulae) . . . . . . . . . . . . . . 79

6 Lemma (Rank Definedness) . . . . . . . . . . . . . . . . . . . . . 79

7 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

11 Theorem (Soundness) . . . . . . . . . . . . . . . . . . . . . . . . 83

12 Theorem (Completeness) . . . . . . . . . . . . . . . . . . . . . . . 84

13 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

14 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

15 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

16 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

17 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

18 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

19 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

20 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

15 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

22 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

23 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

24 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

25 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

26 Lemma (Hole Substitution Property for Games) . . . . . . . . . . 107

27 Lemma (Interchangability of Fresh Labels) . . . . . . . . . . . . . 108

28 Proposition (One-step Move Elimination) . . . . . . . . . . . . . 109

16



29 Corollary (Multi-step Move Elimination) . . . . . . . . . . . . . . 122

30 Theorem (Adjunct Elimination) . . . . . . . . . . . . . . . . . . . 124

31 Lemma (Encoding Existential with Freshness) . . . . . . . . . . . 125

32 Lemma (Prenex Normalisation) . . . . . . . . . . . . . . . . . . . 128

33 Proposition (Quantifier Normalisation) . . . . . . . . . . . . . . . 132

34 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

35 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

36 Proposition (Correctness of Union Construction) . . . . . . . . . 141

37 Proposition (Correctness of Product Construction) . . . . . . . . 142

38 Proposition (Correctness of Intersection Construction) . . . . . . 143

39 Proposition (Correctness of Concatenation Construction) . . . . 144

40 Proposition (Correctness of Complementation Construction) . . . 145

41 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

42 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

43 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

44 Proposition (Correctness of � Construction) . . . . . . . . . . . . 153

45 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

46 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

47 Proposition (Correctness of �−∃ Construction) . . . . . . . . . . 156

48 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

49 Proposition (Correctness of −�∃ Construction) . . . . . . . . . . 159

50 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

51 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

52 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

53 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

54 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

55 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

56 Proposition (Correctness of � Construction) . . . . . . . . . . . . 170

57 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

58 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

59 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

60 Proposition (Correctness of �−∃ Construction) . . . . . . . . . . 173

61 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

62 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

63 Proposition (Correctness of −�∃ Construction) . . . . . . . . . . 177

64 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

65 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

66 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

17



67 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

68 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

69 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

70 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

71 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

72 Proposition (Correctness of � Construction) . . . . . . . . . . . . 189

73 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

74 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

75 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

76 Proposition (Correctness of �−∃ Construction) . . . . . . . . . . 195

77 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

78 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

79 Proposition (Correctness of −�∃ Construction) . . . . . . . . . . 199

80 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

81 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

82 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

83 Theorem (Decidability of Model-Checking) . . . . . . . . . . . . 202

84 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

85 Theorem (Decidability of Satisfiability) . . . . . . . . . . . . . . . 202

86 Proposition (Variable Scope Context Algebra) . . . . . . . . . . . 213

87 Proposition (Direct Product of Context Algebras) . . . . . . . . 213

88 Lemma (Operational Locality) . . . . . . . . . . . . . . . . . . . 220

89 Theorem (Soundness) . . . . . . . . . . . . . . . . . . . . . . . . 224

90 Theorem (Soundness of Locality-Preserving Translations) . . . . 249

91 Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

92 Lemma (Crust Inclusion II) . . . . . . . . . . . . . . . . . . . . . 250

93 Lemma (Application Preservation II) . . . . . . . . . . . . . . . . 251

94 Theorem (Soundness of τ1) . . . . . . . . . . . . . . . . . . . . . 254

95 Lemma (τ1 Application Preservation) . . . . . . . . . . . . . . . 256

96 Lemma (τ1 Crust Inclusion) . . . . . . . . . . . . . . . . . . . . . 256

97 Lemma (τ1 Axiom Correctness) . . . . . . . . . . . . . . . . . . . 258

98 Theorem (Soundness of τ2) . . . . . . . . . . . . . . . . . . . . . 259

99 Lemma (Frame-Free Derivations) . . . . . . . . . . . . . . . . . . 261

100 Theorem (Soundness of Locality-Breaking Translations) . . . . . 262

101 Theorem (Soundness of τ3) . . . . . . . . . . . . . . . . . . . . . 266

102 Theorem (Soundness) . . . . . . . . . . . . . . . . . . . . . . . . 333

18



103 Lemma (Concrete Frame Property) . . . . . . . . . . . . . . . . . 333

104 Lemma (Concrete Safety Monotonicity) . . . . . . . . . . . . . . 333

105 Lemma (Primitive Safety) . . . . . . . . . . . . . . . . . . . . . . 334

106 Lemma (Primitive Soundness) . . . . . . . . . . . . . . . . . . . . 335

107 Lemma (Skip Safety) . . . . . . . . . . . . . . . . . . . . . . . . . 335

108 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

109 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

110 Lemma (Repartitioning Guarantee Locality) . . . . . . . . . . . . 337

111 Lemma (Step Guarantee Locality) . . . . . . . . . . . . . . . . . 337

112 Lemma (Rely Decomposition) . . . . . . . . . . . . . . . . . . . . 337

113 Corollary (Stability Composition) . . . . . . . . . . . . . . . . . . 338

114 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

115 Lemma (Guarantee/Rely Compatability) . . . . . . . . . . . . . 339

116 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

117 Lemma (Abstract Frame Property) . . . . . . . . . . . . . . . . . 339

118 Lemma (Parallel Safety) . . . . . . . . . . . . . . . . . . . . . . . 340

119 Lemma (Parallel Soundness) . . . . . . . . . . . . . . . . . . . . . 341

120 Lemma (Frame Safety) . . . . . . . . . . . . . . . . . . . . . . . . 342

121 Lemma (Frame Soundness) . . . . . . . . . . . . . . . . . . . . . 343

122 Lemma (Pre-repartitioning Soundness) . . . . . . . . . . . . . . . 343

123 Lemma (Post-repartitioning Safety) . . . . . . . . . . . . . . . . 344

124 Lemma (Post-repartitioning Soundness) . . . . . . . . . . . . . . 344

125 Lemma (Atomic Soundness) . . . . . . . . . . . . . . . . . . . . . 345

126 Lemma (Predicate Elimination Soundness) . . . . . . . . . . . . 346

19



Acknowledgements

I am eternally indebted to Philippa, my fantastic supervisor, for so much, not

least her indefatigable enthusiasm and relentless drive for excellence; to my

inspirational collaborators — Cristiano, Mark, Matt, Mike and Viktor — who

have been a delight to work with; to my colleagues and friends at Imperial

who make up the exciting and intellectual environment in which I have been

privileged to work; and to my wonderful friends and family whose love and

support I cherish above all.

20



Chapter 1

Notational Conventions

This chapter outlines basic notational conventions for standard mathematical

concepts that are used in this thesis.

Notation (Sets). Specific sets in this thesis are generally identified by names

in sans-serif font with the initial letter capitalised, as in Tree and Expr. Some

special sets are identified by uppercase Greek letters, such as Σ and Ω. Addi-

tionally, certain mathematical sets have their own notation:

� ∅, the empty set;

� N = {0, 1, 2, . . . }, the set of natural numbers;

� Z = {. . . ,−2,−1, 0, 1, 2, . . . } the set of integers; and

� Bool = {T,F}, the set of Boolean values.

The following notations are used for set-related operations:

� x ∈ S and y /∈ S denote that x is an element of set S and y is not an

element of set S respectively;

� S1 ⊆ S2 denotes that all elements of S1 are also elements of S2;

� {f(x) | P (x)} is set-builder notation, which denotes the set of values f(x)

for each x for which the proposition P (x) holds;

� S1 ∪ S2 = {x | x ∈ S1 or x ∈ S2} denotes the union of sets S1 and S2;

� S1 ∩ S2 = {x | x ∈ S1 and x ∈ S2} denotes the intersection of sets S1 and

S2;
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� S1 \ S2 = {x | x ∈ S1 and x /∈ S2} denotes the set difference between S1

and S2;

� S1 ] S2 denotes the disjoint union of S1 and S2 — that is, the union if the

sets are disjoint, undefined otherwise;

� S1 × S2 = {(x, y) | x ∈ S1 and y ∈ S2} denotes the Cartesian product of

sets S1 and S2;

� |S| denotes the cardinality of the set S;

� P(S) = {T | T ⊆ S} denotes the powerset of S; and

� Pfin(S) = {T | T ⊆ S and |T| ∈ N} denotes the finite powerset1 of S.

Relations are subsets of the Cartesian product of two (or more) sets. As sets

themselves, the notations for sets also apply to relations. However, they also

have relation-specific notations.

Notation (Relations). Let R ∈ P(A× B), S ∈ P(B× C) and T ∈ P(A× A) be

relations. The following notations are used:

� a R b denotes that (a, b) ∈ R;

� R(a) = {b | a R b} denotes the R-image of a;

� R#S = {(a, c) | there exists b s.t. a R b and b S c} denotes relational com-

position;

� domR = {a | there exists b s.t. a R b} denotes the domain of definition of

R; and

� rangeR = {b | there exists a s.t. a R b} denotes the range of R.

Partial functions are relations that, for any given a, contain at most one pair

(a, b).

Notation (Partial Functions). The set of partial functions from A to B is

denoted A ⇀ B. The set of finite partial functions from A to B, denoted

A⇀fin B, is the set of partial functions which have finite domains of definition.

Functions are partial functions which have their domain as their domain of

definition.

1Despite the name, the finite powerset is often infinite, however, its elements are all finite.
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Notation (Functions). The set of functions from A to B is denoted A→ B.

(Partial) function application is written by simply concatenating the function

with its argument, as, for example, fx. Sometimes, for disambiguation or simply

for aesthetic considerations, the argument of a function is parenthesised, as, for

example, f(x). Application may also be lifted to sets. For example, if f : A→ B

and S ⊆ A then,

fS = {fa | a ∈ S} .
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Chapter 2

Introduction

This thesis is broadly concerned with the subject of abstract data structures.

Within that remit, it is broadly divided into two parts: Reasoning about Data,

and Reasoning about Programs. The first part addresses expressivity and de-

cidability issues concerning context logic — a spatial logic for reasoning about

structured data. The second part addresses the problem of verifying programs

that implement such abstract data structures, particularly when they provide

an abstract view of locality or disjointness. This introduction discusses each

part of the work in its overall context.

2.1 Local Reasoning and Separation Logic

Hoare logic, introduced by Hoare in [Hoa69], was developed as a formal logical

system for proving properties of programs. Assertions of Hoare logic, called

Hoare triples, are denoted {P} C {Q}, where P and Q are predicates describing

machine states and C is a program. The interpretation of such a triple is,

informally, that if the program C is run on from an initial state satisfying P (the

precondition) then, if the program terminates it will do so in a state satisfying Q

(the postcondition). The logic provides axioms and inference rules from which

valid triples are proven.

Proving the correctness of programs that use dynamic allocation is difficult

to do with traditional Hoare logic, however. This is because it is necessary to

account for the possibility of multiple references to the same data. For example,

proving that a program correctly reverses a list does not allow us to directly infer

that it leaves a second list untouched. It is possible that the two lists overlap in

memory, so the second would be updated by the operation on the first. Even

if the two lists are completely disjoint in memory, it would be necessary to
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account for this disjointness throughout the proof. When large amounts of data

are involved, often only a small portion of that is being manipulated by a given

part of the program, yet it is necessary to account for the data in its entirety.

O’Hearn, Reynolds and Yang introduced separation logic [IO01, Rey02] as

a solution to this issue. Their key innovation was in treating heap memory as

resource. For example, 2 7→ 5 ∗ 3 7→ 8 describes the piece of memory where

addresses 2 and 3 are allocated and hold the values 5 and 8 respectively. This

resource can be subdivided into the disjoint resources 2 7→ 5 and 3 7→ 8. Im-

portantly, the ∗ connective, termed separating conjunction, enforces that the

subdivisions are disjoint: 2 7→ 5 ∗ 2 7→ 5 does not describe any piece of memory

at all, since both components refer to the same memory address and so are not

disjoint. Basic heap operations, such as updating a heap cell or deallocating

a block of memory, operate on specific footprints — the piece of resource that

the operation requires for its execution. These operations are local to their

footprints in that any additional resource is not modified by the operation.

Consider, for example, the operation of updating the memory location at

address 2 to hold the value 7. This operation has the specification

{2 7→ −} [2] := 7 {2 7→ 7} .

Since the operation is local, it would leave memory at address 3 unchanged, and

so the following specification is also valid:

{2 7→ − ∗ 3 7→ 8} [2] := 7 {2 7→ 7 ∗ 3 7→ 8} .

Separation logic allows this second specification to be deduced from the first

using the frame rule:
{P} C {Q}

{P ∗ F} C {Q ∗ F}.

The frame rule of separation logic enables local reasoning : a program fragment

can be proved purely in terms of the resource it manipulates, and any additional

resource, which would not be affected by the program, can be “framed on”.

(It is worth noting that the frame rule also allows the derivation of the triple

{2 7→ − ∗ 2 7→ 5} [2] := 7 {2 7→ 7 ∗ 2 7→ 5} .

Recall, however, that ∗ enforces disjointness and so the precondition is not

satisfiable. In fact, the triple is equivalent to

{false} [2] := 7 {false} .

This triple is trivially true, since no initial state satisfies the precondition.)
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The assertion language of separation logic was seen as an application of

O’Hearn and Pym’s logic of bunched implications (or bunched logic). Bunched

logic includes both the additive conjunction of propositional logic (∧) and a

multiplicative conjunction (∗). Whereas the additive conjunction P ∧ Q ex-

presses that the state satisfies both P and Q, the multiplicative conjunction

P ∗ Q expresses that the state can be divided into two disjoint substates, one

satisfying P and the other satisfying Q. Many natural models of resource are

models of bunched logic, including the heap model used by separation logic.

As well as multiplicative conjunction, Bunched logic also includes a mul-

tiplicative analogue (−∗) of the additive implication (→). The interpretation

of the multiplicative implication P −∗ Q is that the state is such that, when

it is extended with any disjoint state satisfying P , the resulting state satisfies

Q. Multiplicative implication is (right) adjoint to multiplicative conjunction, or

more correctly, F −∗(·) is the right adjoint of F ∗(·). (Multiplicative implication

is referred to as an adjoint or as an adjunct connective.) Essentially what this

means is

F ∗ P |= Q ⇐⇒ P |= F −∗Q.

Note that additive implication and conjunction are also adjoint:

F ∧ P |= Q ⇐⇒ P |= F → Q.

In separation logic, the multiplicative implication is used to express weak-

est preconditions — that is, for arbitrary Q, the most general precondition P

such that {P} C {Q} holds. In the case of [2] := 7, for example, the weakest

precondition for arbitrary postcondition Q is 2 7→ − ∗ (2 7→ 7−∗Q).

2.2 Context Logic and Tree Update

Calcagno, Gardner and Zarfaty introduced context logic [CGZ04, CGZ05], in

order to reason locally about structured data update. That is, they wanted

to adapt the local reasoning approach, which makes separation logic effective

in reasoning about heap update, to reasoning about updating data that has

intrinsic structure.

A prime example of such structured data is trees. Whereas in a heap, each

component (a heap cell) is associated with a value whose interpretation could

be the address of another cell, an integer or whatever else, in a tree, each

component (a tree node) is associated with a parent node and a set of child

nodes. Furthermore, certain well-formedness constraints apply to trees, such as

the fact a node cannot be its own parent.
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<html>

<head>

< t i t l e>Thomas ’ s Page</ t i t l e>

</head>

<body>

<t a b l e>

<t r>

<td>

<img s r c="me.jpg" a l t="Me" i d="mypic" />

</ td>

<td>

<h1>Thomas Dinsda l e−Young</h1>

<p>Department o f Computing</p>

</ td>

</ t r>

</ t a b l e>

<h2>Papers</h2>

<u l>

< l i>

<a h r e f="adjelim.pdf">Adjunct E l im i n a t i o n</a>

</ l i>

< l i>

<a h r e f="decidability.pdf">D e c i d a b i l i t y</a>

</ l i>

</ u l>

</body>

</html>

Figure 2.1: An HTML document

Another reason that trees are such an important example is that they are so

common. The hypertext documents that make up the web are typical instances.

Figure 2.1 shows the source of a simple web page, which could be rendered as

Figure 2.2. The document textually represents the tree illustrated in Figure 2.3.

Updating document trees is foundational to web programming. For instance,

the following JavaScript code could be used to change the image on the page:

var p i c = document . ge tE lementById ("mypic" ) ;

p i c . s r c = "me2.jpg" ;

Such an update is local: it affects only the unique “mypic” node of the tree

and would perform the same function if the node were to appear in a different

context.1 Context logic was introduced to reason locally about such updates.

Cardelli and Gordon had previously introduced ambient logic for describing

properties of processes in the ambient calculus, which are tree-like structures.

As with separation logic, ambient logic includes connectives that allow processes

1Up to well-formedness, which in this case must ensure that no other node has the id

“mypic”.
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Thomas Dinsdale-Young
Department of Computing
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� Adjunct Elimination

� Decidability

Figure 2.2: A rendering of the HTML document of Figure 2.1
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Figure 2.3: Tree representation of the HTML document of Figure 2.1
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to be described in terms of their decompositions. In particular, P |Q specifies

that a process is the parallel composition of two processes at the root level,

one satisfying P and the other satisfying Q, and n[P ] expresses that a process

consists of a process satisfying P located at n. Ambient logic also includes the

adjoints of these connectives: PBQ specifies a process that, when it is composed

in parallel with any process satisfying P , the resulting process satisfies Q; and

P@n specifies a process that, when it is placed in location n, the resulting

process satisfies P . These adjunct connectives are important for specifying

security properties.

Calcagno, Gardner and Zarfaty attempted to use ambient logic for local

Hoare reasoning about tree update, just as bunched logic had been successfully

applied to reason about heap update in the form of separation logic. They found,

however, that ambient logic lacked the expressive power necessary to describe

weakest preconditions. Spurred on by this, they introduced context logic, which

resolved the issue.

The key innovation of context logic was the introduction of separating appli-

cation (or context application), and its adjoints: whereas ambient logic’s connec-

tives describe how a tree can be decomposed at the root, separating application

describes how a tree can be decomposed at an arbitrary position into a context

and a subtree. Expressed as K • P , the connective specifies a tree that may be

split into some context satisfying K and some subtree satisfying P . Whereas

the ∗ and | connectives of separation logic and ambient logic are commutative,

• is non-commutative; indeed, K and P refer to different sorts of objects alto-

gether. Consequently, • has two right adjoints: •− and −•. The formula K •−P ′

specifies a tree that, when any context satisfying K is applied to it, gives a tree

satisfying P ′. (K •−(·) is the right adjoint of K •(·).) The formula P −•P ′ spec-

ifies a context that, when applied to any tree satisfying P , gives a tree satisfying

P ′. (P −• (·) is the right adjoint of (·) • P .)2 As with separation logic, these

adjoints (specifically −•) are necessary for specifying weakest preconditions.

For local Hoare reasoning, context logic’s separating application takes the

place of separation logic’s separating conjunction in the frame rule, which be-

comes
{P} C {Q}

{K • P} C {K •Q}.

The general theory of context logic was developed in [CGZ05], [CGZ07b]

and [Zar07]. The logic has a proof system which is sound and complete with

respect to the general model theory. A specialisation of the general theory,

2My notation differs from the early context logic papers [CGZ05, CGZ07b], which used

K(P ) where I use K • P , K C P where I use K •− P , and P B P ′ where I use P −• P ′.
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context logic with zero, includes the concept of special zero elements. In the

tree model, the empty tree plays this role. Bunched logic can be viewed as

a specialisation of context logic with zero, where contexts and data structures

are identified. Context logic has many interesting models, besides trees, such

as terms (ranked trees) and sequences, as well as those inherited from bunched

logic, such as heaps and multisets.

In Chapter 3, I will formally define context logic for a range of different

models. I will also show extensions of the logic which permit context composition

and contexts with multiple holes. Following [CGZ07a], I will show how context

logic can be viewed as a modal logic.

2.3 Expressivity and Adjunct Elimination

An interesting class of problems frequently studied for logics are expressivity

results: which properties can and cannot be specified in a particular logic. Ad-

junct elimination is among these problems: the question as to whether the logic

is equally expressive with and without the adjunct connectives.

While the adjunct connectives of the aforementioned logics are important,

for instance, to specify weakest preconditions, at an intuitive level it can be

reasoned that they add little to the expressivity of the logic: if a tree property

can be expressed by considering the tree in a wider context, then surely it is

enough to consider the tree itself. In [Loz03] and [Loz05], Lozes showed that

the adjunct connectives of ambient logic and separation logic add no expressive

power.

Lozes’ method was based on intensional bisimilarity : an equivalence relation

between static ambients (the tree-like models of ambient logic) that corresponds

with the possibility of distinguishing between the ambients with some adjunct-

free formula of a certain size. He showed that formulae with adjoints do not

make greater distinctions between ambients than the equivalence relation, and

consequently they do not add any expressive power. The results extend to

the logic with the hiding quantifier, but are shown not to hold with classical

quantifiers (existential and universal quantification). Lozes also showed that the

loigc without the adjoints is minimal: no further connectives can be eliminated.

For separation logic, Lozes also showed that the adjoint connectives do not

add expressive power by demonstrating a classical logic (i.e. one without spatial

connectives such as ∗ and −∗) that is as expressive as separation logic. His

method again uses intensional bisimilarity.

Dawar, Gardner and Ghelli also studied adjunct elimination for ambient
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logic in [DGG04]. Their approach was to use Ehrenfeucht-Fräıseé-style games,

which resulted in a more modular proof (with respect to the connectives of the

logic) of adjunct elimination. The games take place between two players, called

Spoiler and Duplicator. At the start of each round of the game, the state consists

of two trees. Spoiler wins the game by identifying some difference between the

two, while Duplicator wins by preventing Spoiler from doing so. The games are

limited by the number and type of moves that may be played, specified by the

game rank, which decreases with each round. These moves directly correspond

to the connectives of the logic, and so the rank relates games with formulae.

For any starting state (including the rank), one or other of the players has a

strategy that guarantees him or her a victory, regardless of how the other player

plays.

In their work, the games take the place of Lozes’ intensional bisimilarities: if

Duplicator has a winning strategy for a game of finite rank played on two trees,

then those two trees cannot be distinguished by an ambient logic formula of that

rank. They show, for instance, that if Duplicator has a winning strategy for the

games on trees (t1, t
′
1) and (t2, t

′
2) of some rank, then she also has a winning

strategy for the game of the same rank on the trees (t1|t2, t′1|t′2). This implies

that the game move corresponding to the adjunct of composition does not help

Spoiler to win a game, and hence that the connective does not add expressive

power to the logic.

Dawar et al. also showed a stronger result than that of Lozes concerning

the non-eliminability of adjoints in the presence of classical quantification: their

counterexample (partly due to Yang) depends on fewer connectives of the logic.

In my Masters’ thesis [DY06], I first studied adjunct elimination results for

context logic. My key results were that, while one of the adjoints (•−) may

be eliminated from the standard presentation of Context Logic for trees, the

other (−•) cannot. The proof of the first result is through games in the style

of [DGG04]. Since the •− connective can be seen as a generalisation of the

adjunct connectives of ambient logic, it is not entirely surprising that it can be

eliminated.

The −• connective, on the other hand, has no counterpart in ambient logic,

and so the fact that it is not eliminable is interesting. The proof that −• is non-

eliminable is by a direct counterexample: the context formula 0−• (True • a[0])

has no adjunct-free equivalent. The formula essentially expresses that the label a

occurs as a leaf or directly above the context hole. Without −•, context formulae

can only express properties of contexts that can be checked by examining the

context to a fixed depth.
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In Chapter 4, §4.2 I will give a proof of this counterexample (Theorem 13).

Previously, it was not clear whether −• can be eliminated for tree formulae, since

the counterexample is based on a context formula. After all, tree formulae can

express properties at an arbitrary depth within the tree. I will demonstrate that

−• cannot in fact be eliminated by showing a tree formula with no adjunct-free

equivalent (Theorem 15). The proof of this fact is rather involved, and is again

based on Ehrenfeucht-Fräıssé-style games, which I will formalise in §4.1.

Notably, both of these formulae do have adjunct-free equivalents when the

logic is extended with context composition, since context composition can be

used to analyze contexts at an arbitrary depth. It appears that adjunct elimi-

nation is likely to hold for context logic with composition, however, I have been

unable to adapt the games-based proof technique to confirm this intuition. I

will give details in §4.3, but the issue is that, while context composition permits

directly splitting a subcontext from a context, it does not permit directly split-

ting a subtree from a context. While it is possible to perform such a splitting

indirectly, this leads to a breakdown in the inductive argument for elimination.

This difficulty led me, with Calcagno and Gardner, to introduce multi-holed

context logic and study adjunct elimination results for it [CDYG07, CDYG10].

In §4.4, I will show that adjunct elimination does indeed hold for multi-holed

context logic for trees. This result once again makes use of Ehrenfeucht-Fräıssé-

style games.

A feature of multi-holed context logic is quantification over hole labels, each

of which may occur at most once in any given context. In §4.5 I show that exis-

tential (and hence universal) quantification over hole labels can be re-expressed

in terms of Gabbay-Pitts fresh quantification (Lemma 31). Freshly quantified

variables can take on any value, provided that it is not a value that is already in

use — because the value is fresh, it does not make any difference exactly which

value is used. Consequently, freshness quantification can be brought outside the

other connectives in a formula without changing the formula’s meaning (with

certain caveats; see Lemma 32). This implies that multi-holed context logic is

exactly as expressive when the logic is restricted to formulae in prenex normal

form that only use freshness quantification.

2.3.1 Parametric Expressivity

The concept of parametric expressivity was introduced by Calcagno, Gardner

and Zarfaty in [CGZ07a]: expressivity in the presence of propositional variables.

Parametric inexpressivity results help to ground the intuition that connectives

are important by showing, for example, that formulae with adjuncts do not
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have translations to formulae without adjuncts that are parametric in their

subformulae.

To understand what is meant by this, consider for instance the ‘somewhere’

connective: �P expresses that P holds for some subtree. This has a direct

parametric translation into context logic as True • P — parametric since any

substitution for P in both formulae maintains the logical equivalence. For sep-

aration logic, Calcagno, Gardner and Zarfaty’s inexpressivity results show that

∗ and −∗ cannot be parametrically translated into Lozes’ classical fragment.

For context logic, they show that the adjunct connective −• cannot be para-

metrically translated into an adjunct-free fragment for the sequence and tree

models.

2.4 Formal Languages

The theory of formal languages has been studied extensively as one of the most

fundamental aspects of theoretical computer science. Word languages, that is,

sets of finite sequences of symbols, have received particular attention. For in-

stance, a Turing machine is generally seen to define a language by the set of input

tapes that it accepts. Word languages are classified according to the classes of

formal grammars which generate them, or, often equivalently, by classes of au-

tomata which accept them. The Chomsky hierarchy [Cho56] is the best known

classification.

2.4.1 Regular Languages

At the lowest level of the Chomsky hierarchy are the regular languages: those

languages that are generated by regular grammars, or, equivalently, accepted by

finite automata. Finite automata are defined formally in §5.1.1, but in essence

they consist of a finite set of states and a (finite) table of rules for transitioning

between these states depending on which symbol is encountered. The run of such

an automaton on a word starts from a designated initial state and transitions

according to the symbols in the word in sequence until no more symbols are

left. The final state determines whether the word is accepted or not, and so

an automaton defines a language that consists of the words it accepts. An

important property of automata is that, not only is it effective to determine

whether a given word belongs to the language it defines, but it is also effective

to determine whether any or all words belong to the language.

Other important characterisations of the class of regular languages are also

known. Kleene’s Theorem [Kle56] states that regular expressions define exactly
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the regular languages. Regular expressions, e, e1, e2, . . . ∈ RegExp, are defined

by the following grammar:

e ::= ∅
∣∣ ε ∣∣ a ∣∣ (e1 + e2)

∣∣ (e1 · e2)
∣∣ e∗

where a ∈ Ω is taken to range over the alphabet from which words are con-

structed. Their semantics as languages of words, given by J(·)K : RegExp→ Ω∗,

is defined inductively as follows:

J∅K def
= ∅ JεK def

= {ε}

JaK def
= {a} J(e1 + e2)K def

= Je1K ∪ Je2K

J(e1 · e2)K def
= {w1 · w2 | w1 ∈ Je1K and w2 ∈ Je2K} Je∗K def

=
⋃
n∈N

JeKn

where

L0 def
= {ε} Ln+1 def

= {w · w′ | w ∈ L and w′ ∈ Ln} .

Another characterisation of the regular languages is as those having finite

syntactic monoids [RS59]. A monoid (M, •) is said to recognise language L ⊆ Ω∗

if there is a monoid homomorphism φ : Ω∗ → M (i.e. a function for which

φ(w ·w′) = φ(w) •φ(w′)) such that L = φ−1N for some N ⊆M . That is, L is a

homomorphic preimage of a subset of M . The syntactic monoid of a language is

the smallest monoid recognising the language. The concept is intimately related

to the minimal automaton recognising a language.

Yet another characterisation of the regular languages is as exactly those

which can be defined by sentences of monadic second-order logic [Büc60, Elg61].

In monadic second-order logic over words, first-order variables range over posi-

tions in a word, while second-order variables range over sets of such positions

(i.e. monadic predicates). The signature includes unary predicates Qa for each

symbol a ∈ Ω, with Qa(x) interpreted as “the symbol at position x is a”, and

the binary predicate S, with S(x, y) interpreted as “y is the immediate successor

of x”.

The rich theory of regular languages makes relating context logic for se-

quences (CLSeq) to the class of regular languages an attractive proposition. The

syntax of CLSeq has much in common with regular expressions, and so Kleene’s

Theorem gives a first suggestion that CLSeq is embeddable in regular languages.

The effectiveness of checking language emptiness with automata suggests a route

to finding a decision procedure for CLSeq. Indeed, in §5.1 I show that automata

can be constructed that accept exactly the sequences which satisfy given CLSeq

formulae, just as Kleene’s Theorem shows that automata can be constructed
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corresponding to regular expressions. These constructions give a decision pro-

cedure for CLSeq. Furthermore, they imply that CLSeq is expressively contained

in monadic second-order logic on sequences.

Star-free Regular Languages

An important subclass of the regular languages is the star-free regular lan-

guages: the languages that are expressible by regular expressions with the in-

clusion of complementation (with respect to Ω∗) and exclusion of Kleene star.

Schützenberger characterised the star-free regular languages algebraically as

those having finite, aperiodic syntactic monoids. A finite monoid (M, •) is

aperiodic if there is some n > 0 such that, for all m ∈ M , mn = mn+1. A

regular language L has an aperiodic syntactic monoid if and only if there exists

some n > 0 such that for all w1, w2, w3 ∈ Ω∗, w1 · wn2 · w3 ∈ L if and only if

w1 · wn+1
2 · w3 ∈ L.

McNaughton and Papert characterised the star-free regular languages as

those expressible by sentences of first-order logic over words [MP71]. As with

monadic second-order logic, the signature includes the predicates Qa and S,

which are interpreted as before, but also includes the binary predicates =, in-

terpreted as equality on locations, and <, interpreted as the transitive closure

of S.

The star-free regular languages can be shown to be exactly those expressible

in context logic for sequences. On the one hand, context logic formulae can

be constructed using analogues of all of the connectives of star-free regular

expressions, and so all star-free regular languages are expressible as context

logic formulae. On the other, the connectives of context logic can be seen to

preserve aperiodicity, and therefore all context logic formulae define star-free

regular languages. This correspondence was first noted in [CGZ06].

2.4.2 Regular Term Languages

Language theory extends beyond words: languages of labelled trees and graphs,

for instance, are also studied. Historically, terms (ranked trees)3 have received

more study than unranked trees, however, the recent rise of XML has stimulated

greater interest in the latter.

The theory of languages of terms is quite extensive: for a comprehensive

survey, see [GS97]. I mention a few results here.

3I use “term” to refer to ranked trees throughout, although in the literature they are

typically referred to as “trees”.
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Regular term languages are defined as those accepted by finite term au-

tomata: terms are mapped to automaton states recursively, according to their

root labels and the states that each immediate subterm is mapped to; the term

belongs to the language recognised by the automaton if this state is one of

the accepting states of the automaton. This description is that of determin-

istic, bottom-up finite term automata; non-deterministic bottom-up and non-

deterministic top-down automata also recognise the regular term languages,

while deterministic top-down automata recognise a subclass.

As with regular word languages, a number of equivalent characterisations ex-

ists for regular term languages: they are exactly those generated by regular term

grammars; a counterpart of Kleene’s Theorem states that they are exactly those

expressible by term-regular expressions; they have finite syntactic monoids; and

they are exactly those definable in monadic second-order logic. Subclasses of

regular tree languages have also been studied, particularly with reference to

logical definability (see [Tho97] for further details), which is of interest here.

In monadic second-order logic on terms, first- and second-order variables

range over positions and sets of positions in the term respectively. The signa-

ture consists of unary labelling predicates Qa (as for words), binary successor

predicates Sn, with Sn(x, y) interpreted as “y is the nth child of x”, and a bi-

nary ancestor predicate <, with x < y interpreted as “x is an ancestor of y”.

The standard signature for first-order logic on terms is the same.

While first-order definable languages, star-free regular languages and aperi-

odic languages all coincide for word languages, the case is significantly more

complicated in the case of terms. Thomas [Tho84] showed that there are

term languages that are star-free but not aperiodic, and so an analogue of

Schützenberger’s characterisation does not hold. On the other hand, Pothoff

and Thomas [PT93] showed that all aperiodic regular tree languages are star-

free.

Thomas [Tho84] showed that star-free regular languages correspond to a sub-

class of the monadic-second order definable languages called antichain definable.

Antichain definable languages are those definable in monadic second-order logic

when second-order quantification is restricted to antichains: sets of nodes for

which no node is the ancestor of any other node.

Heuter [Heu91] showed that the first-order definable languages are exactly

the special star-free regular term languages. These languages are those express-

ible by regular expressions without the Kleene star and using linear substitution

symbols. Heuter’s proof is based on Ehrenfeucht-Fräıssé games.

The special star-free regular term languages correspond directly to multi-
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holed context logic formulae, excluding adjuncts and quantification. Together

with adjunct elimination (which can be shown for terms in a similar fashion as

for trees) and quantifier normalisation, Heuter’s characterisation implies that

multi-holed context logic for terms is equally expressive as first-order logic over

terms.

Remark. For word languages, there is an effective procedure for determin-
ing if a regular language is definable in first-order logic, namely
checking whether its syntactic monoid is aperiodic. No effective
procedure is yet known for determining whether a regular term
language is first-order definable, although an algebraic charac-
terisation is known [ÉW03], as well as effective procedures for
other logics including first-order logic without < [BS09].

2.4.3 Regular Forest Languages

Throughout this thesis, I use the term “tree” to mean unranked, ordered trees

with potentially multiple root nodes. In the literature on language theory, “tree”

is generally reserved for such structures with a single root node, or for ranked

trees (which I refer to as terms). To avoid confusion (or perhaps to create some)

I use “forest” for unranked, ordered trees with potentially many root nodes in

the context of language theory, and specifically in Chapter 5. The term “forest”

is used in this sense in [Mur95, Tak75, Boj07], while “ramification” is used in

[PQ68] and “hedge” in [BKMW01, CDG+07].

Pair and Quere [PQ68] studied regular forest languages as “regular bilan-

guages”. Their definition of regular languages is in terms of homomorphic preim-

ages, analogous to the syntactic monoid characterisation of regular word lan-

guages. They showed various closure properties of regular forest languages and

established an analogue of Kleene’s Theorem. Their regular expressions use the

concept of a graft : attaching a copy of one forest beneath each occurrence of a

particular symbol at the leaves of another forest.

Takahashi [Tak75] considered regular forest languages as generalisations of

regular languages by defining them as projections of local languages (for words,

these are languages that can be decided entirely by examining the first and last

letters and the two-letter subwords).

Murata [Mur95] gave equivalent definitions of regular forest languages in

terms of automata, regular expressions and grammars. His definition of regu-

lar expressions is closer to those used for ranked trees than that of Pair and

Quere, in that they make use of substitution rather than grafting. Regular for-
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est languages are also covered in [CDG+07], which deals with automata, closure

properties, encodings into terms and the connection to monadic second-order

logic.

Bojańczyk and Walukiewicz [BW06] introduced the concept of a forest alge-

bra in order to study algebraic characterisations of classes of forest languages,

in the way that monoids (or semigroups) are used for words. A forest algebra

essentially consists of two semigroups: a concatenation semigroup and a com-

position semigroup, that latter of which acts on the former by application. In

particular, forests with single-holed contexts form a forest algebra. Syntactic

forest algebras arise as an analogue of syntactic monoids, and can be used to

classifiy logics by their expressivity over forests. (Note, however, as with terms

there is no known effective characterisation of first-order definability, although

numerous other results are known.)

In [Boj07], Bojańczyk introduced forest expressions, which are essentially

the same as the formulae of context logic for trees with composition, but with

the addition of two types of Kleene star and without the adjunct connectives.

He has shown, by way of automata theory, that star-free forest expressions have

the same expressive power as first-order logic.

Bojańczyk’s result suggests once again that context logic and first-order logic

have equal expressivity. However, as the expressive relationship between single-

and multi-holed context logic is not fully known, and as it is still unclear whether

adjunct elimination holds for the former, I cannot draw a firm conclusion in this

regard.

2.5 Decidability

Given a logic, such as ambient logic or context logic, a natural question is

whether or not it is decidable: that is, is there an algorithm that determines

whether a given formula is valid (true in all models4) in a finite number of

steps? For classical logics, having a decision procedure for validity is equivalent

to having such a procedure for satisfiability (whether a formula is true in some

model), since a formula is valid if its negation is unsatisfiable, and vice-versa. A

third decision problem is that of model-checking: given a formula and a model,

is the formula satisfied by the model? The decidability of such problems can be

seen as a question of expressivity: can undecidable problems be expressed with

the logic?

Calcagno, Yang and O’Hearn [CYO01] have studied the decidability and

4By model, here, I mean, for instance, a tree.
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complexity of validity and model checking for fragments of separation logic.

They have shown that both problems are undecidable in the presence of quan-

tification, even for a restricted fragment of the logic. However, in the absence

of quantification (although with the adjoint of composition), the problems are

decidable, and indeed PSpace-complete. Since the composition adjoint implic-

itly quantifies over all heaps, a size argument is used to show that only a finitely

bounded number of heaps need be considered.

Brotherston and Kanovich [BK10] have shown that separation logic is un-

decidable when uninterpreted propositional atoms occur. Their result simu-

lates the execution of a simple (yet Turing-complete) machine in the logic, and

thereby reduces the halting problem to validity in separation logic. Their results

have undecidability implications for various forms of bunched logic.

For Ambient Logic, Cardelli and Gordon [CG00] originally provided a de-

cision procedure for model checking a fragment of the logic that excludes the

composition adjoint against ambients that do not include replication. Chara-

tonik and Talbot [CT01] showed that model checking is undecidable when either

of these restrictions is lifted. When the composition adjoint is included, the

problem of satisfiability can be reduced to model checking, and satisfiability is

undecidable even for a small fragment of the logic (with quantification). Chara-

tonik et al. also show that model checking for Cardelli and Gordon’s fragment

is PSpace-complete.

Calcagno, Cardelli and Gordon [CCG03] adapted the size-bounding ap-

proach of [CYO01] to a quantifier-free fragment of static Ambient Logic. Their

result is by showing that the number of trees that need be considered to check

satisfaction of an adjunct formula is finitely bounded. Since model checking

and validity (and satisfiability) are equivalent in the presence of the adjoint

connective, this leads to a proof for both results. They also provided a sound

and complete proof system for validity, and establish a PSpace lower bound

on the complexity of validity and model checking. Conforti and Ghelli [CG04]

established that adding Gabbay-Pitts freshness quantification does not break

decidability by showing that fresh quantification can be extruded over the other

connectives.

Dal Zilio, Lugiez and Meysonnier [DLM04] have shown the decidability of

validity and model checking for a similar fragment of static ambient logic, in-

cluding the composition adjoint, and extended with repetition (Kleene star).

Their results are by effectively encoding formulae into a new logic, sheaves logic.

They show that validity problem for sheaves logic can be decided by sheaves

automata: tree automata with Presburger constraints.
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Hague [Hag04] and Foster, Pierce and Schmitt [FPS07] have studied the

practical implementations of the sheaves automata approach. Although valid-

ity and model checking have exponential complexity in the worst case, they

have found optimisations whereby reasonable performance can be achieved in

practice.

In Chapter 5 I show decidability for multi-holed context logic for sequences,

terms and trees, including the adjunct connectives and quantification over hole

labels, but not including general quantification or uninterpreted propositional

atoms. The result is based on constructing finite automata corresponding to

quantifier-free formulae. Simple algorithms can then determine whether a se-

quence, term or tree satisfies a formula, and whether the formula is valid or

satisfiable in general on the basis of the corresponding automaton. For formu-

lae with quantification over hole labels, the decision problems are reduced to

the quantifier-free case by making use of the quantifier normalisation results

established in §4.5.

Remark. Although adjunct elimination results and expressivity results
of Heuter [Heu91] and Bojańczyk [Boj07] suggest that context
logic and first-order logic are equally expressive (on terms and
trees), and first-order logic is decidable on these models, the
results do not provide an effective procedure for translating for-
mulae. Specifically, the adjunct elimination results simply assert
the existence of equivalent formulae within a finite set. With
a decision procedure for context logic, it becomes effective to
determine which formulae are equivalent.

The decision procedures given in Chapter 5 have nonelementary com-

plexity. In particular, the number of states in an automaton implementing

K1 •−∃ K2 has a number of states that is exponential in the number of states

of the automaton implementing K2.

2.6 Modular Reasoning

In designing and building complex systems, modularity is essential. By con-

structing the system from self-contained components, it can be robust to changes

in configuration, and components can be reused and replaced. For example, con-

sider a file server that maintains two data structures: a set of its clients and a

tree hierarchy of the files it serves. These two structures are not intrinsically in-

terdependent, and so they can be developed in isolation. Furthermore, they can
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be implemented by components from standard libraries, rather than needing to

be implemented specifically for the file server. Moreover, if one of the compo-

nents is replaced with a different implementation of the same functionality, the

rest of the system is not affected.

Modularity is supported by two key concepts: locality and abstraction. For

the components of a system, to be local means that that there are few dependen-

cies between them. Dependencies between two components can arise indirectly

if they both depend on a third component; for instance, if both components

require some resource from the third, which can only supply a limited amount

(e.g., heap memory from a memory manager) — this kind of dependency can

be mitigated if sufficient resource is assumed.

For the system, abstraction means that the individual components can be

represented by what they do without consideration for how they actually do it.

For instance, a set data structure can be viewed abstractly as a mathematical

set, and its operations, such as adding and removing elements, can be seen

as operations on this abstract mathematical set. In reality, the set could be

implemented in any number of ways: with a singly- or double-linked list, a bit

vector, a red-black tree, or a skip list, to name a few.

Abstraction can support locality by exposing an abstract interface based

on a resource model. For example, if a memory manager implementation allo-

cates consecutive blocks of memory for consecutive allocation requests, then a

component that uses the memory manager may depend on this assumption for

two blocks it allocates. This introduces a dependency that no other component

that also uses the memory manager will allocate a block in between the first

component’s allocation requests. By considering an abstract view of the mem-

ory manager which allocates blocks at nondeterministically chosen addresses,

clients can no longer depend on the consecutive behaviour of the memory man-

ager, which would violate locality by introducing indirect dependencies.

Locality in turn can support abstraction: if a component’s subcomponents

are independent, then the abstract view of the component can safely ignore their

workings, whereas if their behaviour is sensitive to the wider context then the

abstract view must account for this sensitivity. For example, if a component

stores its data at a fixed location in memory, then this location must form

part of the abstract view of the component, since there would be a dependency

with any other component that used the same location; if the component were

to store its data in a freshly-chosen location, however, there is no longer a

potential dependency, and so the abstract view can be simplified. In essence,

the abstract view of a component must declare its (potential) dependencies;
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locality minimises these, resulting in a simpler abstract interface.

In order to formally verify such complex systems, we need verification meth-

ods that also support modularity, reflecting the modularity of the systems them-

selves. I have already discussed how separation logic and context logic have been

used to provide local reasoning about programs. In Chapter 6 I will present a

formal program logic for verifying programs written in a simple imperative lan-

guage that can be specialised with commands for updating and manipulating

different kinds of resource.

Data refinement is the general process by which abstract component speci-

fications are verifiably realised by concrete implementations [dE99]. The spec-

ification of the component includes an abstract data model and describes how

the component’s operations behave on these abstract data. An implementation

is a data refinement if every program that uses the implementation refines the

program which uses the abstract specification of the component — that is, all

of its observable behaviours are contained within the possible behaviours of the

abstract component.

Various efforts have been made to combine the separation logic approach

to local reasoning with some form of data refinement or abstraction. O’Hearn,

Yang and Reynolds introduced the hypothetical frame rule [OYR04], which pro-

vides a degree of abstraction in reasoning about components by hiding the in-

ternal state of the component from clients. In their system, the internal state is

encapsulated by a static module invariant that is assumed to hold on commenc-

ing each module operation and is re-established on completion of each operation.

Beyond information hiding, the rule provides no abstraction in the sense that

some details of the internal representation of the dynamic state are exposed to

clients. For instance, if a set module’s specification needs to make assertions

about whether specific elements are in the set, then the specification must ex-

pose the internal representation that corresponds to those elements being in the

set.

Parkinson and Bierman introduced abstract predicates [PB05, Par05] to sep-

aration logic, which encapsulate the details of a component’s state. The client

of a component is ignorant of the actual representation of the state, but is pre-

sented with an abstract view. For example, a set module might present the

predicate Set(s, S) to the client to indicate that there is a representation of the

(abstract mathematical) set S identified by s. The specification of a command

for adding an element to such a set could then be given as follows:

{Set(s , S)} add(s , v ) {Set(s , S ∪ {v})}

Since the client is oblivious to the concrete representation of the Set(s, S) pred-
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icate, the proof system only permits it to manipulate the set through the op-

erations exposed by the module. This means that a client can equally well

use another implementation that provides the same specification, although the

actual representation may be radically different.

Abstract predicates, since they encapsulate resources, can be subject to local

reasoning. For example, the above add operation can be seen to leave a second

set Set(t, T ) alone by introducing it with the frame rule thus:

{Set(s , S) ∗ Set(t, T )} add(s , v ) {Set(s , S ∪ {v}) ∗ Set(t, T )}

This is simply repackaging locality that exists at the implementation level —

the sets s and t are implemented by different pieces of heap. Abstract predicates

do not provide a mechanism for exposing locality that is not inherited from the

implementation level.

For example, the operation of adding a value, say 5, to the set s can be viewed

as local not only to the set but also to the particular value: the operation does

not affect whether 3, say, is an element of the set. Thus, the operation of adding

a value to a set could be specified abstractly as follows:

{out(s , v )} add(s , v ) {in(s , v )}

In this specification, out(s , v ) denotes the resource “value v is not in the set s ,”

and in(s , v ) denotes the resource “value v is in the set s”. Knowledge about

other values can be added with the frame rule thus:

{out(s , v ) ∗ in(v , w)} add(s , v ) {in(s , v ) ∗ in(v , w)}

In order to prove that an implementation satisfies such a specification using

abstract predicates, there must be some tangible resource at the implementation

level that corresponds to out(s, v) that is sufficient to safely perform operations

on s pertaining to value v, but that is at the same time disjoint from out(s, w)

(where w 6= v). This is often not the case.

Consider the implementation of a set using an ordered linked list in the heap,

starting from address s (the identifier of the set). In order to add the value 5

to the set, the operation must traverse the list from its head to find the place

where 5 belongs and insert a new node containing the value. Thus, out(s, 5)

must include this entire footprint. Yet out(s, 3) must, by the same logic, include

the part of the list from its head to the location at which 3 belongs. The two

are not disjoint, and so abstract predicates cannot establish that this abstract

local specification holds for the set implementation.

In Chapter 7, I describe an approach that I call locality refinement which

was developed by Gardner, Wheelhouse and me [DYGW10a] to establish that
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module implementations satisfy abstract local specifications, such as the set

specification described above. The approach relates the abstract local axiomatic

semantics of a module to the implementation of the module by establishing that

all of the abstract inference rules, including the frame rule and axioms for each

of the module operations, hold under a translation of the abstract data model

to the data model on which the implementation is based. For example, to verify

the list-based set, low-level local reasoning about heap update would be used

to establish that every specification that can be proved about a client using

high-level local reasoning about sets holds for some interpretation of the set

data model in the heap.

I present two techniques for establishing locality refinement: locality-preserv-

ing and locality-breaking translations. Locality-preserving translations (§7.3) are

best applied when there is a close correspondence between locality at the high

level and locality at the low level. For example, an implementation of a tree

data structure in the heap might represent each node with a heap cell containing

pointers to the node’s parent, immediate sibling and first child; locality is closely

preserved because the piece of heap required to represent a subtree can be

separated from the heap that represents the rest of the context it appears in.

Even when there is a close correspondence between locality at the high and

low levels, there can still be some overlap between the representation of a tree

(say) and the representation of its context. For example, disposing of a tree

may require updating pointers in the nodes immediately adjacent to the three,

which are nominally part of the context. This overlap is termed crust, and is

accommodated by the locality-preserving technique.

Locality-breaking translations (§7.4) are suited to cases where there is not a

close correspondence between locality at the high and low levels. In such cases,

there is typically a greater burden to establish that the frame rule holds soundly

at the high level. The locality-breaking technique simplifies the burden to just

considering applications of the frame rule to the basic operations of the module.

2.6.1 Concurrency

A number of techniques have been put forward that help to support reasoning

about concurrent programs in a modular way. Concurrency adds an extra di-

mension to the problem of developing and reasoning about programs: instead of

only being at one code point at any given time as with a sequential program, a

concurrent program’s execution can have many threads, each with its own code

point. Interactions between threads can be unpredictable because of the non-

deterministic manner in which they are scheduled; therefore, it is necessary to
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account for every possible scheduling in reasoning about a concurrent program.

Linearisability, introduced by Herlihy and Wing [HW90], presents an ab-

stract view of a component for which each of its operations appears to take ef-

fect instantaneously. This radically simplifies the interference possibilities that

a client of the component has to account for. As with many modular reason-

ing techniques, linearisability depends on clients not breaching the abstraction

boundary; if a client does, it may be able to observe some intermediate state

between an operation being invoked and taking effect. Adding new operations

to a component, therefore, may require rechecking all of the component’s op-

erations to ensure linearisability. Linearisability is conceptually simple, but in

some cases it can be unnecessary, unattainable or impractical.

Rely/guarantee conditions, introduced to Hoare logic by Jones [Jon81], ab-

stract the interference caused by concurrent threads with relations: the rely

relation abstracts the interference that a thread must expect from others, while

the guarantee relation abstracts the interference that a thread may cause oth-

ers. Key assertions in a proof are required to be stable, that is, if they hold

for a given state then they also hold for any state that it is related to by the

rely relation. This means that the program can tolerate any interference that is

abstracted by the rely. When two programs have compatible rely and guarantee

conditions, they can be executed in parallel, as embodied by the following rule:

R ∪G2, G1 ` {P} C1 {Q1} R ∪G1, G2 ` {P} C2 {Q2}
R,G1 ∪G2 ` {P} C1 ‖ C2 {Q1 ∧Q2}

One limitation of rely-guarantee reasoning is that it operates on an essentially

global view of the state, thereby impinging on modularity. It may also be

necessary to introduce auxiliary variables to programs in order to verify them.

Auxiliary variables do not affect the behaviour of the program, but they do

abstract the program’s control flow, which can be important when the order of

operations is significant to the interference.

Concurrent separation logic, introduced by O’Hearn [O’H04], applies the

separation logic view of state as resource to the concurrent setting: if two threads

use disjoint resources then they can be safely executed in parallel without any

interference between them. This is encapsulated in the elegant parallel rule of

concurrent separation logic:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}

Resources can be shared between threads through resource invariants; these

resources can only be accessed inside atomic blocks, for which the resource in-

variant is assumed to hold on entering the block and required to be re-established
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on leaving the block. As with rely/guarantee, auxiliary variables may be needed

to track control flow; in fact, they are needed to an even greater extent because

invariants do not convey the evolution of the state in the way that relations do.

Bornat et al. [BCOP05] extended concurrent separation logic by introducing

a permissions model for heap resource. This meant that two or more threads

could have access to the same heap cell, outside of atomic blocks, provided

that they do not write to it. Their fractional permission model, based on work

of Boyland [Boy03], gives each thread requiring read-only access to a cell a

fractional permission in the interval (0, 1]. The total permission for any cell,

among all threads, cannot exceed 1, which corresponds to exclusive permission.

A thread having permission 1 therefore can also safely write to the heap cell,

since no other thread is expecting to read it.

RGSep, introduced by Vafeiadis and Parkinson [Vaf07, VP07], combines and

subsumes rely/guarantee and concurrent separation logic, attaining the benefits

of a relational view of interference and a local view of state. The approach

partitions the state into a shared portion, which is subject to interference de-

scribed by rely and guarantee relations and is common to all threads, and a

local portion, which is not subject to any interference and is exclusive to indi-

vidual threads. Shared state assertions are denoted by boxes, as in P , and

combining shared assertions with ∗ is equivalent to combining them with ∧,

i.e., P ∗ Q ≡ P ∧ Q ≡ P ∧Q . This is essential to the nature of shared

state: however the state is divided, the shared part is the same for all portions.

RGSep’s parallel rule is a combination of the rely/guarantee and separation

logic rules:

R ∪G2, G1 ` {P1} C1 {Q1} R ∪G1, G2 ` {P2} C2 {Q2}
R,G1 ∪G2 ` {P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}

Deny-guarantee, introduced by Dodds et al. [DFPV09], builds on RGSep

by introducing permissions on actions — relations which describe updates to

shared state. These permissions constrain the rely and guarantee relations by

determining whether actions are permitted to the thread (i.e., in the guarantee),

the environment (i.e., in the rely), both, or neither. The read/write permissions

for heap cells can be viewed as a special case of this: read permissions disallow

both the thread and environment from modifying the cell, while full read/write

permissions allow the thread to modify the cell, but not the environment.

A nice consequence of this view of permissions as resource is that they can

be used to realise abstract resources. Returning to the set example, out(s, v) can

be seen as a combination of the knowledge that value v is not in the set s and

exclusive permission to change whether that value v is in the set. In a concurrent

46



Introduction 2.6 Modular Reasoning

setting, this exclusive permission can be a complicated beast, entailing both

exclusive and non-exclusive permissions to manipulate the underlying structure.

In Chapter 8 I present concurrent abstract predicates [DYDG+10], an ap-

proach to providing abstract specifications for concurrent components in terms

of disjoint resources, which are realised by a permissions model derived from

deny-guarantee. The combination of abstract predicates and a rich underly-

ing permissions model make it possible to verify concurrent implementations of

abstract data structures which present a fiction of disjointness to clients.
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Chapter 3

Context Logic

In this chapter, I give the basic, formal definitions for context logic in the

various forms I use it throughout this thesis. I begin by describing the tree

model (§3.1.1), which is the main model used throughout Part I. Based on

this model, I define three varieties of context logic: simple context logic CLs
Tree

(§3.1.3), context logic with composition CLc
Tree (§3.1.5), and multi-holed context

logic CLm
Tree (§3.1.7).

Common to each of these logics is the ability to describe a tree in terms of

the application of a context to a subtree: separating application. The context

and subtree from which the tree is composed are described independently. Con-

text logic with composition extends simple context logic by allowing contexts

to be described in terms of the composition of two contexts. While context

composition was included in an early version of context logic [CGZ04], it was

not necessary to express the assertions required for reasoning about tree update

and so was subsequently not considered an integral part of the basic logic. In his

thesis [Zar07], Zarfaty considers a number of variations of context logic, both

including and omitting context composition. Multi-holed context logic, which

Calcagno, Gardner and I introduced in [CDYG07], further extends context logic

by allowing contexts to be described as the composition of multi-holed contexts.

Thus, each logic extends the previous in terms of how trees and contexts may

be split apart.

In §3.2, I generalise the definitions to arbitrary models for context logic,

which take the form of context algebras. I show a number of examples of data

structures that fit the definitions of context algebra (§3.3). Although context

algebras are less general than Zarfaty’s abstract models for context logic [Zar07],

they are sufficiently general to cover the models considered in this thesis.
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3.1 Context Logic for Trees

3.1.1 Trees

Trees, for the purposes of Part I, are finite, non-uniquely-labelled, unranked,

ordered forests:

� they are finite in that only finite branching is permitted and branches

must have finite depth;

� they are non-uniquely-labelled in that each node of the tree is associated

with a label, and that label may not be unique to that node;

� they are unranked in that there is no enforced correspondence between

the label that a node has and the number of branches that proceed from

it;

� they are ordered in that the branches at each node have a specific total

order;

� they are forests in that any number of nodes can occur at the root level.

(In Part II, §7.1.2, I will consider uniquely labelled trees: that is, trees for which

each node has a distinctive label.)

In the following, let Σ be an (infinite) alphabet, the alphabet of node labels,

ranged over by a,b, c,a′,a1, . . . .

Definition 3.1 (Trees). The set of trees Tree, ranged over by t, t1, . . . , is defined

inductively as follows:

t ::= ∅
∣∣ a[t]

∣∣ t1 ⊗ t2
where ⊗ is considered to be associative and to have ∅ as its identity.

Example 3.1. The following are all examples of trees:

∅ (3.1)

a[b[∅]] (3.2)

a[a[∅]⊗ b[∅]] (3.3)

a[a[∅]⊗ b[∅]]⊗ a[b[∅]⊗ a[b[∅]]]. (3.4)

Figure 3.1 illustrates (3.4).
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a a

a b b a

b

Figure 3.1: A graphical illustration of the tree (3.4), with the decomposition

(3.12) indicated

3.1.2 Tree Contexts and Application

The inductive definition of trees leads to a very natural notion of a subtree of a

given tree: a subtree is a tree that may be extended to the full tree by applying

the tree constructors. For example, (3.1), (3.2), (3.3) and (3.4) are all subtrees

of (3.4). The way that the subtree is extended is called a tree context, which is

essentially a tree with a hole into which another tree may be placed. These tree

contexts are formally defined in a manner that is analogous to the definition of

trees themselves.

Definition 3.2 (Tree Contexts). The set of tree contexts CTree, ranged over by

c, c1, . . . , is defined inductively as follows:

c ::= −
∣∣ a[c]

∣∣ c⊗ t ∣∣ t⊗ c
where, again, ⊗ is considered to be associative and to have ∅ as its identity.

Example 3.2. The following are all examples of tree contexts:

− (3.5)

−⊗ a[b[∅]⊗ a[b[∅]]] (3.6)

a[a[∅]⊗ b[∅]]⊗ a[b[∅]⊗−] (3.7)

a[a[∅]⊗ b[−]]⊗ a[b[∅]⊗ a[b[∅]]] (3.8)

a[a[∅]⊗ b[∅]]⊗−⊗ a[b[∅]⊗ a[b[∅]]]. (3.9)

The operation of extending a tree with a context is context application.

Definition 3.3 (Context Application). The context application operator

• : CTree × Tree⇀ Tree
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is defined by induction on the structure of contexts as follows:

− • t
def
= t

a[c] • t def
= a[c • t]

(c⊗ t′) • t def
= (c • t)⊗ t′

(t′ ⊗ c) • t def
= t′ ⊗ (c • t).

Remark. In the above definition, context application is in fact a total
function. This would not be the case if we imposed a well-
formedness condition, such as the uniqueness of node labels:
the application would be undefined if the result would not be a
well-formed tree.

Example 3.3. The tree a[a[∅] ⊗ b[∅]] ⊗ a[b[∅] ⊗ a[b[∅]]] can be expressed as

the application of a context to a tree in all of the following ways:

− • a[a[∅]⊗ b[∅]]⊗ a[b[∅]⊗ a[b[∅]]] (3.10)

−⊗ a[b[∅]⊗ a[b[∅]]] • a[a[∅]⊗ b[∅]] (3.11)

a[a[∅]⊗ b[∅]]⊗ a[b[∅]⊗−] • a[b[∅]] (3.12)

a[a[∅]⊗ b[−]]⊗ a[b[∅]⊗ a[b[∅]]] •∅ (3.13)

a[a[∅]⊗ b[∅]]⊗−⊗ a[b[∅]⊗ a[b[∅]]] •∅. (3.14)

(This is not an exhaustive list.) Figure 3.1 illustrates (3.12).

3.1.3 The Logic CLs
Tree

I now give the definition of a simple context logic for trees, CLs
Tree. Formulae

of the logic either describe trees or contexts. The logic includes connectives

that are specific to the structure of trees, connectives that relate to the context

application operation, and basic Boolean connectives.

Definition 3.4 (CLs
Tree Formulae). The set of tree formulae Ps

Tree, ranged over

by P,Q, P1, . . . , and the set of tree context formulae Ks
Tree, ranged over by
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K,K1, . . . are defined inductively as follows:

P ::= 0 tree-specific formulae∣∣ K • P ∣∣ K •− P structural formulae∣∣ false
∣∣ P1 → P2 Boolean formulae

K ::= a[K]
∣∣ K ⊗ P ∣∣ P ⊗K tree-specific formulae∣∣ I

∣∣ P1 −• P2 structural formulae∣∣ False
∣∣ K1 → K2 Boolean formulae.

When the superscripts and subscripts of Ps
Tree and Ks

Tree are clear from con-

text I will omit them.

Intuitively, the semantics of a tree formula is a set of trees — the set of trees

that satisfy the formula. Correspondingly, the semantics of a context formula

is a set of tree contexts. The formula 0 is satisfied only by the empty tree ∅.

The formula a[K] is satisfied by contexts that consist of top node a above some

context satisfying K. The formulae K ⊗P and P ⊗K are satisfied by contexts

that are the ⊗ concatenation of a context satisfying K and a tree satisfying P

in the appropriate order. The formula K • P is satisfied by trees that are the

result of applying some context satisfying K to some tree satisfying P , while

the formula I is satisfied only by the context hole −. The formula K •− P is

satisfied by trees that, whenever any context satisfying K is applied to them,

the resulting trees satisfy P . The formula P1−•P2 is satisfied by contexts that,

whenever they are applied to any tree satisfying P1, the resulting trees satisfy

P2. The formulae false and False are satisfied by no trees and tree contexts,

respectively. The formula P1 → P2 is satisfied by trees that, if they satisfy

P1, also satisfy P2. The formula K1 → K2 is has the analogous semantics for

contexts.

The connectives •− and −• are called the (spatial) adjoints or (spatial) ad-

junct connectives. This is because K •− (·) is right adjoint to K • (·) and P −• (·)
is right adjoint to (·) • P .1

A number of useful connectives have been omitted from Definition 3.4 since

they can be expressed in terms of those given. By defining these additional

connectives as derived connectives, it becomes unnecessary to consider them in

other definitions and proofs pertaining to the logic.

1The connectives •− and −• are not the only connectives with adjunctions. However, when

I refer adjoints or adjunct connectives, I will generally mean this to refer to the right adjoints

of spatial connectives.
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Notation (Derived Formulae). For notational convenience, additional logical

connectives are defined in terms of the basic logical connectives as follows:

a[P ]
def
= a[I] • P P1 ⊗ P2

def
= (P1 ⊗ I) • P2

¬P def
= P → false ¬K def

= K → False

true
def
= ¬false True

def
= ¬False

P1 ∨ P2
def
= (¬P1)→ P2 K1 ∨K2

def
= (¬K1)→ K2

P1 ∧ P2
def
= ¬(P1 → ¬P2) K1 ∧K2

def
= ¬(K1 → ¬K2)

K •−∃ P def
= ¬(K •− ¬P ) P1 −•∃ P2

def
= ¬(P1 −• ¬P2).

The semantics of most of these connectives is generally intuitive, however,

K •−∃ P and P1 −•∃ P2 may benefit from more explanation. The former is

satisfied by trees for which applying some context that satisfies K results in a

tree satisfying P . The latter is satisfied by contexts which can be applied to

some tree that satisfies P1 resulting in a tree satisfying P2.

Notation (Precedence and Associativity). Brackets will generally be used to

avoid ambiguity in formulae, however, the following conventions are used to

disambiguate formulae without brackets. The logical connectives bind in the

following order (those on the left binding tighter than those to the right):

¬, •,⊗,∧,∨,

•−
−•
•−∃

−•∃

,→ .

The connectives associate to the right: for example, P1 → P2 → P3 is considered

to be P1 → (P2 → P3).

Example 3.4. The following are examples of tree formulae:

a[b[0]]

True • a[0]

¬0⊗ ¬0

(0−• ¬(True • b[0])) • b[0]

a[true]⊗ b[true]→ (a[−] •− True • (¬0⊗ ¬0)).

The following are examples of context formulae:

I⊗ true

a[0]−• a[0]

a[a[0]⊗ True].
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I define satisfaction relations to give semantics to formulae. In general,

satisfaction relations relate worlds with formulae; for CLs
Tree, the worlds are

trees and tree contexts. Both worlds and formulae are divided into these two

sorts, as we have seen. The following definition formalises this.

Definition 3.5 (CLs
Tree Sorts). The set of sorts for CLs

Tree, Sort, ranged over

by ς, is defined as follows:

ς ::= d
∣∣ c.

That is, there are two sorts: d, the sort of trees, and c, the sort of tree contexts.

The family of worlds for CLs
Tree, {Worldς}ς∈Sort, is defined by Worldd = Tree,

Worldc = CTree. The family of formulae for CLs
Tree, {Formulaς}ς∈Sort, is defined

by Formulad = Ps
Tree, Formulac = Ks

Tree.

Definition 3.6 (CLs
Tree Satisfaction Relations). The satisfaction relations

|=d ⊆ Tree× Ps
Tree and |=c ⊆ CTree × Ks

Tree,

which denote satisfaction of a tree formula by a tree and satisfaction of a context

formula by a tree context respectively, are defined by induction on the structure

of formulae as follows:

t |=d 0 ⇐⇒ t = ∅

t |=d K • P ⇐⇒ there exist c, t′ s.t. t = c • t′ and

c |=c K and t′ |=d P

t |=d K •− P ⇐⇒ for all c, t′, t′ = c • t and c |=c K =⇒ t′ |=d P

t |=d false never

t |=d P1 → P2 ⇐⇒ t |=d P1 =⇒ t |=d P2

c |=c a[K] ⇐⇒ there exists c′ s.t. c = a[c′] and c′ |=c K

c |=c K ⊗ P ⇐⇒ there exist c′, t s.t. c = c′ ⊗ t and

c′ |=c K and t |=d P

c |=c P ⊗K ⇐⇒ there exist t, c′ s.t. c = t⊗ c′ and

t |=d P and c′ |=c K

c |=c I ⇐⇒ c = −

c |=c P1 −• P2 ⇐⇒ for all t1, t2, t2 = c • t1 and t1 |=d P1 =⇒
t2 |=d P2

c |=c False never

c |=c P1 → P2 ⇐⇒ c |=c P1 =⇒ c |=c P2.
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Example 3.5. The following are examples of trees and tree contexts satisfying

and not satisfying formulae:

a[b[∅]] |=d a[b[0]]

a[a[∅]⊗ b[∅]] |=d True • a[0]

a[b[∅]] /|=d ¬0⊗ ¬0

a[a[∅]⊗ b[∅]] |=d a[¬0⊗ ¬0]

a[a[∅]⊗ b[∅]] |=d (0−• ¬(True • b[0])) • b[0]

b[b[∅]] /|=d (0−• ¬(True • b[0])) • b[0]

for all t ∈ Tree, t |=d a[true]⊗ b[true]→ (a[I] •− True • (¬0⊗ ¬0))

−⊗ a[b[∅]⊗ a[b[∅]]] |=c I⊗ true

− |=c a[0]−• a[0]

a[−] /|=c a[a[0]⊗ I].

3.1.4 Context Composition

Just as contexts can be applied to trees, there is also a natural manner in which

two contexts can be composed.

Definition 3.7 (Context Composition). The context composition operator ◦ :

CTree × CTree ⇀ CTree is defined by induction on the structure of contexts as

follows:

− ◦ c
def
= c

a[c′] ◦ c def
= a[c′ ◦ c]

(c′ ⊗ t) ◦ c def
= (c′ ◦ c)⊗ t

(t⊗ c′) ◦ c def
= t⊗ (c′ ◦ c).

The following result is a basic consequence of the definitions of composition

and application.

Lemma 1 (Associativity of Composition). Context composition is associative

and also associates with context application. That is, for all c, c′, c′′ ∈ CTree and

t ∈ Tree,

c ◦ (c′ ◦ c′′) = (c ◦ c′) ◦ c′′

c • (c′ • t) = (c ◦ c′) • t.
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3.1.5 The Logic CLc
Tree

I now give an extension of the simple context logic which incorporates connec-

tives for describing context composition, CLc
Tree.

Definition 3.8 (CLc
Tree Formulae). The set of tree formulae Pc

Tree, ranged over

by P,Q, P1, . . . , and the set of tree context formulae Kc
Tree, ranged over by

K,K1, . . . are defined inductively as follows:

P ::= 0 tree-specific formulae∣∣ K • P ∣∣ K •− P structural formulae∣∣ false
∣∣ P1 → P2 Boolean formulae

K ::= a[K]
∣∣ K ⊗ P ∣∣ P ⊗K tree-specific formulae∣∣ I

∣∣ P1 −• P2 structural formulae∣∣ K1 ◦K2

∣∣ K1 ◦−K2

∣∣ K1 −◦K2 composition formulae∣∣ False
∣∣ K1 → K2 Boolean formulae.

All of the connectives of CLs
Tree are inherited by CLc

Tree with the same seman-

tics. The three new connectives deal with context composition. The formula

K1◦K2 is satisfied by a context that is obtained by the composition of a context

satisfying K1 with a context satisfying K2. The formula K1 ◦−K2 is satisfied

by contexts that, whenever any context satisfying K1 is composed to it (on the

left), the resulting contexts satisfy K2. The formula K1 −◦ K2 is satisfied by

contexts that, whenever they are composed to any context satisfying K1 (on

the left), the resulting contexts satisfy K2. The connectives ◦− and −◦ are also

adjoints: K ◦− (·) is the right adjoint of K ◦ (·), and K−◦ (·) is the right adjoint

of (·) ◦K.

Definition 3.9 (CLc
Tree Sorts). For CLc

Tree, the set of sorts, Sort, and the family

of worlds, {Worldς}ς∈Sort, are as for CLs
Tree. The family of formulae for CLc

Tree,

{Formulaς}ς∈Sort, is defined by Formulad = Pc
Tree, Formulac = Kc

Tree.

Definition 3.10 (CLc
Tree Satisfaction Relations). The satisfaction relations

|=d ⊆ Tree× Pc
Tree and |=c ⊆ CTree × Kc

Tree,

which denote satisfaction of a tree formula by a tree and satisfaction of a context

formula by a tree context respectively, are defined by induction on the structure

of formulae. The cases for each connective inherited from CLs
Tree are as in
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Definition 3.6; the remaining cases are as follows:

c |=c K1 ◦K2 ⇐⇒ there exist c′, c′′ s.t. c = c′ ◦ c′′ and

c′ |=c K1 and c′′ |=c K2

c |=c K1 ◦−K2 ⇐⇒ for all c′, c′′, c′′ = c′ ◦ c and c′ |=c K1 =⇒ c′′ |=c K

c |=c K1 −◦K2 ⇐⇒ for all c′, c′′, c′′ = c ◦ c′ and c′ |=c K1 =⇒ c′′ |=c K.

Example 3.6. The following are examples of trees and tree contexts satisfying

formulae with context composition:

a[b[−]] |=c a[I] ◦ b[I] (3.15)

b[a[∅]]⊗ a[a[∅]] |=d ¬(True ◦ b[True]) • a[0]. (3.16)

The first formula simply describes a context that is the composition of a[−] and

b[−], and hence exactly describes a[b[−]]. The second formula describes a tree

in which there is a leaf labelled a that does not have an ancestor labelled b.

This is expressed by stating that a tree is the composition of a context to the

tree a[∅], where the context cannot be seen as the composition of some context

with another context that has root b. This does not preclude other a-labelled

leafs from having b ancestors.

3.1.6 Multi-holed Tree Contexts and Composition

So far, I have only discussed contexts that have a single hole. A very natural

generalisation would be to allow contexts to have multiple holes. Previously,

the context hole has served to mark the position at which a tree was removed,

with the intention of replacing it with another. In this spirit, it seems natural

that holes in a multi-holed context should be distinguished from each other in

order to maintain the relationship between a subtree and its location. Each hole,

therefore, has a label, and that label is unique to it (within the context). In

the following, let X be an (infinite) alphabet, the alphabet of hole labels, disjoint

from Σ, and ranged over by x, y, x′, x1, . . . .

Definition 3.11 (Multi-holed Tree Contexts). The set of multi-holed tree con-

texts Cm
Tree, ranged over by c, c1, . . . , is defined inductively as follows:

c ::= ∅
∣∣ x ∣∣ a[c]

∣∣ c1 ⊗ c2
where ⊗ is considered to be associative and to have ∅ as its identity, and each

x ∈ X is allowed to occur at most once (or linearly) in a given context.
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Definition 3.12 (Hole Labels). The function

holes : Cm
Tree → P(X)

returns the set of hole labels appearing in a multi-holed context. Formally, it is

defined by induction on the structure of contexts as follows:

holes∅ def
= ∅

holesx
def
= {x}

holes a[c]
def
= holes c

holes(c1 ⊗ c2)
def
= holes c1 ∪ holes c2.

Definition 3.13 (Substitution). Substitution of a context for a context hole is

defined in standard fashion, by induction over the structure of the context as

follows, where x 6= y:

∅[c/x]
def
= ∅

x[c/x]
def
= c

y[c/x]
def
= y

a[c′][c/x]
def
= a[c′[c/x]]

(c′ ⊗ c′′)[c/x]
def
= (c′[c/x])⊗ (c′′[c/x]).

Remark. If two contexts have hole labels in common, then the substitu-
tion of one into the other may not result in a valid context. I
shall avoid using substitution when such a result is possible.

Definition 3.14 (Multi-holed Context Composition). For each hole label, x ∈
X, the context x-composition operator ©x : Cm

Tree × Cm
Tree ⇀ Cm

Tree is defined in

terms of substitution as follows:

c©x c′
def
=

c[c′/x] if x ∈ holes c and holes c ∩ holes c′ ⊆ {x}

undefined otherwise.

The following results are basic consequences of the definition of multi-holed

context composition.

Lemma 2 (Quasi-associativity of Composition). For all c, c′, c′′ ∈ Cm
Tree, for all

x ∈ holes c and all y ∈ holes c′ with either y /∈ holes c or y = x,

(c©x c′)©y c′′ = c©x (c′ ©y c′′).

(Undefined terms are considered equal here.)
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Lemma 3 (Quasi-commutativity of Composition). For all c, c′, c′′ ∈ Cm
Tree, for

all x, y ∈ X with x /∈ holes c′′ and y /∈ holes c′,

(c©x c′)©y c′′ = (c©y c′′)©x c′.

(Again, undefined terms are considered equal.)

3.1.7 The Logic CLm
Tree

I now present a multi-holed version of context logic for trees, CLm
Tree.

Whereas node labels are referenced directly in formulae, hole labels are ref-

erenced through hole variables. The reason for this is that, while the specific

value of a node label may carry information about the node, hole labels exist

purely as a means to compose and decompose trees — their specific values are

not important, just the knowledge of whether or not two hole labels are the

same. In the following, let Θ be an (infinite) alphabet, the alphabet of hole

variables, ranged over by α, β, γ, α′, α1, . . . .

Definition 3.15 (CLm
Tree Formulae). The set of formulae Km

Tree, ranged over by

K,K1, . . . is defined inductively as follows:

K ::= 0
∣∣ a[K]

∣∣ K1 ⊗K2 tree-specific formulae∣∣ α ∣∣ K1 ◦α K2

∣∣ K1 ◦−α K2

structural formulae∣∣ K1 −◦α K2

∣∣ ∃α.K∣∣ False
∣∣ K1 → K2 Boolean formulae.

Since contexts and data are homogeneous in the multi-holed world, multi-

holed context logic formulae are also homogeneous. This results in a simpler

logic, in as much as it contains fewer basic connectives.

Notation (Free Variables). The set of free variables of a formula, fvK, is the

set of variables appearing in K that are not bound under a quantifier. Formally:

fv 0
def
= fv False

def
= ∅

fv a[K]
def
= fvK

fv(K1 ⊗K2)
def
= fv(K1 → K2)

def
= fvK1 ∪ fvK2

fvα
def
= {α}

fv(K1 ◦α K2)
def
= fv(K1 ◦−α K2)

def
= fv(K1 −◦α K2)

def
= {α} ∪ fvK1 ∪ fvK2

fv(∃α.K)
def
= (fvK) \ {α} .
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Notation (Derived Formulae). For notational convenience, additional logical

connectives are defined in terms of the basic logical connectives as follows:

7− [ def
= ∃α. α

�α def
= ¬(True ◦α α).

A logical environment is a valuation of logical variables. In the case of CLm
Tree,

logical variables are elements of the set Θ and take hole labels from the set X

as their values.

Definition 3.16 (Logical Environment). The set of logical environments LEnv

is defined to be the set of finite partial functions Θ ⇀fin X. The set LEnv is

ranged over by σ, σ′, . . ..

Notation (Domain of Definition and Range of a Partial Function). Let f : A⇀

B be a partial function. The domain of definition of f (or simply domain of f),

dom f , is the subset of A on which f is defined; that is:

dom f
def
= {a ∈ A | there exists b ∈ B s.t. f(a) = b} .

The range of f , range f , is the image of the domain of definition under f ; that

is:

range f
def
= {b ∈ B | there exists a ∈ A s.t. f(a) = b} .

For CLm
Tree, a world does not consist only of a tree context, but also includes a

logical environment which is used to interpret the variables of formulae. Worlds

are divided into sorts according to the domain of their logical environment.

Formulae are divided into sorts according to their free variables.

Definition 3.17 (CLm
Tree Sorts). The set of sorts for CLm

Tree, Sort, ranged over

by ς, is defined as follows:

ς ::= cφ

where φ ∈ Pfin(Θ) ranges over finite sets of hole variables. That is, there is a

sort cφ for each finite set of hole variables φ. The family of worlds for CLm
Tree,

{Worldς}ς∈Sort, is defined by

Worldς = {(c, σ) ∈ Cm
Tree × LEnv | c(domσ) = ς} .

The family of formulae for CLm
Tree, {Formulaς}ς∈Sort, is defined by

Formulaς = {K ∈ Km
Tree | there exists φ s.t. ς = cφ and fvK ⊆ φ} .
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Definition 3.18 (CLm
Tree Satisfaction Relations). The satisfaction relations

|=ς ⊆ Worldς × Formulaς , which denote satisfaction of a formula by a multi-

holed tree context with respect to a logical environment (for each sort ς), are

defined by induction on the structure of formulae as follows, where ς = cφ for

some φ ∈ Pfin(Θ), and, when applicable, x = σα and α ∈ φ:

c, σ |=ς 0 ⇐⇒ c = ∅

c, σ |=ς a[K] ⇐⇒ there exists c′ s.t. c = a[c′] and c′, σ |=ς K

c, σ |=ς K1 ⊗K2 ⇐⇒ there exist c1, c2 s.t. c = c1 ⊗ c2 and

c1, σ |=ς K1 and c2, σ |=ς K2

c, σ |=ς α ⇐⇒ c = x

c, σ |=ς K1 ◦α K2 ⇐⇒ there exist c1, c2 s.t. c = c1 ©x c2 and

c1 |=ς K1 and c2 |=ς K2

c, σ |=ς K1 ◦−α K2 ⇐⇒ for all c1, c2, c2 = c1 ©x c and c1, σ |=ς K1 =⇒
c2, σ |=ς K2

c, σ |=ς K1 −◦α K2 ⇐⇒ for all c1, c2, c2 = c©x c1 and c1, σ |=ς K1 =⇒
c2, σ |=ς K2

c, σ |=ς ∃β.K ⇐⇒ there exists y s.t. c, σ[β 7→ y] |=c(φ∪{β}) K

c, σ |=ς False never

c, σ |=ς K1 → K2 ⇐⇒ c, σ |=ς K1 =⇒ c, σ |=ς K2.

Freshness Quantification

The logic CLm
Tree includes existential quantification of hole variables. Its purpose

is to allow us to forget about the actual identities of holes — it does not matter

what a hole is called so long as we can refer to it in the appropriate places.

Often, it is desirable that a hole label should be sufficiently fresh, that is, not

already used for something else. The Gabbay-Pitts freshness quantifier [GP01],

N, achieves exactly this.

Notation (Freshness). For y ∈ X and c ∈ Cm
Tree, y ] c denotes that y /∈ holes c.

For y ∈ X and σ ∈ LEnv, y ] σ denotes that y /∈ rangeσ. The notation y ] c, σ

denotes that y ] c and y ] σ.

Definition 3.19 (Freshness Quantification). Formulae of CLm
Tree + Nare con-

structed according to the inductive rules for formulae of CLm
Tree with the addition

of the following rule:

K ::= . . .
∣∣ Nα.K.
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The satisfaction relations are defined as for CLm
Tree but with the following addi-

tional case, where ς = cφ:

c, σ |=ς Nβ.K ⇐⇒ there exists y s.t. y ] c, σ and

c, σ[β 7→ y] |=c(φ∪{β}) K.

3.2 General Context Logic

The fundamental concept of context logic — that data can be split into sub-

data and context — is not exclusive to trees, but applies to a broad spectrum

of abstract data structures. In §3.3, I show a number of examples of such data

structures. First, however, I define context logic in terms of an arbitrary ab-

stract data structure. This allows us to view context logic for each specific data

structure as an instance of a general context logic.

3.2.1 Simple Context Logic

In order to define a context logic over a data structure, the data structure must

have certain abstract properties. These are captured by the notion of a context

algebra, which corresponds to the notion of a ‘CL model’ in [Zar07].

Definition 3.20 (Simple Context Algebra). A simple context algebra A =

(D,C, •, I) consists of

� a non-empty set of abstract data structures, D,

� a non-empty set of contexts, C,

� an application operator, • : C× D⇀ D, and

� a distinguished set of contexts, I ⊆ C,

for which, for all s ∈ D, i•s is defined for some i ∈ I, and, for all i ∈ I, whenever

i • s is defined, i • s = s (that is, I is a left identity of •).

Remark. Context algebras are not the only way of defining models for
context logic. For instance, one could permit the application
operator to be a relation rather than a partial function. How-
ever, context algebras represent a good choice in the sense that
the proof theory given in [Zar07] is sound and complete with
respect to them.
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Definition 3.21 (CLs Formulae). The set of data formulae Ps , ranged over by

P,Q, P1, . . . , and the set of context formulae Ks , ranged over by K,K1, . . . are

defined inductively as follows:

P ::= SP specific formulae∣∣ K • P ∣∣ K •− P structural formulae∣∣ false
∣∣ P1 → P2 Boolean formulae

K ::= SK specific formulae∣∣ I
∣∣ P1 −• P2 structural formulae∣∣ False

∣∣ K1 → K2 Boolean formulae.

The definition is parameterised by the definitions of SP and SK, which define

formula constructions specific to the model under consideration.

Definition 3.22 (CLs Sorts). The set of sorts for CLs , Sort, ranged over by ς,

is defined as follows:

ς ::= d
∣∣ c.

That is, there are two sorts: d, the sort of abstract data structures, and c, the

sort of contexts. The family of worlds for CLs , {Worldς}ς∈Sort, is defined by

Worldd = D, Worldc = C. The family of formulae for CLs , {Formulaς}ς∈Sort, is

defined by Formulad = Ps , Formulac = Ks .

Definition 3.23 (CLs Satisfaction Relations). The satisfaction relations |=d ⊆
D×Ps and |=c ⊆ C×Ks , which denote satisfaction of a data formula by a data

structure and satisfaction of a context formula by a context respectively, are

defined by induction on the structure of formulae as follows:

s |=d K • P ⇐⇒ there exist c ∈ C, s′ ∈ D s.t. s = c • s′ and

c |=c K and s′ |=d P

s |=d K •− P ⇐⇒ for all c ∈ C, s′ ∈ D, s′ = c • s and c |=c K =⇒
s′ |=d P

s |=d false never

s |=d P1 → P2 ⇐⇒ s |=d P1 =⇒ s |=d P2

c |=c I ⇐⇒ c ∈ I

c |=c P1 −• P2 ⇐⇒ for all s1, s2 ∈ D, s2 = c • s1 and s1 |=d P1 =⇒
s2 |=d P2

c |=c False never

c |=c P1 → P2 ⇐⇒ c |=c P1 =⇒ c |=c P2.
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The definition of satisfaction for model-specific formulae, SP and SK, is defined

on a per-model basis.

3.2.2 Context Logic with Composition

To define a context logic with composition over a data structure, the data struc-

ture must be equipped with a composition operator on contexts, as well as being

a simple context algebra. This is captured by the notion of a compositional con-

text algebra.

