
Towards Logic-based Verification
of JavaScript Programs

José Fragoso Santos1, Philippa Gardner1, Petar Maksimović12,

Daiva Naudžiūnienė1

1 Imperial College London
2 Mathematical Institute of the Serbian Academy of Sciences and Arts

Abstract. In this position paper, we argue for what we believe is a
correct pathway to achieving scalable symbolic verification of JavaScript
based on separation logic. We highlight the difficulties imposed by the
language, the current state-of-the-art in the literature, and the sequence
of steps that needs to be taken. We briefly describe JaVerT, our semi-
automatic toolchain for JavaScript verification.

1 Introduction

JavaScript is one of the most widespread languages for Web programming to-
day: it is the de facto language for client-side Web applications; it is used for
server-side scripting via Node.js; and it is even run on small embedded devices
with limited memory. Standardised by the ECMAScript committee and natively
supported by all major browsers, JavaScript is a complex and evolving language.

The ubiquitous use of JavaScript, especially in security-critical contexts,
mandates a high level of trust in the written code. However, the dynamic na-
ture of JavaScript, coupled with its intricate semantics, makes the understanding
and development of correct JavaScript code notoriously difficult. It is because
of this complexity that JavaScript developers still have very little tool support
for catching errors early in development, contrasted with the abundance of tools
(such as IDEs and specialised static analysis tools) available for more traditional
languages, such as C and Java. The transfer of analysis techniques to the domain
of JavaScript is known to be a challenging task.

In this position paper, we argue for what we believe is a correct pathway to
achieving scalable, logic-based symbolic verification of JavaScript, highlighting
the difficulties imposed by the language, the current state-of-the-art in the liter-
ature, and the sequence of steps that needs to be taken. Using our approach, we
illustrate how to give functionally correct specifications of JavaScript programs,
written in a separation logic for JavaScript. We aim to have such specifications
be as agnostic as possible to the internals of JavaScript and provide an interface
that gives meaningful feedback to the developer. We give a brief description of
JaVerT, our semi-automatic toolchain for JavaScript verification.

2 Motivation

We illustrate the complexity of JavaScript by appealing to a JavaScript priority
queue library, which uses an implementation based on singly-linked node lists. It
is a variation on a Node.js priority queue library that uses doubly linked lists [18],
simplified for exposition. We use this example to showcase the intricacies of
JavaScript semantics as well as some of the major challenges that need to be
addressed before JavaScript programs can be verified.

1 /* @id PQLib */
2 var PriorityQueue = (function () {
3 var counter = 0;
4

5 /* @id Node */
6 var Node = function (pri, val) {
7 this.pri = pri;
8 this.val = val;
9 this.next = null;

10 counter++;
11 }
12

13 /* @id insert */
14 Node.prototype.insert =
15 function (nl) {
16 if (nl === null) {
17 return this
18 }
19 if (this.pri >= nl.pri) {
20 this.next = nl;
21 return this
22 }
23 var tmp = this.insert (nl.next);
24 nl.next = tmp;
25 return nl
26 }
27

28 /* @id PQ */
29 var PQ = function () {
30 this._head = null
31 };

32 /* @id enqueue */
33 PQ.prototype.enqueue =
34 function(pri, val) {
35 if (counter > 42) {
36 throw new Error()
37 }
38 var n = new Node(pri, val);
39 this._head = n.insert(this._head);
40 };
41

42 /* @id dequeue */
43 PQ.prototype.dequeue =
44 function () {
45 if (this._head === null) {
46 throw new Error()
47 }
48 var first = this._head;
49 this._head = this._head.next;
50 counter--;
51 return {pri: first.pri,
52 val: first.val};
53 };
54

55 return PQ;
56 })();
57

58 var q = new PriorityQueue();
59 q.enqueue(1, "last");
60 q.enqueue(3, "bar");
61 q.enqueue(2, "foo");
62 var r = q.dequeue();

Fig. 1. A simple JavaScript priority queue library (lines 1-56) and client (lines 58-62).
For verification purposes, each function literal is annotated with a unique identifier.

A Priority Queue Library

In Figure 1, we present the priority queue library (lines 1-56) together with a sim-
ple client program (lines 58-62). The priority queue is implemented as an object
with property _head pointing to a singly-linked list of node objects, ordered in
descending order of priority. A new priority queue object is constructed using the
PQ function (lines 28-31), which declares that property _head has value null, that
is, that the queue is initially empty. The enqueue and dequeue functions (lines 32-
53) provide the functionality to enqueue and dequeue nodes of the queue. These
functions should be accessible by all priority queue objects. This is accomplished
by following the standard JavaScript prototype inheritance paradigm, which, in
this case, means storing these two functions within the object PQ.prototype.