Definition 3.24 (Compositional Context Algebra). A compositional context

algebra A = (D,C, ◦, •, I) consists of

� a simple context algebra (D,C, •, I), and

� a context composition operator, ◦ : C× C⇀ C,

for which the following properties hold: for all c, c′, c′′ ∈ C, s ∈ D, and i′ ∈ I

� c ◦ (c′ ◦ c′′) = (c ◦ c′) ◦ c′′ (that is, composition is associative);

� c ◦ (c′ • s) = (c ◦ c′) • s (that is, composition associates with application);

� i ◦ c is defined for some i ∈ I, and whenever i ◦ c is defined, i′ ◦ c = c (that

is, I is a left identity of ◦); and

� c ◦ i is defined for some i ∈ I, and whenever c ◦ i′ is defined, c ◦ i = c (that

is, I is a right identity of ◦).

(Undefined terms are considered equal.)

A consequence of the above definition is that, for each s ∈ D, there is exactly

one i ∈ I with i•s = s. To see this, suppose that i′ ∈ I is such that i′ •s = s; by

the associativity rules, s = i′ • (i • s) = (i′ ◦ i) • s, and so i′ ◦ i must be defined,

and hence equal to both i′ and i; therefore, i′ = i. We can view i as being the

type of s. By similar reasoning, for each c ∈ C, there are unique i, i′ ∈ I with

i ◦ c = c = c ◦ i′. We can view i as being the outer type of c and i′ as being the

hole type of c.

Application of a context to a data structure is only defined if the type of the

data structure matches the hole type of the context; the type of the resulting

data structure would be the context’s outer type. Similarly, composition of a

context with another context is only defined if the outer type of the second

matches the hole type of the first; the outer type of the resulting context would

be the first context’s outer type, while the inner type would be the second
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context’s inner type. This typing of contexts and data is exhibited by stratified

models such as the DOM [GSWZ08].

Definition 3.25 (CLc Formulae). The set of data formulae Pc , ranged over by

P,Q, P1, . . . , and the set of context formulae Kc , ranged over by K,K1, . . . are

defined inductively as follows:

P ::= SP specific formulae∣∣ K • P ∣∣ K •− P structural formulae∣∣ false
∣∣ P1 → P2 Boolean formulae

K ::= SK specific formulae∣∣ I
∣∣ P1 −• P2 structural formulae∣∣ K1 ◦K2

∣∣ K1 ◦−K2

∣∣ K1 −◦K2 composition formulae∣∣ False
∣∣ K1 → K2 Boolean formulae.

The definition is, again, parameterised by the definitions of SP and SK, which

define formula constructions specific to the model under consideration.

Definition 3.26 (CLc Sorts). The set of sorts for CLc , Sort, ranged over by ς,

is defined as follows:

ς ::= d
∣∣ c.

That is, there are two sorts: d, the sort of abstract data structures, and c, the

sort of contexts. The family of worlds for CLc , {Worldς}ς∈Sort, is defined by

Worldd = D, Worldc = C. The family of formulae for CLc , {Formulaς}ς∈Sort, is

defined by Formulad = Pc , Formulac = Kc .

Definition 3.27 (Satisfaction Relations). The satisfaction relations |=d ⊆ D×P
and |=c ⊆ C×K, which denote satisfaction of a data formula by a data structure

and satisfaction of a context formula by a tree context respectively, are defined

by induction on the structure of formulae as follows:

s |=d K • P ⇐⇒ there exist c ∈ C, s′ ∈ D s.t. s = c • s′ and

c |=c K and s′ |=d P

s |=d K •− P ⇐⇒ for all c ∈ C, s′ ∈ D, s′ = c • s and c |=c K =⇒
s′ |=d P

s |=d false never

s |=d P1 → P2 ⇐⇒ s |=d P1 =⇒ s |=d P2
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c |=c I ⇐⇒ c ∈ I

c |=c P1 −• P2 ⇐⇒ for all s1, s2 ∈ D, s2 = c • s1 and s1 |=d P1 =⇒
s2 |=d P2

c |=c K1 ◦K2 ⇐⇒ there exist c′, c′′ ∈ C s.t. c = c′ ◦ c′′ and

c′ |=c K1 and c′′ |=c K2

c |=c K1 ◦−K2 ⇐⇒ for all c′, c′′ ∈ C, c′′ = c′ ◦ c and c′ |=c K1 =⇒
c′′ |=c K

c |=c K1 −◦K2 ⇐⇒ for all c′, c′′ ∈ C, c′′ = c ◦ c′ and c′ |=c K1 =⇒
c′′ |=c K

c |=c False never

c |=c P1 → P2 ⇐⇒ c |=c P1 =⇒ c |=c P2.

The definition of satisfaction for model-specific formulae, SP and SK, is defined

on a per-model basis.

3.2.3 Multi-holed Context Logic

As we have seen in the case of trees, multi-holed context logic looses the dis-

tinction between context and data structure, since the latter can be considered

to be simply a zero-holed context. Consequently, a multi-holed context algebra

has only a set of contexts. However, it does have a multitude of composition

operators — one for each hole label — and corresponding identities.

Definition 3.28 (Multi-holed Context Algebra). A multi-holed context algebra

A = (C,holes, {©x }x∈X , {Ix}x∈X) consists of

� a non-empty set of abstract data-structure contexts, C,

� a hole operator holes : C→ Pfin(X),

� a composition operator ©x : C× C⇀ C for each x ∈ X, and

� a distinguished set Ix ⊆ C for each x ∈ X,

for which the following properties hold:

� for all c, c′, c′′ ∈ C and x ∈ X, if c©x c′ = c′′ then

– x ∈ holes c,

– holes c ∩ holes c′ ⊆ {x}, and

– holes c′′ = (holes c \ {x}) ∪ holes c′;

� for all c ∈ C and x ∈ X,
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– there exists ix ∈ Ix such that ix ©x c is defined, and

– for all ix ∈ Ix, if ix ©x c is defined, then ix ©x c = c;

� for all c ∈ C and all x ∈ holes c,

– there exists ix ∈ Ix such that c©x ix is defined, and

– for all ix ∈ Ix, if c©x ix is defined then c©x ix = c;

� for all c ∈ C, all x ∈ holes c and all y /∈ holes c, there exists iy ∈ Iy such

that c©x iy is defined;

� for all c, c′, c′′ ∈ C, all x ∈ holes c and all y ∈ holes c′ with either y /∈ holes c

or y = x, (c©x c′)©y c′′ = c©x (c′ ©y c′′); and

� for all c, c′, c′′, all x /∈ holes c′′ and all y /∈ holes c′, (c ©x c′) ©y c′′ = (c ©y
c′′)©x c′.

(Undefined terms are considered equal.)

A number of interesting basic properties follow from this definition. Firstly,

for every context c ∈ C there is exactly one ix ∈ Ix with ix ©x c defined.

Similarly, for every context c ∈ C and hole x ∈ holes c, there is exactly one

ix ∈ Ix with c ©x ix. The set Ix can thus be used to classify contexts and

x-holes by type, determined by which element of Ix is a left or right x-identity,

analogously to context algebras with composition. An x-hole of type ix ∈ Ix will

only accept a context of type ix, since c©x c′ = (c©x ix)©x c′ = c©x (ix ©x c′).

In order for no hole label to be distinctive, the classification of contexts

according to Ix should be the same as the classification according to Iy for any

two x, y ∈ X. This is indeed the case. To see this, suppose that, for some c ∈ C,

ix ∈ Ix and iy, i
′
y ∈ Iy, ix ©x c, ix ©x c, iy ©y c and i′y ©y c are all defined.

Then c = iy ©y (ix ©x c) = (iy ©y ix)©x c and so iy ©y ix is defined. By similar

reasoning, i′y ©y ix is defined, and so iy = i′y. Hence, the structural properties of

a context are independent of its hole labels. In other words, every permutation

of X yields an automorphism of a multi-holed context algebra.

Definition 3.29 (Context Hole Substitution). For c ∈ C and x, y ∈ X with

y ] c, let c[y/x] be the unique c′ ∈ C such that c′ = c ©x iy for some iy ∈ Iy if

x ∈ holes c, and c otherwise.

Definition 3.30 (CLm Formulae). The set of formulae Km , ranged over by
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K,K1, . . . is defined inductively as follows:

K ::= S specific formulae∣∣ α ∣∣ K1 ◦α K2

∣∣ K1 ◦−α K2

structural formulae∣∣ K1 −◦α K2

∣∣ ∃α.K ( ∣∣ Nα.K
)∣∣ False

∣∣ K1 → K2 Boolean formulae.

The definition is parameterised by the definition of S, which defines formula

constructions specific to the model under consideration.

Definition 3.31 (CLm Sorts). The set of sorts for CLm , Sort, ranged over by

ς, is defined as follows:

ς ::= cφ

where φ ∈ Pfin(Θ) ranges over finite sets of hole variables. That is, there is a

sort cφ for each finite set of hole variables φ. The family of worlds for CLm ,

{Worldς}ς∈Sort, is defined by

Worldς = {(c, σ) ∈ Cm × LEnv | c(domσ) = ς} .

The family of formulae for CLm , {Formulaς}ς∈Sort, is defined by

Formulaς = {K ∈ Km | there exists φ s.t. ς = cφ and fvK ⊆ φ} .

Definition 3.32 (CLm Satisfaction Relations). The satisfaction relations |=ς ⊆
Worldς ×Formulaς , which denote satisfaction of a formula by a multi-holed con-

text with respect to a logical environment (for each sort ς), is defined by induc-

tion on the structure of formulae as follows, where ς = cφ for some φ ∈ Pfin(Θ),

and, when applicable, x = σα and α ∈ φ:

c, σ |=ς α ⇐⇒ c ∈ Ix

c, σ |=ς K1 ◦α K2 ⇐⇒ there exist c1, c2 s.t. c = c1 ©x c2 and
c1 |=ς K1 and c2 |=ς K2

c, σ |=ς K1 ◦−α K2 ⇐⇒ for all c1, c2, c2 = c1 ©x c and c1, σ |=ς K1

=⇒ c2, σ |=ς K2

c, σ |=ς K1 −◦α K2 ⇐⇒ for all c1, c2, c2 = c©x c1 and c1, σ |=ς K1

=⇒ c2, σ |=ς K2

c, σ |=ς ∃β.K ⇐⇒ there exists y s.t. c, σ[β 7→ y] |=c(φ∪{β}) K(
c, σ |=ς Nβ.K ⇐⇒ there exists y s.t. y ] c, σ and

)
c, σ[β 7→ y] |=c(φ∪{β}) K

c, σ |=ς False never

c, σ |=ς K1 → K2 ⇐⇒ c, σ |=ς K1 =⇒ c, σ |=ς K2.

The definition of satisfaction for model-specific formulae, S, is defined on a

per-model basis.
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Elementary Properties

The following two, natural, properties hold for all of the context logic models

presented in this thesis. It is possible to define model-specific connectives in

a pathological fashion that break these properties, however. In §3.4.1 I define

sufficient conditions on the interpretation of these connectives for the properties

to hold.

Property 3.33 (Environment Extendability). For all ς ∈ Sort, (c, σ) ∈Worldς ,

K ∈ Formulaς , α ∈ Θ and x ∈ X with ς = cφ for some φ ∈ Pfin(Θ), and α /∈ φ,

c, σ |=ς K ⇐⇒ c, σ[α 7→ x] |=c(φ∪{α}) K.

The environment extendability property simply asserts that extra variable

assignments in the logical environment do not impinge on whether a world

satisfies a formula. If this property did not hold, it would be difficult to justify

the view of hole variables as logical variables.

Property 3.34 (Hole Subsitutition). For all ς ∈ Sort, (c, σ) ∈ Worldς , K ∈
Formulaς , x, y ∈ X with y ] c, σ,

c, σ |=ς K ⇐⇒ c[y/x], σ[y/x] |=ς K.

The hole substitution property asserts that formulae are agnostic to hole

labels. This holds because formulae never reference holes directly, but only

through hole variables.

The following lemma is an important corollary of the hole substitution prop-

erty.

Lemma 4 (Universal Characterisation of Fresh Quantification). For all ς ∈
Sort, (c, σ) ∈Worldς , K ∈ Formulaς , β ∈ Θ,

c, σ |=ς Nβ.K ⇐⇒ for all y, y ] c, σ =⇒ c, σ[β 7→ y] |=c(φ∪{β}) K

where ς = cφ.

Proof. =⇒:

There is some x ] c, σ with c, σ[β 7→ x] |=c(φ∪{β}) K. Fix some arbitrary y ] c, σ.

By the freshness of x, c = c[y/x] and (σ[β 7→ x])[y/x] = σ[β 7→ y]. Hence, since y

is fresh, by the hole substitution property, c, σ[β 7→ y] |=c(φ∪{β}) K, as required.

⇐=:

This direction is trivial: since X is infinite and both holes c and rangeσ are

finite, it is always possible to pick some fresh y.

An important consequence of Lemma 4 is that Nis self dual. That is,

Nα.K ≡ ¬ Nα.¬K.
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3.3 Context Logic Models

I present various instances of the general context logic framework. Each is

presented as a context algebra with composition, although the adaptation to a

multi-holed context algebra is straightforward.

3.3.1 Sequences

Sequences are ordered, finite lists of labels. They can be viewed as flat trees

— trees in which all nodes are at the root level — and so in many ways are a

special case of the tree model.

Definition 3.35 (Sequence Context Algebra). The set of sequences Seq, ranged

over by s, s1, s
′, . . . , and the set of sequence contexts CSeq, ranged over by

c, c1, c
′, . . . , are defined inductively as follows:

s ::= ∅
∣∣ a

∣∣ s1 · s2

c ::= −
∣∣ s · c ∣∣ c · s

where · is considered to be associative and to have ∅ as its identity. Context

application, • : CSeq × Seq ⇀ Seq, and composition, ◦ : CSeq × CSeq ⇀ CSeq are

standard:

c • s def
= c[s/−] c1 ◦ c2

def
= c1[c2/−].

The sequence context algebra is (Seq,CSeq, ◦, •, {−}).

Definition 3.36 (Sequence-specific Formulae). The sequence-specific formulae

for context logic with composition are defined as follows:

SP ::= 0
∣∣ a

SK ::= P ·K
∣∣ K · P .

The satisfaction relations for these formulae are defined as follows:

s |=d 0 ⇐⇒ s = ∅

s |=d a ⇐⇒ s = a

c |=c P ·K ⇐⇒ there exist s, c′ s.t. c = s · c′ and s |=d P and c′ |= K

c |=c K · P ⇐⇒ there exist c′, s s.t. c = c′ · s and c′ |= K and s |=d P .
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3.3.2 Heaps

The heap model of separation logic views heaps as finite partial functions from

addresses to values. Heap separation is then the union of heaps that have

disjoint domains. Here, I define heaps syntactically.

In the following, Addr, the set of heap addresses, ranged over by a, a1, a
′, . . . ,

is typically taken to be the positive integers, i.e. Addr = Z+. The set of values,

Val, ranged over by v, w, v1, v
′, . . . , is essentially arbitrary, but taken to include

the set of heap addresses, i.e. Addr ⊆ Val.

Definition 3.37 (Heap Context Algebra). The set of heaps Heap, ranged over

by h, h1, h
′, . . . , is defined inductively as follows:

h ::= emp
∣∣ a 7→ v

∣∣ h1 ∗ h2

where ∗ is considered to be associative and commutative with identity emp, and

heap addresses occur uniquely (as addresses) within any given heap. The heap

context algebra is (Heap,Heap, ∗, ∗, {emp}).

This definition identifies heaps and heap contexts. It is quite possible to

define heap contexts with explicit holes in the syntactic fashion I used to define

tree and sequence contexts. However, the nature of ∗ (a commutative, partial

monoid operator) would give a context algebra that is isomorphic to the one

above.

In [COY07], Calcagno, O’Hearn and Yang consider abstract models for sep-

aration logic, called separation algebras, of which the heap model is an in-

stance. Separation algebras are defined to be cancellative, partial commutative

monoids, (D, ◦, u). Any such separation algebra gives rise to a context algebra

(D,D, ◦, ◦, {u}).

Definition 3.38 (Heap-specific Formulae). The heap-specific formulae for con-

text logic with composition are defined as follows:

SP ::= 0

SK ::= a 7→ v.

The satisfaction relations for these formulae are defined as follows:

h |=d 0 ⇐⇒ h = emp

h |=c a 7→ v ⇐⇒ h = a 7→ v.
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3.3.3 Terms

Terms are finite, ranked trees. That is, each node of the term has a fixed number

of children. Let Υ be a ranked alphabet from which the nodes of terms are to

be labelled; that is Υ ⊆ Σ × N for some alphabet Σ. (Letters from Σ may be

given more than one rank in Υ. Labels are considered to be different if they

have different ranks.)

Definition 3.39 (Term Context Algebra). The set of terms Term, ranged over

by r, r1, r
′, . . . , and the set of term contexts CTerm, ranged over by c, c1, c

′, . . . ,

are defined inductively as follows:

r ::= a(r1, . . . , rn)

c ::= −
∣∣ a(r1, . . . , ri−1, ci, ri+1, . . . , rn)

where (a, n) ∈ Υ ranges over ranked terms and 1 ≤ i ≤ n. Context application,

• : CTerm × Term ⇀ Term, and composition, ◦ : CTerm × CTerm ⇀ CTerm are

standard:

c • r def
= c[r/−] c1 ◦ c2

def
= c1[c2/−].

The term context algebra is (Term,CTerm, ◦, •, {−}).

Definition 3.40 (Term-specific Formulae). The term-specific formula for con-

text logic with composition are defined as follows:

SP ::= a(P1, . . . , Pn)

SK ::= a(P1, . . . , Pi−1,Ki, Pi+1, . . . , Pn)

where (a, n) ∈ Υ ranges over ranked terms and 1 ≤ i ≤ n. The satisfaction

relations for these formulae are defined as follows:

r |=d a(P1, . . . , Pn) ⇐⇒ there exist r1, . . . , rn ∈ Term s.t.

r = a(r1, . . . , rn) and

for all 1 ≤ i ≤ n, ri |=d Pi

c |=c a(P1, . . . , Pi−1,Ki, Pi+1, . . . , Pn)

⇐⇒ there exist r1, . . . , ri−1,

ri+1, . . . , rn ∈ Term, ci ∈ CTerm s.t.

c = a(r1, . . . , ri−1, ci, ri+1, . . . , rn) and

for all i ∈ {1, . . . , i− 1, i+ 1, . . . , n} , ri |=d Pi

and ci |=c Ki.
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3.4 Context Logic as Modal Logic

Calcagno, Gardner and Zarfaty previously viewed context logic as a modal logic

in order to prove expressivity results [CGZ07a]. I will also use this view of

context logic in Chapter 4 to give a simplified and generalised presentation of

games.

In the modal logic presentation, the semantics of each non-Boolean connec-

tive of the logic, ~, is given by a Kripke semantics in which it is interpreted

by a relation over worlds, M~. Specifically, for each n-ary connective ~, and

formulae F1, . . . , Fn, and for each w ∈Worldς

w |=ς ~(F1, . . . , Fn) ⇐⇒ there exist w1 ∈Worldς1 , . . . , wn ∈Worldςn s.t.

(w1, . . . , wn) M~ w and

for all 1 ≤ i ≤ n, wi |=ςi
Fi.

Note, however, that certain connectives — namely −• and •− — do not follow

this pattern exactly; however, if we consider their dual connectives — −•∃ and

•−∃ — as primitive instead, all of the primitive connectives can be presented

this way.

The modal relations must be well behaved with respect to the sorts in the

logic. In particular, for each n-ary connective ~ there must be some partial

function f~ : Sort⇀ Sortn such that for all sorts ς, ς1, . . . , ςn, and all w ∈Worldς ,

w1 ∈Worldς1 , . . . , wn ∈Worldςn , if

(w1, . . . , wn) M~ w

then

f~(ς) = (ς1, . . . , ςn).

The sorts of formulae can be derived by the rule

f~(ς) = (ς1, . . . , ςn) F1 ∈ Formulaς1 · · · Fn ∈ Formulaςn
~(F1, . . . , Fn) ∈ Formulaς .

I give the modal relations for context logic for trees. For other models,

similar presentations are possible, but I will not make use of them. Since the

connectives of CLs
Tree are all connectives of CLc

Tree, I give the modalities for the

latter; the modalities for the former are the same, with the exclusion of those

for composition and its adjoints.

Definition 3.41 (Modalities for CLc
Tree). The modal relations for CLc

Tree are
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defined as follows:

M0
def
= {t ∈ Tree | t = ∅}

Ma[]
def
= {(t1, t) ∈ Tree× Tree | t = a[t1]}

M⊗left
def
= {((c1, t2), c) ∈ (CTree × Tree)× CTree | c1 ⊗ t2 = c}

M⊗right
def
= {((t1, c1), c) ∈ (Tree× CTree)× C | t1 ⊗ c2 = c)}

MI
def
= {c ∈ CTree | c = −}

M•
def
= {((c1, t2), t) ∈ (CTree × Tree)× Tree | c1 • t2 = t}

M•−∃
def
= {((c1, t2), t) ∈ (CTree × Tree)× Tree | c1 • t = t2}

M−•∃
def
= {((t1, t2), c) ∈ (Tree× Tree)× CTree | c • t1 = t2}

M◦
def
= {((c1, c2), c) ∈ (CTree × CTree)× CTree | c1 ◦ c2 = c}

M◦−∃
def
= {((c1, c2), c) ∈ (CTree × CTree)× CTree | c1 ◦ c = c2}

M−◦∃
def
= {((c1, c2), c) ∈ (CTree × CTree)× CTree | c ◦ c1 = c2} .

Definition 3.42 (Modalities for CLm
Tree). The modal relations for CLm

Tree are

defined as follows:

M0
def
= {(c, σ) ∈Worldς | c = ∅}

Ma[]
def
= {((c1, σ), (c, σ)) ∈Worldς ×Worldς | c = a[c1]}

M⊗
def
=
{

(((c1, σ), (c2, σ)), (c, σ)) ∈World2
ς ×Worldς

∣∣ c = c1 ⊗ c2
}

Mα
def
= {(c, σ) ∈Worldcφ | α ∈ φ and c = σα}

M◦α
def
=

{
(((c1, σ), (c2, σ)), (c, σ))

∈World2
cφ ×Worldcφ

∣∣∣∣∣ α ∈ φ and x = σα and

c1 ©x c2 = c

}

M◦−∃
α

def
=

{
(((c1, σ), (c2, σ)), (c, σ))

∈World2
cφ ×Worldcφ

∣∣∣∣∣ α ∈ φ and x = σα and

c1 ©x c = c2

}

M−◦∃α
def
=

{
(((c1, σ), (c2, σ)), (c, σ))

∈World2
cφ ×Worldcφ

∣∣∣∣∣ α ∈ φ and x = σα and

c©x c1 = c2

}

M∃α
def
=

{
((c, σ[α 7→ x]), (c, σ))

∈Worldc(φ∪{α}) ×Worldcφ

∣∣∣∣∣ x ∈ X

}

M Nα
def
=

{
((c, σ[α 7→ x]), (c, σ))

∈Worldc(φ∪{α}) ×Worldcφ

∣∣∣∣∣ x ∈ X \ (holes c ∪ rangeσ)

}
.

3.4.1 Elementary Properties

The following basic properties hold for all of the model-specific CLm -modalities

used in this thesis. They are simple, but sufficient for environment extendability
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(Property 3.33) and hole substitution (Property 3.34) to hold.

Property 3.43 (Environment Neutrality). For connective ~ of arity n, M~

satisfies the environment neutrality property if and only if there exists some

M~ ⊆ Cn × C such that

M~=
{

(((c1, σ), . . . , (cn, σ)), (c, σ))
∣∣ (c1, . . . , cn) M~ c and σ ∈ LEnv

}
.

Environment extendability (Property 3.33) is a consequence of environment

neutrality holding for each model-specific connective. The proof is by induction

on the structure of formulae, the model-specific cases following by environment

neutrality and the remaining cases holding trivially.

Property 3.44 (Hole Neutrality). For connective ~ of arity n, M~ satisfies the

hole neutrality property if and only if, for all worlds w,w1, . . . , wn ∈ C× LEnv

with

(w1, . . . , wn) M~ w,

for all y ∈ X with y ] w,w1, . . . , wn,

(w1[y/x], . . . , wn[y/x]) M~ w[y/x].

Hole substitution (Property 3.34) is a consequence of hole neutrality holding

for each model-specific connective. The proof is by induction on the structure of

formulae, the model-specific cases following directly from hole neutrality and the

remaining cases holding by structural considerations concerning substitution.
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Chapter 4

Expressivity

This chapter deals with expressivity questions about context logic for trees, in

particular, the question of whether or not the adjunct connectives add expressive

power to the logic. The main tool I use to study expressivity is Ehrenfeucht-

Fräıssé Games, which are introduced in §4.1. In §4.2, I discuss to what extent

adjunct elimination holds for CLs
Tree, and prove that the −• adjoint cannot be

eliminated. In §4.3, I explain the difficulties in showing adjunct elimination for

CLc
Tree. Finally, in §4.4, I show that adjunct elimination does hold for CLm

Tree.

Collaboration and Contribution

The work in this chapter was conducted in collaboration with Calcagno and

Gardner, much of which was previously published in [CDYG07] and [CDYG10].

Most of the technical work was my contribution, under the supervision of my

collaborators.

4.1 Ehrenfeucht-Fräıssé Games

In this section, I give a general presentation of Ehrenfeucht-Fräıssé-style games

that can be instantiated for each logic that I introduced in the previous chapter.

For the purposes of this chapter, I will assume the modal presentation of each

logic, in which we consider the connectives with existential semantics to be

primitive. This allows for a simple and general proof of the soundness and

completeness of games.

Central to the definition of games is the concept of a rank, which establishes

a relationship between games and logical formulae — the same concept of rank

abstracts the structure of both. Ranks are structured according to a ranking,
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which captures enough of the structure of formulae for games to be sound and

complete.

Definition 4.1 (Ranking). A ranking for a logic is a bounded join semi-lattice

(Rank,v), together with a relation R~ ⊆ Rankn × Rank for each non-Boolean

logical connective ~, where n is the arity of ~, having the properties that:

� for every non-Boolean connective ~ and ranks r1, . . . , rn, where n is the

arity of ~, there exists a rank r with (r1, . . . , rn) R~ r — the ranking is

constructive;

� for every non-Boolean connective ~ and ranks r, r′, r1, . . . , rn, where n is

the arity of ~, if (r1, . . . , rn) R~ r and r v r′ then (r1, . . . , rn) R~ r′ —

the ranking is upwardly closed ;

� for every rank r ∈ Rank, the set {(~,−→r ) | −→r R~ r} is finite — the ranking

is finitely branching ; and

� the relation C ⊆ Rank × Rank, defined to be the least relation such that,

for every non-Boolean connective ~ and ranks r, r1, . . . , rn, where n is

the arity of ~, if (r1, . . . , rn) R~ r then ri C r for all 1 ≤ i ≤ n, is a

well-founded relation — the ranking is inductive.

4.1.1 Ranks of Formulae

The ranking relations, R~, are used to establish the ranks of formulae. Every

formula has some rank (Lemma 6), yet each rank consists of only finitely many

formulae, when considered up to logical equivalence (Lemma 7). A world can be

characterised by the formulae of a given rank that it satisfies (Definition 4.3).

This essentially establishes the concept of rank-r equivalence on worlds: two

worlds are rank-r equivalent exactly when no formula of rank r discriminates

between them.

Definition 4.2 (Rank of a Formula). Formula F is said to have rank r ∈ Rank

if:

� it is of the form ~(F1, . . . , Fn) for some non-Boolean operator ~ and

formulae F1, . . . , Fn having ranks r1, . . . , rn, with (r1, . . . , rn) R~ r; or

� it is a Boolean combination of such formulae.

The following lemma is trivial, but ensures that it is always possible to assign

ranks to Boolean combinations of formulae.
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Lemma 5 (Upward Closure for Formulae). If F has rank r ∈ Rank then, for

any r′ ∈ Rank with r v r′, F has rank r′.

Proof. The proof is by induction on the structure of F . There are two cases to

consider.

Suppose that F is of the form~(F1, . . . , Fn) for some non-Boolean connective

~ and formulae F1, . . . , Fn having ranks r1, . . . , rn, with (r1, . . . , rn) R~ r. By

the definition of ranking, (r1, . . . , rn) R~ r′, and so F has rank r′.

The remaining case is that F is a Boolean combination of formulae of rank

r. By induction, these formulae also have rank r′ and so F has rank r′.

Lemma 6 (Rank Definedness). Every formula has at least one rank.

Proof. Let F be an arbitrary formula. The proof is by induction on the structure

of F . There are two cases to consider.

Suppose that F is of the form~(F1, . . . , Fn) for some non-Boolean connective

~ and formulae F1, . . . , Fn. By the inductive hypothesis, each formula Fi has

some rank ri. By the definition of ranking, there is some rank r such that

(r1, . . . , rn) R~ r, and hence F has rank r.

The remaining case is that F is a Boolean combination of zero or more

formulae, F1, . . . , Fn. By the inductive hypothesis, each Fi has some rank ri.

Since a ranking is a bounded join semi-lattice, there exists a least upperbound

r of these ranks. For each i, since ri v r it follows by Lemma 5 that Fi has

rank r. Thus F also has rank r.

Assumption 4.1. Logical equivalence is a congruence with respect to the con-

nectives of the logic.

This assumption holds for all of our logics, as a consequence of the way their

semantics is defined. (It would most likely be absurd for a logic not to satisfy

this assumption.)

Lemma 7. There are are only finitely many equivalence classes of formulae of

each rank r ∈ Rank.

Proof. The proof is by well-founded induction on the rank r, using the rela-

tion C. Formulae of rank r are boolean combinations of formulae of the form

~(F1, . . . , Fn) for non-Boolean connectives ~ and formulae F1, . . . , Fn having

ranks r1, . . . , rn with (r1, . . . , rn) R~ r. By the definition of ranking, there are

finitely many choices for ~, r1, . . . , rn. Further, for each i, ri C r, and so by the

inductive hypothesis there are only finitely many equivalence classes of formu-

lae of rank ri. Since logical equivalence is a congruence, there are only finitely

79



Expressivity 4.1 Ehrenfeucht-Fräıssé Games

many equivalence classes of formulae of the form ~(F1, . . . , Fn) where each Fi

has rank ri. There are only finitely many Boolean combinations that may be

formed from finitely many equivalence classes of formulae. Therefore, there are

only finitely many equivalence classes of formulae of rank r.

Notation. For each sort ς and rank r, let Fς,r denote a set of sort-ς formulae

of rank r, one from each equivalence class.

Definition 4.3 (Characteristic). The characteristic formula of rank r of a world

w ∈Worldς is the formula Dr
w, defined as follows

Dr
w =

∧
{F ∈ Fς,r | w |= F} .

Lemma 8. If w′ |= Dr
w then there is no formula of rank r that discriminates

between w and w′.

Proof. Suppose that there were some formula F of rank r that discriminates

between w and w′. Without loss of generality, we can assume that w |= F and

w′ /|= F (otherwise, consider the formula ¬F ). There is a formula F ′ ∈ Fς,r that

is equivalent to F , and hence w |= F ′ and w′ /|= F ′. Since w′ |= Dr
w, which is,

by definition, a conjunction of formulae including F ′, it must be that w′ |= F ′.

This is a contradiction, therefore no discriminating formula exists.

The following corollary, which characterises certain sets with formulae, is

used to show the existence of equivalent formulae in my adjunct elimination

results.

Corollary 9. Let W ⊆ Worldς be a set of worlds of sort ς such that, for any

w,w′ ∈ Worldς with w ∈ W and w′ /∈ W , there exists a formula F of rank r

such that w |=ς F and w′ /|=ς F . There exists a formula FW of rank r such that,

for every w ∈Worldς , w |= FW if and only if w ∈W .

Proof. Let

FW =
∨
{Dr

w | w ∈W} .

Since each characteristic formula of rank r is a conjunction of formulae from

the finite set Fς,r, there are only finitely many of them. Hence FW is a finite

disjunction (and so a proper, finite formula). Suppose that w ∈ W . Naturally,

w |=ς D
r
w and so w |= FW . Suppose that w |= FW . Since FW is a disjunction,

it must be that, for some w′ ∈W , w |= Dr
w′ . By Lemma 8, there is no formula

of rank r that discriminates between w and w′. Therefore w ∈W .
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4.1.2 Games

A game state is a triple (w,w′, r) where w and w′ are worlds of the same sort

and r is a rank. The game is played as a succession of rounds in which each

of two players, called Spoiler and Duplicator, take turns to make choices that

fulfil certain requirements. Eventually, one player is unable to make a choice

that fulfils the requirements, thereby losing the game. When Spoiler wins the

game, it is by finding a distinction between the two worlds in the state; when

Duplicator wins, it is because Spoiler was unable to find such a distinction. Thus,

while Spoiler’s strategy is to find a property one world has but the other does

not have, Duplicator’s is to match Spoiler’s property on the other world.

Definition 4.4 (Game). From the game state (w,w′, r), where w,w′ ∈Worldς

for some sort ς and r ∈ Rank, the game proceeds as follows:

� Spoiler selects (wS, wD) ∈ {(w,w′), (w′, w)}.

� Spoiler selects a logical connective ~ and ranks r1, . . . , rn ∈ Rank (where

n is the arity of ~) such that (r1, . . . , rn) R~ r. (If Spoiler cannot make

such a choice, Duplicator wins.)

� Spoiler selects w1, . . . , wn such that (w1, . . . , wn) M~ wS. (Again, if

Spoiler cannot make such a choice, Duplicator wins.)

� Duplicator selects w′1, . . . , w
′
n such that (w′1, . . . , w

′
n) M~ wD. (If Duplica-

tor cannot make such a choice, Spoiler wins.)

� Spoiler selects 1 ≤ i ≤ n and the game proceeds from the state (wi, w
′
i, ri).

(If Spoiler cannot make such a choice, i.e. if n = 0, Duplicator wins.)

Every game must eventually end in victory for one of the players. If this were

not the case, it would lead to an infinite sequence of game states (w1, w
′
1, r1),

(w2, w
′
2, r2), . . . with the property that ri+1 C ri, which is impossible since C is

well-founded.

Furthermore, from any initial state (w,w′, r) there is a strategy for one of the

players that enables that player to always win. To see this, suppose that Spoiler

does not have a winning strategy. This means that however Spoiler chooses to

play each round, Duplicator can respond so that she can still win the game.

These responses are a winning strategy for Duplicator. Similarly, if Duplicator

has no winning strategy then Spoiler must have one.

Let DW be the set of game states for which Duplicator has a winning strategy

and let SW be the set of game states for which Spoiler has a winning strategy.
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Clearly, (w,w′, r) ∈ SW if and only if (w′, w, r) ∈ SW, since spoiler has the

choice of which world to play with.

A useful property for games to have is downward closure:

Property 4.5 (Downward Closure). For worlds w,w′ ∈Worldς (for some sort

ς) and ranks r, r′ ∈ Rank with r C∗ r′, if

(w,w′, r′) ∈ DW

then

(w,w′, r) ∈ DW

where C∗ is the reflexive-transitive closure of C.

This property does not hold in general, but the following is a sufficient

condition on the ranking for downward closure to hold:

Definition 4.6 (Downwardly-Closed Ranking). For a given ranking, let ≤ be

the simulation preorder: that is, the largest relation such that, if r ≤ r′ then

for every non-Boolean connective ~ and ranks r1, . . . , rn with (r1, . . . , rn) R~ r

there exist r′1, . . . , r
′
n with (r′1, . . . , r

′
n) R~ r′ and ri ≤ r′i for each 1 ≤ i ≤ n. We

say that the ranking is downwardly closed if C ⊆ ≤.

Lemma 10. For a downwardly-closed ranking, downward closure (Property 4.5)

holds for games.

Proof. Since C ⊆ ≤ and ≤ is reflexive and transitive, it follows that C∗ ⊆ ≤.

It is then sufficient to show that for every rank r′ ∈ Rank and for all worlds

w,w′ ∈Worldς (for some sort ς) and every rank r ∈ Rank with r ≤ r′, if

(w,w′, r′) ∈ DW

then

(w,w′, r) ∈ DW.

The proof is by well-founded induction on the rank r′.

Assume that (w,w′, r′) ∈ DW and consider the possible moves of Spoiler on

the game (w,w′, r). Either Spoiler selects some (wS, wD) ∈ {(w,w′), (w′, w)},
some logical connective ~ and ranks r1, . . . , rn ∈ Rank such that (r1, . . . , rn) R~

r and some w1, . . . , wn such that (w1, . . . , wn) M~ wS, or else Duplicator wins by

default. By the definition of ≤, there exist r′1, . . . , r
′
n with (r′1, . . . , r

′
n) R~ r′ and

ri ≤ r′i for each 1 ≤ i ≤ n. Hence, Spoiler could make the choice (wS, wD), ~,

r′1, . . . , r
′
n and w1, . . . , wn on the game (w,w′, r′). Duplicator’s winning strategy

gives some response to this move, say w′1, . . . , w
′
n. Suppose that Duplicator
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responds in this way on the game (w,w′, r). Spoiler must then choose i and

the game will continue from state (wi, w
′
i, ri). Duplicator’s winning strategy on

the game (w,w′, r′) means that (wi, w
′
i, r
′
i) ∈ DW. By the inductive hypothesis

(applicable since r′i C r
′), since ri ≤ r′i, (wi, w

′
i, ri) ∈ DW.

Therefore, (w,w′, r) ∈ DW, as required.

The reason that these games are a useful tool for studying expressivity hinges

on the fact that (w,w′, r) ∈ DW if and only if w and w′ are rank-r equivalent.

This is established by soundness (the ‘if’ part) and completeness (the ‘only if’)

part. The results are expressed in the contrapositive: w and w′ are rank-r

distinguishable if and only if (w,w′, r) ∈ SW.

4.1.3 Game Soundness

Theorem 11 (Soundness). Suppose that there is a rank-r formula F with w |=
F and w′ /|= F . Then (w,w′, r) ∈ SW.

Game soundness is established by showing how to derive a winning strategy

for Spoiler from the formula F . Spoiler’s choice of move will always match one of

the outermost non-Boolean connectives of the formula. This leads to new pairs

of worlds that are distinguished by subformulae, and so the result is established

by induction.

Proof. The proof is by induction on the structure of the formula F , and cases

on its outermost connective.

If the outermost connective is a Boolean connective then there is some rank-

r subformula F ′ with either w |= F ′ and w′ /|= F ′ or w′ |= F ′ and w /|= F ′. By

the inductive hypothesis, this implies that (w,w′, r) ∈ SW.

Otherwise, F = ~(F1, . . . , Fn) for some non-Boolean connective ~ of arity

n and some formulae F1, . . . , Fn with ranks r1, . . . , rn where (r1, . . . , rn) R~ r.

By definition,

w |=ς ~(F1, . . . , Fn) ⇐⇒
there exist w1, . . . , wn s.t. (w1, . . . , wn) M~ w

and for all i, wi |=ςi
Fi.

Suppose that Spoiler makes the choices:

� (wS, wD) = (w,w′);

� connective ~ and ranks r1, . . . , rn as given above; and

� w1, . . . , wn as given above.
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If Duplicator cannot respond, then this is already a winning strategy for Spoiler.

On the other hand, suppose that Duplicator does choose:

� some w′1, . . . , w
′
n with (w′1, . . . , w

′
n) M~ w′.

Then it must be the case that, for some 1 ≤ j ≤ n, w′j /|= Fj — for otherwise

w′ |= F , which we know not to be the case. Suppose then that Spoiler chooses:

� i to be this j, so that the game continues with (wj , w
′
j , rj).

We have established that there is a formula, namely Fj , of rank rj , with wj |= Fj

and w′j /|= Fj . Therefore, by the inductive hypothesis, this gives Spoiler a

winning strategy. Hence, (w,w′, r) ∈ SW.

4.1.4 Game Completeness

Theorem 12 (Completeness). Suppose that (w,w′, r) ∈ SW. Then there is

some rank-r formula F with w |= F and w′ /|= F .

Game completeness is established by using Spoiler’s winning strategy to con-

struct a formula F that meets the requirements. The outermost connective of

the formula will correspond to Spoiler’s choice of connective in his first move.

Proof. The proof is by induction on the rank r. Let ς be the sort of w and w′.

Spoiler’s strategy must be to choose:

� some (wS, wD) ∈ {(w,w′), (w′, w)};

� some connective ~ and ranks r1, . . . , rn with (r1, . . . , rn) R~ r; and

� some worlds w1, . . . , wn with (w1, . . . , wn) M~ wS.

Let F = ~(Dr1
w1
, . . . , Drn

wn). By definition, wi |=ςi
Fi for each i, and so wS |=ς F .

Suppose for a contradiction that wD |=ς F also. Then there must exist

w′1, . . . , w
′
n with (w′1, . . . , w

′
n) M~ wD and, for each i, w′i |=ςi

Dri
wi . By Lemma 8,

this means that no rank-ri formula discriminates between wi and w′i, for each i.

Hence, by the inductive hypothesis, (wi, w
′
i, ri) ∈ DW. Thus if Duplicator were

to choose

� w1, . . . , wn as given above

it would give her a winning strategy, no matter which i Spoiler subsequently

chose. This contradicts the fact that this is a winning strategy for Spoiler, and

so it must be the case that wD /|=ς F .

If wS = w then w |= F and w′ /|= F ; if wS = w′ then w |= ¬F and w′ /|= ¬F .

Hence, there is a rank-r formula having the required property.
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Remark. Since there is no formula F with both w |= F and w /|= F ,
a trivial, yet useful, corollary of game completeness is that
(w,w, r) ∈ DW for every w and r.

4.2 Adjunct (Non)-elimination for CLs
Tree

In my Masters’ Thesis [DY06], I established two results concerning adjunct

elimination for CLs
Tree: that the −• connective is not eliminable, while the •−

connective is. I discuss these results in §§4.2.1 and 4.2.2. The counterexample

provided to the elimination of the −• connective was a context formula which

had no adjunct-free equivalent. An outstanding problem was the question of

the existence of a tree formula for which there is no adjunct-free equivalent. I

resolve this in §4.2.3 by demonstrating such a formula.

4.2.1 Adjunct Elimination Counterexample

The following theorem establishes that the −• connective is not eliminable from

CLs
Tree.

Theorem 13. There is no adjunct-free formula of CLs
Tree that is logically equiv-

alent to the context formula 0−• (True • a[0]).

A context satisfying the formula is such that, whenever the empty tree is

placed in its hole, the resulting tree has an a-labelled leaf. In particular, a

could have been the parent of the hole in the original context. The theorem is

established by showing that, for every −•-free context formula, there is a pair of

contexts that are similar enough that it cannot distinguish between them, yet

one has a as the parent of the hole while the other does not.

Proof. Let a,b ∈ Σ be distinct labels. Let K = 0 −• (True • a[0]), and let ci

and c′i be defined inductively as follows:

c0 = a[−] c′0 = b[−]

ci+1 = a[ci] c′i+1 = a[c′i].

It is clear that, for each i, ci |= K and c′i /|= K. We shall see that no adjunct-

free formula shares this property. In particular, for all adjunct-free formulae

K ′ there exists an n such that for all j ≥ n, cj |= K ′ if and only if c′j |= K ′.

The proof is by induction on the structure of K ′, taking cases on the outermost

connective.
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If K ′ = a′[K ′′] then either a′ = a or cj /|= K ′ and c′j /|= K ′ for all j. In

the latter case, we are done. Let us assume then that K ′ = a[K ′′]. By the

inductive hypothesis, there is an n such that, for all j ≥ n, cj |= K ′′ if and only

if c′j |= K ′′. By construction, cj+1 |= K ′ if and only if cj |= K ′′, and c′j+1 |= K ′

if and only if c′j |= K ′′. Hence, for all j ≥ n+ 1, cj |= K ′ if and only if c′j |= K ′.

If K ′ = K ′′ ⊗ P (or K ′ = P ⊗ K ′′) then cj |= K ′ if and only if cj |= K ′′

and c′j |= K ′ if and only if c′j |= K ′′. This is since the only possible division

of cj as c ⊗ t is when c = cj and t = ∅. (Similarly for c′j and for the division

as t ⊗ c.) By the inductive hypothesis, there is an n such that, for all j ≥ n,

cj |= K ′′ if and only if c′j |= K ′′. Consequently, for all j ≥ n, cj |= K ′ if and

only if c′j |= K ′.

If K ′ = I or K ′ = False then clearly cj /|= K ′ and c′j /|= K ′ for all j.

If K ′ = K ′′ → K ′′′ then, by the inductive hypothesis there are n′ and n′′

such that for all j ≥ n′, cj |= K ′′ if and only if c′j |= K ′′, and for all j ≥ n′′,

cj |= K ′′′ if and only if c′j |= K ′′′. Let n = max(n′, n′′). It follows that, for all

j ≥ n, cj |= K ′ if and only if c′j |= K ′.

Since we have seen that, in every case of the structure of adjunct-free formula

K ′, there is some n such that for every j ≥ n such that cj |= K ′ if and only if

c′j |= K ′. On the other hand, K does not have this property, and hence it is not

equivalent to any adjunct-free formula.

The key property of the logic that is exploited by Theorem 13 is that trees

can be split arbitrarily while contexts cannot. Thus, inserting the empty tree

into a context results in a tree which can be split in such a way as to specify

properties that hold close to the context hole, regardless of how deep it was

within the original context.

Although the proof is not presented in terms of games, the result originally

arose from considerations in terms of games. The analysis is similar to con-

structing a winning strategy for Duplicator for the game (ci, c
′
i, r) where r does

not permit Spoiler to play the connectives •−∃ and −•∃ and i is sufficiently large

with respect to r. Such a strategy accounts for connectives Spoiler could play,

just as the proof accounts for the possible outermost connectives of a poten-

tial discriminating formula. A winning strategy for Duplicator would establish

the non-existence of a discriminating formula by game soundness, whereas the

above proof does so directly.
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4.2.2 Partial Adjunct Elimination

In previous work [DY06], I established that the •− connective can be eliminated

using games. I do not reproduce the result in full here, but report the key

theorem underpinning the result. In order to prove adjunct elimination, it is

sufficient to show that, if Duplicator has a winning strategy for a game that

does not use •−∃ then Duplicator also has a winning strategy for the same game

when the •−∃ connective may be played. This is shown by establishing that

each time Spoiler plays the •−∃ connective, Duplicator has a winning response

given that she would have had a winning response if Spoiler had played any

other connective. When Spoiler plays •−∃, he introduces some new context, to

which Duplicator is invited to respond with some context. The game will then

continue with the two contexts or with the contexts applied to the trees. The

key result is captured in the following theorem, which shows that Duplicator has

a winning strategy by responding with the same context as Spoiler played:

Theorem 14. For all ranks r ∈ Rank and for all t1, t2 ∈ Tree, if

(t1, t2, r) ∈ DW

then for all contexts c ∈ CTree

(c • t1, c • t2, r) ∈ DW.

The proof is intricate but is essentially founded on the principle that any

decomposition of c•t1 (or indeed c•t2) that Spoiler chooses to do is a combination

of some decomposition of t1 (or t2) and some decomposition of c. Duplicator can

match these decompositions and induction is used to establish that she has a

winning strategy when the game continues with the combination.

4.2.3 Adjunct Elimination Counterexample for Trees

While Theorem 13 established that the −• connective does add expressivity to

CLs
Tree, it did so in terms of contexts. In particular, it does not show whether

there is some tree formula that has no adjunct-free equivalent. This is an inter-

esting problem, since contexts are really only a by-product of reasoning about

trees — it would matter little that adjoints are necessary to express context

properties if they were not necessary to express tree properties. The context

formula of Theorem 13 does not immediately suggest a tree formula counterex-

ample, since trees permit the arbitrary-depth splitting that was key to the con-

text formula counterexample. On the other hand, it would be difficult to adapt

the games-based approach to adjunct elimination to show that −• does not add
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expressive power just to tree formulae, since it works by inductively removing

each usage at the point where it occurs — yet Theorem 13 shows that there

can be subformulae from which −• cannot be removed. I resolve the issue by

showing that, in fact, there is a tree formula that uses −•, but which has no

adjunct-free equivalent.

Theorem 15. There is no adjunct-free formula of CLs
Tree that is logically equiv-

alent to the tree formula ¬(a′[0]−• (True • b[True • a′[0]])) • a[0].

Consider a tree that does not contain any a′-labelled nodes. The tree will

satisfy the proposed formula if and only if it has an a-labelled leaf that has

no b-labelled ancestor. That is, there is some a-labelled leaf that cannot be

replaced with and a′-leaf such that it has a b-labelled ancestor. This exploits

the power of −• to convert a context into a tree, which can then be decomposed

using •.
As with Theorem 13, I show this result by demonstrating two sets of worlds

(trees, in this case) that are distinguished by the formula, yet are not distin-

guished by any adjunct-free formula. For one set, all of the a-labelled leaves

have b-labelled ancestors, while for the other set, each tree has some a-labelled

leaf with no b-labelled ancestor. (These sets are the {u(i, j) | i, j ∈ N} and

{v(i, j) | i, j ∈ N}, defined below.) Establishing that no adjunct-free formula

distinguishes these sets is more difficult than in Theorem 13 because the •
connective is applicable. This means that it is not enough for the distinction

between the two trees to be hidden sufficiently deep. Instead, the distinction

between trees is hidden by sufficient self-similarity.

Definition 4.7 (u and v Trees). The trees u(i, j) and v(i, j) are defined by

mutual recursion as follows:

u(i, 0) = ci[b[a[∅]]] v(i, 0) = ci[a[∅]]

u(i, j + 1) = ci[b[u(i, j)⊗ v(i, j)]] v(i, j + 1) = ci[u(i, j)⊗ v(i, j)]

where a,b, c ∈ Σ are some fixed labels and ci[t] denotes iterated labelling (that

is, c0[t] = t and ci+1[t] = c[ci[t]]).

Figure 4.1 illustrates these trees schematically with the b-labelled nodes

denoted by circles. In u(i, j), every a-labelled leaf node has a b-labelled ancestor;

in v(i, j) there is one a-labelled leaf node which does not have any b-labelled

ancestor (reached by taking the right-hand branch each time). It is because

of this that the formula ¬(a′[0] −• (True • b[True • a′[0]])) • a[0] is be able to

distinguish them.
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Figure 4.1: Schematic diagrams of u(i, j) (left) and v(i, j).

The proof of Theorem 15 uses Ehrenfeucht-Fräıssé games for CLs
Tree to show

that, for each rank r that does not permit Spoiler to play with the adjunct

connectives, u(i, j) and v(i, j) are rank-r equivalent, for sufficiently large i and

j. Therefore, there is no adjunct-free formula that distinguishes all of the us

from the vs, and so there is no adjunct-free equivalent of the proposed formula.

While they are clearly distinct, u(i, j) and v(i, j) only differ in the presence

of a single b-labelled node at the first branching point. Any winning strategy for

Spoiler would have to focus on this difference. However, even this first branching

point will be buried sufficiently deeply within the tree that Spoiler will not be

able to distinguish it from one of the second branching points on the opposite

tree. The self-similarity of the trees is thus key to Duplicator having a winning

strategy.

The games I use for this result are based on the following ranking:

Definition 4.8 (Adjunct-Distinction Ranking for CLs
Tree). The adjunct-distinc-

tion ranking consists of the bounded join-semilattice (Rank,v) given by:

� Rank = N× N× Pfin(Σ), and

� (m, s, L) v (m′, s′, L′) if and only if m ≤ m′, s ≤ s′ and L ⊆ L′;

and ranking relations R~ given by:

� for ~ ∈ {0,⊗, •, I}, (r1, . . . , rn) R~ r if and only if (m+1, s, L) v r where

(m, s, L) =
⊔
{ri | 1 ≤ i ≤ n},

� for ~ = a[] (for some a ∈ Σ), ((m, s, L)) R~ r if and only if (m+ 1, s, L∪
{a}) v r, and

� for ~ ∈
{
•−∃,−•∃

}
, (r1, r2) R~ r if and only if (m, s + 1, L) v r where

(m, s, L) = r1 t r2.

It is not difficult to verify that the above definition meets the requirements

of a ranking (Definition 4.1). (Rank,v) is a bounded join-semilattice since both
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(N,≤) and (Pfin(Σ),⊆) are bounded join-semilattices. Since the lattice ordering

is defined pointwise, the join operator is⊔
{(mi, si, Li)}i∈I =

(
max {mi}i∈I ,max {si}i∈I ,

⋃
{Li}i∈I

)
.

The minimal element is (0, 0, ∅). The ranking is constructive by the fact that

all finite joins exist (including of the empty set). The ranking is upwardly

closed by the definition of R~ and the fact that v is transitive. The ranking is

finitely branching by the fact that only finitely many operators can be used in

the construction of a given rank (since the set component is restricted to being

finite) and that the rank is always constructed from lesser ranks, of which there

are only finitely many. The ranking is inductive by the fact that C ⊆ (v) \ (=)

by the definition of R~, and (v) \ (=) is well-founded (since < and ⊂ are well-

founded). It is also clear that the above ranking is downwardly closed, since

C ⊆ v.

The essential purpose of the ranking is that it distinguishes formulae that

contain no adjunct connectives: they are the ones that have ranks of the form

(m, 0, L). Correspondingly, ranks of the form (m, 0, L) disallow the use of the

adjunct connectives in games.

The proof of Theorem 15 makes use of a number of auxiliary lemmata, as

well as Theorem 14. These results are used to establish winning strategies for

Duplicator in certain games. The first of these, Lemma 16, captures in terms of

games the intuition behind Theorem 13: that the contexts a1[a2[· · ·am[c]]] and

a1[a2[· · ·am[c′]]] cannot be distinguished by a formula of rank (m, 0, L). (This

is not directly what is stated by the lemma, but is a consequence of its iterated

application.)

Lemma 16. If

(c, c′, (m, 0, L)) ∈ DW (4.1)

then, for any a ∈ Σ,

(a[c],a[c′], (m+ 1, 0, L)) ∈ DW. (4.2)

Proof. The proof is by induction on m. Consider the possible moves Spoiler

could make on the game in (4.2). If Spoiler plays the I or b[] (for b 6= a)

connectives, Duplicator wins immediately. If Spoiler plays the ⊗ connective

then he splits one of the contexts, say a[c], into a[c] and ∅ (on one side or the

other). If Duplicator responds by splitting a[c′] into a[c′] and ∅, then she has a

winning strategy provided that

(a[c],a[c′], (m, 0, L)) ∈ DW

(∅,∅, (m, 0, L)) ∈ DW.
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The first of these holds by downward closure on (4.1) and the inductive hypoth-

esis. The second holds by game completeness. If Spoiler plays the a[] connective

then the Duplicator can ensure that the game continues as in (4.1), and so Dupli-

cator has a winning strategy. This covers all of the possible moves Spoiler could

make, and so Duplicator does have a winning strategy.

The trees and contexts we are interested in at present either have a single

root node or are the concatenation of two such trees and contexts. I use the

term uniquely rooted to describe trees of the form a[t] (for some a ∈ Σ and

t ∈ Tree) and contexts of the form a[c] (for some a ∈ Σ and c ∈ CTree) — that

is, the trees and contexts with single root nodes.

The following lemma is used to establish winning strategies for Duplicator

when uniquely-rooted contexts and trees are horizontally concatenated.

Lemma 17. If

(c, c′, (m, 0, L)) ∈ DW (4.3)

(t, t′, (m, 0, L)) ∈ DW (4.4)

and c, c′ ∈ CTree and t, t′ ∈ Tree are uniquely rooted, then

(c⊗ t, c′ ⊗ t′, (m+ 1, 0, L)) ∈ DW (4.5)

(t⊗ c, t′ ⊗ c′, (m+ 1, 0, L)) ∈ DW. (4.6)

Proof. The proof is by induction on m. Consider the case for (4.5); the case

for (4.6) is analogous. Consider the possible moves that Spoiler could play in

the game. If he plays the I or b[] (for any b ∈ Σ) connectives, Duplicator wins

immediately. The remaining possibility is that Spoiler plays the ⊗ connective,

splitting one of the contexts. If he splits c⊗ t into c and t, then Duplicator has a

winning response with c′ and t′ by (4.3) and (4.4). If he splits it into ∅ and c⊗t,
the Duplicator has a winning response with ∅ and c′ ⊗ t′ by game completeness

and by downwards closure and the inductive hypothesis. The same analysis

applies if Spoiler splits c′⊗ t′ instead. Since all cases lead to a winning strategy

for Duplicator, it follows that (4.5) holds.

The following lemma establishes that Duplicator can exploit the self-similar-

ity present in u(i, j) and v(i, j) (Definition 4.7) as part of a winning strategy.

In particular, for sufficiently large i and j with respect to the rank, u(i, j+ 1)⊗
v(i, j+ 1) is not distinguishable from u(i, j)⊗ v(i, j), which is itself a subtree of

both u(i, j + 1) and v(i, j + 1). This lemma is key to establishing the winning

strategy for Duplicator on u(i, j) and v(i, j) by allowing her to respond to Spoiler

splitting above the first bifircation of one tree by splitting below it in the second.

91



Expressivity 4.2 Adjunct (Non)-elimination for CLs
Tree

Lemma 18. For i ≥ m and j ≥ 2m,

(u(i, j)⊗ v(i, j), u(i, j + 1)⊗ v(i, j + 1), (m, 0, L)) ∈ DW.

Proof. The proof is by induction onm and cases on the possible moves of Spoiler.

The inductive hypothesis is that, for all i′ ≥ m− 1 and j′ ≥ 2(m− 1),

(u(i′, j′)⊗ v(i′, j′), u(i′, j′ + 1)⊗ v(i′, j′ + 1), (m− 1, 0, L)) ∈ DW. (4.7)

The only move that Spoiler could usefully play is the • move, splitting either

the smaller or larger of the two trees. Consider each case in turn.

Case 1:

Suppose that Spoiler splits the smaller tree. Consider cases as to where Spoiler

splits this tree.

Case 1(a): Suppose that Spoiler splits the tree at the top level. The decom-

position is then one of the following:

c = − t = u(i, j)⊗ v(i, j) (4.8)

c = −⊗ u(i, j)⊗ v(i, j) t = ∅ (4.9)

c = −⊗ v(i, j) t = u(i, j) (4.10)

c = u(i, j)⊗−⊗ v(i, j) t = ∅ (4.11)

c = u(i, j)⊗− t = v(i, j) (4.12)

c = u(i, j)⊗ v(i, j)⊗− t = ∅ (4.13)

Duplicator can decompose the larger tree in a directly analogous manner (with

j+1 instead of j). Let us show that doing so gives Duplicator a winning strategy

in each case.

By game completeness,

(−,−, (m− 1, 0, L)) ∈ DW (4.14)

(∅,∅, (m− 1, 0, L)) ∈ DW. (4.15)

Applying Theorem 14 with the inductive hypothesis (taking i′ = i and j′ = j−1

in (4.7)) and the contexts ci[b[−]] and ci[−] gives, respectively,

(u(i, j), u(i, j + 1), (m− 1, 0, L)) ∈ DW (4.16)

(v(i, j), v(i, j + 1), (m− 1, 0, L)) ∈ DW. (4.17)
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Applying Lemma 17 and downward closure to the above gives

(u(i, j)⊗−, u(i, j + 1)⊗−, (m− 1, 0, L)) ∈ DW (4.18)

(v(i, j)⊗−, v(i, j + 1)⊗−, (m− 1, 0, L)) ∈ DW (4.19)

(−⊗ u(i, j),−⊗ u(i, j + 1), (m− 1, 0, L)) ∈ DW (4.20)

(−⊗ v(i, j),−⊗ v(i, j + 1), (m− 1, 0, L)) ∈ DW. (4.21)

By the inductive hypothesis,

(u(i, j)⊗ v(i, j), u(i, j + 1)⊗ v(i, j + 1), (m− 1, 0, L)) ∈ DW. (4.22)

Consider the games

(−⊗ u(i, j)⊗ v(i, j),−⊗ u(i, j + 1)⊗ v(i, j + 1), (m′, 0, L)) (4.23)

(u(i, j)⊗−⊗ v(i, j), u(i, j + 1)⊗−⊗ v(i, j + 1), (m′, 0, L)) (4.24)

(u(i, j)⊗ v(i, j)⊗−, u(i, j + 1)⊗ v(i, j + 1)⊗−, (m′, 0, L)) (4.25)

By induction on m′, let us show that, for m′ < m, Duplicator has a winning

strategy for each of the above games. In the base case m′ = 0 and so the result

holds trivially. In the inductive case, the only relevant moves for Spoiler to play

on any of the games are the ⊗ moves. If Duplicator imitates Spoiler’s splitting on

the other context, then the inductive hypothesis and the various results above,

together with downward closure, establish that this gives Duplicator a winning

strategy.

The above establish that Duplicator has a winning strategy by responding to

Spoiler’s splitting with the appropriate one of the following:

c′ = − t′ = u(i, j + 1)⊗ v(i, j + 1)

c′ = −⊗ u(i, j + 1)⊗ v(i, j + 1) t′ = ∅

c′ = −⊗ v(i, j + 1) t′ = u(i, j + 1)

c′ = u(i, j + 1)⊗−⊗ v(i, j + 1) t′ = ∅

c′ = u(i, j + 1)⊗− t′ = v(i, j + 1)

c′ = u(i, j + 1)⊗ v(i, j + 1)⊗− t′ = ∅.

Case 1(b): If Spoiler does not split the tree at the top level then he splits

inside one of the two branches. Suppose that Spoiler makes this splitting at a

depth greater than m, that is, he chooses a context

c = cm[c1]⊗ v(i, j) or (4.26)

c = u(i, j)⊗ cm[c1], (4.27)

93



Expressivity 4.2 Adjunct (Non)-elimination for CLs
Tree

for some context c1, and some tree t such that u(i, j) ⊗ v(i, j) = c • t. In the

case of (4.26), suppose that Duplicator responds with

c′ = ci[b[cm[c1]⊗ v(i, j)]]⊗ v(i, j + 1) and (4.28)

t′ = t. (4.29)

If Spoiler continues the game as (t, t′, (m−1, 0, L)) then Duplicator has a winning

strategy by game completeness. Suppose instead that Spoiler continues the game

as (c, c′, (m− 1, 0, L)). By iterated application of Lemma 16,

(cm[c1], ci[b[cm[c1]⊗ v(i, j)]], (m− 1, 0, L)) ∈ DW. (4.30)

By the inductive hypothesis (since we have already assumed m ≥ 1 — for

otherwise Spoiler could not have made a move at all — this implies j ≥ 2),

(u(i, j − 1)⊗ v(i, j − 1), u(i, j)⊗ v(i, j), (m− 1, 0, L)) ∈ DW. (4.31)

Applying Theorem 14 to (4.31) with the context ci[−] gives

(v(i, j), v(i, j + 1), (m− 1, 0, L)) ∈ DW. (4.32)

Applying Lemma 17 to (4.30) and (4.32) gives

(c, c′, (m− 1, 0, L)) ∈ DW. (4.33)

Hence Duplicator has a winning strategy however Spoiler chooses to continue.

If Spoiler instead chose the context given in (4.27), suppose that Duplicator

responds with

c′ = u(i, j + 1)⊗ ci[u(i, j)⊗ cm[c]] and (4.34)

t′ = t. (4.35)

By a similar argument to the above, it can again be established that this gives

Duplicator a winning strategy.

Case 1(c): If Spoiler splits the tree at a depth no greater than m then the

splitting must be one of the following:

c = ck[−]⊗ v(i, j) t = ci−k[b[u(i, j − 1)⊗ v(i, j − 1)]] (4.36)

c = u(i, j)⊗ ck[−] t = ci−k[u(i, j − 1)⊗ v(i, j − 1)] (4.37)

c = ck[−⊗ ci−k[b[u(i, j − 1)⊗ v(i, j − 1)]]]⊗ v(i, j) t = ∅ (4.38)

c = ck[ci−k[b[u(i, j − 1)⊗ v(i, j − 1)]]⊗−]⊗ v(i, j) t = ∅ (4.39)

c = u(i, j)⊗ ck[−⊗ ci−k[u(i, j − 1)⊗ v(i, j − 1)]] t = ∅ (4.40)

c = u(i, j)⊗ ck[ci−k[u(i, j − 1)⊗ v(i, j − 1)]⊗−] t = ∅ (4.41)
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for some 1 ≤ k ≤ m. (Note that k = 0 was covered by Case 1(a).) In the case

of (4.36), suppose that Duplicator responds with the splitting

c′ = ck[−]⊗ v(i, j + 1) t′ = ci−k[b[u(i, j)⊗ v(i, j)]]. (4.42)

Recalling (4.16) and since (ck[−], ck[−], (m− 1, 0, L)) ∈ DW by game complete-

ness, applying Lemma 17 gives

(ck[−]⊗ v(i, j), ck[−]⊗ v(i, j + 1), (m− 1, 0, L)) ∈ DW. (4.43)

Recalling (4.31) and applying Theorem 14 with the context ci−k[b[−]] gives

(ci−k[b[u(i, j − 1)⊗ v(i, j − 1)]], ci−k[b[u(i, j)⊗ v(i, j)]], (m− 1, 0, L)) ∈ DW.

(4.44)

Hence, this gives Duplicator a winning strategy. In the case of (4.37), similar

reasoning gives Duplicator a winning strategy by choosing the splitting

c = u(i, j + 1)⊗ ck[−] t = ci−k[u(i, j)⊗ v(i, j)]. (4.45)

For the remaining four cases, suppose that Duplicator responds with the corre-

sponding splitting below:

c′ = ck[−⊗ ci−k[b[u(i, j)⊗ v(i, j)]]]⊗ v(i, j + 1) t′ = ∅ (4.46)

c′ = ck[ci−k[b[u(i, j)⊗ v(i, j)]]⊗−]⊗ v(i, j + 1) t′ = ∅ (4.47)

c′ = u(i, j + 1)⊗ ck[−⊗ ci−k[u(i, j)⊗ v(i, j)]] t′ = ∅ (4.48)

c′ = u(i, j + 1)⊗ ck[ci−k[u(i, j)⊗ v(i, j)]⊗−] t′ = ∅. (4.49)

Duplicator has a winning strategy if Spoiler continues with the trees by game

completeness. Suppose that Spoiler continues with the contexts. By the induc-

tive hypothesis

(u(i, j − 1)⊗ v(i, j − 1), u(i, j)⊗ v(i, j), (m− 1, 0, L)) ∈ DW. (4.50)

Applying Theorem 14, Lemma 16, Lemma 17 (iteratively), and Lemma 16 again

(recalling (4.16) and (4.17)), it can be established that Duplicator has a winning

strategy with this response.

This covers all possibilities of Spoiler splitting the smaller tree.

Case 2:

Suppose that Spoiler splits the larger tree. Again, consider cases as to where

Spoiler makes the splitting.

Case 2(a): Suppose that Spoiler splits the tree at the top level. The same

analysis applies as for Spoiler splitting the smaller tree in the same manner.

This gives Duplicator a winning strategy.
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Case 2(b): Suppose that Spoiler splits the tree at a point inside one of the

second-level branches below depth m, for example, choosing

c = ci[b[cm[c1]⊗ v(i, j)]]⊗ v(i, j + 1) (4.51)

for some c1, and some t. (The analysis for the other three cases of Spoiler

making such a splitting is similar.) Duplicator could respond with

c′ = cm[c1]⊗ v(i, j) (4.52)

t′ = t. (4.53)

By iterated application of Lemma 16,

(cm[c2], cm[c′2], (m− 1, 0, L)) ∈ DW (4.54)

for any c2, c
′
2, since (c2, c

′
2, (0, 0, L)) ∈ DW. In particular,

(ci[b[cm[c1]⊗ v(i, j)]], cm[c1], (m− 1, 0, L)) ∈ DW. (4.55)

Applying Lemma 17, recalling (4.17), gives

(c, c′, (m− 1, 0, L)) ∈ DW. (4.56)

Hence, and by game completeness, Duplicator has a winning strategy in this

case.

Case 2(c): Suppose that Spoiler splits the tree inside one of the second-level

branches above depth m. One possibility for such a splitting is

c = ci[b[ck[−]⊗ v(i, j)]]⊗ v(i, j + 1) (4.57)

t = ci−k[u(i, j − 1)⊗ v(i, j − 1)] (4.58)

for some 0 ≤ k ≤ m. There are three other cases (spitting in each of the

second-level branches) that follow the same analysis as this one. Spoiler could

also choose to split with t = ∅ and, for example,

c = ci[b[ck[−⊗ ci−k[u(i, j − 1)⊗ v(i, j − 1)]]]]⊗ v(i, j + 1) (4.59)

for some 0 ≤ k ≤ m. There are seven other cases (splitting in each of the

second-level branches and putting the hole on either side of the tree) that follow

the same analysis as this one.

Consider the splitting of (4.57) and (4.58). Duplicator could respond with

c′ = ci[b[ck[−]⊗ v(i, j − 1)]]⊗ v(i, j) (4.60)

t′ = ci−k[u(i, j − 2)⊗ v(i, j − 2)]. (4.61)
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By Lemma 17, recalling (4.54) and (4.17),

(c, c′, (m− 1, 0, L)) ∈ DW. (4.62)

By the inductive hypothesis, since j ≥ 2m means that j − 2 ≥ 2(m− 1),

(u(i, j − 2)⊗ v(i, j − 2), u(i, j − 1)⊗ v(i, j − 1), (m− 1, 0, L)) ∈ DW. (4.63)

Applying Theorem 14 with the context ci−k[−] gives

(t, t′, (m− 1, 0, L)) ∈ DW. (4.64)

Hence, Duplicator has a winning strategy in this case. I omit the other, similar

cases.

Consider the splitting given by t = ∅ and (4.59). Duplicator could respond

with t′ = ∅ and

c = ci[b[ck[−⊗ ci−k[u(i, j − 2)⊗ v(i, j − 2)]]]]⊗ v(i, j). (4.65)

Recalling (4.54) and (4.17), Lemma 17 gives

(c, c′, (m− 1, 0, L)) ∈ DW. (4.66)

Hence, and by game completeness, Duplicator has a winning strategy in this

case. I again omit the other, similar cases.

Case 2(d): The remaining case is if Spoiler splits the larger tree in one of

the first-level branches above the second-level branches (but not at the very top

level). That is, either

c = c[c1]⊗ v(i, j + 1) t = c2 • (u(i, j)⊗ v(i, j)) or (4.67)

c = u(i, j + 1)⊗ c[c1] t = c2 • (u(i, j)⊗ v(i, j)) (4.68)

for some c1, c2, or t = ∅ and

c = c[c1 ◦ (−⊗ (c2 • (u(i, j)⊗ v(i, j))))]⊗ v(i, j + 1) (4.69)

c = c[c1 ◦ ((c2 • (u(i, j)⊗ v(i, j)))⊗−)]⊗ v(i, j + 1) (4.70)

c = u(i, j + 1)⊗ c[c1 ◦ (−⊗ (c2 • (u(i, j)⊗ v(i, j))))] or (4.71)

c = u(i, j + 1)⊗ c[c1 ◦ ((c2 • (u(i, j)⊗ v(i, j)))⊗−)] (4.72)

for some c1, c2.

In the case of (4.67), Duplicator can respond with

c′ = c[c1]⊗ v(i, j) t = c2 • (u(i, j − 1)⊗ v(i, j − 1)). (4.73)
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By Lemma 17, recalling (4.17),

(c, c′, (m− 1, 0, L)) ∈ DW. (4.74)

By the inductive hypothesis and applying Theorem 14 with the context c2,

(t, t′, (m− 1, 0, L)) ∈ DW. (4.75)

Hence, Duplicator has a winning strategy in this case. The case for (4.68) is

similar, with Duplicator responding

c′ = u(i, j)⊗ c[c1] t = c2 • (u(i, j − 1)⊗ v(i, j − 1)). (4.76)

In the case of (4.69), Duplicator can respond with t′ = ∅ and

c′ = c[c1 ◦ (−⊗ (c2 • (u(i, j − 1)⊗ v(i, j − 1))))]⊗ v(i, j). (4.77)

Recalling the derivation of (4.75),

(c2 • (u(i, j)⊗ v(i, j)), c2 • (u(i, j− 1)⊗ v(i, j− 1)), (m− 1, 0, L)) ∈ DW. (4.78)

Applying Lemma 17 (with both contexts being −), iteratively applying Lem-

ma 16 (since c1 must be ck[−] for some k or ci[b[−]]), and applying Lemma 17

again (recalling (4.17)) gives

(c, c′, (m− 1, 0, L)) ∈ DW. (4.79)

Hence, and by game completeness, Duplicator has a winning strategy in this

case. The cases for (4.70), (4.71) and (4.72) are similar.

For each possible move Spoiler could make, we have seen that Duplicator has

a winning response. Hence,

(u(i, j)⊗ v(i, j), u(i, j + 1)⊗ v(i, j + 1), (m, 0, L)) ∈ DW.

The next lemma establishes that Duplicator has a winning strategy for the

adjunct-free game played on u(i, j) and v(i, j) for i and j sufficiently large. The

statement of the lemma allows the length of the top branch to vary indepen-

dently of the i parameter in order facilitate the inductive argument.

Lemma 19. For i ≥ m2, j ≥ 2m, k ≥ m2,

(ck[b[u(i, j)⊗ v(i, j)]], ck[u(i, j)⊗ v(i, j)], (m, 0, L)) ∈ DW.
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Proof. The proof is by induction onm and cases on the possible moves of Spoiler.

The only move that Spoiler could usefully play is the • move, splitting one of

the two trees. I consider three cases for how Spoiler could split the tree: at or

below the first bifircation, below the first m cs but above the first bifircation,

or within the first m cs.

If Spoiler splits the first tree into ck[b[c1]] and t for some c1, t then Duplicator

can respond with ck[c1] and the same t. This leads to a winning strategy for

Duplicator since, by iterated application of Lemma 16,

(ck[b[c1]], ck[c1], (m− 1, 0, L)) ∈ DW,

and, by game completeness,

(t, t, (m− 1, 0, L)) ∈ DW.

Conversely, if Spoiler splits the second tree into ck[c1] and t for some c1, t,

Duplicator has a winning strategy by responding with ck[b[c1]] and t.

If Spoiler splits the first tree into cm[c1] and c2 • (u(i, j) ⊗ v(i, j)) for some

c1, c2, then Duplicator can respond with ck[cm[c1]⊗v(i, j)] and c2 • (u(i, j−1)⊗
v(i, j − 1)). By iterated application of Lemma 16,

(cm[c1], ck[cm[c1]⊗ v(i, j)], (m− 1, 0, L)) ∈ DW.

By Lemma 18,

(u(i, j)⊗ v(i, j), u(i, j − 1)⊗ v(i, j − 1), (m− 1, 0, L)) ∈ DW

and so, by applying Theorem 14 with the context c2,

(c2 • (u(i, j)⊗ v(i, j)), c2 • (u(i, j − 1)⊗ v(i, j − 1)), (m− 1, 0, L)) ∈ DW.

Hence, this gives Duplicator a winning strategy.

If Spoiler splits the second tree into cm[c1] and c2 • (u(i, j)⊗v(i, j)) for some

c1, c2, then Duplicator can respond with ck[u(i, j)⊗cm[c1]] and c2 • (u(i, j−1)⊗
v(i, j− 1)). By a similar argument to the above, this gives Duplicator a winning

strategy.

If Spoiler splits the first tree into cl[−] and ck−l[b[u(i, j)⊗v(i, j)]], for l ≤ m,

then Duplicator can respond with cl[−] and ck−l[u(i, j) ⊗ v(i, j)]. By game

completeness,

(cl[−], cl[−], (m− 1, 0, L)) ∈ DW.

Bearing in mind that m ≥ 1 (for otherwise Spoiler could not play any move),

k − l ≥ m2 −m ≥ m2 −m+ 1−m = (m− 1)2.
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Hence, by the inductive hypothesis,

(ck−l[b[u(i, j)⊗ v(i, j)]], ck−l[u(i, j)⊗ v(i, j)], (m− 1, 0, L)) ∈ DW.

This therefore gives Duplicator a winning strategy.

If Spoiler splits the second tree into cl[−] and ck−l[u(i, j)⊗v(i, j)], for l ≤ m,

then Duplicator can respond with cl[−] and ck−l[b[u(i, j)⊗ v(i, j)]]. This gives

Duplicator a winning strategy, as before.

If Spoiler splits the first tree into cl[−⊗ ck−l[b[u(i, j)⊗ v(i, j)]]] and ∅, for

l ≤ k, then Duplicator can respond with cl[−⊗ ck−l[u(i, j)⊗ v(i, j)]] and ∅. By

iterated application of Lemma 16,

(ck−l[b[u(i, j)⊗ v(i, j)]], ck−l[u(i, j)⊗ v(i, j)], (m− k − 2, 0, L)) ∈ DW.

By Lemma 17,

(−⊗ ck−l[b[u(i, j)⊗ v(i, j)]],−⊗ ck−l[u(i, j)⊗ v(i, j)], (m− k− 1, 0, L)) ∈ DW.

By iterated application of Lemma 16, again,

(ck[−⊗ck−l[b[u(i, j)⊗v(i, j)]]], ck[−⊗ck−l[u(i, j)⊗v(i, j)]], (m−1, 0, L)) ∈ DW.

Naturally,

(∅,∅, (m− 1, 0, L)) ∈ DW.

Hence, Duplicator has a winning strategy.

Similar arguments hold for if Spoiler places the hole on the right, and if

Spoiler splits the second of the trees in such a way.

This covers every way that Spoiler may split either tree, and Duplicator has

a winning strategy for each. Hence, as required,

(ck[b[u(i, j)⊗ v(i, j)]], ck[u(i, j)⊗ v(i, j)], (m, 0, L)) ∈ DW.

The above result pertaining to games gives the following corollary pertaining

to formulae by the soundness of games:

Corollary 20. There is no adjunct-free formula of CLs
Tree, P , such that, for all

i, j ∈ N,

u(i, j) /|=d P

v(i, j) |=d P .
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Proof. Any such formula would have some rank (m, 0, L). By game soundness,

this would mean that

(u(i, j), v(i, j), (m, 0, L)) ∈ SW

for every i, j ∈ N. This contradicts Lemma 19, and so such a formula could not

exist.

By Corollary 20, I have established that no adjunct-free formula can distin-

guish between u(i, j) and v(i, j) in general. To prove that the −• connective

adds expressive power, it is sufficient to show some formula that uses −• which

can distinguish u(i, j) and v(i, j) in general.

Theorem 15. There is no adjunct-free formula of CLs
Tree that is logically equiv-

alent to the tree formula ¬(a′[0]−• (True • b[True • a′[0]])) • a[0].

Proof. Fix some i, j ∈ N. Let c ∈ CTree be such that u(i, j) = c • a[∅]. By

structural considerations, c = ci[b[c′]] for some c′. Therefore, c • a′[∅] = c′′ •
b[c′ • a′[∅]], for some c′′. This implies that

c /|=d ¬(a′[0]−• (True • b[True • a′[0]]))

and hence

u(i, j) /|=d ¬(a′[0]−• (True • b[True • a′[0]])) • a[0]

for all i, j ∈ N.

Define v′(i, j) recursively as follows:

v′(i, 0) = ci[a′[∅]] v′(i, j + 1) = ci[u(i, j)⊗ v′(i, j)].

Now fix some i, j ∈ N and observe that there exists a c ∈ CTree such that

v(i, j) = c • a[∅] and v′(i, j) = c • a′[∅]. By construction, the a′ leaf in v′(i, j)

has no b ancestor, and so

v′(i, j) /|=d True • b[True • a′[0]].

Hence

v(i, j) |=d ¬(a′[0]−• (True • b[True • a′[0]])) • a[0]

for all i, j ∈ N.

By Corollary 20, there can be no adjunct-free formula logically equivalent

to ¬(a′[0]−• (True • b[True • a′[0]])) • a[0].
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4.3 Adjunct Elimination for CLc
Tree

Both of the counterexamples I have given to adjunct elimination for CLs
Tree

do not hold when context composition is added. In particular, the formula

0−• (True • a[0]), is equivalent to the adjunct-free formula

True ◦ (a[I] ∨ (True • a[0])⊗ True ∨ True⊗ (True • a[0]))

and

¬(a′[0]−• (True • b[True • a′[0]])) • a[0]

is equivalent to

(True • a[0]) ∧ (¬(True ◦ b[True]) • (a[0] ∨ a′[0])).

The question that naturally arises is: does adjunct elimination hold for CLc
Tree?

The trick underlying both counterexamples was that application is a power-

ful tool for splitting up trees that has no analogue for contexts in CLs
Tree. The

additional expressivity offered by −• comes from effectively converting contexts

into trees (by suitably filling their holes) which are then split using •. Without

−•, it is simply not possible to examine a context at arbitrary depth.

With context composition, on the other hand, it is possible to examine a

context at arbitrary depth. However, there is a subtlety: context composition

permits the splitting of an arbitrary subcontext, but not (directly) an arbitrary

subtree. To see what I mean by this, consider the tree a[b[∅] ⊗ b[c[∅]]]. It is

possible to express that this tree has subtree c[∅] in terms of application:

a[b[∅]⊗ b[c[∅]]] = a[b[∅]⊗ b[−]] • c[∅].

However, there is no directly analogous way to express that c[∅] is a subtree of

the context a[b[−] ⊗ b[c[∅]]]. A direct analogue would require a context with

two holes.

Yet even so, it is possible to express properties about arbitrary subtrees

indirectly. Any subtree of a context has a lowest common ancestor with the

context hole. The subcontext at this ancestor can be viewed as the horizontal

concatenation of a context and a tree that contains the subtree of interest. Thus,

the overall context is the composition of a context with the concatenation of

a context and the application of a context to the subtree of interest. In my

example:

a[b[−]⊗ b[c[∅]]] = a[−] ◦ (b[−]⊗ (b[−] • c[∅])).

As long as we can sufficiently express the potential properties of the two-holed

context in terms of the properties of the component contexts, it appears that

−• is unnecessary for describing such splittings.
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However, my attempts to prove adjunct elimination using games for CLc
Tree

have been thwarted by this issue. To see why this is the case, consider the

following conjecture, which, if it were true, could be used to establish adjunct

elimination:1

Conjecture 21. There exists some function f : N→ N such that, for all ranks

of the form r = (m, 0, L), for all trees t, t′ ∈ Tree and contexts c, c′, d, d′ ∈ CTree,

if

(t, t′, (f(m), 0, L)) ∈ DW (4.80)

(c, c′, (f(m), 0, L)) ∈ DW (4.81)

(d, d′, (f(m), 0, L)) ∈ DW (4.82)

then

(c • t, c′ • t′, (m, 0, L)) ∈ DW (4.83)

(d ◦ c, d′ ◦ c′, (m, 0, L)) ∈ DW. (4.84)

The reason for the presence of the function f is to allow for the adjunct-free

equivalent of a formula having a rank with a greater m component than the

formula with adjoints that it is equivalent to. Without loss of generality, any

such f can be taken to be a monotone function. (Suppose that for some m,m′

with m ≤ m′, f(m) > f(m′). By downward closure, the assumptions in the

case of m imply the assumptions for m′ and the conclusions for m′ imply the

conclusions for m. Thus, it would have been sufficient to take f(m) to be the

smaller f(m′).)

An inductive proof of the conjecture would have to establish (4.83) by con-

sidering all of Spoiler’s possible moves in the game. In particular, it may be

that Spoiler plays • and splits the tree c • t into a context c1 and a subtree t1

that was originally part of the context c. That is, for some c2, c3, c4 ∈ CTree,

c = c2 ◦ (c3 ⊗ (c4 • t1))

c1 = c2 ◦ ((c3 • t)⊗ c4).

As in the earlier example, describing t1 as a subtree of c requires the use of three

nested operators. It would be necessary to find some c′1 ∈ CTree and t′1 ∈ Tree

with c′1 • t′1 = c′ • t′ and

(c1, c
′
1, (m− 1, 0, L)) ∈ DW (4.85)

(t1, t
′
1, (m− 1, 0, L)) ∈ DW (4.86)

1The adjunct-distinction ranking for CLc
Tree is as in Definition 4.8 but with ◦ treated the

same way as •, and ◦−∃ and −◦∃ treated the same way as •−∃ and −•∃.
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in order show that Duplicator has a winning strategy. One would hope to do

this by analyzing (4.80) and (4.81), and applying the inductive hypothesis. By

considering Duplicator’s winning strategies for (4.80) and (4.81), it is possible

to establish that there exist c′1, c
′
2, c
′
3, c
′
4 ∈ CTree and t′1 ∈ Tree such that

c′ = c′2 ◦ (c′3 ⊗ (c′4 • t′1))

c′1 = c′2 ◦ ((c′3 • t′)⊗ c′4)

and

(c2, c
′
2, (f(m)− 1, 0, L)) ∈ DW (4.87)

(c3, c
′
3, (f(m)− 2, 0, L)) ∈ DW (4.88)

(c4, c
′
4, (f(m)− 3, 0, L)) ∈ DW (4.89)

(t1, t
′
1, (f(m)− 3, 0, L)) ∈ DW. (4.90)

Assuming that f(m − 1) ≤ f(m) − 1, to establish (4.85) by the inductive hy-

pothesis, it is necessary to show that

(((c3 • t)⊗ c4), ((c′3 • t′)⊗ c′4), (f(m− 1), 0, L)) ∈ DW. (4.91)

Showing this is probably at least as hard as showing that

(c3 • t, c′3 • t′, (f(m− 1)− 1, 0, L)) ∈ DW. (4.92)

Showing that Duplicator has a winning strategy for this game (or one of an even

larger rank) by the inductive hypothesis would most likely be a key step to

establishing (4.91). This would require that

f(f(m− 1)− 1) ≤ f(m)− 2.

Since f is monotone, this implies that

f(m− 1)− 1 < m.

Together with the assumption that f(m−1) ≤ f(m)−1 made earlier, and since

m is arbitrary (only constrained that m ≥ 1, by the fact that Spoiler played a

move), for all i > 0,

f(i− 1) < f(i) < i+ 1.

This constraint means that it must be the case that f(i) = i, for all i ∈ N. Yet in

order to establish (4.86) from (4.90), it would be necessary that f(m)−3 ≥ m−1.

This gives contradictory constraints on f , and so there is no choice of f that

would lead to a proof of Conjecture 21 in this fashion.
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Remark. Conjecture 21 explicitly fails if f(i) = i. In particular,

(a[b[∅]⊗−],a[b′[∅]⊗−], (2, 0, {a,b,b′})) ∈ DW

(∅,∅, (2, 0, {a,b,b′})) ∈ DW

but
(a[b[∅]],a[b′[∅]], (2, 0, {a,b,b′})) /∈ DW.

Of course, I have not conclusively ruled out the possibility that Conjecture 21

holds, but the above discussion does show that the strategy employed in my

other adjunct elimination results is a dead end. It is possible that the intuition

behind the reasoning above may lead to a counterexample, although I have not

been able to find one. On the other hand, there may be an alternative proof

technique that I have not considered.

4.4 Adjunct Elimination for CLm
Tree

The difficulty of showing adjunct elimination for context logic with composition

suggests a possible direction for its solution: since the problem was that contexts

could not be split, it makes sense to move to multi-holed context logic, where

they can be split. I now show that the games-based technique does indeed give

adjunct elimination for multi-holed context logic for trees.

The games I use for this result are based on the following ranking:

Definition 4.9 (Adjunct-Distinction Ranking for CLm
Tree). The adjunct-distinc-

tion ranking consists of the bounded join-semilattice (Rank,v) given by:

� Rank = N× N× Pfin(Σ)× Pfin(Θ), and

� (m, s, L, V ) v (m′, s′, L′, V ′) if and only if m ≤ m′, s ≤ s′, L ⊆ L′ and

V ⊆ V ′;

and ranking relations R~ given by:

� for ~ ∈ {0,⊗}, (r1, . . . , rn) R~ r if and only if (m+ 1, s, L, V ) v r where

(m, s, L, V ) =
⊔
{ri | 1 ≤ i ≤ n},

� for ~ = a[] (for some a ∈ Σ), ((m, s, L)) R~ r if and only if (m+ 1, s, L∪
{a}) v r,

� for ~ ∈ {◦α,∃α} (for some α ∈ Θ), (r1, . . . , rn) R~ r if and only if

(m+ 1, s, L, V ∪ {α}) v r, and
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� for ~ ∈
{
•−∃,−•∃

}
, (r1, r2) R~ r if and only if (m, s+ 1, L, V ) v r where

(m, s, L, V ) = r1 t r2.

It is not difficult to verify that the above definition meets the requirements

of a ranking (Definition 4.1), just as was the case with Definition 4.8. The main

difference from the earlier ranking is the V component, which tracks the hole

variables used in formulae and games.

A number of auxiliary lemmata are used in the adjunct elimination proof.

The first of these establishes a correspondence between the holes in two contexts,

given that Duplicator has a winning strategy for a game of sufficient rank. This

lemma is particularly useful for ensuring that the composition of certain contexts

is defined, by showing that their holes match the holes of other contexts for which

composition is defined.

Lemma 22. If

((c, σ), (c′, σ′), (m, s, L, V )) ∈ DW (4.93)

with m ≥ 2, then, for x = σα and x́ = σ′α, for some α ∈ V ,

x ∈ holes c ⇐⇒ x́ ∈ holes c′.

Proof. Suppose that x ∈ holes c. Spoiler could play the ◦α connective on the

game in (4.93), splitting c = c©x x. Since Duplicator has a winning strategy for

the game, there must exist c′1, c
′
2 such that c′ = c′1 ©́x c′2 and

((x, σ), (c′2, σ
′), (m− 1, s, L, V )) ∈ DW. (4.94)

Since Spoiler could then play the α connective on the game in (4.94), it must

be that c′2 = σ′α = x́. Therefore, x́ ∈ holes c′. The argument in the reverse

direction is the same.

The next lemma uses a winning strategy by Duplicator to ensure a structural

similarity between two contexts.

Lemma 23. Suppose that

((c, σ), (c′, σ′), (m, s, L, V )) ∈ DW (4.95)

with m ≥ 2 and α ∈ V . If c = c1 ⊗ x for x = σα, c1 ∈ Cm
Tree, then c′ = c′1 ⊗ x́

for x́ = σ′α and some c′1 ∈ Cm
Tree. Similarly, if c = x⊗ c1 then c′ = x́⊗ c′1.

Proof. Suppose that c = c1 ⊗ x. Spoiler could play the ⊗ connective on the

game in (4.95), splitting c = c1⊗ x. Since Duplicator has a winning strategy for

the game, there must exist c′1, c
′
2 such that c′ = c′1 ⊗ c′2 and

((x, σ), (c′2, σ
′), (m− 1, s, L, V )) ∈ DW. (4.96)
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Since Spoiler could then play the α connective on the game in (4.96), it must

be the case that c′2 = σ′α = x́. Thus, c′ = c′1 ⊗ x́, as required. The proof for

the other case is analogous.

The following lemma establishes that removing a variable from the environ-

ments of the two worlds does not impede Duplicator’s ability to win a game, all

else being equal.

Lemma 24. If

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), r) ∈ DW (4.97)

then

((c, σ), (c′, σ′), r) ∈ DW. (4.98)

Proof. Any winning strategy that Spoiler could have for the game in (4.98)

would also be a winning strategy for the game in (4.97). Since Spoiler does not

have a winning strategy for that game, he cannot have a winning strategy for

the other, and so Duplicator does have a winning strategy.

The next lemma makes it possible to reduce the case where environments

contain variables that are not mentioned in the rank to the case where they do

not: these variables play no role in the games.

Lemma 25. For α /∈ V ,

((c, σ), (c′, σ′), (m, s, L, V )) ∈ DW

if and only if

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (m, s, L, V )) ∈ DW.

Proof. The proof is by induction on the rank. At each move of either game, α is

irrelevant since α /∈ V . Therefore Duplicator’s winning responses for one game

will be, by the inductive hypothesis, winning responses for the other.

The hole substitution lemma, below, establishes that substituting a hole

label in one world with a fresh hole label preserves a winning strategy for Du-

plicator.

Lemma 26 (Hole Substitution Property for Games). Suppose that

((c, σ), (c′, σ′), r) ∈ DW (4.99)

and that x /∈ holes c ∪ rangeσ. Then

((c[x/y], σ[x/y]), (c′, σ′), r) ∈ DW. (4.100)
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Proof. The proof is by induction on the rank. If Spoiler plays a move on the

game in (4.100), working with (c[x/y], σ[x/y]) then he could play the same move,

but with x and y swapped, on the game in (4.99). If Duplicator plays with the

same response as for that game, it gives her a winning strategy by the inductive

hypothesis. On the other hand, if Spoiler plays a move on the game in (4.100),

working with (c′, σ′) then he could play exactly the same move on the game in

(4.99). If Duplicator plays with the same response as for that game, but with x

and y swapped, it gives her a winning strategy by the inductive hypothesis.

The next lemma essentially gives two sufficient conditions on Duplicator’s

response to Spoiler playing the ∃α connective for it to form part of a winning

strategy. The key part is that if Spoiler introduces a fresh hole label, Duplicator

may respond by introducing any fresh hole label.

Lemma 27 (Interchangability of Fresh Labels). If

((c, σ), (c′, σ′), (m, s, L, V )) ∈ DW (4.101)

with m ≥ 3 and α ∈ V , then

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (m− 1, s, L, V )) ∈ DW (4.102)

if either

1. for some β ∈ V , β 6= α, x = σβ and x́ = σ′β; or

2. x /∈ holes c ∪ rangeσ and x́ /∈ holes c′ ∪ rangeσ′.

Proof. For the first case, assume that β, x and x́ satisfy the specified properties.

Spoiler could play the ∃α connective on (4.101), assigning α the value x. Since

Duplicator has a winning strategy, there exists a y such that

((c, σ[α 7→ x]), (c′, σ′[α 7→ y]), (m− 1, s, L, V )) ∈ DW.

If Spoiler then plays the ◦α connective, choosing to split c = x©x c, it must be

that, for some c̄′,

((x, σ[α 7→ x]), (c̄′, σ′[α 7→ y]), (m− 2, s, L, V )) ∈ DW.

Now, Spoiler could play the β connective and win unless c̄′ = (σ′[α 7→ y])β = x́

(since x = (σ[α 7→ x])β). Spoiler could also play the α connective and win unless

c̄′ = (σ′[α 7→ y])α = y. Consequently, x́ = y, and so

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (m− 1, s, L, V )) ∈ DW,
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as required.

For the second case, assume that x and x́ satisfy the specified properties.

Spoiler could play the ∃α connective on (4.101), assigning α the value x. As

before, there exists a y such that

((c, σ[α 7→ x]), (c′, σ′[α 7→ y]), (m− 1, s, L, V )) ∈ DW.

By Lemma 22, since x /∈ holes c, it follows that y /∈ holes c′, and so c′[x́/y] = c′.

If y = σ′β for some β ∈ V then, since x 6= σβ, Spoiler would have a winning

strategy for the above game by playing the ◦α connective (splitting c′ = y ©y c′)

followed by the β connective (on the y part). Thus, since Duplicator has the

winning strategy, it cannot be that y = σ′β for any β ∈ V . Hence, for some

β1, . . . , βn /∈ V , and some σ̂′ with y /∈ range σ̂′, σ′ = σ̂′[β1 7→ y] · · ·[βn 7→ y].

For some z1, . . . , zn, and some σ̂, σ = σ̂[β1 7→ z1] · · ·[βn 7→ zn]. By iterated

application of Lemma 25,

((c, σ̂[α 7→ x]), (c′, σ̂′[α 7→ y]), (m− 1, s, L, V )) ∈ DW.

Since y /∈ range σ̂′, (σ̂′[α 7→ y])[x́/y] = σ̂′[α 7→ x́]. Hence, by Lemma 26,

((c, σ̂[α 7→ x]), (c′, σ̂′[α 7→ x́]), (m− 1, s, L, V )) ∈ DW.

By iterated application of Lemma 25, we conclude

((c, σ[α 7→ x]), (c′, σ′[α 7→ x́]), (m− 1, s, L, V )) ∈ DW,

as required.

The next result, Proposition 28 is the key result for adjunct elimination.

It states that, when Spoiler can play no adjunct moves, a winning strategy for

Duplicator for the game on the composition of contexts follows from Duplicator’s

winning strategies for its components. A consequence, captured in Corollary 29,

is that, if Duplicator has a winning strategy without adjunct moves, then she

has a winning strategy with adjunct moves, since adjunct moves simply perform

context composition.

Proposition 28 (One-step Move Elimination). For all ranks of the form r =

(m, 0, L, V ), for all tree contexts c1, c
′
1, c2, c

′
2 ∈ Cm

Tree, for all environments σ, σ′ ∈
LEnv with domσ = domσ′, if |V \ domσ| ≥ m and

((c1, σ), (c′1, σ
′), (3m, 0, L, V )) ∈ DW (4.103)

((c2, σ), (c′2, σ
′), (3m, 0, L, V )) ∈ DW (4.104)
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then, for all α ∈ V ∩ domσ with x = σα, x́ = σ′α, if c = c1 ©x c2 and

c′ = c′1 ©́x c′2 are defined then

((c, σ), (c′, σ), r) ∈ DW. (4.105)

Proof. The proof is by induction on m and by cases on Spoiler’s choice of move in

the game of (4.105). The base case, where m = 0, is trivial, since Spoiler cannot

make any move. In the inductive case, where m > 0, assume as the inductive

hypothesis that the proposition holds for all lesser values of m. Assume without

loss of generality that Spoiler selects the world (c, σ). Consider each connective

Spoiler may choose.

0 connective. If Spoiler plays this connective then either c = ∅ and c′ 6= ∅
or Duplicator wins. In the former case, given that c = c1 ©x c2, it must be that

c1 = x and c2 = ∅. By considering that Spoiler could play moves with the α

and 0 connectives on the games in (4.103) and (4.104) respectively, but that

Duplicator has a winning strategy for both, it must be that c′1 = x́ and c2 = ∅.

Hence, c′ = ∅, and so Duplicator must win after all.

β connective. If Spoiler plays this connective then either c = y = σβ and

c′ 6= ý = σ′β or Duplicator wins. In the former case, given that c = c1 ©x c2, one

of the following must be the case:

1. c1 = x and c2 = y;

2. c1 = y ⊗ x and c2 = ∅;

3. c1 = x⊗ y and c2 = ∅.

In the first case, c′1 = x́ and c′2 = ý, for otherwise Spoiler could win the

games in (4.103) and (4.104) by playing the connectives α and β respectively.

Hence, c′ = ý, and so Duplicator must win after all.

In the second case, considering how Spoiler could play the ⊗ connective

in (4.103), there must be c̄′1, ĉ
′
1 ∈ Cm

Tree with c′1 = c̄′1 ⊗ ĉ′1 and

((y, σ), (c̄′1, σ
′), (3m− 1, 0, L, V )) ∈ DW

((x, σ), (ĉ′1, σ
′), (3m− 1, 0, L, V )) ∈ DW.

Hence c̄′1 = ý and ĉ′1 = x́. Also, by (4.104), c′2 = ∅, for otherwise Spoiler could

win the game by playing the connective 0. Therefore, c′ = c′1 ©́x c′2 = (ý⊗ x́) ©́x
∅ = ý, and so Duplicator must win after all.

The third case is analogous to the second.

Since Duplicator wins in each case, it follows that Duplicator has a winning

strategy if Spoiler plays the β connective.
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a[] connective. If Spoiler plays this connective then c = a[d] for some

d ∈ Cm
Tree. Given that c = c1 ©x c2, one of the following must be the case:

1. c1 = a[d1] and d = d1 ©x c2;

2. c1 = a[d]⊗ x and c2 = ∅;

3. c1 = x⊗ a[d] and c2 = ∅.

In the first case, Spoiler could play the a[] connective on the game in (4.103),

choosing context d1. Hence, since Duplicator has a winning strategy for that

game, c′1 = a[d′1] with

((d1, σ), (d2, σ), (3m− 1, 0, L, V )) ∈ DW. (4.106)

By downward closure and the inductive hypothesis, noting that d′1 ©́x c′2 is

defined, since holes d′1 = holes c′1 and c′1 ©́x c′2 is defined, it follows that

((d1 ©x c2, σ), (d′1 ©́x c′2, σ
′), (m− 1, 0, L, V )) ∈ DW. (4.107)

By the definition of composition, c′ = a[d′], where d′ = d′1 ©́x c′2. Hence,

by (4.107), Duplicator has a winning strategy in this case.

In the second case, c′2 = ∅ by (4.104). Furthermore, Spoiler could play the

⊗ connective on the game in (4.103), and so, since Duplicator has a winning

strategy for that game, c′1 = d′1 ⊗ d′2 with

((a[d], σ), (d′1, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.108)

((x, σ), (d′2, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.109)

Since 3m− 1 ≥ 1, it follows from (4.109) that d′2 = x́. Also, Spoiler could play

the a[] connective on the game in (4.108), so it must be that d′1 = a[d′] with

((d, σ), (d′, σ′), (3m− 2, 0, L, V ) ∈ DW. (4.110)

Now c′ = (a[d′]⊗x́) ©́x ∅ = a[d′]. Hence, Duplicator can respond with d′ and the

game continues as ((d, σ), (d′, σ′), (m− 1, 0, L, V )), giving Duplicator a winning

strategy by (4.110) and downward closure.

The third case is analogous to the second.

Since Duplicator has a winning strategy in each case, it follows that Duplicator

has a winning strategy if Spoiler plays the a[] connective.

⊗ connective. If Spoiler plays this connective then he must make the

splitting c = d1 ⊗ d2 in one of the following ways:

1. Spoiler splits in the c1 part to the left of the x: that is, c1 = d1 ⊗ d3 and

d2 = d3 ©x c2;
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Figure 4.2: In left-to-right order, the three cases for splitting c = d1 ⊗ d2

2. Spoiler splits in the c1 part to the right of the x: that is, c1 = d3⊗ d2 and

d1 = d3 ©x c2;

3. Spoiler splits in the c2 part. In order for this case to apply, the x must

occur at the top level of c1, so c1 = d̄3⊗x⊗ d̄4, c2 = d5⊗ d6, d1 = d̄3⊗ d5

and d2 = d6 ⊗ d̄4.

These three cases are illustrated by Figure 4.2. The shaded area indicates

the c2 subtree and the dashed line indicates the splitting point. Note that the

third case does not apply to every possible choice of c1 and c2, but the example

shows a choice for which it does.

In the first case,

c1 ©x c2 = (d1 ⊗ d3)©x c2

= d1 ⊗ (d3 ©x c2).

Since Spoiler could play the ⊗ connective on the game in (4.103), it follows that

c′1 = d′1 ⊗ d′3 such that

((d1, σ), (d′1, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.111)

((d3, σ), (d′3, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.112)

Note that holes d′3 ⊆ holes c′1 and x́ ∈ holes d′3 by Lemma 22 (since x ∈ holes d3),

and so d′2 = d′3 ©́x c′2 is defined. By downward closure on (4.112) and (4.104)

and by the inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (m− 1, 0, L, V )) ∈ DW. (4.113)

Observe that

c′ = c′1 ©́x c′2

= (d′1 ⊗ d′3) ©́x c′2

= d′1 ⊗ (d′3 ©́x c′2)

= d′1 ⊗ d′2.
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Thus responding with d′1 and d′2 gives Duplicator a winning strategy in this case,

by downward closure on (4.111) and by (4.113).

The second case is analogous to the first.

In the third case,

c1 ©x c2 = d1 ⊗ d2

= (d3 ©x d5)⊗ (d4 ©x d6)

d3 = d̄3 ⊗ x

d4 = x⊗ d̄4

c1 = d3 ©x d4

= (d̄3 ⊗ x)©x (x⊗ d̄4)

c2 = d5 ⊗ d6.

Spoiler could play the ◦α connective on the game in (4.103), so c′1 = d′3 ©́x d′4

with

((d3, σ), (d′3, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.114)

((d4, σ), (d′4, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.115)

Also, Spoiler could play the ⊗ connective on the game in (4.104), so c′2 = d′5⊗d′6
with

((d5, σ), (d′5, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.116)

((d6, σ), (d′6, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.117)

Since c′1 = d′3 ©́x d′4, c′2 = d′5⊗ d′6 and x́ ∈ holes c′1, it follows that x́ ∈ holes d′3 ⊆
holes c′1, x́ ∈ holes d′4 ⊆ holes c′1, holes d′5 ⊆ holes c′2 and holes d′6 ⊆ holes c′2.

Hence, d1 = d′3 ©́x d′5 and d′2 = d′4 ©́x d′6 are defined. By downward closure and

the inductive hypothesis on (4.114) and (4.116), and on (4.115) and (4.117),

((d3 ©x d5, σ), (d′3 ©́x d′5, σ
′), (m− 1, 0, L, V ) ∈ DW (4.118)

((d4 ©x d6, σ), (d′4 ©́x d′6, σ
′), (m− 1, 0, L, V ) ∈ DW. (4.119)

It remains to show that c′ = d′1 ⊗ d′2. For this to be the case, it is sufficient

that d′3 = d̄′3⊗ x́ and d′4 = x́⊗ d̄′4, which hold by applying Lemma 23 to (4.114)
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and (4.115) respectively. Thus, by structural considerations,

c′ = c′1 ©́x c′2

= (d′3 ©́x d′4) ©́x (d′5 ⊗ d′6)

= ((d̄′3 ⊗ x́) ©́x (x́⊗ d̄′4)) ©́x (d′5 ⊗ d′6)

= d̄′3 ⊗ d′5 ⊗ d′6 ⊗ d̄′4
= (d′3 ©́x d′5)⊗ (d′4 ©́x d′6)

= d′1 ⊗ d′2.

Hence, by (4.118) and (4.119), Duplicator has a winning strategy if she responds

by splitting c′ as d′1 ⊗ d′2.

Thus, Duplicator has a winning strategy whenever Spoiler plays the ⊗ con-

nective.

◦β connective. Let y = σβ and ý = σ′β. Spoiler splits c as d1 ©y d2. Note

that Spoiler cannot play this connective as the final move of a winning strategy,

so it is safe to assume that n ≥ 2. (If n = 1, Duplicator would have a winning

strategy by responding with the splitting c′ = ý ©́y c′, for instance.)

It is possible that y = x, in which case some special considerations are

necessary. In such a case, it must also be that ý = x́, since otherwise Spoiler

could win the game in (4.103) by playing ◦α followed by β.

There are four cases for how Spoiler can make the splitting c = d1 ©y d2.

These are illustrated in Figures 4.3, 4.4, 4.5 and 4.6. In the diagrams, the darker

subtree denotes the c2 part of c = c1 ©x c2 and the dashed outline denotes the

d2 part of c = d1 ©y d2. The cases are:

1. Spoiler splits c within c2 (Figure 4.3), so that c2 = d3 ©y d2 and d1 = c1 ©x
d3.

2. Spoiler splits c outside c2, including all of c2 (Figure 4.4), so that c1 =

d1 ©y d3 and d2 = d3 ©x c2.

3. Spoiler splits c so that d2 consists of part of c1 and part (but not all) of

c2 (Figure 4.5). Here, the part of c1 must be a subtree adjacent to the x

hole, and the part of c2 must be a subtree at the root of c2 and on the

appropriate side.

4. Spoiler splits c so that d2 is a subtree of c1 that is completely disjoint from

the x hole (Figure 4.6). Here, c1 = d3 ©y d2 and d1 = d3 ©x c2, providing

x 6= y. I shall also consider the case when x = y.

Let us consider each case individually.
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Figure 4.3: Splitting type 1

Figure 4.4: Splitting type 2

Figure 4.5: Splitting type 3

Figure 4.6: Splitting type 4
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Case 1: Spoiler splits inside c2, as

c1 ©x c2 = c1 ©x (d3 ©y d2)

= (c1 ©x d3)©y d2

= d1 ©y d2

c2 = d3 ©y d2

d1 = c1 ©x d3.

Note that y /∈ holes c1, since otherwise this type of splitting is not applicable.

Spoiler would be able to play the ◦β connective on the game in (4.104), so

Duplicator must be able to split c′2 as d′3 ©́y d′2 such that

((d3, σ), (d′3, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.120)

((d2, σ), (d′2, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.121)

Note that holes d′3 ⊆ holes c′2 ∪ {ý}. Also, either y = x and so ý = x́, or

y /∈ holes c1 and so ý /∈ holes c′1, by Lemma 22. Hence, d′1 = c′1 ©́x d′3 is defined.

By downward closure on (4.103) and (4.120) and by the inductive hypothesis,

((c1 ©x d3, σ), (c′1 ©́x d′3, σ
′), (m− 1, 0, L, V )) ∈ DW. (4.122)

By structural considerations, since ý = x́ or ý /∈ holes c′1,

c′1 ©́x c′2 = c′1 ©́x (d′3 ©́y d′2)

= (c′1 ©́x d′3) ©́y d′2

= d′1 ©́y d′2.

Hence, by (4.122) and by downward closure on (4.121), Duplicator has a winning

strategy if she splits c′ as d′1 ©́y d′2.

Case 2: Spoiler splits outside c2, including all of c2 itself:

c1 ©x c2 = (d1 ©y d3)©x c2

= d1 ©y (d3 ©x c2)

= d1 ©y d2

c1 = d1 ©y d3

d2 = d3 ©x c2.

Spoiler would be able to play the ◦β connective on the game in (4.103), so

Duplicator must be able to split c′1 as d′1 ©́y d′3 such that

((d1, σ), (d′1, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.123)

((d3, σ), (d′3, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.124)
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Note that holes d′3 ⊆ holes c′1 and that, by Lemma 22, x́ ∈ holes d′3 since x ∈
holes d3. Thus d′3 ©́x c′2 is defined. By downward closure on (4.124) and (4.104)

and by the inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (m− 1, 0, L)) ∈ DW. (4.125)

By structural considerations, since either x́ = ý or x́ /∈ holes d′1 (since x́ ∈
holes d′3 and c′1 = d′1 ©́y d′3),

c′1 ©́x c′2 = (d′1 ©́y d′3) ©́x c′2

= d′1 ©́y (d′3 ©́x c′2)

= d′1 ©́y d′2.

Hence, by downward closure on (4.123) and by (4.125), Duplicator has a winning

strategy if she splits c′ as d′1 ©́y d′2.

Case 3: Spoiler splits part of c1 and part of c2:

c1 = d3 ©x d4 c2 = d5 ©y d6

where

d1 = d3 ©x d5 d2 = d4 ©x d6

with either

d4 = d̄4 ⊗ x d5 = y ⊗ d̄5

or

d4 = x⊗ d̄4 d5 = d̄5 ⊗ y.

Assume that d4 = d̄4⊗x and d5 = y⊗ d̄5; the proof in the other case is directly

analogous.

Recall Figure 4.5. In this case, the subtree d2 (indicated by the dashed line)

consists of part of c1 and part of c2. These two parts have to be adjacent at

the same level in the composite tree: d2 = d̄4 ⊗ d6, where d̄4 comes from c1

and d6 comes from c2. The remaining part of c1 is d3: c1 = d3 ©x d4, where

d4 = d̄4 ⊗ x. (I reuse x to split c1 since it is known not to clash with any

other hole labels.) The remaining part of c2 is d̄5: c2 = d̄5 ⊗ d6. This can be

expressed as c2 = d5 ©y d6, where d5 = d̄5 ⊗ y, since y /∈ holes d̄5, or else the

splitting would not be possible (as d1 would have to have two y holes). These

components can be recombined to give the chosen splitting: d1 = d3 ©x d5 and
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d2 = d4 ©x d6. Now,

c1 ©x c2 = (d3 ©x d4)©x (d5 ©y d6)

= (d3 ©x (d̄4 ⊗ x))©x ((y ⊗ d̄5)©y d6)

= d3 ©x (d̄4 ⊗ d6 ⊗ d̄5)

= (d3 ©x (y ⊗ d̄5))©y ((d̄4 ⊗ x)©x d6)

= (d3 ©x d5)©y (d4 ©x d6)

= d1 ©y d2.

Spoiler could play the ◦α move on the game in (4.103) splitting c1 = d3 ©x d4,

so c′1 = d′3 ©́x d′4 such that

((d3, σ), (d′3, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.126)

((d4, σ), (d′4, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.127)

Similarly, Spoiler could play ◦β , splitting c2 = d5 ©y d6, on the game in (4.104),

so c′2 = d′5 ©́y d′6 such that

((d5, σ), (d′5, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.128)

((d6, σ), (d′6, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.129)

Note that x́ ∈ holes d′3 ⊆ holes c′1 and holes d′5 ⊆ holes c′2 ∪ {ý}. Furthermore,

either y = x and so ý = x́ (since otherwise Spoiler could win the game in (4.103)

by playing ◦α followed by β), or y /∈ holes d3 and so, by Lemma 22, ý /∈ holes d′3.

Thus d′1 = d′3 ©́x d′5 is defined. Similarly, x́ ∈ holes d′4 ⊆ holes d′1 and holes d′6 ⊆
holes c′2, so d′2 = d′4 ©́x d′6 is defined. Hence, by downward closure on (4.127),

(4.128), (4.127) and (4.129), and by the inductive hypothesis,

((d3 ©x d5, σ), (d′3 ©́x d′5, σ
′), (m− 1, 0, L, V )) ∈ DW (4.130)

((d4 ©x d6, σ), (d′4 ©́x d′6, σ
′), (m− 1, 0, L, V )) ∈ DW. (4.131)

It remains to show that c′1 ©́x c′2 = d′1 ©́y d′2. By structural considerations

c′1 ©́x c′2 = (d′3 ©́x d′4) ©́x (d′5 ©́y d′6)

= d′3 ©́x (d′4 ©́x (d′5 ©́y d′6)).

Since d4 = d̄4 ⊗ x and d5 = y ⊗ d̄5, it must be the case that d′4 = d̄′4 ⊗ x́ and

d′5 = ý ⊗ d̄′5. Thus,

d′4 ©́x (d′5 ©́y d′6) = d̄′4 ⊗ d′6 ⊗ d̄′5
= d′5 ©́y (d′4 ©́x d′6).
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Hence, recalling that ý = x́ or ý /∈ holes d′3,

c′1 ©x c′2 = d′3 ©́x (d′5 ©́y (d′4 ©́x d′6))

= (d′3 ©́x d′5) ©́y (d′4 ©́x d′6)

= d′1 ©́y d′2,

as required. Thus, by (4.130) and (4.131), Duplicator has a winning strategy if

she splits c′ as d′1 ©́y d′2.

Case 4: Spoiler splits part of c1 disjoint from c2. There are two subcases,

which I shall consider separately: (a) y 6= x and (b) y = x.

(a) y 6= x:

c1 ©x c2 = (d3 ©y d2)©x c2

= (d3 ©x c2)©y d2

= d1 ©y d2

c1 = d3 ©y d2

d1 = d3 ©x c2.

Since y 6= x, it must be that ý 6= x́, for otherwise Spoiler would have a winning

strategy for (4.103) by playing ◦α followed by β. Spoiler could play the ◦β move

on the game in (4.103), splitting c1 = d3 ©y d2, so c′1 = d′3 ©́y d′2 such that

((d3, σ), (d′3, σ
′), (3m− 1, 0, L, V )) ∈ DW (4.132)

((d2, σ), (d′2, σ
′), (3m− 1, 0, L, V )) ∈ DW. (4.133)

Note that holes d′3 ⊆ holes c′1 ∪ {ý}. Also, by Lemma 22, x́ ∈ holes d′3 and

ý /∈ holes c′2. Thus d′1 = d′3 ©́x c′2 is defined. By downward closure on (4.132)

and (4.104), and by the inductive hypothesis,

((d3 ©x c2, σ), (d′3 ©́x c′2, σ
′), (m− 1, 0, L, V )) ∈ DW. (4.134)

By structural considerations, since x́, ý ∈ holes d′3,

(d′3 ©́y d′2) ©́x c′2 = (d′3 ©́x c′2) ©́y d′2.

Hence, by (4.134) and downward closure on (4.133), Duplicator has a winning

strategy if she splits c′ as d′1 ©́y d′2.

(b) y = x: The reason I give this case separate consideration is that the

construction for (a) would give a d3 with two holes labelled x. This problem

can be avoided by working with context c̄1, which is just c1 with the x hole
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replaced with a z hole, where z is some sufficiently fresh hole name. Choosing

some z /∈ holes c1 ∪ holes c2 ∪ rangeσ,

c = ((d3 ©x d2)©z x)©x c2

= (d3 ©x d2)©z c2

= (d3 ©z c2)©x d2

= d1 ©x d2

c1 = c̄1 ©z x

c̄1 = d3 ©x d2

d1 = d3 ©z c2.

Since y = x, it must be that ý = x́, for otherwise Spoiler would have a winning

strategy for (4.103) by playing ◦α followed by β. By Lemma 27, chosing some

γ ∈ V \ domσ and ź /∈ holes c′1 ∪ holes c′2 ∪ rangeσ′,

((c1, σ[γ 7→ z]), (c′1, σ
′[γ 7→ ź]), (3m− 1, 0, L, V )) ∈ DW (4.135)

((c2, σ[γ 7→ z]), (c′2, σ
′[γ 7→ ź]), (3m− 1, 0, L, V )) ∈ DW. (4.136)

Spoiler could play ◦γ on the game in (4.135), splitting c1 as c̄1 ©z x, and so

c′1 = c̄′1 ©́z ĉ′1 such that

((c̄1, σ[γ 7→ z]), (c̄′1, σ
′[γ 7→ ź]), (3m− 2, 0, L, V )) ∈ DW (4.137)

((x, σ[γ 7→ z]), (ĉ′1, σ
′[γ 7→ ź]), (3m− 2, 0, L, V )) ∈ DW. (4.138)

Since 3m− 2 ≥ 1, (4.138) implies that ĉ′1 = x́. Furthermore, Spoiler could play

◦α on the game in (4.137), splitting c̄1 as d3 ©x d2, and so c̄′1 = d′3 ©́x d′2 such

that

((d3, σ[γ 7→ z]), (d′3, σ
′[γ 7→ ź]), (3m− 3, 0, L, V )) ∈ DW (4.139)

((d2, σ[γ 7→ z]), (d′2, σ
′[γ 7→ ź]), (3m− 3, 0, L, V )) ∈ DW. (4.140)

By construction and by Lemma 22 (recalling that m ≥ 2),

{x́, ź} ⊆ holes d′3 ⊆ (holes c′ \ holes c′2) ∪ {x́, ź}

Also, by Lemma 22 and by definition, neither x́ nor ź occurs in c′2. Hence

d′1 = d′3 ©́z c′2 is defined. Now, by (4.139) and downward closure on (4.136), and

by the inductive hypothesis,

((d3 ©z c2, σ[γ 7→ z]), (d′3 ©́z c′2, σ[γ 7→ ź]), (m− 1, 0, L, V )) ∈ DW. (4.141)
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By Lemma 24 and downward closure on (4.141) and (4.140),

((d1, σ), (d′1, σ
′), (m− 1, 0, L, V )) ∈ DW (4.142)

((d2, σ), (d′2, σ
′), (m− 1, 0, L, V )) ∈ DW. (4.143)

By construction, and by Lemma 22, x́, ź /∈ holes d′2 and x́ /∈ holes c′2. Thus, by

structural considerations,

c′ = c′1 ©́x c′2

= (c̄′1 ©́z x́) ©́x c′2

= ((d′3 ©́x d′2) ©́z x́) ©́x c′2

= (d′3 ©́x d′2) ©́z (x́ ©́x c′2)

= (d′3 ©́x d′2) ©́z c′2

= (d′3 ©́z c′2) ©́x d′2

= d′1 ©́x d′2.

Hence, since ý = x́, Duplicator has a winning strategy if she splits c′ as d′1 ©́y d′2.

For each possible splitting that Spoiler could make with the ◦β connec-

tive, Duplicator has a corresponding splitting that gives her a winning strategy.

Therefore, Duplicator has a winning strategy if Spoiler plays the ◦β connective.

∃β connective. In playing this move, Spoiler chooses to instantiate β as y,

say. If m = 1, any choice gives Duplicator a winning strategy, so assume that

m ≥ 2. Assume that domσ = domσ′ ⊆ V . (Any other case can be reduced to

this case by using Lemma 25 to add any assignments for variables not in V to

(4.105) and to remove them from (4.103) and (4.104).)

There are four mutually-exclusive cases for Spoiler’s choice of y:

1. y ∈ rangeσ;

2. y ∈ holes c1 but y /∈ rangeσ;

3. y ∈ holes c2 but y /∈ rangeσ;

4. y is fresh, that is, y /∈ holes c1 ∪ holes c2 ∪ rangeσ.

Case 1: In this case, y = σγ for some γ, and Duplicator can respond with

ý = σ′γ. By the first case of Lemma 27,

((c1, σ[β 7→ y]), (c′1, σ
′[β 7→ ý]), (3m− 1, 0, L, V )) ∈ DW (4.144)

((c2, σ[β 7→ y]), (c′2, σ
′[β 7→ ý]), (3m− 1, 0, L, V )) ∈ DW (4.145)

121



Expressivity 4.4 Adjunct Elimination for CLm
Tree

and so, by downward closure and the inductive hypothesis,

((c, σ[β 7→ y]), (c′, σ′[β 7→ ý]), (m− 1, 0, L, V )) ∈ DW. (4.146)

Hence, choosing ý gives Duplicator a winning strategy in this case.

Case 2: Spoiler could play the ∃β connective on the game in (4.103). Since

Duplicator has a winning strategy, there is some ý such that

((c1, σ[β 7→ y]), (c′1, σ
′[β 7→ ý]), (3m− 1, 0, L, V )) ∈ DW. (4.147)

Since y /∈ rangeσ and 3m−2 ≥ 2, ý /∈ rangeσ′. (To see this, suppose that Spoiler

were to play the ◦β connective on the game in (4.147), splitting c′1 = ý ©́y c′1.

Duplicator’s responding choice of context must naturally contain a y hole, so if

there were some γ with ý = σ′γ and y 6= σγ then Spoiler would have a winning

strategy by playing the γ connective.) Also, since y ∈ holes c1 and 3m− 2 ≥ 2,

ý ∈ holes c′1 by Lemma 22. Thus y /∈ holes c2∪rangeσ and ý /∈ holes c′2∪rangeσ′,

and hence, by the second case of Lemma 27,

((c2, σ[β 7→ y]), (c′2, σ
′[β 7→ ý]), (3m− 1, 0, L, V )) ∈ DW. (4.148)

So, by downward closure and the inductive hypothesis,

((c, σ[β 7→ y]), (c′, σ′[β 7→ ý]), (m− 1, 0, L, V )) ∈ DW. (4.149)

Hence, choosing ý gives Duplicator a winning strategy in this case.

Case 3: This case is essentially the same as case 2, except that Duplicator’s

choice of ý is derived from her winning response for the game in (4.104).

Case 4: This case admits the same proof as case 2.

Since Duplicator has a winning strategy in every case, Duplicator has a win-

ning strategy if Spoiler plays the ∃β connective.

For each move that Spoiler could play on the game in (4.105), I have shown

how Duplicator can respond to give her a winning strategy. Therefore (4.105)

holds.

Corollary 29 (Multi-step Move Elimination). For all ranks r = (m, s, L, V ),

for all c, c′ ∈ Cm
Tree, and for all environments σ, σ′ ∈ LEnv with domσ = domσ′,

if

((c, σ), (c′, σ′), (3s(m+ 1), 0, L, V )) ∈ DW (4.150)

then

((c, σ), (c′, σ′), (m, s, L, V )) ∈ DW. (4.151)
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Proof. The proof is by induction on s.

If s = 0 then the conclusion follows by downward closure.

For s > 0, consider how an instance of the game in (4.151) would proceed.

Until Spoiler first plays an adjunct connective, Duplicator may respond to any

strategy of Spoiler’s as she would for her winning strategy for the game in

(4.150), preventing Spoiler from winning up to that point. Spoiler first plays an

adjunct connective for, say, the (k + 1)th move (so k ≤ m). At this stage, for

some c1, c
′
1 ∈ Cm

Tree and σ1, σ
′
1 ∈ LEnv, the game state is

((c1, σ1), (c′1, σ
′
1), (m− k, s, L, V )) (4.152)

and we know that

((c1, σ1), (c′1, σ
′
1), (3s(m+ 1)− k, 0, L, V )) ∈ DW. (4.153)

Spoiler now plays either the •−∃α or −•∃α connective on (4.152) for some α ∈ V .

•−∃α connective. Spoiler chooses one of c1, c
′
1; assume without loss of gen-

erality that he picks c1. Let x = σ1α and x́ = σ′1α. Spoiler also chooses

d1, d2 ∈ Cm
Tree with d2 = d1 ©x c1. By downward closure on (4.153),

((c1, σ1), (c′1, σ
′
1), (3 · 3s−1(m− k + 1), 0, L, V )) ∈ DW. (4.154)

Note that, for β, γ ∈ V , σ1β = σ1γ if and only if σ′1β = σ′1γ. This follows from

(4.154) by considering that, if x = σ1β = σ1γ, Spoiler could play the ◦β move

and split c1 = x©x c1. Duplicator’s response for her winning strategy must split

c′1 = x́ ©́x c′1 with x́ = σ′1β and x́ = σ′1γ, or else Spoiler would be able to win by

playing either the β or γ connective.

Now let d′1 be d1 with the hole labels renamed as follows: for each β ∈
domσ1 ∩ V , σ1β is renamed to σ′1β; and the remaining hole labels (which are

distinct from (holes c1)∪σ1V are renamed to be fresh with respect to (holes c′1)∪
σ′1V . By construction, for every K ∈ Km

Tree with fvK ⊆ V , d1, σ |=ς K if and

only if d′1, σ
′ |=ς K. Thus, by game completeness,

((d1, σ1), (d′1, σ
′
1), (3 · 3s−1(m− k + 1), 0, L, V )) ∈ DW (4.155)

((d1, σ1), (d′1, σ
′
1), (m− k, s− 1, L, V )) ∈ DW. (4.156)

Notice that d′2 = d′1 ©́x c′1 is defined by construction. By Proposition 28, from

(4.154) and (4.155),

((d1 ©x c1, σ1), (d′1 ©́x c′1, σ
′
1), (3s−1(m− k + 1), 0, L, V )) ∈ DW. (4.157)

Hence, by the inductive hypothesis,

((d1 ©x c1, σ1), (d′1 ©́x c′1, σ
′
1), (m− k, s− 1, L, V )) ∈ DW. (4.158)
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From (4.156) and (4.158), Duplicator has a winning strategy by responding with

d′1 and d′2.

−•∃α connective. Again, without loss of generality assume that Spoiler

chooses c1, and let x = σ1α and x́ = σ′1α. Spoiler also chooses d1, d2 ∈ Cm
Tree

with d2 = c1 ©x d1. As before,

((c1, σ1), (c′1, σ
′
1), (3 · 3s−1(m− k + 1), 0, L, V )) ∈ DW. (4.159)

Let d′1 be the relabelling of d1 as in the previous case. By construction and

by Lemma 22 (using (4.159), since 3s(m− k+ 1) ≥ 3), d′2 = c′1 ©́x d′1 is defined.

Also, by game completeness,

((d1, σ1), (d′1, σ
′
1), (3 · 3s−1(m− k + 1), 0, L, V )) ∈ DW (4.160)

((d1, σ1), (d′1, σ
′
1), (m− k, s− 1, L, V )) ∈ DW. (4.161)

Thus, by Proposition 28,

((c1 ©x d1, σ1), (c′1 ©́x d′1, σ
′
1), (3s−1(m− k + 1), 0, L, V )) ∈ DW. (4.162)

Hence, by the inductive hypothesis,

((c1 ©x d1, σ1), (c′1 ©́x d′1, σ
′
1), (m− k, s− 1, L, V )) ∈ DW. (4.163)

So, by (4.161) and (4.163), Duplicator has a winning strategy in this case also,

by playing d′1 and d′2.

The following theorem translates this result on games into a result on logical

formulae, finally establishing that adjunct elimination holds for CLm
Tree.

Theorem 30 (Adjunct Elimination). For any sort-ς formula of rank r =

(m, s, L, V ), there exists an equivalent formula of rank r′ = (3s(m+ 1), 0, L, V ).

Proof. Suppose that K is a sort-ς formula of rank r. Let

W =
{
w ∈Worldς

∣∣ w |=ς K
}

.

By game soundness, if w ∈ W and w′ /∈ W then (w,w′, r) ∈ SW. By Corol-

lary 20, this means that (w,w′, r′) ∈ SW. Hence, by game completeness, there

is a formula Kw,w′ of rank r′ which discriminates between w and w′.

Therefore, by Corollary 9, there is a sort-ς formula K ′ of rank r′ such that,

for w ∈ Worldς , w |=ς K
′ if and only if w ∈ W . Hence, K ′ is equivalent to

K.
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4.5 Quantifier Normalisation for CLm

In this section, I present results that allow a multi-holed context logic formula to

be rewritten in such a way that all hole-label quantifiers are Nand appear at the

head of the formula. (The one caveat is that 7−[ is introduced as a subformula,

which I treat here as being primitive, although previously it was defined as

∃α. α.) The eventual benefit of this normalisation procedure is that formulae

with deeply-nested quantifiers typically present a barrier to decidability, while

decidability is often more readily attainable for formulae with restricted forms

of quantification.

For these results, I assume the modal presentation of CLm , and that envi-

ronment neutrality (Property 3.43) and hole neutrality (Property 3.44) hold for

all model-specific connectives.

The first result establishes a logical equivalence can be used to replace an

instance of existential quantification with fresh quantification. An existentially

quantified hole label may be instantiated to the same thing as a free variable,

to something other than a free variable but which occurs in the context under

consideration, or to something that is fresh with respect to both the free vari-

ables and the context. The equivalence uses a disjunction of three subformulae

that deal with each of these cases. When the hole variable is instantiated to the

value of a free variable, it is sufficient to use that free variable instead. When

the hole variable is instantiated to something other than a free variable that

occurs in the context, that instance can be replaced with a fresh label that can

be used instead. When the hole variable is fresh then it is sufficient to use a

freshly-quantified variable.

Lemma 31 (Encoding Existential with Freshness). For all K ∈ Km ,

∃α.K ≡ Nα.K ◦α

7− [ ∧ ¬ ∨
β∈(fvK)\{α}

β

 ∨K ∨ ∨
β∈(fvK)\{α}

K[β/α].

Consequently, every formula can be rewritten to an equivalent formula that

contains no existential quantifiers.

Proof. Fix some K ∈ Km with (∃α.K) ∈ Formulaς , for some ς ∈ Sort. Let

K ′ = K ◦α

 7− [ ∧ ¬ ∨
β∈(fvK)\{α}

β

 ∨K ∨ ∨
β∈(fvK)\{α}

K[β/α].

Fix some (c, σ) ∈Worldς . It suffices to show that

c, σ |=ς ∃α.K ⇐⇒ c, σ |=ς Nα.K ′. (4.164)
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By environment extendability (Property 3.33), assume without loss of generality

that ς = c(fvK \ {α}). I prove each direction of (4.164) in turn.

=⇒:

Suppose that

c, σ |=ς ∃α.K

and hence

there exists x s.t. c, σ[α 7→ x] |=c(fvK) K.

Consider the possible cases for x.

If x ] c, σ then c, σ |=ς Nα.K and so c, σ |=ς Nα.K ′.

If x ∈ rangeσ (and so xσβ for some β) then c, σ |=c(fvK) K[β/α] (by induc-

tion of the structure of K). Hence c, σ |=ς Nα.K ′.

If x ] σ but x ∈ holes c then for any y ] σ, c, and for some ix ∈ Ix,

c = c[y/x]©x ix

c[y/x], σ[α 7→ y] |=c(fvK) K

x, σ[α 7→ y] |=c(fvK) 7− [ ∧ ¬
∨

β∈(fvK)\{α}

β

and so

c, σ[α 7→ y] |=c(fvK) K ◦α

7− [ ∧ ¬ ∨
β∈(fvK)\{α}

β


∴ c, σ[α 7→ y] |=c(fvK) K

′

∴ c, σ |=ς Nα.K ′.

These three cases cover all possible choices of x, and hence c, σ |=ς Nα.K ′,

as required.

⇐=:

Suppose that

c, σ |=ς Nα.K ′

and hence

there exists x s.t. x ] c, σ and c, σ[α 7→ x] |=c(fvK) K
′.

One of the disjuncts of K ′ must be satisfied; consider the possible cases.

If

c, σ[α 7→ y] |=c(fvK) K ◦α

7− [ ∧ ¬ ∨
β∈(fvK)\{α}

β
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then there exists c′, y with y ] σ and iy ∈ Iy such that

c = c′ ©x iy

c′, σ[α 7→ x] |=c(fvK) K.

By hole substitution (Property 3.34), it follows that

c, σ[α 7→ y] |=c(fvK) K,

and hence c, σ |=ς ∃α.K.

If c, σ[α 7→ x] |=c(fvK) K then by definition c, σ |=ς ∃α.K.

If c, σ[α 7→ x] |=c(fvK) K[β/α] where σβ = y, say, then c, σ[α 7→ y] |=c(fvK)

K (by induction on the structure of K). Hence, c, σ |=ς ∃α.K.

The above lemma shows that we can replace existential quantification with

freshness quantification, but at the cost of enlarging the formula. A valid ques-

tion is: can we do better than this? For specific choices of K, the answer is

certainly ‘yes’, however, in the general case, the proof tends to justify the size

of K ′.

In particular, for the ‘=⇒’ direction in the proof, each of the three cases for

x requires a different disjunct — if any of them is left out, it is not difficult

to conceive a counterexample: K = α requires the first disjunct (when ∃α. α
is satisfied, α is bound to a hole label that occurs in the context, but not

necessarily in the environment); K = True ◦α a[0] requires the second disjunct

(in this case, α gets bound to something that is fresh with respect to the context,

and, assuming the environment is empty, also the environment); and K = α∧β
requires the third disjunct (here, α gets bound to the same thing as β).

Less obvious is the need for the subformula

¬
∨

β∈(fvK)\{α}

β

in the first disjunct of K ′. In the ‘⇐=’ direction of the proof, this subformula

guarantees that the hole label y is fresh with respect to σ, and so the hole

substitution property can be applied. If the subformula is omitted, the formula

K = α ∧ ¬β is a counterexample to the desired equivalence:

x, [β 7→ x] /|=ς ∃α. α ∧ ¬β

but

x, [β 7→ x] |=ς Nα. (α ∧ ¬β) ◦α 7− [.

The next result shows that the freshness quantifiers in a formula can be

brought to the outside; that is, formulae with only freshness quantification can
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be re-written as equivalent formulae in prenex normal form. Conforti and Ghelli

take a similar approach in [CG04] to prove that ambient logic with freshness

quantification is decidable.

Lemma 32 (Prenex Normalisation). The following logical equivalences hold,

where α is assumed not to occur free on either side.

For each model-specific connective ~ having arity n and each 1 ≤ i ≤ n,

~(K1, . . . ,Ki−1, Nα.Ki,Ki+1, . . . ,Kn) ≡ Nα.~(K1, . . . ,Kn) (4.165)

K1 ◦β ( Nα.K2) ≡ Nα.K1 ◦β K2 (4.166)

( Nα.K1) ◦β K2 ≡ Nα.K1 ◦β K2 (4.167)

K1 −◦∃β ( Nα.K2) ≡ Nα.K1 −◦∃β (K2 ∧�α ) (4.168)

( Nα.K1)−◦∃β K2 ≡ Nα. (K1 ∧�α )−◦∃β K2 (4.169)

K1 ◦−∃β ( Nα.K2) ≡ Nα.K1 ◦−∃β (K2 ∧�α ) (4.170)

( Nα.K1) ◦−∃β K2 ≡ Nα. (K1 ∧�α ) ◦−∃β K2 (4.171)

K1 → ( Nα.K2) ≡ Nα.K1 → K2 (4.172)

( Nα.K1)→ K2 ≡ Nα.K1 → K2. (4.173)

Consequently, every ∃-free formula can be rewritten to give an equivalent

formula in which all quantifiers appear at the head of the formula — the prenex

normal form.

The proof makes use of Environment Neutrality (Property 3.43), Hole Neu-

trality (Property 3.44), Environment Extendability (Property 3.33) and Hole

Substitution (Property 3.34).

Proof. Fix (c, σ) ∈Worldς for some appropriate choice of ς. Let ς ′ = c(φ∪{α})
where ς = cφ.

Equivalence (4.165):

c, σ |=ς ~(K1, . . . ,Ki−1, Nα.Ki,Ki+1, . . . ,Kn)

⇐⇒ there exist c1, . . . , cn s.t.

(c, σ) M~ ((c1, σ), . . . , (cn, σ)) and

for j 6= i, cj , σ |=ς Kj and

ci, σ |=ς Nα.Ki

⇐⇒ there exist c1, . . . , cn s.t.

(c, σ) M~ ((c1, σ), . . . , (cn, σ)) and

for j 6= i, cj , σ |=ς Kj and

there exists x s.t. x ] ci, σ and ci, σ[α 7→ x] |=ς′ Ki
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(by hole substitution)

⇐⇒ there exist c1, . . . , cn s.t.

there exists z s.t. z ] c, σ, c1, . . . , cn and

(c, σ) M~ ((c1, σ), . . . , (cn, σ)) and

for j 6= i, cj , σ |=ς Kj and

ci, σ[α 7→ z] |=ς′ Ki

(by environment extensibility)

⇐⇒ there exist c1, . . . , cn s.t.

there exists z s.t. z ] c, σ, c1, . . . , cn and

(c, σ) M~ ((c1, σ), . . . , (cn, σ)) and

for 1 ≤ j ≤ n, cj , σ[α 7→ z] |=ς′ Kj

(by hole substitution and hole neutrality)

⇐⇒ there exists y s.t. y ] c, σ and

there exist c1, . . . , cn s.t.

(c, σ) M~ ((c1, σ), . . . , (cn, σ)) and

for 1 ≤ j ≤ n, cj , σ[α 7→ y] |=ς′ Kj

(by environment neutrality)

⇐⇒ there exists y s.t. y ] c, σ and

there exist c1, . . . , cn s.t.

(c, σ[α 7→ y]) M~ ((c1, σ[α 7→ y]), . . . , (cn, σ[α 7→ y])) and

for 1 ≤ j ≤ n, cj , σ[α 7→ y] |=ς′ Kj

⇐⇒ c, σ |=ς Nα.~(K1, . . . ,Kn).

Equivalence (4.166): Let y = σβ.

c, σ |=ς K1 ◦β ( Nα.K2)

⇐⇒ there exist c1, c2 s.t. c = c1 ©y c2 and

c1, σ |=ς K1 and

there exists x s.t. x ] c2, σ and c2, σ[α 7→ x] |=ς′ K2
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(by hole substitution and environment extensibility)

⇐⇒ there exists z s.t. z ] c, σ and

there exist c1, c2 s.t. c = c1 ©y c2 and

c1, σ[α 7→ z] |=ς′ K1 and c2, σ[α 7→ z] |=ς′ K2

⇐⇒ c, σ |=ς Nα.K1 ◦β K2.

Equivalence (4.167): Let y = σβ.

c, σ |=ς ( Nα.K1) ◦β K2

⇐⇒ there exist c1, c2 s.t. c = c1 ©y c2 and

there exists x s.t. x ] c1, σ and c1, σ |=ς′ K1 and

c2, σ |=ς K2

⇐⇒ there exists z s.t. z ] c, σ and

there exist c1, c2 s.t. c = c1 ©y c2 and

c1, σ[α 7→ z] |=ς′ K1 and c2, σ[α 7→ z] |=ς′ K2

⇐⇒ c, σ |=ς Nα.K1 ◦β K2.

Equivalence (4.168): Let y = σβ.

c, σ |=ς K1 −◦∃β ( Nα.K2)

⇐⇒ there exist c1, c2 s.t. c2 = c©x c1 and

c1, σ |=ς K1 and

there exists x s.t. x ] c2, σ and c2, σ[α 7→ x] |=ς′ K2

⇐⇒ there exist c1, c2 s.t. c2 = c©x c1 and

c1, σ |=ς K1 and

there exists x s.t. x ] σ and c2, σ[α 7→ x] |=ς′ K2 ∧�α

⇐⇒ there exists z s.t. z ] c, σ and

there exist c1, c2 s.t. c2 = c©x c1 and

c1, σ[α 7→ z] |=ς′ K1 and c2, σ[α 7→ z] |=ς′ K2 ∧�α

⇐⇒ c, σ |=ς Nα.K1 −◦∃β (K2 ∧�α ).
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Equivalence (4.169): Let y = σβ.

c, σ |=ς ( Nα.K1)−◦∃β K2

⇐⇒ there exist c1, c2 s.t. c2 = c©x c1 and

there exists x s.t. x ] c1, σ and c1, σ[α 7→ x] |=ς′ K1 and

c2, σ |=ς K2

⇐⇒ there exist c1, c2 s.t. c2 = c©x c1 and

there exists x s.t. x ] c1, σ and c1, σ[α 7→ x] |=ς′ K1 ∧�α and

c2, σ |=ς K2

⇐⇒ there exists z s.t. z ] c, σ and

there exist c1, c2 s.t. c2 = c©x c1 and

c1, σ[α 7→ z] |=ς′ K1 ∧�α and c2, σ[α 7→ z] |=ς′ K2

⇐⇒ c, σ |=ς Nα. (K1 ∧�α )−◦∃β K2.

Equivalence (4.170): Let y = σβ.

c, σ |=ς K1 ◦−∃β ( Nα.K2)

⇐⇒ there exist c1, c2 s.t. c2 = c1 ©x c and

c1, σ |=ς K1 and

there exists x s.t. x ] c2, σ and c2, σ[α 7→ x] |=ς′ K2

⇐⇒ there exist c1, c2 s.t. c2 = c1 ©x c and

c1, σ |=ς K1 and

there exists x s.t. x ] σ and c2, σ[α 7→ x] |=ς′ K2 ∧�α

⇐⇒ there exists z s.t. z ] c, σ and

there exist c1, c2 s.t. c2 = c1 ©x c and

c1, σ[α 7→ z] |=ς′ K1 and c2, σ[α 7→ z] |=ς′ K2 ∧�α

⇐⇒ c, σ |=ς Nα.K1 ◦−∃β (K2 ∧�α ).

Equivalence (4.171): Let y = σβ.

c, σ |=ς ( Nα.K1) ◦−∃β K2

⇐⇒ there exist c1, c2 s.t. c2 = c1 ©x c and

there exists x s.t. x ] c1, σ and c1, σ[α 7→ x] |=ς′ K1 and

c2, σ |=ς K2
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⇐⇒ there exist c1, c2 s.t. c2 = c1 ©x c and

there exists x s.t. x ] c1, σ and c1, σ[α 7→ x] |=ς′ K1 ∧�α and

c2, σ |=ς K2

⇐⇒ there exists z s.t. z ] c, σ and

there exist c1, c2 s.t. c2 = c1 ©x c and

c1, σ[α 7→ z] |=ς′ K1 ∧�α and

c2, σ[α 7→ z] |=ς′ K2

⇐⇒ c, σ |=ς Nα. (K1 ∧�α ) ◦−∃β K2.

Equivalence (4.172):

c, σ |=ς K1 → ( Nα.K2)

⇐⇒ c, σ |=ς K1 =⇒ there exists x s.t. x ] c, σ and c, σ[α 7→ x] |=ς′ K2

⇐⇒ there exists x s.t. x ] c, σ and

c, σ[α 7→ x] |=ς′ K1 =⇒ c, σ[α 7→ x] |=ς′ K2

⇐⇒ c, σ |=ς Nα.K1 → K2.

Equivalence (4.173):

c, σ |=ς ( Nα.K1)→ K2

⇐⇒
(
there exists x s.t. x ] c, σ and c, σ[α 7→ x] |=ς′ K1

)
=⇒ c, σ |=ς K2

⇐⇒ for all x, x ] c, σ =⇒

c, σ[α 7→ x] |=ς′ K1 =⇒ c, σ[α 7→ x] |=ς′ K2

⇐⇒ c, σ |=ς Nα.K1 → K2.

The above lemmata lead to the following proposition, which sums up quan-

tifier normalisation for multi-holed context logic formulae.

Proposition 33 (Quantifier Normalisation). Every formula of CLm can be

rewritten to an equivalent prenex normal form that uses only Nquantification.

This rewriting is effective.

Proof. The formula is first rewritten to only include fresh quantification by ap-

plying the equivalence of Lemma 31 to each existentially quantified subformula
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exhaustively. The equivalence rules of Lemma 32 are then applied exhaustively

to the result, leading to an equivalent formula in prenex normal form with only

Nquantification. It is not difficult to see that these strategies terminate.
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Chapter 5

Decidability

I now show how multi-holed context logic over sequences, terms and trees can be

decided. The decision procedures for each model are implemented using finite

automata. Since the conceptual complexity of automata for terms and trees

are greater than for sequences, I have chosen to first show the procedure for

sequences, then for terms and finally for trees.

Initially, I make two constraints. Firstly, I assume that the labelling al-

phabets Σ and X are finite. This ensures that the automata are indeed finite.

Secondly, I exclude quantification over hole labels (both ∃ and N). This is

because the quantifiers do not have direct automaton constructions. Later, I

show how these constraints can be lifted to give decision procedures where the

labelling alphabets are infinite and for formulae with quantification over hole

labels.

5.1 Sequences

For a given formula P and logical environment σ, we are interested in the set

of sequences which satisfy the formula: LP,σ =
{
s
∣∣∣ s, σ |=c(domσ) P

}
. The

question of whether the formula P is satisfiable (with respect to σ) is exactly

the question of whether LP,σ 6= ∅. I can answer this question by leveraging the

theory of formal languages: LP,σ is a language of words over Ω = Σ ∪ X and

‘LP,σ 6= ∅’ is an instance of the language emptiness problem.

In fact, we shall see that each LP,σ is a regular language: that is, a language

that is recognised by a finite automaton. I show this by constructing automata

corresponding to each context logic formula — for a given P and σ, I define an

automaton AP,σ that accepts exactly the language LP,σ. These automata can
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be used to decide the language membership and emptiness problems, and hence

decide model-checking and satisfiability for context logic for sequences.

In the following, assume that multi-holed sequence contexts, Cm
Seq, are defined

over finite Σ and X. Let Ω = Σ ∪ X, and let Ω∗, ranged over by w,w′, w1, . . . ,

be the set of words over Ω (that is, finite sequences labelled from Ω). Note that

Cm
Seq ⊆ Ω∗.

5.1.1 Automata

I first give the formal definitions for finite automata and informally describe

their operation.

Definition 5.1 (ε-NFA). A non-deterministic finite automaton with ε-transi-

tions (abbreviated ε-NFA) is a tuple A = (Q, e, {fa}a∈Ω∪{ε} , A) where:

� Q is the set of states, a finite set;

� e ∈ Q is the initial state;

� for each a ∈ Ω, fa ⊆ Q×Q is the state transition relation for a (there is

one for each);

� fε ⊆ Q×Q is the non-consuming state transition relation; and

� A ⊆ Q is the set of accepting states.

Definition 5.2 (Forms of Automata). An ε-NFA having fε = ∅ is a non-

deterministic finite automaton (NFA). An NFA for which fa is a partial function

for all a ∈ Ω is a deterministic finite automaton (DFA). A DFA for which fa

is a total function for all a ∈ Ω is a complete DFA. A pre-automaton is an

automaton without a set of accepting states, i.e. Â = (Q, e, {fa}a∈Ω∪{ε}).

A run of an automaton is easiest to understand in the deterministic case.

The automaton begins in state e and consumes the word, w, one letter at a time

from left to right. When a letter, say a, is consumed, the automaton transitions

from its current state, q, to the state fa(q). If the automaton is complete, then

fa(q) is always defined, but otherwise it may be undefined. If the transitions

for the word that the automaton is being run on are all defined, then once the

entire word has been consumed, the automaton will be in some state, q′. If

q′ ∈ A, the automaton accepts the word w. If q′ /∈ A, or if the transition is

undefined at some point in the run, then the automaton does not accept the

word w.

135



Decidability 5.1 Sequences

The non-deterministic case generalises this. One way to think of this gener-

alisation is that multiple runs are possible for a given word, with each transition

relation allowing a number of possible choices of transition from each state. The

automaton accepts the word w if any of the runs, after consuming the entire

word, ends in a state q′ ∈ A.

An alternative view is that the automaton can be in multiple states at a time,

beginning with {e}. At each step, after consuming letter a, the automaton is

in state q′ (among others) if and only if there is some state q that it was in

before such that (q, q′) ∈ fa. The automaton accepts the word w if, after it has

consumed w in its entirety, it is in some state q′ ∈ A (possibly among others,

which may or may not also be elements of A).

This view is useful for seeing how an NFA may be reduced to a (complete)

DFA using the powerset construction. The states of the constructed DFA are

the sets of states of the NFA, and the next state of the DFA is obtained by

taking the union of the application of the appropriate transition relation of the

NFA to each element of the DFA’s state.

An ε-NFA generalises an NFA further by allowing transitions in which no

letter is consumed (ε-transitions). The view of the automaton as being in multi-

ple states still applies. However, the set of states after consuming a is not simply

the set of all q′ such that (q, q′) ∈ fa, for some state q′ that the automaton was

in, but it is the closure of this set under fε.

I have described an intuition for the following result, which is well known in

the literature. A proof can be found in [Yu97].

Lemma 34. For every ε-NFA, a complete DFA may be constructed that accepts

exactly the same language.

Although each type of automaton I have described can express the same

languages, when constructing automata that accept specific languages, different

types of automata can be better suited to the task, depending on the construc-

tion in question. For example, given a complete DFA (Q, e, {fa}a∈Ω∪{ε} , A)

accepting language L, an automaton accepting the language Ω∗ \ L can be

constructed by simply replacing the set of accepting states with Q \ A. (This

construction works for complete DFA because they map each word to a single

state. The words that were not accepted by the original automaton are exactly

those that are mapped to non-accepting states.) Adapting this construction for

NFA requires first determinising the NFA. On the other hand, ε-transitions per-

mit a compact and intuitive automaton construction corresponding to language

concatenation.
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To formally define the language recognised by an automaton, I make some

auxiliary definitions.

Definition 5.3 (ε-closure). For a given automaton, the ε-closure ⊆ Q × Q

relation relates each state to every state that is reachable from it by ε-transitions.

That is to say, ε-closure is the reflexive-transitive closure of fε:

ε-closure = (fε)∗.

Definition 5.4 (Automaton-induced Mappings). An automaton A induces a

function J(·)KA : Ω∗ → P(Q) that maps words w ∈ Ω∗ to sets of states JwKA ⊆ Q
according to the following definition:

J∅KA = ε-closure(e)

Jw · aKA = {q | there exists q′ ∈ JwKA s.t. (q′, q) ∈ (fa # ε-closure)} .

An automaton A also induces a function L(·)MA : Ω∗ → P(Q × Q) that maps

words w ∈ Ω∗ to relations on states LwMA ⊆ Q × Q according to the following

definition:

L∅MA = ε-closure

Lw · aMA = LwMA # fa # ε-closure.

The above definition applies equally to pre-automata, since it has nothing to

do with the accepting states. On the other hand, the following definition only

applies to automata.

Definition 5.5 (Acceptance). A word w is said to be accepted by automaton A
if JwKA ∩A 6= ∅. The language accepted by A, LA, is the set of words accepted

by A:

LA = {w ∈ Ω∗ | JwKA ∩A 6= ∅} .

For a given word, w, JwKA is the set of all states that runs of the automaton

A on w can end in. The relation LwMA relates each state with every state that

the automaton can reach from it by consuming w. That is, (q1, q2) ∈ LwMA if

and only if, when the automaton is in state q1 and proceeds to consume the

word w it is possible for it to end in state q2. The relation LwMA effectively

describes how the word w is interpreted by the automaton in any context, and

hence it is a useful concept in constructing automata for context logic.

It should be noted that L(·)MA is a monoid homomorphism1; that is Lw1 ·
w2MA = Lw1MA # Lw2MA — relational composition corresponds to concatenation

of words.
1from the set of words under concatenation to the set of ε-closed binary relations on Q

under composition
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e q1 q2

q3

b

ε

b

b a
a

b

Figure 5.1: Representation of an ε-NFA

Finite automata are depicted as finite, edge-labelled, directed graphs. Each

node of the graph represents a state, with the initial state identified by an arrow

that does not originate at any node, and the accepting states identified by double

circles. An a-labelled edge between two nodes indicates that the connected pair

of states belongs to the relation fa.

Example 5.1. Figure 5.1 illustrates the automaton A = (Q, e, {fa}a∈{a,b,ε} , A)

where:

� Q = {e, q1, q2, q3};

� fa = {(q2, q3), (q3, e)};

� f b = {(e, q1), (q1, q2), (q1, q3), (q3, q2)};

� fε = {(e, q3)}; and

� A = {q1, q2}.

For this automaton:

� ε-closure = {(e, e), (e, q3), (q1, q1), (q2, q2), (q3, q3)};

� J∅KA = {e, q3} and, since this set is disjoint form A, the word ∅ is not

accepted by the automaton;

� Jb · bKA = {q2, q3} and, since q2 ∈ Jb · bKA ∩A, the word b · b is accepted by

the automaton;

� Lb · aMA = {(e, q3), (q1, e), (q1, q3), (q3, q3)}.

With all the types of finite automata, language membership and emptiness

are decidable. For membership, it is sufficient to consider the run (or runs) of

an automaton on a given word: the word is a member of the language if it is

accepted by the automaton. For emptiness, it is sufficient to determine whether

an accepting state is reachable from the initial state by any combination of

transitions: the language is empty if no accepting state is reachable. This is

effectively an instance of the reachability problem for finite directed graphs.
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Definition 5.6 (Reachable States). Given automaton A, let f : P(Q)→ P(Q)

be the one-step reachability function given by

f (R) = {e} ∪ R ∪ {q | there exists a ∈ Ω ∪ {ε} , q′ ∈ R s.t. q ∈ fa(q′)} .

This function is monotone and so, by the Knaster-Tarski theorem [Tar55], it

has a least fixed-point. Define reachable to be this least fixed-point, the set of

reachable states of A. Since P(Q) is finite, reachable is computable. Indeed,

reachable = (f )n(∅)

for some finite n.

Remark. Why was {e} in the definition of the one-step reachability func-
tion? If it had not been, then the least fixed-point would have
been ∅, which is not what is required.

Theorem 35. Given automaton, A, for all q ∈ Q,

q ∈ reachable ⇐⇒ there exists w ∈ Ω∗ s.t. q ∈ JwKA.

Proof. =⇒:

Let us show that, for all m, for all q ∈ (f )m(∅), there exists some w ∈ Ω∗ such

that q ∈ JwKA. The proof is by induction on m. The base case, where m = 0, is

trivial. For the inductive case, let q ∈ (f )m(∅). One of the following is the case:

� q ∈ (f )m−1 and the conclusion holds by the inductive hypothesis;

� q ∈ {e} — so q ∈ J∅KA;

� for some a ∈ Ω and some q′ ∈ (f )m−1, q ∈ fa(q′) — so by the inductive

hypothesis, there is a w′ ∈ Ω∗ such that q′ ∈ Jw′KA, and so q ∈ Jw · aKA;

or

� for some q′ ∈ (f )m−1, q ∈ fε(q′) — so by the inductive hypothesis, there

is some w ∈ Ω∗ such that q′ ∈ JwKA, and so also q ∈ JwKA.

Since reachable = (f )n for some n, the implication holds.

⇐=:

The proof in this direction is by induction on the structure of the word w. Note

first that reachable is closed under ε-transitions (since fε ⊆ f ). In the base case,

w = ∅ and so if q ∈ JwKA then q ∈ ε-closure(e). Clearly, e ∈ reachable and so

q ∈ reachable also. In the inductive case, w = w′ · a for some w′ ∈ Ω∗, a ∈ Ω, so
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if q ∈ JwKA then there is some q′ ∈ Jw′KA with q ∈ (fa # ε-closure)(q′). By the

inductive hypothesis, q′ ∈ reachable, and by the definition of f and the closure

of reachable under ε-transitions, q ∈ reachable also.

The class of languages accepted by automata is the class of regular languages.

An important property of regular languages is that they are closed under union,

intersection, complementation with respect to Ω∗, and language concatenation.

This result forms part of Kleene’s theorem, which states that the regular lan-

guages are exactly those corresponding to regular expressions [Kle56]. That is,

they constitute the smallest class of languages that includes the empty language

and every single-element language, and that is closed under the above opera-

tions, as well as repetition (Kleene star ∗). For these results, it is also significant

that Cm
Seq itself is a regular language. A fuller exposition of regular languages

and automata may be found in [Yu97]2.

An important subclass of the regular languages are the star-free regular

languages: the smallest class of languages with the same properties as regular

languages except for closure under Kleene star.

By defining automata that accept exactly the words that satisfy given CLm
Seq

formulae, I show not only the decidability of CLm
Seq, but also that CLm

Seq formulae

define regular languages. In fact, CLm
Seq formulae can be shown to define star-free

regular languages [CGZ06].

5.1.2 Basic Constructions

The aforementioned closure properties of regular languages give a means to

implement many of the connectives of CLm
Seq with automata — constructions for

them are well-known in the literature (e.g. [Yu97]). I present constructions for

disjunction (union), conjunction (intersection) and concatenation as examples.

In constructions that are based on multiple automata, I assume that the state

sets of these automata are disjoint. In any event, the state sets can be renamed

so that this is the case.

A reader who is well-grounded in automata theory may wish to skip the

majority of the details in this section, which are standard, and proceed directly

to §5.1.3.

Definition 5.7 (Union Construction). Given ε-NFA

A1 = (Q1, e1, {fa1 }a∈Ω∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Ω∪{ε} , A2),

2Note that in [Yu97], λ is used instead of ε.
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e

e1

e2

A1

A2

ε

ε

Figure 5.2: Representation of ε-NFA A1 ∪ A2

the ε-NFA

A1 ∪ A2 = (Q, e, {fa}a∈Ω∪{ε} , A)

is defined as follows:

� Q = Q1 ∪Q2 ∪ {e};

� for a ∈ Ω, fa = fa1 ∪ fa2 ;

� fε = fε1 ∪ fε2 ∪ {(e, e1), (e, e2)}; and

� A = A1 ∪A2,

where e is fresh.

Proposition 36 (Correctness of Union Construction). Given automata A1 and

A2, which accept languages L1 and L2 respectively, the automaton A1 ∪ A2

accepts the language L1 ∪ L2.

Proof sketch. The constructed automaton consists of a copy of A1 and A2 and

starts with a non-deterministic choice as to which automaton to proceed in. An

accepting run on either of the original automata will result in an accepting run

in A by prepending the run with the transition from e to the initial state of

the appropriate automaton. Conversely, an accepting run on A will result in an

accepting run on one of the original automata by removing the initial transition

(and beginning from the initial state of the appropriate automaton).

Figure 5.2 illustrates this automaton construction.
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Definition 5.8 (Product Pre-automaton). Given pre-automata

Â1 = (Q1, e1, {fa1 }a∈Ω∪{ε}) and

Â2 = (Q2, e2, {fa2 }a∈Ω∪{ε}),

the product pre-automaton

Â1 × Â2 = (Q, e, {fa}a∈Ω∪{ε})

is defined as follows:

� Q = Q1 ×Q2;

� e = (e1, e2);

� for a ∈ Ω, fa(q1, q2) = {(q′1, q′2) | q′1 ∈ fa1 (q1), q′2 ∈ fa2 (q2)}; and

� fε(q1, q2) = {(q′1, q2) | q′1 ∈ fε1 (q1)} ∪ {(q1, q
′
2) | q′2 ∈ fε2 (q2)}.

The product construction simulates the operation of two automata in par-

allel. This construction is useful as the basis of other constructions, such as the

intersection construction below.

Proposition 37 (Correctness of Product Construction). Given pre-automata

Â1 and Â2, for all w ∈ Ω∗, q1 ∈ Q1 and q2 ∈ Q2,

LwMÂ1×Â2
((q1, q2)) =

(
LwMÂ1

(q1)
)
×
(
LwMÂ2

(q2)
)

(5.1)

JwKÂ1×Â2
= JwKÂ1

× JwKÂ2
. (5.2)

Proof. Let Â = Â1 × Â2. For (5.1), the proof is by induction on the structure

of w. Observe first that ε-closure((q1, q2)) = ε-closure1(q1)× ε-closure2(q2).

Base case: w = ∅. In this case,

L∅MÂ1×Â2
((q1, q2)) = ε-closure((q1, q2))

= ε-closure1(q1)× ε-closure2(q2)

=
(
L∅MÂ1

(q1)
)
×
(
L∅MÂ2

(q2)
)

.
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Inductive case: w = w′ · a (for some w′ ∈ Ω∗, a ∈ Ω). In this case,

Lw′ · aMÂ1×Â2
((q1, q2)) =

(
Lw′MÂ1×Â2

# fa # ε-closure
)

((q1, q2))

(IH) = (fa # ε-closure)
((
Lw′MÂ1

(q1)
)
×
(
Lw′MÂ2

(q2)
))

= ε-closure
((

(Lw′MÂ1
# fa1 )(q1)

)
×
(

(Lw′MÂ2
# fa2 )(q2)

))
=
(

(Lw′MÂ1
# fa1 # ε-closure1)(q1)

)
×(

(Lw′MÂ2
# fa2 # ε-closure2)(q2)

)
=
(
Lw′ · aMÂ1

(q1)
)
×
(
Lw′ · aMÂ2

(q2)
)

.

For (5.2),

JwKÂ1×Â2
= LwMÂ1×Â2

((e1, e2))

=
(
LwMÂ1

(e1)
)
×
(
LwMÂ2

(e2)
)

= JwKÂ1
× JwKÂ2

.

Definition 5.9 (Intersection Construction). Given ε-NFA

A1 = (Q1, e1, {fa1 }a∈Ω∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Ω∪{ε} , A2),

the ε-NFA

A1 ∩ A2 = (Q, e, {fa}a∈Ω∪{ε} , A)

is defined as follows:

� (Q, e, {fa}a∈Ω∪{ε}) = (Q1, e1, {fa1 }a∈Ω∪{ε})× (Q2, e2, {fa2 }a∈Ω∪{ε}); and

� A = A1 ×A2.

Proposition 38 (Correctness of Intersection Construction). Given automata

A1 and A2, accepting languages L1 and L2 respectively, the automaton A1∩A2

accepts the language L1 ∩ L2.

Proof. Let A = A1 ∩ A2.

JwKA ∩A 6= ∅

⇐⇒ (JwKA1
× JwKA2

) ∩ (A1 ×A2) 6= ∅

⇐⇒ JwKA1 ∩A1 6= ∅ and JwKA2 ∩A2 6= ∅

⇐⇒ w ∈ L1 and w ∈ L2

⇐⇒ w ∈ L1 ∩ L2.
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Remark. A similar construction for union is possible, based on the prod-
uct pre-automaton, using the accept set A1 × Q2 ∪ Q1 × A2.
A possible benefit of such a construction is that it does not in-
troduce any non-determinism. However, the construction does
have a much greater state space than that of Definition 5.7.

Definition 5.10 (Concatenation Construction). Given ε-NFA

A1 = (Q1, e1, {fa1 }a∈Ω∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Ω∪{ε} , A2),

the ε-NFA

A1 · A2 = (Q, e, {fa}a∈Ω∪{ε} , A)

is defined as follows:

� Q = Q1 ∪Q2;

� e = e1;

� for a ∈ Ω, fa = fa1 ∪ fa2 ;

� fε = fε1 ∪ fε2 ∪ {(q1, e2) | q1 ∈ A1}; and

� A = A2.

Proposition 39 (Correctness of Concatenation Construction). Given automata

A1 and A2, accepting languages L1 and L2 respectively, the automaton A1 · A2

accepts the language L1 · L2 — the language concatenation of L1 and L2.

Proof sketch. An accepting run of A1 · A2 consists of an accepting run of A1

followed by an accepting run of A2. Hence if w is accepted by A1 · A2 then

w = w1 ·w2 for some w1 that is accepted by A1 and w2 that is accepted by A2.

Conversely, if w1 is accepted by A1 and w2 is accepted by A2 then the accepting

runs of those automata can be combined to give an accepting run of A1 · A2 on

the concatenation w1 · w2.

Figure 5.3 illustrates this automaton construction.
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e1 e2A1 A2

ε

ε

Figure 5.3: Representation of ε-NFA A1 · A2

Remark. Non-determinism means that every possible splitting of a can-
didate word between L1 and L2 is considered. For example,
consider L1 = {∅, a, a · a}, L2 = {∅, a · b, a · a · b}. Clearly, the
word a · a · b is in L1 · L2. Given A1 and A2 accepting these lan-
guages, one accepting run of A1 · A2 on a · a · b transitions from
A1 to A2 after having consumed ∅, while another accepting run
transitions after having read a. No accepting run transitions af-
ter having read a ·a, since b is not accepted by A2. No accepting
run transitions after having read a · a · b, since that word is not
accepted by A1.

Definition 5.11 (Complementation Construction). Given an ε-NFA

A1 = (Q1, e1, {fa1 }a∈Ω∪{ε} , A1),

the ε-NFA (actually, a complete DFA)

A1 = (Q, e, {fa}a∈Ω∪{ε} , A)

is defined as follows:

� Q = P(Q1);

� e = ε-closure1(e1);

� for a ∈ Ω, fa(q) =
{
ε-closure1

(⋃
q1∈q f

a
1 (q1)

)}
;

� fε = ∅; and

� A = {q ∈ Q | q ∩A1 = ∅}.

Proposition 40 (Correctness of Complementation Construction). Given au-

tomaton A1, accepting language L1, the automaton A1 accepts the language

Ω∗ \ L1 — the complement of L1 with respect to Ω∗.
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Proof sketch. The automaton construction for A1 determinises A1: each state

of A1, q, is a set of states from the original automaton representing the states

reachable by every possible run of the original automaton on the word consumed

to reach that state. Consequently, for each word w, JwKA1
= {JwKA1

}. The

accepting set A is defined so that w is accepted if and only if JwKA1
contains no

accepting state of A1. Thus, A1 accepts the language Ω∗ \ L1.

5.1.3 Generalisations of Composition

I must still give automaton constructions to implement the structural connec-

tives ◦, ◦−∃ and −◦∃.
Recall that sequence contexts are just words in which each hole label from

X may only occur at most once. In order to implement the structural con-

nectives for sequence contexts with automaton constructions, it is necessary to

generalise them to operations on arbitrary words. I use non-deterministic linear

substitution as this generalisation.

Definition 5.12 (Non-deterministic Linear Substitution). Given words w1,

w2 ∈ Ω∗ and label a ∈ Ω, the non-deterministic linear substitution w1 �a w2 is

defined to be the set of words obtained by replacing exactly one occurrence of

a in w1 by the word w2. Given languages L1,L2 ⊆ Ω∗, non-deterministic linear

substitution and the existential duals of its adjoints are defined as follows:

L1 �a L2 =
⋃

w1∈L1
w2∈L2

w1 �a w2

L1 �−∃a L2 = {w ∈ Ω∗ | there exists w′ ∈ L1 s.t. (w′ �a w) ∩ L2 6= ∅}

L1 −�∃a L2 = {w ∈ Ω∗ | there exists w′ ∈ L1 s.t. (w �a w′) ∩ L2 6= ∅} .

A word in L1 �a L2 is a word from L1 in which exactly one occurrence of a

has been replaced by a word from L2. This corresponds to context composition

when restricted to proper, linear contexts, so � is a convenient operation with

which to implement context composition. Of course, in contexts, which have

only one x hole, non-deterministic linear substitution is deterministic — there

is only one outcome. However, for words in general it is nondeterministic.

Not that there are two other, more obvious generalisations of context compo-

sition to the non-linear case. I discuss these to illustrate why non-deterministic

linear substitution is a more appropriate choice. Firstly, there is the operation

of replacing each occurrence of a in a word of one language by a word of a

second language, with each instance being replaced by the same word: uniform

substitution.
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Definition 5.13 (Uniform Substitution). Given languages L1,L2 ⊆ Ω∗ and

label a ∈ Ω, uniform substitution and the existential duals of its adjoints are

defined as follows:

L1 �a L2 = {w1[w2/a] | w1 ∈ L1 and w2 ∈ L2}

L1 �−∃a L2 = {w ∈ Ω∗ | there exists w1 ∈ L1 s.t. w1[w/a] ∈ L2}

L1 −�∃a L2 = {w ∈ Ω∗ | there exists w1 ∈ L1 s.t. w[w1/a] ∈ L2} .

A word in L1 �a L2 is a word from L1 in which each occurrence of a has

been replaced by a word from L2, with each replacement being the same (hence,

uniform). Although this may seem to be a more natural operation than non-

deterministic linear substitution, neither star-free regular languages and regular

languages are closed under uniform substitution. In fact, it is not possible in

general to decide the emptiness problem for languages constructed with uniform

substitution together with the basic constructions of star-free regular languages.

This can be shown by the fact that the decision problem of whether a first order

sentence has a finite model can be encoded as the emptiness problem. By

Trakhtenbrot’s Theorem [Tra50], this problem is undecidable.

A second alternative is the operation of replacing each occurrence of a in a

word of one language by (possibly different) words of a second language: non-

uniform substitution.

Definition 5.14 (Non-uniform Substitution). Given languages L1,L2 ⊆ Ω∗

and label a ∈ Ω, the non-uniform substitution L1 }a L2 is defined to be the

set of words obtained by replacing each occurrence of a in words from L1 by a

word in L2. Each occurrence of a may be replaced by a different word from L2

(hence, non-uniform).

The existential dual of the adjoint of (·)}a L1 is defined as follows:

L1 −}∃a L2 = {w ∈ Ω∗ | ({w}}a L1) ∩ L2 6= ∅} .

Unlike uniform substitution, the class of regular languages is closed under

non-uniform substitution. However, non-uniform substitution does not have two

corresponding adjoints, but only one. This is because }a does not distribute

over ∪ in its second argument. Consequently, it does not immediately suggest

an operation with which to implement the ◦−∃ connective.
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Remark. Note, also, that star-free regular languages are not closed under
non-uniform substitution. In particular, the languages (a · x)∗

and a have aperiodicity number3 2, and so are star-free, by
Schützenberger [Sch65], while the language (a·a)∗ = (a·x)∗}xa
is not aperiodic, and so is not star-free. Non-deterministic linear
substitution, on the other hand, preserves aperiodicity and so
can be used to establish the connection between multi-holed
context-logic for sequences and the star-free regular languages.

One issue with both uniform and non-uniform substitution is that they do

not strictly extend the behaviour of context composition to the non-linear case.

To see this, consider the context composition a©x b, which is undefined, while

{a} �x {b} = {a} }x {b} = {a}. On the other hand, for non-deterministic

linear substitution, {a}�x {b} = ∅.
Non-deterministic linear substitution does not suffer from the issues arising

with uniform and non-uniform substitution, and so I elect to use it in imple-

menting the connectives of context logic. The disadvantage of this choice is

that the automaton constructions are perhaps not the simplest required to im-

plement the logic. However, I hope that the uniformity this choice affords my

approach leads to a greater clarity of exposition.