2

The enqueue function constructs a new node object, and then adds it to the
node list in the appropriate place given by its priority. A node object is con-
structed using the Node function (lines 5-11) which declares three properties,
a priority, a value and a pointer to the next node in the node list, and incre-
ments the variable counter, which keeps track of how many nodes were created
(lines 3,10) by the library. We limit the number of nodes that a library can create
(lines 35-37) to illustrate scoping further. The node object is then inserted into
the node list using the insert function (lines 13-26) which, again using prototype
inheritance, is a property of Node.prototype and is accessible by all node objects.

Let us now show how the example actually works. Our first step is to ini-
tialise the priority queue library in lines 1-50. This involves: (1) setting up the
functionalities of node objects (lines 5-26); (2) setting up the functionalities of
priority queue objects (lines 28-53); and (3) providing the interface from the pri-
ority queue library to the client (line 55). At this point, the client can construct
a new, empty priority queue, by calling new PriorityQueue(), and enqueue and
dequeue nodes of the queue, by calling the enqueue and dequeue functions.

We demonstrate how this library can be used via a small client program (lines
58-62). Line 58 constructs an empty queue, identified by the variable q. In doing
so, the node counter associated with q is set to zero, as no nodes have yet been
created (line 3). Lines 59-62 call the enqueue and dequeue functions, for adding
and removing elements from the queue. For example, the command statement
q.enqueue(1,"last") in line 59 inserts a new node with priority 1 and value "last"

into the (at this point empty) queue q. To do so, it first checks if the node limit
has been reached and, since the value of the node counter is zero, it proceeds.
Next, it uses the Node function to construct a new node object (line 38), say n,
with the given priority (pri=1), value (val="last"), and a pointer to the next
node (initially next = null). Finally, it then calls n.insert(this._head) (line 39),
which inserts n into the existing node list at this._head, returns the head of the
new node list and stores it in this._head. In this case, since we are inserting
the node n into an empty queue, this head of the new node list will be n. The
statements q.enqueue(3, "bar") and q.enqueue(2, "foo") behave in a similar way.
After their execution, we have a queue containing three elements and the node
counter is equal to 3. Finally, the statement var r = q.dequeue() removes the first
element from the queue by swinging the _head pointer to the second element of
the node list, decreases the node counter to 2, creates a new object containing
the priority property with value 3 and the value property with value "bar", and
returns the address of this new object.

Ideally, it should be possible to abstract the details of Node so that the client
works with the functionalities of the priority queue. In Java, it is possible to
define a Node constructor and its associated functionalities to be private. In
JavaScript, there is no native mechanism that provides encapsulation. Instead,
the standard approach to establish some form of encapsulation is to use function
closures. For example, the call of the function Node inside the body of enqueue

(line 38) refers to the variable Node declared in the enclosing scope. This makes it
impossible for the clients of the library to see the Node function and use it directly.

3

However, they still can access and modify constructed nodes and Node.prototype

through the _head property of the queue, breaking encapsulation. Our goal is
to provide specifications of the queue library functions that ensure functionally
correct behaviour and behavioural properties of encapsulation.

The Complexity of JavaScript

JavaScript is a highly dynamic language, featuring a number of non-standard
concepts and behaviours. In this section, we describe the JavaScript initial
heap and elaborate on the challenges that need to be addressed for tractable
JavaScript verification to be possible.

Initial Heap. Before the execution of any JavaScript program, an initial heap has
to be established. It contains the global object, which holds all global variables
such as PriorityQueue, q and r from the example. It also contains the func-
tions of all JavaScript built-in libraries, widely used by developers: for example,
Object, Function and Error. In the example, the Error built-in function is used to
construct a new error object when trying to dequeue an empty queue (line 36).

Internal Functions. In the ECMAScript standard, the semantics of JavaScript
is described operationally, that is, the behaviour of each JavaScript expression
and statement is broken down into a number of steps. These steps heavily rely
on a wide variety of internal functions, which capture the fundamental inner
workings of the language; most notably, object property management (e.g. cre-
ation (DefineOwnProperty), lookup (GetValue), mutation (PutValue) and deletion
(Delete)) and type conversions (e.g. ToString and ToNumber).