5.1.4 Complex Constructions

I now present automaton constructions for the operations �, �−∃ and −�∃.
The construction for A1 �x A2 combines behaviours of both automata. An

accepting run begins reading the word as A1 would, but at some point, instead

of reading an x, it switches to reading the word as A2 would, until it reaches an

accept state of A2. At this point, it switches back to reading as A1 would, but

as though it has read x instead of the word that was accepted by A2, and finally

reaches an accept state of A1. Thus, the accepted word must be the result of

substituting some word accepted by A2 for one instance of x in a word that is

accepted by A1.

Definition 5.15 (� Construction). Given ε-NFA

A1 = (Q1, e1, {fa1 }a∈Ω∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Ω∪{ε} , A2),

the ε-NFA

A1 �x A2 = (Q, e, {fa}a∈Ω∪{ε} , A)

148



Decidability 5.1 Sequences

is defined as follows:

� Q = Q1 × (Q2 ∪ {0, 1});

� e = (e1, 0);

� for a ∈ Ω, fa is the smallest relation satisfying:

– (q′1, n) ∈ fa((q1, n)) whenever q′1 ∈ fa1 (q1) and for n ∈ {0, 1}, and

– (q1, q
′
2) ∈ fa((q1, q2)) whenever q′2 ∈ fa2 (q2) and for q1 ∈ Q1;

� fε is the smallest relation satisfying:

– (q′1, n) ∈ fε((q1, n)) whenever q′1 ∈ fε1 (q1) and for all n ∈ {0, 1},

– (q1, q
′
2) ∈ fε((q1, q2)) whenever q′2 ∈ fε2 (q2) and for all q1 ∈ Q1,

– (q1, e2) ∈ fε((q1, 0)), and

– (q′1, 1) ∈ fε((q1, q2)) whenever q′1 ∈ fx1 (q1) and q2 ∈ A2; and

� A = A1 × {1}.

The essence of this construction is illustrated by Figures 5.4 and 5.5.

Consider the automaton A = A1 �x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. When this automaton is run on a

word, it initially behaves like A1; the state has the form (q1, 0). At some point

in the run, the automaton may switch to behave like A2 from its initial state

by making a ε-transition and keeping a record of the state of A1 that it was

previously in; the state then has the form (q1, q2). If the automaton eventually

reaches an accepting state of A2, the automaton may switch back to behave like

A1 as if it had just read x instead of the word from L2 (the language accepted

by A2) that it actually read; the state then has the form (q1, 1). Once the run

is completed, if the automaton is in an accepting state then it has read a word

of the form w′1 · w2 · w′′1 where w′1 · x · w′′1 ∈ L1 and w2 ∈ L2.

The above correctness argument is formalised in the following lemmata.

Lemma 41. For all w ∈ Ω∗, q ∈ Q1,

(q1, 0) ∈ JwKA ⇐⇒ q1 ∈ JwKA1
.

Proof. Both directions are by induction on the structure of w.

=⇒:

Base case: w = ∅ so (q1, 0) ∈ ε-closure((e1, 0)), and hence q1 ∈ ε-closure1(e1),

and q1 ∈ J∅KA1
.
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e1 q′1q1

x e2

q2

Figure 5.4: Partial representation of ε-NFA A1 (left) and A2

(e1, 1) (q′1, 1)(q1, 1)

(q1, e2)

(q1, q2)

(e1, 0) (q′1, 0)(q1, 0)

x

x

ε

ε

Figure 5.5: Partial representation of ε-NFA A1 �x A2
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Inductive case: w = w′ · a (for some w′ ∈ Ω∗, a ∈ Ω). In this case, (q1, 0) ∈
(fa # ε-closure)(q′) for some q′ ∈ Jw′KA. This implies that q′ = (q′1, 0) for

some q′1 ∈ Q1 with q1 ∈ (fa1 # ε-closure1)(q′1) and, by the inductive hypothesis,

q′1 ∈ Jw′KA1
. Hence, q1 ∈ JwKA1

.

⇐=:

Base case: w = ∅ so q1 ∈ ε-closure1(e1), and hence (q1, 0) ∈ ε-closure(e).
Inductive case: w = w′ · a (for some w′ ∈ Ω∗, a ∈ Ω). In this case, q1 ∈

(fa1 # ε-closure1)(q′1) for some q′1 ∈ Jw′KA1
. Since, by the inductive hypothesis,

(q′1, 0) ∈ Jw′KA, it follows that (q1, 0) ∈ JwKA.

Lemma 42. For all w ∈ Ω∗, q1,∈ Q1 and q2 ∈ Q2,

(q1, q2) ∈ JwKA

⇐⇒

there exist w1, w2 ∈ Ω∗ s.t. w = w1 · w2 and q1 ∈ Jw1KA1
and q2 ∈ Jw2KA2

.

Proof. Both directions are by induction on the structure of w.

=⇒:

Base case: w = ∅ so (q1, q2) ∈ ε-closure((e1, 0)). Thus, by the definition of A,

it must be the case that:

� (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2), and q2 ∈
J∅KA2 ;

� (q1, e2) ∈ fε((q1, 0));

� (q1, 0) ∈ J∅KA and so q1 ∈ J∅KA1 (by Lemma 41).

The choice w1 = w2 = ∅ therefore fulfils the requirements.

Inductive case: w = w′ · a (for some w′ ∈ Ω∗, a ∈ Ω). In this case, (q1, q2) ∈
(fa # ε-closure)(q′) for some q′ ∈ Q. It must be that either q′ = (q1, q

′
2) or

q′ = (q′1, 0) for some q′2 ∈ Q2, q′1 ∈ Q1.

In the former case, q2 ∈ (fa2 # ε-closure2)(q′2), by the definition of A. By the

inductive hypothesis, there are w1, w
′
2 with w = w1 · w′2 · a, q1 ∈ Jw1KA1

and

q′2 ∈ Jw′2KA2
. Hence q2 ∈ Jw′2 · aKA2

, and so the choice of w1 and w2 = w′2 · a
fulfils the requirements.

In the latter case, it must be that:

� (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2), and q2 ∈
J∅KA2

;

� (q1, e2) ∈ fε((q1, 0)); and
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� (q1, 0) ∈ JwKA, and so q1 ∈ JwKA1
(by Lemma 41).

Therefore, the choice of w1 = w and w2 = ∅ fulfils the requirements.

⇐=:

Base case: w = ∅. In this case w1 = ∅ and w2 = ∅. By Lemma 41, (q1, 0) ∈
J∅KA, and so, since (q1, e2) ∈ fε((q1, 0)), (q1, e2) ∈ J∅KA. Now, it must be the

case that q2 ∈ ε-closure2(e2) and hence (q1, q2) ∈ J∅KA as required.

Inductive case: w = w′ ·a (for some w′ ∈ Ω∗, a ∈ Ω). Here, either w2 = w′2 ·a,

or w2 = ∅ and w1 = w = w′ · a.

In the former case, q2 ∈ (fa2 # ε-closure2)(q′2) for some q′2 with q′2 ∈ Jw′2KA2
.

Hence, by the inductive hypothesis, (q1, q
′
2) ∈ Jw1 · w′2KA. By the definition of

A, it follows that (q1, q2) ∈ Jw1 · w2KA as required.

In the latter case, q1 ∈ JwKA1 and so, by Lemma 41, (q1, 0) ∈ JwKA. It

follows then that (q1, e2) ∈ JwKA. Further, since q2 ∈ J∅KA2
= ε-closure2(e2), it

follows that (q1, q2) ∈ JwKA, as required.

Lemma 43. For all w ∈ Ω∗ and q1,∈ Q1,

(q1, 1) ∈ JwKA

⇐⇒

there exist w1, w2 ∈ Ω∗ s.t. w ∈ w1 �x w2 and q1 ∈ Jw1KA1
and w2 ∈ L2.

Proof. Both directions are by induction on the structure of w.

=⇒:

Base case: w = ∅. It must be the case that there are some q′1, q
′′
1 , q2 with:

� (q′′1 , q2) ∈ J∅KA, and hence, by Lemma 42, q′′1 ∈ J∅KA1
and q2 ∈ J∅KA2

;

� (q′1, 1) ∈ fε((q′′1 , q2)), and hence q′1 ∈ fx1 (q′′1 ) and q2 ∈ A2, so q′1 ∈ JxKA2

and ∅ ∈ L2; and

� (q1, 1) ∈ ε-closure((q′1, 1)), and hence q1 ∈ ε-closure1(q′1), so q1 ∈ JxKA2 .

Thus, w1 = x and w2 = ∅ fit the requirements: ∅ ∈ x�x ∅.

Inductive case: w = w′ · a (for some w′ ∈ Ω∗, a ∈ Ω). Either a is treated as

part of w1, or as part of w2. Thus, there must be some q′1 with either:

� (q1, 1) ∈ (fa # ε-closure)((q′1, 1)) and (q′1, 1) ∈ Jw′KA; or

� (q1, 1) ∈ ε-closure((q′1, 1)) and (q′1, 1) ∈ fε((q′′1 , q2)) for some q′′1 , q2 with

(q′′1 , q2) ∈ JwKA.
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In the former case, by the inductive hypothesis, there are w′1 and w2 with

w′ ∈ w′1 �x w2, q′1 ∈ Jw′1KA1
, and w2 ∈ L2. By the definition of A, q1 ∈

(fa1 #ε-closure1)(q1) and so q1 ∈ Jw′1 ·aKA1 . Observing that w ∈ (w′1�xw2)·{a} ⊆
(w′1 · a) �x w2, the words w1 = w′1 · a and w2 fit the requirements.

In the latter case, by Lemma 42, there are w′1, w2 with w = w′1 · w2, q′′1 ∈
Jw′1KA1

and q2 ∈ Jw2KA2
. It follows, by the definition of fε, that q′1 ∈ Jw′1 · xKA1

and q2 ∈ A2. Thus w1 = w′1 · x and w2 fit the requirements: w = w′1 · w2 ∈
(w′1 · x)�x w2, q1 ∈ ε-closure1(q′1) ⊆ Jw′1KA1 and w2 ∈ L2.

⇐=:

Base case: w = ∅. In this case, w1 = x and w2 = ∅. Since q1 ∈ Jw1KA1
, it

follows that q1 ∈ (fx1 #ε-closure1)(q′1) for some q′1 ∈ J∅KA1 . Hence, since w2 ∈ L2

there is a q2 ∈ J∅KA2 ∩A2, and so, by Lemma 42, (q′1, q2) ∈ J∅KA. Thus, by the

definition of fε, (q1, 1) ∈ ε-closure((q′1, q2)) and so (q1, 1) ∈ JwKA as required.

Inductive case: w = w′ · a (for some w′ ∈ Ω∗, a ∈ Ω). Either a forms part of

w2 or part of w1. Thus, either:

� w = w′′1 · w2 and w1 = w′′1 · x for some w′′1 ∈ Ω∗; or

� w′ ∈ w′1 �x w2 and w1 = w′1 · a for some w′1 ∈ Ω∗.

In the former case, there is a q′′1 ∈ Jw′′1 KA1
such that q1 ∈ (fx1 #ε-closure1)(q′′1 ),

and a q2 ∈ Jw2KA2
∩ A2. By Lemma 42, (q′′1 , q2) ∈ Jw′′1 · w2KA = JwKA. It

follows, using the definition of fε, that (q1, 1) ∈ ε-closure((q′′1 , q2)), and hence

(q1, 1) ∈ JwKA, as required.

In the latter case, there is a q′1 ∈ Jw′1KA1
such that q1 ∈ (fa1 # ε-closure1)(q′1).

By the inductive hypothesis, (q′1, 1) ∈ Jw′KA. By the definition A, (q1, 1) ∈
(fa # ε-closure)((q′1, 1)), and hence (q1, 1) ∈ JwKA as required.

Proposition 44 (Correctness of � Construction). The automaton A = A1 �x
A2 accepts the language L1 �x L2.

Proof.

w ∈ L1 �x L2

⇐⇒ there exist w1, w2 ∈ Ω∗ s.t. w ∈ w1 �x w2

and w1 ∈ L1 and w2 ∈ L2

(L. 43) ⇐⇒ there exists q1 ∈ A1 s.t. (q1, 1) ∈ JwKA

⇐⇒ A ∩ JwKA 6= ∅.
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Having established a correct construction for �, I now consider �−∃. Sup-

pose A1 and A2 accept languages L1 and L2 respectively. A word w ∈ L1�−∃xL2

is one such that it can be substituted for some x in some word w1 ∈ L1 to give

a word w2 ∈ L2. The automaton construction A = A1 �−∃x A2 determines how

to substitute w for some x in the automaton A2 so that w1 behaves like w2

would. That is, JwKA = {LwMA2
} — the result of running A on w is the transi-

tion relation on A2 induced by w. To determine if w should be accepted, it is

enough to know if there is some w1 that is accepted by A1 and by A2 modified

so that exactly one x is treated as w — fx behaves like LwMA2
in one instance.

The product construction is used to construct an automaton that, given LwMA2
,

accepts exactly such a w1. It is then sufficient to check whether some accepting

state of this automaton is reachable to determine if such a w1 exists.

Definition 5.16 (�−∃ Construction). Given ε-NFA

A1 = (Q1, e1, {fa1 }a∈Ω∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Ω∪{ε} , A2),

the ε-NFA

A1 �−∃x A2 = (Q, e, {fa}a∈Ω∪{ε} , A)

is defined as follows:

� Q = P(Q2 ×Q2);

� e = ε-closure2;

� for a ∈ Ω, fa(q) = {q # fa2 # ε-closure2};

� fε = ∅; and

� q ∈ A if and only if there exists w1 ∈ Ω∗ s.t. Jw1KÂ1×Âq ∩ A1 × Aq 6= ∅,
where

– Aq = (Q2 × {0, 1} , (e2, 0),
{
faq
}
a∈Ω∪{ε} , Aq),

– for a 6= x, faq = {((q2, n), (q′2, n)) | (q2, q
′
2) ∈ fa2 and n ∈ {0, 1}},

– fxq = {((q2, n), (q′2, n)) | (q2, q
′
2) ∈ fx2 and n ∈ {0, 1}} ∪

{((q2, 0), (q′2, 1)) | (q2, q
′
2) ∈ q},

– Aq = A2 × {1}.
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Consider the automaton A = A1 �−∃x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. This automaton is deterministic,

and the state on reading a word w is a relation expressing the effect of reading

w in A2 from any given state. This is, JwKA = {LwMA2
}. The automaton Aq,

where q = LwMA2
accepts a word w1 if and only if (w1 �x w) ∩ L2 6= ∅. This is

since, to reach a state of the form (q2, 1), the automaton must at some point

read x and make a transition in the first component of the state equivalent to

reading the word w. The condition that Jw1KÂ1×Âq ∩ A1 × Aq 6= ∅ is then

equivalent to the condition that w1 ∈ L1 and (w1�xw)∩L2 6= ∅. The existence

of such a w1 can be decided, for each q, by reachability in the pre-automaton

A1 ×Aq.
The correctness argument for the above construction is formalised in the

following lemmata.

Lemma 45. For all w ∈ Ω∗,

JwKA = {LwMA2
} .

Proof. The proof is by induction on the structure of w. Note that, since fε = ∅,
ε-closure is the identity relation.

Base case: w = ∅.

J∅KA = ε-closure(e)

= ε-closure(ε-closure2)

= {ε-closure2}

= {L∅MA2
} .

Inductive case: w = w′ · a (for some w′ ∈ Ω∗, a ∈ Ω).

Jw · aKA = {q | there exists q′ ∈ Jw′KA s.t. q ∈ (fa # ε-closure)(q′)}

(IH) = {q | q ∈ (fa # ε-closure)(Lw′MA2)}

= fa(Lw′MA2
)

= {Lw′MA2 # f
a
2 # ε-closure2}

= {Lw′ · aMA2
} .

For q ∈ Q, let Aq be as given in Definition 5.16. If q = LwMA2 , then Aq
should accept w1 if replacing some occurrence of x with w in w results in a

word that is accepted by A2. This is expressed by the following lemma.
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Lemma 46. Suppose that q = LwMA2
for some w ∈ Ω∗. Then for w1 ∈ Ω∗, and

q2 ∈ Q2,

(q2, 1) ∈ Jw1KAq

⇐⇒

there exists w2 ∈ Ω∗ s.t. q2 ∈ Jw2KA2
and w2 ∈ w1 �x w.

Proof. =⇒:

Supposing that (q2, 1) ∈ Jw1KAq , it must be the case that there exist q′2, q
′′
2 ∈ Q2

and w′1, w
′′
1 ∈ Ω∗ such that

w1 = w′′1 · x · w′1
(q2, 1) ∈ Lw′1MAq ((q′2, 1)) (q′2, 1) ∈ fxq ((q′′2 , 0)) (q′′2 , 0) ∈ Jw′′1 KAq .

By the definition of Aq, it follows that q′′2 ∈ Jw′′1 KA2 . Similarly, q′2 ∈ q(q′′2 ) =

LwMA2
(q′′2 ) and so q′2 ∈ Jw′′1 · wKA2

. Furthermore, q2 ∈ Lw′1MA2
(q′2) and so q2 ∈

Jw′′1 ·w·w′1KA2
. Taking w2 = w′′1 ·w·w′1, gives both q2 ∈ Jw2KA2

and w2 ∈ w1�xw,

as required.

⇐=:

Supposing that w2 ∈ Ω∗ is some word such that q2 ∈ Jw2KA2
and w2 ∈ w1�xw,

it must be the case that there exist q′2, q
′′
2 ∈ Q2 and w′1, w

′′
1 ∈ Ω∗ such that

w1 = w′′1 · x · w′1 w2 = w′′1 · w · w′1
q2 ∈ Lw′1MA2

(q′2) q′2 ∈ LwMA2
(q′′2 ) q′′2 ∈ Jw′′1 KA2

.

It follows from the definiton of Aq that (q′′2 , 0) ∈ Jw′′1 KAq . Similarly, (q′2, 1) ∈
fxq ((q′′2 , 0)) and so (q′2, 1) ∈ Jw′′1 · xKAq . Furthermore, (q2, 1) ∈ Lw′1MAq (q′2, 1) and

so (q2, 1) ∈ Jw′′1 · x · w′2KAq = Jw1KAq , as required.

Proposition 47 (Correctness of �−∃ Construction). The automaton A =

A1 �−∃x A2 accepts the language L1 �−∃x L2.
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Proof.

w ∈ L1 �−∃x L2

⇐⇒ there exist w1, w2 ∈ Ω∗ s.t. w1 ∈ L1 and

w2 ∈ L2 and w2 ∈ w1 �x w

⇐⇒ there exist w1, w2 ∈ Ω∗, q2 ∈ Q2 s.t. w1 ∈ L1 and

q2 ∈ Jw2KA2
and q2 ∈ A2 and w2 ∈ w1 �x w

⇐⇒ there exists q ∈ Q s.t. q = LwMA2
and

there exist w1, w2 ∈ Ω∗, q2 ∈ Q2 s.t. w1 ∈ L1 and

q2 ∈ Jw2KA2
and q2 ∈ A2 and w2 ∈ w1 �x w

(L. 46) ⇐⇒ there exists q ∈ Q s.t. q = LwMA2
and

there exist w1 ∈ Ω∗, q2 ∈ Q2 s.t. w1 ∈ L1 and

(q2, 1) ∈ Jw1KAq and (q2, 1) ∈ Aq

⇐⇒ there exists q ∈ Q s.t. q = LwMA2 and

there exists w1 ∈ Ω∗ s.t. Jw1KA1
∩A1 6= ∅ and

Jw1KAq ∩Aq 6= ∅

⇐⇒ there exists q ∈ Q s.t. q = LwMA2
and q ∈ A

(L. 45) ⇐⇒ there exists q ∈ Q s.t. q ∈ JwKA and q ∈ A

⇐⇒ JwKA ∩A 6= ∅.

Having established constructions for � and �−∃, it remains to consider −�∃.
Suppose that A1 and A2 accept languages L1 and L2 respectively. A word

w ∈ L1 −�∃x L2 is one such that some w1 ∈ L1 can be substituted for some x

in w to give a word w2 ∈ L2. The automaton construction A = A1 −�∃ A2

behaves like A2 but treating one x as if it were such a w1 ∈ L1.

Definition 5.17 (−�∃ Construction). Given ε-NFA

A1 = (Q1, e1, {fa1 }a∈Ω∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Ω∪{ε} , A2),

the ε-NFA

A1 −�∃x A2 = (Q, e, {fa}a∈Ω∪{ε} , A)

is defined as follows:

� Q = Q2 × {0, 1};
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� e = (e2, 0);

� for a ∈ Ω ∪ {ε}, fa is the smallest relation satisfying:

– (q′2, n) ∈ fa((q2, n)) whenever q′2 ∈ fa2 (q2) and for n ∈ {0, 1}, and

– if a = x then (q′2, 1) ∈ fa((q2, 0)) whenever q′2 ∈ Lw1MA2
(q2) for some

w1 ∈ L1; and

� A = A2 × {1}.

Consider the automaton A = A1 −�∃x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. When this automaton is run on

a word, it starts in state (e2, 0) and proceeds to read the word as A2 would.

Eventually, it may be in state (q2, 0) having so far read w′2, say, and be about to

read the label x. On reading x, the automaton may transition to the state (q′2, 1)

if there is some w1 ∈ L1 with q′2 ∈ Lw1MA2
(q2). At this point, the automaton has

consumed w′2 ·x and is in state (q′2, 1) where q′2 ∈ Jw′2 ·w1KA2 for some w1 ∈ L1.

The automaton then proceeds to read the remainder of the word, call it w′′2 , as

A2 would, eventually reaching a state (q′′2 , 1), say, where q′′2 ∈ Jw′2 ·w1 ·w′′2 KA2
for

some w1 ∈ L1. If this is an accepting state, that signifies that the automaton

has read w′2 · x · w′′2 for some w′2, w
′′
2 with w′2 · w1 · w′′2 ∈ L2 for some w1 ∈ L1.

In order for the construction of A to be effective, it must be possible to

determine whether there is some w1 ∈ L1 with q′2 ∈ Lw1MA2
(q2) for any given

q2, q
′
2 ∈ Q2. This may be done by considering the product pre-automaton

Â1 × Â2. Since this pre-automaton behaves like A1 and A2 run in parallel,

there is a path in Â1×Â2 from state (e1, q2) to state (q′1, q
′
2), for some accepting

q′1 ∈ A1, if and only if there is a some w1 ∈ L1 with q′2 ∈ Lw1MA2
(q2). Since

automata are finite, determining the existence of such a path is decidable, and

so the construction is effective.

Lemma 48. For all w ∈ Ω∗ and q2 ∈ Q2,

(q2, 1) ∈ JwKA

⇐⇒

there exist w1, w2 ∈ Ω∗ s.t. w2 ∈ L1 and q2 ∈ Jw1KA2 and w2 ∈ w �x w1.

Proof. =⇒:

Supposing that (q2, 1) ∈ JwKA, it must be the case that there exist q′2, q
′′
2 ∈ Q2

and w′, w′′ ∈ Ω∗ such that

w = w′′ · x · w′

(q2, 1) ∈ Lw′MA((q′2, 1)) (q′2, 1) ∈ fx((q′′2 , 0)) (q′′2 , 0) ∈ Jw′′KA.
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By the definition of A, it follows that q′′2 ∈ Jw′′KA2
. Similarly, there exists some

w1 ∈ L1 such that q′2 ∈ Lw1MA2
(q′′2 ), and hence q′2 ∈ Jw′′ · w1KA2

. Further,

q2 ∈ Lw′MA2(q′2) and so q2 ∈ Jw′′ · w1 · w′KA2 . Let w2 = w′′ · w1 · w′. Clearly,

w2 ∈ w �x w1. Thus w1 and w2 fit the requirements.

⇐=:

Supposing that there are w1 and w2 with w1 ∈ L1, q2 ∈ Jw2KA2
and w2 ∈

w �x w1, it must be the case that there exist q′2, q
′′
2 ∈ Q2 and w′, w′′ ∈ Ω∗ such

that

w = w′′ · x · w′ w2 = w′′ · w1 · w′

q2 ∈ Lw′MA2
(q′2) q′2 ∈ Lw2MA2

(q′′2 ) q′′2 ∈ Jw′′KA2
.

It follows from the definition of A that (q′′2 , 0) ∈ Jw′′KA. Since w1 ∈ L1, it also

follows that (q′2, 1) ∈ fx((q′′2 , 0)) and so (q′2, 1) ∈ Jw′′ · xKA. Further, (q2, 1) ∈
Jw′′ · x · w′KA = JwKA as required.

Proposition 49 (Correctness of −�∃ Construction). The automaton A =

A1 −�∃x A2 accepts the language L1 −�∃x L2.

Proof.

w ∈ L1 �x L2

⇐⇒ there exist w1, w2 ∈ Ω∗ s.t. w1 ∈ L1 and w2 ∈ L2 and

w2 ∈ w �x w1

⇐⇒ there exists q2 ∈ A2 s.t. there exist w1, w2 ∈ Ω∗ s.t.

w1 ∈ L1 and q2 ∈ Jw2KA2 and w2 ∈ w �x w1

(L. 48) ⇐⇒ there exists q2 ∈ A2 s.t. (q2, 1) ∈ JwKA

⇐⇒ JwKA ∩A 6= ∅.

5.1.5 Decidability

I now apply the constructions given above to the problem at hand: providing a

decision procedure for quantifier-free formulae of multi-holed context logic for

sequences (CLm
Seq). In addition to the previously define constructions, I assume

constructions for A∅, which accepts ∅, ACm
Seq

, which accepts Cm
Seq — the set of

proper multi-holed sequence contexts — and, for each w ∈ Ω∗, A{w}, which

accepts {w}. (Constructions for these automata are trivial to define, bearing in

mind that X is taken to be finite here.)
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Constructions on word languages, such as concatenation, complementation

and non-deterministic linear substitution, extend the analogous constructions

for sequence contexts, but can also, given languages of sequence contexts, pro-

duce languages of words that are not exclusively sequence contexts. As an

example, {x} is a language of sequence contexts, but {x} · {x} = {x · x} is not.

Thus, it is necessary to restrict these constructions to only the results which are

proper sequence contexts — words in which each x ∈ X occurs at most once.

Definition 5.18 (CLm
Seq Automata). For each quantifier-free formula K ∈ Km

Seq

and environment σ ∈ LEnv with (fvK) ⊆ domσ, the automaton AK,σ is defined

as follows (where x = σα):

A0,σ = A{∅}
Aa,σ = A{a}

AK1·K2,σ = (AK1,σ · AK2,σ) ∩ ACm
Seq

Aα,σ = A{x}
AK1◦αK2,σ = (AK1,σ �x AK2,σ) ∩ ACm

Seq

AK1◦−αK2,σ =
(
AK1,σ �−∃x AK2,σ

)
∩ ACm

Seq

AK1−◦αK2,σ =
(
AK1,σ −�∃x AK2,σ

)
∩ ACm

Seq

AFalse,σ = A∅

AK1→K2,σ =
(
AK1,σ ∩ ACm

Seq

)
∪ AK2,σ.

By construction, the automaton AK,σ accepts a word w if and only if

w = c ∈ Cm
Seq is a sequence context and c, σ |=c(domσ) K. That is, the lan-

guage defined by the automaton is exactly the set of contexts that satisfy the

formula. Consequently, to determine if a context satisfies a formula in a given

environment, it is enough to check if the context is accepted by the correspond-

ing automaton. Thus, model-checking is decidable.

Theorem 50. Given sort ς ∈ Sort, quantifier-free formula K ∈ Formulaς , en-

vironment σ ∈ LEnv, and multi-holed sequence context c ∈ Cm
Seq with (c, σ) ∈

Worldς , it is decidable whether

c, σ |=ς K.

Furthermore, satisfiability of a formula (for a given environment) is decidable

since reachability can be used to determine if there is any word that is accepted

by the corresponding automaton. The automata are constructed so that any

such word must be a multi-holed sequence context.
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Theorem 51. Given sort ς ∈ Sort, quantifier-free formula K ∈ Formulaς , and

environment σ ∈ LEnv, it is decidable whether there exists a multi-holed sequence

context c ∈ Cm
Seq with (c, σ) ∈Worldς such that

c, σ |=ς K.

Furthermore, it is possible to decide whether there is a world — a pair of

context and environment — which satisfies a given formula. This is since for any

environment for which the formula is satisfiable, by environment extendability

(Property 3.33) and hole substitution (Property 3.34), the formula is also satis-

fiable for one of a finite number of environments. (The number of environments

that need be considered is the number of ways of partitioning fvK.)

Corollary 52. Given sort ς ∈ Sort and quantifier-free formula K ∈ Formulaς , it

is decidable whether there exists a pair of multi-holed sequence context c ∈ Cm
Seq

and environment σ ∈ LEnv with (c, σ) ∈Worldς such that

c, σ |=ς K.

5.2 Terms

I now consider decidability for multi-holed context logic over the term model.

Terms have an obvious complication that sequences lack: they are two dimen-

sional. Whereas each point in a sequence has (at most) a single immediate

predecessor, each point in a term has arbitrary many predecessors (when read-

ing from the bottom up). As a simple example, in the sequence a · b · c, the

b is the predecessor of the c, while in the term c(a,b), both the a and b are

predecessors of the c.

On the other hand, terms lack certain complications that sequences have:

there is no associativity and no concept of an empty term. For instance, a·(b·∅)

and a · b are the same sequence, but ·(a, ·(b,∅)) and ·(a,b) are completely

distinct terms. A consequence of this is that, while holes may appear in the

middle of sequences, they can only occur at the leaves of terms — holes do not

have subterms. This means that substitution in terms is more closely analogous

to concatenation of sequences than to substitution in sequences.

The theory of automata for terms has been well-studied. In the literature

on the subject, terms as I have defined them are known as (ranked) trees, and

a comprehensive treatment of automata for such trees can be found in [GS97]

and [CDG+07].

In the following, assume that multi-holed term contexts, Cm
Term, are defined

over finite ranked labelling alphabet Υ ⊆ Σ × N and hole alphabet X. Let
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Ω = Υ ∪ (X × {0}), and let TermΩ, ranged over by r, r′, r1, . . . , be the set

of terms on Ω (that is, finite, ranked, ordered trees labelled from the ranked

alphabet Ω). Note that Cm
Term ⊆ TermΩ, since holes are nodes with rank 0,

labelled from X.

5.2.1 Automata

Term automata generalise word automata in the following sense: whereas each

label in a word is preceded by a single word, each label in a term is preceded

by a number of terms corresponding to its rank (its children). Thus, just as

a word automaton assigns states to a word based on the transition relation

corresponding to the last label and the states that are assigned to the word

preceding the label, a term automaton assigns states to a term based on the

transition relation corresponding to the topmost label and the states that are

assigned to the immediate children of that node. This form of automaton is

known as a bottom-up or frontier-to-root automaton. (Top-down automata also

exist, but I do not make use of them here.)

Definition 5.19 (ε-NFTA). A non-deterministic finite term automaton with

ε-transitions (abbreviated ε-NFTA) is a tuple A = (Q, {fν}ν∈Ω∪{ε} , A) where:

� Q is the set of states, a finite set;

� for each (a, n) ∈ Ω, f (a,n) ⊆ Qn × Q is the n + 1-ary state transition

relation for a;

� fε ⊆ Q×Q is the non-consuming state transition relation; and

� A ⊆ Q is the set of accepting states.

A run of a ε-NFTA on a term is essentially an assignment of a state to

each node in the term based on its label and the states that are assigned to

its children. There is no need for initial states, since the leaves of the term are

nullary nodes, and hence are assigned states solely on the basis of their labels.

Word automata can be thought of as a special case in which the ranked alphabet

Ω = (Σ × {1}) ∪ {(∅, 0)} consists of only unary symbols and a special nullary

symbol ∅, representing the empty word. The role of the initial state is played

by f∅.

To formally define the language recognised by an automaton, I make some

auxiliary definitions. The definition of ε-closure for ε-NFTA is exactly as in

Definition 5.3 for ε-NFA. The notion of the automaton-induced mapping J(·)KA
is directly analogous to its ε-NFA counterpart: it maps a given term to the set

of states that can result from running A on that term.
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Definition 5.20 (Automaton-induced Mapping). A term automaton A induces

a function J(·)KA : TermΩ → P(Q) that maps terms r ∈ TermΩ to sets of states

JrKA ⊆ Q according to the following definition:

Ja(r1, . . . , rn)KA =

{
q ∈ Q

∣∣∣∣∣ there exist q1 ∈ Jr1KA, . . . , qn ∈ JrnKA s.t.

((q1, . . . , qn), q) ∈ (f (a,n) # ε-closure)

}
.

Remark. I have not defined an analogue of L(·)MA, since I do not need such
a concept. For words, how an automaton interprets a subword
is dependent on the context — the state the automaton was
in before reading that subword. For terms, how a subterm is
interpreted is independent of its context.

Definition 5.21 (Acceptance). A term r is said to be accepted by automaton

A if JrKA ∩ A 6= ∅. The term language accepted by A, LA, is the set of terms

accepted by A:

LA = {r ∈ TermΩ | JrKA ∩A 6= ∅} .

Since the transition relations of ε-NFTA are not simply binary relations,

they do not lend themselves to such simple visualisation as is possible with ε-

NFA. Nevertheless, it can be insightful to represent runs of ε-NFTA graphically.

I present a simple example.

Example 5.2. Let the term automaton A = (Q, {fν}ν∈Ω∪{ε} , A) where:

� Q = {q1, q2};

� f (a,0) = {q1};

� f (b,0) = {q2};

� f (c,2) = {((q1, q1), q1), ((q1, q2), q1), ((q2, q1), q1)};

� fε = {(q1, q2)}; and

� A = {q1}.

This automaton accepts terms with at least one a-labelled leaf. Figure 5.6

depicts the result of running A on the term c(c(b,a), c(b,b)). Above each

subterm, r, the set of states JrKA is depicted.

Just as with word automata, for ε-NFTA A, the function J(·)KA can be

computed effectively, and so it is a simple matter to decide whether any given

term belongs to LA. The set of reachable states of the automaton can also be

computed effectively simply by starting from ∅ and iteratively adding all of the
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c

c

b

{q2}
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{q1, q2}

{q1, q2}
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b

{q2}
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{q2}

{q2}

{q1, q2}

Figure 5.6: Representation of running an ε-NFTA on the term c(c(b,a), c(b,b))

states that can be obtained from the known reachable states by each transition

relation. This process will eventually converge to a stable set, since there are

only finitely many states. In order to decide CLm
Term, it will therefore be sufficient

to show that, for each formula, an automaton can be constructed that accepts

exactly the terms that satisfy the formula.

The class of languages that can be recognised by term automata is the class

of regular term languages4. This class is closed under a number of operations.

If L,L′,L1, . . . ,Ln are regular term languages, then so are

� ∅, Cm
Term, TermΩ,

� L ∪ L′, L ∩ L′, L def
= TermΩ \ L,

� {a(r1, . . . , rn) | ri ∈ Li} for each (a, n) ∈ Ω,

� L }x L′ for each x ∈ X — the set of terms obtained by replacing each

occurrence of x in terms from L by (possibly distinct) terms from L′, and

� L −}∃x L′
def
= {r ∈ TermΩ | ({r}}x L) ∩ L′ 6= ∅} for each x ∈ X.

For details, consult [GS97].5 These closure properties imply that it is possible

to construct automata corresponding to most of the context logic connectives.

In particular, } and −}∃ can be used to implement ◦ and −◦∃ respectively.

However, for consistency with my presentation for sequences and unranked trees,

I present the constructions for �, �−∃ and −�∃ for term automata.

4In the literature, these are more commonly called regular tree languages.
5In [GS97], L1 }x L2 is denoted L2 ·x L1 and called the x-product of L2 and L1, while

L1 −}∃x L2 is denoted L−x
2 L1 and called the x-quotient of L1 by L2.
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5.2.2 Constructions

The term language operations �, �−∃ and −�∃ are directly analogous to those

for word languages. As with their word-language counterparts, they generalize

the logical operators ◦, ◦−∃ and −◦∃ to the case where the substituted label may

occur more than once.

Definition 5.22 (Non-deterministic Linear Substitution). Given terms r1, r2 ∈
TermΩ and a nullary label (a, 0) ∈ Ω, the non-deterministic linear substitution

r1 �a r2 is defined to be the set of terms obtained by replacing exactly one

occurrence of a in r1 by the term r2. Given term languages L1,L2 ⊆ TermΩ,

non-deterministic linear substitution and the existential duals of its adjoints are

defined as follows:

L1 �a L2 =
⋃

r1∈L1
r2∈L2

r1 �a r2

L1 �−∃a L2 = {r ∈ TermΩ | there exists r′ ∈ L1 s.t. (r′ �a r) ∩ L2 6= ∅}

L1 −�∃a L2 = {r ∈ TermΩ | there exists r′ ∈ L1 s.t. (r �a r′) ∩ L2 6= ∅} .

I now present automaton constructions corresponding to these operations.

As in the word case, the constructions assume that the state sets of the automata

used in these constructions are sufficiently disjoint: the states can be renamed

if necessary.

I begin with the � construction. Suppose A1 and A2 accept languages L1

and L2 respectively. A term r ∈ L1 �x L2 is the result of substituting one

instance of x in some r1 ∈ L1 with some r2 ∈ L2. An accepting run of the

automaton construction A = A1 �x A2 must therefore treat some subterm

r2 ∈ L2 as if it were an x read by the automaton A1.

Definition 5.23 (� Construction). Given ε-NFTA

A1 = (Q1, {fa1 }a∈Ω∪{ε} , A1) and

A2 = (Q2, {fa2 }a∈Ω∪{ε} , A2),

the ε-NFTA

A1 �x A2 = (Q, {fa}a∈Ω∪{ε} , A)

is defined as follows:

� Q = (Q1 × {0, 1}) ∪Q2;

� for (a, n) ∈ Ω, f (a,n) is the smallest relation satisfying:
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– (q′1, i) ∈ f (a,n)((q1,1, i1), . . . , (q1,n, in)) whenever q′1 ∈ f
(a,n)
1 (q1,1, . . . ,

q1,n) and i = i1 + · · ·+ in, and

– q′2 ∈ f (a,n)(q2,1, . . . , q2,n) whenever q′2 ∈ f
(a,n)
2 (q2,1, . . . , q2,n);

� fε is the smallest relation satisfying:

– (q′1, i) ∈ fε((q1, i)) whenever q′1 ∈ fε1 (q1),

– q′2 ∈ fε(q2) whenever q′2 ∈ fε2 (q2), and

– (q1, 1) ∈ fε(q2) whenever q1 ∈ f (x,0)
1 and q2 ∈ A2; and

� A = A1 × {1}.

Consider the automaton A = A1 �x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. This construction of A is similar

to the analogous construction for sequences. The main difference is that states

from Q2 are not paired with states from Q1. The reason for this is that f (x,0)

is a unary relation (i.e. a set) — the result of consuming an x-labelled node

does not depend on the context in which it appears. In the sequence case, on

the other hand, fx is a binary relation — the result of consuming an x-labelled

node depends on the state before the x was consumed.

On consuming part of a term, a state of q2 ∈ Q2 is possible if and only if

that state is possible on consuming the same part of the term in A2. A state of

(q1, 0) is possible if and only if the state q1 is possible on consuming the same

part of the term in A1. A state of (q1, 1) is possible if and only if there is a term

r with q1 ∈ JrKA1
and the consumed term belongs to the set {r}�x L2 — that

is, the 1 indicates that exactly one occurrence of x in r has been substituted

by a term accepted by A2. The 1 propagates up the term as it is consumed,

and can only occur in one branch at each level. It is initially introduced by an

ε-transition from a state q2 ∈ A2 to a state (q1, 1) where q1 ∈ f (x,0)
1 — that is,

the subterm (which must belong to L2) is treated as an x in A1, but is tagged

with a 1 to indicate that a substitution has occurred. A term is finally accepted

if it is the result of substituting one x in a term from L1 (i.e. that is accepted

by A1) with a term from L2.

Figure 5.7 illustrates the form of a possible accepting run of the automaton

A1 �x A2. The nodes are labelled with the states they are given in the run,

with the dashed line indicating that both q2 and (q1,2, 1) are given to one node

by a ε-transition. The figure assumes that q1 ∈ A1, q2 ∈ A2 and q1,2 ∈ f (x,0)
1 .

This means that the subterm associated with q2 belongs to L2. The subterm

is then treated as though it were x in A1 by taking the ε-transition to (q1,2, 1).

As the run proceeds up the term, the fact that exactly one substitution for x
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(q1, 1)

(q1,1, 0) (q1,2, 1)

q2

ε
(q1,3, 0)

Figure 5.7: Representation of a possible accepting run of an automaton A1�xA2

has taken place is recorded by the 1 in the second component of the state. The

fact that q1 is an accept state of A1 means that the term as a hole is the result

of substituting x in a term that belongs to L1.

The correctness of the construction is formalised in the following lemmata.

Lemma 53. For all r ∈ TermΩ, q2 ∈ Q2,

q2 ∈ JrKA ⇐⇒ q2 ∈ JrKA2
.

Proof. The proof is by induction of the structure of the term r.

Base case: r = a for some (a, 0) ∈ Ω.

q2 ∈ JrKA
⇐⇒ there exists q′2 ∈ Q2 s.t. q′2 ∈ f (a,0) and q2 ∈ ε-closure(q′2)

⇐⇒ there exists q′2 ∈ Q2 s.t. q′2 ∈ f
(a,0)
2 and q2 ∈ ε-closure2(q′2)

⇐⇒ q2 ∈ JrKA2 .

Inductive case: r = a(r1, . . . , rn) for some (a, n) ∈ Ω and r1, . . . , rn ∈ TermΩ.

q2 ∈ JrKA

⇐⇒ there exist q′2, q2,1, . . . , q2,n ∈ Q2 s.t.

q′2 ∈ f (a,0)(q2,1, . . . , q2,n) and

q2,1 ∈ Jr1KA and . . . and q2,n ∈ JrnKA and

q2 ∈ ε-closure(q′2)

(IH) ⇐⇒ there exist q′2, q2,1, . . . , q2,n ∈ Q2 s.t.

q′2 ∈ f (a,n)(q2,1, . . . , q2,n) and

q2,1 ∈ Jr1KA2
and . . . and q2,n ∈ JrnKA2

and

q2 ∈ ε-closure(q′2)

⇐⇒ there exist q′2, q2,1, . . . , q2,n ∈ Q2 s.t.

q′2 ∈ f
(a,n)
2 (q2,1, . . . , q2,n) and

q2,1 ∈ Jr1KA2
and . . . and q2,n ∈ JrnKA2

and

q2 ∈ ε-closure2(q′2)

⇐⇒ q2 ∈ JrKA2
.
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Lemma 54. For all r ∈ TermΩ, q1 ∈ Q1,

(q1, 0) ∈ JrKA ⇐⇒ q1 ∈ JrKA1
.

The proof of this lemma is essentially the same as for Lemma 53, and so I

omit the full details.

Lemma 55. For all r ∈ TermΩ, q1 ∈ Q1,

(q1, 1) ∈ JrKA

⇐⇒

there exist r1, r2 ∈ TermΩ s.t. r ∈ r1 �x r2 and r2 ∈ L2 and q1 ∈ Jr1KA1
.

Proof. The proof is by induction on the structure of the term r.

Base case: r = a for some (a, 0) ∈ Ω.

(q1, 1) ∈ JaKA

⇐⇒ there exist q′1 ∈ Q1, and q2, q
′
2 ∈ Q2 s.t.

(q1, 1) ∈ ε-closure((q′1, 1)) and (q′1, 1) ∈ fε(q2) and

q2 ∈ ε-closure(q′2) and q′2 ∈ f (a,0)

⇐⇒ there exist q′1 ∈ Q1, q2 and q′2 ∈ Q2 s.t.

(q1, 1) ∈ ε-closure1((q′1, 1)) and q′1 ∈ f
(x,0)
1 and

q2 ∈ A2 and q2 ∈ ε-closure(q′2) and q′2 ∈ f (a,0)

⇐⇒ q1 ∈ JxKA1
and JaKA2

∩A2 6= ∅

⇐⇒ there exist r1, r2 ∈ TermΩ s.t.

a ∈ r1 �x r2 and r2 ∈ L2 and q1 ∈ Jr1KA1 .

Inductive case: r = a(r(1), . . . , r(n)) for some (a, n) ∈ Ω and r(1), . . . , r(n) ∈
TermΩ. Consider the implication in each direction separately.

=⇒:

By definition (q1, 1) ∈ ε-closure(q′) with q′ ∈ f (a,n)(q(1), . . . , q(n)) for some q′ ∈
Q, q(i) ∈ Jr(i)KA. From the definition of fε, either q′ = (q′1, 1) for some q′1 ∈ Q1,

or q′ = q2 for some q2 ∈ Q2.

In the first case, it must be that, for exactly one k, q(k) = (q1,k, 1) and, for

all i 6= k, q(i) = (q1,i, 0). By the inductive hypothesis, there are r′1, r2 ∈ TermΩ

with r(k) ∈ r′1 �x r2, r2 ∈ L2 and q1,k ∈ Jr′1KA1
. By Lemma 54, for i 6= k,

q1,i ∈ Jr(i)KA1 . By definition, q′1 ∈ f
(a,n)
1 (q1,1, . . . , q1,n), and so

q′1 ∈ Ja(r(1), . . . , r(k−1), r′1, r
(k+1), . . . , r(n))KA1

.
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Let

r1 = a(r(1), . . . , r(k−1), r′1, r
(k+1), . . . , r(n))

and observe that r ∈ r1 �x r2. Further, since (q1, 1) ∈ ε-closure((q′1, 1)), q1 ∈
ε-closure1(q′1). Hence, q1 ∈ Jr1KA1

, as required.

In the second case, there must be some q′1 ∈ Q1 and q′2 ∈ Q2 such that

(q1, 1) ∈ ε-closure((q′1, 1))

(q′1, 1) ∈ fε(q′2)

q′2 ∈ ε-closure(q2).

By the definition of fε, it follows that

q1 ∈ ε-closure1(q′1)

q′1 ∈ f
(x,0)
1

q′2 ∈ A2

q′2 ∈ ε-closure2(q2).

Hence q1 ∈ JxKA1
. Further, since q2 ∈ JrKA2

by Lemma 53, q′2 ∈ JrKA2
∩ A2.

Thus r ∈ L2. Let r1 = x and r2 = r, and observe that r ∈ r1 �x r2, as required.

⇐=:

Either r1 = x or r1 6= x; consider each case separately.

In the first case, r = r2 ∈ L2 and so there is some q2 ∈ JrKA2
∩ A2. By

Lemma 53, q2 ∈ JrKA. Also, since q1 ∈ JxKA1 , there is some q′1 ∈ Q1 with q′1 ∈
f

(x,0)
1 and q1 ∈ ε-closure1(q′1). Hence, by the definition of fε, (q′1, 1) ∈ fε(q2)

and (q1, 1) ∈ ε-closure((q′1, 1)). Thus, (q1, 1) ∈ JrKA as required.

In the second case, it must be that, for some (a, n) ∈ Ω, r1,1, . . . , r1,n, r
′ ∈

TermΩ, and k with 1 ≤ k ≤ n,

r1 = a(r1,1, . . . , r1,n)

r = a(r1,1, . . . , r1,k−1, r
′, r1,k+1, . . . , r1,n)

r′ ∈ r1,k �x r2.

Since q1 ∈ Jr1KA1 it follows that there are q′1, q1,1, . . . , q1,n ∈ Q1 with

q1 ∈ ε-closure1(q′1)

q′1 ∈ f
(a,n)
1 (q1,1, . . . , q1,n)

for 1 ≤ i ≤ n q1,i ∈ Jr1,iKA1
.
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Hence, by the inductive hypothesis, (q1,k, 1) ∈ Jr′KA. By Lemma 54, (q1,i, 0) ∈
Jr1,iKA for 1 ≤ i ≤ n. By definition,

(q′1, 1) ∈ f (a,n)((q1,1, 0), . . . , (q1,k−1, 0), (q1,k, 1), (q1,k+1, 0), . . . , (q1,n, 0))

(q1, 1) ∈ ε-closure(q′1, 1).

Hence, (q1, 1) ∈ JrKA, as required.

Proposition 56 (Correctness of � Construction). The automaton A = A1 �x
A2 accepts the language L1 �x L2.

Proof.

r ∈ L1 �x L2

⇐⇒ there exist r1, r2 ∈ TermΩ s.t. r ∈ r1 �x r2

and r1 ∈ L1 and r2 ∈ L2

(L. 55) ⇐⇒ there exists q1 ∈ A1 s.t. (q1, 1) ∈ JrKA

⇐⇒ A ∩ JrKA 6= ∅.

I now consider a construction for �−∃. Suppose A1 and A2 accept languages

L1 and L2 respectively. A term r ∈ L1 �−∃x L2 is one such that it can be

substituted for some x in some term r1 ∈ L1 to give a term r2 ∈ L2. As in

the word case, the automaton construction A = A1 �−∃xA2 determines how A2

interprets r. The term is then accepted if there exists a term r1 ∈ L1 such that,

interpreting exactly one x in r1 as if it were r in the automaton A2, gives an

accepting run of that automaton. This establishes that r ∈ L1 �x L2.

Definition 5.24 (�−∃ Construction). Given ε-NFTA

A1 = (Q1, {fν1 }ν∈Ω∪{ε} , A1) and

A2 = (Q2, {fν2 }ν∈Ω∪{ε} , A2),

the ε-NFTA

A1 �−∃x A2 = (Q, {fν}ν∈Ω∪{ε} , A)

is defined as follows:

� Q = Q2;

� for ν ∈ Ω ∪ {ε}, fν = fν2 ; and
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� q ∈ A if and only if there exists r1 ∈ TermΩ s.t. Jr1KÂ1×Âq∩(A1×Aq) 6= ∅,
where

– Aq = (Q2 × {0, 1} ,
{
fνq
}
ν∈Ω∪{ε} , Aq),

– for ν ∈ Ω ∪ {ε}, where ν has arity n (n = 1 in the case where ν = ε)

fνq is the smallest relation satisfying

* (q′2, i) ∈ fνq ((q2,1, i1), . . . , (q2,n, in)) if q′2 ∈ fν2 (q2,1, . . . , q2,n) and

i = i1 + · · ·+ in, and

* if ν = (x, 0), then (q, 1) ∈ fνq , and

– Aq = A2 × {1}.

Consider the automaton A = A1 �−∃x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. This automaton only differs from

A2 in the accepting set. The accepting set is determined so that r is accepted

exactly when there exists some r1 such that r1 ∈ L1 and (r1�x r)∩L2 6= ∅. The

first condition is established by A1 accepting r1, while the second is established

by Aq accepting r1, for some q ∈ JrKA = JrKA2 The automaton Aq is constructed

to behave like A2, but with exactly one instance of x in any accepting run being

treated as a term producing state q. For q ∈ JrKA = JrKA2
, the automaton

Aq accepts a term r1 only if (r1 �x r) ∩ L2 6= ∅. Conversely, for a term r1, if

(r1 �x r) ∩ L2 6= ∅ then there is some q ∈ JrKA2 such that Jr1KAq ∈ Aq. Thus,

in order to determine whether q ∈ A it is sufficient to consider whether any

state in A1 × Aq is reachable in the product pre-automaton Â1 × Âq. (The

pre-automaton product is defined for term automata in a similar fashion as for

word automata.)

The above correctness argument is formalised in the following lemmata.

Lemma 57. For all r ∈ TermΩ, q ∈ Q = Q2,

q ∈ JrKA ⇐⇒ q ∈ JrKA2 .

Proof. By definition: the transition relations for the two automata are identical.

For q ∈ Q, let Aq be given as in Definition 5.24.

Lemma 58. For all q ∈ Q, for all r ∈ TermΩ, q2 ∈ Q2,

(q2, 0) ∈ JrKAq ⇐⇒ q2 ∈ JrKA2
.

The proof of this lemma is essentially the same as for Lemma 53.
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Lemma 59. For all r, r1 ∈ TermΩ, q2 ∈ Q2,

there exists q ∈ Q2 s.t. q ∈ JrKA2
and (q2, 1) ∈ Jr1KAq

⇐⇒

there exists r2 ∈ TermΩ s.t. r2 ∈ r1 �x r and q2 ∈ Jr2KA2
.

Proof. Both directions are by induction on the structure of r1.

=⇒:

Base case: r1 = a. There must be some q′2 ∈ Q2 with

(q2, 1) ∈ ε-closureq((q′2, 1))

(q′2, 1) ∈ f (a,0)
q .

The definition of Aq requires that r1 = a = x, and q′2 = q. Let r2 = r. Clearly,

r2 ∈ r1 �x r. Also, by definition,

q′2 = q ∈ JrKA2 = Jr2KA2

q2 ∈ ε-closure2(q′2),

and so q2 ∈ Jr2KA2
, as required.

Inductive case: r1 = a(r(1), . . . , r(n)) for some (a, n) ∈ Ω and r(1), . . . , r(n) ∈
TermΩ. Since (q2, 1) ∈ Jr1KAq , there must be some q′2, q2,1, . . . , q2,n ∈ Q2 and

some 1 ≤ k ≤ n with

for i 6= k (q2,i, 0) ∈ Jr(i)KAq

(q2,k, 1) ∈ Jr(k)KAq

(q′2, 1) ∈ f (a,n)
q ((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,n, 0))

(q2, 1) ∈ ε-closureq((q′2, 1)).

By the inductive hypothesis, there is some r′2 ∈ TermΩ such that r′2 ∈ r(k) �x r
and q2,k ∈ Jr′2KA2 . Let

r2 = a(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(n))

and observe that r2 ∈ r1 �x r. By Lemma 58, for each i, q2,i ∈ Jr(i)KA2
. By the

definition of Aq,

q′2 ∈ f
(a,n)
2 (q2,1, . . . , q2,n)

q2 ∈ ε-closure2(q′2),

and so

q2 ∈ Jr2KA2
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as required.

⇐=:

Base case: r1 = a. It must be that r1 = x, since r2 ∈ r1 �x r. This means that

r2 = r. Let

q = q2 ∈ Jr2KA2
= JrKA2

.

By definition,

(q2, 1) = (q, 1) ∈ f (x,1)
q ⊆ Jr1KAq ,

as required.

Inductive case: r1 = a(r(1), . . . , r(n)) for some (a, n) ∈ Ω and r(1), . . . , r(n) ∈
TermΩ. There must be some 1 ≤ k ≤ n and some r′2 ∈ TermΩ with

r′2 ∈ r(k) �x r

r2 = a(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(n)).

Since q2 ∈ Jr2KA2
, it follows there exist some q′2, q2,1, . . . , q2,n with

for i 6= k q2,i ∈ Jr(i)KA2

q2,k ∈ Jr′2KA2

q′2 ∈ f
(a,n)
2 (q2,1, . . . , q2,n)

q2 ∈ ε-closure2(q′2).

By the inductive hypothesis, there is some q ∈ Q2 such that q ∈ JrKA2
and

(q2,k, 1) ∈ Jr(k)KA2 . By Lemma 58, for each i, (q2,i, 0) ∈ Jr(i)KAq . By the

definition of Aq,

(q′2, 1) ∈ f (a,n)
q ((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,n, 0))

(q2, 1) ∈ ε-closureq((q′2, 1)),

and so

(q2, 1) ∈ Jr1KAq ,

as required.

Proposition 60 (Correctness of �−∃ Construction). The automaton A =

A1 �−∃x A2 accepts the language L1 �−∃x L2.
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Proof.

r ∈ L1 �−∃x L2

⇐⇒ there exist r1, r2 ∈ TermΩ s.t. r2 ∈ r1 �x r and

r1 ∈ L1 and r2 ∈ L2

⇐⇒ there exist r1 ∈ L1, q2 ∈ A2, r2 ∈ TermΩ s.t.

r2 ∈ r1 �x r and q2 ∈ Jr2KA2

(L. 59) ⇐⇒ there exist r1 ∈ L1, q2 ∈ A2, q ∈ Q2 s.t.

q ∈ JrKA2 and (q2, 1) ∈ Jr1KAq

(L. 57) ⇐⇒ there exist r1 ∈ L1, q2 ∈ A2, q ∈ Q s.t.

q ∈ JrKA and (q2, 1) ∈ Jr1KAq

⇐⇒ there exist q ∈ JrKA, r1 ∈ TermΩ, q1 ∈ A1, q2 ∈ A2 s.t.

q1 ∈ Jr1KA1
and (q2, 1) ∈ Jr1KAq

⇐⇒ there exist q ∈ JrKA, r1 ∈ TermΩ s.t.

Jr1KÂ1×Âq ∩ (A1 ×Aq) 6= ∅

⇐⇒ A ∩ JrKA 6= ∅.

Finally, I consider the −�∃ construction. Suppose A1 and A2 accept lan-

guages L1 and L2 respectively. A term r ∈ L1 −�∃x L2 is one which has an x

subterm which, when substituted with some r1 ∈ L1, gives a term r2 ∈ L2. The

automataton construction A = A1 −�∃x A2 therefore behaves like A2 but with

one x being treated as though it was a term that is accepted by A1.

Definition 5.25 (−�∃ Construction). Given ε-NFTA

A1 = (Q1, {fν1 }ν∈Ω∪{ε} , A1) and

A2 = (Q2, {fν2 }ν∈Ω∪{ε} , A2),

the ε-NFTA

A1 −�∃x A2 = (Q, {fν}ν∈Ω∪{ε} , A)

is defined as follows:

� Q = Q2 × {0, 1};

� for ν ∈ Ω ∪ {ε}, where ν has arity n (n = 1 in the case where ν = ε) fν

is the smallest relation satisfying
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– (q′2, i) ∈ fν((q2,1, i1), . . . , (q2,n, in)) whenever q′2 ∈ fν2 (q2,1, . . . , q2,n)

and i = i1 + · · ·+ in, and

– if ν = (x, 0), then (q′2, 1) ∈ fν whenever q′2 ∈ Jr1KA2 for some r1 ∈ L1;

and

� A = A2 × {1}.

Consider the automaton A = A1 −�∃x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. Once again, this construction is

similar to the analogous construction for sequences, with the main difference

stemming from the fact that f (x,0) is a unary relation. The construction also

resembles that for �, except that one x behaves like a term belonging to L1,

rather than one term from L2 behaving like an x.

On consuming part of a term, a state (q2, 0) is possible if and only if q2 is a

possible state on running the automaton A2 on the same term. A state (q2, 1)

is possible on consuming r if and only if there is some r′ ∈ {r}�x L1 such that

q2 ∈ Jr′KA2
. As before, the 1 component propagates up the term to ensure that

exactly one x node is treated in this way.

In order for the construction to be effective, it must be possible to construct

the set Q′ = {q2 ∈ Q2 | there exists r1 ∈ L1 s.t. q2 ∈ Jr1KA2
}. This can be done

by considering the product pre-automaton Â1 × Â2. Since the set of states is

finite, the reachable states may be enumerated. Observe that q2 ∈ Q′ if and

only if there is some q1 ∈ A1 such that (q1, q2) is reachable in the product

pre-automaton.

Lemma 61. For all r ∈ TermΩ, q ∈ Q2,

(q2, 0) ∈ JrKA ⇐⇒ q2 ∈ JrKA2 .

The proof of this lemma is essentially the same as for Lemma 53, and so I

omit the full details.

Lemma 62. For all r ∈ TermΩ, q2 ∈ Q2,

(q2, 1) ∈ JrKA

⇐⇒

there exist r1, r2 ∈ TermΩ s.t. r2 ∈ r �x r1 and r1 ∈ L1 and q2 ∈ Jr2KA2
.

Proof. The proof is by induction on the structure of the term r.
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Base case: r = a for some (a, 0) ∈ Ω.

(q2, 1) ∈ JaKA

⇐⇒ there exists q′2 ∈ Q2 s.t.

(q′2, 1) ∈ f (a,0) and (q2, 1) ∈ ε-closure((q′2, 1))

⇐⇒ r = x and there exist q′2 ∈ Q2, r1 ∈ L1 s.t.

q′2 ∈ Jr1KA2
and q2 ∈ ε-closure2(q′2)

⇐⇒ r = x and there exists r1 ∈ L1 s.t. q2 ∈ Jr1KA2

⇐⇒ there exist r1, r2 ∈ TermΩ s.t.

r2 ∈ r �x r1 and r1 ∈ L1 and q2 ∈ Jr2KA2
.

Inductive case: r = a(r(1), . . . , r(m)) for some (a,m) ∈ Ω and r(1), . . . , r(m) ∈
TermΩ, with m ≥ 1. Consider the implication in each direction separately.

=⇒:

For some q2, q2,1, . . . , q2,m ∈ Q2 and some 1 ≤ k ≤ m, it must be the case that

for i 6= k (q2,i, 0) ∈ Jr(i)KA

(q2,k, 1) ∈ Jr(k)KA

(q′2, 1) ∈ f (a,m)((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,m, 0))

(q2, 1) ∈ ε-closure((q′2, 1)).

By Lemma 61,

for i 6= k q2,i, ∈ Jr(i)KA2
.

By the inductive hypothesis, there exist r′2, r1 ∈ TermΩ such that

r′2 ∈ r(k) �x r1

r1 ∈ L1

q2,k ∈ Jr′2KA2
.

Let

r2 = a(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(m))

and observe that

r2 ∈ r �x r1.

By the definition of A,

q′2 ∈ f
(a,m)
2 (q2,1, . . . , q2,m)

q2 ∈ ε-closure2(q′2).
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Hence

q2 ∈ Ja(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(m))KA2

= Jr2KA2
.

Thus, there exist r1, r2 ∈ TermΩ with r2 ∈ r �x r1, r2 ∈ L1 and q2 ∈ Jr2KA2 , as

required.

⇐=:

For some 1 ≤ k ≤ m, and some r′2 ∈ TermΩ, it must be that

r2 = a(r(1), . . . , r(k−1), r′2, r
(k+1), . . . , r(m))

r′2 ∈ r(k) �x r1.

Since q2 ∈ Jr2KA2
, it must be that, for some q′2, q2,1, . . . , q2,m ∈ Q2,

for i 6= k q2,i ∈ Jr(i)KA2

q2,k ∈ Jr′2KA2

q′2 ∈ f
(a,m)
2 (q2,1, . . . , q2,k−1, q2,k, q2,k+1, . . . , q2,m)

q2 ∈ ε-closure2(q′2).

By Lemma 61,

for i 6= k (q2,i, 0) ∈ Jr(i)KA.

By the inductive hypothesis,

(q2,k, 1) ∈ Jr(k)KA.

By the definition of A,

(q′2, 1) ∈ f (a,m)((q2,1, 0), . . . , (q2,k−1, 0), (q2,k, 1), (q2,k+1, 0), . . . , (q2,m, 0))

(q2, 1) ∈ ε-closure(q′2, 1).

Therefore,

(q2, 1) ∈ Ja(r(1), . . . , r(m))KA = JrKA

as required.

Proposition 63 (Correctness of −�∃ Construction). The automaton A =

A1 −�∃x A2 accepts the language L1 −�∃x L2.

Proof.

r ∈ L1 −�∃x L2

⇐⇒ there exist r1, r2 s.t. r2 ∈ r �x r2 and r1 ∈ L1 and r2 ∈ L2

(L. 62) ⇐⇒ there exists q2 ∈ A2 s.t. (q2, 1) ∈ JrKA

⇐⇒ A ∩ JrKA 6= ∅.

177



Decidability 5.2 Terms

5.2.3 Decidability

I now apply the constructions given above to provide a decision procedure for

quantifier-free formulae of multi-holed context logic for terms (CLm
Term). In ad-

dition to the constructions defined above, I assume constructions for various

closure properties of regular term languages: A∅, which accepts the language ∅;
A{x}, which accepts the language {x}; ACm

Term
, which accepts the language Cm

Term;

A, which accepts the language TermΩ \ L, where L is the language accepted by

A; a(A1, . . . ,An), which accepts the language {a(r1, . . . , rn) | ri ∈ Li}, where

each Li is the language accepted by Ai; and A1 ∩ A2 and A1 ∪ A2, which ac-

cept the languages L1 ∩ L2 and L1 ∪ L2 respectively, where L1 and L2 are the

languages accepted by A1 and A2 respectively.

Definition 5.26 (CLm
Term Automata). For each quantifier-free formula K ∈

Km
Term and environment σ ∈ LEnv with (fvK) ⊆ domσ, the automaton AK,σ is

defined as follows (where x = σα):

Aa(K1,...,Kn),σ = a(AK1,σ, . . .AKn,σ) ∩ ACm
Term

Aα,σ = A{x}
AK1◦αK2,σ = (AK1,σ �x AK2,σ) ∩ ACm

Term

AK1◦−∃
αK2,σ = (AK1,σ �−∃x AK2,σ) ∩ ACm

Term

AK1−◦∃αK2,σ = (AK1,σ −�∃x AK2,σ) ∩ ACm
Term

AFalse,σ = A∅
AK1→K2,σ =

(
AK1,σ ∩ ACm

Term

)
∪ AK2,σ.

These constructions accept exactly the languages of term contexts that sat-

isfy the corresponding formulae, and so the problems of model-checking and

satisfiability are decidable.

Theorem 64. Given sort ς ∈ Sort, quantifier-free formula K ∈ Formulaς , envi-

ronment σ ∈ LEnv, and multi-holed term context c ∈ Cm
Term with (c, σ) ∈Worldς ,

it is decidable whether

c, σ |=ς K.

Theorem 65. Given sort ς ∈ Sort, quantifier-free formula K ∈ Formulaς , and

environment σ ∈ LEnv, it is decidable whether there exists a multi-holed term

context c ∈ Cm
Term with (c, σ) ∈Worldς such that

c, σ |=ς K.
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Corollary 66. Given sort ς ∈ Sort and quantifier-free formula K ∈ Formulaς ,

it is decidable whether there exists a pair of multi-holed term context c ∈ Cm
Term

and environment σ ∈ LEnv with (c, σ) ∈Worldς such that

c, σ |=ς K.

5.3 Trees

The theory of automata can be adapted to (unranked) trees just as it can be

adapted for terms. In [CDG+07], hedge automata are presented as such an

adaptation. Here, I do not use hedge automata but an equivalent formalism

that I term forest automata.

In the following, assume that multi-holed tree contexts, Cm
Tree (Definition

3.11), are defined over finite Σ and X. Let ForestΣ,X, ranged over by t, t′, t1, . . . ,

be the set of forests, which are defined in the same way as multi-holed tree

contexts, but without the restriction that holes occur at most once. Note that

Cm
Tree ⊆ ForestΣ,X.

5.3.1 Automata

Forest automata generalise word automata: a run of an automaton consumes

the forest from left to right, the new state on consuming a node depending on the

previous state and the label of the node; however, the new state also depends on

the state the automaton would be in having been run on the subforest beneath

the node. Thus, instead of a binary relation, fa (for a ∈ Σ) is a ternery relation.

Holes do not have children, so, for x ∈ X, fa is a binary relation.

Definition 5.27 (ε-NFFA). A non-deterministic finite forest automaton with

ε-transitions (ε-NFFA) is a tuple A = (Q, e, {fa}a∈Σ∪X∪{ε} , A) where:

� Q is the set of states, a finite set;

� e ∈ Q is the initial state;

� for each a ∈ Σ, fa ⊆ (Q×Q)×Q is the state transition relation for a;

� for each x ∈ X, fx ⊆ Q×Q is the state transition relation for x;

� fε ⊆ Q×Q is the non-consuming state transition relation; and

� A ⊆ Q is the set of accepting states.
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To formally define the language recognised by an automaton, I make some

auxiliary definitions. The definition of ε-closure for ε-NFFA is exactly as in

Definition 5.3 for ε-NFA.

Definition 5.28 (Automaton-induced Mappings). An automaton A induces a

function J(·)KA : ForestΣ,X → P(Q) that maps forests t ∈ ForestΣ,X to sets of

states JtK⊆Q according to the following definition:

J∅KA = ε-closure(e)

Jt⊗ xKA = {q | there exists q′ ∈ JtKA s.t. (q′, q) ∈ (fx # ε-closure)}

Jt1 ⊗ a[t2]KA =

{
q

∣∣∣∣∣ there exist q1 ∈ Jt1KA, q2 ∈ Jt2KA s.t.

((q1, q2), q) ∈ (fa # ε-closure)

}
.

An automaton A also induces a function L(·)MA : ForestΣ,X → P(Q × Q) that

maps forests t ∈ ForestΣ,X to relations on states LtMA ⊆ Q×Q according to the

following definition:

L∅MA = ε-closure

Jt⊗ xKA = LtMA # fx # ε-closure

Jt1 ⊗ a[t2]KA =

{
(q, q′)

∣∣∣∣∣ there exist q1 ∈ Lt1MA(q), q2 ∈ Jt2KA s.t.

((q1, q2), q′) ∈ (fa # ε-closure)

}
.

Remark. Forest automata can be viewed as a special case of term au-
tomata: node labels a are treated like binary term labels, hole
labels x are treated like unary term labels, and the empty for-
est ∅ is treated like a nullary term label. This corresponds to
the previous sibling, last child encoding of unranked trees as
terms. Under this encoding, for example, the forest a[b[∅]⊗ x]
is represented by the term a(∅, x(b(∅,∅))).

Definition 5.29 (Acceptance). A forest t is said to be accepted by automaton

A if JtKA∩A 6= ∅. The language accepted by A, LA, is the set of forests accepted

by A:

LA = {t ∈ ForestΣ,X | JtKA ∩A 6= ∅} .

The class of languages that can be recognised by forest automata is the

class of regular forest languages. This class includes the empty language (∅),
all single-element languages, ForestΣ,X and Cm

Tree, and is closed under union,

intersection, complementation (with respect to ForestΣ,X) and concatenation.
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5.3.2 Constructions

The forest language operations �, �−∃ and −�∃ are directly analogous to those

for word and term languages. As with their counterparts, they generalize the

logical operators ◦, ◦−∃ and −◦∃ to the case where the substituted label may

occur more than once. Only nodes labelled from X are appropriate candidates

for substitution, however.

Definition 5.30 (Non-deterministic Linear Substitution). Given forests t1, t2 ∈
ForestΣ,X and a hole label x ∈ X, the non-deterministic linear substitution t1�x
t2 is defined to be the set of forests obtained by replacing exactly one occurrence

of x in t1 by the forest t2. Given forest languages L1,L2 ⊆ ForestΣ,X, non-

deterministic linear substitution and the existential duals of its adjoints are

defined as follows:

L1 �x L2 =
⋃

t1∈L1
t2∈L2

t1 �x t2

L1 �−∃x L2 = {t ∈ TermΩ | there exists t′ ∈ L1 s.t. (t′ �x t) ∩ L2 6= ∅}

L1 −�∃x L2 = {t ∈ TermΩ | there exists t′ ∈ L1 s.t. (t�x t′) ∩ L2 6= ∅} .

I now present the constructions for these connectives, which have features in

common with their analogues for word and term automata. Like word automata,

but unlike term automata, the substitution for a hole is sensitive to its context,

specifically, the forest to its left. Like term automata, but unlike word automata,

forest automata work in two dimensions. This tends to make the state space

used in constructions more complex than in the word case.

As before, I assume that, when an automaton is constructed from other

automata, the state sets of the component automata are sufficiently disjoint so

as not to introduce unexpected coincidences in the definitions. It is, of course,

entirely possible to rename states so that this is the case.

I begin with the � construction. Suppose A1 and A2 accept languages L1

and L2. A forest t ∈ L1 �x L2 is the result of substituting one instance of x in

some t ∈ L1 with some t ∈ L2. An accepting run of the automaton construction

A = A1�xA2 must therefore treat some subforest t2 ∈ L2 as if it were an x read

by the automaton A1. As with sequences, when consuming a forest from left to

right, A starts by treating it as A1 would. At some point in an accepting run,

one of two things happens. The first is that is switches to treating the forest

like A2 would (remembering where it had got to in A1). It then proceeds until

it reaches an accepting state of A2, at which point it switches back to behaving

like A1, as if it had read x instead of some t2 ∈ L2. This is analogous to the
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word automaton construction. The second is that it consumes a node whose

subforest has been treated as though some subforest t2 ∈ L2 of it were an x in

A1. This is analogous to the term automaton construction. It then consumes

the rest of the forest as A1 would, remembering the fact that a substitution has

taken place.

Definition 5.31 (� Construction). Given ε-NFFA

A1 = (Q1, e1, {fa1 }a∈Σ∪X∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Σ∪X∪{ε} , A2),

the ε-NFFA

A1 �x A2 = (Q, e, {fa}a∈Σ∪X∪{ε} , A)

is defined as follows:

� Q = (Q1 × (Q2 ∪ {0, 1})) ∪Q2 ∪ {e};

� e is fresh;

� for a ∈ Σ, fa is the smallest relation satisfying:

– (q′′1 , n
′′) ∈ fa((q1, n), (q′1, n

′)) whenever q′′1 ∈ fa1 (q1, q
′
1) and n′′ =

n+ n′, with n, n′, n′′ ∈ {0, 1},

– (q1, q
′′
2 ) ∈ fa((q1, q2), q′2) whenever q′′2 ∈ fa2 (q2, q

′
2) and for all q1 ∈ Q1,

and

– fa2 ⊆ fa;

� for y ∈ X, fy is the smallest relation satisfying:

– (q′1, n) ∈ fy((q1, n)) whenever q′1 ∈ f
y
1 (q1) and n ∈ {0, 1},

– (q1, q
′
2) ∈ fy((q1, q2)) whenever q′2 ∈ f

y
2 (q2) and q1 ∈ Q1, and

– fy2 ⊆ fy;

� fε is the smallest relation satisfying:

– (q′1, n) ∈ fε((q1, n)) whenever q′1 ∈ fε1 (q1) and n ∈ {0, 1},

– (q1, q
′
2) ∈ fε((q1, q2)) whenever q′2 ∈ fε2 (q2) and q1 ∈ Q1,

– fε2 ⊆ fε,

– (e1, 0), e2 ∈ fε(e),

– (q1, e2) ∈ fε((q1, 0)) for all q1 ∈ Q1, and

182



Decidability 5.3 Trees

– (q′1, 1) ∈ fε((q1, q2)) whenever q′1 ∈ fx1 (q1) and q2 ∈ A2; and

� A = A1 × {1}.

Consider the automaton A = A1 �x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. For a forest, t, each state q ∈ JtKA
is of one of five types. If q = e then t = ∅. If q ∈ Q2 then q ∈ JtKA2

. If

q = (q1, 0) then q1 ∈ JtKA1
. If q = (q1, q2) then t = t1 ⊗ t2 such that q1 ∈ Jt1KA1

and q2 ∈ Jt2KA2
. If q = (q1, 1) then t = t1�xt2 such that q1 ∈ Jt1KA1

and t2 ∈ L2.

The set of states JtKA is the most general satisfying these requirements, thereby

ensuring that there is a q ∈ JtKA ∩A if and only if t ∈ L1 �x L2.

The correctness argument for the above construction is formalised in the

following lemmata.

Lemma 67. For all t ∈ ForestΣ,X,

e ∈ JtKA ⇐⇒ t = ∅.

Proof. By definition, e ∈ J∅KA. If t 6= ∅ then each q ∈ JtKA must be the result

of some transition, but no transition results in the state e.

Lemma 68. For all t ∈ ForestΣ,X, q2 ∈ Q2,

q2 ∈ JtKA ⇐⇒ q2 ∈ JtKA2 .

Proof. The proof is by induction on the structure of the forest t.

Base case: t = ∅. Observe that e2 ∈ J∅KA, that fε2 ⊆ fε, and that if

q2 ∈ fε(q′2) then q′2 ∈ Q2 and q2 ∈ fε2 (q′2). Consequently, q2 ∈ J∅KA if and only

if q2 ∈ J∅KA2
.

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X.

q2 ∈ JtKA
⇐⇒ there exists q′2 ∈ Q s.t.

q2 ∈ (fy # ε-closure)(q′2) and q′2 ∈ Jt′KA
⇐⇒ there exists q′2 ∈ Q2 s.t.

q2 ∈ (fy2 # ε-closure2)(q′2) and q′2 ∈ Jt′KA
(IH) ⇐⇒ there exists q′2 ∈ Q2 s.t.

q2 ∈ (fy2 # ε-closure2)(q′2) and q′2 ∈ Jt′KA2

⇐⇒ q2 ∈ Jt′ ⊗ yKA2 = JtKA2 .
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Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ.

q2 ∈ JtKA
⇐⇒ there exist q′2, q

′′
2 ∈ Q s.t. q2 ∈ (fa # ε-closure)(q′2, q′′2 ) and

q′2 ∈ Jt′KA and q′′2 ∈ Jt′′KA
⇐⇒ there exist q′2, q

′′
2 ∈ Q2 s.t. q2 ∈ (fa2 # ε-closure2)(q′2, q

′′
2 ) and

q′2 ∈ Jt′KA and q′′2 ∈ Jt′′KA
(IH) ⇐⇒ there exist q′2, q

′′
2 ∈ Q2 s.t. q2 ∈ (fa2 # ε-closure2)(q′2, q

′′
2 ) and

q′2 ∈ Jt′KA2
and q′′2 ∈ Jt′′KA2

⇐⇒ q2 ∈ Jt′ ⊗ a[t′′]KA2
= JtKA2

.

Lemma 69. For all t ∈ ForestΣ,X, q1 ∈ Q1,

(q1, 0) ∈ JtKA ⇐⇒ q1 ∈ JtKA1
.

Proof. The proof is by induction on the structure of the forest t.

Base case: t = ∅. Observe that (e1, 0) ∈ J∅KA, and that, for all q′, q′′ ∈ Q
with q′ ∈ fε(q′′), if either q′ ∈ Q1 × {0} or q′′ ∈ Q1 × {0} then there are

q′1, q
′′
1 ∈ Q1 such that q′ = (q′1, 0), q′′ = (q′′1 , 0) and q′1 ∈ fε1 (q′′1 ). Consequently,

(q1, 0) ∈ J∅KA if and only if q1 ∈ J∅KA1 .

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X.

(q1, 0) ∈ JtKA
⇐⇒ there exists q′ ∈ Q s.t.

(q1, 0) ∈ (fy # ε-closure)(q′) and q′ ∈ Jt′KA
⇐⇒ there exists q′1 ∈ Q1 s.t.

q1 ∈ (fy1 # ε-closure1)(q′1) and (q′1, 0) ∈ Jt′KA
(IH) ⇐⇒ there exists q′1 ∈ Q1 s.t.

q1 ∈ (fy1 # ε-closure1)(q′1) and q′1 ∈ Jt′KA1

⇐⇒ q1 ∈ Jt′ ⊗ yKA1 = JtKA1 .

Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ.

(q1, 0) ∈ JtKA
⇐⇒ there exist q′, q′′ ∈ Q s.t. (q1, 0) ∈ (fa # ε-closure)(q′, q′′)

and q′ ∈ Jt′KA and q′′ ∈ Jt′′KA
⇐⇒ there exist q′1, q

′′
1 ∈ Q1 s.t. q1 ∈ (fa1 # ε-closure1)(q′1, q

′′
1 )

and (q′1, 0) ∈ Jt′KA and (q′′1 , 0) ∈ Jt′′KA
(IH) ⇐⇒ there exist q′1, q

′′
1 ∈ Q1 s.t. q1 ∈ (fa1 # ε-closure1)(q′1, q

′′
1 )

and q′1 ∈ Jt′KA1 and q′′1 ∈ Jt′′KA1

⇐⇒ q1 ∈ Jt′ ⊗ a[t′′]KA1 = JtKA1 .
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Lemma 70. For all t ∈ ForestΣ,X, q1 ∈ Q1, q2 ∈ Q2,

(q1, q2) ∈ JtKA

⇐⇒

there exist t1, t2 ∈ ForestΣ,X s.t. t = t1 ⊗ t2 and q1 ∈ Jt1KA1
and q2 ∈ Jt2KA2

.

Proof. Both directions are by induction on the structure of t.

=⇒:

Base case: t = ∅, and so (q1, q2) ∈ ε-closure(e). By the definition of A, it follows

that:

� (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2) and q2 ∈ J∅KA2
;

� (q1, e2) ∈ fε((q1, 0)); and

� (q1, 0) ∈ J∅KA and so q1 ∈ J∅KA1 (by Lemma 69).

Thus the choice of t1 = t2 = ∅ fulfils the requirements.

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X. In this case,

(q1, q2) ∈ (fy # ε-closure)(q′) for some q′ ∈ Q with q′ ∈ Jt′KA. Either q′ = (q1, q
′
2)

for some q′2 ∈ Q2, or q′ = (q′1, 0) for some q′1 ∈ Q1.

If the former, it follows from the definition of A that q2 ∈ (fy2 #ε-closure2)(q′2).

By the inductive hypothesis, there are t1, t
′
2 with t = t1 ⊗ t′2 ⊗ y, q1 ∈ Jt1KA1

and q′2 ∈ Jt′2KA2
. Hence q2 ∈ Jt′2 ⊗ yKA2

, and so the choice of t1 and t2 = t′2 ⊗ y
fulfils the requirements.

If the latter, it must be that:

� (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2) and q2 ∈ J∅KA2 ;

� (q1, e2) ∈ fε((q1, 0)); and

� (q1, 0) ∈ (fy # ε-closure)(q′1, 0), and so (q1, 0) ∈ JtKA and, by Lemma 69,

q1 ∈ JtKA1
.

Therefore the choice of t1 = t and t2 = ∅ fulfils the requirements.

Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ. In this

case, (q1, q2) ∈ ε-closure(q′′′) for some q′′′ ∈ Q with q′′′ ∈ fa(q′, q′′) for some

q′, q′′ ∈ Q with q′ ∈ Jt′KA and q′′ ∈ Jt′′KA. Either q′′′ = (q1, q
′′′
2 ) for some

q′′′2 ∈ Q2, or q′′′ = (q′′′1 , 0) for some q′′′1 ∈ Q1.

If the former, it follows from the definition of A that q′ = (q1, q
′
2) and q′′ = q′′2

for some q′2, q
′′
2 ∈ Q2 with q′′′2 ∈ fa2 (q′2, q

′′
2 ). By the inductive hypothesis, there
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are t1, t
′
2 ∈ ForestΣ,X with t′ = t1⊗t′2, q1 ∈ Jt1KA1

and q′2 ∈ Jt′2KA2
. Furthermore,

by Lemma 68, q′′2 ∈ Jt′′KA2
and so q′′′2 ∈ Jt′2 ⊗ a[t′′]KA2

. It must also be the case

that q2 ∈ ε-closure2(q′2), and so q2 ∈ Jt′2 ⊗ a[t′′]KA2 . Therefore the choice of t1

and t′2 = t′2 ⊗ a[t′′] fulfils the requirements.

If the latter, it must be that:

� (q1, q2) ∈ ε-closure((q1, e2)), and hence q2 ∈ ε-closure2(e2) and q2 ∈ J∅KA2
;

� (q1, e2) ∈ fε((q1, 0)); and

� (q1, 0) ∈ JtKA and so q1 ∈ JtKA1
(by Lemma 69).

Therefore the choice of t1 = t and t2 = ∅ fulfils the requirements.

⇐=:

Base case: t = ∅. In this case, t1 = ∅ and t2 = ∅. By Lemma 69, (q1, 0) ∈
J∅KA, and so, since (q1, e2) ∈ fε((q1, 0)) by definition, (q1, e2) ∈ J∅KA. Fur-

thermore, it must be that q2 ∈ ε-closure2(e2) and hence (q1, q2) ∈ J∅KA as

required.

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X. In this case,

either t2 = t′2 ⊗ y and t′ = t′2 ⊗ y for some t′2 ∈ ForestΣ,X, or t2 = ∅ and

t1 = t = t′ ⊗ y.

If the former, q2 ∈ (fy2 # ε-closure2)(q′2) for some q′2 ∈ Q2 with q′2 ∈ Jt′2KA2 .

By the inductive hypothesis, (q1, q
′
2) ∈ Jt1 ⊗ t′2KA. Therefore, by the definition

of A, (q1, q2) ∈ Jt1 ⊗ t′2 ⊗ yKA = JtKA as required.

If the latter, q1 ∈ JtKA1 and hence (q1, 0) ∈ JtKA by Lemma 69. It follows

then that (q1, e2) ∈ JtKA. Furthermore, since q2 ∈ J∅KA2 = ε-closure2(e2), it

follows by the definition of A that (q1, q2) ∈ JtKA, as required.

Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ. In this

case, either t2 = t′2 ⊗ a[t′′] for some t′2 ∈ ForestΣ,X, or t2 = ∅ and t1 = t =

t′ ⊗ a[t′′].

If the former, q2 ∈ ε-closure2(q′′′2 ) for some q′′′2 ∈ Q2 with q′′′2 ∈ fa2 (q′2, q
′′
2 )

for some q′2, q
′′
2 ∈ Q2 with q′2 ∈ Jt′2KA2

and q′′2 ∈ Jt′′2KA2
. By the inductive

hypothesis, (q1, q
′
2) ∈ Jt1 ⊗ t′2KA = Jt′KA. By Lemma 68, q′′2 ∈ Jt′′2KA. Hence,

(q1, q
′′′
2 ) ∈ fa((q1, q

′
2), q′′2 ) ⊆ Jt′ ⊗ a[t′′]KA = JtKA. Therefore, since by definition

(q1, q2) ∈ ε-closure(q1, q
′′′
2 ), it follows that q1, q2) ∈ JtKA, as required.

If the latter, q1 ∈ JtKA1
and hence (q1, 0) ∈ JtKA by Lemma 69. It follows

then that (q1, e2) ∈ JtKA. Furthermore, since q1 ∈ J∅KA2
= ε-closure2(e2), it

follows that (q1, q2) ∈ JtKA, as required.
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Lemma 71. For all t ∈ ForestΣ,X, q1 ∈ Q1,

(q1, 1) ∈ JtKA

⇐⇒ there exist t1, t2 s.t. t ∈ t1 �x t2 and q1 ∈ Jt1KA1
and t2 ∈ L2.

Proof. Both directions are by induction on the structure of t.

=⇒:

Base case: t = ∅. It must be the case that there are some q′1q
′′
1 ∈ Q1 and

q2 ∈ Q2 with:

� (q′′1 , q2) ∈ J∅KA, and hence, by Lemma 70, q′′1 ∈ J∅KA1
and q2 ∈ J∅KA2

;

� (q′1, 1) ∈ fε((q′′1 , q2)), and hence q′1 ∈ fx1 (q′′1 ) and q2 ∈ A2, so q′1 ∈ JxKA2

and ∅ ∈ L2; and

� (q1, 1) ∈ ε-closure((q′1, 1)), and hence q1 ∈ ε-closure1(q′1), so q1 ∈ JxKA2 .

Thus, choosing t1 = x and t2 = ∅ fulfils the requirements, since ∅ ∈ x�x ∅.

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X. One of the

following must be the case:

� (q1, 1) ∈ (fy # ε-closure)((q′1, 1)) and (q′1, 1) ∈ Jt′KA for some q′1 ∈ Q1; or

� (q1, 1) ∈ ε-closure((q′1, 1)) for some q′1 ∈ Q1 with (q′1, 1) ∈ fε((q′′1 , q2)) for

some q′′1 ∈ Q1, q2 ∈ Q2 with (q′′1 , q2) ∈ JtKA.

If the former, then, by the inductive hypothesis, there are t′1 and t2 with t′ ∈
t′1�x t2, q′1 ∈ Jt′1KA1

and t2 ∈ L2. By the definition of A, q1 ∈ (fy1 #ε-closure1)(q′1)

and so q1 ∈ Jt′1 ⊗ yKA1 . Since (t′1 �x t2)⊗ y ⊆ (t′1 ⊗ y)�x t2, it follows that the

choice of t1 = t′1 ⊗ y and t2 fulfils the requirements.

If the latter, then, by Lemma 70, t = t′1 ⊗ t2 with q′′1 ∈ Jt′1KA1
, q2 ∈ Jt2KA2

.

Furthermore, by the definition of A, q2 ∈ A2, and so t2 ∈ L2. Also, q′1 ∈ fx1 (q′′1 ),

so q′1 ∈ Jt′1 ⊗ xKA1 . Moreover, q1 ∈ ε-closure1(q′1), so q1 ∈ Jt′1 ⊗ xKA1 . Since

t′1⊗ t2 ∈ (t′1⊗ x)�x t2, it follows that the choice of t1 = t′1⊗ x and t2 fulfils the

requirements.

Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ. There

must be some q′′′1 ∈ Q1 with (q1, 1) ∈ ε-closure(q′′′1 , 1) such that one of the

following holds:

� (q′′′1 , 1) ∈ fa((q′1, 1), (q′′1 , 0)) for some q′1, q
′′
1 ∈ Q1 with (q′1, 1) ∈ Jt′KA and

(q′′1 , 0) ∈ Jt′′KA;

� (q′′′1 , 1) ∈ fa((q′1, 0), (q′′1 , 1)) for some q′1, q
′′
1 ∈ Q1 with (q′1, 0) ∈ Jt′KA and

(q′′1 , 1) ∈ Jt′′KA; or
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� (q′′′1 , 1) ∈ fa((q′1, q2)) for some q′1 ∈ Q1, q2 ∈ Q2 with (q′1, q2) ∈ JtKA.

In the first case, by the inductive hypothesis, there are t′1, t2 ∈ ForestΣ,X

with t′ ∈ t′1 �x t2, q′1 ∈ Jt′1KA1 and t2 ∈ L2. Furthermore, by Lemma 69,

q′′1 ∈ Jt′′KA1 . By the definition of A, q′′′1 ∈ fa1 (q′1, q
′′
1 ), and so q′′′1 ∈ Jt′1⊗a[t′′]KA1

.

Moreover, q1 ∈ ε-closure1(q′′′1 ), so q1 ∈ Jt′1 ⊗ a[t′′]KA1
. Since (t′1 �x t2)⊗ a[t′′] ⊆

(t′1 ⊗ a[t′′]) �x t2, it follows that the choice of t1 = t′1 ⊗ a[t′′] and t2 fulfils the

requirements.

In the second case, by Lemma 69, q′1 ∈ Jt′KA1
. Furthermore, by the inductive

hypothesis, there are t′′1 , t2 ∈ ForestΣ,X with t′′ ∈ t′′1 �x t2, q′′1 ∈ Jt′′1KA1
and

t2 ∈ L2. By the definition of A, q′′′1 ∈ fa1 (q′1, q
′′
1 ), and so q′′′1 ∈ Jt′ ⊗ a[t′′1 ]KA1

.

Moreover, q1 ∈ ε-closure1(q′′′1 ), so q1 ∈ Jt1 ⊗ a[t′′1 ]KA1 . Since t′ ⊗ a[t′′1 �x t2] ⊆
(t′ ⊗ a[t′′1 ]) �x t2, it follows that the choice of t1 = t′ ⊗ a[t′′1 ] and t2 fulfils the

requirements.

In the third case, by Lemma 70, t = t′1 ⊗ t2 for some t′1, t2 ∈ ForestΣ,X with

q′1 ∈ Jt′1KA1
and q2 ∈ Jt2KA2

. By the definition of A, q2 ∈ A2, and so t2 ∈ L2.

Furthermore, q′′′1 ∈ fx1 (q′1), so q′′′1 ∈ Jt′1 ⊗ xKA1 . Moreover, q1 ∈ ε-closure1(q′′′1 ),

and so q1 ∈ Jt′1 ⊗ xKA1
. Since t′1 ⊗ t2 ∈ (t′1 ⊗ x)�x t2, it follows that the choice

of t1 = t′1 ⊗ x and t2 fulfils the requirements.

⇐=:

Base case: t = ∅. In this case, it must be that t1 = x and t2 = ∅. Since

q1 ∈ JxKA1
it follows that q1 ∈ ε-closure1(q′1) for some q′1 ∈ fx1 (q′′1 ) for some

q′′1 ∈ J∅KA1
. Further, since ∅ = t2 ∈ L2, there must be some q2 ∈ A2 with

q2 ∈ J∅KA2
. By Lemma 70, (q′′1 , q2) ∈ J∅KA. By the construction of A, it follows

that (q′1, 1) ∈ fε(q′′1 , q2) and so (q′1, 1) ∈ J∅KA. Also, (q1, 1) ∈ ε-closure(q′1, 1)

and so (q1, 1) ∈ J∅KA, as required.

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X. Either the y is

part of t2 or part of t1. Thus, one of the following must be the case:

� t = t′′1 ⊗ t2 and t1 = t′′1 ⊗ x for some t′′1 ∈ ForestΣ,X; or

� t′ ∈ t′1 �x t2 and t1 = t′1 ⊗ y for some t′1 ∈ ForestΣ,X.

If the former, there is a q′′1 ∈ Jt′′1KA1 such that q1 ∈ (fx1 # ε-closure1)(q′′1 ),

and a q2 ∈ Jt2KA2
∩ A2. By Lemma 70, (q′′1 , q2) ∈ Jt′′1 ⊗ t2KA = JtKA. From the

definition of fε, it follows that (q1, 1) ∈ ε-closure((q′′1 , q2)) and so (q1, 1) ∈ JtKA
as required.

If the latter, there is a q′1 ∈ Jt′1KA1 such that q1 ∈ (fy1 # ε-closure1)(q′1).

By the inductive hypothesis, (q′1, 1) ∈ Jt′KA. By the definition of A, (q1, 1) ∈
(fy # ε-closure)((q′1, 1)), and so (q1, 1) ∈ JtKA as required.
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Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ. One of

the following must hold:

� t = t′1 ⊗ t2 and t1 = t′1 ⊗ x for some t′1 ∈ ForestΣ,X;

� t′ ∈ t′1 �x t2 and t1 = t′1 ⊗ a[t′′] for some t′1 ∈ ForestΣ,X; or

� t′′ ∈ t′′1 �x t2 and t1 = t′ ⊗ a[t′′1 ] for some t′′1 ∈ ForestΣ,X.

In the first case, there is a q′1 ∈ Jt′1KA1
such that q1 ∈ (fx1 # ε-closure1)(q′′1 ),

and q2 ∈ JtKA2
∩ A2. By Lemma 70, (q′′1 , q2) ∈ Jt′′1 ⊗ t2KA = JtKA. From the

definition of fε, it follows that (q1, 1) ∈ ε-closure((q′′1 , q2)) and so (q1, 1) ∈ JtKA
as required.

In the second case, q1 ∈ ε-closure1(q′′′1 ) for some q′′′1 ∈ fa1 (q′1, q
′′
1 ) for some

q′1 ∈ Jt′1KA1
and q′′1 ∈ Jt′′KA1

. By the inductive hypothesis, (q′1, 1) ∈ Jt′KA. By

Lemma 69, (q′′1 , 0) ∈ Jt′′KA. By the definition of A, (q′′′1 , 1) ∈ fa((q′1, 1), (q′′1 , 0)),

and so (q′1, 1) ∈ Jt′ ⊗ a[t′′]KA = JtKA. Furthermore, (q1, 1) ∈ ε-closure(q′1, 1) and

so (q1, 1) ∈ JtKA, as required.

In the third case, q1 ∈ ε-closure1(q′′′1 ) for some q′′′1 ∈ fa1 (q′1, q
′′
1 ) for some

q′1 ∈ Jt′KA1
and q′′1 ∈ Jt′′1KA1

. By Lemma 69, (q′1, 0) ∈ Jt′KA. By the inductive

hypothesis, (q′′1 , 1) ∈ Jt′′KA. By the definition of A, (q′′′1 , 1) ∈ fa((q′1, 0), (q′′1 , 1)),

and so (q′1, 1) ∈ Jt′ ⊗ a[t′′]KA = JtKA. Furthermore, (q1, 1) ∈ ε-closure(q′1, 1) and

so (q1, 1) ∈ JtKA, as required.

Proposition 72 (Correctness of � Construction). The automaton A = A1 �x
A2 accepts the language L1 �x L2.

Proof.

t ∈ L1 �x L2

⇐⇒ there exist t1, t2 ∈ ForestΣ,X s.t.

t ∈ t1 �x t2 and t1 ∈ L1 and t2 ∈ L2

(L. 71) ⇐⇒ there exists q1 ∈ A1 s.t. (q1, 1) ∈ JtKA

⇐⇒ A ∩ JtKA 6= ∅.

I now turn to �−∃. Suppose A1 and A2 accept languages L1 and L2 respec-

tively. A forest t ∈ L1 �−∃x L2 is one such that it can be substituted for some

x in some forest t1 ∈ L1 to give a forest t2 ∈ L2. The automaton construction

A = A1�−∃xA2 determines how to substitute t for some x in the automaton A2

so that t1 behaves like t2 would. That is, JtKA = {LtMA2
}— the result of running
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A on t is the transition relation on A2 induced by t. To determine if t should

be accepted, it is enough to know if there is some t1 that is accepted by A1 and

by A2 modified so that exactly one x is treated as t — fx behaves like LtMA2 in

one instance. The product construction (which is defined analogously for forest

automata as for word automata) is used to construct an automaton that, given

LtMA2
, accepts exactly such a t1. It is then sufficient to check whether some

accepting state of this automaton is reachable to determine if such a t1 exists.

Conceptually, this construction is directly analogous to the sequence case.

Definition 5.32 (�−∃ Construction). Given ε-NFFA

A1 = (Q1, e1, {fa1 }a∈Σ∪X∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Σ∪X∪{ε} , A1),

the ε-NFFA

A1 �−∃x A2 = (Q, e, {fa}a∈Σ∪X∪{ε} , A)

is defined as follows:

� Q = P(Q2 ×Q2);

� e = ε-closure2;

� for a ∈ Σ,

fa(q, q′) =



(q2, q
′
2)

∣∣∣∣∣∣∣∣∣∣
q2 ∈ Q2 and

there exist q′′2 ∈ q(q2),

q′′′2 ∈ q′(e2) s.t.

q′2 ∈ fa2 (q′′2 , q
′′′
2 )

 # ε-closure2

 ;

� for y ∈ X, fy(q) = {q # fy2 # ε-closure2};

� fε = ∅; and

� q ∈ A if and only if there exists t1 ∈ ForestΣ,X s.t. Jt1KÂ1×Âq∩A1×Aq 6= ∅,
where

– Aq = (Q2 × {0, 1} , (e2, 0),
{
faq
}
a∈Σ∪X∪{ε} , Aq),

– for a ∈ Σ,

faq = {((q2, n), (q′2, n
′), (q′′2 , n

′′)) | (q2, q
′
2, q
′′
2 ) ∈ fa2 and n+ n′ = n′′} ,

– for y ∈ X with y 6= x,

fyq = {((q2, n), (q′2, n)) | (q2, q
′
2) ∈ fy2 and n ∈ {0, 1}} ,
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– fxq =
{((q2, n), (q′2, n)) | (q2, q

′
2) ∈ fx2 and n ∈ {0, 1}} ∪

{((q2, 0), (q′2, 1)) | (q2, q
′
2) ∈ q}

,

– fεq = {((q2, n), (q′2, n)) | (q2, q
′
2) ∈ fε2 and n ∈ {0, 1}}, and

– Aq = A2 × {1}.

Consider the automaton A = A1 �−∃x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. As in the sequence case, states of

A are relations on the states of A2. The automaton is constructed such that

JtKA = {LtMA2
}. The complexity is in defining the set of accepting states. To

this end, Aq for q = LtMA2 ⊆ Q2 × Q2 is designed to accept t1 if there is some

t2 ∈ t1 �x t such that t2 is accepted by A2. This is achieved by the automaton

imitatingA2, except that exactly one x is interpreted according to LtMA2
(instead

of LxMA2
, as it usually would be). Ultimately, q is an accepting state of A if

there is some t1 accepted by both A1 and Aq. This is decidable by considering

reachability for the product pre-automaton Â1 × Âq.
The correctness argument for the above construction is formalised in the

following lemmata.

Lemma 73. For all t ∈ ForestΣ,X,

JtKA = {LtMA2
} .

Proof. The proof is by induction on the structure of t. Note that, since fε = ∅,
ε-closure is the identity relation on Q.

Base case: t = ∅.

J∅KA = ε-closure(e)

= ε-closure(ε-closure2)

= {ε-closure2}

= {L∅MA2
} .

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X.

Jt′ ⊗ yKA = {q | there exists q′ ∈ Jt′KA s.t. q ∈ (fy # ε-closure)(q′)}

= {q | q ∈ (fy # ε-closure)(Lt′MA2)}

= fy(Lt′MA2
)

= {Lt′MA2 # f
y
2 # ε-closure2}

= {Lt′ ⊗ yMA2
} .
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Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ.

Jt′ ⊗ a[t′′]KA =

{
q

∣∣∣∣∣ there exist q′ ∈ Jt′KA, q′′ ∈ Jt′′KA s.t.

q ∈ (fa # ε-closure)(q′, q′′)

}
= {q | q ∈ (fa # ε-closure)(Lt′MA2 , Lt

′′MA2)}

= fa(Lt′MA2
, Lt′′MA2

)

=



(q2, q
′
2)

∣∣∣∣∣∣∣∣∣∣
q2 ∈ Q2 and

there exist q′′2 ∈ Lt′MA2(q2),

q′′′2 ∈ Lt′′MA2
(e2) s.t.

q′2 ∈ fa2 (q′′2 , q
′′′
2 )

 # ε-closure2



=



(q2, q
′
2)

∣∣∣∣∣∣∣∣∣∣
q2 ∈ Q2 and

there exist q′′2 ∈ Lt′MA2(q2),

q′′′2 ∈ Jt′′KA2
s.t.

q′2 ∈ (fa2 # ε-closure2)(q′′2 , q
′′′
2 )




= {Lt′1 ⊗ a[t′′]MA2

} .

For q ∈ Q, let Aq be given as in Definition 5.32.

Lemma 74. For all q ∈ Q, q2 ∈ Q2 and t ∈ ForestΣ,X,

(q2, 0) ∈ JtKAq ⇐⇒ q2 ∈ JtKA2
.

Proof. The proof is by induction on the structure of the forest t.

Base case: t = ∅.

(q2, 0) ∈ J∅KAq ⇐⇒ (q2, 0) ∈ ε-closure((e2, 0))

⇐⇒ q2 ∈ ε-closure2(e2)

⇐⇒ q2 ∈ J∅KA2 .

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X.

(q2, 0) ∈ Jt′ ⊗ yKAq

⇐⇒ there exists q′2 ∈ Q2 s.t. (q2, 0) ∈ (fy # ε-closure)((q′2, 0))

and (q′2, 0) ∈ Jt′KAq

⇐⇒ there exists q′2 ∈ Q2 s.t. q2 ∈ (fy2 # ε-closure2)(q′2)

and q′2 ∈ Jt′KA2

⇐⇒ q2 ∈ Jt′ ⊗ yKA2
.
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Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ.

(q2, 0) ∈ Jt′ ⊗ a[t′′]KAq

⇐⇒ there exist q′2, q
′′
2 , q
′′′
2 ∈ Q2 s.t. (q2, 0) ∈ ε-closure((q′′′2 , 0)) and

(q′′′2 , 0) ∈ fa((q′2, 0), (q′′2 , 0)) and (q′2, 0) ∈ Jt′KAq and (q′′2 , 0) ∈ Jt′′KAq

⇐⇒ there exist q′2, q
′′
2 , q
′′′
2 ∈ Q2 s.t. q2 ∈ ε-closure2(q′′′2 ) and

q′′′2 ∈ fa2 (q′2, q
′′
2 ) and q′2 ∈ Jt′KA2

and q′′2 ∈ Jt′′KA2

⇐⇒ q2 ∈ Jt′ ⊗ a[t′′]KA2
.

Lemma 75. Suppose that q = LtMA2
for some t ∈ ForestΣ,X. Then for t1 ∈

ForestΣ,X, and q2 ∈ Q2,

(q2, 1) ∈ Jt1KAq
⇐⇒

there exists t2 ∈ ForestΣ,X s.t. q2 ∈ Jt2KA2
and t2 ∈ t1 �x t.

Proof. The proof in both directions is by induction on the structure of the tree

t1.

=⇒:

Base case: t1 = ∅. In this case, it is not possible that (q2, 1) ∈ J∅KAq and so

the implication holds trivially.

Inductive case: t1 = t′1 ⊗ y for some t′1 ∈ ForestΣ,X and y ∈ X. In this case,

(q2, 1) ∈ (fyq # ε-closureq)(qq) for some qq ∈ Jt′1KAq with either:

� qq = (q′2, 1) for some q′2 ∈ Q2; or

� qq = (q′2, 0) for some q′2 ∈ Q2.

In the first case, since (q′2, 1) ∈ Jt′1KAq , it follows that q′2 ∈ Jt′2KA2 for some

t′2 ∈ t′1 �x t, by the inductive hypothesis. From the definition of Aq, it follows

that q2 ∈ (fy2 # ε-closure2)(q′2) and hence q2 ∈ Jt′2 ⊗ yKA2
. Observe that t′2 ⊗ y ⊆

(t′1 ⊗ y)�x t = t1 �x t, and so the choice t2 = t′2 ⊗ y fulfils the requirements.

In the second case, y = x and (q2, 1) ∈ ε-closureq((q′′2 , 1)) for some q′′2 ∈ Q2

with (q′′2 , 1) ∈ fxq ((q′2, 0)). Since (q′2, 0) ∈ Jt′1KAq , it follows that q′2 ∈ Jt′1KA2
, by

Lemma 74. Furthermore, since (q′′2 , 1) ∈ fxq ((q′2, 0)), it follows that q′′2 ∈ q(q′2) =

LtMA2
(q′2) by Lemma 73, and so q′′2 ∈ Jt′1 ⊗ tKA2

. Moreover, q2 ∈ ε-closure2(q′′2 )

and so q2 ∈ Jt′1 ⊗ tKA2 . Observe that t′1 ⊗ t ∈ (t′1 ⊗ x)�x t = t1 �x t, and so the

choice t2 = t′2 ⊗ y fulfils the requirements.
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Inductive case: t1 = t′1 ⊗ a[t′′1 ] for some t′1, t
′′
1 ∈ ForestΣ,X and a ∈ Σ. In this

case, (q2, 1) ∈ ε-closureq((q′′′2 , 1)) for some q′′′2 ∈ Q2 with either:

� (q′′′2 , 1) ∈ faq ((q′2, 1), (q′′2 , 0)) for some q′2, q
′′
2 ∈ Q2 with (q′1, 1) ∈ Jt′1KAq and

(q′′2 , 0) ∈ Jt′′1KAq ; or

� (q′′′2 , 1) ∈ faq ((q′2, 0), (q′′2 , 1)) for some q′2, q
′′
2 ∈ Q2 with (q′1, 0) ∈ Jt′1KAq and

(q′′2 , 1) ∈ Jt′′1KAq .

In the first case, by the inductive hypothesis, q′2 ∈ Jt′2KA2
for some t′2 ∈ t′1�xt.

By Lemma 74, q′′2 ∈ Jt′′1KA2
. By the definition of Aq, q′′′2 ∈ fa2 (q′2, q

′′
2 ) and so

q′′′2 ∈ Jt′2⊗a[t′′1 ]KA2 . Furthermore, q2 ∈ ε-closure2(q′′′2 ) and so q2 ∈ Jt′2⊗a[t′′1 ]KA2 .

Observe that t′2 ⊗ a[t′′1 ] ∈ (t′1 �x t) ⊗ a[t′′1 ] ⊆ (t′1 ⊗ a[t′′1 ]) �x t = t1 �x t, and so

the choice t2 = t′2 ⊗ a[t′′1 ] fulfils the requirements.

In the second case, by Lemma 74, q′2 ∈ Jt′1KA2
. By the inductive hypothesis,

q′′2 ∈ Jt′′2KA2 for some t′′2 ∈ t′′1�xt. By the definition of Aq, q′′′2 ∈ fa2 (q′2, q
′′
2 ) and so

q′′′2 ∈ Jt′1⊗a[t′′2 ]KA2
. Furthermore, q2 ∈ ε-closure2(q′′′2 ) and so q2 ∈ Jt′1⊗a[t′′2 ]KA2

.

Observe that t′1 ⊗ a[t′′2 ] ∈ t′1 ⊗ a[t′′1 �x t] ⊆ (t′1 ⊗ a[t′′1 ])�x t = t1 �x t, and so the

choice t2 = t′1 ⊗ a[t′′2 ] fulfils the requirements.

⇐=:

Base case: t1 = ∅. In this case, t1 �x t = ∅ and so there is no t2 ∈ t1 �x t and

the implication holds trivially.

Inductive case: t1 = t′1 ⊗ y for some t′1 ∈ ForestΣ,X and y ∈ X. In this case,

either:

� t2 = t′2 ⊗ y for some t′2 ∈ t′1 �x t; or

� t2 = t′1 ⊗ t and y = x.

In the first case, it must be that q2 ∈ (fy2 #ε-closure2)(q′2) for some q′2 ∈ Jt′2KA2 .

By the inductive hypothesis, (q′2, 1) ∈ Jt′1KAq . By the construction of Aq, it

follows that (q2, 1) ∈ (fyq #ε-closureq)((q′2, 1)) and so (q2, 1) ∈ Jt′1⊗yKAq = Jt1KAq ,
as required.

In the second case, it must be that q2 ∈ LtMA2(q′2) = q(q′2) for some q′2 ∈
Jt′1KA2

. By Lemma 74, (q′2, 0) ∈ Jt′1KAq . Furthermore, by the construction of

Aq, it follows that (q2, 1) ∈ fxq ((q′2, 0)) and so (q2, 1) ∈ Jt′1 ⊗ xKAq = Jt1KAq , as

required.

Inductive case: t1 = t′1 ⊗ a[t′′1 ] for some t′1, t
′′
1 ∈ ForestΣ,X and a ∈ Σ. In this

case, either:

� t2 = t′2 ⊗ a[t′′1 ] for some t′2 ∈ t′1 �x t; or

� t2 = t′1 ⊗ a[t′′2 ] for some t′′2 ∈ t′′1 �x t.
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In the first case, it must be that q2 ∈ ε-closure2(q′′′2 ) for some q′′′2 ∈ fa2 (q′2, q
′′
2 )

for some q′2 ∈ Jt′2KA2
, q′′2 ∈ Jt′′1KA2

. By the inductive hypothesis, (q′2, 1) ∈ Jt′1KAq .
By Lemma 74, (q′′2 , 0) ∈ Jt′′1KAq . Furthermore, (q′′′2 , 1) ∈ faq ((q′2, 1), (q′′2 , 0)) and

so (q′′′2 , 1) ∈ Jt′1 ⊗ a[t′′1 ]KAq . Moreover, (q2, 1) ∈ ε-closureq(q′′′2 , 1) and so (q1, 1) ∈
Jt′1 ⊗ a[t′′1 ]KAq = Jt1KAq , as required.

In the second case, it must be that q2 ∈ ε-closure2(q′′′2 ) for some q′′′2 ∈
fa2 (q′2, q

′′
2 ) for some q′2 ∈ Jt′1KA2 , q′′2 ∈ Jt′′2KA2 . By Lemma 74, (q′2, 0) ∈ Jt′1KAq .

By the inductive hypothesis, (q′′2 , 1) ∈ Jt′′1KAq . Also, (q′′′2 , 1) ∈ faq ((q′2, 0), (q′′2 , 1))

and so (q′′′2 , 1) ∈ Jt′1 ⊗ a[t′′1 ]KAq . Moreover, (q2, 1) ∈ ε-closureq(q
′′′
2 , 1) and so

(q1, 1) ∈ Jt′1 ⊗ a[t′′1 ]KAq = Jt1KAq , as required.

Proposition 76 (Correctness of �−∃ Construction). The automaton A =

A1 �−∃x A2 accepts the language L1 �−∃x L2.

Proof.

t ∈ L1 �−∃x L2

⇐⇒ there exist t1, t2 ∈ ForestΣ,X s.t. t1 ∈ L1 and

t2 ∈ L2 and t2 ∈ t1 �x t

⇐⇒ there exist t1, t2 ∈ ForestΣ,X, q2 ∈ Q2 s.t. t1 ∈ L1 and

q2 ∈ Jt2KA2
and q2 ∈ A2 and t2 ∈ t1 �x t

⇐⇒ there exists q ∈ Q s.t. q = LtMA2
and

there exist t1, t2 ∈ ForestΣ,X, q2 ∈ Q2 s.t. t1 ∈ L1 and

q2 ∈ Jt2KA2
and q2 ∈ A2 and t2 ∈ t1 �x t

(L. 75) ⇐⇒ there exists q ∈ Q s.t. q = LtMA2
and

there exist t1 ∈ ForestΣ,X, q2 ∈ Q2 s.t. t1 ∈ L1 and

(q2, 1) ∈ Jt1KAq and (q2, 1) ∈ Aq

⇐⇒ there exists q ∈ Q s.t. q = LtMA2 and

there exists t1 ∈ ForestΣ,X s.t. Jt1KA1
∩A1 6= ∅ and

Jt1KAq ∩Aq 6= ∅

(L. 73) ⇐⇒ there exists q ∈ JtKA s.t.

there exists t1 ∈ ForestΣ,X s.t. Jt1KÂ1×Âq ∩A1 ×Aq 6= ∅

⇐⇒ there exists q ∈ JtKA s.t. q ∈ A

⇐⇒ JtKA ∩A 6= ∅.

Finally, I consider −�∃. Suppose that A1 and A2 accept languages L1 and

L2 respectively. A tree t ∈ L1 −�∃x L2 is one such that some t1 ∈ L1 can be
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substituted for some x in t to give a tree t2 ∈ L2. The automaton construction

A = A1−�∃xA2 behaves like A2 but treating one x as if it were such a t1 ∈ A1.

The principle behind the construction is just the same as in the sequence case.

Definition 5.33 (−�∃ Construction). Given ε-NFFA

A1 = (Q1, e1, {fa1 }a∈Σ∪X∪{ε} , A1) and

A2 = (Q2, e2, {fa2 }a∈Σ∪X∪{ε} , A2),

the ε-NFFA

A1 −�∃x A2 = (Q, e, {fa}a∈Σ∪X∪{ε} , A)

is defined as follows:

� Q = Q2 × {0, 1};

� e = (e2, 0);

� for a ∈ Σ, fa is the smallest relation such that, (q′′2 , n
′′) ∈ fa((q2, n),

(q′2, n
′)) whenever q′′2 ∈ fa2 (q2, q

′
2) and n′′ = n+ n′;

� for y ∈ X, fy is the smallest relation such that

– (q′2, n) ∈ fy((q2, n)) whenever q′2 ∈ f
y
2 (q2) and n ∈ {0, 1}, and

– if y = x then (q′2, 1) ∈ fy((q2, 0)) whenever there is some t1 ∈
ForestΣ,X such that Jt1KA1

∩A1 6= ∅ and q′2 ∈ LtMA2
(q2);

� fε is the smallest relation such that (q′2, n) ∈ fε((q2, n)) whenever q′2 ∈
fε2 (q2) and n ∈ {0, 1}; and

� A = A2 × {1}.

Consider the automaton A = A1 −�∃x A2, where A1 and A2 are automata

accepting languages L1 and L2 respectively. As in the sequence case, as state

of the form (q2, 0) records that the automaton A2 would assign q2 to the forest

that the automaton has consumed in reaching that state. A state of the form

(q2, 1) records that A2 would assign q2 to the result of substituting one instance

of x by a forest from L1 in the consumed tree.

In order for this construction to be effective, it is necessary that the set

{Lt1MA2 | t1 ∈ L1} be constructible. As in this sequence case, this is possible

through reachability.

Lemma 77. For all t ∈ ForestΣ,X, q2 ∈ Q2,

(q2, 0) ∈ JtKA ⇐⇒ q2 ∈ JtKA2
.
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The proof of this lemma is essentially the same as for Lemma 74 so I omit

the details.

Lemma 78. For all t ∈ ForestΣ,X, q2 ∈ Q2,

(q2, 1) ∈ JtKA

⇐⇒

there exist t1, t2 ∈ ForestΣ,X s.t. t2 ∈ t�x t1 and t1 ∈ L1 and q2 ∈ Jt2KA2
.

Proof. The proof in both directions is by induction on the structure of the forest

t.

=⇒:

Base case: t = ∅. There are no q′2, q
′′
2 ∈ Q2 such that (q′2, 1) ∈ fε((q′′2 , 0)), and

so it is not possible that (q2, 1) ∈ JtKA. Hence the implication holds vacuously

in this case.

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X. Assume that

(q2, 1) ∈ JtKA. One of the following must apply:

� (q2, 1) ∈ (fy # ε-closure)((q′2, 1)) for some q′2 ∈ Q2 with (q′2, 1) ∈ Jt′KA; or

� y = x and (q2, 1) ∈ ε-closure((q′2, 1)) for some q′2 ∈ Q2 with (q′2, 1) ∈
fx((q′′2 , 0)) for some q′2 ∈ Q2 with (q′′2 , 0) ∈ Jt′KA.

In the first case, by the inductive hypothesis, there are t1, t
′
2 ∈ ForestΣ,X

with t′2 ∈ t′ �x t1, t1 ∈ L1 and q′2 ∈ Jt′2KA2
. By the definition of A, q2 ∈

(fy2 #ε-closure2)(q′2) and so q2 ∈ Jt2KA2
. Observe that t′2⊗y ∈ (t′⊗y)�xt1 = t�xt2

and so the choice of t1 and t2 = t′2 ⊗ y fulfils the requirements.

In the second case, by Lemma 77, q′′2 ∈ Jt′KA2 . By the definition of fx,

q′2 ∈ Lt1MA2
(q′′2 ) for some t1 ∈ L1. Hence, t′2 ∈ Jt′ ⊗ t1KA2

. Furthermore,

q2 ∈ ε-closure2(q′2) and so q2 ∈ Jt′ ⊗ t1KA2
. Let t2 = t′ ⊗ t1 and observe that

t2 ∈ (t′ ⊗ x)�x t1 = t�x t1. Hence t1 and t2 fulfil the requirements.

Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ. Assume

that (q2, 1) ∈ JtKA. It follows that (q2, 1) ∈ ε-closure((q′′′2 , 1)) for some q′′′2 ∈ Q2

with either:

� (q′′′2 , 1) ∈ fa((q′2, 1), (q′′2 , 0)) for some q′2, q
′′
2 ∈ Q2 with (q′2, 1) ∈ Jt′KA and

(q′2, 0) ∈ Jt′′KA; or

� (q′′′2 , 1) ∈ fa((q′2, 0), (q′′2 , 1)) for some q′2, q
′′
2 ∈ Q2 with (q′2, 0) ∈ Jt′KA and

(q′2, 1) ∈ Jt′′KA.

In the first case, by the inductive hypothesis, there are t1, t
′
2 ∈ ForestΣ,X with

t′2 ∈ t′ �x t1, t1 ∈ L1 and q′2 ∈ Jt′2KA2
. By Lemma 77, q′′2 ∈ Jt′′KA2

. Hence, by
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the definition of fa, it follows that q′′′2 ∈ fa2 (q′2, q
′′
2 ) and so q′′′2 ∈ Jt′2 ⊗ a[t′′]KA2

.

Furthermore, q2 ∈ ε-closure2(q′′′2 ) and so q2 ∈ Jt′2 ⊗ a[t′′]KA2
. Let t2 = t′2 ⊗ a[t′′]

and observe that t2 ∈ (t′ �x t1) ⊗ a[t′′] ⊆ (t′ ⊗ a[t′′]) �x t1 = t �x t1. Thus, t1

and t2 fulfil the requirements.

In the second case, by Lemma 77, q′2 ∈ Jt′KA2
. By the inductive hypothesis,

there are t1, t
′′
2 ∈ ForestΣ,X with t′′2 ∈ t′′ �x t1, t1 ∈ L1 and q′′2 ∈ Jt′′2KA2

. Hence,

by the definition of fa, it follows that q′′′2 ∈ fa2 (q′2, q
′′
2 ) and so q′′′2 ∈ Jt′⊗a[t′′2 ]KA2 .

Furthermore, q2 ∈ ε-closure2(q′′′2 ) and so q2 ∈ Jt′ ⊗ a[t′′2 ]KA2 . Let t2 = t′ ⊗ a[t′′2 ]

and observe that t2 ∈ t′⊗ a[t′′�x t1] ⊆ (t′⊗ a[t′′])�x t1 = t�x t1. Thus, t1 and

t2 fulfil the requirements.

⇐=:

Base case: t = ∅. Since x does not appear in t, there can be no t1, t2 ∈ ForestΣ,X

that fulfil the assumptions, and so the implication holds vacuously.

Inductive case: t = t′ ⊗ y for some t′ ∈ ForestΣ,X and y ∈ X. Assume that

t1, t2 ∈ ForestΣ,X are such that t2 ∈ t�x t1, t1 ∈ L1 and q2 ∈ Jt2KA2 . Either:

� t2 = t′2 ⊗ y for some t′2 ∈ t′ �x t1; or

� t2 = t′ ⊗ t1 and y = x.

In the first case, q2 ∈ (fy2 # ε-closure2)(q′2) for some q′2 ∈ Q2 with q′2 ∈ Jt′2KA2
.

By the inductive hypothesis, (q′2, 1) ∈ Jt′KA. By the definition of A, (q2, 1) ∈
(fy # ε-closure)((q′2, 1)) and so (q2, 1) ∈ Jt′KA as required.

In the second case, q2 ∈ Lt1MA2(q′2) for some q′2 ∈ Q2 with q′2 ∈ Jt′KAA2. By

Lemma 77, (q2, 0) ∈ Jt′KA. By definition (q2, 1) ∈ fx((q′2, 0)) and so (q2, 1) ∈
Jt′ ⊗ xKA = JtKA, as required.

Inductive case: t = t′ ⊗ a[t′′] for some t′, t′′ ∈ ForestΣ,X and a ∈ Σ. Assume

that t1, t2 ∈ ForestΣ,X are such that t2 ∈ t�x t1, t1 ∈ L1 and q2 ∈ Jt2KA2 . Either:

� t2 = t′2 ⊗ a[t′′] for some t′2 ∈ t′ �x t1; or

� t2 = t′ ⊗ a[t′′2 ] for some t′′2 ∈ t′′ �x t1.

In the first case, q2 ∈ ε-closure2(q′′′2 ) for some q′′′2 ∈ Q2 with q′′′2 ∈ fa2 (q′2, q
′′
2 )

for some q′2, q
′′
2 ∈ Q2 with q′2 ∈ Jt′2KA2

and q′′2 ∈ Jt′′KA2
. By the inductive

hypothesis, (q′2, 1) ∈ Jt′KA. By lemma 77, (q′′2 , 0) ∈ Jt′′KA. By the definition ofA,

(q′′′2 , 1) ∈ fa((q′2, 1), (q′′2 , 0)) and so (q′′′2 , 1) ∈ Jt′ ⊗ a[t′′]KA = JtKA. Furthermore,

(q2, 1) ∈ ε-closure((q′′′2 , 1)) and so (q2, 1) ∈ JtKA, as required.

In the second case, q2 ∈ ε-closure2(q′′′2 ) for some q′′′2 ∈ Q2 with q′′′2 ∈
fa2 (q′2, q

′′
2 ) for some q′2, q

′′
2 ∈ Q2 with q′2 ∈ Jt′KA2 and q′′2 ∈ Jt′′2KA2 . By lemma 77,
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(q′2, 0) ∈ Jt′KA. By the inductive hypothesis, (q′′2 , 1) ∈ Jt′′KA. By the defini-

tion of A, (q′′′2 , 1) ∈ fa((q′2, 0), (q′′2 , 1)) and so (q′′′2 , 1) ∈ Jt′ ⊗ a[t′′]KA = JtKA.

Furthermore, (q2, 1) ∈ ε-closure((q′′′2 , 1)) and so (q2, 1) ∈ JtKA, as required.

Proposition 79 (Correctness of −�∃ Construction). The automaton A =

A1 −�∃x A2 accepts the language L1 −�∃x L2.

Proof.

t ∈ L1 −�∃x L2

⇐⇒ there exist t1, t2 ∈ ForestΣ,X s.t. t1 ∈ L1 and

t2 ∈ L2 and t2 ∈ t�x t1

⇐⇒ there exists q2 ∈ A2 s.t.

there exist t1, t2 ∈ ForestΣ,X s.t. t1 ∈ L1 and

t2 ∈ L2 and t2 ∈ t�x t1

(L. 78) ⇐⇒ there exists q2 ∈ A2 s.t. (q2, 1) ∈ JtKA

⇐⇒ JtKA ∩A 6= ∅.

5.3.3 Decidability

I now apply the constructions given above to provide a decision procedure for

quantifier-free formulae of multi-holed context logic for trees (CLm
Tree). In addi-

tion to the previously defined constructions, I assume constructions for various

closure properties of regular forest languages: A∅, which accepts the language

∅; for each t ∈ ForestΣ,X, A{t}, which accepts the language {t}; A, which ac-

cepts the language ForestΣ,X \ L, where L is the language accepted by A; and

A1 ⊗A2, A1 ∩ A2 and A1 ∪ A2, which accept the languages L1 ⊗ L2, L1 ∩ L2

and L1 ∪ L2 respectively, where L1 and L2 are the languages accepted by A1

and A2 respectively.

Definition 5.34 (CLm
Tree Automata). For each quantifier-free formula K ∈ Km

Tree

and environment σ ∈ LEnv with (fvK) ⊆ domσ, the automaton AK,σ is defined
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as follows (where x = σα):

A0,σ = A{∅}
Aa[K],σ = A{a[y]} �y AK,σ

AK1⊗K2,σ = (AK1,σ ⊗AK2,σ) ∩ ACm
Tree

Aα,σ = A{x}
AK1◦αK2,σ = (AK1,σ �x AK2,σ) ∩ ACm

Tree

AK1◦−∃
αK2,σ =

(
AK1,σ �−∃x AK2,σ

)
∩ ACm

Tree

AK1−◦∃αK2,σ =
(
AK1,σ −�∃x AK2,σ

)
∩ ACm

Tree

AFalse,σ = A∅
AK1→K2,σ =

(
AK1,σ ∩ ACm

Tree

)
∪ AK2,σ.

These constructions accept exactly the languages of tree contexts that sat-

isfy the corresponding formulae, and so the problems of model-checking and

satisfiability are decidable.

Theorem 80. Given sort ς ∈ Sort, quantifier-free formula K ∈ Formulaς , envi-

ronment σ ∈ LEnv, and multi-holed tree context c ∈ Cm
Tree with (c, σ) ∈ Worldς ,

it is decidable whether

c, σ |=ς K.

Theorem 81. Given sort ς ∈ Sort, quantifier-free formula K ∈ Formulaς , and

environment σ ∈ LEnv, it is decidable whether there exists a multi-holed tree

context c ∈ Cm
Tree with (c, σ) ∈Worldς such that

c, σ |=ς K.

Corollary 82. Given sort ς ∈ Sort and quantifier-free formula K ∈ Formulaς ,

it is decidable whether there exists a pair of multi-holed tree context c ∈ Cm
Tree

and environment σ ∈ LEnv with (c, σ) ∈Worldς such that

c, σ |=ς K.

5.4 Infinite Alphabets

So far in this chapter, the alphabets Σ and X have been constrained to be finite,

since finite automata necessitate finite alphabets. However, in Chapter 3, the

alphabets were assumed to be infinite. It is possible to extend the decision

procedures given in this chapter to the setting of infinite alphabets with some

minor technical manipulation. The reason that this is possible is that formulae
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and environments only refer to finite subsets of Σ and X, and are indifferent to

all other labels. For instance, a sequence formula that does not mention a or b

cannot distinguish between the sequences a · a, a · b, b · a and b · b — either

all four satisfy the formula or none of them does. Hence, it is sufficient to use

a single label to stand for all of the labels which do not occur in the formula or

environment.

In the following, assume that Σ and X are infinite, and, for any particular

formula and environment under consideration, let Σ̂ and X̂ be the finite subsets

of Σ and X respectively that are referred to.

In order to deal with hole labels that do not occur in X̂, let ?X be some

fresh hole label (with respect to X̂). From the perspective of automaton the

automaton constructions, ?X is treated exactly like any other hole label, with the

exception that it is not restricted to occurring linearly. That is, the automaton

construction for ACm
Seq

(or ACm
Tree

or ACm
Term

) is adapted to enforce linearity on the

holes in X̂ but not on ?X.

If a context satisfies a formula with respect to an environment, then, when

all of the holes in the context that are not labelled from X̂ are relabelled to

?X, then the resulting pseudo-context will be accepted by the corresponding

automaton. Conversely, any pseudo-context that is accepted by the automaton

corresponding to a given formula and environment can be rewritten to a context

by replacing each instance of ?X by a fresh hole label from X \ X̂.

A similar approach applies to dealing with node-labels that do not occur in

Σ̂ — they are rewritten to representations in terms of a finite alphabet. For

sequences and trees, this means simply introducing a new label, ?Σ, fresh with

respect to Σ̂, to which all labels in a given context that do not occur in Σ̂ are

rewritten.

In the case of terms there is an additional conundrum: the ranked alphabet

Υ can contain labels of infinitely many different ranks. Clearly, it would not be

viable to introduce a new label of each of these ranks to the finite automaton

constructions. Instead, labels of arbitrary rank are encoded using just two fresh

ranked labels: ?0
Υ of rank 0, and ?2

Υ of rank 2. A nullary label is encoded as

?0
Υ, a unary label as ?2

Υ((·), ?0
Υ), and a binary label as ?2

Υ((·), (·)). Labels of

higher ranks are encoded by repeated nesting of ?2
Υ. This encoding preserves

the satisfaction of the formula.
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5.5 Quantification

It is not obvious how to construct automata to deal with quantification. Instead,

I invoke the quantifier normalisation results from §4.5 to transform formulae into

normal forms for which model-checking and satisfiability can be reduced easily

to the quantifier-free case. The results in this section apply to each of the

context logic models which are decidable without quantification: in particular,

sequences, terms and trees. Note that the automata-based procedures can easily

by extended to handle the connectives �α (nowhere is there an α hole) and 7− [
(the context is just a hole of some label) that are introduced in the quantifier

normalisation process.

Theorem 83 (Decidability of Model-Checking). Given sort ς ∈ Sort, formula

K ∈ Formulaς , environment σ ∈ LEnv, and multi-holed context c ∈ Cm with

(c, σ) ∈Worldς , it is decidable whether

c, σ |=ς K. (5.3)

Proof. The decision procedure is first to apply Lemma 33 to convert K into the

form Nα1, . . . , αn.K
′ for some quantifier-free K ′. Let x1, . . . , xn ∈ X be distinct

hole labels that are all fresh with respect to σ. Now determine if

c, σ[α1 7→ x1] · · ·[αn 7→ xn] |=ς′ K
′ (5.4)

where ς ′ = c(φ∪{α1, . . . , αn}) and ς = cφ. By the definition of the satisfaction

relation for N, if (5.4) holds then so does (5.3). Conversely, by the universal

characterisation of N(Lemma 4), if (5.3) holds then so does (5.4).

The following lemma is a straightforward consequence of the definition of the

satisfaction relation for Nand the hole substitution property (Property 3.34).

Lemma 84. For a given sort ς = cφ ∈ Sort, formula K ∈ Formulaς , environ-

ment σ ∈ LEnv, and hole variable α ∈ Θ with α /∈ φ = domσ,

there exists c ∈ C s.t. c, σ |=ς Nα.K

⇐⇒ there exists x ∈ X s.t. x ] σ and

there exists c ∈ C s.t. c, σ[α 7→ x] |=c(φ∪{α}) K ∧�α
⇐⇒ for all x ∈ X, x ] σ =⇒

there exists c ∈ C s.t. c, σ[α 7→ x] |=c(φ∪{α}) K ∧�α .

Theorem 85 (Decidability of Satisfiability). Given sort ς ∈ Sort, formula K ∈
Formulaς , and environment σ ∈ LEnv, it is decidable whether there exists a
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multi-holed context c ∈ Cm with (c, σ) ∈Worldς such that

c, σ |=ς K.

Proof. The decision procedure is first to apply Lemma 33 to convert K into the

form Nα1, . . . , αn.K
′ for some quantifier-free K ′. Let x1, . . . , xn ∈ X be distinct

hole labels that are all fresh with respect to σ. Now determine if there exists

c ∈ Cm such that

c, σ[α1 7→ x1] · · ·[αn 7→ xn] |=ς′ K
′

where ς ′ = c(φ ∪ {α1, . . . , αn}) and ς = cφ. By Lemma 84, this is the case if

and only if there exists a c ∈ C such that c, σ, |=ς K.
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Part II

Reasoning about Programs
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Part I focussed on logics for reasoning about and describing static properties

of structured data. In this part, I consider logics for reasoning about programs

that update such structured data. In particular, I look at local reasoning about

such programs, and techniques for showing its validity for implementations of

abstract datastructures.

In Chapter 6, I present the technical machinery for local reasoning about

structured data. Specifically, I introduce a simple procedural programming

language that can be tailored to work with different abstract datastructures by

choosing the set of basic commands that act on the datastructure. I give an

operational semantics for the language, which is parametrised by the semantics

of the basic commands. I then introduce an axiomatic semantics based on local

Hoare reasoning. The semantics uses a context algebra to models the states

of the datastructure. The axiomatic rules include a frame rule which allows

the datastructure to be extended by applying a context which is unchanged by

the program. I show that the axiomatic semantics is sound with respect to the

operational semantics of the language.

In Chapter 7, I look at how the local reasoning about abstract datastructures

introduced in Chapter 6 can be justified with respect to implementations of these

datastructures. I describe two techniques, which I illustrate with examples, and

show their soundness in general.

In Chapter 8, I present an approach for verifying implementations of concur-

rent abstract datastructures: concurrent abstract predicates. In the concurrent

setting, specifications have to take account of interactions between threads and

the environment. Concurrent abstract predicates present specifications in terms

of abstract resources which encompass knowledge about the possible interference

between threads. This allows clients to be verified without directly considering

such interference. In order to justify such abstract specifications, the abstract

resources are interpreted over a low-level model in which arbitrary interference

can be specified. I motivate the approach with examples, and show that it is

sound.
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Chapter 6

Local Reasoning

In this chapter, I define a simple imperative programming language, param-

eterised by its basic commands. The programs are interpreted over different

domains depending on the intended semantics of the basic commands. Each

domain is a context algebra, and the basic commands are interpreted as local

actions. This allows me to define a Hoare logic for the programming language

and prove that it is sound.

I assume a fixed set of program variables Var. Program variables will be

interpreted over the set of values Val, that at least includes the integers. Hence,

I assume a syntax for value expressions that includes basic arithmetic opera-

tors and comparisons, as well as variables and elementary Boolean operators.

However, I leave the actual definition of expression syntax open-ended, so that

it can be extended to allow for other values than simply integers. In practice,

when no additional expression constructions are required I will implicitly work

with the minimal expression definitions meeting the assumptions.

Assumption 6.1 (Expression Syntax). Assume a set of value expressions Expr,

ranged over by E,E1, . . . , such that, for all E1,E2 ∈ Expr,

Z ⊆ Expr

Var ⊆ Expr

E1 + E2 ∈ Expr

E1 - E2 ∈ Expr

E1 * E2 ∈ Expr.

Assume a set of Boolean expressions BExp, ranged over by B,B1, . . . , such
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Local Reasoning 6.1 Semantics

that, for all E1,E2 ∈ Expr and B1,B2 ∈ BExp,

E1 = E2 ∈ BExp

E1 < E2 ∈ BExp

false ∈ BExp

B1 => B2 ∈ BExp.

Remark. It is not necessary for every expression to be meaningful when
evaluated in an arbitrary setting. For example, subtracting a
string-valued variable from an integer may very well be unde-
fined. This is captured by the semantics of expressions being
partial functions.

I also assume a set of basic commands Cmd, ranged over by ϕ. The choice of

these basic commands depends on the domain over which the language is to be

used. For instance, to work with the heap, commands for allocation, mutation,

lookup and disposal of heap cells would be necessary, whereas to work with a

set, commands for inserting or removing elements would be appropriate.

Definition 6.1 (Programming Language Syntax). Given a set of basic com-

mands Cmd, ranged over by ϕ, the language LCmd, ranged over by C,C1, . . . , is

defined as follows:

C ::= ϕ
∣∣ skip

∣∣ x := E
∣∣ C1;C2∣∣ if B then C1 else C2

∣∣ while B do C∣∣ procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C∣∣ call r1, . . . , r i := f(E1, . . . ,Ej)
∣∣ local x in C

where x , r1, . . . ∈ Var range over program variables, −→x i,−→r i ∈ Var∗ range over

vectors of program variables, E,E1, . . . ∈ Expr range over expressions, B ∈ BExp

ranges over Boolean expressions, and f, f1, . . . ∈ PName range over procedure

names. The names f1, . . . , fk of procedures defined in a single procs−in block

are required to be pairwise distinct. The parameter and return variables are

required to be pairwise distinct within each procedure definition.

6.1 Semantics

I assume a set of values, Val, with Z ⊆ Val. These values may be held by

program variables and are the results of evaluating variable expressions (when
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Local Reasoning 6.1 Semantics

defined). At a given point execution of a program, the current valuation of

the accessible program variables is called the variable scope, which is formally

defined below.

Definition 6.2 (Scope). The set of variable scopes Scope, ranged over by

ρ, ρ′, ρ1, . . . , is the set of finite partial functions ρ : Var ⇀fin Val from vari-

able names to values.

Since expressions were defined in an open-ended fashion, their semantics

must also be open-ended.

Assumption 6.2 (Expression Semantics). Assume a semantics of value expres-

sions E J(·)K : Expr→ (Scope⇀ Val), which satisfies the following equations:

E JnK ρ = n

E JxK ρ = ρx

E JE1 + E2K ρ = E JE1K ρ+ E JE2K ρ

E JE1 - E2K ρ = E JE1K ρ− E JE2K ρ

E JE1 * E2K ρ = E JE1K ρ× E JE2K ρ

for all ρ ∈ Scope, n ∈ Z, x ∈ Var, and all E1,E2 ∈ Expr with E JE1K , E JE2K ∈ Z.

Assume a semantics of Boolean expressions B J(·)K : Expr→ (Scope⇀ Bool),

where Bool = {T,F}, which satisfies the following equations:

B JE1 = E2K ρ =


undefined if E JE1K ρ or E JE2K ρ is undefined

T if E JE1K ρ = E JE2K ρ

F otherwise

B JE1 < E2K ρ =


undefined if E JE1K ρ /∈ Z or E JE2K ρ /∈ Z

T if E JE1K ρ <Z E JE2K ρ

F if E JE1K ρ ≥Z E JE2K

B JfalseK ρ = F

B JB1 => B2K ρ =


undefined if B JB1K ρ or B JB2K ρ is undefined

T if B JB1K ρ = T =⇒ B JE2K ρ = T

F otherwise.

6.1.1 Operational Semantics

I now introduce a big-step operational semantics for the programming language.

The semantics will depend on how the basic commands Cmd are to be inter-

preted. In general, the state of the program will consist not only of a variable
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scope but also of some data store that is accessed exclusively through the ba-

sic commands. I therefore assume a set Store of data stores, ranged over by

χ, χ′, χ1, . . . . The actual choice of Store will depend on the semantics to be

given to the basic commands. The set of program states State = Scope× Store

is the set of pairs of variable scopes and data stores. I assume that the basic

commands of the language have a semantic interpretation over program states.

Assumption 6.3 (Semantics of Basic Commands). Assume an semantic inter-

pretation function for basic commands,

C J(·)K : Cmd→ (State⇀ P(State)).

Assume furthermore that, for each ϕ ∈ Cmd, C JϕK preserves the domain of

scopes. That is, for all (ρ, χ), (ρ′, χ′) ∈ State, if (ρ′, χ′) ∈ C JϕK (ρ, χ) then

dom ρ = dom ρ′.

The semantics of a basic command is a partial function. Where C JϕK s is

undefined, the command ϕ faults when run on s. Where C JϕK s is defined, ϕ

nondeterministically results in one of the states in the set C JϕK s or diverges

when run on s. It may be that C JϕK s = ∅, in which case the command must

diverge when run from state s.

In order to define the operational semantics, I must introduce a few ad-

ditional definitions. The first is procedure definition environments, which are

used in the semantics to interpret procedure calls. When a procs− in block is

encountered, the semantics creates a procedure definition environment for the

procedures in that block and adds it to the stack of procedure definitions that

are used to interpret the procedure calls within the block.

Definition 6.3 (Procedure Definition Environment). The set of procedure def-

inition environments, PDef, ranged over by µ, µ′, µ1, . . . , is defined as PDef =

PName⇀fin (Var∗×LCmd×Var∗), the set of finite partial functions from proce-

dure names to triples of a list of input variables, a program and a list of output

variables. Procedure definition stacks, PDef∗, ranged over by γ, γ′, γ1, . . . , are

finite sequences of procedure definition environment. The operation of looking-

up a procedure in a procedure definition stack, lookup : PName × (PDef∗) ⇀

(Var∗ × LCmd × Var∗)× (PDef∗), is defined as follows:

lookup(f, µ · γ) =

(µf, µ · γ) if f ∈ domµ

lookup(f, γ) otherwise.

Procedure definition stacks allow procedures to be re-defined when a proce-

dure with the same name is in the current procedure scope. The semantics uses
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them to implement static (lexical) scoping for procedure calls. For example,

if the procedure body of f calls a procedure named g, the procedure invoked

will always be the most recently defined procedure named g at the point f was

defined. By contrast, dynamic scoping would have f invoke the most recently

defined procedure named g at the point where f was invoked. The lookup op-

eration not only returns the definition of a procedure, but also the procedure

definition stack that should be used in executing the procedure. This procedure

definition stack consists of the procedure definitions that were in scope at the

point when the procedure was defined, as well as the contemporaneous proce-

dure definitions. This last point permits the definition of (mutually) recursive

procedures.

I must also introduce the set of outcomes from executing a program. The

result of a successful execution of a program is always a program state. However,

not every execution is necessarily successful; an execution that, for instance, tries

to assign to a variable that is not in scope is considered to fail. Such executions

are called faulting executions, and the (fresh) symbol  is used to denote their

results. The set of outcomes Outcome = State∪{ } is the set of program states

plus the faulting outcome  .

Remark. Note that not every program necessarily terminates from a given
initial state; programs may also diverge or loop forever. How-
ever, I am chiefly concerned with terminating executions here,
and so non-terminating executions are ignored by the semantics.

I am now able to define a big-step operational semantics for programs, given

by judgements of the form C, γ, ρ, χ o, denoting that, when run in the context

of procedure definition stack γ, variable scope ρ and data store χ, the program

C may result in outcome o.

Definition 6.4 (Operational Semantics). The big-step relation

 : (LCmd × (PDef∗)× Scope× Store)× Outcome

is defined by the rules given in Figures 6.1 and 6.2.

Notation. The notation C, µ, ρ, χ 6 o denotes that there is no derivation of

C, µ, ρ, χ, o.

6.1.2 Context Algebras Revisited

Fundamental to the concept of local reasoning is the view of state as being a

resource. So far, the state space, particularly the space of data stores, has been
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(ρ′, χ′) ∈ C JϕK (ρ, χ)

ϕ, γ, ρ, χ ρ′, χ′ skip, γ, ρ, χ ρ, χ

C1, γ, ρ, χ ρ′, χ′ C2, γ, ρ
′, χ′  ρ′′, χ′′

C1;C2, γ, ρ, χ ρ′′, χ′′

E JEK (ρ[x 7→ v]) = v′

x := E, γ, ρ[x 7→ v], χ ρ[x 7→ v′], χ

B JBK ρ = b ∈ Bool Cb, γ, ρ, χ ρ′, χ′

if B then CT else CF, γ, ρ, χ ρ′, χ′

B JBK ρ = T C; while B do C, γ, ρ, χ ρ′, χ′

while B do C, γ, ρ, χ ρ′, χ′

B JBK ρ = F

while B do C, γ, ρ, χ ρ, χ

C, [f1 7→ (−→x1,C1,
−→r1), . . . , fk 7→ (−→xk,Ck,−→rk)] · γ, ρ, χ ρ′, χ′

procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C, γ, ρ, χ ρ′, χ′

lookup(f, γ) = (((x1, . . . , x j),C, (r1, . . . , r i)), γ
′)

v1 = E JE1K ρ · · · vj = E JEjK ρ
C, γ′, ∅[r1 7→ w1] . . .[r i 7→ wi][x1 7→ v1] . . .[x j 7→ vj ], χ ρ′, χ′

y1, . . . , y i ∈ dom ρ ρ[y1 7→ ρ′r1] . . .[y i 7→ ρ′r i] = ρ′′

call y1, . . . , y i := f(E1, . . . ,Ej), γ, ρ, χ ρ′′, χ′

x /∈ dom ρ x /∈ dom ρ′ C, γ, ρ[x 7→ v], χ ρ′[x 7→ w], χ′

local x in C, γ, ρ, χ ρ′, χ′

C, γ, ρ[x 7→ v], χ ρ′[x 7→ w], χ′

local x in C, γ, ρ[x 7→ u], χ ρ′[x 7→ u], χ′

Figure 6.1: Operational semantics rules for LCmd (non-faulting cases)
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C JϕK (ρ, χ) undefined

ϕ, γ, ρ, χ  
C1, γ, ρ, χ ρ′, χ′ C2, γ, ρ

′, χ′   
C1;C2, γ, ρ, χ  

C1, γ, ρ, χ  
C1;C2, γ, ρ, χ  

E JEK ρ undefined

x := E, γ, ρ, χ  
x /∈ dom ρ

x := E, γ, ρ, χ  

B JBK ρ = b ∈ Bool Cb, γ, ρ, χ  
if B then CT else CF, γ, ρ, χ  

B JBK ρ undefined

if B then CT else CF, γ, ρ, χ  

B JBK ρ = T C; while B do C, γ, ρ, χ  
while B do C, γ, ρ, χ  

B JBK ρ undefined

while B do C, γ, ρ, χ  

C, [f1 7→ (−→x1,C1,
−→r1), . . . , fk 7→ (−→xk,Ck,−→rk)] · γ, ρ, χ  

procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C, γ, ρ, χ  

lookup(f, γ) undefined or lookup(f, γ) /∈ ((Varj × LCmd × Vari)× PDef∗)

call y1, . . . , y i := f(E1, . . . ,Ej), γ, ρ, χ  

1 ≤ k ≤ j E JEkK ρ undefined

call y1, . . . , y i := f(E1, . . . ,Ej), γ, ρ, χ  

lookup(f, γ) = (((x1, . . . , x j),C, (r1, . . . , r i)), γ
′)

v1 = E JE1K ρ · · · vj = E JEjK ρ
C, γ′, ∅[r1 7→ w1] . . .[r i 7→ wi][x1 7→ v1] . . .[x j 7→ vj ], χ  

call y1, . . . , y i := f(E1, . . . ,Ej), γ, ρ, χ  

1 ≤ k ≤ i yk /∈ dom ρ

call y1, . . . , y i := f(E1, . . . ,Ej), γ, ρ, χ  

C, γ, ρ[x 7→ v], χ  
local x in C, γ, ρ, χ  

Figure 6.2: Operational semantics rules for LCmd (faulting cases)
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treated rather opaquely with regard to its structure; to view state as a resource,

the space must be blessed with additional structure. In particular, I will choose

it to be a (compositional) context algebra (Definition 3.24).

Assuming that data stores form a context algebra, program states also form

a context algebra by the following two results, the proofs of which are trivial.

Proposition 86 (Variable Scope Context Algebra). Let AScope = (Scope,Scope,

∗, ∗, {∅}) where ∗ is the union of partial functions with disjoint domains and ∅
is the scope with the empty domain. AScope is a context algebra: the variable

scope context algebra.

Proposition 87 (Direct Product of Context Algebras). Let A1 = (D1,C1, ◦1,
•1, I1) and A2 = (D2,C2, ◦2, •2, I2) be context algebras. Then their direct prod-

uct A1 × A2 = (D1 × D2,C1 × C2, ◦1 × ◦2, •1 × •2, I1 × I2) is also a context

algebra.1

Special Context Algebras

It is occasionally necessary or useful to consider context algebras with additional

properties or structure. I introduce two special forms of context algebra here:

left-cancellative context algebras and context algebras with zero.

Definition 6.5 (Left-Cancellative Context Algebra). A left-cancellative context

algebra A = (D,C, ◦, •, I) is a context algebra with the additional property that,

for all c1, c2, c ∈ C, c1 ◦ c = c2 ◦ c only if c1 = c2.

Left-cancellativitity is a common property for context algebras that represent

structured data. Indeed, every context algebra considered in this thesis is left-

cancellative. I frequently abbreviate “left-cancellative” to simply “cancellative”,

although this terminology is technically inaccurate, since right-cancellativity

does not have a significant role.

Definition 6.6 (Context Algebra with Zero). A context algebra with zero A =

(D,C, ◦, •, I,0) is a context algebra (D,C, ◦, •, I) together with a distinguished

set of abstract data structures 0 ⊆ D such that the relation

{(c, s) | there exists o ∈ 0 s.t. c • o = s} ⊆ C× D

is a total surjective function.

Many of the context algebras considered in this thesis can be viewed as

context algebras with zero: for trees and sequences, take 0 = {∅}; for heaps,

1The product of partial functions is defined pointwise in the natural fashion.
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take 0 = {emp}; for variable stores, take 0 = {∅}; and for A1 ×A2, where A1

and A2 are context algebras with zeros 01 and 02 respectively, take 0 = 01×02.

Terms are a notable exception for which it is not typically possible to define a

zero.

6.1.3 Axiomatic Semantics

I define an axiomatic semantics for LCmd as a program logic based on local Hoare

reasoning. This semantics treats the space of program states as a context alge-

bra AState = (State,CState, ◦, •, I); this is justified by the following assumption,

taking AState = AScope ×AStore.

Assumption 6.4 (Data Store Context Algebra). Assume a context algebra

AStore = (Store,CStore, ◦Store, •Store, IStore), based on the (previously-assumed) set

of data stores, Store.

Hoare logic judgements make assertions about program state. For simplicity,

I use semantic predicates as assertions, rather than using logical formulae; this

reflects the practice of [COY07].

Definition 6.7 (Predicate). The set of state predicates P(State), ranged over

by P,Q,R, P ′, P1, . . . , is simply the set of sets of states. The set of state-context

predicates P(CState), ranged over by K,K ′,K1, . . . , is simply the set sets of state

contexts.

To express predicates, I use standard logical notation for conjunction, dis-

junction, negation and quantification, which are interpreted with the usual se-

mantics (intersection, union, etc.). I also lift operations on states and contexts

to predicates: for instance, x ⇀⇁ 5 denotes the predicate {x ⇀⇁ 5}; ∃v. x ⇀⇁ v

denotes {x ⇀⇁ v | v ∈ Val}; P ∗Q denotes {s1 ∗ s2 | s1 ∈ P and s2 ∈ Q} (when ∗
is a well-defined operation on states); the separating application K • P denotes

{c • s | c ∈ K and s ∈ P}; and so on. I use − as a shorthand for an existentially

quantified variable, as in x 7→ −, which stands for ∃v. x 7→ v. I use ≡ to indi-

cate equality between predicates, ⊆ to indicate that one predicate is contained

within another (the first entails the second), and ∈ to indicate that a state or

context belongs to a predicate.

Hoare logic judgements also make assertions about the procedures that have

been defined. When a procedure is defined, the logic introduces a set of speci-

fications for that procedure, which the procedure must satisfy and are used to

determine the behaviour of calls to that procedure.
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Definition 6.8 (Procedure Specification Environment). A procedure specifica-

tion f : P� Q comprises

� a procedure name f ∈ PName,

� a parametrised precondition P : Valn → P(Store), and

� a parametrised postcondition Q : Valm → P(Store),

for some n,m. The set of procedure specifications is denoted PSpec

A procedure specification environment is a set of procedure specifications.

The metavariables Γ,Γ′, . . . range over the set of procedure specification envi-

ronments PSEnv
def
= P(PSpec).

In a procedure specification, the precondition is parametrised by the argu-

ments with which the procedure is called, while the postcondition is parame-

trised by the return values of the procedure. The number of parameters and

return values of a procedure will have to match the number expected by the

specification when the procedure is defined and when it is called. A procedure

cannot access variables outside its own scope — there are no global variables

— so the pre- and postcondition only refer to the store, and not the variable

scope..

Notation. In proof judgements, Γ,Γ′ stands for the union Γ ∪ Γ′.

In reasoning about conditional control-flow constructs, such as if− then−
else blocks, it is useful to be able to assert that a boolean expression holds

in the program state. This is captured by the predicate-valued semantics of

Boolean expressions.

Definition 6.9 (Predicate-Valued Semantics of Boolean Expressions). The

predicate-valued semantics of Boolean expressions, P J(·)K : BExp → P(State),

is defined in terms of their truth-valued semantics as follows:

P JBK = {(ρ, χ) | B JBK ρ = T} .

It is also useful to be able to assert that the program state allows an expres-

sion to be evaluated without faulting. This is captured by the safety predicates.

Definition 6.10 (Safety Predicates). Given a value expression, E ∈ Expr, the

expression safety predicate for E is defined as follows:

vsafe(E) = {(ρ, χ) | E JEK ρ is defined} .
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Similarly, given a Boolean expression, B ∈ BExp, the expression safety predicate

for B is defined as follows:

bsafe(B) = {(ρ, χ) | B JBK ρ is defined} .

Since the basic commands, Cmd, are a parameter in defining the language,

LCmd, their axiomatic semantics must also be a parameter in defining its seman-

tics. Therefore, I assume axioms for the basic commands.

Assumption 6.5 (Axioms for Basic Commands). Assume a set of axioms for

the basic commands,

Ax J(·)K : Cmd→ P(P(State)× P(State)).

I now define the axiomatic semantics for LCmd as a program logic based on

local Hoare reasoning. The Hoare logic judgements of the proof system have

the form Γ ` {P} C {Q}, where P,Q ∈ P(State) are predicates, C ∈ LCmd is a

program, and Γ is a procedure specification environment. The interpretation of

judgements is that, in the presence of procedures satisfying Γ, when executed

from a state satisfying P , the program C will either diverge or terminate in a

state satisfying Q.

Definition 6.11 (Axiomatic Proof Judgement). The axiomatic proof judge-

ment

(·) ` {(·)} (·) {(·)} : PSEnv × P(State)× LCmd × P(State)

is defined by the rules given in Figure 6.3.

The Axiom rule allows the specifications for the basic commands to be used.

It is the only rule that proves an assertion about a basic command without a

subderivation for that command.

The Frame rule embodies the basic principle of local reasoning: if a pro-

gram updates some state, then that state can be extended uniformly in the pre-

and postconditions with extra context — the frame. In order for this rule to

work, the precondition must incorporate all of the state that is accessed in ex-

ecuting the program, otherwise additional state could be added which changes

the behaviour of the program. Since program variables are treated as resource,

it is not necessary to have a side-condition enforcing the variables mentioned in

the frame and those used in the program to be disjoint: composition of variable

stores already ensures this. (The frame rule may, however, be used to add asser-

tions about variables that have the same name as locally scoped variables within

the program. However, since the scopes are different, the variables themselves

are considered to be different, and there is no problem with this.)
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(P,Q) ∈ Ax JϕK
Γ ` {P} ϕ {Q} Axiom

Γ ` {P} C {Q}
Γ ` {K • P} C {K •Q} Frame

P ⊆ P ′ Γ ` {P ′} C {Q′} Q′ ⊆ Q
Γ ` {P} C {Q} Cons

for all i ∈ I, Γ ` {Pi} C {Qi}
Γ `

{∨
i∈I Pi

}
C
{∨

i∈I Qi
} Disj

Γ ` {P} skip {P} Skip

Γ ` {P} C1 {R} Γ ` {R} C2 {Q}
Γ ` {P} C1;C2 {Q}

Seq

P ⊆ bsafe(B) Γ ` {P ∧ P JBK} C1 {Q} Γ ` {P ∧ ¬P JBK} C2 {Q}
Γ ` {P} if B then C1 else C2 {Q}

If

P ⊆ bsafe(B) Γ ` {P ∧ P JBK} C {P}
Γ ` {P} while B do C {P ∧ ¬P JBK} While

(x ⇀⇁ v ∗ ρ, χ) ∈ vsafe(E) w = E JEK (x ⇀⇁ v

Γ ` {{(x ⇀⇁ v ∗ ρ, χ)}} x := E {{(x ⇀⇁ w ∗ ρ) ∗ ρ, χ)}} Assgn

P ∧ vsafe(x ) ≡ ∅ Γ `
{(x ⇀⇁ −× IStore) • P}

C
{(x ⇀⇁ −× IStore) •Q}

Γ ` {P} local x in C {Q} Local

for all (fi : P� Q) ∈ Γ, Γ′,Γ `
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

for all f : P� Q ∈ Γ, there exists i s.t. f = fi

for all f : P� Q ∈ Γ′, for all i, f 6= fi

Γ′,Γ ` {P} C {Q}
Γ′ ` {P} procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C {Q} PDef

{(−→r ⇀⇁ −→v ∗ ρ)} × Store ⊆ vsafe(
−→
E )

Γ, f : P� Q `

{
{(−→r ⇀⇁ −→v ∗ ρ)} × P

(
E
r−→
E
z

(−→r ⇀⇁ −→v ∗ ρ)
)}

call −→r := f(
−→
E )

{∃−→w . {(−→r ⇀⇁ −→w ∗ ρ)} × Q (−→w )}

PCall

Γ ` {P} C {Q}
Γ,Γ′ ` {P} C {Q} PWk

Figure 6.3: Local Hoare logic rules for LCmd
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The Cons rule is the standard rule of consequence from Hoare logic: the

precondition can always be strengthened to one that is implied by it, and the

postcondition can always be weakened to one that it implies.

The Disj rule is the disjunction rule of Hoare logic: if a set of specifications

hold about a program, then if the program is run in any of the preconditions

then one of the postconditions must hold on termination. The rule also allows

for existential quantification, since the indexing set I is arbitrary.

The Skip rule simply says that skip can do nothing. Like Axiom, this is

the only rule that can prove a property of skip without a subderivation.

The Seq rule is the rule of sequential composition: if the postcondition of

C1 matches the precondition of C2, then running C1;C2 from the precondition

of C1 results in the postcondition of C2.

The If rule deals with an if statement by requiring a precondition from

which the postcondition can be derived for the first branch when the guard holds

and from the second when the guard does not hold. The condition P ⊆ bsafe(B)

ensures that the guard can be evaluated without the program faulting.

The While rule deals with a while statement by proving that P is a loop

invariant. That is, the loop body reestablishes P when started from P in a

situation where the loop condition holds true. If P holds before the loop starts,

then it will also hold on termination, but the loop condition will be false. Again,

evaluating the loop condition must be safe.

The Assgn rule requires that the variable being assigned belongs to the

state (i.e., it is in scope) and that it is safe to evaluate the expression in the

current state. In the postcondition, the variable is updated to the value of the

expression in the variable store, while everything else is left unchanged. Note

that the expression may depend on other variables in the store. The vsafe

condition ensures that the expression can be evaluated without faulting. Note

also that the rule deals with singleton predicates; arbitrary sets are dealt with

by applying the Disj and Frame rules.

For the Local rule, recall that the predicate P specifies a set of pairs con-

sisting of resource from Store and some variable scope. The predicate (x ⇀⇁

−× IStore) • P therefore extends the variable component with variable x of in-

determinate initial value. The variable x must not already be in P (which is

ensured by the sidecondition). If x was already in scope, however, the current

scope could be framed off using the Frame rule before applying the Local

rule. This means that the outer scoped x has no effect on the inner scoped x ,

and its value is unchanged after the inner scope is closed.

The PDef rule uses the procedure specifications Γ to specify a set of proce-
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dures. Each procedure specification for fi gives it a parametrised precondition

P and postcondition Q. For each specification, the corresponding procedure

body must, for each instantiation of the parameters −→x i with arguments −→v , take

a state with store P(−→v ) to one with store Q(−→w ) and return variables −→r i holding

values −→w . The procedure bodies are verified using the procedure specifications

in scope, and their own procedure specifications, making it possible to verify

mutually-recursive procedure definitions. The procedure specification environ-

ment Γ can only specify the procedures that are defined in the procs block under

consideration, and these procedures must have different names to any that occur

in the existing specifications Γ′. In order to deal with procedures that redefine

existing procedures, it is first necessary to ‘forget’ about the original procedures’

specifications. This is achieved with the PWk rule.

The PCall rule handles procedure calls. The arguments are obtained by

evaluating the expressions
−→
E in the scope. The precondition mandated by the

specification must be met initially; afterwards, the postcondition holds for the

values that are returned to the result variables −→r .

6.2 Soundness

I now prove that the axiomatic semantics given above is sound with respect to

the operational semantics given in §6.1.1. To do so, I first define an equivalent

of the proof judgement of the axiomatic semantics in terms of the operational

semantics. Soundness of the proof system will mean that for any provable judge-

ment Γ ` {P} C {Q} the corresponding operational judgement Γ |= {P} C {Q}
holds.

Definition 6.12 (Operational Triples). Let γ ∈ PDef∗, P,Q ∈ P(State), C ∈
LCmd and Γ ∈ PSEnv.

γ |= {P} C {Q} ⇐⇒ for all (ρ, χ) ∈ P, o ∈ Outcome, C, γ, ρ, χ o =⇒
o 6=  and there exist (ρ′, χ′) ∈ Q s.t. o = (ρ′, χ′)

γ |= Γ ⇐⇒ for all (f : P� Q) ∈ Γ,

there exist −→x ,−→r ∈ Var∗,C ∈ LCmd, γ
′ ∈ PDef∗ s.t.

((−→x ,C,−→r ), γ′) = lookup(f, γ) and

γ′ |=
{∃−→v . {−→x ⇀⇁ −→v ∗ −→r ⇀⇁ −} × P(−→v )}

C
{∃−→w . {−→x ⇀⇁ − ∗ −→r ⇀⇁ −→w } × Q(−→w )}

Γ |= {P} C {Q} ⇐⇒ for all γ ∈ PDef∗, γ |= Γ =⇒ γ |= {P} C {Q}

Both the operational and axiomatic semantics assumed semantics for the

basic commands Cmd. In order for the system to be sound, these semantics
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must be compatible. This is embodied in the following two assumptions. The

first essentially expresses that every basic commanding operationally does what

its axioms say it does.

Assumption 6.6 (Axiom Soundness). For all ϕ ∈ Cmd, for all (P,Q) ∈ Ax JϕK
and for all w ∈ P , C JϕK (ρ, χ) is defined and C JϕK (ρ, χ) ⊆ Q.

The second establishes that primitive commands behave locally: they do not

change their behaviour when run with additional state, but leave that additional

state unchanged. This is essential for the frame rule to be sound.

Assumption 6.7 (Primitive Locality). For all ϕ ∈ Cmd, s, s′ ∈ State and

c ∈ CState, if C JϕK (s) is defined then C JϕK (c • s) is also defined and for every

s′ ∈ C JϕK (c • s) there is a s′′ ∈ C JϕK (s) with s′ = c • s′′.

It is also necessary for the semantics of expressions to behave locally.

Assumption 6.8 (Expression Locality). For all value expressions E ∈ Expr,

and all scopes ρ, ρ′ ∈ Scope with E JEK ρ and ρ ∗ ρ′ both defined, E JEK (ρ ∗
ρ′) = E JEK ρ. Similarly, for all Boolean expressions B ∈ BExp, and all scopes

ρ, ρ′ ∈ Scope with B JBK ρ and ρ ∗ ρ′ both defined, B JBK (ρ ∗ ρ′) = B JBK ρ.

The above assumption is simple to establish for the semantics of basic arith-

metic and Boolean expressions. Indeed, typically the only expression construc-

tor that is not indifferent to the variable store is variable lookup.

A key part of the soundness proof is establishing that the frame rule is sound.

This is embodied in the following lemma.

Lemma 88 (Operational Locality). For all C ∈ LCmd, γ ∈ PDef∗, s ∈ State,

c ∈ CState, o ∈ Outcome, if

C, γ, s 6  (6.1)

C, γ, c • s o (6.2)

then o 6=  and o = c • s′ for some s′ with

C, γ, s s′. (6.3)

Proof. The proof is by induction on the structure of the derivation of (6.2).

Where necessary, assume s = (ρ, χ) and c = (cρ, cχ).

C = ϕ ∈ Cmd cases:

If o =  then C JϕK (c•s) is undefined and so C JϕK (s) is also undefined (by Prim-

itive Locality), which contradicts (6.1). Otherwise, Primitive Locality means

that C JϕK s = s′ for some s′ such that C JϕK (c • s) = o = c • s′, and hence (6.3).
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C = skip case:

This case is trivial, since it must be that o = c • s.
C = C1;C2 cases:

The derivation of (6.2) must have a subderivation

C1, γ, c • s o′

for some o′ ∈ Outcome. By (6.1) and the operational semantics,

C1, γ, s 6  

and so by the inductive hypothesis, o′ 6=  and o′ = c • s′′ for some s′′ with

C1, γ, s s′′. (6.4)

The condition that o′ 6=  rules out the derivation for (6.2) in which C1 faults.

The remaining cases for the derivation of (6.2) both have a subderivation of the

form

C2, γ, c • s′′  o.

By (6.1), (6.4) and the operational semantics

C2, γ, s
′′ 6  

and so by the inductive hypothesis, o 6=  and o = c • s′ for some s′ with

C2, γ, s
′′  s′.

Finally, (6.3) holds by the operational semantics.

C = x := E cases:

Suppose that o =  . Thus must mean that either E JEK (cρ ∗ ρ) is undefined

or x /∈ dom(cρ ∗ ρ). In the first case, Expression Locality implies that E JEK ρ
is also undefined, which contradicts (6.1); in the second case, it must be that

x /∈ dom ρ, which also contradicts (6.1). Thus, it cannot be that o =  . The

remaining case requires that x ∈ dom(cρ ∗ ρ) and E JEK (cρ ∗ ρ) = v′ for some

v′ with o = ((cρ ∗ ρ)[x 7→ v′], cχ • χ). By (6.1), x ∈ dom ρ and E JEK ρ = v′ by

Expression Locality. Consequently, o = c•(ρ[x 7→ v′], χ) and, by the operational

semantics,

C, γ, s ρ[x 7→ v′], χ

as required.

C = if B then CT else CF cases:

Suppose that B JBK (cρ ∗ ρ) is undefined. By Expression Locality, B JBK ρ must
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also be undefined, which contradicts (6.1). Hence, B JBK (cρ ∗ ρ) = b for some

b ∈ {T,F}, and the derivation of (6.2) has a subderivation

Cb, γ, c • s o.

By (6.1) and Expression Locality, B JBK ρ = b. Furthermore, (6.1) gives that

Cb, γ, s 6  .

By the inductive hypothesis, it must therefore be that o 6=  and o = c • s′ for

some s′ with

Cb, γ, s s′.

Consequently, (6.3) holds by the operational semantics.

C = while B do C′ cases:

Suppose that B JBK (cρ ∗ ρ) is undefined. By Expression Locality, B JBK ρ must

also be undefined, which contradicts (6.1).

Suppose instead that B JBK (cρ ∗ ρ) = F. The derivation of (6.2) requires

that o = c • s. By (6.1) and Expression Locality, B JBK ρ = F also, and the

operational semantics gives (6.3).

Suppose finally that B JBK (cρ ∗ ρ) = T. The derivation of (6.2) must have

a subderivation

C′;C, γ, c • s o.

By (6.1) and Expression Locality, B JBK ρ = T and furthermore

C′;C, γ, s 6  .

By the inductive hypothesis, it must therefore be that o 6=  and o = c • s′ for

some s′ with

C′;C, γ, s s′.

Consequently, (6.3) holds by the operational semantics.

C = procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C′ cases:

The derivation of (6.2) must have a subderivation

C′, γ′, c • s o

where γ′ = [f1 7→ (−→x1,C1,
−→r1), . . . , fk 7→ (−→xk,Ck,−→rk)] · γ. By (6.1), it must be

that

C′, γ′, s 6  

and so, by the inductive hypothesis, o = c • s′ for some s′ with

C′, γ′, s s′.
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Consequently, (6.3) holds by the operational semantics.

C = call y1, . . . , y i := f(E1, . . . ,Ej) cases:

There are five possible derivations for (6.2). Suppose that o =  on account of

lookup(f, γ); this would mean that the program would also fault on s, violating

(6.1). Suppose that o =  because E JEkK (cρ ∗ ρ) is undefined for some 1 ≤
k ≤ j; Expression Locality would mean that E JEkK ρ would also be undefined,

and so the program would fault on s, again violating (6.1). Suppose that o =  
because yk /∈ dom cρ ∗ ρ for some 1 ≤ k ≤ i; this would mean that y /∈ dom ρ,

again violating (6.1).

The remaining two possible derivations require a subderivation

C′, γ′, ∅[r1 7→ w1] . . .[r i 7→ wi][x1 7→ v1] . . .[x j 7→ vj ], cχ • χ o′

where

lookup(f, γ) = (((x1, . . . , x j),C′, (r1, . . . , r i)), γ
′)

for all 1 ≤ k ≤ j, vk = E JEkK (cρ ∗ ρ).

By (6.1) and Expression locality, it must be that vk = E JEkK ρ, for each 1 ≤
k ≤ j. Also by (6.1), it must be that

C′, γ′, ∅[r1 7→ w1] . . .[r i 7→ wi][x1 7→ v1] . . .[x j 7→ vj ], χ 6  .

Hence, by the inductive hypothesis, o′ 6=  and o′ = (∅, cχ) • (ρ′′, χ′) for some

ρ′′, χ′ with

C, γ′, ∅[r1 7→ w1] . . .[r i 7→ wi][x1 7→ v1] . . .[x j 7→ vj ], χ ρ′′, χ′.

Let ρ′ = ρ[y1 7→ ρ′′r1] . . .[y i 7→ ρ′′r i] and observe that by (6.1) and the opera-

tional semantics,

C, γ, ρ, χ ρ′, χ′.

Moreover,

(cρ ∗ ρ)[y1 7→ ρ′′r1] . . .[y i 7→ ρ′′r i] = cρ ∗ (ρ[y1 7→ ρ′′r1] . . .[y i 7→ ρ′′r i])

= cρ ∗ ρ′.

Hence, by the operational semantics, o = (cρ ∗ ρ′, cχ • χ′) = c • (ρ′, χ′), as

required.

C = local x in C′ cases:

The derivation of (6.2) must have a subderivation

C′, γ, (cρ ∗ ρ)[x 7→ v], cχ • χ o′.
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For some c′ρ with x /∈ dom c′ρ, either cρ = c′ρ or cρ = c′ρ[x 7→ v′] for some v′.

Note that (cρ ∗ ρ)[x 7→ v] = c′ρ ∗ (ρ[x 7→ v]). By (6.1),

C′, γ, ρ[x 7→ v], χ 6  .

Hence, by the inductive hypothesis, o′ 6=  and o′ = (c′ρ, cχ) • (ρ′′, χ′) for some

ρ′′, χ′ with

C′, γ, ρ[x 7→ v], χ ρ′′, χ′.

This rules out the possibility that o =  . The operational semantics rules require

then that x ∈ dom(c′ρ ∗ ρ′′), and so it must be that x ∈ dom ρ′′. Let w = ρ′′x .

Let ρ′ be such that x /∈ dom ρ′ and ρ′′ = ρ′[x 7→ w]. Now

c′ρ ∗ ρ′′ = c′ρ ∗ (ρ′[x 7→ w])

= (c′ρ ∗ ρ′)[x 7→ w]

= (cρ ∗ ρ′)[x 7→ w]

If x /∈ dom(cρ ∗ ρ) then it must be that o = (cρ ∗ ρ′, cχ • χ′) = c • (ρ′, χ′).

By the operational semantics,

C, γ, ρ, χ ρ′, χ′

as required.

Otherwise, either x ∈ dom cρ or x ∈ dom ρ (the two cases being mutually

exclusive). If the former, then it must be that o = ((cρ ∗ ρ′)[x 7→ cρx ], cχ •χ′) =

c•(ρ′, χ′). As before, the operational semantics establishes (6.3) for s′ = (ρ′, χ′).

If the latter, then it must be that o = ((cρ ∗ ρ′)[x 7→ ρx ], cχ • χ′) = c • (ρ′[x 7→
ρx ], χ′). By the operational semantics,

C, γ, ρ, χ ρ′[x 7→ ρx ], χ′

as required.

I now give the general soundness theorem.

Theorem 89 (Soundness).

Γ ` {P} C {Q} =⇒ Γ |= {P} C {Q} .

Proof. The proof is by induction on the structure of the derivation of Γ `
{P} C {Q}. Consider each case for the last rule applied.

Axiom case:

In this case, C = ϕ for some ϕ ∈ Cmd and (P,Q) ∈ Ax JϕK. Suppose that

γ |= Γ, that (ρ, χ) ∈ P and that o ∈ Outcome is such that ϕ, γ, ρ, χ  o. If
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o =  then the operational semantics requires that C JϕK (ρ, χ) is undefined,

which violates the assumption of Axiom Soundness. Thus, o = (ρ′, χ′) for some

(ρ′, χ′) ∈ C JϕK (ρ, χ). Axiom Soundness implies that (ρ′, χ′) ∈ Q, as required.

Frame case:

In this case, P = K • P ′ and Q = K •Q′ for some K,P ′, Q′ with

Γ |= {P ′} C {Q′}

by the inductive hypothesis. Suppose that γ |= Γ and that s ∈ K • P ′. Now it

must be that s = c • s′ for some c ∈ K and s′ ∈ P ′. Furthermore, C, γ, s′ 6  .

Suppose that o is such that C, γ, c• s′  o. By Operational Locality, it must be

that o 6=  and o = c • s′′ for some s′′ with C, γ, s′  s′′. By the assumption, it

must be that s′′ ∈ Q′, and hence o = c • s′′ ∈ K •Q′, as required.

Cons case:

In this case, P ⊆ P ′ and Q′ ⊆ Q′ for some P ′, Q′ with

Γ |= {P ′} C {Q′}

by the inductive hypothesis. Suppose that γ |= Γ and that s ∈ P . It must be

that s ∈ P ′ also, and so for all o with C, γ, s o, o 6=  and o = s′ ∈ Q′. Since

Q′ ⊆ Q, s′ ∈ Q, as required.

Disj case:

In this case, P =
∨
i∈I Pi and Q =

∨
i∈I Qi for some Pi, Qi with

Γ |= {Pi} C {Qi}

for each i ∈ I, by the inductive hypothesis. Suppose that s ∈ P . Then s ∈ Pi
for some i ∈ I. Hence, for all o with C, γ, s o, o 6=  and o = s′ ∈ Qi ⊆ Q, as

required.

If case:

In this case, C = if B then CT else CF for some B ∈ BExp and CT,CF ∈
LCmd, P ⊆ bsafe(B), and, by the inductive hypothesis,

Γ |= {P ∧ P JBK} CT {Q}

Γ |= {P ∧ ¬P JBK} CF {Q} .

4 Suppose that s = (ρ, χ) ∈ P . Since P ⊆ bsafe(B), b = B JBK ρ is defined.

Suppose that C, γ, s o for some γ |= Γ and o. Then the operational semantics

requires that Cb, γ, s  o also. By the semantic triples, o 6=  and o ∈ Q, as

required.

While case:

In this case, C = while B do C′ for some B ∈ BExp and C′ ∈ LCmd, Q =
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P ∧ ¬P JBK, P ⊆ bsafe(B), and, by the inductive hypothesis,

Γ |= {P ∧ P JBK} C′ {P} .

Fix some γ ∈ PDef∗ such that γ |= Γ. I claim that for all s = (ρ, χ) ∈ P and

o ∈ Outcome with C, γ, s  o, it is the case that o 6=  and o ∈ Q. This claim

immediately establishes that the required semantic triple holds. The proof of

the claim is by induction on the structure of the operational semantic derivation.

Since P ⊆ bsafe(B), either B JBK ρ = T or B JBK ρ = F. If the former

then C′;C, γ, s  o, and hence either C′, γ, s   (in which case o =  )

or C′, γ, s  s′ and C, γ, s′  o for some s′. By the assumption that Γ |=
{P ∧ P JBK} C′ {P}, since s ∈ P ∧ P JBK, the faulting case cannot apply and

s′ ∈ P . Applying the inductive hypothesis, we can conclude that o 6=  and

o ∈ Q, as required. If, on the other hand, B JBK ρ = F then it must be that

o = s ∈ (P ∧ ¬P JBK) = Q, as required.

Assgn case:

In this case, C = x := E for some x ∈ Var and E ∈ Expr, P = {(x ⇀⇁ v ∗ ρ, χ)} ⊆
vsafe(E) for some v ∈ Val, ρ ∈ Scope and χ ∈ Store, and

Q = {(x ⇀⇁ E JEK (x ⇀⇁ v ∗ ρ) ∗ ρ, χ)} .

Fix some γ ∈ PDef∗ such that γ |= Γ. If s ∈ P then s = (x ⇀⇁ v ∗ ρ, χ). Let

o ∈ Outcome be such that x := E, γ, x ⇀⇁ v ∗ ρ, χ  o. By the definition of

vsafe, there is some v′ ∈ Val with E JEK (ρ[x 7→ v]) = v′. By the operational

semantics, this means that o 6=  , and o = (ρ[x 7→ v], χ) ∈ Q, as required.

Local case:

In this case, C = local x in C′ for some x ∈ Var and C′ ∈ LCmd, P ∧
vsafe(x ) ≡ ∅, and, by the inductive hypothesis,

Γ |= {(x ⇀⇁ −× IStore) • P} C′ {(x ⇀⇁ −× IStore) •Q} .

Fix some γ ∈ PDef∗ such that γ |= Γ, some (ρ, χ) ∈ P , and o ∈ Outcome with

C, γ, ρ, χ  o. By the definition of vsafe, (ρ[x 7→ v], χ) ∈ (x ⇀⇁ − × IStore) • P
for every v ∈ Val, and x /∈ dom ρ. Therefore o 6=  and o = (ρ′, χ′) for some

ρ′ ∈ Scope, χ′ ∈ Store with x /∈ dom ρ′ and

C′, γ, ρ[x 7→ v], χ ρ′[x 7→ w], χ′

for some w. It must be that (ρ′[x 7→ w], χ′) ∈ (x ⇀⇁ − × IStore) • Q, and so

(ρ′, χ′) ∈ Q, as required.

PDef case:

In this case C = procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C′,
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Γ makes no reference to any fi, and, for some Γ′ that refers only to the fi

procedures,

Γ,Γ′ |= {P} C′ {Q}

for all (fi : P� Q) ∈ Γ′, Γ,Γ′ |=
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

by the inductive hypothesis. Fix some γ ∈ PDef∗ with γ |= Γ, and suppose that

s ∈ P and o ∈ Outcome are such that C, γ, s o. By the operational semantics,

it must be that

C′, [f1 7→ (−→x1,C1,
−→r1), . . . , fk 7→ (−→xk,Ck,−→rk)] · γ, s o.

Now it must be that [f1 7→ (−→x1,C1,
−→r1), . . . , fk 7→ (−→xk,Ck,−→rk)] · γ |= Γ,Γ′, by

the semantic triples for the procedure bodies and the fact that γ |= Γ. Hence,

by the semantic triple for C′, o 6=  and o = s′ ∈ Q, as required.

PCall case:

In this case, for some (f : P � Q) ∈ Γ, C = call −→r := f(
−→
E ), P =

{(−→r ⇀⇁ −→v ∗ ρ′)} × P
(
E
r−→
E
z

(−→r ⇀⇁ −→v ∗ ρ′)
)

and Q = ∃−→w . {(−→r ⇀⇁ −→w ∗ ρ′)} ×

Q (−→w ), with {(−→r ⇀⇁ −→v ∗ ρ)} × Store ⊆ vsafe(
−→
E ). Fix γ ∈ PDef∗ with γ |= Γ,

and suppose that (ρ, χ) ∈ P and o ∈ Outcome are such that C, γ, ρ, χ  o.

It must be that, for some −→x ,−→y ∈ Var∗, C′ ∈ LCmd and γ′ ∈ PDef∗ with

((−→x ,C′,−→y ), γ′) = lookup(f, γ),

γ′ |=
{∃−→u . {−→x ⇀⇁ −→u ∗ −→y ⇀⇁ −} × P(−→u )}

C′
{∃−→w . {−→x ⇀⇁ − ∗ −→y ⇀⇁ −→w } × Q(−→w )}

. (6.5)

Since lookup(f, γ) is defined and has the correct type (enforced by the types of

P and Q) the first faulting case does not apply. By the vsafe condition, it must

be that −→u = E
r−→
E
z

(−→r ⇀⇁ −→v ∗ ρ′) is defined, and so the second faulting case

does not apply either. If the third faulting case applied, then, for some −→w

C′, γ′,−→x ⇀⇁ −→u ∗ −→y ⇀⇁ −→w ,χ  .

Yet, since χ ∈ P(−→u ), this would violate (6.5), and so the third faulting case does

not apply. The fourth and final faulting case is ruled out by the fact that P

stipulates that each return variable in −→r must be in dom ρ. This leaves only the

successful case, which requires that o = ρ′′, χ′ for some ρ′′ ∈ Scope, χ′ ∈ Store

with ρ′′ = ρ[−→r 7→ ρ′−→y ] for some ρ′ with

C′, γ′,−→x ⇀⇁ −→u ∗ −→y ⇀⇁ −→w ,χ ρ′, χ′.

By (6.5), it must be that χ′ ∈ Q (ρ′−→y ) and so (ρ′′, χ′) ∈ Q, as required.
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PWk case:

In this case, Γ = Γ1,Γ2 for some Γ1,Γ2 with Γ1 |= {P} C {Q} by the inductive

hypothesis. Suppose that γ ∈ PDef∗ with γ |= Γ. Then γ |= Γ1 also, and so

γ |= {P} C {Q}, as required.
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Chapter 7

Locality Refinement

In this chapter, I show how local reasoning about an abstract module can be

justified by local reasoning about the module’s implementation. Essentially, this

amounts to showing that the module implementation refines the specification

implicit in the abstract local reasoning. I present two techniques for establishing

this refinement: locality-preserving and locality-breaking translations.

H

L

H + HH + LT

τ3

τ2τ1

Figure 7.1: Module translations

The development is motivated by examples. In particular, I demonstrate a

stepwise refinement of an abstract tree module (T) first to an implementation

that uses the heap (H) and an abstract list module (L) and then, by implement-

ing the list module itself in the heap, to an implementation that is ultimately

based on the heap module. Figure 7.1 illustrates this development.

The translation τ1 from the tree module T to the combined heap-and-list

module H + L considered as the motivating example of a locality-preserving

translation in §7.3, and its soundness is formally established in §7.3.2. The

translation τ3 from the list module L to the heap module H is considered as the

motivating example of a locality-breaking translation in §7.4, and its soundness

is formally established in §7.4.2. The modularity of the translation technique

means that this translation can be lifted to a sound translation from the com-

bined heap-and-list module H + L to the double-heap module H + H which

preserves the heap module. The final step of the development, translation τ2

from the double-heap H + H to the single heap H, is another, albeit simple,
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Locality Refinement 7.1 Abstract Modules

example of a locality-preserving translation, considered in §7.3.3.

Before I embark on tackling this refinement, I formalise the concept of a

module for the purposes of this chapter (§7.1), and then the concept of a sound

module translation (§7.2). I then introduce the two techniques and establish

their soundness in general, illustrating their application with the examples de-

scribed above. In §7.5 I consider a number of technical points arising from the

work.

Collaboration

The work presented in this chapter was undertaken in collaboration with Wheel-

house and Gardner, and published in [DYGW10a]. An extended technical report

[DYGW10b] contains additional proof details. The two techniques developed

from ideas suggested by Uri Zarfaty and Mohammad Raza.

7.1 Abstract Modules

In Chapter 6, I introduced a programming language, LCmd, that was parame-

trised by a set of basic commands, Cmd. For this language, I gave an operational

semantics, , that was parametrised by a state space, Store, and a denotational

semantics for the basic commands, C J(·)K. I also gave an axiomatic semantics,

`, that was parametrised by a context algebra, (Store,CStore, ◦, •, IStore), and

a set of axioms for the basic commands, Ax J(·)K.1 The axiomatic semantics

was shown to be sound with respect to the operational semantics under certain

conditions relating the parameters.

The purpose of parametrising the language in this way was to apply it to

different levels of abstraction. A number of different abstractions are considered

in this chapter, including heaps (the standard model used in separation logic

[IO01, Rey02]), trees (the original motivation for context logic [CGZ05]) and

lists. Many more abstractions are possible, such as the heap-with-free-set model

of Raza and Gardner [RG09], the DOM model of Gardner et al. [GSWZ08] and

the segment logic model of Gardner and Wheelhouse [GW09].2 These levels

1The syntax and semantics of expressions were also parameters, however, I will assume a

fixed choice for these.
2As presented, the last two need some manipulation to fit the context algebra mould

used here. The DOM model comprises different types of contexts and data structures; a

context algebra may be formed from these by taking their (disjoint) unions to give a single

set of contexts and data structures, albeit discriminated by application and composition. The

segment logic model includes a separation-logic-style ∗ and a restriction operator; contexts in

this sense may be defined as a segment to be adjoined by ∗ plus a set of labels to restrict.

230



Locality Refinement 7.1 Abstract Modules

of abstraction are captured by the notion of an abstract module, which consti-

tutes the parameters necessary to determine a programming language and its

axiomatic semantics. (The operational semantics at arbitrary levels of abstrac-

tion is not of interest here, and so the semantics of the basic commands are not

included in the definition of an abstract module.)

Definition 7.1 (Abstract Module). An abstract module

A = (CmdA,AA,Ax J(·)KA)

consists of:

� a set of basic commands, CmdA;

� a context algebra AA = (DA,CA, ◦A, •A, IA); and

� an axiomatisation for the basic commands

Ax J(·)KA : CmdA → P(P(StateA)× P(StateA)),

where StateA = Scope× DA.

Notation. The language determined by the abstract module A is denoted LA

(this is in fact LCmdA). The axiomatic semantic judgement determined by the

abstract module A is denoted `A. When the abstract module A can be inferred

from context, the subscript A may be dropped.

7.1.1 Heap Module

The abstract heap module H def
= (CmdH,AH,Ax J(·)KH) should be familiar to

aficionados of separation logic; its commands consist of heap allocation, disposal,

mutation and lookup. Heaps are modelled as (effectively) finite partial functions

from heap addresses (Addr) to values (Val), as in §3.3.2. The address set is

assumed to be the positive integers, i.e. Addr = Z+, and contained within the

value set, i.e. Addr ⊆ Val. This enables program variables and heap cells to hold

pointers to other heap cells and arithmetic operations to be performed on heap

addresses (pointer arithmetic).

The constant value nil , the null reference, is used in situations where a heap

reference could occur, to indicate the absence of such a reference. It is therefore

necessary that nil /∈ Addr, so that it cannot be confused with a valid heap

reference, and that nil ∈ Val, so that it may be stored in variables, heap cells,

etc.. In particular, I take nil = 0. The set Addrnil
def
= Addr ∪ {nil} consists of

all valid references and the null reference.
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Definition 7.2 (Heap Update Commands). The set of heap update commands

CmdH, ranged over by ϕ, is defined as follows:

ϕ ::= x := alloc(E)
∣∣ dispose(E1,E2)

∣∣ [E1] := E2

∣∣ x := [E]

where x ∈ Var ranges over variables and E,E1,E2 ∈ Expr range over value

expressions.

The intuitive meaning of these commands, which will be realised by their

axiomatic semantics, is as follows:

� x := alloc(E) allocates a contiguous block of cells in the heap of length

E, returning the address of the first cell in x ;

� dispose(E1,E2) deallocates a contiguous block of cells in the heap at

address E1 of length E2;

� [E1] := E2 stores the value E2 in the heap cell at address E1; and

� x := [E] loads the contents of the heap cell at address E1 into x .

Definition 7.3 (Heap Context Algebra). The heap context algebra is AH
def
=

(Heap,Heap, ∗, ∗, {emp}) as given in Definition 3.37.

Definition 7.4 (Heap Axiomatisation). The heap axiomatisation, Ax J(·)KH :

CmdH → P(P(Scope× Heap)× P(Scope× Heap)) is defined as follows:

Ax Jx := alloc(E)KH
def
=


(x ⇀⇁ v ∗ ρ× emp ∧ w ≥ 1) ,(
∃a. x ⇀⇁ a ∗ ρ×
a 7→ − ∗ · · · ∗ (a+ w) 7→ −

) 
∣∣∣∣∣∣∣∣ w = E JEK (x ⇀⇁ v ∗ ρ)


Ax Jdispose(E1,E2)KH

def
={(

(ρ× a 7→ − ∗ · · · ∗ (a+ v) 7→ −) , (ρ× emp)
) ∣∣∣∣∣ a = E JE1K ρ and

v = E JE2K ρ

}

Ax J[E1] := E2KH
def
={(

(ρ× a 7→ −) , (ρ× a 7→ v)
) ∣∣ a = E JE1K ρ and v = E JE2K ρ

}
Ax Jx := [E]KH

def
={(

(x ⇀⇁ v ∗ ρ× a 7→ w) , (x ⇀⇁ w ∗ ρ× a 7→ w)
) ∣∣ a = E JEK ρ

}
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7.1.2 Tree Module

The abstract tree module T def
= (CmdT,AT,Ax J(·)KT) should be familiar to

adherents of context logic; its commands consist of node-relative traversal, node

creation and subtree deletion. The tree model consists of uniquely-labelled trees,

which resemble those considered in §3.1.1 except that each label may only occur

once in any given tree or context. This is so that nodes in a tree are uniquely

addressable by their labels. It is therefore assumed that the set of tree labels,

Σ, is contained with in the value set, Val, i.e. Σ ⊆ Val. It is also assumed

that Addr ⊆ Σ, in order that heap addresses can be used to implement node

addresses.

Definition 7.5 (Tree Update Commands). The set of tree update commands

CmdT, ranged over by ϕ, is defined as follows:

ϕ ::= x := getUp(E)
∣∣ x := getLeft(E)

∣∣ x := getRight(E)∣∣ x := getFirst(E)
∣∣ x := getLast(E)∣∣ newNodeAfter(E)
∣∣ deleteTree(E)

where x ∈ Var ranges over variables and E ∈ Expr ranges over value expressions.

The intuitive meaning of these commands is as follows:

� getUp(E), getLeft(E) and getRight(E) retrieve, respectively, the identi-

fier of the immediate parent, left sibling and right sibling (if any) of the

node identified by E;

� getFirst(E) and getLast(E) retrieve, respectively, the identifiers of the

first and last children (if any) of the node identified by E;

� newNodeAfter(E) creates a new node with some fresh identifier and no

children, which inserted into the tree as the right sibling of the node

identified by E; and

� deleteTree(E) deletes the entire subtree rooted at the node identified by

E.

Definition 7.6 (Uniquely-Labelled Tree Context Algebra). The set of unique-

ly-labelled trees UTree, ranged over by t, t1, . . . , and the set of uniquely-labelled

tree contexts CUTree, ranged over by c, c1, . . . , are defined inductively as follows:

t ::= ∅
∣∣ a[t]

∣∣ t1 ⊗ t2
c ::= −

∣∣ a[c]
∣∣ c⊗ t ∣∣ t⊗ c
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where ⊗ is considered to be associative and to have ∅ as its identity, and each

label a ∈ Σ may occur at most once in any uniquely-labelled tree or context.

Context application • : CUTree×UTree⇀ UTree and composition ◦ : CUTree×
CUTree ⇀ CUTree are defined in terms of substitution as follows:

c • t def
= c[t/−] provided that c[t/−] ∈ UTree

c ◦ c′ def
= c[c′/−] provided that c[c′/−] ∈ CUTree.

The (uniquely-labelled) tree context algebra is AT
def
= (UTree,CUTree, ◦, •,

{−}).

Definition 7.7 (Tree Axiomatisation). The tree axiomatisation, Ax J(·)KT :

CmdT → P(P(Scope× UTree)× P(Scope× UTree)) is defined as follows:

Ax Jx := getUp(E)KT
def
={(

(x ⇀⇁ v ∗ ρ× a[t1 ⊗ b[t2]⊗ t3]) ,

(x ⇀⇁ a ∗ ρ× a[t1 ⊗ b[t2]⊗ t3])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b

}

Ax Jx := getLeft(E)KT
def
={(

(x ⇀⇁ v ∗ ρ× a[t1]⊗ b[t2]) ,

(x ⇀⇁ a ∗ ρ× a[t1]⊗ b[t2])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b

}
∪{(

(x ⇀⇁ v ∗ ρ× a[b[t1]⊗ t2]) ,

(x ⇀⇁ nil ∗ ρ× a[b[t1]⊗ t2])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b

}

Ax Jx := getRight(E)KT
def
={(

(x ⇀⇁ v ∗ ρ× b[t1]⊗ a[t2]) ,

(x ⇀⇁ a ∗ ρ× b[t1]⊗ a[t2])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b

}
∪{(

(x ⇀⇁ v ∗ ρ× a[t1 ⊗ b[t2]]) ,

(x ⇀⇁ nil ∗ ρ× a[t1 ⊗ b[t2]])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b

}

Ax Jx := getFirst(E)KT
def
={(

(x ⇀⇁ v ∗ ρ× a[b[t1]⊗ t2]) ,

(x ⇀⇁ b ∗ ρ× a[b[t1]⊗ t2])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}
∪{(

(x ⇀⇁ v ∗ ρ× a[0]) ,

(x ⇀⇁ nil ∗ ρ× a[0])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}
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Ax Jx := getLast(E)KT
def
={(

(x ⇀⇁ v ∗ ρ× a[t1 ⊗ b[t2]]) ,

(x ⇀⇁ b ∗ ρ× a[t1 ⊗ b[t2]])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}
∪{(

(x ⇀⇁ v ∗ ρ× a[0]) ,

(x ⇀⇁ nil ∗ ρ× a[0])

) ∣∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}

Ax JnewNodeAfter(E)KT
def
={(

(ρ× a[t]) , (∃b. ρ× (a[t]⊗ b[0]))
) ∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}
Ax JdeleteTree(E)KT

def
=
{(

(ρ× a[t]) , (ρ× 0)
) ∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}
7.1.3 List Module

This list module L def
= (CmdL,AL,Ax J(·)KL) is an example of a somewhat more

exotic abstract module. The module provides an addressable set of lists of

unique elements, called a list store. Each list can be manipulated independently

in a number of ways, new lists can be constructed and existing lists can be

deleted.

Definition 7.8 (List Update Commands). The set of list commands CmdL,

ranged over by ϕ, is defined as follows:

ϕ ::= x := E.getHead()
∣∣ x := E.getTail()∣∣ x := E1.getNext(E2)
∣∣ x := E1.getPrev(E2)∣∣ x := E.pop()

∣∣ E1.push(E2)∣∣ E1.remove(E2)
∣∣ E1.insert(E2,E3)∣∣ x := newList()
∣∣ deleteList(E)

where x ∈ Var ranges over variables and E,E1, . . . ∈ Expr range over value

expressions.

The intuitive meaning of these commands is as follows:

� E.getHead() and E.getTail() retrieve, respectively, the first and last ele-

ments (if any) of the list identified by E;

� E1.getNext(E2) and E1.getPrev(E2) retrieve, respectively, the elements

(if any) following and preceding the element E2 in the list identified by E1

(if E2 is not in the list, the behaviour of these commands is undefined);
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� E.pop() retrieves and removes the first element of the list identified by E

(if the list is empty, the behaviour is undefined);

� E1.push(E2) adds the element E2 to the start of the list identified by E1;

� E1.remove(E2) removes the element E2 from the list identified by E1 (if

E2 is not in the list, the behaviour is undefined);

� E1.insert(E2,E3) inserts the element E3 immediately following E2 in the

list identified by E1 (if E2 is not in the list, the behaviour is undefined);

� newList() creates a new list, initially empty, and returns its address; and

� deleteList(E) deletes the list identified by E.

We require that elements occur at most once in any given list. Thus getNext,

getPrevious and insert are unambiguous and the behaviour of push and

insert is undefined if they are used to insert elements that are already present

in the list.

In order to axiomatise the list module in a way that provides highly local

reasoning, I introduce the list store context algebra. List stores are a more

complicated example of a context algebra than we have previously seen. They

are similar to heaps in the sense that they are finite maps from addresses to

values, except that now the values have intrinsic structure: they are lists of

unique elements.

Each list in the store is a finite sequence of values, each of which occurs only

once in the list. As with sequences, lists may be extended by applying contexts,

as, for instance, v1 · − · v2 • w1 · w2 = v1 · w1 · w2 · v2. However, lists may

also be completed, which means they cannot be extended by applying a context.

Completed lists are indicated by square brackets, and the result of applying a

context is undefined. For example, v1 · − · v2 • [w1 · w2] is undefined.

It is necessary to deal with complete lists in order to specify a number of

the update and lookup commands on lists. For example, getFirst returns the

first item in a list; given the partial list v1 · v2, it is not clear that v1 is the first

element of the list — indeed, in the context w · − it is certainly not the first

element — however, given the completed list [v1 · v2] it is completely certain

that v1 is the first element.
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Remark. It is quite possible to define list stores to allow the list to be
open at one end but not the other. For example, [v1 would allow
additional list elements to be added by context application to
the right of v1, but not to the left. I have chosen not to take
this approach in order to avoid further complicating an already-
complex definition.

Definition 7.9 (List Stores and Contexts). The set of lists Lst, ranged over by

l , l1, . . . , the set of list contexts CLst, ranged over by lc, lc1, . . . , the set of list

stores LStore, ranged over by ls, ls1, . . . , and the set of list store contexts CLStore,

ranged over by lsc, lsc1, . . . are defined inductively as follows:

l ::= ∅
∣∣ v ∣∣ l1 · l2 ls ::= emp

∣∣ a Z⇒ l
∣∣ a Z⇒ [l ]

∣∣ ls1 ∗ ls2

lc ::= −
∣∣ lc · l

∣∣ l · lc lsc ::= ls
∣∣ a Z⇒ lc

∣∣ a Z⇒ [lc]
∣∣ lsc1 ∗ lsc2.

where values v ∈ Val are taken to occur uniquely in each list or list context,

addresses a ∈ Addr are taken to occur uniquely in each list store or list store con-

text, · is taken to be associative with identity ∅, and ∗ is taken to be associative

and commutative with identity emp.

Since list stores are structured like heaps we need a notion of context ap-

plication that will allow list stores to be split in the same fashion as heaps, for

instance

(a1 Z⇒ v1 · v2 · v3) ∗ (a2 Z⇒ w1 · v1) = (a1 Z⇒ v1 · v2 · v3) • (a2 Z⇒ w1 · v1).

List stores also allow splitting within the lists themselves, so, for example

a1 Z⇒ v1 · v2 · v3 = (a1 Z⇒ v1 · − · v3) • (a1 Z⇒ v2).

Since such applications can be nested, the associativity requirements on context

algebras mean that it must be possible to split within multiple lists at the same

time, as in

a1 Z⇒ v1 · v2 · v3 ∗ a2 Z⇒ w1 · v1

= a1 Z⇒ v1 · − · v3 • (a1 Z⇒ v2 ∗ a2 Z⇒ w1 · v1)

= a1 Z⇒ v1 · − · v3 • (a2 Z⇒ − · v1 • (a1 Z⇒ v2 ∗ a2 Z⇒ w1))

= (a1 Z⇒ v1 · − · v3 ◦ a2 Z⇒ − · v1) • (a1 Z⇒ v2 ∗ a2 Z⇒ w1)

= (a1 Z⇒ v1 · − · v3 ∗ a2 Z⇒ − · v1) • (a1 Z⇒ v2 ∗ a2 Z⇒ w1).

(In a sense, the context a1 Z⇒ v1 · − · v3 ∗ a2 Z⇒ − · v1 above can be seen as a

multi-holed context — after all, it certainly has multiple holes! Yet in applying
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it to a list store, both of the holes must be filled up at the same time. We may

see this as the context having multiple ‘list holes’ but a single ‘list store hole’.)

Completed lists cannot be extended by application, but they can be split,

as in

a2 Z⇒ [w1 · w2] = a2 Z⇒ [w1 · −] • a2 Z⇒ w.

All of these properties are embodied in the definition of the application and

composition operators.

Definition 7.10 (Application and Composition). The application of list store

contexts to list stores • : CLStore × LStore⇀ LStore is defined inductively by:

emp • ls
def
= ls

(lsc ∗ a Z⇒ l) • ls
def
= (lsc • ls) ∗ a Z⇒ l

(lsc ∗ a Z⇒ [l ]) • ls
def
= (lsc • ls) ∗ a Z⇒ [l ]

(lsc ∗ a Z⇒ lc) • (ls ∗ a Z⇒ l)
def
= (lsc • ls) ∗ a Z⇒ lc[l/−]

(lsc ∗ a Z⇒ [lc]) • (ls ∗ a Z⇒ l)
def
= (lsc • ls) ∗ a Z⇒ [lc[l/−]]

where lc[l/−] denotes the substitution of l for the context hole in lc. The result

of the application is undefined when either the right-hand side is badly formed

or no case applies.

The composition of list store contexts ◦ : CLStore×CLStore ⇀ CLStore is defined

inductively by:

emp ◦ lsc′
def
= lsc′

(lsc ∗ a Z⇒ l) ◦ lsc′
def
= (lsc ◦ lsc′) ∗ a Z⇒ l

(lsc ∗ a Z⇒ [l ]) ◦ lsc′
def
= (lsc ◦ lsc′) ∗ a Z⇒ [l ]

(lsc ∗ a Z⇒ lc) ◦ lsc′
def
=


(lsc ◦ lsc′) ∗ a Z⇒ lc if a /∈ dom(lsc′)

(lsc ◦ lsc′′) ∗ a Z⇒ lc[l/−] if lsc′ = lsc′′ ∗ a Z⇒ l

(lsc ◦ lsc′′) ∗ a Z⇒ lc[lc′/−] if lsc′ = lsc′′ ∗ a Z⇒ lc′

(lsc ∗ a Z⇒ [lc]) ◦ lsc′
def
=


(lsc ◦ lsc′) ∗ a Z⇒ [lc] if a /∈ dom(lsc′)

(lsc ◦ lsc′′) ∗ a Z⇒ [lc[l/−]] if lsc′ = lsc′′ ∗ a Z⇒ l

(lsc ◦ lsc′′) ∗ a Z⇒
[
lc[lc′/−]

]
if lsc′ = lsc′′ ∗ a Z⇒ lc′.

Again, the result of the composition is undefined when either the right-hand

side is badly formed or no case applies.

Definition 7.11 (List Context Algebra). The list-store context algebra

AL
def
= (LStore,CLStore, ◦, •, {emp})

is given by the above definitions.
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Definition 7.12 (List Axiomatisation). The list axiomatisation,

Ax J(·)KL : CmdL → P(P(Scope× LStore)× P(Scope× LStore)),

is defined as follows:

Ax Jx := E.getHead()KL
def
={(

(x ⇀⇁ v ∗ ρ× a Z⇒ [w · l ]) ,
(x ⇀⇁ w ∗ ρ× a Z⇒ [w · l ])

) ∣∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [∅]) ,

(x ⇀⇁ nil ∗ ρ× a Z⇒ [∅])

) ∣∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)

}

Ax Jx := E.getTail()KL
def
={(

(x ⇀⇁ v ∗ ρ× a Z⇒ [l · w]) ,

(x ⇀⇁ w ∗ ρ× a Z⇒ [l · w])

) ∣∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [∅]) ,

(x ⇀⇁ nil ∗ ρ× a Z⇒ [∅])

) ∣∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)

}

Ax Jx := E1.getNext(E2)KL
def
={(

(x ⇀⇁ v ∗ ρ× a Z⇒ w · u) ,

(x ⇀⇁ u ∗ ρ× a Z⇒ w · u)

) ∣∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and

w = E JE2K (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [l · w]) ,

(x ⇀⇁ nil ∗ ρ× a Z⇒ [l · w])

) ∣∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and

w = E JE2K (x ⇀⇁ v ∗ ρ)

}

Ax Jx := E1.getPrev(E2)KL
def
={(

(x ⇀⇁ v ∗ ρ× a Z⇒ u · w) ,

(x ⇀⇁ u ∗ ρ× a Z⇒ u · w)

) ∣∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and

w = E JE2K (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [w · l ]) ,
(x ⇀⇁ nil ∗ ρ× a Z⇒ [w · l ])

) ∣∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and

w = E JE2K (x ⇀⇁ v ∗ ρ)

}

Ax Jx := E.pop()KL
def
={(
(x ⇀⇁ v ∗ ρ× a Z⇒ [w · l ]) ,
(x ⇀⇁ w ∗ ρ× a Z⇒ [l ])

) ∣∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)

}

Ax JE1.push(E2)KL
def
={(

(ρ× a Z⇒ [l ] ∧ v /∈ l) , (ρ× a Z⇒ [v · l ])
) ∣∣∣∣∣ a = E JE1K ρ and

v = E JE2K ρ

}
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Ax JE1.remove(E2)KL
def
={(

(ρ× a Z⇒ v) , (ρ× a Z⇒ ∅)
) ∣∣ a = E JE1K ρ and v = E JE2K ρ

}

Ax JE1.insert(E2,E3)KL
def
=

(
(ρ× a Z⇒ [l1 · v · l2] ∧ v /∈ l1 · v · l2) ,

(ρ× a Z⇒ [l1 · v · w · l2])

) ∣∣∣∣∣∣∣∣
a = E JE1K ρ and

v = E JE2K ρ and

w = E JE3K ρ


Ax Jx := newList()KL

def
=
{(

(x ⇀⇁ −× emp) , (∃a. x ⇀⇁ a× a Z⇒ [∅])
)}

Ax JdeleteList(E)KL
def
=
{(

(ρ× a Z⇒ [l ]) , (ρ× emp)
) ∣∣ a = E JEK ρ

}
7.1.4 Combining Abstract Modules

It is typical for programs to make use of multiple modules. Therefore, it is

important to have a mechanism for combining modules. The most intuitive

approach to combining two abstract modules is to allow arbitrary interleav-

ings of their commands, whilst interpreting the commands over the product of

their data-store context algebras. Information is thus shared between modules

through the common variable store.

Definition 7.13 (Abstract Module Combination). Given abstract modules

A1 = (CmdA1
,AA1

,Ax J(·)KA1
) and A2 = (CmdA2

,AA2
,Ax J(·)KA2

), their combi-

nation

A1 + A2
def
= (CmdA1 ⊕ CmdA2 ,AA1 ×AA2 ,Ax J(·)KA1+A2

)

is an abstract module, where

� CmdA1
⊕ CmdA2

def
= (CmdA1

× {1}) ∪ (CmdA2
× {2}) is the discriminated

union of the command sets,

� AA1 ×AA2 is the direct product of the context algebras (Proposition 87),

and

� Ax J(·)KA1+A2
: CmdA1

⊕ CmdA2
→ P(P(Scope×DA1

×DA2
)×P(Scope×

DA1
× DA2

)) is defined as

Ax J(ϕ, 1)KA1+A2

def
=

{
(π1(P, χ2), π1(Q,χ2))

∣∣∣∣∣ (P,Q) ∈ Ax JϕKA1

and χ2 ∈ DA2

}

Ax J(ϕ, 2)KA1+A2

def
=

{
(π2(P, χ1), π2(Q,χ1))

∣∣∣∣∣ (P,Q) ∈ Ax JϕKA2

and χ1 ∈ DA1

}
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where

π1(P, χ2)
def
= {(ρ, χ1, χ2) | (ρ, χ1) ∈ P}

π2(P, χ1)
def
= {(ρ, χ1, χ2) | (ρ, χ2) ∈ P} .

Notation. When the command sets CmdA1 and CmdA2 are disjoint, I will drop

the tags when referring to the commands in the combined abstract module.

When the tags are necessary, I will indicate them with an appropriately placed

subscript.

Remark. When the abstract modules have context algebras with zeros,
the axiom sets can be simplified by taking the unchanged com-
ponent from the zero of the relevant context algebra. All other
cases can be achieved by frame. This direction was taken
in [DYGW10a].

7.2 Module Translations

I now define what it means to correctly implement one module in terms of

another, using module translations.

Definition 7.14 (Module Translation). A module translation τ : A→ B from

abstract module A to abstract module B comprises:

� an abstraction relation ατ ⊆ DB × DA, and

� a substitutive implementation function J(·)Kτ : LA → LB which uniformly

substitutes each basic command of CmdA with a call to a procedure written

in LB.

Notation. The abstraction relation ατ is lifted to a predicate translation J(·)Kτ :

P(StateA)→ P(StateB) as follows:

JP K def
= {(ρ, χB) | there exists χA s.t. (ρ, χA) ∈ P and χB ατ χA} .

When the translation τ is implicit from context, the subscripts on the ab-

straction relation, implementation function and predicate translation may be

dropped.

In the context of a translation τ : A→ B, A is called the abstract or high-level

module and B is called the concrete or low-level module. (Of course, there is

no reason why a module should not be abstract with respect to one translation
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and concrete with respect to another, or even both the abstract and concrete

module with respect to a single translation.)

Definition 7.15 (Sound Module Translation). A module translation τ : A→ B
is said to be sound, if for all P,Q ∈ P(StateA) and C ∈ LA,

`A {P} C {Q} =⇒ `B {JP Kτ} JCKτ {JQKτ} .

Intuitively, a sound module translation appears to be a reasonable correct-

ness condition for a module implementation: everything that can be proved

about the abstract module also holds for its implementation. There are, how-

ever, a few caveats.

Firstly, since I have elected to work with partial correctness Hoare triples,

it is acceptable for an implementation to simply loop forever. If termination

guarantees are required, they could either be made separately or a logic based

on total correctness could be used. I have chosen to work with partial correctness

for simplicity and on the basis that partial correctness is generally used in the

separation logic and context logic literature [IO01, Rey02, CGZ05].

Secondly, it is possible for the abstraction relation to lose information. For

instance, if all predicates were unsatisfiable under translation then it would be

possible to soundly implement every abstract command with skip; such an

implementation is useless.

One way of mitigating this would be to consider a set of initial predicates

that must be satisfiable under translation. A triple whose precondition is such

an initial predicate is then meaningful under translation, since it does not hold

vacuously.

A more stringent approach would be to require the abstraction relation to

be surjective, and therefore every satisfiable predicate to be satisfiable under

translation. This condition is, however, not met by one of the implementations

considered here.

In this chapter, I present two techniques for constructing sound module

translations. Locality-preserving translations, discussed in §7.3, closely preserve

the structure of the abstract module’s context algebra through the translation,

which leads to an elegant inductive proof transformation from the abstract to

the concrete. In particular, application at the abstract level corresponds to

application at the concrete level, and so the abstract frame rule is transformed

to the concrete frame rule.

Locality-breaking translations, discussed in §7.4, on the other hand do not

necessarily preserve the structure of the abstract module’s context algebra. Even
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so, certain properties of the proof theory can be used to simplify the problem

of establishing the soundness of such a translation.

7.2.1 Modularity

An important property of module translations is that they are composable:

given translations τ1 : A1 → A2 and τ2 : A2 → A3, the translation τ2 ◦ τ1 : A1 →
A3 can be defined in the natural fashion. If its constituent translations are

sound then so is the composition. Therefore, it is possible to construct module

translations stepwise.

A translation τ : A1 → A2 can be naturally lifted to a translation τ + B :

A1 + B→ A2 + B, for any module B. If τ is a sound translation, we might also

expect τ + B to be sound. However, it is not obvious that this is the case in

general. The techniques for constructing sound translations in this chapter do,

however, admit such a lifting. This is because they transform high-level proofs to

low-level proofs in a fashion that can preserve any additional module component.

Thus, these techniques are modular, since translations for independent modules

may be effectively combined.

7.3 Locality-Preserving Translations

Sometimes, there is a close correspondence between the locality exhibited by a

high-level module and the locality of the low-level module on top of which it

is implemented. In this section, I expand on this intuition and formalise the

concept of a locality-preserving translation. In §7.3.1, I establish that locality-

preserving translations give sound module translations, and in §7.3.2 and §7.3.3

I give locality-preserving translations τ1 : T→ H + L and τ2 : H + H→ H.

(a) (b) (c)

Figure 7.2: An abstract tree from T (a), and representations of the tree in H
(b), and in H + L (c).

So what exactly does it mean for there to be a correspondence between
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locality at the high level and locality at the low level? Consider Figure 7.2,

which depicts a typical tree from the tree module T (a), together with possible

representations of that tree in the heap module H (b), and in the combined

heap-and-list module H + L (c).

In (b), each tree node is represented by a memory block comprising four

pointer fields (depicted by a circle with outgoing arrows) which record the ad-

dresses of the memory blocks representing the left sibling, parent, right sibling

and first child. Where there is no such node (for example, when a node has no

children) the pointer field holds the nil value (depicted by the absence of an

arrow).

In (c), each tree node is represented by a list of pointers to the node’s children

(depicted by a box with dots for each value in the list) and a memory block that

comprises a pointer to the node’s parent and a pointer to the list of children.

Already, we can get some impression of why these representations can be

used to preserve locality between the levels of abstraction, since any portion of

the abstract tree can be identified with a portion of the tree’s low-level repre-

sentation that represents it. In and of itself, this is not enough for locality to

be preserved, since locality pertains to the footprints of the module operations

— that is, the resource involved in performing the operation. Thus, it is nec-

essary to consider whether the implementations of commands only operate on

the representation of the footprint of the abstract command they implement.

As an example, consider the implementation of n := getUp(m ) using a heap

representation like the one described above. The most intuitive implementation

would be simply to look up the node’s parent pointer and return the result:

n := [m .parent].3 The abstract footprint of getUp includes the entire tree at

the parent node; the concrete footprint simply consists of the heap cell at address

m .parent. Since the concrete footprint is contained within the representation

of the abstract footprint, it is reasonable to say that locality is preserved by the

implementation.

For contrast, consider an implementation of n := getUp(m ) that, rather than

simply looking up the parent pointer, traverses the entire tree from the root,

searching for a node that has m as its child. The footprint of this implementation

is clearly not in general contained within the representation of the abstract

footprint, and locality is not preserved by such an implementation.

To formalise the intuition behind a locality-preserving implementation, it

3The syntax m .parent is a notational convenience. Assuming that the parent pointer is

held in the second cell of memory block representing the node, this simply corresponds to

m + 1.
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is necessary to relate abstract data structures and contexts to their concrete

representations. The representation of abstract data structure χ is given by

the concrete predicate 〈〈χ〉〉, and the representation of abstract context c is

given by the concrete predicate 〈〈c〉〉. Applying a frame at the abstract level

should correspond to applying the representation of that frame at the concrete

level. To ensure that this is possible, context application should be preserved

by representation, i.e. 〈〈c • χ〉〉 ≡ 〈〈c〉〉 • 〈〈χ〉〉. This principle consists in the

application preservation property.

Consider once more Figure 7.2. The dashed line in (a) depicts a splitting

of the abstract tree into a context and a subtree; the dashed lines in (b) and

(c) depict corresponding splittings of the representation of the tree. A key

issue arises in establishing that application is preserved by these representations:

while an abstract tree is agnostic to the context in which it resides, and an

abstract context is agnostic to the tree that fills its context hole (and, indeed, the

outer context in which it resides), the same is not true of their representations.

In particular, in (b) the indicated subtree “knows” that there is no subtree

directly to its left, the address of its parent node and the address of the first node

to its right; similarly, the indicated subtree “knows” the address of the subtree’s

left-most and right-most nodes at its root level. If the subtree representation

were to be put in the representation of a different context without updating

this “knowledge” then the pointers would not join up correctly and application

preservation would be violated.

This “knowledge” that context and subdata representations have about each

other is called the interface. The representations must be parametrised by

interfaces to ensure that context and data representations correctly mesh. Thus,

application preservation is expressed as 〈〈c•χ〉〉I ≡ ∃I ′. 〈〈c〉〉II′ •〈〈χ〉〉I
′
. Note that

a context representation actually has two interfaces: one between it and the

subdata in its hole and one between it and its own surrounding context.

The interface is divided into two parts: the knowledge that a context repre-

sentation needs about the data to be put in its hole is called the in-interface,

while the knowledge that a data representation needs about its surrounding

context is called the out-interface. In Figure 7.2 (b), the in-interface consists of

the addresses of the left- and right-most nodes at the top level of the subtree,

while the out-interface consists of the addresses of the nodes immediately left,

above and to the right of the context hole. In Figure 7.2 (c), the in-interface

consists of the addresses of all of the nodes at the top level of the subtree,

while the out-interface consists of the address of the parent node of the context

hole. Typically, as in these examples, the interfaces are a collection of pointers,
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which are identified in the diagrams by the arrows that cross the dividing line

between context and subdata — the direction of the arrow determining whether

it belongs to the in- or out-interface.

Having established an application-preserving representation, a high-level

proof can be transformed to a low-level proof by simply replacing the high-level

predicates with their low-level representations, provided that we can prove that

the axioms hold under representation for the implementations of the module

commands. In many cases, such as the simple getUp implementation described

above, this is not difficult to achieve. However, in certain cases it transpires

that the low-level footprint is a little bit larger than the representation of the

high-level footprint.

Consider, for example, the operation of disposing the subtree indicated in

Figure 7.2. At the high level, it is clear that the footprint comprises only the

subtree that is to be deleted. In both implementations, something more than

the representation of this is required: for the heap implementation, the pointers

from the context into the deleted subtree must be updated; for the heap-and-list

implementation, the pointers to the subtree’s top-level nodes must be removed

from their parent’s child list.

How should we deal with the spanner that such commands throw into the

works? One solution is simply to decide that the representation chosen was

unsuitable and look for a better one. This approach is justified by the principle

that the representation of a command’s footprint should include the footprint of

the command’s implementation. But if we are willing to sacrifice this principle

are we able to repair our existing approach?

In fact we can, by introducing the concept of crust — a predicate that cor-

responds to the minimal extra footprint, taken from the surrounding context,

required by the command implementations. In Figure 7.2, the crust for the

indicated subtree is depicted by the shaded portions of the representation. For

the heap implementation, this is the nodes (in the example, the parent and right

sibling) that have pointers into the subtree; for the heap-and-list implementa-

tion, this is the parent node, its child list and its other children.4 In general,

the crust is represented by the predicate eFI , parametrised by interface I and

some additional parameter F that together fully determine it.

When a high-level proof is to be transformed to a low-level proof, the high-

level predicates are replaced with their low-level representations plus the corre-

4It is probably not clear why the children of the parent node are part of the crust. The

reason is that the implementation of newNodeAfter inserts a new node in the parent’s child

list, which must therefore be unique in the list — knowing that the other values in the list

are addresses of disjoint portions of the heap from the new node is used to establish this.
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sponding crust. However, the proof transformation now faces the problem that

a high-level frame cannot simply be replaced with its representation plus the

outer crust — the frame would duplicate parts of the data that had previously

been included in the crust. This inner crust therefore has to be removed from

the frame before it is applied.

For example, consider once again disposing the subtree indicated in Fig-

ure 7.2. In the heap implementation, the command operates on the representa-

tion of the subtree (as indicated by the dashed line) plus the crust (as indicated

by the shaded nodes). If the context is added by frame, at the low level what

is added is the representation of the context minus the inner crust (the shaded

nodes).

The crust inclusion property, which (in part) states that the representation

of a context together with its outer crust contains the inner crust, establishes

that the required frame exists. A little more is needed of the crust inclusion

property, however, since the operations we are considering actually alter the

crust. Yet the change made to the crust cannot materially affect the context —

in fact, it only changes its in-interface. The crust inclusion property therefore

establishes that not only can that inner crust be removed from the combination

of a context representation and its outer crust, but that when it is replaced by

another inner crust, differing from the original in only the in-interface, the result

is also the combination of a representation of the same context and its outer

crust, but with the (inner) in-interface of the context representation updated

accordingly. Together with application preservation, this establishes that when

a frame is applied it will mesh correctly with both the pre- and postcondition.

Finally, in order to complete the proof transformation, it is sufficient to

establish that the implementations of the basic commands satisfy the represen-

tations of their specifications, with the addition of crust. Loosely:

`
{
∃in.eFin,out • 〈〈P 〉〉in,out

}
JϕK

{
∃in.eFin,out • 〈〈Q〉〉in,out

}
for every (P,Q) ∈ Ax JϕK. This is the axiom correctness property.

Having fleshed out the intuition behind locality-preserving translations, I

now introduce their formal definition. I first define the concept of pre-locality-

preserving translations, which have the appropriate form, and then restrict

locality-preserving translations to being those that exhibit the properties of

application preservation, crust inclusion and axiom correctness.

Definition 7.16 (Pre-Locality-Preserving Translation). A pre-locality-preserv-

ing translation τ : A→ B comprises:
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� a set of in-interfaces Iin and a set of out-interfaces Iout, whose Cartesian

product constitutes the set of interfaces I = Iin × Iout;

� a data representation function 〈〈(·)〉〉(·) : DA × I → P(DB);

� a context representation function 〈〈(·)〉〉(·)(·) : CA × I × I → P(CB);

� a set of crust parameters F ;

� a crust predicate eFI ∈ P(DB), parametrised by interface I ∈ I and crust

parameter F ∈ F ; and

� a substitutive implementation function J(·)Kτ : LA → LB.

A module translation is constructed from a pre-locality-preserving transla-

tion by defining the abstraction relation in terms of the data representation

function and the crust predicate. Given out ∈ Iout and F ∈ F , the abstraction

relation α is defined to be

α =
{

(χB, χA)
∣∣ χB ∈ ∃in.eFin,out • 〈〈χA〉〉in,out

}
.

Frequently, there will be a natural choice of out and F , but in general any choice

is permissible.

I define intermediate translation functions, which lift the representation func-

tions to predicates and compensate for crust. The intermediate data-predicate

translation combines the representation of data with a crust. The intermediate

context-predicate translation combines the representation of a contexts with an

outer crust, but removes the inner crust.

Definition 7.17 (Intermediate Translation Functions). Given a pre-locality-

preserving translation, the intermediate data-predicate translation function

(|(·)|)(·)
: P(StateA)× (Iout ×F)→ P(StateB)

is defined as:

(|P |)out,F =
∨

(ρ,χA)∈P

{ρ} ×
(
∃in.eFin,out • 〈〈χA〉〉in,out

)
.

The intermediate context-predicate translation function

(|(·)|)(·)
(·) : P(CStateA)× (Iout ×F)× (Iout ×F)→ P(CStateB)

is defined as:

(|K|)out,Fout′,F ′ =
∨

(ρ,cA)∈K

{ρ} ×
(
∀in ′.eFin′,out′ −◦

(
∃in.eFin,out ◦ 〈〈cA〉〉

in,out
in′,out′

))
.
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For a module translation defined by a pre-locality-preserving translation with

respect to out ∈ Iout and F ∈ F , the predicate translation can be expressed

simply in terms of the intermediate data-predicate translation: JP K = (|P |)out,F .

Pre-locality-preserving translations do not embody the intuition of what it

means for a module translation to (soundly) preserve locality. This is reserved

for locality-preserving translations, which require the following three properties.

Property 7.18 (Application Preservation). Context application is preserved by

the representation functions. That is, for all c ∈ CA, χ ∈ DA and I ∈ I,

〈〈c •A χ〉〉I ≡ ∃I ′. 〈〈c〉〉II′ •B 〈〈χ〉〉I
′
.

Property 7.19 (Crust Inclusion). For all out , out ′ ∈ Iout, F ∈ F and c ∈ CA,

there exist K ∈ P(CB) and F ′ ∈ F such that, for all in ∈ Iin,(
∃in ′.eFin′,out′ ◦ 〈〈c〉〉

in′,out′

in,out

)
≡ K ◦ eF

′

in,out .

Property 7.20 (Axiom Correctness). For all ϕ ∈ CmdA, (P,Q) ∈ Ax JϕKA,

out ∈ Iout and F ∈ F ,

`B
{

(|P |)out,F
}
JϕK

{
(|Q|)out,F

}
.

Definition 7.21 (Locality Preserving Translation). A locality-preserving trans-

lation is a pre-locality-preserving translation that satisfies Properties 7.18, 7.19

and 7.20.

Remark. The crust inclusion property is stronger than just asserting that
inner crust is contained within the context plus its outer crust.
This is to allow for the fact that a command may modify the
crust, and we must be able to use this modified crust to recon-
stitute the representation of the same context. However, the
crust is only ever altered with respect to the in-interface, so it
is only necessary that K in Property 7.19 be independent of the
choice of in.

Theorem 90 (Soundness of Locality-Preserving Translations). A locality-pre-

serving translation is a sound module translation (for any fixed choice of out ∈
Iout and F ∈ F).

7.3.1 Proof of Soundness of Locality-Preserving Transla-

tions

In this section, assume that τ : A→ B is a locality preserving translation. The

following proposition is sufficient to establish that τ gives rise to a sound module

translation.
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Proposition 91. For all out ∈ Iout and F ∈ F ,and for all P,Q ∈ P(StateA)

and C ∈ LA,

Γ `A {P} C {Q} =⇒ JΓK `B
{

(|P |)out,F
}
JCK

{
(|Q|)out,F

}
,

where

JΓK =

{
f : (|P ′|)out

′,F ′

� (|Q′|)out
′,F ′

∣∣∣∣∣ (f : P ′� Q′) ∈ Γ and

out ′ ∈ Iout and F ′ ∈ F

}
.

Before embarking on the proof of this proposition, two auxiliary lemmata

are required. The following lemma gives an alternative characterisation of the

crust inclusion property.

Lemma 92 (Crust Inclusion II). For all K ∈ P(CA), in ∈ Iin, out , out ′ ∈ Iout

and F ∈ F ,(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in,out

)
⊆ ∃F ′.

(
∀in ′′.eF

′

in′′,out −◦
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out

))
◦ eF

′

in,out ,

where

〈〈K〉〉I
′

I =
∨
c∈K
〈〈c〉〉I

′

I

is the point-wise lift of the context representation function to predicates.

Note that the converse of this property is trivially true, hence the entailment

holds in both directions.

Proof. Fix arbitrary K ∈ P(CA), in ∈ Iin, out , out ′ ∈ Iout and F ∈ F . Fix

c′ ∈ CA with

c′ ∈
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in,out

)
≡
∨
c∈K

(
∃in ′.eFin′,out′ ◦ 〈〈c〉〉

in′,out′

in,out

)
.

There exists c′′ ∈ K such that

c′ ∈
(
∃in ′.eFin′,out′ ◦ 〈〈c′′〉〉

in′,out′

in,out

)
.

By the Crust Inclusion Property, there exist K ′ ∈ P(CB) and F ′ ∈ F such that,

for all in ′′ ∈ Iin, (
∃in ′.eFin′,out′ ◦ 〈〈c′′〉〉

in′,out′

in′′,out

)
≡ K ′ ◦ eF

′

in′′,out . (7.1)

Hence, c′ ∈ K ′ ◦ eF ′

in,out , and so there are c1 ∈ K ′ and c2 ∈ eF
′

in,out with

c′ = c1 ◦ c2. Fix in ′′ ∈ Iin and c′2 ∈ eF
′

in′′,out . Since c1 ◦ ◦2 ∈ K ′ ◦ eF
′

in′′,out , it

follows by (7.1) that

c1 ◦ c′2 ∈
(
∃in ′.eFin′,out′ ◦ 〈〈c′′〉〉

in′,out′

in′′,out

)
⊆ ∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out .
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The choice of c′2 was arbitrary, and so

for all c′2, c
′′ ∈ CB, c′2 ∈ eFin′′,out and c′′ = c1 ◦ c′2 =⇒

c′′ ∈ ∃in ′.eFin′,out′ ◦ 〈〈K〉〉
in′,out′

in′′,out .

Hence

c1 ∈ eFin′′,out −◦
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out

)
and since the choice of in ′′ was arbitrary,

c1 ∈ ∀in ′′.eFin′′,out −◦
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out

)
Since c′ = c1 ◦ c2,

c′ ∈ ∃F ′.
(
∀in ′′.eFin′′,out −◦

(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out

))
◦ eF

′

in,out .

Since the choice of c′ was arbitrary, it follows that(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in,out

)
⊆ ∃F ′.

(
∀in ′′.eF

′

in′′,out −◦
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out

))
◦ eF

′

in,out

as required.

The proof of Proposition 91 uses the intermediate translation functions. Key

to establishing the soundness of locality preserving translations is that these

functions preserve context application. This means that an abstract frame K

can be transformed to the concrete frame (|K|)out,Fout′,F ′ . This fact is established

by the following lemma.

Lemma 93 (Application Preservation II). For all K ∈ P(CStateA), all P ∈
P(StateA), out ∈ Iout and F ∈ F ,

(|K •A P |)out,F ≡ ∃out ′, F ′. (|K|)out,Fout′,F ′ •B (|P |)out
′,F ′

.

Proof.

(|K • P |)out,F

≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×
(
∃in.eFin,out • 〈〈cA • χA〉〉in,out

)

(Property 7.18)

≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×
(
∃in.eFin,out • ∃in ′, out ′. 〈〈cA〉〉in,outin′,out′ • 〈〈χA〉〉in

′,out′
)

≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×
(
∃in ′, out ′.∃in.eFin,out ◦ 〈〈cA〉〉

in,out
in′,out′ • 〈〈χA〉〉in

′,out′
)
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(Lemma 92)

≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×


∃in ′, out ′.∃F ′.(
∀in ′′.eF ′

in′′,out′ −◦
(
∃in.eFin,out ◦ 〈〈cA〉〉

in,out
in′′,out′

))
◦ eF ′

in′,out′ • 〈〈χA〉〉in
′,out′


≡ ∃out ′, F ′. ∨

(ρ′,cA)∈K

{ρ′} ×
(
∀in ′′.eF

′

in′′,out′ −◦
(
∃in.eFin,out ◦ 〈〈cA〉〉

in,out
in′′,out′

))
•

 ∨
(ρ,χA)∈P

{ρ} ×
(
∃in ′.eF

′

in′,out′ • 〈〈χA〉〉in
′,out′

)
≡ ∃out ′, F ′. (|K|)out,Fout′,F ′ • (|P |)out

′,F ′
.

The proof of Proposition 91 inductively transforms a proof in A into a proof

in B.

Proof. The proof is by induction on the structure of the proof of `A {P} C {Q},
considering the cases for the last rule applied in the proof. Assume as the

inductive hypothesis that the translated premises have proofs in B. I show how

to derive a proof of the translated conclusions from these translated premises.

(I omit the procedure specification environment when it plays no role in the

derivation.)

Fix arbitrary out ∈ Iout, F ∈ F .

Axiom case:

This case is immediate by the Axiom Correctness Property (Property 7.20).

Frame case:

for all out ′, F ′,
{

(|P |)out
′,F ′}

C
{

(|Q|)out
′,F ′}

for all out ′, F ′,

{
(|K|)out,Fout′,F ′ • (|P |)out

′,F ′}
C{

(|K|)out,Fout′,F ′ • (|Q|)out
′,F ′}

Frame

{
∃out ′, F ′. (|K|)out,Fout′,F ′ • (|P |)out

′,F ′}
C{

∃out ′, F ′. (|K|)out,Fout′,F ′ • (|Q|)out
′,F ′}

Disj

{
(|K • P |)out,F

}
C
{

(|K •Q|)out,F
} Lemma 93
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Cons case:

P ⊆ P ′

(|P |)out,F ⊆ (|P ′|)out,F

{
(|P ′|)out,F

}
C{

(|Q′|)out,F
} Q′ ⊆ Q

(|Q′|)out,F ⊆ (|Q|)out,F{
(|P |)out,F

}
C
{

(|Q|)out,F
} Cons

Disj case:

for all i ∈ I,
{

(|Pi|)out,F
}

C
{

(|Qi|)out,F
}

{∨
i∈I (|Pi|)out,F

}
C
{∨

i∈I (|Qi|)out,F
} Disj

{(∣∣∨
i∈I Pi

∣∣)out,F} C
{(∣∣∨

i∈I Qi
∣∣)out,F}

PDef case:

for all (fi : P� Q) ∈ Γ,

out ′ ∈ Iout, F
′ ∈ F ,

JΓ′,ΓK `B

{(∣∣∣∣ ∃−→v . {−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −}× P(−→v )

∣∣∣∣)out′,F ′}
Ci{(∣∣∣∣ ∃−→w . {−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w }× Q(−→w )

∣∣∣∣)out′,F ′}

for all (fi : P� Q) ∈ Γ,

out ′ ∈ Iout, F
′ ∈ F ,

JΓ′,ΓK `B

{
∃−→v . {−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −}

× (|P(−→v )|)out
′,F ′

}
Ci{

∃−→w . {−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w }
× (|Q(−→w )|)out

′,F ′

}

for all (fi : P� Q) ∈ JΓK , JΓ′,ΓK `B
{∃−→v . {−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −} × P(−→v )}

Ci
{∃−→w . {−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w } × Q(−→w )}

(?)

(?) JΓ′,ΓK `B
{

(|P |)out,F
}

C
{

(|Q|)out,F
}

JΓ′K `B

{
(|P |)out,F

}
procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C{

(|R|)out,F
}

PDef

The two further premises of the PDef rule, which are not shown in the above

derivation, are easily dispatched since J(·)K preserves the procedure names in a

procedure specification environment.

The cases for the remaining rules follow by the point-wise and variable-

preserving nature of the translation functions.

This completes the proof of Theorem 90.
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7.3.2 Module Translation: τ1 : T→ H+ L

In this section, I give the formal definition of a locality-preserving translation

τ1 from the tree module into the combination of the heap and list modules.

Notation. A number of notational conventions are used to simplify predicates

over AH+AL. Pure heap predicates are implicitly lifted to the combined domain

with the list-store component emp; list-store predicates are lifted similarly. The

operator ∗ on the combined domain is the product of the ∗ operators from each

of the two domains.

Definition 7.22 (τ1 : T → H + L). The pre-locality-preserving translation

τ1 : T→ H + L is constructed as follows:

� the in-interfaces Iin = (Addr)∗ are sequences of addresses;

� the out-interfaces Iout = Addr are addresses;

� the data representation function is defined inductively by

〈〈∅〉〉in,out def
= emp ∧ in = ∅

〈〈a[t]〉〉in,out def
= in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈t〉〉l,a

〈〈t1 ⊗ t2〉〉in,out
def
= ∃l1, l2. (in = l1 · l2) ∧ 〈〈t1〉〉l1,out ∗ 〈〈t2〉〉l2,out ;

� the context representation function is defined inductively by

〈〈−〉〉in,outin′,out′
def
= emp ∧ (in = in ′) ∧ (out = out ′)

〈〈a[c]〉〉in,outI′
def
= in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈c〉〉l,aI′

〈〈c⊗ t〉〉in,outI′
def
= ∃l1, l2. (in = l1 · l2) ∧ 〈〈c〉〉l1,outI′ ∗ 〈〈t〉〉l2,out

〈〈t⊗ c〉〉in,outI′
def
= ∃l1, l2. (in = l1 · l2) ∧ 〈〈t〉〉l1,out ∗ 〈〈c〉〉l2,outI′ ;

� the crust parameters F = (Addr)∗ × (Addr)∗ × Addrnil are tuples of two

sequences of addresses and a further address or nil ;

� the crust predicate is defined as

el1,l2,ain,out
def
= ∃a′. out 7→ a, a′ ∗ a′ Z⇒ [l1 · in · l2] ∗

∗∏
a∈l1·l2

a 7→ out ; and

� the substitutive implementation function is given by replacing each tree-

module command with a call to the correspondingly-named procedure

given in Figure 7.3.

Theorem 94 (Soundness of τ1). The pre-locality-preserving translation τ1 is a

locality-preserving translation.

254



Locality Refinement 7.3 Locality-Preserving Translations

E.parent
def
= E

E.children
def
= E + 1

n := newNode
def
= n := alloc(2)

disposeNode(E)
def
= dispose(E, 2)

m := getUp(n ) {
local x in

m := [n .parent] ;
x := [m .parent] ;
if x = nil then

m := nil
}

m := getLast(n ) {
local x in

x := [n .children] ;
m := x .getTail()

}

newNodeAfter(n ) {
local x , y , z , w in

x := [n .parent] ;
z := [x .children] ;
y := newNode();
[y .parent] := x ;
z .insert(n , y );
w := newList();
[y .children] := w

}

m := getFirst(n ) {
local x in

x := [n .children] ;
m := x .getHead()

}

m := getRight(n ) {
local x , y in

x := [n .parent] ;
y := [x .children] ;
m := y .getNext(n )

}

m := getLeft(n ) {
local x , y in

x := [n .parent] ;
y := [x .children] ;
m := y .getPrev(n )

}

deleteTree(n ) {
local x , y , z in

x := [n .parent] ;
y := [x .children] ;
y .remove(n );
y := [n .children] ;
z := y .getHead();
while z 6= nil do

call deleteTree(z );
z := y .getHead() ;

deleteList(y );
disposeNode(n )

}

Figure 7.3: Procedures for the list-based implementation of trees
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Soundness of τ1 : T→ H + L

Lemma 95 (τ1 Application Preservation). For all c ∈ CUTree, t ∈ UTree and

I ∈ I,

〈〈c • t〉〉I ≡ ∃I ′. 〈〈c〉〉II′ • 〈〈t〉〉I
′
.

Proof. The proof is by induction on the structure of the context c, assuming

some fixed t ∈ UTree.

c = − case:

∃I ′. 〈〈−〉〉II′ • 〈〈t〉〉I
′
≡ ∃I ′. I = I ′ ∧ 〈〈t〉〉I

′

≡ 〈〈t〉〉I

≡ 〈〈− • t〉〉I .

c = a[c′] case:

∃I ′. 〈〈a[c′]〉〉in,outI′ • 〈〈t〉〉I
′

≡ ∃I ′.
(

in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈c′〉〉l,aI′
)
• 〈〈t〉〉I

′

≡ in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗
(
∃I ′. 〈〈c′〉〉l,aI′ • 〈〈t〉〉

I′
)

≡ in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈c′ • t〉〉l,a

≡ 〈〈a[c′ • t]〉〉in,out

≡ 〈〈a[c′] • t〉〉in,out .

c = c′ ⊗ t′ case:

∃I ′. 〈〈c′ ⊗ t′〉〉in,outI′ • 〈〈t〉〉I
′

≡ ∃I ′.
(
∃l1, l2. (in = l1 · l2) ∧ 〈〈c′〉〉l1,outI′ ∗ 〈〈t′〉〉l2,out

)
• 〈〈t〉〉I

′

≡ ∃l1, l2. (in = l1 · l2) ∧
(
∃I ′. 〈〈c′〉〉l1,outI′ • 〈〈t〉〉I

′
)
∗ 〈〈t′〉〉l2,out

≡ ∃l1, l2. (in = l1 · l2) ∧ 〈〈c′ • t〉〉l1,out ∗ 〈〈t′〉〉l2,out

≡ 〈〈(c′ • t)⊗ t′〉〉in,out

≡ 〈〈(c′ ⊗ t′) • t〉〉in,out .

The case where c = t′ ⊗ c′ follows the same pattern as the c′ ⊗ t′ case.

Lemma 96 (τ1 Crust Inclusion). For all out , out ′ ∈ Iout, F ∈ F and c ∈ CUTree,

there exist K ∈ P(CH+L) and F ′ ∈ F such that, for all in ∈ Iin,(
∃in ′.eFin′,out′ ◦ 〈〈c〉〉

in′,out′

in,out

)
≡ K ◦ eF

′

in,out .
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Proof. The proof is by induction on the structure of the context c, assuming

some fixed out , out ′ ∈ Iout and F ∈ F .

c = − case:

Choose K = emp if out ′ = out and K = False otherwise; choose F ′ = F . If

out ′ 6= out then both sides of the equation are equivalent to False; otherwise,

observe that

∃in ′.eFin′,out′ ◦ 〈〈−〉〉
in′,out′

in,out ≡ e
F
in,out

≡ K ◦ eFin,out .

c = a[c′] case:

By the inductive hypothesis, there exist K ′ and F ′ such that, for all in,

∃l .e∅,∅,out
′

l,a ◦ 〈〈c′〉〉l,ain,out ≡ K
′ ◦ eF

′

in,out .

Choose K = eFa,out′ ◦K ′; choose F ′ as given above. Observe that

∃in ′.eFin′,out′ ◦ 〈〈a[c′]〉〉in
′,out′

in,out

≡ ∃in ′.eFin′,out′ ◦
(

in ′ = a ∧ ∃a, l .a 7→ out ′, a ∗ a Z⇒ [l ] ∗ 〈〈c′〉〉l,ain,out
)

≡ eFa,out′ ◦ ∃l .e
∅,∅,out′
l,a ◦ 〈〈c′〉〉l,ain,out

≡ eFa,out′ ◦K ′ ◦ eF
′

in,out

≡ K ◦ eF
′

in,out .

c = c′ ⊗ t′ case:

Observe that there is exactly one choice of l2 ∈ (Addr)∗ such that 〈〈t′〉〉l2,out′ 6≡
false. Let l̂2 be that choice. Observe also that there exists some K ′ such that

〈〈t′〉〉l̂2,out
′
≡ K ′ ∗

∗∏
a∈l̂2

a 7→ out ′.

Let (l ′1, l
′
2, a
′) = F . By the inductive hypothesis, there exist K ′′ and F ′ such

that, for all in,

∃l1.e
l′1 ,̂l2·l

′
2,a

′

l1,out′
◦ 〈〈c′〉〉l1,out

′

in,out ≡ K
′′ ◦ eF

′

in,out .
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Choose K = K ′ ◦K ′′; choose F ′ as given above. Observe that

∃in ′.el
′
1,l

′
2,a

′

in′,out′ ◦ 〈〈c
′ ⊗ t′〉〉in

′,out′

in,out

≡ ∃in ′.

∃a. out ′ 7→ a′, a ∗ a Z⇒ [l ′1 · in ′ · l ′2] ∗
∗∏

a∈l′1·l′2

a 7→ out ′


◦ ∃l1. in ′ = l1 · l̂2 ∧ 〈〈c′〉〉l1,out

′

in,out ∗ 〈〈t
′〉〉l̂2,out

′

≡ ∃l1.

∃a. out ′ 7→ a′, a ∗ a Z⇒
[
l ′1 · l1 · l̂2 · l ′2

]
∗

∗∏
a∈l′1·l′2

a 7→ out ′


◦ 〈〈c′〉〉l1,out

′

in,out ∗K
′ ∗

∗∏
a∈l̂2

a 7→ out ′

≡ K ′ ◦ ∃l1.e
l′1 ,̂l2·l

′
2,a

′

l1,out′
◦ 〈〈c′〉〉l1,out

′

in,out

≡ K ′ ◦K ′′ ◦ eF
′

in,out

≡ K ◦ eF
′

in,out .

The case where c = t′ ⊗ c′ follows the same pattern as the c′ ⊗ t′ case.

Lemma 97 (τ1 Axiom Correctness). For all ϕ ∈ CmdT, (P,Q) ∈ Ax JϕKT,

out ∈ Iout and F ∈ F ,

`H+L

{
(|P |)out,F

}
JϕK

{
(|Q|)out,F

}
.

I omit the full proof details here, which are due to Wheelhouse and can be

found in [DYGW10b]. Figure 7.4 shows one of the simpler proof cases involved

in establishing axiom correctness, namely for the getUp axiom.

This completes the proof of Theorem 94.

7.3.3 Module Translation: τ2 : H+H→ H

Another example of a locality-preserving translation is the natural implementa-

tion of a pair of heap modules H+H with a single heap H that simply treats the

two heaps as (disjoint) portions of the same heap. This example is an important

one, as it does not result in a surjective abstraction relation (different abstract

heap pairs can map to the same concrete heap), but is still a sound locality

preserving translation.

Definition 7.23 (τ2 : H + H → H). The pre-locality-preserving translation

τ2 : H + H→ H is constructed as follows:

� the interface sets are both unit sets,5 i.e. Iin
def
= Iout

def
= {1}, and hence

they can be ignored;

5It makes no difference which set, as long as it only has one element.
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m := getUp(n ) {{
m ⇀⇁ − ∗ n ⇀⇁ b× ∃in.eFin,out • 〈〈a[t1 ⊗ b[t2]⊗ t3]〉〉in,out

}{
m ⇀⇁ − ∗ n ⇀⇁ b× eFa,out • ∃a, l1, l3.a 7→ out , a ∗ a Z⇒ [l1 · b · l3]

∗ 〈〈t1〉〉l1,a ∗ ∃a′, l .b 7→ a, a′ ∗ a′ Z⇒ [l2] ∗ 〈〈t2〉〉l2,b ∗ 〈〈t3〉〉l3,a

}
{m ⇀⇁ − ∗ n ⇀⇁ b× a 7→ out ∗ b 7→ a}
local x in

{m ⇀⇁ − ∗ n ⇀⇁ b ∗ x ⇀⇁ −× a 7→ out ∗ b 7→ a}
m := [n .parent] ;

{m ⇀⇁ a ∗ n ⇀⇁ b ∗ x ⇀⇁ −× a 7→ out ∗ b 7→ a}
x := [m .parent] ;

{m ⇀⇁ a ∗ n ⇀⇁ b ∗ x ⇀⇁ out × a 7→ out ∗ b 7→ a}
if x = nil then

m := nil

{m ⇀⇁ a ∗ n ⇀⇁ b ∗ x ⇀⇁ out × a 7→ out ∗ b 7→ a}
{m ⇀⇁ a ∗ n ⇀⇁ b× a 7→ out ∗ b 7→ a}{
m ⇀⇁ a ∗ n ⇀⇁ b× eFa,out • ∃a, l1, l3.a 7→ out , a ∗ a Z⇒ [l1 · b · l3]

∗ 〈〈t1〉〉l1,a ∗ ∃a′, l .b 7→ a, a′ ∗ a′ Z⇒ [l2] ∗ 〈〈t2〉〉l2,b ∗ 〈〈t3〉〉l3,a

}
{
m ⇀⇁ a ∗ n ⇀⇁ b× ∃in.eFin,out • 〈〈a[t1 ⊗ b[t2]⊗ t3]〉〉in,out

}
}

Figure 7.4: Proof outline for getUp implementation

� the representation function (which is the same for both data and contexts)

is defined as

〈〈(h1, h2)〉〉 def
= {h1} ∗ {h2} ;

� the crust parameter set is also the unit set and the crust predicate is

defined as e
def
= emp; and

� the implementation function is given by replacing the commands for both

heaps with their detagged versions, for example

Jn := alloc1(E)K def
= Jn := alloc2(E)K def

= n := alloc(E).

Theorem 98 (Soundness of τ2). The pre-locality-preserving translation τ2 is a

locality-preserving translation.

This theorem is trivial: application preservation holds by properties of ∗;
crust inclusion holds since the crust is simply emp; and axiom correctness holds

because the axioms of H+H are almost directly translated to those of H, modulo

a frame.
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a1

v1 v2 v3

a2

w1 v1

Figure 7.5: Representation of the list store a1 Z⇒ [v1 · v2 · v3] ∗ a2 Z⇒ [w1 · v1] as

singly linked lists in the heap

7.4 Locality-Breaking Translations

There is not always a close correspondence between the locality exhibited by

a high-level module and the locality of the low-level module on which it is

implemented. In this section, I reduce the burden of proof for a sound module

translation in such cases by introducing locality-breaking translations. In §7.4.1,

I establish that locality-breaking translations give sound module translations,

and in §7.4.2 I give a locality-breaking translation τ3 : L→ H.

Our motivating example of a module translation that does not preserve local-

ity is an implementation of the list module (as defined in §7.1.3) that represents

each abstract list with a singly-linked list in the heap. An example of a list

store represented in this way is depicted in Figure 7.5. Consider the operation

of removing the value v3 from the list at address a1. At the abstract level, the

resource required by the operation is simply a1 Z⇒ v3, but in the implementation

the list at a1 must be traversed all the way to the node labelled v3 — in this

case, this is the entire list.

To apply the locality-preserving translation approach, an arbitrary amount

of additional data would have to be included in the crust. This seems to defeat

the purpose of the locality-preserving approach in the first place, so perhaps a

more direct approach is called for.

In order to prove the soundness of a module translation, it is necessary to

demonstrate a transformation from high-level proofs about programs that use

an abstract module to low-level proofs of those programs using the concrete

module implementation. Inductively transforming proofs is, intuitively, a good

strategy because the high-level rules are matched by the low-level rules. Since

the definition of predicate translations preserves disjunctions and entailments,

and also the variable scope, the majority of the proof rules can be inductively

transformed to their low-level counterparts directly. The two exceptions to

this are Frame and Axiom. For locality-preserving translations, Frame was
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dealt with by the fact that a locality-preserving translation preserves context

application, and Axiom was dealt with by the fact that the implementations of

the basic commands satisfy the axioms under such a translation.

When it is not appropriate to consider a translation that preserves locality,

it would be useful if it were only necessary to consider proofs which do not use

the frame rule, or, at least, only use it in a limited fashion. Intuitively, of course

this should be possible — the purpose of the frame rule is to factor out parts

of the state that do not play a role (and hence, do not change) in part of the

program under consideration. Thus, it should be possible to transform a proof

to one in which the frame rule is only applied to basic statements (i.e. basic

commands and assignment) by factoring in the state earlier in the proof (i.e. at

the leaves of the proof). This intuition is formalised in the following lemma.

Lemma 99 (Frame-Free Derivations). Let A be an abstract module. If there

is a proof derivation of `A {P} C {Q} then there is also a derivation that only

uses the frame rule in the following ways:

Γ `A {P ′} C′ {Q′}
(†)

Γ `A {K • P ′} C′ {K •Q′}
Frame

(7.2)

...
Γ `A {P ′} C′ {Q′}

Γ `A {(KScope × IA) • P ′} C′ {(KScope × IA) •Q′} Frame
(7.3)

where (†) is either Axiom or Assgn.

Consider a translation τ : A → B. Lemma 99 implies that it is only nec-

essary to provide proofs of `B {JP Kτ} JCKτ {JQKτ} when there is a proof of

`A {P} C {Q} having the prescribed form. Provided that there are proofs that

the implementation of each command in CmdA satisfies the translation of its ax-

ioms under every possible frame, the proof in A can be transformed to a proof in

B by straightforward induction. Considerations can be reduced to only single-

ton frames by considering an arbitrary frame as a disjunction of singletons and

applying the Disj rule. Considerations can be reduced even further to singleton

frames that have no variable component, since the variable scope component

can be added by Frame at the low-level. This condition is formalised in the

definition of a locality-breaking translation.

Definition 7.24 (Locality-Breaking Translation). A locality-breaking transla-

tion τ : A→ B is a module translation having the property that, for all c ∈ CA,

ϕ ∈ CmdA, and (P,Q) ∈ Ax JϕKA there is a derivation of

`B {J{(∅, c)} • P Kτ} JϕKτ {J{(∅, c)} •QKτ} .
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Theorem 100 (Soundness of Locality-Breaking Translations). A locality-break-

ing translation is a sound module translation.

A locality-breaking translation transforms proofs that use locality (in the

form of the Frame rule) at the abstract level into proofs that do not. To do so,

one must effectively prove directly that the abstract Frame rule is sound with

respect to the implementation of each module operation. Hence, such a module

translation provides a fiction of locality.

7.4.1 Proof of Soundness of Locality-Breaking Transla-

tions

Proof of Lemma 99. The result is a special case of the more general result, that

if there is a derivation of Γ `A {P} C {Q} then there is a derivation of F (Γ) `A
{P} C {Q} with the required property, where

F (Γ) = {f : K • P� K • Q | K ∈ P(CA) and (f : P� Q) ∈ Γ} .

Note that Γ ⊆ F (Γ) = F (F (Γ)). Since procedure specifications are only relevant

to the PDef and PCall rules, I will omit them when considering other rules.

The proof of the generalised statement is by induction on the depth of the

derivation. If the last rule applied in the derivation is anything other than

Frame or PDef then it is simple to transform the derivation: simply apply the

induction hypothesis to transform all of the premises and then apply the last

rule using F (Γ) in place of Γ.

Consider the case where the last rule of the derivation is Frame:

...
{P ′} C {Q′}

(‡)

{K • P ′} C {K •Q′} Frame

By applying the disjunction rule, this can be reduced to the case of singleton

frames {c}, transforming the derivation as follows:

for all c ∈ K,

...
{P ′} C {Q′}

(‡)

{{c} • P ′} C {{c} •Q′} Frame

{K • P ′} C {K •Q′} Disj

Now consider cases for (‡), the last rule applied before Frame.

If the rule is Cons then, since P ⊆ P ′ implies that {c} • P ⊆ {c} • P , the

application of the Frame can be moved earlier in the derivation, transforming
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it as follows:

{c} • P ′ ⊆ {c} • P ′′

{c} •Q′ ⊆ {c} •Q′′
{P ′′} C {Q′′}

{{c} • P ′′} C {{c} •Q′′} Frame

{{c} • P ′} C {{c} •Q′} Cons

The application of the frame rule can then by removed by the inductive hypoth-

esis.

If the rule is Disj then, since • right-distributes over ∨, the derivation can

be transformed as follows:

for all i ∈ I,

...
{Pi} C {Qi}

{{c} • Pi} C {{c} •Qi}
Frame{

{c} •
∨
i∈I Pi

}
C
{
{c} •

∨
i∈I Qi

} Disj

If the rule is Local then it is possible that the frame c includes a program

variable with the same name as one that is scoped by the local block. This

means that the frame cannot in general be pushed into the local block. However,

the frame can be split into scope and store components, that is, for some ρ ∈
Scope and cA ∈ CA, c = (ρ, cA) and so {c} = ({ρ} × IA) ◦ {(∅, cA)}. Hence the

derivation can be transformed as follows:

...
{(x ⇀⇁ −× IA) • P ′} C′ {(x ⇀⇁ −× IA) •Q′}
{(x ⇀⇁ −× {cA}) • P ′} C′ {(x ⇀⇁ −× {cA}) •Q′}

Frame

{{(∅, cA)} • P ′} local x in C′ {{(∅, cA)} •Q′} Local

{{c} • P ′} local x in C′ {{c} •Q′} Frame

The side condition for the Local rule, that ({(∅, cA)} • P ′) ∧ vsafe(x ) ≡ ∅,
follows from the original side-condition that P ′∧vsafe(x ) ≡ ∅. The applications

of the Frame rule are now either of the form of (7.3) or can be removed by the

inductive hypothesis.

If the rule is PCall then it is again necessary to split the framing context

into its components, that is, some ρ ∈ Scope and cA ∈ CA with c = (ρ, cA). The

PCall rule uses some f : P� Q ∈ Γ. By definition, f : {cA} • P� {cA} •Q ∈
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F (Γ). Hence, the derivation can be transformed as follows:

{(−→r ⇀⇁ −→w ∗ ρ′)} × DA ⊆ vsafe(
−→
E )

F (Γ) `A

{
(−→r ⇀⇁ −→v ∗ ρ′)×

(
{(cA)} • P

(
E
r−→
E
z

(−→r ⇀⇁ −→v ∗ ρ′)
))}

call −→r := f(
−→
E )

{∃−→w . {(−→r ⇀⇁ −→w ∗ ρ′)} × ({(cA)} • Q (−→w ))}

PCall

F (Γ) `A

{
{(ρ, cA)} •

(
(−→r ⇀⇁ −→v ∗ ρ′)× P

(
E
r−→
E
z

(−→r ⇀⇁ −→v ∗ ρ′)
))}

call −→r := f(
−→
E )

{{(ρ, cA)} • (∃−→w . {(−→r ⇀⇁ −→w ∗ ρ′)} × Q (−→w ))}

Frame

The application of the frame rule is now of the form of (7.3), with the frame

being {ρ} × IA.

The remaining cases for the penultimate rule are straightforward.

Consider the case when PDef is the last rule applied:

for all (fi : P� Q) ∈ Γ,

...

Γ′,Γ `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

(?)

(?)

...
Γ′,Γ `A {P} C′ {Q}

Γ′ `A {P} procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C′ {Q} PDef

The derivations for the function bodies can be extended by applying the frame

rule to give:

for all K ∈ P(CA),

(fi : P� Q) ∈ Γ,

...

Γ′,Γ `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

Γ′,Γ `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× (K • P(−→v ))}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × (K • Q(−→w ))}

Frame

These derivations and the derivation of the premise Γ′,Γ `A {P} C′ {Q} can be

transformed by the inductive hypothesis so that they only use the frame rule in

the required manner and use the procedure environment F (Γ′,Γ) = F (Γ′), F (Γ).

These derivations can then be recombined to give the required derivation as
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follows:

for all (fi : P� Q) ∈ F (Γ),

...

F (Γ′,Γ) `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

(?)

(?)

...
F (Γ′,Γ) `A {P} C′ {Q}

F (Γ′) `A
{P}

procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C′
{Q}

PDef

The two further conditions on the PDef rule, not included above, hold for

the transformed derivation because F preserves the names of the functions in

procedure specifications.

Let τ : A → B be a locality-breaking translation. To show that τ is a

sound module translation, it is necessary to establish that whenever there is a

derivation of `A {P} C {Q} there is a derivation of `B {JP Kτ} JCKτ {JQKτ}.
First, transform the high-level derivation using Lemma 99 into a frame-free

derivation. Now transform this derivation to the required low-level derivation

by replacing each subderivation of the form

Γ `A {P ′} ϕ {Q′}
Axiom

Γ `A {K • P ′} ϕ {K •Q′}
Frame

with the derivation

for all (ρ, cA) ∈ K,

(?)

`B {J{(∅, cA) • P ′}K} JϕK {J{(∅, cA) •Q′}K}
`B {J{(ρ, cA) • P ′}K} JϕK {J{(ρ, cA) •Q′}K} Frame

`B {JK • P ′K} JϕK {JK •Q′K}
Disj

where (?) stands for the framed derivation provided by the locality-breaking

translation, and replacing all other rules with their low-level equivalents.

This completes the proof of Theorem 100.

7.4.2 Module Translation: τ3 : L→ H

I return to the example of an implementation of the list-store module L with

singly-linked lists in the heap H to illustrate a locality-breaking translation.

Definition 7.25 (τ3 : L → H). The module translation τ3 : L → H is con-

structed as follows:
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� the abstraction relation ατ3 ⊆ Heap× LStore is defined by

h ατ3 ls ⇐⇒ h ∈ (|ls|)

where (|(·)|) : LStore→ P(Heap) is defined inductively as follows:

(|emp|) def
= emp

(|a Z⇒ l ∗ ls|) def
= false

(|a Z⇒ [l ] ∗ ls|) def
= ∃x. a 7→ x ∗ 〈〈l〉〉(x,nil) ∗ (|ls|)

where

〈〈∅〉〉(x,y) def
= (x = y) ∧ emp

〈〈v〉〉(x,y) def
= x 7→ v, y

〈〈l1 · l2〉〉(x,y) def
= ∃z. 〈〈l1〉〉(x,z) ∗ 〈〈l2〉〉(z,y); and

� the substitutive implementation function is given by replacing each list-

module command with a call to the correspondingly-named procedure

given in Figures 7.6 and 7.7.

Note that the abstraction relation is not surjective, since incomplete lists do

not have heap representations (they are mapped to false). The intuition behind

this approach is that incomplete lists are purely a useful means to the ultimate

end of reasoning about complete lists. Typically, clients of the list module will

work with complete lists — only complete lists may be created or deleted, for a

start — and so restricting their specifications to only describe stores of complete

lists should be no significant problem. Of course, it is perfectly acceptable to use

assertions and specifications that refer to incomplete lists within client proofs;

the transformation of this proof to a low-level proof will complete all of these

lists by making use of Lemma 99.

The fact that incomplete lists do not have representations can be seen as an

advantage from the point of view of establishing that τ3 is a locality-breaking

translation. This is since it is only necessary to prove that the framed axioms

hold under the translation for frames that complete all of the lists in the pre-

condition — in all other cases, the precondition is false, and so the triple holds

trivially.

Theorem 101 (Soundness of τ3). The module translation τ3 is a locality-

breaking translation.
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E.value
def
= E E.next

def
= E + 1

x := newNode()
def
= x := alloc(2) x := newRoot()

def
= x := alloc(1)

disposeNode(x )
def
= dispose(x , 2) disposeRoot(x )

def
= dispose(x , 1)

v := getHead(i ) {
local x in

x := [i ] ;
if x = nil then

v := x

else

v := [x .value]
}

v := getTail(i ) {
local x , y in

x := [i ] ;
if x = nil then

v := x

else

y := [x .next] ;
while y 6= nil do

x := y ;
y := [x .next] ;

v := [x .value]
}

v := getNext(i , w ) {
local x in

x := [i ] ;
v := [x .value] ;
while v 6= w do

x := [x .next] ;
v := [x .value] ;

x := [x .next] ;
if x = nil then

v := x

else

v := [x .value]
}

v := getPrev(i , w ) {
local x , y in

x := [i ] ;
v := [x .value] ;
if v = w then

v := nil
else

while v 6= w do

y := x;
x := [y .next] ;
v := [x .value] ;

v := [y .value]
}

v := pop(i ) {
local x , y in

x := [i ] ;
if x = nil then

v := x

else

y := [x .next] ;
[i ] := y ;
v := [x .value] ;
disposeNode(x )

}

push(i , v ) {
local X , y in

x := newNode();
[x .value] := v ;
y := [i ] ;
[x .next] := y ;
[i ] := x

}

Figure 7.6: Linked-list-based list store implementation
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remove(i , v ) {
local u , x , y , z in

x := [i ] ;
u := [x .value] ;
y := [x .next] ;
if u = v then

[i ] := y ;
disposeNode(x )

else

u := [y .value] ;
while u 6= v do

x := y ;
y := [x .next] ;
u := [y .value] ;

z := [y .next] ;
[x .next] := z ;
disposeNode(y )

}

i := newList() {
i := newRoot();
[i ] := nil
}

insert(i , v , w ) {
local u , x , y , z in

x := [i ] ;
u := [x .value] ;
while u 6= v do

x := [x .next] ;
u := [x .value] ;

y := [x .next] ;
z := newNode();
[z .value] := w ;
[z .next] := y ;
[x .next] := z

}

deleteList(i ) {
local x , y in

x := [i ] ;
while x 6= nil do

y := x ;
x := [y .next] ;
disposeNode(y ) ;

disposeRoot(i )
}

Figure 7.7: Linked-list-based list store implementation

Again, I omit the full details of this proof, due to Wheelhouse, which can be

found in [DYGW10b], but give a particular case: getNext. Recall the axiom

for getNext:

Ax Jx := E1.getNext(E2)KL
def
={(

(x ⇀⇁ v ∗ ρ× a Z⇒ w · u) ,

(x ⇀⇁ u ∗ ρ× a Z⇒ w · u)

) ∣∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and

w = E JE2K (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [l · w]) ,

(x ⇀⇁ nil ∗ ρ× a Z⇒ [l · w])

) ∣∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and

w = E JE2K (x ⇀⇁ v ∗ ρ)

}
.

Fix arbitrary a ∈ Addr, w, u ∈ Val, l ∈ Val∗ and c ∈ CLStore. It is sufficient to

establish that the procedure body of getNext meets the following specifications:

{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× ({c} • a Z⇒ w · u)K}
−

{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u× ({c} • a Z⇒ w · u)K}
(7.4)

{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× ({c} • a Z⇒ [l · w])K}
−

{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ nil × ({c} • a Z⇒ [l · w])K}
. (7.5)
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{
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ −× a 7→ p ∗ 〈〈l1 · w〉〉(p,y)

}
x := [i ] ;{
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ p× a 7→ p ∗ 〈〈l1 · w〉〉(p,y)

}{
∃p. w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ p×(
(l1 = ∅ ∧ p 7→ w, y) ∨ (∃v, l ′1, q. l1 = v · l ′′1 ∧ p 7→ w, q ∗ 〈〈l ′′1 · w〉〉(q,y))

) }
v := [x .value] ;{
∃v, x, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v ∗ x ⇀⇁ x×
l1 · w = l ′1 · v · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, q ∗ 〈〈l ′′1 〉〉(q,y)

}
while v 6= w do{

∃v, v′, x, x′, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v ∗ x ⇀⇁ x×
l1 · w = l ′1 · v · v′ · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, x′ ∗ x′ 7→ v′, q ∗ 〈〈l ′′1 〉〉(q,y)

}
x := [x .next] ;

v := [x .value]{
∃v, v′, x, x′, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v′ ∗ x ⇀⇁ x′ ×
l1 · w = l ′1 · v · v′ · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, x′ ∗ x′ 7→ v′, q ∗ 〈〈l ′′1 〉〉(q,y)

}
{
∃v, x, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v ∗ x ⇀⇁ x×
l1 · w = l ′1 · v · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, q ∗ 〈〈l ′′1 〉〉(q,y)

}
;{

∃x. w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ x× 〈〈l1〉〉(p,x) ∗ x 7→ w, y
}

x := [x .next]{
w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ y × 〈〈l1 · w〉〉(p,y)

}{
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ y × a 7→ p ∗ 〈〈l1 · w〉〉(p,y)

}
Figure 7.8: Proof outline for getNext implementation (common part)

Either specification (7.4) holds trivially, since the precondition is equivalent

to false, or c = a Z⇒ [l1 · − · l2] ∗ ls for some l1, l2 ∈ Lst with w and u not in

either l1 or l2, and some ls ∈ LStore. A proof outline for this case is given in

Figure 7.9. Similarly, either specification (7.5) holds trivially or c = ls for some

ls ∈ LStore. A proof outline for this case is given in Figure 7.10.

7.5 Commentary

7.5.1 On the Conjunction Rule

Notably absent from the Hoare logic rules used here has been the conjunction

rule:
I 6= ∅ for all i ∈ I, Γ ` {Pi} C {Qi}

Γ `
{∧

i∈I Pi
}
C
{∧

i∈I Qi
} Conj

.

This raises two important questions: is the omission justifiable, and what are

the consequences for the module-translation theory of including Conj?
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v := getNext(i , w ) {
{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a Z⇒ [l1 · w · u · l2] ∗ lsK}{
∃y, z, p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −×

a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z ∗ 〈〈l2〉〉(z,nil) ∗ (|ls|)

}
local x in{
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ −× a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u

}
(see Figure 7.8){

∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ y × a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u
}

{v ⇀⇁ w ∗ x ⇀⇁ y × y 7→ u}
if x = nil then

v := x

else

v := [x .value]

{v ⇀⇁ u ∗ x ⇀⇁ y × y 7→ u}{
∃y, z, p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u×

a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z ∗ 〈〈l2〉〉(z,nil) ∗ (|ls|)

}
{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u× a Z⇒ [l1 · w · u · l2] ∗ lsK}
}

Figure 7.9: Proof outline for getNext implementation (success case)

v := getNext(i , w ) {
{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a Z⇒ [l · w] ∗ lsK}{
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −×

a 7→ p ∗ 〈〈l · w〉〉(p,nil) ∗ (|ls|)

}
local x in{
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ −× a 7→ p ∗ 〈〈l · w〉〉(p,nil)

}
(see Figure 7.8){

∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ y × a 7→ p ∗ 〈〈l · w〉〉(p,nil)
}

{v ⇀⇁ w ∗ x ⇀⇁ nil × emp}
if x = nil then

v := x

else

v := [x .value]

{v ⇀⇁ nil ∗ x ⇀⇁ nil × emp}{
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u×

a 7→ p ∗ 〈〈l · w〉〉(p,nil) ∗ (|ls|)

}
{Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u× a Z⇒ [l · w] ∗ lsK}
}

Figure 7.10: Proof outline for getNext implementation (failure case)
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Justification for Omission

If we take the axiomatic semantics to be the normative specification of the

programming language’s semantics, then including Conj potentially changes

the semantics by making it possible to derive more triples. However, typically

this is not the case: Conj is admissible in the Hoare logic.

If the conjunction rule were not admissible, then there must be some Γ, C,

P,Q1, Q2 such that Γ ` {P} C {Q1} and Γ ` {P} C {Q2} are derivable but Γ `
{Q} C {Q1 ∧Q2} is not derivable (without Conj). That is, for some command

C and predicate P , Conj can be used to derive a stronger postcondition for P

under C.

Of course, it is perfectly possible to define axioms to satisfy this condition.

Consider, for example, a command on the double-heap model (AH × AH) that

allocates a single cell in either of the two heaps, specified as follows:

Ax Jx := allocEither()K def
={

((x ⇀⇁ −× emp× emp), (∃a. x ⇀⇁ a× a 7→ − × emp)),

((x ⇀⇁ −× emp× emp), (∃a. x ⇀⇁ a× emp× a 7→ −))

}
Note that the choice of heap in which the cell is allocated is not at the discretion

of the implementation, but rather at the discretion of the prover — the command

exhibits angelic nondeterminism. That is, it is possible to prove both that the

command allocates the cell in the left heap and that the command allocates the

cell in the right heap. This seems paradoxical, since the program must somehow

correctly guess the prover’s choice.

Remark. One way of resolving this is that, from the program’s perspec-
tive, the two cases are actually the same and the distinction is
only a logical abstraction. Consider, for example, the represen-
tation of a double heap in a single heap, used in §7.3.3.

The conjunction rule is not compatible with angelic nondeterminism — if

the prover can make two different choices then the program satisfies their inter-

section, as illustrated by the following derivation:

{x ⇀⇁ −× emp× emp}
x := allocEither()

{∃a. x ⇀⇁ a× a 7→ − × emp}

Axiom {x ⇀⇁ −× emp× emp}
x := allocEither()

{∃a. x ⇀⇁ a× emp× a 7→ −}

Axiom

{x ⇀⇁ −× emp× emp} x := allocEither() {false} Conj

Using Conj, we are able to conclude that allocEither must diverge. Without

Conj, we cannot draw the same conclusion.
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Note, however, that none of the commands from the modules that I have

introduced exhibits angelic nondeterminism. Together, the following two con-

ditions on command ϕ ∈ Cmd are sufficient to establish that it does not exhibit

angelic nondeterminism:

� for all (P,Q), (P ′, Q′) ∈ Ax JϕK with (P,Q) 6= (P ′, Q′), P ∧ P ′ ≡ ∅; and

� the predicate
∨
{P | (P,Q) ∈ Ax JϕK} is precise6.

These conditions are not difficult to check and hold for all of the modules I have

so far described. They imply that at most one axiom describes the behaviour

of the command from any given state. Hence, the conjunction rule cannot be

used to derive a stronger post condition for any of the basic commands.

None of the program constructions introduces angelic nondeterminism7 and

so Conj is admissible for all of the modules considered here. Thus, since nothing

is gained by the inclusion of the conjunction rule, its omission is justified.

Consequences of Inclusion

Assume that the axiomatic semantics is extended with Conj — what additional

conditions are required for locality-preserving and locality-breaking translations

to be sound?

For locality-preserving translations, a case can be added to the proof of

Proposition 91 that deals with the Conj rule in the same fashion as the Disj

rule, provided that (|(·)|)(·)
distributes over conjunctions. Together, the following

two conditions are sufficient to establish this:

� for all χ, χ′ ∈ D with χ 6= χ′, and all I ∈ I, 〈〈χ〉〉I ∧ 〈〈χ′〉〉I ≡ ∅; and

� for all out ∈ Iout and F ∈ F , the predicate
∨{
eFin,out

∣∣ in ∈ Iin

}
is

precise.

Remark. It is not a coincidence that these conditions are similar to those
that prevent a command from behaving angelically: in both
cases, the conditions are constraining the predicate transformers
corresponding to the abstraction relation or command to being
conjunctive.

6Predicate P is precise if, for every s ∈ State there is at most one c ∈ CState and s′ ∈ P
such that s = c • s′.

7Proving this statement is rather involved, especially for recursion and looping, for which

the proof would typically invoke Tarski’s fixedpoint theorem and therefore require a proof of

monotonicity of programs.
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Note that the translation τ2 : H + H→ H does not satisfy the first of these

properties, since 〈〈(1 7→ 0, emp)〉〉 = {1 7→ 0} = 〈〈(emp, 1 7→ 0)〉〉. Suppose that

allocEither were added to H + H. Then, without Conj, it could be soundly

implemented in H by allocating a single cell and returning its address. With

Conj, however, this does not work; the implementation must diverge.

For locality-breaking translations, a case can be added to the proof of Lem-

ma 99 to deal with pushing Frame over Conj, in a similar fashion to Disj,

provided that the context algebra AA is left-cancellative (Definition 6.5). Left-

cancellativity ensures that {c} •
∧
i∈I Pi ≡

∧
i∈I {c} •Pi. It is also necessary for

the predicate translation J(·)K to distribute over conjunction; this is equivalent

to the condition that the abstraction relation α is functional (that is, it defines

a partial function from concrete states to abstract states).

7.5.2 On Crust

In §7.3, I insinuated that the need for crust came about from having chosen

the wrong representation function in the first place. However, it is perhaps

not necessarily clear that there is a choice for the representation function that

avoids using crust at all. In fact, such a choice is embodied in a key element

of the soundness proof, namely the intermediate translation functions (Defini-

tion 7.17).

The intermediate translation functions essentially add the outer crust to

representations of data structures and contexts while removing the inner crust

from representations of contexts. Because of the crust inclusion and application

preservation properties of the original representations, this modified represen-

tation also preserves application (Lemma 93). (Note that the interface set for

this modified representation is Iout ×F , which can all be considered as the out

part.) This modified representation incorporates all of the footprint required at

the low level by its very construction, and so no further crust is required.

7.5.3 On Locality-Preserving versus Locality-Breaking

Despite the fact that their names imply a black-and-white distinction between

locality-preserving and locality-breaking translations, there is no clear distinc-

tion between where the two techniques are applicable.

As an example, consider the implementation of the list module from §7.4.2.

I proved that this implementation gave a sound module translation using the

locality-breaking technique, since some of the basic operations have a low-level

footprint that incorporates an arbitrarily large portion of the linked list. How-
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ever, it is quite reasonable to identify portions of the low-level state — individual

nodes in a linked list — that correspond to portions of the high level state —

individual elements of the corresponding list. In fact, the locality-preserving

approach can be applied to this implementation, by treating the portion of the

linked list that leads up to the nodes of interest as crust.

On the other hand, consider the implementation of the tree module from

§7.3.2. In this case, the crust could be arbitrarily large — accounting for all of

the siblings of the top level of the tree. This suggests that the locality-breaking

approach might have been prudent.

Clearly, there is a significant overlap in the applicability of the two ap-

proaches, but are there any cases in which one approach is applicable but the

other is not? The answer is, in fact, “no” — a locality-preserving translation

can be used to construct a locality-breaking translation and vice versa.

From -preserving to -breaking is simple. Assume that τ : A→ B is a locality-

preserving translation. For all c ∈ CA, ϕ ∈ CmdA and (P,Q) ∈ Ax JϕKA there

is a derivation of `A {{∅, c} • P} ϕ {{∅, c} •Q}, simply using Axiom followed

by Frame. By the soundness of locality-preserving translations, there must

therefore also be a derivation of `B {J{∅, c} • P Kτ} JϕKτ {J{∅, c} •QKτ}. Thus

τ defines a locality-breaking translation.

From -breaking to -preserving is slightly trickier. Assume that τ : A → B
is a locality-breaking translation. For the interface sets, choose Iin = {1} and

Iin = CA. Define the representation functions as follows:

〈〈χA〉〉c = {χB | χB ατ (c • χA)}

〈〈c〉〉c1c2 =

IB if c2 = c1 • c

∅ otherwise.

Finally, choose F = {1} and define ec = IB. Application preservation holds by

construction, as does crust inclusion. Axiom correctness simply reduces to the

criterion that τ is a locality-breaking translation, i.e. that the axioms, with each

singleton frame, hold under translation. Thus τ defines a locality-preserving

translation.

7.5.4 On Abstract Predicates

One way of viewing the translation functions is as abstract predicates; that is,

JP K is an abstract predicate parametrised by P . However, viewing this as a

completely abstract entity does not confer abstract local reasoning. Exposing

such axioms as JP K∨ JQK↔ JP ∨QK is a start — it allows the low-level disjunc-

tion rule to implement its high-level counterpart — and is possible with some
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formulations of abstract predicates [DYDG+10]. However, abstract predicates

do not currently provide a mechanism for exporting meta-theorems such as the

soundness of the abstract frame rule. That is to say, there is no way to expose

the fact that if {JP K} C {JQK} holds then so does {JK • P K} C {JK • P K}. This

work suggests that including such a mechanism could be a valuable addition to

the abstract predicate methodology.

7.5.5 On Data Refinement

The locality refinement techniques presented here can be viewed as instances

of the data refinement technique known as downward simulation (or L-simula-

tion) [dE99]. An implementation downward simulates a specification if there

is some translation from the abstract model to the concrete model such that

the possible results of translating from an abstract state to a concrete state

and then performing the implementation of an operation are contained within

the possible results of performing the abstractly specified operation followed by

translating the result to a concrete state. One key difference with the approach

presented here is that downward simulation is typically considered with regard

to denotational rather than axiomatic semantics. By working with axiomatic

semantics, locality is embedded into the abstract specification of modules.

7.5.6 On Concurrency

Extending the results presented here to a concurrent setting is not entirely

trivial. A separation logic-style parallel rule is only appropriate when the model

has a commutative ∗-like operator; while the heap and list modules have such

an operator, the tree model does not. (Segment logic [GW09] is a promising

approach to introducing a commutative ∗ to structured models such as trees.)

Assume that we have a sound module translation from an abstract module to

a concrete one, and that both models include a commutative ∗ connective, such

that, for every state s there is some context c such that, for all states s′, s∗s′ =

c • s′. If the implementations of the module operations are linearisable [HW90]

— that is, they are observationally equivalent to atomic operations — then the

separation logic parallel rule should be sound at the abstract level. That is, if

{JP1K} JC1K {JQ1K}

{JP2K} JC2K {JQ2K}

then

{JP1 ∗ P2K} JC1 ‖ C2K {JQ1 ∗Q2K} .
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Intuitively, this is because the operations of the threads are effectively inter-

leaved, and so the state of the other thread at each point can be viewed as a

frame.

For locality-preserving translations it is possible that a more direct approach

can be taken to establish the soundness of the abstract parallel rule, especially

if the translation can be shown to preserve the ∗ connective. This principle is

embodied in the concurrent abstract predicate methodology presented in Chap-

ter 8. Where ∗ is incompletely preserved it is likely that the crust will play an

important role, representing resource that may be shared between threads, and

therefore must be manipulated in a thread-safe manner.
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Chapter 8

Concurrent Abstract

Predicates

In this chapter, I present a program logic that allows fine-grained abstraction in

the presence of sharing, by introducing concurrent abstract predicates (CAP).

These predicates present a fiction of disjointness; that is, they can be used

as if each predicate represents a disjoint resource, whereas in fact resources

are shared between predicates. For example, given a set implemented by a

linked list, abstract predicates can be used to assert “the set contains 5, which

I control” and “the set contains 6, which I control”. Both predicates assert

properties about the same shared structure, and both can be used at the same

time by separate threads: for example, the two elements can be concurrently

removed from the set.

Concurrent abstract predicates capture information about the permitted

changes to the shared structure. In the case of the set predicates, each predi-

cate gives the thread full control over a particular element of the set. Only the

thread owning the predicate can remove this element. This control is imple-

mented using permission resources [DFPV09]. The permissions encapsulated in

a predicate must ensure that the predicate is stable: that is, immune from any

interference that the environment could have permission to perform. Predicates

are therefore able to specify independent properties about the data, even though

the data are shared.

With the CAP program logic, a module implementation can be verified

against a high-level specification expressed using concurrent abstract predicates.

Clients of the module can then be verified purely in terms of this high-level spec-

ification, without reference to the module’s implementation. I demonstrate this
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by presenting two implementations of a lock module satisfying the same abstract

lock specification, and using this specification to build two implementations of

a concurrent set satisfying the same abstract set specification. At each level,

the reasoning treats the lower level entirely abstractly, avoiding dealing directly

with the implementation details. Hence, concurrent abstract predicates provide

the necessary abstraction for compositional reasoning about concurrent systems.

The CAP system combines two key elements. This first is an expressive

low-level resource model that can be used to reason about complex concurrent

behaviours in heap-manipulating programs. This resource model derives from

Deny-Guarantee [DFPV09], which itself inherits from RGSep [Vaf07, VP07] and

permission accounting for separation logic [BCOP05]. In concurrent separation

logic [O’H04], assertions not only capture knowledge about the state of the

memory, but also assert permission to read and modify the memory by treat-

ing it as a resource. Permission accounting refines this approach by making a

distinction between the resource required for read-only access and that required

for full read-write access. Deny-Guarantee goes further by allowing resources to

represent permissions for arbitrary operations.

The second key element is a mechanism for abstracting resource in a way

that facilitates modular reasoning. CAP’s abstraction mechanism derives from

abstract predicates for separation logic [Par05, PB05]. With abstract predi-

cates, module operations are specified in terms of abstract resources. Module

implementations are verified using some concrete interpretation of the abstract

predicates, which may be different for different implementations. Clients, on

the other hand, are verified without reference to any particular concrete inter-

pretation of the predicates.

The result of combining an expressive resource model with an abstraction

mechanism is that it is possible to realise powerful abstract specifications for

concurrent modules. Without abstraction, it would be difficult to scale Deny-

Guarantee reasoning to large systems; on the other hand, without an expressive

resource model, it would be difficult to prove that highly-concurrent module

implementations realise their abstract specifications.

This chapter begins with an informal development of the CAP system using

the example of a lock module, considering two different implementations (§8.1).

In §8.2, I demonstrate the compositionality of the system by building two imple-

mentations of an abstract set specification on top of the abstract lock module.

In §8.3, I formalise the CAP system and prove that it is sound with respect to

an operational semantics.
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Collaboration and Contribution

The work presented in this chapter, which was first presented in [DYDG+10],

was undertaken in collaboration with Dodds, Gardner, Parkinson and Vafeiadis.

My key contribution was the observation that the permission models of Dodds et

al. [DFPV09] could be used to realise abstract disjoint specifications. I was lead

to this observation by my efforts to specify and reason about a concurrent B-

Tree implementation, a task which was later taken up by da Rocha Pinto [da 10,

dRPDYGW11]. I also contributed to the technical development, in particular

suggesting the method by which shared regions can be dynamically created and

disposed.

8.1 Informal Development

I develop the core idea of this chapter: to define abstract specifications for

concurrent modules and prove that concrete module implementations satisfy

these specifications. In this section, I use the motivating example of a lock

module, one of the simplest examples of concurrent resource sharing. I define an

abstract specification for a lock (§8.1.1) and show two different implementations

that satisfy the specification (§8.1.2 and §8.1.4).

8.1.1 Lock Specification

A lock module is a simple mechanism for ensuring that concurrent threads do

not attempt to access a protected resource simultaneously. When a thread

wants to access the resource protected by lock l it calls the function lock(l).

The function does not return until it has acquired the lock on behalf of the

thread — it may have to wait if another thread already holds the lock. Having

acquired the lock, the thread is able to access the protected resource without

interference (assuming that all other threads obey the locking discipline). Once

its operation on the protected resource is complete, the thread calls unlock(l)

to allow other threads the ability to access the resource. A lock module also

typically has a mechanism for creating new locks, such as makelock(n), which

creates a lock (that is initially locked) and also allocates a memory block of

length n.
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The lock module functions have the following specification:

{isLock(l )} lock(l ) {isLock(l ) ∗ Locked(l )}
{Locked(l )} unlock(l ) {emp}

{emp} l := makelock(n )

{
∃l. l = l ∧ isLock(l) ∗ Locked(l)

∗ l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −

}
.

This specification, which is presented by the lock module to its clients, is

abstract and so independent of the underlying implementation.1 The assertions

isLock(l) and Locked(l) are abstract predicates: their underlying semantics is

hidden from the client and depends on the module implementation. The pred-

icate isLock(l) asserts l identifies a lock which the thread may acquire, while

Locked(l) asserts that the thread currently holds the lock identified by l. The

underlying state model is a separation algebra, so the separating conjunction

P ∗Q is used to assert that the state can be split disjointly into two parts, one

satisfying P and the other satisfying Q.

Although the concrete interpretations of abstract predicates are hidden from

clients of the module, the clients need some additional knowledge about the

predicates in order to use them effectively. This information is embodied in

abstract predicate axioms, which also form part of the module specification. For

the lock module, the following two axioms are provided:

isLock(l)↔ isLock(l) ∗ isLock(l)

Locked(l) ∗ Locked(l)↔ false.

The first axiom allows the client to share freely the knowledge that l is a

lock. When a thread branches in two, its resources are split disjointly between

the two threads. This axiom allows both threads to have the knowledge that l

is a lock, which is essential if they are to use the lock for synchronisation.

Remark. Here, I do not track how isLock(l) is split. To allow for lock
l to be disposed, it would be necessary to keep track of how
its isLock predicate is split, for instance with fractional permis-
sions [Boy03], to be sure that no other thread was expecting to
use l as a lock when the time came to dispose it. I show how
this is achieved in §8.1.5.

The second axiom captures the fact that holding a lock (by having the

Locked(l) predicate) is exclusive. Using this axiom, together with the speci-

1This specification resembles those used in the work of Gotsman et al. [GBC+07] and

Hobor et al. [HAN08] on dynamically-allocated locks.
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fication for lock, the following triple can be inferred:

{isLock(l )} lock(l ); lock(l ) {false} .

Under the partial correctness interpretation of triples, this implies that attempt-

ing to acquire a lock twice in succession will not terminate. This is the expected

behaviour of a (non-reentrant) lock.2

8.1.2 A Compare-and-Swap Lock Implementation

Consider the following lock module implementation based on an atomic com-

pare-and-swap operation.

lock(l ) {
local b in

b := false;

while ¬b do

〈b := CAS(l − 1, 0, 1)〉
}
unlock(l ) {
〈[l − 1] := 0〉
}

l := makelock(n ) {
local x in

x := alloc(n + 1);

[x ] := 1;

l := x + 1

}

Angle brackets are used to denote atomic statements. Atomic operations

appear to occur instantaneously. Many instruction sets support primitive atomic

operations including read, write and compare-and-swap. The compare-and-swap

instruction CAS(a, v1, v1) compares the value stored at heap address a with value

v1 and replaces it with v2 if the two are equal. The return value indicates

whether the swap took place.

The intuition behind the algorithm is that the lock for the block at address

l is stored at address l − 1; a value of 0 indicates that the lock is not held,

while a value of 1 indicates that the lock is held. In order to acquire the lock,

a thread must wait until an instant in which the lock is not held and signal

that the lock is now held, as embodied by the compare-and-swap. Since the

compare-and-swap is atomic, no other thread can also believe that it holds the

lock. In order to release a lock, it is sufficient to (atomically) set the lock value

to 0.

2Reentrant locks allow a thread holding a lock to successfully acquire a lock that is already

held. The specification is necessarily different to that for ordinary locks.
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Interpretation of Abstract Predicates

I relate the lock implementation to the lock specification by giving a concrete

interpretation of the abstract predicates. The predicates are interpreted not just

as assertions about the internal state of the module, but also as assertions about

the internal interference of the module: that is, how concurrent threads can

modify shared parts of the module state. To describe this internal interference,

separation logic is extended with shared region assertions P
r

I
and permission

assertions [γ]
r
π.

The shared region assertion P
r

I
specifies that there is a shared region of

memory, identified by label r, and that the entire shared region satisfies P . A

shared region is not divided when it is shared, ensuring that all threads have a

consistent view of it. This is captured by the logical equivalence: P
r

I
∗ Q r

I
≡

P ∧Q r

I
. The possible changes that the shared region can undergo — the

actions on the shared region — are specified by the interference assertion I.

The permission assertion [γ]
r
π specifies that the thread has permission π to

perform the action named γ on the shared region r. The action γ must be

declared in region r’s interference assertion. Following Boyland [Boy03], the

permission can be

� a fractional permission, π ∈ (0, 1), denoting that both the thread and the

environment can perform the action, or

� full permission, π = 1, denoting that the thread can perform the action

but the environment cannot.3

Permissions can be split (and recombined): [γ]
r
π1+π2

≡ [γ]
r
π1
∗ [γ]

r
π2

. This

allows permissions to be split among threads so that, for example, each thread

is able to acquire a lock. The total amount of permission for any given action

is always 1, so having permission 1 is indeed exclusive.

A permission can only be acted upon if it is held in the thread’s local state.

Thus if full permission to an action is in a shared region then no thread can

perform that action. Why have an action at all if its full permission is in

the shared state? Since actions can manipulate permissions, a thread may,

by performing one action, acquire permission to perform another action. This

pattern is a common one.

With the intuition behind these two new assertions established, I can give

the interpretations of the lock predicates for the compare-and-swap lock. They

3The state model also contains a zero permission, 0, denoting that the thread may not

perform the action but the environment may. Zero permissions are not directly asserted, but

are implied when no other permission value is asserted.
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are as follows:

isLock(l) ≡ ∃r, π. [Lock]
r
π ∗ ((l − 1) 7→ 0 ∗ [Unlock]

r
1) ∨ (l − 1) 7→ 1

r

I(l,r)

Locked(l) ≡ ∃r. [Unlock]
r
1 ∗ (l − 1) 7→ 1

r

I(l,r)

The interpretation of the isLock(l) predicate specifies that the thread has, in

its local state, permission π to perform the Lock action. It also specifies that

the shared region satisfies the module’s invariant: either the lock is unlocked

(l − 1) 7→ 0 and the region holds the full permission [Unlock]
r
1 to unlock the

lock; or the lock is locked (l − 1) 7→ 1 and the unlocking permission is gone

(taken by the thread that acquired the lock).

Meanwhile, the interpretation of the Locked(l) predicate specifies that the

thread has exclusive permission [Unlock]
r
1 to unlock the lock, and that the

lock is indeed locked (l − 1) 7→ 1.

Remark. Since the region name r is existentially quantified in both predi-
cates, the question as to whether the predicates refer to the same
region naturally arises, e.g. in the assertion isLock(l)∗ isLock(l′).
When l = l′, the uniqueness of the heap cell at address (l − 1)
ensures that the regions are the same. On the other hand, when
l 6= l′ the regions have different contents (and interference), and
so must be distinct.

The actions permitted on the lock’s shared region are declared in the inter-

ference assertion I(l, r). Each action declaration has the form γ : P  Q, where

γ is the name of the action, P describes part of the shared region immediately

before the action is performed, and Q describes what becomes of that part of

the shared region immediately after the action is performed. The actions for

the compare-and-swap lock are as follows:

I(l, r)
def
=

 Lock : (l − 1) 7→ 0 ∗ [Unlock]
r
1  (l − 1) 7→ 1,

Unlock : (l − 1) 7→ 1 (l − 1) 7→ 0 ∗ [Unlock]
r
1


The Lock action requires that the shared region contains the unlocked lock

(l − 1) 7→ 0 together with full permission [Unlock]
r
1 to unlock the lock. The

result of the action is that the lock is locked (l − 1) 7→ 1 and the unlock per-

mission has moved to the local state of the thread performing the action (since

[Unlock]
r
1 has gone from the shared region). The movement of [Unlock]

r
1 into

the locking thread’s local state allows the thread to release the lock later. Note

the local state is not explicitly represented in the action; since interference only
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happens on the shared region, actions do not need to be prescriptive about local

state.

The Unlock action requires that the shared region contains the locked lock

(l−1) 7→ 1. The result of the action is that the lock is unlocked (l−1) 7→ 0 and

the unlock permission [Unlock]
r
1 is returned to the shared region. The thread

must have originally had [Unlock]
r
1 in its local state in order to move it to the

shared state in accordance with the action.

Notice that Unlock is self-referential: the action moves exclusive permission

on itself out of the local state. Consequently, a thread can only perform Unlock

once, corresponding to the intuitive protocol that a thread can only release a

lock once without acquiring it again. This self-reference is not problematic, since

permissions indirectly reference actions by name rather than directly referencing

them by their semantics.

It is important for the client that the abstract predicates be self-stable — that

is, if the predicate holds then no (permitted) interference by the environment

should change that. This makes it possible to abstract the module’s internal

interference.

Consider the isLock(x) predicate. There are two actions that the environ-

ment could potentially perform on the shared region: Lock and Unlock. Per-

forming the Lock action simply takes the shared region from the first disjunct

in the predicate definition to the second; conversely, performing the Unlock

action takes the shared region from the second disjunct to the first. In both

cases, the isLock(x) predicate remains stable.

Consider the Locked(x) predicate. Since the lock is already locked (i.e. l −
1 7→ 1), it is not possible for the environment to perform the Lock action.

Furthermore, since the full permission [Unlock]
r
1 to the unlock action is in the

thread’s local state, the environment cannot perform the Unlock action either.

Hence the Locked(x) predicate is also stable.

In [DYDG+10], the proof rules required abstract predicates to be self-stable;

here, self-stability is exposed to the client explicitly with additional axioms.

While it is important for a client to know that abstract predicates are stable

in order to reason with them soundly, it is conceivable that abstract predicates

that are unstable, or only stable contingently, could also be useful. From a

theoretical perspective, not enforcing self-stability of abstract predicates means

that abstraction and interference are orthogonal concerns in the logic.

In the logic, the stability of an arbitrary assertion P may be expressed as

P → R P . The assertion R P describes those states which will still satisfy P

no matter what permitted interference the environment may perform on them.
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This is the weakest stable stronger assertion with respect to P of Wickerson et

al. [WDP10]. The implication P → R P therefore means that, if P holds, then

it will continue to hold, despite any permitted interference from the environment

— that is, P is stable. The following two axioms should therefore be added to

the lock module specification:

isLock(x)→ R isLock(x)

Locked(x)→ R Locked(x).

I have shown that these two axioms hold, but, in order for the imple-

mentation to be correct, the two axioms from §8.1.1 must also hold. The

first of these, isLock(l) ↔ isLock(l) ∗ isLock(l), follows from the definition of

isLock by the fact that the fractional permission [Lock]
r
π can be subdivided

as [Lock]
r
π
2
∗ [Lock]

r
π
2

and the fact that ∗ behaves additively (i.e. like ∧) on

shared region assertions. The second axiom, Locked(l) ∗ Locked(l) ↔ false, fol-

lows from the fact that more than full permission for an action cannot exist —

[Unlock]
r
1 ∗ [Unlock]

r
1 ≡ false.

Verifying the Implementation

Given the interpretations for the abstract predicates above, the lock imple-

mentation can be verified against its specification. Figures 8.1 and 8.2 present

outline proofs for the three operations.

Consider first the unlock operation, which has the simplest proof. The proof

first unfolds the abstract predicate in the precondition to its concrete interpre-

tation. The precondition permits the atomic update 〈[l − 1] := 0〉 because it

can be viewed as performing the unlock action — setting the heap cell at l − 1

from 1 to 0 and transferring full permission [Unlock]
r
1 to the unlock action into

the shared region — and the thread holds permission to perform that action.

The result of the thread performing the action is shown in the third assertion in

the proof; but this cannot be the postcondition of the atomic update because it

is not stable. To stabilise the assertion, it is necessary to consider what updates

the environment may make to the shared region: in this case, another thread

could acquire the lock. This leads to the stable postcondition, which is weakened

further to emp, which makes no assertion at all about the shared state.

For the lock operation, the key proof step is at the atomic compare-and-

swap operation. If the operation fails then no change is made to the state; if the

operation succeeds then it is interpreted as performing the Lock action (since

it has permission [Lock]
r
π) — setting the heap cell at l − 1 from 0 to 1 and

transferring the permission [Unlock]
r
1 to the thread’s local state. The variable
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{isLock(l )}
lock(l ) {{
∃r, π. [Lock]

r
π ∗ ((l−1) 7→ 0 ∗ [Unlock]

r
1) ∨ (l−1) 7→ 1

r

I(l ,r)

}
local b in

b := false;
(
¬b ∧ [Lock]

r
π ∗ ((l−1) 7→ 0 ∗ [Unlock]

r
1) ∨ (l−1) 7→ 1

r

I(l ,r)

)
∨
(
b ∧ [Lock]

r
π ∗ [Unlock]

r
1 ∗ (l−1) 7→ 1

r

I(l ,r)

)


while ¬b do{
¬b ∧ [Lock]

r
π ∗ ((l−1) 7→ 0 ∗ [Unlock]

r
1) ∨ (l−1) 7→ 1

r

I(l ,r)

}
〈b := CAS(l − 1, 0, 1)〉
(
¬b∧[Lock]

r
π∗ ((l−1) 7→ 0 ∗ [Unlock]

r
1) ∨ (l−1) 7→ 1

r

I(l ,r)

)
∨
(
b ∧ [Lock]

r
π ∗ [Unlock]

r
1 ∗ (l−1) 7→ 1

r

I(l ,r)

)
{

b ∧ [Lock]
r
π ∗ [Unlock]

r
1 ∗ (l−1) 7→ 1

r

I(l ,r)

}

∃r, π. [Lock]

r
π ∗ ((l−1) 7→ 0 ∗ [Unlock]

r
1) ∨ (l−1) 7→ 1

r

I(l ,r)

∗ ∃r. [Unlock]
r
1 ∗ (l−1) 7→ 1

r

I(l ,r)


}
{isLock(l ) ∗ Locked(l )}

{Locked(l )}
unlock(l ) {{
∃r. [Unlock]

r
1 ∗ (l−1) 7→ 1

r

I(l ,r)

}
〈[l − 1] := 0〉{
∃r. (l−1) 7→ 0 ∗ [Unlock]

r
1

r

I(l ,r)

}
// Stabilise the assertion

{emp}
}
{emp}

Figure 8.1: Proof outline for compare-and-swap lock (lock and unlock)
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{emp}
l := makelock(n ) {
local x in

x := alloc(n + 1);

{∃x. x = x ∧ x 7→ − ∗ (x+ 1) 7→ − ∗ · · · ∗ (x+ n) 7→ −}
[x ] := 1;

{∃x. x = x ∧ x 7→ 1 ∗ (x+ 1) 7→ − ∗ · · · ∗ (x+ n) 7→ −}
// Create shared lock region∃l. x = l − 1 ∧ ∃r. [Lock]

r
1 ∗ [Unlock]

r
1 ∗ (l − 1) 7→ 1

r

I(l ,r)

∗ l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −


l := x + 1

}
{∃l. l = l ∧ isLock(l) ∗ Locked(l) ∗ l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −}

Figure 8.2: Proof outline for compare-and-swap lock (makelock)

b records whether the CAS succeeded, so the lock must have been acquired once

the loop has been exited. To repackage the postcondition in the form of the

abstract predicates, the shared region assertion is duplicated and (for the isLock

predicate) weakened.

Finally, for the makelock operation, the key proof step is the creation of a

fresh shared region and its associated permissions. The proof system includes

rules which allow repartitioning of state between local and shared regions (where

the actual contents of the heap is unaffected) in a way that is consistent with

the expectations of other threads. In particular, a fresh shared region and full

permissions to all of its actions can be created.

Remark. When a shared region is created, its region identifier is existen-
tially quantified. This is because if a specific identifier were used
then it would not be consistent with the possibility that a re-
gion with that identifier had already been created (possibly by
another thread). This approach to region creation was inspired
by the axiomatisation of heap allocation, wherein the address
returned is existentially quantified. Essentially, region creation
is treated as (demonically) nondeterministic.
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8.1.3 The Proof System

I present an informal description of the proof system; the formal details are

given in §8.3. Judgements in the proof system have the form ∆; Γ ` {P} C {Q},
where ∆ contains predicate definitions and axioms, and Γ contains specifications

for the functions called in C. The pre- and postconditions P and Q are asser-

tions which may use abstract predicates; their semantics (as sets of states) is

therefore dependent on the interpretation of the abstract predicates themselves.

The judgement should be read with a fault-avoiding partial correctness inter-

pretation: given an interpretation of abstract predicates that satisfies ∆, and

functions that meet the specifications in Γ, whenever the program C is run from

a state satisfying P then it will not fault, but will either terminate in a state

satisfying Q or not terminate at all.

The proof rule for atomic commands is the following:

`SL {p} C {q}

∆; Γ `
{

R
[
p
q

〉
Q
}
〈C〉

{
R Q

} Atomic

The premiss of this rule is an ordinary separation logic triple, which is inferred

using the separation logic proof rules. Its assertions therefore do not make any

mention of permissions, shared regions or abstract predicates, but only of the

heap.

In the proof of the unlock operation of the compare-and-swap lock (Fig-

ure 8.1), the Atomic rule is used to handle the 〈[l − 1] := 0〉 atomic step. In

this case, the premiss would be

`SL {(l−1) 7→ 1} [l − 1] := 0 {(l−1) 7→ 0} ,

which follows from elementary separation logic reasoning.

In the conclusion of the rule, the assertion
[
p
q

〉
Q specifies that the state is

such that replacing a concrete subheap matching p with one satisfying q can be

interpreted in a manner consistent with the permitted interference to give a state

satisfying Q. One way of interpreting this is that, for the atomic command, the

region boundaries are broken down and the update is performed, but when the

boundaries are reestablished there must be some way of explaining the update

that is consistent with the actions that the thread has permission to perform.

Returning to the example, the following implication is valid:

[Unlock]
r
1 ∗ (l−1) 7→ 1

r

I(l ,r)
→[

(l−1) 7→ 1

(l−1) 7→ 0

〉(
(l−1) 7→ 0 ∗ [Unlock]

r
1

r

I(l ,r)

)
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This is since the change to the heap is simply switching the value of heap cell

l − 1 from 1 to 0, and the update to the shared region r corresponds to the

permitted Unlock action:

Unlock : (l − 1) 7→ 1 (l − 1) 7→ 0 ∗ [Unlock]
r
1

Furthermore, permission tokens (namely [Unlock]
r
1) are neither created nor

destroyed, but simply transferred.

Since
[
p
q

〉
Q may not be stable, the precondition is taken to be the weakest

stable assertion that is is stronger: R
[
p
q

〉
Q. SimilarlyQmay not be stable, and

so the postcondition is taken to be the strongest stable assertion that is weaker.

This is expressed as R Q, which is the strongest stable weaker assertion with

respect to Q of Wickerson et al. [WDP10].

In the example, [Unlock]
r
1 ∗ (l−1) 7→ 1

r

I(l ,r)
is stable, so it follows that

[Unlock]
r
1 ∗ (l−1) 7→ 1

r

I(l ,r)
→

R

[
(l−1) 7→ 1

(l−1) 7→ 0

〉(
(l−1) 7→ 0 ∗ [Unlock]

r
1

r

I(l ,r)

)
.

On the other hand, (l−1) 7→ 0 ∗ [Unlock]
r
1

r

I(l ,r)
is not stable. However,

R (l−1) 7→ 0 ∗ [Unlock]
r
1

r

I(l ,r)
→

((l−1) 7→ 0 ∗ [Unlock]
r
1) ∨ (l−1) 7→ 1

r

I(l ,r)
.

Consequently, the Atomic rule, together with the rule of consequence, allows

us to infer the specification for 〈[l − 1] := 0〉 that is used in the proof of the

unlock implementation, namely:{
[Unlock]

r
1 ∗ (l−1) 7→ 1

r

I(l ,r)

}
〈[l − 1] := 0〉{

((l−1) 7→ 0 ∗ [Unlock]
r
1) ∨ (l−1) 7→ 1

r

I(l ,r)

}
As we saw in the proof of makelock, a thread may manipulate shared regions

without making any update to the concrete state at all. This is embodied by

the following proof rules:

∆; Γ ` {P} C {Q}

∆; Γ `
{

R G P
}
C
{
Q
} Guar-L

∆; Γ `
{
P
}

C
{

R G Q
}

∆; Γ ` {P} C {Q} Guar-R

In these rules G P specifies that the state is such that, without updating the

concrete heap, it can be repartitioned in a manner consistent with the permitted
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interference to give a state satisfying P . This is equivalent to
[

emp
emp

〉
P . As in

the Atomic rule, R is used to ensure that the assertion is stable.

In the proof of makelock (Figure 8.2), the Guar-R rule is used to construct

the shared region for the lock. This is by virtue of the following valid implication:(
R G (l−1) 7→ 1

)
→
(
∃r. [Lock]

r
1 ∗ [Unlock]

r
1 ∗ (l − 1) 7→ 1

r

I(l ,r)

)
There are essentially three types of repartitioning that can take place: per-

forming an action for which the thread holds permission; creating a fresh region,

together with all of its associated permissions; and disposing of a region when all

of its associated permissions are held. These may occur with a concrete update

(using the Atomic rule) or without one (using the Guar-L or Guar-R rule).

Remark. In constructing a proof, we have a degree of choice about which
repartitionings to perform and when. Since we could make dif-
ferent and inconsistent choices about these repartitionings, the
conjunction rule must be omitted from the proof system.

The proof system also includes proof rules for dealing with abstract predi-

cates. Abstract predicates are typically introduced at module boundaries: the

module implementation uses the concrete definition of the abstract predicates,

while the module’s client uses only the abstract specification of the module and

axiomatisation of the abstract predicates. The following rule captures this:

∆ ` {P1} C1 {Q1} . . . ∆ ` {Pn} Cn {Qn} ∆ ` ∆′

∆′; {P1} f1 {Q1} , . . . , {Pn} fn {Qn} ` {P} C {Q}
` {P} let f1 = C1, . . . , fn = Cn in C {Q}

The premisses of the rule require that

� the implementation Ci of fi satisfies the specification {Pi} Ci {Qi}, given

the predicate definitions ∆;

� the predicate definitions ∆ satisfy the abstract predicate axioms ∆′ that

are exposed to the client; and

� the client satisfies the specification {P} C {Q} given the predicate axioms

∆′ and the function specifications {P1} f1 {Q1} , . . . , {Pn} fn {Qn}.

Since the client is only verified with respect to the abstract specification of the

module, any module implementation meeting the specification can be used.

290



Concurrent Abstract Predicates 8.1 Informal Development

The proof rule defined above is not one of the basic rules of the proof system,

but it is derivable from them. A couple of side-conditions are omitted from the

above rule. Firstly, P and Q should not use the abstract predicates. This is

because abstract predicates have an undefined meaning in the conclusion of the

rule, since there is no abstract predicate environment. Secondly, the predicate

definitions must be realisable by some concrete interpretation of the predicates.

A predicate definition such as A↔ ¬A is inconsistent. Syntactic conditions can

be used to enforce the consistency of predicate definitions.

8.1.4 A Ticketed Lock Implementation

Let us now consider another, more complex, implementation of the lock module:

the ticketed lock. Whereas the compare-and-swap lock allows any of the threads

contending for the lock to succeed once the lock becomes available, the ticketed

lock grants the lock to the first thread that registered its intent to acquire the

lock. The algorithm is analogous to queuing systems in shops, in which each

customer takes a numbered ticket on arrival and is served once his or her number

is announced. This provides a fairness guarantee: assuming every thread that

acquires the lock eventually releases it, no thread that is waiting to acquire the

lock will be denied it forever — a situation that is a possibility for the compare-

and-swap lock. This algorithm is used in current versions of Linux. Despite the

fact that the ticketed lock is quite different from the compare-and-swap lock, I

show that it also satisfies the abstract specification given in §8.1.1.

The ticketed lock implementation is as follows:

lock(l ) {
local t , o in

〈t := INCR(l .next)〉 ;
〈o := [l .owner]〉 ;
while t 6= o do

〈o := [l .owner]〉
}
unlock(l ) {
〈INCR(l .owner)〉
}

l := makelock(n ) {
local x in

x := alloc(n + 2);

l := x + 2;

[l .owner] := 0

[l .next] := 1

}

where

E.next
def
= E− 1 E.owner

def
= E− 2.

The operation INCR(a) atomically increments the value stored at address a
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and returns the original value. As with CAS, instruction sets typically support

INCR as a primitive atomic operation.

The intuition behind the algorithm is that l.next stores the next available

ticket for the lock l, and l.owner stores the number of the ticket that currently

has the right to the lock. A thread wishing to acquire the lock first takes a ticket

by atomically reading and incrementing l.next. It then waits until its l.owner

matches the ticket it acquired, indicating it now holds the lock. To unlock the

lock, the thread atomically increments l.owner, signalling the thread with the

next ticket that it now holds the lock. Note that the lock specification requires

that a newly-constructed lock is initially locked; this is established by the initial

values given to l.owner and l.next.

Interpretation of Abstract Predicates

The interpretations of the lock predicates for the ticketed lock are as follows:

isLock(l) ≡ ∃r, π. [Take]
r
π ∗
∃k, k′. k ≤ k′ ∗ l.owner 7→ k ∗ l.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]
r
1 ∗ true

r

T (l,r)

Locked(l) ≡ ∃r, k. [Next(k)]
r
1 ∗ l.owner 7→ k ∗ true

r

T (l,r)

(Here � is the lifting of ∗ to sets; it is the multiplicative analogue of ∀.)
The actions for the ticketed lock are as follows:

T (l, r)
def
=

Take : ∃k. (l.next 7→ k ∗ [Next(k)]
r
1  l.next 7→ (k + 1)) ,

Next(k) : l.owner 7→ k  l.owner 7→ (k + 1) ∗ [Next(k)]
r
1


The Take action is performed by a thread in acquiring a ticket, and Next is

performed in making the lock available to the holder of the next ticket.

The predicate isLock(l) asserts that the shared region contains the owner and

next fields of the lock l, together with full permission for the Next action for

every ticket value that has not yet been claimed. There may also be other Next

permissions in the shared state that have been returned as a result of unlocking

the lock; since these are no longer relevant, they are simply abstracted to true.

The predicate also asserts that the current holder of the lock is no greater than

the next available ticket value, and that the thread has permission to perform the

Take action. The predicate Locked(l) asserts that the thread has the exclusive

permission to increment the lock’s owner field from its current value.

Stability of isLock(l) is ensured by the fact that it is stable under the Take

action and the Next(k) actions for each k less than the current value of l.next;

no other actions can occur. Stability of Locked(l) is ensured by the fact that the
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predicate holds full permission on the action Next(k), and no other action can

affect the owner field while its value is k. The other two axioms follow simply

from the predicate definitions, as for the compare-and-swap lock.

Verifying the Implementation

Given the interpretations of the inductive predicates above, the ticketed lock

implementation can be verified against the lock specification. Figure 8.3 gives

an outline proof of the lock and unlock operations; the proof of makelock is

essentially the same as for the compare-and-swap lock, and so is omitted.

The proofs largely follow the intuition behind the algorithm. The lock op-

eration increments the lock’s next field, acquiring full permission for the Next

action for its ticket value, t ; this is in accordance with the Take action, for

which partial permission is held. At this point, the environment may increment

the next field, so its value is some indeterminate k′ > t . The owner field may

also be incremented, but only as high as t , since it cannot have permission for

Next(t ). The thread then loops, reading the lock’s owner field, which is stably

less than or equal to t ; once it is equal to t , the field’s value is stable, because

only the Next(t ) action can change it. The unlock operation increments the

lock’s owner field, which it may do since it holds exclusive permission to the

Next action for the current value of the field.

8.1.5 Disposable Locks

For simplicity of exposition, I have so far omitted the disposal of locks from

the lock module specification and implementations. In languages that provide

garbage collection, explicit disposal is generally unnecessary; however, the lan-

guage used here does not provide garbage collection, and so explicit disposal of

dynamically allocated resources is good practice.

As remarked previously, in order to dispose a lock, a thread should have

exclusive permission to that lock: no other thread should have an isLock for the

same lock. Were this not the case, some other thread could attempt to acquire

the lock once it has been disposed, with disastrous consequences. The solution

is to associate fractional permissions with isLock predicates, ensuring that the

total permission is 1. The previous axiom for splitting isLock is now replaced

with the following:

isLock(l, π1 + π2)↔ isLock(l, π1) ∗ isLock(l, π2)

isLock(l, π)→ 0 < π ≤ 1.
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{isLock(l )}
lock(l ) {∃r, π. [Take]

r
π ∗
∃k, k′. k ≤ k′ ∗ l.owner 7→ k ∗ l.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]
r
1 ∗ true

r

T (l ,r)


local t , o in

〈t := INCR(l .next)〉 ;
∃r, π. [Take]

r
π ∗ [Next(t )]

r
1 ∗

∃k, k′. k ≤ t < k′ ∗ l.owner 7→ k ∗ l.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]
r
1 ∗ true

r

T (l ,r)


〈o := [l .owner]〉 ;
∃r, π, k, k′. (o = t → o = k) ∧ [Take]

r
π ∗ [Next(t )]

r
1 ∗

k ≤ t < k′ ∗ l.owner 7→ k ∗ l.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]
r
1 ∗ true

r

T (l ,r)


while t 6= o do

〈o := [l .owner]〉
∃r, π. [Take]

r
π ∗ [Next(t )]

r
1 ∗

∃k′. t < k′ ∗ l.owner 7→ t ∗ l.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]
r
1 ∗ true

r

T (l ,r)


∃r, π. [Take]

r
π ∗
∃k, k′. k ≤ k′ ∗ l.owner 7→ k ∗ l.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]
r
1 ∗ true

r

T (l ,r)

∗ ∃r, k. [Next(k)]
r
1 ∗ l .owner 7→ k ∗ true

r

T (l ,r)


}
{isLock(l ) ∗ Locked(l )}

{Locked(l )}
unlock(l ) {{
∃r, k. [Next(k)]

r
1 ∗ l.owner 7→ k ∗ true

r

T (l,r)

}
〈INCR(l .owner)〉{
∃r, k. l .owner 7→ k + 1 ∗ [Next(k)]

r
1 ∗ true

r

T (l,r)

}
// Weaken the assertion to a stable one

{emp}
}
{emp}

Figure 8.3: Proof outline for the ticketed lock (lock and unlock)
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It is now possible to specify the operation disposelock(l, n) which disposes

of the lock and n-cell memory block at l. The revised specifications for the lock

module’s functions are then as follows:

{isLock(l , π)} lock(l ) {isLock(l , π) ∗ Locked(l )}

{Locked(l )} unlock(l ) {emp}{
emp

}
makelock(n )

{
∃l. ret = l ∧ isLock(l, 1) ∗ Locked(l)

∗ l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −

}
{

isLock(l , 1) ∗ Locked(l ) ∗
l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −

}
disposelock(l , n )

{
emp

}
.

Remark. The lock must be held when disposing the lock to ensure that
the Locked predicate cannot escape and permit the lock to be re-
leased after it has been disposed. A different specification could
allow the lock to be disposed even when it is not held by the
disposing thread; such a specification would have to guarantee
that no other thread holds the Locked predicate. This could be
achieved by having lock and unlock transform an isLock(l, π)
into a Locked(l, π) and vice-versa. An axiom would ensure that
the total permission on isLock and Locked predicates never ex-
ceeds 1, so the lock may be safely disposed with isLock(l, 1).

Implementation and Verification

For both of the lock modules considered in this section, the implementation and

verification for disposelock are very similar. I only consider the compare-and-

swap lock here, for which the implementation is as follows:

disposelock(l , n ) {
dispose(l − 1, n + 1)

}

An outline proof for the correctness of the implementation is given in Fig-

ure 8.4. The key proof step is the disposal of the shared region for the lock

by repartitioning. Region disposal is the inverse of region creation: the thread

starts with full permissions to all actions on the region and ends up with the

contents of the shared region in its local state.
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{isLock(l , 1) ∗ Locked(l ) ∗ l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −}
disposelock(l , n ) {∃r. [Lock]

r
1 ∗ [Unlock]

r
1 ∗ (l − 1) 7→ 1

r

I(l ,r)
∗

l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −


// Dispose shared lock region

{(l − 1) 7→ 1 ∗ l 7→ − ∗ · · · ∗ (l + n − 1) 7→ −}
dispose(l − 1, n + 1)

{emp}
}
{emp}

Figure 8.4: Proof outline for compare-and-swap lock (disposelock)

8.2 Composing Abstract Specifications

In the previous section, I demonstrated that concurrent abstract predicates can

be used to present and verify abstract specifications for concurrent modules.

In this section, I show how clients of such modules, which themselves may be

modules with abstract specifications, can be verified using these abstract specifi-

cations. In particular, I specify an abstract set module and prove the correctness

of two different implementations. Both of the implementations assume a lock

module satisfying the specification given in §8.1.

8.2.1 Set Specification

Consider a simple concurrent module that implements abstract sets. The mod-

ule has three operations: contains, which determines whether a particular value

belongs to the set; add, which adds a specified value to the set; and remove,

which removes a specified value from the set. These operations can be given the

following abstract specifications:

{in(s , v )} r := contains(s , v ) {r ∧ in(s , v )}
{out(s , v )} r := contains(s , v ) {¬r ∧ out(s , v )}
{own(s , v )} add(s , v ) {in(s , v )}
{own(s , v )} remove(s , v ) {out(s , v )}

Here in(s, v) is an abstract predicate asserting that the set identified by s con-

tains the value v. Correspondingly, out(s, v) asserts that the set s does not

contain v. As a shorthand, own(s, v)
def
= in(s, v) ∨ out(s, v).

These abstract predicates not only express knowledge about whether the
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value v is in the set s, but also assert the exclusive right to change whether v

belongs to s. Consequently, out(s, v) is not simply the negation of in(s, v). The

exclusivity of permissions is captured by the following module axiom:

own(s, v) ∗ own(s, v)→ false.

The module also exposes the stability of its abstract predicates with the

following axioms:

in(s, v)→ R in(s, v)

out(s, v)→ R out(s, v).

The abstract predicates permit disjoint reasoning about values in the set,

even though they may be implemented by a single shared structure; any un-

derlying sharing is hidden from the client. For example, consider the following

program, which concurrently removes two values from a set:

remove(s , v1) ‖ remove(s , v2)

If values v1 and v2 are distinct then the program should successfully remove

both from the set, as captured by the following proof outline:

{own(s , v1) ∗ own(s , v2)}
{own(s , v1)} {own(s , v2)}
remove(s , v1) remove(s , v2)

{out(s , v1)} {out(s , v2)}
{out(s , v1) ∗ out(s , v2)}

8.2.2 A Coarse-grained Set Implementation

A simple way of implementing a concurrent set is to take a sequential set im-

plementation and simply ensure that the set operations are invoked in mutual

exclusion by using a single lock for each set. Such an implementation is course-

grained, since it does not break down the operations into smaller components

(which may be safely performed concurrently).

A coarse-grained concurrent set can be implemented as follows:

r := contains(s , v ) {
lock(s );

r := scontains(s , v );

unlock(s )

}

add(s , v ) {
lock(s );

sadd(s , v );

unlock(s )

}

remove(s , v ) {
lock(s );

sremove(s , v );

unlock(s )

}
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This implementation assumes a sequential set module, providing the operations

scontains, sadd and sremove. It also assumes that s , which identifies the set

to the sequential set module, is a lockable block.

The sequential set module is assumed to provide an abstract predicate

Set(s, vs) meaning that the (sequential) set identified by s holds the set of values

vs. The Set predicate cannot be split, and so can only be held by one thread

at once, thereby enforcing sequential access. Furthermore, the sequential set

operations are assumed to satisfy the following specifications:

{Set(s , vs)} scontains(s , v ) {(ret↔ v ∈ vs) ∧ Set(s , vs)}
{Set(s , vs)} sadd(s , v ) {Set(s , vs ∪ {v})}
{Set(s , vs)} sremove(s , v ) {Set(s , vs \ {v})}

Interpretation of Abstract Predicates

Informally, the interpretation of the in(s, v) predicate comprises three things:

knowledge that s is lockable — isLock(s); knowledge that the shared, sequential

set at s contains the value v — P∈(s, v, r)
r

C(s,r)
; and permission to acquire the

sequential set in order to change whether or not it contains v — [Change(v)]
r
1.

The out(s, v) has a similar interpretation. Formally, in and out are defined as

follows:

in(s, v) ≡ ∃r. isLock(s) ∗ [Change(v)]
r
1 ∗ P∈(s, v, r)

r

C(s,r)

out(s, v) ≡ ∃r. isLock(s) ∗ [Change(v)]
r
1 ∗ P/∈(s, v, r)

r

C(s,r)

Since a thread must remove the sequential set from the shared state in order

to perform any operation on it, the assertion P∈(s, v, r)
r

C(s,r)
cannot always

ensure that the set is in the shared state. The assertion must, however, provide

assurance that, if the set is missing then the lock must have been acquired,

and when the set is finally returned it will contain the value v. The Ret(vs)

action allows a thread to return the set to the shared state with the contents vs.

If some other thread has removed the set, then it should only have permission

[Ret(vs)]
r
1 provided that v ∈ vs. This is reflected in the definition of P∈(s, v, r),

which is as follows:

P/(s, v, r) ≡ ∃vs. v / vs ∧

((
allrets(r) ∗ Set(s, vs)

)
∨(

Locked(s) ∗ ([Ret(vs)]
r
1 −∗ allrets(r))

))
where / = ∈ or / = /∈.

allrets(r) ≡�ws. [Ret(ws)]
r
1
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The actions for the coarse-grained set are as follows:

C(s, r)
def
=


Change(v) :


∃vs,ws.Set(s, vs) ∗

[Ret(ws)]
r
1 ∧

vs \ {v} = ws \ {v}

 Locked(s),

Ret(ws) : Locked(s) Set(s,ws) ∗ [Ret(ws)]
r
1


The Change(v) action is performed by a thread in order to acquire the

shared, sequential set in order to (at most) change it with respect to whether

it contains the value v. In order to legitimately acquire the sequential set, the

thread must already hold the lock; this is enforced by the fact that the thread

must give up the Locked(s) predicate in performing the action. In exchange,

the thread acquires the set Set(s, vs), whose contents is some vs, together with

permission [Ret(ws)]
r
1 to return the set with contents ws, which differs from

vs only as to whether v is in the set. Note that the action does not constrain

whether v ∈ ws — the choice made will depend on whether v is being added or

removed from the set.

The Ret(ws) action is performed by a thread in order to return the set

Set(s,ws) to the shared state. It also returns the permission [Ret(ws)]
r
1 in

doing so, but reacquires the Locked(s) predicate, enabling it to release the lock.

The predicate axiom own(s, v) ∗ own(s, v) → false holds by the fact that

own(s, v) entails exclusive permission [Change(v)]
r
1 to alter the set with respect

to the value v, and two such permissions cannot be combined.

Remark. The above argument is subtly flawed: ∃r.P∈(s, v, r) is not a
precise assertion, so it is possible to have two in(s, v) predicates
that refer to different shared regions! One way of fixing this
would be to use the disposable lock specification and include
the predicate ∃π. π > 0.5 ∧ isLock(s, π) in the shared region at
all times. This predicate is precise, since the total permission
cannot exceed 1, so two own predicates for s must always refer
to the same shared region.

The stability axiom for in(s, v) holds because the only actions available

to other threads are Change(w) for some w 6= v, and Ret(vs) for some

vs with v ∈ vs. The assertion in(s, v) is stable under both of these actions:

Change(w) requires the disjunct allrets(r) ∗ Set(s, vs) to hold and leaves the

disjunct Locked(s)∗ ([Ret(vs)]
r
1−∗allrets(r)) holding; Ret(vs) does the reverse.

A similar argument holds for the stability of out(s, v).
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{out(s , v )}
add(s , v ) {{
∃r. isLock(s ) ∗ [Change(v )]

r
1 ∗ P/∈(s , v , r)

r

C(s ,r)

}
lock(s );{
∃r. isLock(s ) ∗ Locked(s ) ∗ [Change(v )]

r
1 ∗ P/∈(s , v , r)

r

C(s ,r)

}
// use Change to extract Set predicate and Ret permission{
∃r, vs. isLock(s ) ∗ Set(s , vs) ∗ [Ret(vs ∪ {v})]r1 ∗ [Change(v )]

r
1 ∗

Locked(s) ∗ ([Ret(vs ∪ {v})]r1 −∗ allrets(r))
r

C(s ,r)

}
sadd(s , v );{
∃r, vs. isLock(s ) ∗ Set(s , vs ∪ {v}) ∗ [Ret(vs ∪ {v})]r1 ∗ [Change(v )]

r
1 ∗

Locked(s) ∗ ([Ret(vs ∪ {v})]r1 −∗ allrets(r))
r

C(s ,r)

}
// use Ret to return Set predicate and Ret permission{
∃r. isLock(s ) ∗ Locked(s ) ∗ [Change(v )]

r
1 ∗ P∈(s , v , r)

r

C(s ,r)

}
unlock(s ){
∃r. isLock(s ) ∗ [Change(v )]

r
1 ∗ P∈(s , v , r)

r

C(s ,r)

}
}
{in(s , v )}

Figure 8.5: Proof outline for the coarse-grained set (add — out case)

Verifying the Implementation

Given the interpretations of the abastract predicates above, the coarse-grained

set implementation can be verified against the set specification. Figure 8.5 gives

an outline proof of the add operation when the value to be added is initially

absent from the set; the other cases have similar proofs.

The add operation first acquires Locked(s ) by calling lock. It is now able

to invoke the Change(v ) action to swap the Locked(s ) predicate for the set

Set(s , vs) and permission [Ret(vs ∪ {v})]r1 to return it having only added v

to the set. Once v is added to the set, the Ret action is used to return it

(and the permission to return it) to the shared region, recovering the Locked(s )

predicate. Finally, the lock is released and the shared set continues to contain

the value v .

8.2.3 A Lock-coupling List Implementation

The coarse-grained set implementation guards access to a shared set with a

single lock, forcing threads to use the set in mutual exclusion. I now consider
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E.val
def
= E

E.next
def
= E + 1

p , c := locate(s , v ) {
p := s ;

lock(p );

c := [p .next] ;

while [c .val] < v do

lock(c );

unlock(p );

p := c ;

c := [p .next]

}

r := contains(s , v ) {
local p , c in

p , c := locate(s , v );

r := ([c .val] = v );

unlock(p )

}

add(s , v ) {
local p , c , z in

p , c := locate(s , v );

if [c .val] 6= v then

z := makelock(2);

unlock(z );

[z .value] := v ;

[z .next] := c ;

[p .next] := z ;

unlock(p )

}

remove(s , v ) {
local p , c , z in

p , c := locate(s , v );

if [c .val] = v then

lock(c );

z := [c .next] ;

[p .next] := z ;

disposelock(c , 2) ;

unlock(p )

}

Figure 8.6: Lock-coupling list implementation of the set module
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an implementation that uses a finer granularity of locking: a lock-coupling list.

The lock-coupling list implements a set with a sorted linked-list whose nodes

each record a value belonging to the set. Each of these nodes can be locked

individually, so multiple threads can access the set concurrently, holding locks

to different parts of the list. The code for the algorithm (adapted from [HS08,

§9.5]) is given in Figure 8.6.

The three module functions use the function locate(s , v ), which traverses

the list from the head node, until it reaches the position for a node holding value

v — the return value c is either the node with value v , if present, or the node

with the smallest value greater than v that is in the list; the return value p

is c ’s predecessor. To ensure that every value has a successor and predecessor

node, the first and last nodes of the list are special dummy nodes that do not

represent actual values held in the set; they have values −∞ and∞ respectively.

The traversal begins by locking the head node, which resides at address s and

proceeds along the list performing hand-over-hand locking. That is, the node

following the currently-locked node is locked, then the previously-held lock is

released. When locate returns, the lock on p is held by the thread, but the

lock on c is not.

No thread accesses a node that is locked by another thread, so it cannot

traverse past a locked node. Consequently, a thread cannot overtake any other

threads that are accessing the list. Nodes can be added to and removed from

locked segments of the list: if a thread holds the lock to a node then it can insert

a new node immediately after it, providing this new node preserves the sorted

nature of the list; if a thread holds the locks on two sequential nodes then it

can remove the second of them from the list (and subsequently dispose of it).

The algorithm relies on and ensures a number of invariant properties of the

nodes in the list.

� The head node is always in the list.

� If a node is in the list and is locked by a thread, no other thread can remove

the node from the list or change which node is its successor. (Consequently,

the successor cannot be removed by another thread.)

� While a node is in the list, its value remains invariant.

Interpretation of Abstract Predicates

The interpretation of the in(s, v) and out(s, v) predicates at a high level re-

sembles the interpretation for the coarse-grained implementation: it includes
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permission to acquire a lock for the set, permission to change the set with re-

spect to whether v is present, and knowledge that the set represented in the

shared state includes or does not include the value v.

in(s, v) ≡ ∃r, π. isLock(s, π) ∗ [Change(v)]
r
1 ∗ L∈(s, v, r)

r

F (s,r)

out(s, v) ≡ ∃r, π. isLock(s, π) ∗ [Change(v)]
r
1 ∗ L/∈(s, v, r)

r

F (s,r)

The difference is that the lock only controls access to the first node, the

change permission allows the thread to remove nodes individually (as opposed

to the whole set at once) in order to manipulate them, and the shared state

comprises a list with gaps, where other threads have taken nodes into their

shared states. In order to elaborate this definition, I first define predicates for

individual list nodes.

val(a, v) ≡ a.val 7→ v

link(a, b) ≡ a.next 7→ b ∗ isLock(b, 1)

node(a, b, v) ≡ val(a, v) ∗ link(a, b)

The node(a, b, v) predicate comprises two components: the value field of node

a, which contains v, represented by the val(a, v) predicate; and the link from

node a to its successor, b, represented by link(a, b). When a thread owns a node

it has exclusive permission to lock that node’s successor — this is the nature

of hand-over-hand locking — therefore the link component of a node comprises

the isLock permission for its successor. The val component of a node remains in

the shared region while that value is still in the set, whereas the link component

is (temporarily) removed from the shared region by the thread that holds the

lock on the node.

The actions for the fine-grained set module are defined by the following

interference assertion:

F (r)
def
=

Change(v) : ∃n, t. ([Ret(n, t, v)]
r
1 ∗ link(n, t) Locked(n))

Ret(n, t, v) :

Locked(n)  link(n, t) ∗ [Ret(n, t, v)]
r
1

∃v1, v2.


Locked(n)

∗ val(n, v1)

∗ val(t, v2)

  

∃y. [Ret(n, t, v)]

r
1 ∗ node(y, t, v)

∗ link(n, y) ∗ val(n, v1)

∗ val(t, v2) ∧ v1 < v < v2

(
Locked(n) ∗
Locked(t) ∗ val(t, v)

)
 

(
∃y. [Ret(n, t, v)]

r
1 ∗

[Ret(t, y, v)]
r
1 ∗ link(n, y)

)
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The Change and Ret actions are analogous to their counterparts for the coarse-

grained set in that they allow a thread to remove part of the shared state by

holding a lock and to return that part with some limited modification. Rather

than removing the entire set, only a single link of the list is removed with each

lock. Both Change and Ret are parametrised by v, the value that the thread

may add or remove from the list.

The Change(v) action allows a thread, having locked some node n, to take

the link of that node (that is, the next pointer and the permission to lock the

node’s successor) from the shared state, together with a permission that will

allow the thread to return that link, possibly having added or removed a node

with value v; in exchange, the thread gives up the Locked(n) predicate.

The three Ret(n, t, v) actions deal with returning the link of node n to

the shared state. The first simply allows the same link to be returned as was

originally removed. In returning the link, the thread also gives up the Ret

permission, but regains the Locked(n) predicate. This action is used to traverse

parts of the list that the thread does not change.

The second allows a link from n to t to be replaced with a link from n to a

new node at some address y, having value v, that in turn links to the node at

t. The action requires that v falls between the values of the nodes at n and t,

in order to preserve the sorted order of the list. As before, the thread gives up

the Ret permission and regains the Locked(n) predicate. This action is used to

add the value v to the set, in the form of the node y.

The third action allows the link from n to t to be replaced with one from n to

y, where there was formally a link from t to y. To do this, the thread must also

have locked the node at t and obtained its corresponding Ret permission and

link(t, y) from the shared state. Node t must also have the value v; in performing

the action, the value component of t is removed from the shared state, and its

link component is not returned. The Ret permissions for both of the nodes

are returned to the shared state, and both the lock predicates Locked(n) and

Locked(t) are regained by the thread. This action is used to remove the value v

from the set, by removing the node t, which has that value.

The predicates L∈(s, v, r) and L/∈(s, v, r) describe lists containing and not

containing value v. These lists can have gaps where threads have removed

links into their local states. The list is captured by the slsg (for ‘sorted list

segment with gaps’) predicate. The predicates also assert the presence of all Ret

permissions, except for ones corresponding to gaps in the list; this is captured

by the rets predicate. For both the slsg and rets predicates, the carrier set S

tracks the missing links from the list. None of the missing Ret permissions can

304



Concurrent Abstract Predicates 8.2 Composing Abstract Specifications

lsg(x, y, S,∅) ≡ x = y ∧ S = ∅ ∧ emp

lsg(x, y, S ] {(x, z)} , v · vs)

≡ Locked(x) ∗ val(x, v) ∗ lsg(z, y, S, vs)

lsg(x, y, S, v · vs) ≡ x 6= y ∧ node(x, v, z) ∗ lsg(z, y, S, vs)

slsg(x, y, S, vs) ≡ lsg(x, y, S, vs) ∧ sorted(vs) ∧ ∃vs ′. vs = −∞ · vs ′ · ∞

rets(S, r) ≡�(x, y) /∈ S.�v. [Ret(x, y, v)]
r
1 ∗

�(x, y) ∈ S.∃w.�v 6= w. [Ret(x, y, v)]
r
1 ∧

∀x, y, w, z. (x, y) ∈ S ∧ (w, z) ∈ S → (x = w ↔ y = z)

myrets(v, r) ≡�x, y. [Ret(x, y, v)]
r
1 ∗ true

L/(s, v, r) ≡ ∃vs, S. v / vs ∧ slsg(s,nil , S, vs) ∗ (rets(S, r) ∧myrets(v, r))

where / = ∈ or / = /∈

Figure 8.7: Auxiliary predicates for lock-coupling list

correspond to the value v, to ensure that no other thread will change whether

v is in the list; this is captured by the myrets predicate. These predicates are

formally defined in Figure 8.7.

The abstract predicate axiom own(s, v) ∗ own(s, v) → false follows from the

fact that exclusive permissions to Change(v) cannot be combined.

To check the stability axioms for in and out, observe that when the environ-

ment performs the Change(v′) action, it simply corresponds to adding (n, t) to

the carrier set S. The first Ret(n, t, v′) action corresponds to removing (n, t)

from the set S. The second Ret(n, t, v′) action corresponds to removing (n, t)

from S and also inserting v′ in the list vs. The third Ret(n, t, v′) action cor-

responds to removing (n, t) and (t, y) from S and v′ from the list vs. Since it

must be that v′ 6= v in each of these cases, the predicates are stable.

Verifying the Implementation

Given the interpretations of the abstract predicates above, the fine-grained set

implementation can be verified against the set specification. Figures 8.8 and 8.9

give an outline proof of the locate function, while Figure 8.10 gives an outline
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{in(s , v )}
p , c := locate(s , v ) {∃r. ∃vs, S. v ∈ vs ∧ slsg(s ,nil , S, vs) ∗ (rets(S, r) ∧myrets(v , r))

r

F (r)

∗ ∃π. isLock(s , π) ∗ [Change(v )]
r
1


p := s ;

lock(p );∃r. ∃vs, S. v ∈ vs ∧ slsg(s ,nil , S, vs) ∗ (rets(S, r) ∧myrets(v , r))
r

F (r)

∗ ∃π. isLock(s , π) ∗ Locked(s ) ∗ [Change(v )]
r
1 ∧ p = s


// By Change(v) using Locked(s)
∃r, z.

∃vs, S. v ∈ vs ∧ {(s , z)} ⊆ S ∧ slsg(s ,nil , S , vs)

∗
(
rets(S, r) ∧ ([Ret(s , z , v )]

r
1 −∗myrets(v , r))

) r

F (r)

∗ link(s , z) ∗ [Ret(s , z, v )]
r
1 ∗ ∃π. isLock(s , π) ∗ [Change(v )]

r
1 ∧ p = s


c := [p .next] ;
∃r.

(∃v′. val(c , v′) ∗ true) ∧
∃vs, S. v ∈ vs ∧ {(p , c )} ⊆ S ∧ slsg(s ,nil , S , vs)

∗ (rets(S, r) ∧ ([Ret(p , c , v )]
r
1 −∗myrets(v , r)))

r

F (r)

∗ link(p , c ) ∗ [Ret(p , c , v )]
r
1 ∗ ∃π. isLock(s , π) ∗ [Change(v )]

r
1


while [c .val] < v do

. . . // see Figure 8.9

}
∃r.

(∃v′. val(p , v′) ∗ v′ < v ) ∧ (∃v′′. val(c , v′′) ∗ v′′ ≥ v )

∃vs, S. v ∈ vs ∧ {(p , c )} ⊆ S ∧ slsg(s ,nil , S , vs)

∗
(
rets(S, r) ∧ ([Ret(p , c , v )]

r
1 −∗myrets(v , r))

)
r

F (r)

∗ link(p , c ) ∗ [Ret(p , c , v )]
r
1 ∗ ∃π. isLock(s , π) ∗ [Change(v )]

r
1


Figure 8.8: Proof outline for locate
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∃r.

(∃v′. val(c , v′) ∗ v′ < v ) ∧
∃vs, S. v ∈ vs ∧ {(p , c )} ⊆ S ∧ slsg(s ,nil , S , vs)

∗ (rets(S, r) ∧ ([Ret(p , c , v )]
r
1 −∗myrets(v , r)))

r

F (r)

∗ link(p , c ) ∗ [Ret(p , c , v )]
r
1 ∗ ∃π. isLock(s , π) ∗ [Change(v )]

r
1


lock(c );
∃r.

(∃v′. val(c , v′) ∗ v′ < v ) ∧
∃vs, S. v ∈ vs ∧ {(p , c )} ⊆ S ∧ slsg(s ,nil , S , vs)

∗ (rets(S, r) ∧ ([Ret(p , c , v )]
r
1 −∗myrets(v , r)))

r

F (r)

∗ link(p , c ) ∗ [Ret(p , c , v )]
r
1 ∗ ∃π. isLock(s , π) ∗

[Change(v )]
r
1 ∗ Locked(s )


// By Change(v) using Locked(c)
∃r, z.

(∃v′. val(c , v′) ∗ v′ < v ) ∧ ∃vs, S. v ∈ vs ∧
{(p , c ), (c , z)} ⊆ S ∧ slsg(s ,nil , S , vs) ∗

(
rets(S, r) ∧

([Ret(p , c , v )]
r
1 ∗ [Ret(c , z, v )]

r
1 −∗myrets(v , r))

)
r

F (r)

∗ link(p , c ) ∗ [Ret(p , c , v )]
r
1 ∗ ∃π. isLock(s , π) ∗

[Change(v )]
r
1 ∗ [Ret(c , z, v )]

r
1 ∗ link(c , z)


// By Ret(p, c, v) (first case)
∃r, z.

(∃v′. val(c , v′) ∗ v′ < v ) ∧ ∃vs, S. v ∈ vs ∧
{(c , z)} ⊆ S ∧ slsg(s ,nil , S , vs) ∗

(
rets(S, r) ∧

([Ret(c , z, v )]
r
1 −∗myrets(v , r))

)
r

F (r)

∗ Locked(p ) ∗ ∃π. isLock(s , π) ∗
[Change(v )]

r
1 ∗ [Ret(c , z, v )]

r
1 ∗ link(c , z)


unlock(p );

p := c ;

c := [p .next]
∃r.

(∃v′. val(p , v′) ∗ v′ < v ) ∧
∃vs, S. v ∈ vs ∧ {(p , c )} ⊆ S ∧ slsg(s ,nil , S , vs)

∗
(
rets(S, r) ∧ ([Ret(p , c , v )]

r
1 −∗myrets(v , r))

)
r

F (r)

∗ link(p , c ) ∗ [Ret(p , c , v )]
r
1 ∗ ∃π. isLock(s , π) ∗ [Change(v )]

r
1


Figure 8.9: Proof outline for locate loop body
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{in(s , v)}
remove(s , v) {
local p , c , z in

p , c := locate(s , v);
∃r.

(∃v′. val(p , v′) ∗ v′ < v) ∧ (∃v′′. val(c , v′′) ∗ v′′ ≥ v) ∧
∃vs, S. v ∈ vs ∧ {(p , c)} ⊆ S ∧ slsg(s ,nil , S , vs)

∗
(
rets(S, r) ∧ ([Ret(p , c , v)]r1 −∗myrets(v , r))

)
r

F (r)

∗ link(p , c) ∗ [Ret(p , c , v)]r1 ∗ ∃π. isLock(s , π) ∗ [Change(v)]r1


if [c .val] = v then

lock(c);

∃r.
(val(c , v) ∗ true) ∧
∃vs, S. v ∈ vs ∧ {(p , c)} ⊆ S ∧ slsg(s ,nil , S , vs)

∗
(
rets(S, r) ∧ ([Ret(p , c , v)]r1 −∗myrets(v , r))

)
r

F (r)

∗ link(p , c) ∗ [Ret(p , c , v)]r1 ∗ ∃π. isLock(s , π) ∗
[Change(v)]r1 ∗ Locked(c)


// By Change(v) using Locked(c)

∃r, z.
(val(c , v) ∗ true) ∧ ∃vs, S. v ∈ vs ∧ {(p , c), (c , z)} ⊆ S

∧ slsg(s ,nil , S , vs) ∗
(
rets(S, r) ∧

([Ret(p , c , v)]r1 ∗ [Ret(c , z, v)]r1 −∗myrets(v , r))
)

r

F (r)

∗ link(p , c) ∗ [Ret(p , c , v)]r1 ∗ ∃π. isLock(s , π) ∗
[Change(v)]r1 ∗ [Ret(c , z, v)]r1 ∗ link(c , z)


z := [c .next] ; [p .next] := z ;

∃r.
(val(c , v) ∗ true) ∧ ∃vs, S. v ∈ vs ∧ {(p , c), (c , z)} ⊆ S

∧ slsg(s ,nil , S , vs) ∗
(
rets(S, r) ∧

([Ret(p , c , v)]r1 ∗ [Ret(c , z , v)]r1 −∗myrets(v , r))
)

r

F (r)

∗ link(p , z) ∗ [Ret(p , c , v)]r1 ∗ ∃π. isLock(s , π) ∗
[Change(v)]r1 ∗ [Ret(c , z , v)]r1 ∗ isLock(c , 1) ∗ c .next 7→ z


// By Ret(p, c, v) (third case)
∃r. ∃vs, S. v /∈ vs ∧ slsg(s ,nil , S , vs) ∗

(
rets(S, r) ∧myrets(v , r)

) r

F (r)

∗ Locked(p) ∗ ∃π. isLock(s , π) ∗ [Change(v)]r1 ∗
isLock(c , 1) ∗ c .next 7→ z ∗ Locked(c) ∗ c .value 7→ v


disposelock(c , 2) ;∃r. ∃vs, S. v /∈ vs ∧ slsg(s ,nil , S , vs) ∗

(
rets(S, r) ∧myrets(v , r)

) r

F (r)

∗ Locked(p) ∗ ∃π. isLock(s , π) ∗ [Change(v)]r1


unlock(p)

}
{out(s , v)}

Figure 8.10: Proof outline for the fine-grained set (remove — in case)
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proof of the remove operation in the case where v is in the set.

The main loop of locate searches through the list checking if the current

element, c , has value less than the value v being searched for. At the start

of the loop body, the thread has locked p and used the Change(v ) action

to acquire link(p , c ) and full permission [Ret(p , c , v )]
r
1. The first step of the

loop locks the current element c , which is permitted because the link predicate

incorporates isLock(c , 1). The Change(v ) action is then invoked to swap this

lock for the link component of node c and the corresponding Ret permission.

At this point, the thread holds locks to two nodes, both of which precede the

location being sought, so the first can be unlocked. To allow this to happen,

the first Ret(p , c , v ) is invoked to return the link of the p node and the Ret

permission in exchange for the necessary Locked(p ) permission. The p and c

pointers are then advanced along the list.

As with the coarse-grained set, locking and unlocking are two-step processes.

First the lock is acquired in local state, then a permission is used to retrieve the

resource that is guarded by the lock from the shared state, giving up permission

to release the lock in exchange. To release the lock, the guarded resource is

returned to the shared state in exchange for the permission to release the lock,

which is then unlocked locally.

Once the locate function is complete, node p is locked and has a value less

then v , while its successor, c , has a value greater than or equal to v . From here,

the remove operation checks that c holds the value v , which it must if v is in

the set (since the set is sorted). In order to remove c , the node is first locked

and the Change action invoked to acquire its link from the shared state. Node

p ’s link is then updated to point past c , to z . The third Ret(p , c , v ) action

is used to return the link to the state, together with the Ret permissions, and

recover the Locked(p ), Locked(c ) and val(c , v ) predicates. The thread now has

sufficient resources to safely dispose the c node, which it does before finally

unlocking p . At this point, it is assured that the value v has been removed

from the set.

I omit the other proof cases here, which follow along the intuition behind

the algorithm in a similar fashion to the remove case.

8.3 Semantics and Soundness

In this section, I formalise the proof system that I have informally introduced,

culminating in a proof of the soundness of the concurrent abstract predicate

proof system. To do so, I first present the semantic model on which the syntax
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of the logic is interpreted. I then define the syntax and semantics of assertions,

and formalise the rules of the proof system. Finally, I give a standard operational

semantics to the programming language, and show soundness of the proof system

with respect to it.

8.3.1 State Model

The state model for the logic — the set of worlds, World — is an abstraction of

machine states that represents the view that a particular thread — the subject

thread or simply subject — has of the state. As well as (partially) describing the

actual state of the machine’s memory, worlds also constrain the future evolution

of the state, in terms of both how the subject thread and other threads — the

environment — can modify the state.

Worlds consist of three components: the local state, which can be accessed

and updated exclusively by the subject thread, the shared state, which can be

accessed and manipulated by both the subject and environment in accordance

with permissions held, and the action model, which determines exactly what

updates are permissible on the shared state. The local state component is from

the set of logical states, LState (Definition 8.7), the shared state component

is from the set of shared states, SState (Definition 8.2), and the action model

component is from the set of action models, AMod (Definition 8.3). Worlds obey

a well-formedness condition, wf , that ensures that the different portions of state

are consistent with each other. I defer the formal definition of well-formedness

(Definition 8.10).

Definition 8.1 (World). The set of worlds, World, ranged over by w,w′, w1, . . . ,

is defined as follows:

World
def
= {(l, s, ζ) ∈ LState× SState× AMod | wf (l, s, ζ)} .

For world w = (l, s, ζ) ∈ World, wL = l ∈ LState stands for the local state,

wS = s ∈ SState stands for the shared state, and wA = ζ ∈ AMod stands for

the action model.

A triple (l, s, ζ) ∈ LState×SState×AMod that is not necessarily a well-formed

world is called a pre-world.

Shared states are further divided into regions. This division into regions

supports encapsulation: each shared object typically inhabits its own region,

and the interference on that region is specific to that object. It also supports

dynamic construction and destruction of shared objects: shared regions are

typically created and destroyed at the same time as a shared object.
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Each region is a logical state from the set LState, and is identified by a region

identifier from the infinite set RID, ranged over by r, r′, r1, . . . .

Definition 8.2 (Shared State). The set of shared states, SState, ranged over

by s, s′, s1, . . . , is defined as follows:

SState
def
= RID⇀fin LState.

Action models determine the possible updates, or actions, that can be per-

formed on the shared state. Actions, which comprise the set Action, affect a

single shared region, but can be dependent on other regions. Each action in the

model is identified by a token, which includes the identifier of the region that

the action applies to.

Definition 8.3 (Action Model). The set of action models, AMod, ranged over

by ζ, ζ ′, ζ1, . . . , is defined as follows:

AMod
def
= Token⇀ Action.

A token comprises a region identifier from the set RID, an action name from

the set AName (literal action names are written in small-caps: Action), ranged

over by γ, γ′, γ1, . . . , and a sequence of action parameters from the set Val∗.

Definition 8.4 (Token). The set of tokens, Token, ranged over by t, t′, t1, . . . ,

is defined as follows:

Token
def
= RID× AName× Val∗.

An action is represented as a relation between the initial shared state and

the new logical state of the shared region being updated.

Definition 8.5 (Action). The set of actions, Action, ranged over by a, a′, a1, is

defined as follows:

Action
def
= P(SState× LState)

Note that an action must be interpreted with respect to a particular region

identifier that determines the shared region to which it applies. This information

is always available, since it forms a part of the token that is used to look up the

particular action in the action model.

Actions describe an update to one shared region, yet are (potentially) con-

tingent on the state of other shared regions. This is used, for example, in the

case of the coarse-grained set: the actions specify that a lock, which belongs to

its own shared region, should be held when the set itself is removed from its

shared region.
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Definition 8.6 (Action Model Combination). The operation t : AMod ×
AMod → AMod combines action models, taking the union of actions defined

in both. It is defined as follows:

(ζ t ζ ′)(t) def
=


ζ(t) ∪ ζ ′(t) if t ∈ (dom ζ) ∩ (dom ζ ′)

ζ(t) if t ∈ (dom ζ) \ (dom ζ ′)

ζ ′(t) otherwise.

Logical states combine a separation algebra [COY07] representing machine

states — here, I assume it to be the heap separation algebra, (Heap, ∗, emp) (cf.

Definition 3.37), however, I do not depend on specific properties other than the

fact that it is a separation algebra — with a separation algebra representing

permission assignments for actions, (Perm,⊕,0Perm).

Definition 8.7 (Logical State). The set of logical states, LState, ranged over

by l, l′, l1, . . . , is defined as follows:

LState
def
= Heap× Perm.

For logical state l = (h, φ) ∈ LState, lH = h ∈ Heap stands for the heap compo-

nent, and lP = φ ∈ Perm stands for the permission assignment component.

Permission assignments associate tokens, which indirectly reference actions,

with permission values. Here, the set of permission values is taken to be the

closed interval [0, 1]. A thread holding permission 0 on a token in its local state

may not perform the associated action; a thread holding permission greater

than 0 on a token may perform the action; a thread holding permission 1 is the

only thread which may perform the action. Permission values form a separation

algebra ([0, 1],+[0,1], 0), where +[0,1] is + from the real numbers restricted to

the codomain [0, 1]. Permission assignments form a separation algebra in a

pointwise fashion.

Definition 8.8 (Permission Assignment). The permission assignment sepa-

ration algebra (Perm,⊕,0Perm), where Perm is ranged over by φ, φ′, φ1, . . . , is

defined as follows:

Perm
def
= Token→ [0, 1]

(φ1 ⊕ φ2)(t)
def
= φ1(t) +[0,1] φ2(t)

0Perm(t)
def
= 0.

This is the fractional permission model of Boyland [Boy03]. Other permis-

sions models are also possible. In [DFPV09], Dodds et al. use a permissions
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model that has both guarantee permissions — such as those used here, which

permit an action — and deny permissions — which do not permit an action, but

carry the knowledge that no other thread can hold a guarantee permission, and

hence perform the action. Bornat et al. [BCOP05] and Parkinson [Par05] have

considered other permissions models (in the context of concurrent separation

logic) which could also be applied here.

Remark. The permissions model itself does not define the actual seman-
tics of the permissions, which are embodied in the definitions of
the rely and guarantee, and derive from the action model.

Since logical states are defined as a product of two separation algebras, they

also form a separation algebra in the natural way: (LState,�, (emp,0Perm)),

where (h, φ)� (h′, φ′)
def
= (h ∗ h′, φ⊕ φ′). Worlds also form a separation algebra

— nearly. Before defining composition for worlds, I first define well-formedness,

which itself depends on the notion of collapsing a world to a logical state.

Definition 8.9 (LState Collapse). The LState collapse b(·)c : LState×SState×
AMod⇀ LState, a partial function that collapses a pre-world to a logical state,

is defined as follows:

b(l, s, ζ)c def
= l �

( �∏
r∈dom s

s(r)

)
.

The collapse simply composes the logical states of the local portion and each

of the shared regions. If more than one region contains the same heap cell, or if

the total permission on a token exceeds 1, the collapse is not defined. Part of the

well-formedness condition for worlds ensures full disjointness by requiring the

collapse of a world to be defined. The well-formedness condition also ensures

that no permissions are held on any tokens that do not correspond to actions

in the action model of the appropriate shared region, and that no actions are

defined for regions that do not exist.

Definition 8.10 (Well-formedness). The well-formedness predicate wf is de-

fined as follows:

wf (l, s, ζ) ⇐⇒ b(l, s, ζ)c is defined and

for all (r, γ,−→v ) ∈ Token,

b(l, s, ζ)cP(r, γ,−→v ) > 0 =⇒ (r, γ,−→v ) ∈ dom ζ

and (r, γ,−→v ) ∈ dom ζ =⇒ r ∈ dom s.
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world

local shared

interference actions

heap

permissions

region id :

heap

permissions

region id :

heap

permissions

. . .

region id, action name, parameters:

 . . .

action

. . .

Figure 8.11: Representation of the structure of a world

Figure 8.11 illustrates the structure of a world. Figure 8.12 illustrates an

example of a well-formed world, such as might be encountered by the client of

a lock module. Figure 8.13 illustrates an example of a triple of logical state,

shared state and action model that is not a well-formed world: the heap cell

at address 2 is present in both the local and shared state; the total permission

for the r,Unlock token exceeds 1; a non-zero permission exists for the r,Split

token, yet the action model does not define an action corresponding to that

token; and the action model defines an action for the region s, which does not

exists.

It is necessary to relax the definition of a separation algebra slightly in

order to accommodate worlds. Specifically, instead of a single identity element

a separation algebra may have multiple identity elements. This reflects the

approach taken to the definition of context algebras in §3.2.

Definition 8.11 (World Separation Algebra). World composition • : World ×
World⇀World is defined as follows:

w • w′ def
=


(wL � w′L, wS, wA)

if wS = w′S and wA = w′A

and bwcP ⊕ ((w′)L)P is defined

undefined otherwise.
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1 7→ 2

r,Lock : 0.5

r,Unlock : 1

r :

2 7→ 1

r,Lock : 0

r,Unlock : 0

r :

2 7→ 0

r,Unlock : 1
. . .  

2 7→ 1

r,Unlock : 0

r,Lock :

r :

2 7→ 1

r,Unlock : 0
. . .  

2 7→ 0

r,Unlock : 1

r,Unlock :

Figure 8.12: Example of a well-formed world

2 7→ 2

r,Lock : 0.5

r,Unlock : 1

r,Split : 1

r :

2 7→ 1

r,Lock : 0

r,Unlock : 0.5

r,Lock : . . . r,Unlock : . . . s,Split : . . .

Figure 8.13: Example that is not a well-formed world
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The empty world set 0World ⊆World is defined as follows:

0World
def
= {(l, s, ζ) ∈World | l = (emp,0Perm)} .

It is easy to see that world composition preserves well-formedness, is cancella-

tive, commutative and that 0World is the identity. Hence, the world separation

algebra is defined to be (World, •,0World).

It is perhaps easiest to view the composition operator on worlds in terms of

decomposing a world into two: each gets a disjoint piece of the local state and

exactly the same shared state. Conversely, to combine two worlds, their shared

states must be identical and their local states disjoint. This may seem at odds

with the fact that different threads may make different assertions about the

shared state; when the threads join together, however, each of their assertions

about the shared state must be true.

Semantically, assertions are to be interpreted as sets of worlds. The concept

of a semantic predicate as a set of worlds is useful in its own right, since it is

not dependent on the syntax and semantics of assertions.

Definition 8.12 (Semantic Predicate). A semantic predicate is a set of worlds.

The set of semantic predicates, P(World), is ranged over by Q,Q′,Q1, . . . .

8.3.2 Interference Model

The interference model for the logic defines how the subject thread’s world may

be updated, both by the subject thread itself and by the environment. These

are captured by the guarantee and rely relations, respectively.

The notions of guarantee and rely come from Jones’s rely/guarantee verifica-

tion method [Jon81]. A key difference with Jones’s approach is that the rely and

guarantee are not specific to a particular program, but are completely general.

The reason for this is that the permissions and action models of a world encode

the information about how the subject or environment can update the world —

the rely and guarantee relations essentially provide a semantics for permissions.

Guarantee

The guarantee describes how the subject thread may update the world, w. The

subject is free to modify the local heap in any way it pleases; however, any

change to a shared region, r, must correspond to some action, wA(r, γ,−→v ), in

the action model, for which the subject has sufficient permission, i.e.

(wL)P(r, γ, v) > 0.
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For instance, in the proof of the compare-and-swap lock, a thread is only allowed

to unlock the lock by having permission on the (r,Unlock) token.

It is important for permitted updates to preserve the total amount of per-

mission in the world, bwcP. If threads could acquire permissions out of thin air,

then they would be able to introduce interference that was not anticipated by

the environment. On the other hand, it is perfectly permissible for heap cells

to be allocated or disposed by an update.

The exceptions to preserving permissions are region creation and destruction.

When a new region is created, the subject thread acquires all of the region’s

associated permissions and provides the region’s initial contents from its local

state. Conversely, in order to destroy a region, the subject must hold all of

the region’s associated permissions. On destroying a region, the contents of

the region are moved to the subject’s local state. In the definition below, the

Gc relation corresponds to region creation and its inverse, G−1
c , corresponds to

region destruction.

Definition 8.13 (Guarantee Relation). The guarantee relation G ⊆ World ×
World is defined as follows:

w G w′ ⇐⇒
(
bwcP = bw′cP and wA = w′A and(
wS = w′S or

there exist r, γ,−→v s.t. (wL)P(r, γ,−→v ) > 0 and

(wS, w
′
S(r)) ∈ wA(r, γ,−→v ) and

for all r′ 6= r, wS(r′) = w′S(r′)
))

or

w Gc w
′ or w G−1

c w′

where

w Gc w
′ ⇐⇒ there exist r, ζ, l1, l2 s.t. r /∈ domwS and w′S = wS[r 7→ l1]

and wL = l1 � l2 and w′L = l2 � (emp, perms(ζ))

and w′A = wA t ζ

and for all r′, γ,−→v , (r′, γ,−→v ) ∈ ζ =⇒ r′ = r

perms(ζ)(t)
def
=

1 if t ∈ dom ζ

0 otherwise.

The repartitioning guarantee relation G ⊆ World×World permits only updates

that do not involve a change to the overall heap — that is, updates that only
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repartition state between regions. It is defined as follows:

G
def
= G ∩ {(w,w′) | bwcH = bw′cH} .

The single-step closed guarantee relation Ĝ ⊆ World ×World permits multiple

guarantee steps, only one of which is not a repartitioning. It is defined as follows:

Ĝ
def
= G

∗
# G #G

∗
.

The purpose of the repartitioning guarantee relation is that it represents logi-

cal updates that the subject thread can perform at any time, without performing

any concrete update. The single-step closed guarantee relation represents the

permissible updates for the subject thread performing a single atomic update:

any number of purely logical updates, and one, possibly concrete update.

Remark. The reason that Ĝ only permits one concrete update is rather
subtle. Suppose that the subject thread performs an atomic
update from w to w′, and that, for some w′′, w G w′′ G w′.
It is possible that w′′ has some additional concrete state — a
particular allocated heap cell — that is neither present in w nor
w′. If another thread held that resource in its local state, then
it might assume that the original thread could not make the
update from w to w′, since it could not enter the intermediate
w′′ state.

Remark. This definition of guarantee does not permit permissions to a
newly created region to initially belong to that region. For cases
where this is necessary, an additional action could be used to
initialise the region.

Rely

The rely describes how the environment may update the world, w. The envi-

ronment may not touch the subject thread’s local state, but it may change a

shared region, r, in accordance with some action, γ(−→v ), for which some permis-

sion is not fully accounted for, i.e. bwcP(r, γ,−→v ) < 1. This is because when a

permission is not fully accounted for in the world, it implies that it could belong

to the local state of some other thread, which would then be entitled to perform

the action.

The rely must also account for regions being created and destroyed by the

environment. The initial contents of a created region are essentially arbitrary,
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since they come from the local state of the thread which created it; however, no

permissions for the new region are initially present in the world. Conversely, the

environment may destroy a region if no permissions for the region are present

in the world, and its contents simply disappear from the subject’s perspective.

In the definition below, Rc corresponds to region creation and its inverse, R−1
c ,

corresponds to region destruction.

Definition 8.14 (Rely Relation). The rely relation R ⊆World×World is defined

as follows:

w R w′ ⇐⇒
(
wL = w′L and wA = w′A and

there exist r, γ,−→v s.t. bwcP(r, γ,−→v ) < 1 and

(wS, w
′
S(r)) ∈ wA(r, γ,−→v ) and

for all r′ 6= r, wS(r′) = w′S(r′)

)
or

w Rc w
′ or w R−1

c w′

where

w Rc w
′ ⇐⇒ there exist r, ζ, l s.t. r /∈ domwS and wL = w′L and

w′S = wS[r 7→ l] and for all γ,−→v , bw′cP(r, γ,−→v ) = 0 and

w′A = wA t ζ and

for all r′, γ,−→v , (r′, γ,−→v ) ∈ dom ζ =⇒ r′ = r.

A semantic predicate is stable if it is closed under (permissible) interference

from the environment. That is, if the predicate is satisfied by the current world,

it will still be satisfied after the environment performs any interference on the

shared state.

Definition 8.15 (Stability). For Q ∈ P(World), stable (Q) holds if and only if,

for all worlds w,w′ ∈World, if w ∈ Q and w R w′ then w′ ∈ Q.

8.3.3 Assertions

I now present an assertion language for defining predicates over worlds. As

well as standard separation logic connectives, the logic includes a number of

connectives to deal with permissions, shared regions, abstract predicates and

updates.

Definition 8.16 (Assertions). The set of assertions Assn, ranged over by

P,Q, P1, . . . , the set of basic assertions BAssn, ranged over by p, q, p1, . . . , and
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the set of interference assertions IAssn, ranged over by I, I1, . . . , are defined

inductively as follows:

P ::= emp
∣∣ E1 7→ E2

∣∣ P ∗Q ∣∣ P −∗Q ∣∣ false
∣∣ P → Q

∣∣ ∃x. P∣∣ �x. P
∣∣ [γ(E1, . . . ,En)]

R
π

∣∣ all(I,R)
∣∣ P

R

I

∣∣ α(E1, . . . ,En)∣∣ G P
∣∣ R P

∣∣ R P
∣∣ [p

q

〉
P
∣∣ ppq

p ::= emp
∣∣ E1 7→ E2

∣∣ p ∗ q ∣∣ p−∗ q ∣∣ false
∣∣ p→ q

∣∣ ∃x. p ∣∣ �x. p

I ::= γ(−→x ) : ∃−→y . (P  Q)
∣∣ I1, I2

where

� E1,E2, R, π ∈ Expr range over expressions, for which an appropriate syntax

is assumed that includes basic arithmetic operators,

� x, y ∈ LVar range over logical variables, with −→x ,−→y denoting vectors of

logical variables),

� γ ∈ AName ranges over action names, and

� α ∈ APName ranges over abstract predicate names (literal abstract pred-

icate names are written in sans-serif: absPred).

Basic assertions describe only heap, and so their syntax is the standard sep-

aration logic syntax: connectives for describing empty and single-celled heaps,

the composition of disjoint heaps and its adjoint, and basic predicate logic op-

erators. The assertion �x. p, which is not commonly used in separation logic,

is the multiplicative analogue of ∀x. p: it describes a heap that is composed

of pieces satisfying p for every value of x. (In the literature, the syntax ∀∗ is

sometimes used instead.)

Assertions include the same connectives as basic assertions, except that these

are now interpreted over worlds. To these are added connectives for describing

permissions: [γ(E1, . . . ,En)]
R
π describes permission value π for the action γ on

region R with parameters E1, . . . ,En; and all(I,R) describes full permission for

all of the actions on R defined by the interference assertion I.

Boxed assertions are used to describe the shared regions of a world. The

boxed assertion P
R

I
asserts that contents of the shared region identified by R

satisfies P , that the action model’s interference for that region is specified by I,

and that the local state is empty. A consequence of the definition of world com-

position is that separating conjunction between shared state assertions behaves
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as (additive) conjunction. In particular:

P
r

I
∗ Q r′

I′
≡ P

r

I
∧ Q

r′

I′

P
r

I
∗ Q r

I
≡ P ∧Q r

I

Since the contents of a boxed assertion is itself an assertion, there are some

subtleties in the interpretation of these assertions. In particular, boxes may be

nested inside each other. Of course, shared regions are not nested in the model;

in the semantics this is resolved by the fact that boxes have the same semantics

whether or not they occur inside another box or not. Hence:

P
r

I
∗Q

r′

I′
≡ P

r

I
∗ Q r′

I′

(Note: this holds even when r = r′.)

In the examples discussed so far, I have not used explicit nesting, but in §8.2

there is implicit nesting through abstract predicates: the concrete interpretation

of such predicates as Locked(s) make assertions about a shared region, yet they

themselves appear in shared regions. For example, in the proof of the coarse-

grained set, the following shared region assertion appears:

Locked(s) ∗ ([Ret(vs ∪ {v})]r1 −∗ allrets(s))
r

C(s ,r)

Using the compare-and-swap lock implementation, the above assertion is se-

mantically equivalent to the following:

∃r′. [Unlock]
r′

1 ∗ (l − 1) 7→ 1
r′

I(l,r′)
∗ ([Ret(vs ∪ {v})]r1 −∗ allrets(s))

r

C(s ,r)

This in turn is equivalent to:

∃r′. [Unlock]
r′

1 ∗ ([Ret(vs ∪ {v})]r1 −∗ allrets(s))
r

C(s ,r)
∗ (l − 1) 7→ 1

r′

I(l,r′)

Remark. It may be helpful to consider shared state assertions as akin to
pure assertions — assertions about logical variables that make
no assertion at all about the world and which hold solely on
the basis of the variable interpretation. Shared regions here do
make an assertion about the local state — that it is empty —
but they could just as easily be defined to make no assertion
about the local state at all, in which case they hold solely on
the basis of the shared state.

Abstract predicates α(E1, . . . ,En) are interpreted according to a predicate

environment. Essentially, they are logical variables whose values are predicates.

(Note that the logic does not include quantification over such variables.)
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The repartitioning update modality G P asserts that it is possible to repar-

tition the world in accordance with G
∗

such that the resulting world satisfies P .

Thus G P is the most general set of worlds such that the subject thread can

ensure that P holds without making any concrete update.

The explicit stabilisation assertions R P and R P correspond to the strong-

est weaker and weakest stronger stable assertions than P . R P is satisfied

by every world that can be obtained by performing an R∗ transition from one

satisfying P . R P is satisfied by a world if every R∗ transition that is performed

on it results in a world satisfying P . Both of these concepts are due to Wickerson

et al. [WDP10], who use the notation dP e for R P and bP c for R P .

The assertion
[
p
q

〉
P describes all those worlds that, subject to replacing

one concrete subheap satisfying p with one satisfying q, can be repartitioned

into a world satisfying P in a manner permitted by the guarantee. The update

operator
[
p
q

〉
can be read as “the weakest liberal guaranteed precondition of the

best local action specified by {p} − {q}”. The best local action [COY07] can be

viewed as the least-refined heap operation that satisfies the given specification

and all framed versions of the specification. Semantically, this can be thought

of as the function bla[p, q] : Heap→ P(Heap) ∪ { } defined as follows:

bla[p, q](h) =


 if there are no h0, h1 with

h = h0 ∗ h1 and h1 ∈ JpK⋂
h1∈JpK
h0∗h1=h

{h0 ∗ h′1 | h′1 ∈ JqK} otherwise.

The weakest liberal precondition of an operation with respect to some postcon-

dition describes all states such that performing the operation results in only

states satisfying the postcondition. (It is necessary that the operation should

not fault on the weakest liberal precondition, but it is not necessary that it

should terminate — hence “liberal”.) In terms of worlds, the weakest liberal

precondition describes those worlds that can be collapsed to heaps such that

every outcome of the operation on that heap is a heap which is the collapse of a

world satisfying the postcondition. The weakest liberal guaranteed precondition

further restricts this so that the worlds must be related by the guarantee Ĝ.

Finally, the assertion ppq lifts the basic assertion p, by asserting that the local

heap satisfies p, and that no permissions are held locally. Often the semantics

of ppq is the same as interpreting p as an assertion on worlds; however, there

are certain subtleties. For example, the assertion false → false makes no claim

about whether any permissions are held locally, while pfalse→ falseq claims

that no permissions are held locally.
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Interference assertions, which must be interpreted in the context of a region

identifier r, are semantically interpreted as action models (Definition 8.3). An

interference assertion is a collection of assertions of the form

γ(−→x ) : ∃−→y . (P  Q) .

Each of these specifies behaviours associated with the action name γ: the token

(r, γ,−→v ) corresponds to updating some portion of region r that satisfies P to

satisfy Q. In the interpretation of P and Q, the variables −→x are bound to the

values −→v , while the variables −→y may be bound to an arbitrary choice of values
−→w , but which is the same for both assertions. The −→x variables make it possible

to describe parametrised actions, such as Next(k) from the ticketed lock, which

describes incrementing the owner field when its value is k:

Next(k) : l.owner 7→ k  l.owner 7→ (k + 1) ∗ [Next(k)]
r
1

The −→y variables make it possible to describe actions where the update depends

on the initial state. For example, Take from the ticketed lock describes incre-

menting the next field:

Take : ∃k. (l.next 7→ k ∗ [Next(k)]
r
1  l.next 7→ (k + 1))

It is possible to have multiple assertions about the same action name. For ex-

ample, in the fine-grained set implementations, three interference assertions are

given for Ret(n, t, v). Semantically, the combination of assertions is interpreted

with action model combination (Definition 8.6). This means that tokens permit

any of the actions that the corresponding interference assertions describe.

Assertion Semantics

Logical variables in assertions are interpreted over the set of values Val. I assume

that RID ∪ (0, 1] ⊆ Val, so that variables may range over region identifiers and

(non-zero) permission values. In the semantics of assertions, free variables are

evaluated using a variable interpretation (or simply interpretation), which maps

variables to values. The set of variable interpretations is Interp
def
= LVar → Val,

and is ranged over by i, i′, i1, . . . .

I assume an appropriate semantics for expressions J(·)K(·) : Expr × Interp →
Val. The semantics for basic assertions, J(·)K(·) : BAssn × Interp → P(Heap), is

just the standard separation logic semantics.

Abstract predicates α are essentially predicate-valued variables. They are in-

terpreted using a predicate environment, which maps abstract predicates to their

semantic definitions. The set of predicate environments is PEnv
def
= APName ×

Val∗ → P(World), and is ranged over by δ, δ′, δ1, . . . .
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Definition 8.17 (Assertion Semantics). The semantics of assertions J(·)K(·),(·) :

Assn× PEnv × Interp→ P(World) is defined as follows:

JP Kδ,i
def
=
{

(l, s, ζ) ∈ (|P |)δ,i
∣∣∣ wf (l, s, ζ)

}
where (|(·)|)(·),(·) : Assn × PEnv × Interp → P(LState × SState × AMod) and

J(·)K(·)(·),(·) : IAssn× RID× PEnv × Interp→ AMod are defined as follows:

(|emp|)δ,i
def
= {((emp,0Perm), s, ζ) | s ∈ SState and ζ ∈ AMod}

(|E1 7→ E2|)δ,i
def
=

(l, s, ζ)

∣∣∣∣∣∣∣
lH = [JE1Ki 7→ JE2Ki] and

lP = 0Perm and

s ∈ SState and ζ ∈ AMod


(|P ∗Q|)δ,i

def
=
{
w1 • w2

∣∣∣ w1 ∈ (|P |)δ,i and w2 ∈ (|Q|)δ,i
}

(|P −∗Q|)δ,i
def
=

{
w

∣∣∣∣∣ for all w1, w2, w2 = w • w1 and w1 ∈ (|P |)δ,i
=⇒ w2 ∈ (|Q|)δ,i

}

(|false|)δ,i
def
= ∅

(|P → Q|)δ,i
def
=
{
w
∣∣∣ w ∈ (|P |)δ,i =⇒ w ∈ (|Q|)δ,i

}
(|∃x. P |)δ,i

def
=

⋃
v∈Val

(|P |)δ,i[x 7→v]

(∣∣�x. P
∣∣)
δ,i

def
=

{ •∏
v∈Val

wv

∣∣∣∣∣ for all v ∈ Val, wv ∈ (|P |)δ,i[x 7→v]

}

(∣∣∣∣[γ(
−→
E )
]R
π

∣∣∣∣)
δ,i

def
=


((

emp, [(JRKi , γ,
r−→
E
z

i
) 7→ JπKi]

)
, s, ζ

)
∣∣∣∣∣∣∣∣∣∣

JπKi ∈ (0, 1]

and

s ∈ SState

and

ζ ∈ AMod


(|all(I,R)|)δ,i

def
=

((emp, perms(JIKrδ,i)), s, ζ)

∣∣∣∣∣∣∣
r = JRKi and

s ∈ SState and

ζ ∈ AMod


(∣∣∣ P R

I

∣∣∣)
δ,i

def
=


((emp,0Perm), s, ζ)

∣∣∣∣∣∣∣∣∣∣∣∣

there exist l, r s.t.

(l, s, ζ) ∈ (|P |) and

r = JRKi and s(r) = l and

for all γ,−→v ,

ζ(r, γ,−→v ) = JIKrδ,i (r, γ,−→v )

(∣∣∣α(
−→
E )
∣∣∣)
δ,i

def
= δ(α,

r−→
E
z

i
)
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(∣∣∣G P
∣∣∣)
δ,i

def
=
{
w
∣∣∣ there exists w′ s.t. w G

∗
w′ and w′ ∈ (|P |)δ,i

}
(∣∣∣R P

∣∣∣)
δ,i

def
=
{
w
∣∣∣ there exists w′ s.t. w′ R∗ w and w′ ∈ (|P |)δ,i

}
(∣∣R P

∣∣)
δ,i

def
=
{
w
∣∣∣ for all w′, w R∗ w′ =⇒ w′ ∈ (|P |)δ,i

}
(∣∣∣∣[pq

〉
P

∣∣∣∣)
δ,i

def
=

w
∣∣∣∣∣∣∣∣

there exist h1 ∈ JpKi , h′ s.t. bwcH = h1 ∗ h′ and

for all h2 ∈ JqKi , there exists w′ ∈ (|P |)δ,i s.t.

bw′cH = h2 ∗ h′ and w Ĝ w′


(|ppq|)δ,i

def
= {((h,0Perm), s, ζ) | h ∈ JpKi and s ∈ SState and ζ ∈ AMod}

Jγ(−→x ) : ∃−→y . (P  Q)Krδ,i (r′, γ′,−→v )
def
=


(s, l)

∣∣∣∣∣∣∣∣∣∣∣

there exist l0, l1, l2,
−→u s.t.

s(r) = l0 � l1 and

l = l0 � l2 and
(l1, s) ∈ (|P |)δ,i[−→x 7→−→v ][−→y 7→−→u ] and

(l2, s[r 7→ l]) ∈ (|Q|)δ,i[−→x 7→−→v ][−→y 7→−→u ]


if r = r′ and

γ = γ′ and

len−→x = len−→v

undefined otherwise

JI1, I2K
r
δ,i

def
= JI1K

r
δ,i t JI1K

r
δ,i .

perms(ζ)(t)
def
=

1 if t ∈ dom ζ

0 otherwise.

The semantics of assertions is defined in terms of a secondary semantics

(|(·)|)(·),(·) which may describe worlds that are not well formed. The reason for

this is that boxed assertions can be interpreted by treating the shared state as

if it were the local state. This would typically violate the disjointness between

shared and local states that is required for a world to be well formed.

8.3.4 Programming Language and Proof System

The proof system presented here is for a simple Dijkstra-style language. Many

common constructs can be encoded elegantly in the language.

Definition 8.18 (Programming Language). Assuming a set of basic commands

Cmd, ranged over by ϕ, and a set of procedure names PName, ranged over by

f, f1, . . . , the language L, ranged over by C,C′,C1, . . . , is defined as follows:

C ::= skip
∣∣ ϕ ∣∣ f ∣∣ 〈C〉 ∣∣ C1;C2

∣∣ C1 + C2

∣∣ C∗∣∣ C1 ‖ C2

∣∣ let f1 = C1, . . . , fn = Cn in C
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Function names f1, . . . , fn defined by the same let block are assumed to be

pairwise distinct.

The intuitive semantics of programs is as follows: skip does nothing and

terminates; ϕ performs some specific basic operation; f performs the proce-

dure to which f is bound in an enclosing let block; 〈C〉 performs C in one

atomic (i.e. indivisible) step; C1;C2 performs C1 followed by C2; C1 + C2

nondeterministically performs either C1 or C2; C∗ nondeterministically per-

forms C zero or more times; C1 ‖ C2 performs C1 and C2 concurrently; and

let f1 = C1, . . . , fn = Cn in C defines (possibly mutually recursive) proce-

dures f1, . . . , fn and performs C using these definitions. This intuitive semantics

is reflected in the formal proof system and in the operational semantics for the

language.

Judgements of the proof system have the form ∆; Γ ` {P} C {Q}. Here,

∆ ∈ Assn is an assertion about the abstract predicates, Γ is a set of assertions of

the form {P ′} f {Q′} specifying the procedures called in C, and P,Q ∈ Assn are

pre- and postconditions of the program C. The judgement should be read with

a fault-avoiding partial correctness interpretation: given an interpretation of

abstract predicates that satisfies ∆, and procedures that meet the specifications

in Γ, whenever the program C is run from a state satisfying P then it will not

fault, but will either terminate in a state satisfying Q or not terminate at all.

The premisses of some of the proof rules include certain other judgements.

The judgement `SL {p} C {q} is the standard separation logic proof judgement

— it holds if the triple {p} C {q} is provable in separation logic.

The predicate entailment judgement ∆ ` P asserts that for any variable

interpretation and predicate environments for which ∆ is valid (i.e., satisfied by

all worlds), P is also valid.

Definition 8.19 (Predicate Entailment Judgement). For ∆, P ∈ Assn, the

judgement ∆ ` P is defined to hold if and only if, for all δ, i with J∆Kδ,i = World,

JP Kδ,i = World.

The predicate entailment judgement is not ordinary entailment. In ∆ ` P ,

the assertion ∆ should be thought of as describing properties of the abstract

predicates — either as definitions or axioms. Thus ∆ ` P holds if every interpre-

tation of abstract predicates that validates ∆ also validates P . The judgement

is used in the Cons rule of the proof system to allow implications that make

use of abstract predicate axioms and definitions. It is also used in the Pred-I

rule to enforce (for instance) that abstract predicate definitions meet the axioms

that are exposed to clients.
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The predicate definition safety judgement asserts that a new abstract pred-

icate definition is realisable in a manner that does not impact the possible

interpretations of other abstract predicates.

Definition 8.20 (Predicate Definition Safety Judgement). For ∆ ∈ Assn, α ∈
APName, −→x ∈ LVar∗ and F ∈ Assn, the judgement ∆ ⇑ α,−→x , F is defined to

hold if and only if, for all δ, i with J∆Kδ,i = World, there exists some δ′ such

that, for all α′, −→v

δ′(α′,−→v ) =

JF Kδ′,i[−→x 7→−→v ] if α′ = α

δ(α′,−→v ) otherwise.

This judgement implies that, if δ ∈ PEnv is an abstract predicate environ-

ment that validates ∆, and abstract predicate α does not occur in ∆, then it

is possible to construct a new abstract predicate environment δ′ from δ, which

validates ∆ ∧ (∀−→x . α ↔ F ), simply by giving a new interpretation to α. One

example of where this judgement does not hold would be to take ∆ = true and

F = ¬α; this would require an interpretation of α that is satisfied exactly when

it is not satisfied. A more complex example would be to take

∆ = A↔ true α = B F = A→ ¬B.

If the predicate A were defined to be false, there would be no problem giving a

suitable interpretation for B; however, the judgement requires the interpretation

for B to be consistent with the interpretation of A, which is not possible.

It may appear to be quite awkward to check this judgement in general, but

it is easy to syntactically constrain predicate definitions so that it holds. In

particular, the existence of an appropriate δ′ corresponds to the existence of a

certain fixed-point. If the abstract predicate α only occurs positively (i.e., under

an even number of negations) in its definition F then the predicate definition

is monotone and so a fixed-point exists by the Knaster-Tarski theorem [Tar55].

This restriction is typical when defining inductive predicates.

Definition 8.21 (Proof System). The derivation rules for judgements of the

form ∆; Γ ` {P} C {Q} are given in Figure 8.14.

I have previously described the intuition behind some of the proof rules in

§8.1.3. The intuition for Atomic is that, if the state (modulo interference) is

such that a concrete update from p to q results in a state satisfying Q, and this

update is permitted by the guarantee (which is contingent on permissions held

in the state), then after performing the operation 〈C〉, where `SL {p} C {q},
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`SL {p} C {q}

∆; Γ `
{

R
[
p
q

〉
Q
}
〈C〉

{
R Q

} Atomic `SL {p} C {q}
∆; Γ ` {ppq} C {pqq} Prim

∆ ` Q1 → RQ1 ∆; Γ ` {P1} C1 {Q1}
∆ ` Q2 → RQ2 ∆; Γ ` {P2} C2 {Q2}

∆; Γ ` {P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}
Par

∆ ` F → R F ∆; Γ ` {P} C {Q}
∆; Γ ` {F ∗ P} C {F ∗Q} Frame

∆ ` P → P ′ ∆; Γ ` {P ′} C {Q′} ∆ ` Q′ → Q

∆; Γ ` {P} C {Q} Cons

∆; Γ ` {P} C {Q}

∆; Γ `
{

R G P
}
C
{
Q
} Guar-L

∆; Γ `
{
P
}

C
{

R G Q
}

∆; Γ ` {P} C {Q} Guar-R

∆ ` ∆′ ∆′; Γ ` {P} C {Q}
∆; Γ ` {P} C {Q} Pred-I

α /∈ ∆,Γ, P,Q ∆ ⇑ α,−→x , F ∆ ∧ (∀−→x . α(−→x )↔ F ); Γ ` {P} C {Q}
∆; Γ ` {P} C {Q} Pred-E

∆; Γ ` {P1} C1 {Q1} . . . ∆; Γ ` {Pn} Cn {Qn}
∆; Γ, {P1} f1 {Q1} , . . . , {Pn} fn {Qn} ` {P} C {Q}

∆; Γ ` {P} let f1 = C1, . . . , fn = Cn in C {Q} Let

{P} f {Q} ∈ Γ

∆; Γ ` {P} f {Q} Call
∆; Γ ` {P} C {P}

∆; Γ `
{

R P
}
C∗
{
P
} Loop

∆; Γ ` {P} C1 {F} ∆; Γ ` {F} C2 {Q}
∆; Γ ` {P} C1;C2 {Q}

Seq

∆; Γ ` {P} C1 {Q} ∆; Γ ` {P} C2 {Q}
∆; Γ ` {P} C1 + C2 {Q}

Choice

∆; Γ ` {P1} C {Q1}
∆; Γ ` {P2} C {Q2}

∆; Γ ` {P1 ∨ P2} C {Q1 ∨Q2}
Disj

∆; Γ ` {P} C {Q}
∆; Γ ` {∃x. P} C {∃x.Q} Exist

Figure 8.14: The rules of the concurrent abstract predicates proof system
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the state will satisfy Q (modulo interference). The rule could alternatively be

defined as
`SL {p} C {q}

∆; Γ `
{

R
[
p
q

〉
RQ

}
〈C〉

{
Q
} Atomic

The two definitions are derivable from each other.

The Prim rule simply lifts a separation logic triple to a CAP triple. For

this rule, the only relevant state is local state, so there is no need to consider

interference. As previously discussed, the lifting ppq is necessary only to deal

with certain subtleties of interpreting basic assertions as assertions on worlds.

The Par rule is very similar to the parallel rule from concurrent separation

logic, and captures the essential elegance of the system: threads can be reasoned

about in isolation — each is given some disjoint portion of the precondition and

their two postconditions are combined to give the overall postcondition. Of

course, the subtlety of the system is that disjointness here is not at the concrete

level, but at an abstract level: the threads do not interfere with each other in

any unexpected manner. The premisses ∆ ` Q1 → RQ1 and ∆ ` Q2 → RQ2

simply mean that the postconditions of the two threads must be stable. If we

did not require the postconditions to be stable, then they could be inconsistent

because once the first thread had finished the second might be able to interfere

with its state (or vice-versa).

The Frame rule is also familiar, but requires the framed assertion to be

stable. The Cons rule is also close to the standard rule, but entailments are

considered in the context of predicate definitions and axioms.

The Guar-L and Guar-R rules allow the world to be repartitioned in ac-

cordance with the guarantee, without performing an update to the concrete

state. They include R to ensure that any interference from the environment

that occurs before the repartitioning does not cause any problem. (It is not nec-

essary to consider interference after a repartitioning, since the subject thread is

considered to be able to repartition after the environment has done all of its in-

terference. This shows up in the operational interpretation of proof judgements

(Definition 8.24).)

The Pred-I rule strengthens the abstract predicate assertion (in a top-down

reading). This is used to verify client code C using abstract predicate axioms ∆′

and then assert that the specification also holds when the axioms are replaced by

the abstract predicate definitions ∆. Of course, every predicate interpretation

which satisfies the definitions ∆ must also satisfy the axioms ∆′ for this to be

sound.

The Pred-E rule weakens the abstract predicate assertion by removing a
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predicate definition that is no longer required. The purpose of this is that,

outside the scope of a module, its abstract predicates can be discarded. With a

bottom-up reading, this rule allows new abstract predicates to be defined within

the proof that are not part of the eventual specification. The predicate must be

fresh, and its definition consistent.

The Let and Call rules are fairly standard, and simply add procedure

specifications to the environment and invoke those specifications respectively.

The Loop rule has one slightly surprising feature — the precondition R P . The

semantic interpretation of triples requires this so that if C is executed no times

at all P will hold despite interference from the environment. The remaining

rules are standard.

8.3.5 Language Semantics

I give a small-step operational semantics for the programming language. This

semantics assumes that basic commands ϕ have a relational semantics JϕK ⊆
Heap×(Heap∪{ }); I implicitly identify ϕ with its semantics JϕK. The one-step

judgement (C, h)
η→ (C′, h′) expresses that, in the presence of functions η, the

program C in the (heap) state h reduces in one step to the program C′ and state

h′. The function definition environment η is simply a partial function mapping

function names to the programs that implement them.

Definition 8.22 (Operational Semantics). The derivation rules for judgements

of the form (C, h)
η→ (C′, h′) and (C, h)

η→  are defined in Figure 8.15. The

multi-step transition relation
η→
∗

is the reflexive, transitive closure of
η→.

While the operational semantics defines how programs transform heaps, the

proof system makes assertions about how programs transform worlds. In fact,

judgements of the proof system not only assert how programs transform worlds,

but that they do so causing only interference consistent with the guarantee and

tolerating interference consistent with the rely.

Configuration safety lifts the operational semantics to the level of worlds,

taking into account interference. Configuration safety was developed by Vafeia-

dis [DYDG+10] as an approach to proving the soundness of RGSep [VP07,

Vaf07] that avoids introducing an extra level of semantics. I follow his approach

in §8.3.6 to establish the soundness of the concurrent abstract predicates proof

system.

Definition 8.23 (Configuration Safety). Let C ∈ L, w ∈ World, η ∈ FEnv and

Q ∈ P(World). The configuration safety judgement safen (C, w, η,Q) is defined
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(C, h)
η[f1 7→C1...fn 7→Cn]−−−−−−−−−−−−→ (C′, h′)

(let f1 = C1, . . . , fn = Cn in C, h)
η→ (let f1 = C1, . . . , fn = Cn in C′, h′)

(let . . . in skip, h)
η→ (skip, h)

f ∈ dom η

(f, h)
η→ (η(f), h)

(h, h′) ∈ ϕ h′ 6=  

(ϕ, h)
η→ (skip, h′)

(C, h)
η→ (C1, h

′)

(C;C′, h)
η→ (C1;C′, h′) (skip;C, h)

η→ (C, h) (C∗, h)
η→ (skip + (C;C∗), h)

(C1 + C2, h)
η→ (C1, h) (C1 + C2, h)

η→ (C2, h)

(C, h)
η→
∗

(skip, h′)

(〈C〉, h)
η→ (skip, h′)

(C1, h)
η→ (C′1, h′)

(C1‖C2, h)
η→ (C′1‖C2, h

′)

(C2, h)
η→ (C′2, h′)

(C1‖C2, h)
η→ (C1‖C′2, h′)

(skip‖skip, h)
η→ (skip, h)

(C1, h)
η→  

(C1;C2, h)
η→  

(C1, h)
η→  

(C1‖C2, h)
η→  

(C2, h)
η→  

(C1‖C2, h)
η→  

f /∈ dom η

(f, h)
η→  

(h, ) ∈ ϕ
(ϕ, h)

η→  

(C, h)
η→
∗
 

(〈C〉, h)
η→  

(C, h)
η→
∗

(C, h)

(C, h)
η→
∗

(C′, h′) (C′, h′) η→ (C′′, h′′)

(C, h)
η→
∗

(C′′, h′′)

(C, h)
η→
∗

(C′, h′) (C′, h′) η→  

(C, h)
η→
∗
 

Figure 8.15: Small-step operational semantics
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inductively as follows. safe0 (C, w, η,Q) always holds. safen+1 (C, w, η,Q) holds

if and only if the following four conditions hold:

1. for all w′ with w R∗ w′, safen (C, w′, η,Q) holds;

2. (C, bwcH)
η

6→  ;

3. for all C′, h′ with (C, bwcH)
η→ (C′, h′), there exists w′ such that w Ĝ w′,

h′ = bw′cH and safen (C′, w′, η,Q) holds; and

4. if C = skip, then there exists w′ such that w G
∗
w′ and w′ ∈ Q.

This definition asserts that a configuration is safe provided that: changing

the world in a way that respects the rely is still safe; the program does not fault;

if the program can make a step on the concrete heap corresponding to the world,

there must be a corresponding step in the logical world that is permitted by the

guarantee; and if the configuration has terminated then the postcondition holds,

up to some repartitioning permitted by the guarantee.

Configuration safety is effectively defined inductively on the number of exe-

cution steps for which the program is run. An execution step can either be an

operational step of the program or an interference step by the environment. In

the soundness proof, safety is established for various proof rules by induction

on the number of execution steps.

Using configuration safety, I can now formally define the semantics of proof

judgements operationally.

Definition 8.24 (Judgement Semantics). ∆; Γ |= {P} C {Q} holds if and only

if, for all n ∈ N, i ∈ Interp, δ ∈ PEnv with J∆Kδ,i = World, η ∈ JΓKn,δ,i and

w ∈ JP Kδ,i, safen+1

(
C, w, η, JQKδ,i

)
holds, where

JΓKn,δ,i
def
=

η ∈ FEnv

∣∣∣∣∣∣ for all {P} f {Q} ∈ Γ and w ∈ JP Kδ,i ,

safen

(
η(f), w, η, JQKδ,i

) .

8.3.6 Soundness

In order to establish soundness of the proof system, I assume that each primitive

command ϕ is local on the heap. That is, each obeys the safety monotonicity

and frame properties.

Assumption 8.1 (Primitive Locality). Assume that each primitive update, ϕ,

satisfies the following conditions:

1. Safety Monotonicity: if (h ∗ h1, ) ∈ ϕ then (h1, ) ∈ ϕ; and
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2. Frame Property: if (h ∗ h1, h
′) ∈ ϕ and (h1, ) /∈ ϕ then there exists an

h2 such that (h1, h2) ∈ ϕ and h′ = h ∗ h2.

Theorem 102 (Soundness). If ∆; Γ ` {P} C {Q} then ∆; Γ |= {P} C {Q}.

The proof is by induction on the structure of the derivation of ∆; Γ `
{P} C {Q}. The cases for Prim, Par, Frame, Guar-L, Guar-R, Atomic

and Pred-E are covered by Lemmata 106, 119, 121, 122, 124, 125 and 126

respectively, detailed below. The remaining cases are (relatively) simple, and

so are omitted.

Lemma 103 (Concrete Frame Property). The frame property holds for the

operational semantics over single steps and multiple steps.

� If (C, h∗h1)
η→ (C′, h′) and (C, h1)

η

6→  , then there exists an h2 such that

(C, h1)
η→ (C′, h2) and h′ = h ∗ h2.

� If (C, h ∗ h1)
η→
∗

(C′, h′) and (C, h1)
η

6→  , then there exists an h2 such

that (C, h1)
η→
∗

(C′, h2) and h′ = h ∗ h2.

Proof. The proof is by induction on the structure of the derivation. (Note that,

since
η→ and

η→
∗

are defined by mutual induction, it is necessary to prove both

parts together.)

Consider the single-step case, where there is a derivation of (C, h ∗ h1)
η→

(C′, h′). Consider the last rule applied in this derivation. For most of the

rules, the derivation for (C, h1)
η→ (C′, h2) is either trivial or follows from the

single-step case of the inductive hypothesis. For the primitive update case, the

derivation for (ϕ, h1)
η→ (skip, h2) follows from Primitive Locality (Assump-

tion 8.1). For the atomic case, the derivation for (〈C〉 , h1)
η→ (skip, h2) follows

from the multiple-step case of the inductive hypothesis.

Consider the multiple-step case, where there is a derivation of (C, h∗h1)
η→
∗

(C′, h′). We need only consider the case where this is derived from (C, h∗h1)
η→
∗

(C′′, h′′) and (C′′, h′′) η→ (C′, h′) for some C′′, h′′; the other case is trivial. By

the inductive hypothesis for the multiple-step case, there is some h′2 such that

(C, h1)
η→
∗

(C′′, h′2) and h′′ = h ∗ h′2. By the inductive hypothesis for the

single-step case, there is some h2 such that (C′′, h′2)
η→ (C′, h2) and h′ = h ∗ h2.

Therefore, (C, h1)
η→
∗

(C′, h2), as required.

Lemma 104 (Concrete Safety Monotonicity). Safety monotonicity holds for

the operational semantics over single steps and multiple steps.

� If (C, h ∗ h1)
η→  then (C, h1)

η→  .
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� If (C, h ∗ h1)
η→
∗
 then (C, h1)

η→
∗
 .

Proof. The proof is by induction on the structure of the derivation or derivation

sequence.

Consider the single-step case, where there is a derivation of (C, h ∗ h1)
η→  .

Consider the last rule applied in this derivation. For most of the rules, the

derivation for (C, h1)
η→  is either trivial or follows from the single-step case

of the inductive hypothesis. For the primitive update case, the derivation for

(ϕ, h1)
η→  follows from Primitive Locality (Assumption 8.1). For the atomic

case, the derivation for (〈C〉 , h1)
η→  follows from the multiple-step case of the

inductive hypothesis.

Consider the multiple-step case, where there is a derivation of (C, h∗h1)
η→
∗

 . There must be some C′, h′ such that (C, h∗h1)
η→
∗

(C′, h′) and (C′, h′) η→  .

By Lemma 103, there is some h2 such that (C, h1)
η→
∗

(C′, h2) and h′ = h ∗ h2.

By the inductive hypothesis for the single-step case, (C′, h2)
η→  . Therefore,

(C, h1)
η→
∗
 , as required.

Together with the assumed soundness of separation logic derivations, the

following lemma establishes that the Prim rule is sound. Both the semantics

of assertions J(·)K(·),(·) : Assn× PEnv × Interp→ P(World) and the semantics of

basic assertions J(·)K(·) : BAssn × Interp → P(Heap) are used in the statement

and proof of the lemma.

Lemma 105 (Primitive Safety). Suppose that (C, h)
η

6→
∗
 and for all h′ with

(C, h)
η→
∗

(skip, h′), h′ ∈ JqKi. Then for all w with wL = (h,0Perm),

safen

(
C, w, η, JpqqKδ,i

)
.

Proof. The proof is by induction on n. When n = 0, the result is trivial.

Consider the inductive case. It must be that w = ((h,0Perm), s, ζ), for some s

and ζ. Consider each clause of the definition of configuration safety.

Clause 1:

If w R∗ w′ then w′L = (h,0Perm) also, and so, by the inductive hypothesis,

safen−1

(
C, w′, η, JpqqKδ,i

)
.

Clause 2:

It must be that bwcH = h ∗ h0 for some h0. Since (C, h)
η

6→  , by Lemma 104

(C, bwcH)
η

6→  .

Clause 3:

Suppose that (C, bwcH)
η→ (C′, h1). By Lemma 103, there is some h′ such
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that (C, h)
η→ (C′, h′) and h1 = h′ ∗ h0. Let w′ = ((h′,0Perm), s, ζ), which is

well-formed by construction, having bw′cH = h0. Since only the local heap is

changed, w Ĝ w′. It must be that (C′, h′)
η

6→
∗
 and for all h′′ with (C′, h′) η→

∗

(skip, h′′), h′′ ∈ JqKi, and so, by the inductive hypothesis,

safen−1

(
C′, w′, η, JpqqKδ,i

)
.

Clause 4:

Suppose that C = skip. It must be that h = h′ ∈ JqKi. Since wL = (h,0Perm),

it must be that w ∈ JpqqKδ,i. Furthermore, w G
∗
w, as required.

Lemma 106 (Primitive Soundness). If

`SL {p} C {q}

then

∆; Γ |= {ppq} C {pqq} .

Proof. By the soundness of the separation logic proof system, for all h ∈ JpKi,

(C, h)
η

6→
∗
 and, for all h′ with (C, h)

η→
∗

(skip, h′), h′ ∈ JqKi. By Lemma 105,

for all w with wL = (h,0Perm),

safen

(
C, w, η, JpqqKδ,i

)
.

Since w ∈ JppqKδ,i implies that wL = (h,0Perm) for some h ∈ JpKi, it follows that

∆; Γ |= {ppq} C {pqq}

as required.

The following lemma establishes that skip is safe and preserves any stable

assertion. Stability here is in the semantic sense of Definition 8.15.

Lemma 107 (Skip Safety). If stable (Q) and w ∈ Q then safen (skip, w, η,Q).

Proof. The proof is by induction on n. When n = 0, the result is trivial.

Consider the inductive case. By the definition of stability, any w′ such that

w R∗ w′ also satisfies Q. Hence, the first clause of the definition of safety holds

by the inductive hypothesis. The second and third clauses hold trivially since

no reduction is possible from skip. The fourth clause holds simply by picking

w′ = w.

The following few lemmas establish important relationships between the

guarantee (Definition 8.13) and rely (Definition 8.14) relations and the world
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separation algebra (Definition 8.11). The first of these establishes a mono-

tonicity property of the guarantee relation: a step permitted by the guarantee

relation is also permitted in the presence of additional local state.

Lemma 108. If w1 G w′1, w1 •w2 and w′1 •w′2 are defined, and (w2)L = (w′2)L,

then (w1 • w2) G (w′1 • w′2).

Proof. By the definition of state composition, (w1)S = (w1 • w2)S and (w′1)S =

(w′1 • w′2)S. Also, by permission composition, if ((w1)L)
P

(r, γ,−→v ) ∈ (0, 1] then

((w1 • w2)L)
P

(r, γ,−→v ) ∈ (0, 1], so any action permitted on w1 is also permitted

on w1 • w2. If a region is created in w′1, then that region must not be in w1,

and so also not in w1 • w2; hence its creation is permitted by the guarantee

relation on the latter. If a region is destroyed in w′1 then all permission to it

must be in (w1)L and so also in (w1 • w2)L; hence its destruction is permitted

by the guarantee relation on the latter. The fact that (w1 • w2) G (w′1 • w′2)

then follows by the definition of the guarantee relation.

The next lemma also establishes a monotonicity property, this time for the

transitive closure of the repartitioning guarantee relation. It establishes how, if

w1 is repartitioned in accordance with the guarantee, the compatible w2 can be

affected accordingly.

Lemma 109. If w1 G
∗
w′1 and w1 • w2 is defined then

(w1 • w2) G
∗

(w′1 • ((w2)L, (w
′
1)S, (w

′
1)A)).

Proof. The proof is by induction on the number of G steps. The base case is

trivial; consider the inductive case of n+ 1 steps.

For some w′′1 , w1 G
n
w′′1 G w′1. By the inductive hypothesis,

(w1 • w2) G
∗

(w′′1 • ((w2)L, (w
′′
1 )S, (w

′′
1 )A)).

By the definition of G, bw′′1 cH = bw′1cH. Furthermore, for all r, γ,−→v with

b((w2)L, (w
′′
1 )S, (w

′′
1 )A)c

P
(r, γ,−→v ) > 0

it must be that ((w1)L)
P

(r, γ,−→v ) < 1, and so the region r cannot be destroyed

by the final G step and its permissions are preserved. Thus wf ((w2)L, (w
′
1)S,

(w′1)A). Moreover, w′1 • ((w2)L, (w
′
1)S, (w

′
1)A) is defined. Hence, by Lemma 108,

(w′′1 • ((w2)L, (w
′′
1 )S, (w

′′
1 )A)) G (w′1 • ((w2)L, (w

′
1)S, (w

′
1)A)),

and so (w1 • w2) G
∗

(w′1 • ((w2)L, (w
′
1)S, (w

′
1)A)), as required.

336



Concurrent Abstract Predicates 8.3 Semantics and Soundness

The following lemma establishes a relationship between the rely and guar-

antee relations: if part of the world is repartitioned according to the guarantee

and the rest according to the rely (in a compatible fashion), then this would be

as if the whole world had been repartitioned according to the guarantee.

Lemma 110 (Repartitioning Guarantee Locality). If w1 G
∗
w′1, w2 R∗ w′2,

and w1 • w2 and w′1 • w′2 are defined, then (w1 • w2) G
∗

(w′1 • w′2).

Proof. It must be that w′2 = ((w2)L, (w
′
1)S, (w

′
1)A) by the definitions of R and

•. Therefore the result follows directly from Lemma 109.

The next lemma makes a similar assertion, but when an action, and not

merely a repartitioning, takes place in accordance with the guarantee.

Lemma 111 (Step Guarantee Locality). If w1 Ĝ w′1, w2 R∗ w′2, and w1 • w2

and w′1 • w′2 are defined, then (w1 • w2) Ĝ (w′1 • w′2).

Proof. For some w′′1 , w
′′′
1 , w1 G

∗
w′′1 G w′′′1 G

∗
w′1. Furthermore, it must be that

w′2 = ((w2)L, (w
′
1)S, (w

′
1)A) by the definitions of R and •.

By Lemma 109, (w1 •w2) G
∗

(w′′1 • ((w2)L, (w
′′
1 )S, (w

′′
1 )A)). By the definition

of G, bw′′′1 cH = bw′1cH. Furthermore, for all r, γ,−→v with ((w2)L)
P

(r, γ,−→v ) > 0 it

must be that bw′1cP(r, γ,−→v ) < 1, and so the region r cannot be created between

w′′′1 and w′1, and its permissions must be preserved. Thus wf ((w2)L, (w
′′′
1 )S,

(w′′′1 )A). Moreover, w′′′1 • ((w2)L, (w
′′′
1 )S, (w

′′′
1 )A) is defined. Hence, by Lemma

108,

(w′′1 • ((w2)L, (w
′′
1 )S, (w

′′
1 )A)) G (w′′′1 • ((w2)L, (w

′′′
1 )S, (w

′′′
1 )A)).

By Lemma 109,

(w′′′1 • ((w2)L, (w
′′′
1 )S, (w

′′′
1 )A)) G

∗
(w′1 • w′2)

and so (w1 • w2) Ĝ (w′1 • w′2), as required.

The next lemma establishes a key property of the rely relation: interference

from the environment on a composite world can be viewed as interference from

the environment on each of the components.

Lemma 112 (Rely Decomposition). If w = w1 • w2 and w R∗ w′, then there

exist w′1, w
′
2 such that w1 R∗ w′1, w2 R∗ w′2 and w′ = w′1 • w′2.

Proof. Suppose that w R w′; for multiple rely steps, the result follows from

this case by induction. Let w′1 = ((w1)L, (w
′)S, (w

′)A) and w′2 = ((w2)L, (w
′)S,

(w′)A). By the definition of state composition, (w1)S = (w2)S = wS. Since a
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rely step does not affect the local state, w′ = w′1 •w′2. Furthermore, w1 and w2

have no more permissions that w and so any change to the shared state allowed

by the rely on w is also allowed by the rely on w1 and w2. Hence, w1 R∗ w′1

and w2 R∗ w′2.

A corollary of rely decomposition is that stable semantic predicates remain

stable when composed.

Corollary 113 (Stability Composition). If stable (Q1) and stable (Q2) then

stable (Q1 • Q2).

Proof. Suppose that w ∈ Q1 •Q2 and w R w′. It must be that w = w1 •w2 with

w1 ∈ Q1 and w2 ∈ Q2. By Lemma 112, there are w′1 and w′2 with w1 R∗ w′1,

w2 R∗ w′2 and w = w′1•w′2. By the stability assumptions, w′1 ∈ Q1 and w′2 ∈ Q2,

and so w′ ∈ Q1 • Q2, as required.

The following lemma is a technical one which establishes how performing an

action that is permitted by the guarantee can be seen to affect a compatible

world in accordance with the guarantee.

Lemma 114. If w1 •w2 is defined, w1 G w′1, and bw′1cH ∗ ((w2)L)
H

is defined,

then w′2 = ((w2)L, (w
′
1)S, (w

′
1)A) is well-formed, w2 R w′2 and w′1 •w′2 is defined.

Proof. Suppose that an action is performed to transform w1 to w′1. Total per-

mission is unchanged in performing an action, no shared regions are created

or destroyed, the action model stays the same, and the total heap remains

compatible with ((w2)L)
H

, so w′2 = ((w2)L, (w
′
1)S, (w

′
1)A) is well-formed. The

action performed must have been identified by some token t with ((w1)L)
P

(t) >

0. Since w1 • w2 is defined, bw2cP(t) < 1 and so w2 R w′2. Furthermore,

bw′1cP ⊕ ((w′2)L)
H

= bw1cP ⊕ ((w2)L)
H

is defined, and so w′1 • w′2 is defined.

Suppose that a new shared region is created to transform w1 to w′1. Total

heap is unchanged, and the new region cannot have had any permissions in w2,

so w′2 = ((w2)L, (w
′
1)S, (w

′
1)A) is well-formed. Rely permits such a region to be

created, and so w2 R w′2. Furthermore, w′1 • w′2 is defined.

Suppose that a shared region is destroyed to transform w1 to w′1. Then

no reference to this region can be present in (w2)L, so w′2 = ((w2)L, (w
′
1)S,

(w′1)A) is well-formed. Rely permits such region destruction, and so w2 R w′2.

Furthermore, w′1 • w′2 is defined.

The next two lemmas apply the previous one to deal with the repartitioning

guarantee G
∗

and single-step guarantee Ĝ.
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Lemma 115 (Guarantee/Rely Compatability). If w1 •w2 is defined and w1 G
∗

w′1 then there exists w′2 with w2 R∗ w′2 and w′1 • w′2 defined.

Proof. The particular choice of w′2 is ((w2)L, (w
′
1)S, (w

′
1)A). The result follows

from Lemma 114 by induction on the number of G steps, observing that, when-

ever w1 • w2 is defined and w1 G
∗
w′1, bw′1cH ∗ ((w2)L)

H
is defined.

Lemma 116. If w1 •w2 is defined, w1 Ĝ w′1, and bw′1cH ∗ ((w2)L)
H

is defined,

then w′2 = ((w2)L, (w
′
1)S, (w

′
1)A) is well-formed, w2 R∗ w′2 and w′1•w′2 is defined.

Proof. This result also follows from Lemma 114 by induction on the number of

G steps.

The following lemma is the analogue of the frame property, but at the level

of worlds. Essentially, it expresses that a transition on a composite world that is

safe on one of its components can be explained by a transition on that component

with the rest of the world acting as a frame. At the level of worlds, a frame is

subject to interference in accordance with the rely relation.

Lemma 117 (Abstract Frame Property). If

(C, bw1 • w2cH)
η→ (C′, h′)

safen+1 (C, w1, η,Q)

then there exist w′1, w
′
2 such that

(C, bw1cH)
η→ (C′, bw′1cH)

h′ = bw′1 • w′2cH
w1 Ĝ w′1 w2 R∗ w′2

safen (C′, w′1, η,Q) .

Proof. Let h2 = ((w2)L)
H

. By the definition of world composition, bw1 • w2cH =

bw1cH ∗ h2.

By Concrete Frame (Lemma 103), there exists an h′1 such that

(C, bw1cH)
η→ (C′, h′1)

and h′1 ∗ h2 = h′. By the definition of safety (third clause), there must exist a

w′1 such that w1 Ĝ w′1, bw′1cH = h′1 and safen (C′, w′1, η,Q).

Now let w′2 = ((w2)L, (w
′
1)S, (w

′
1)A). By Lemma 114, w′2 is well-formed,

w2 R∗ w′2 and w′1 • w′2 is defined. By construction h′ = h′1 ∗ h2 = bw′1cH ∗
((w′2)L)H = bw′1 • w′2cH, as required.
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We are now in a position to establish the soundness of the Par rule, which

is a consequence of the following lemma.

Lemma 118 (Parallel Safety). If

w = w1 • w2 (8.1)

safen (C1, w1, η,Q1) (8.2)

safen (C2, w2, η,Q2) (8.3)

stable (Q1) (8.4)

stable (Q2) (8.5)

then

safen (C1 ‖ C2, w, η,Q1 • Q2) .

Proof. The proof is by induction on n. When n = 0, the result is trivial. Con-

sider the inductive case. Consider each clause of the definition of configuration

safety.

Clause 1: if w R∗ w′ then safen−1 (C1 ‖ C2, w
′, η,Q1 • Q2).

By Rely Decomposition (Lemma 112), there exist w′1 and w′2 with w1 R∗ w′1

and w2 R∗ w′2. By (8.2) and (8.3), this implies that safen−1 (C1, w
′
1, η,Q1) and

safen−1 (C2, w
′
2, η,Q2). Hence, by the inductive hypothesis,

safen−1 (C1 ‖ C2, w
′, η,Q1 • Q2) .

Clause 2: (C1 ‖ C2, bw1 • w2cH)
η

6→  .

If (C1 ‖ C2, bw1 • w2cH)
η→  then, by the operational semantics, it must be

that either (C1, bw1 • w2cH)
η→  or (C2, bw1 • w2cH)

η→  . By Concrete Safety

Monotonicity (Lemma 104), this would mean that either (C1, bw1cH)
η→  or

(C2, bw2cH)
η→  , but this cannot be the case by (8.2) and (8.3). Therefore,

(C1 ‖ C2, bw1 • w2cH)
η

6→  .

Clause 3: if (C1 ‖ C2, bw1 • w2cH)
η→ (C′, h′) then w Ĝ w′, h′ = bw′cH and

safen−1 (C′, w′, η,Q1 • Q2), for some w′.

There are two cases to consider here: either C1 = C2 = skip, or C1 or C2 is

executed for one step.

In the first case, the semantics ensure that C′ = skip and h′ = bwcH. If

n−1 = 0 then w′ = w suffices trivially; assume that n−1 > 0. By (8.2) (clause

4), there exist w′1 with w1 G
∗
w′1 and w′1 ∈ Q1. By Lemma 115, there exists w′2

with w2 R∗ w′2 and w′1•w′2 defined. By (8.3) (clause 1), safen−1 (skip, w′2, η,Q2)

holds. Since n − 1 > 0, this means that there is some w′′2 such that w′2 G
∗
w′′2

and w′′2 ∈ Q2. By Lemma 115, there exists w′′1 with w′1 R∗ w′′1 and w′′1 • w′′2
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defined. By (8.4), w′′1 ∈ Q1, and so w′′1 • w′′2 ∈ Q1 • Q2. By Lemma 110,

(w1•w2) G
∗

(w′1•w′2) and (w′1•w′2) G
∗

(w′′1•w′′2 ), and so taking w′ = w′′1•w′′2 gives

w G
∗
w′. By the definition of G, bw′cH = bwcH = h′. Applying Corollary 113 to

(8.4) and (8.5) gives that stable (Q1 • Q2). Finally, by Skip Safety (Lemma 107),

safen−1 (C′, w′, η,Q1 • Q2), as required.

For the second case, assume that C1 is executed for one step; the case for C2

is essentially identical. The semantics require that (C1, bw1 • w2cH)
η→ (C′1, h′)

for some C′1 with C′ = C′1 ‖C2. By the Abstract Frame Property (Lemma 117),

given (8.2), there are w′1 and w′2 with

(C1, bw1cH)
η→ (C′1, bw′1cH) (8.6)

h′ = bw′1 • w′2cH (8.7)

w1 Ĝ w′1 w2 R∗ w′2 (8.8)

safen−1 (C′1, w′1, η,Q1) . (8.9)

Let w′ = w′1 • w′2, so by definition h′ = bw′cH. Furthermore, given (8.8),

Lemma 111 implies that w Ĝ w′. From (8.3) (clause 1), safen−1 (C2, w
′
2, η,Q2)

holds. Finally, applying the inductive hypothesis with this and (8.9) gives

safen−1 (C′, w′, η,Q1 • Q2), as required.

Clause 4 holds trivially since C1 ‖ C2 is not skip.

Lemma 119 (Parallel Soundness). If

∆ ` Q1 → RQ1 ∆; Γ |= {P1} C1 {Q1}

∆ ` Q2 → RQ2 ∆; Γ |= {P2} C2 {Q2}

then ∆; Γ |= {P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}.

Proof. Fix n, i, δ with J∆Kδ,i = World, η ∈ JΓKn,δ,i and w ∈ JP1 ∗ P1Kδ,i. It

must be that w = w1 • w2 for some w1, w2 with w1 ∈ JP1K and w2 ∈ JP2K. By

the assumptions, safen+1

(
C1, w1, η, JQ1Kδ,i

)
and safen+1

(
C2, w2, η, JQ2Kδ,i

)
.

Furthermore, stable
(
JQ1Kδ,i

)
and stable

(
JQ2Kδ,i

)
follow by the predicate en-

tailment judgement and the semantics of R . Consequently, by Parallel Safety

(Lemma 118), safen+1

(
C1 ‖ C2, w, η, JQ1 ∗Q2Kδ,i

)
, as required.
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Remark. The Par rule requires that the postconditions of the two threads
be stable, but why? The real problem is that each thread is al-
lowed to make repartitioning steps before the two threads join,
so which thread gets the last repartitioning? Whichever it is, all
of the other threads must have postconditions that are stable
under this repartitioning. Enforcing that all thread postcondi-
tions are stable ensures this.

The proof of soundness for the Frame rule is similar to that for the Par

rule.

Lemma 120 (Frame Safety). If

w = w1 • w2 (8.10)

safen (C, w1, η,Q1) (8.11)

w2 ∈ Q2 (8.12)

stable (Q2) (8.13)

then

safen (C, w, η,Q1 • Q2) .

Proof. The proof is by induction on n. When n = 0, the result is trivial. Con-

sider the inductive case. Consider each clause of the definition of configuration

safety.

Clause 1: if w R∗ w′ then safen−1 (C, w′, η,Q1 • Q2).

By Rely Decomposition (Lemma 112), there exists w′1 and w′2 with w1 R∗ w′1

and w2 R∗ w′2. By (8.11) (clause 1), safen−1 (C, w′1, η,Q1). By (8.13), w′2 ∈ Q2.

Hence, by the inductive hypothesis, safen−1 (C, w′, η,Q1 • Q2).

Clause 2: (C, bw1 • w2cH)
η

6→  .

If (C, bw1 • w2cH)
η→  then Concrete Safety Monotonicity (Lemma 104) would

imply that (C, bw1cH)
η→  . This cannot be the case by (8.11) (clause 2), and

so (C, bw1 • w2cH)
η

6→  .

Clause 3: if (C, bw1 • w2cH)
η→ (C′, h′) then w Ĝ w′, h′ = bw′cH and

safen−1 (C′, w′, η,Q1 • Q2), for some w′.

By the Abstract Frame Property (Lemma 117), given (8.11), there exist w1 and
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w2 such that

(C, bw1cH)
η→ (C′, bw′1cH) (8.14)

h′ = bw′1 • w′2cH (8.15)

w1 Ĝ w′1 w2 R∗ w′2 (8.16)

safen−1 (C′, w′1, η,Q1) . (8.17)

Let w′ = w′1 • w′2, so by definition h′ = bw′cH. Furthermore, given (8.16),

Lemma 111 implies that w Ĝ w′. By (8.13), w′2 ∈ Q2, and so, by the inductive

hypothesis, safen−1 (C′, w′, η,Q1 • Q2), as required.

Clause 4: if C = skip then w G
∗
w′ for some w′ ∈ Q1 • Q2.

By (8.11), there exists w′1 ∈ Q1 with w1 G
∗
w′1. By Lemma 115, there exists

w′2 with w2 R∗ w′2 and w′1 • w′2 defined. Let w′ = w′1 • w′2. By (8.13), w′2 ∈ Q2,

and so w′ ∈ Q1 • Q2, as required.

Lemma 121 (Frame Soundness). If

∆ ` F → R F

∆; Γ |= {P} C {Q}

then

∆; Γ |= {F ∗ P} C {F ∗Q} .

Proof. Fix n, i, δ with J∆Kδ,i = World, η ∈ JΓKn,δ,i and w ∈ JF ∗ P Kδ,i. It

must be that w = w1 • w2 for some w1 ∈ JP Kδ,i and w2 ∈ JF Kδ,i. Furthermore,

safen+1

(
C, w1, η, JQKδ,i

)
and stable

(
JF Kδ,i

)
follow from the premisses. Thus,

by Frame Safety (Lemma 120), safen+1

(
C, w, η, JF ∗QKδ,i

)
.

Lemma 122 (Pre-repartitioning Soundness). If

∆; Γ |= {P} C {Q}

then

∆; Γ |=
{

R G P
}

C
{
Q
}

.

Proof. Fix i, δ with J∆Kδ,i = World and η ∈ JΓKn,δ,i. We show by induction on n

that, for all n and all w ∈
r

R G P
z

δ,i
, safen+1

(
C, w, η, JQKδ,i

)
holds. In both

the base and inductive cases, we can assume that safen

(
C, w, η, JQKδ,i

)
holds

for all w ∈
r

R G P
z

δ,i
: it is trivial when n = 0 and the inductive hypothesis

when n > 0. Consider each clause of the definition of configuration safety.
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Clause 1: if w R∗ w′ then safen

(
C, w′, η, JQKδ,i

)
.

If w′ R∗ w′′ then, by transitivity, w R∗ w′′. Therefore, since w ∈
r

R G P
z

δ,i
it

must be that w′′ ∈
r

G P
z

δ,i
. Hence, since w′′ was arbitrary, w′ ∈

r
R G P

z

δ,i
.

Thus, by the inductive hypothesis, w ∈
r

R G P
z

δ,i
, as required.

Clause 2: (C, bwcH)
η

6→  .

Since w ∈
r

R G P
z

δ,i
there must be some w′ ∈ JP Kδ,i with w G

∗
w′. By the

premiss, (C, bw′cH)
η

6→  , and by the definition of G
∗
, bwcH = bw′cH. Hence,

(C, bwcH)
η

6→  .

Clause 3: if (C, bwcH)
η→ (C′, h′) then, for some w′, w Ĝ w′, h′ = bw′cH and

safen

(
C, w′, η, JQKδ,i

)
.

As before, there must be some w′′ ∈ JP Kδ,i with w G
∗
w′′. By the premiss, if

(C, bw′′cH)
η→ (C′, h′) then w′′ Ĝ w′, h′ = bw′cH and safen

(
C, w′, η, JQKδ,i

)
.

Now it must be that bwcH = bw′′cH and, by the definition of Ĝ, w Ĝ w′. Hence

the requirements are met.

Clause 4: if C = skip then w G
∗
w′ for some w′ ∈ JQKδ,i.

As before, there must be some w′′ ∈ JP Kδ,i with w G
∗
w′′. By the premiss,

w′′ G
∗
w′ for some w′ ∈ JQKδ,i. By transitivity, w G

∗
w′, as required.

Lemma 123 (Post-repartitioning Safety). If

safen

(
C, w, η,

r
R G Q

z

δ,i

)
then

safen

(
C, w, η, JQKδ,i

)
.

Proof. The proof is by induction on n. When n = 0, the result is trivial.

Consider the inductive case. The first three clauses of the definition of configu-

ration safety follow from the premiss using the inductive hypothesis. Consider

the fourth clause: if C = skip then w G
∗
w′ for some w′ ∈ JQKδ,i.

By the premiss, there must be some w′′ ∈
r

R G Q
z

δ,i
such that w G

∗
w′′.

Now it must be the case that w′′ ∈
r

G Q
z

δ,i
, and so there must be some

w′ ∈
r

G Q
z

δ,i
with w′′ G

∗
w′. By transitivity, w G

∗
w′, as required.

Lemma 124 (Post-repartitioning Soundness). If

∆; Γ |=
{
P
}

C
{

R G Q
}

then

∆; Γ |= {P} C {Q} .
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Proof. This follows directly from Lemma 123.

Remark. The post-repartitioning safety proof does not actually require
the R in the Guar-R rule. This is because the semantics
of triples (enshrined in the definition of configuration safety)
permits interference from the environment before execution, but
not after the very final guarantee step. I have opted to retain it
for symmetry with the Guar-L rule.

Lemma 125 (Atomic Soundness). If

`SL {p} C {q}

then

∆; Γ |=
{

R

[
p

q

〉
Q

}
〈C〉

{
R Q

}
.

Proof. It is necessary to show that, for all n, i, δ with J∆Kδ,i = World, η ∈ JΓKn,δ,i
and w ∈

r
R
[
p
q

〉
Q
z

δ,i
, safen

(
〈C〉 , w, η,

r
R Q

z

δ,i

)
. The proof of this is by

induction on n. The case where n = 0 is trivial; consider the inductive case.

Consider each clause of the definition of configuration safety.

Clause 1: if w R∗ w′ then safen−1

(
〈C〉 , w′, η,

r
R Q

z

δ,i

)
.

Fix w′′ with w′ R∗ w′′. By transitivity, w R∗ w′′, and so w′′ ∈
r[

p
q

〉
Q
z

δ,i
. Since

the choice of w′′ was arbitrary, w′ ∈
r

R
[
p
q

〉
Q
z

δ,i
. Thus, by the inductive

hypothesis, safen−1

(
〈C〉 , w′, η,

r
R Q

z

δ,i

)
, as required.

Clause 2: (〈C〉 , bwcH)
η

6→  .

By definition, there exist h1 ∈ JpKi and h′ such that bwcH = h1 ∗ h′. By the

soundness of separation logic, (C, h1)
η

6→
∗
 . By Concrete Safety Monotonicity,

therefore, (C, bwcH)
η

6→
∗
 . Hence, (〈C〉 , bwcH)

η

6→  , as required.

Clause 3: if (〈C〉 , bwcH)
η→ (C′, h′) then w Ĝ w′, h′ = bw′cH and

safen−1

(
C′, w′, η,

r
R Q

z

δ,i

)
,

for some w′.

It must be the case that C′ = skip and (C, bwcH)
η→
∗

(skip, h′). By definition,

there exist h1 ∈ JpKi and h0 such that bwcH = h1 ∗ h0. By the soundness of

separation logic, (C, h1)
η

6→
∗
 . Hence, by the Concrete Frame Property (Lemma

103) there must be some h2 such that (C, h1)
η→
∗

(skip, h2) and h′ = h2∗h0. By

the soundness of separation logic again, h2 ∈ JqKi. Thus, there exists w′ ∈ JQKδ,i
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with bw′cH = h2∗h0 = h′ and w Ĝ w′. This fulfils the first two requirements; for

the final requirement, note that w′ ∈
r

R Q
z

δ,i
and stable

(r
R Q

z

δ,i

)
, and

so, by Skip Safety (Lemma 107), safen−1

(
C′, w′, η,

r
R Q

z

δ,i

)
, as required.

Clause 4 holds trivially, since 〈C〉 is not skip.

Lemma 126 (Predicate Elimination Soundness). If

α /∈ ∆,Γ, P,Q

∆ ⇑ α,−→x , F

∆ ∧ (∀−→x . α(−→x )↔ F ); Γ |= {P} C {Q}

then

∆; Γ |= {P} C {Q}

Proof. Fix n, i, δ with J∆Kδ,i = World, η ∈ JΓKn,δ,i and w ∈ JP Kδ,i. Since

∆ ⇑ α,−→x , F , there exists δ′ with

δ′(α′,−→v ) =

JF Kδ,′i[−→x 7→v] if α′ = α

δ(α′,−→v ) otherwise.

Since α is fresh, J∆Kδ′,i = World, and by construction, J∀−→x . α(−→x )↔ F Kδ′,i =

World, so J∆ ∧ (∀−→x . α(−→x )↔ F )Kδ′,i = World. Also, since α is fresh, JΓKn,δ′,i =

JΓKn,δ,i, JP Kδ′,i = JP Kδ,i and JQKδ′,i = JQKδ,i. Therefore η ∈ JΓKn,δ′,i and

w ∈ JP Kδ′,i, and safen+1

(
C, w, η, JQKδ′,i

)
as required.
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Chapter 9

Conclusions

Throughout this thesis, I have considered numerous problems concerning ab-

stract data structures, expressivity and decidability problems of spatial logics

for describing them, and proving sequential and concurrent programs that im-

plement them. In doing so, I have answered numerous questions and found new

techniques and solutions, but have also turned up new and interesting questions

along the way.

As to expressivity, I have shown that the adjunct connectives can be elimi-

nated from multi-holed context logic for trees, but not for single-holed context

logic. The question for single-holed context logic with context composition, how-

ever, remains open and appears to be a difficult one. A related open problem

is the question of whether or not multi-holed context logic is more expressive

than single-holed context logic (when restricted to pure trees).

On the matter of decidability, I have demonstrated decision procedures for

multi-holed context logic on trees, terms and sequences, including quantification

over hole labels. Open questions include the lower bounds on the complexity

of decidability, whether efficient decision procedures can be implemented in

practice, and whether these decision procedures can be usefully deployed toward

automating reasoning about programming. Some significant hurdles are likely

involved in this last point, since quantification is common in reasoning about

programs, but tends to make validity undecidable.

Concerning reasoning about programs that implement abstract data struc-

tures, I have presented and illustrated two techniques for establishing the cor-

rectness of data structure implementations that present a local view of the

abstract structure. An interesting question is whether abstract predicates can

be extended to express these techniques, perhaps by embedding abstract pred-

icates in a form of dynamic logic. The concurrency implications of locality
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refinement also remain to be explored. In ongoing work, Wheelhouse’s is ap-

plying the locality-preserving technique to segment logic [GW09], which will

hopefully shed some light in this area.

I also presented concurrent abstract predicates, a proof system that com-

bines an abstraction mechanism with a fine-grained low-level permissions sys-

tem. Already, this work has seen a number of interesting developments. Dodds,

Jagannathan and Parkinson have applied concurrent abstract predicates to rea-

soning about deterministic parallelism [DJP11] — the injection of concurrency

into sequential code in a manner that preserves the semantics of the original

program. They extended the system with higher-order abstract predicates, that

is, predicates that are themselves parametrised by assertions, which permit more

elegant specifications of concurrent modules. For instance, a lock predicate can

specify the exact resource it is protecting, rather than relying on the client to

play token games to retrieve the resource from a shared state. This can dras-

tically simplify client proofs; for instance, the set implementations discussed in

§8.2 can be verified without explicit shared state assertions.

da Rocha Pinto et al. have applied concurrent abstract predicates to rea-

soning about concurrent indexes [da 10, dRPDYGW11], which are pervasive

in computer systems such as databases and file systems. In particular, da

Rocha Pinto showed in his masters’ thesis that a sophisticated concurrent B-tree

correctly implements an abstract index specification using concurrent abstract

predicates.

A more theoretical question concerning the CAP permissions system is how

it can be generalised. The soundness proof presented in §8.3.6 appears to depend

on a few key properties of the resource model, the rely and guarantee relations

and their relation to the underlying operational semantics, suggesting that such

a generalisation should be possible.
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