To better understand the extent of the use of the internal functions, con-
sider the JavaScript assignment o["foo"] = 42. According to its definition in the
standard, it calls the internal functions five times: GetValue thrice, and ToString

and PutValue once. This, however, is only at top-level: GetValue, in turn, calls
Get, which calls GetProperty, which calls GetOwnProperty and possibly itself re-
cursively; PutValue calls Put, which calls CanPut and DefineOwnProperty, which
calls GetOwnProperty. In the end, a simple JavaScript assignment will make more
than ten and, in some cases, even more than twenty calls to various internal
functions. The more complex a JavaScript command is, the greater the number
of the internal functions that it calls. Therefore, in order to be able to reason
about JavaScript programs, one first has to tackle the internal functions. This
brings us to the following challenge:

Challenge:
To reason robustly and abstractly about the
JavaScript internal functions.

JavaScript Objects. Objects in JavaScript differ C++ and Java objects in several
defining ways. First, JavaScript objects are extensible, that is, properties can be
added and removed from an object after creation. Second, property access in
JavaScript is dynamic; we cannot guarantee statically which property of the

4

object will be accessed. Third, JavaScript objects have two types of properties:
internal and named.

Internal properties are hidden from the user, but are critical for the mecha-
nisms underlying JavaScript, such as prototype inheritance. To illustrate, stan-
dard objects have three internal properties: @proto, @class, and @extensible.
For example, all node objects constructed using the Node function have proto-
type Node.prototype, class "Object", and are extensible. JavaScript objects con-
structed by some of the built-in libraries can have additional internal properties.
For example, a String object, associated with a string literal, has properties that
represent the characters of that literal.

Named properties, which correspond to standard fields of C++ and Java ob-
jects, are associated not with values, but instead with property descriptors, which
are lists of attributes that describe the ways in which a property can be accessed
or modified. Depending on the attributes they contain, named properties can
either be data properties or accessor properties. Here, we focus on data proper-
ties, which have the following attributes: value, holding the actual value of the
property; writable, describing if the value can be changed; configurable, allow-
ing property deletion and any change to non-value attributes; and enumerable,
stating if a property may be used in a for−in enumeration. The values of these
attributes depend on how the property is created. For example, if a property
of an object is created using a property accessor (for example, this.pri = pri),
then by default it is writable, configurable and enumerable. On the other hand,
if a property is declared as a variable, then by default it is not configurable (for
example, q in the global object).

Additionally, certain JavaScript commands and functions, such as for−in or
Object.keys, traverse over all enumerable properties of an object. As JavaScript
objects are extensible, these properties need not be known statically. Also, the
for−in loop may modify the object over which it is traversing. This behaviour
is difficult to capture and further illustrates the dynamic nature of JavaScript.

In summary, JavaScript objects have an additional, highly non-trivial layer
of complexity related to object property management with respect to objects in
C++ or Java. Furthermore, this complexity cannot be captured natively by the
existing tools for verifying C++ or Java programs (see §3.2 for a more detailed
discussion). This constitutes an important challenge:

Challenge:
To reason about extensible objects, dynamic property access,
property descriptors, and property traversal.

Fig. 2. The prototype chain of Node objects.

5

Prototype-based inheritance. JavaScript models inheritance through prototype
chains. To look up the value of a property of an object, we first check the object
itself. If the property is not there, we walk along the prototype chain, following
the @proto internal properties, checking for the property at each object. In our
example, all node objects constructed using the enqueue function (line 38) have
a prototype chain like the one given in Figure 2. There, the lookup of prop-
erty val starting from object n only needs to check n. The lookup of property
insert starting from n first checks n, which does not have the property, then
checks Node.Prototype, which does. In general, prototype chains can be of arbi-
trary length, typically finishing at Object.prototype, but they cannot be circular.
Moreover, prototype chain traversal is additionally complicated in the presence
of String objects, which have properties that do not exist in the heap.

Prototype chain traversal is one of the fundamental building blocks of the
JavaScript language and is prominently featured in the behaviour of almost every
JavaScript command. This brings us to our next challenge:

Challenge: To reason about prototype chains of arbitrary complexity.

Functions, Function objects. Functions are also stored in the JavaScript heap as
objects. Each function object has three specific internal properties: (1) @code,
storing the code of the original function; (2) @scope, storing a representation
of the scope in which the function was defined; and (3) prototype, storing the
prototype of those objects created using that function as the constructor. For
example, Node.prototype is the prototype of all node objects constructed using
the Node function, and is the place to find the insert function.

There are two main challenges related to reasoning about function objects.
The first involves the interaction between function objects and scoping, which we
address in the following paragraph. The second has to do with higher-order func-
tions. Namely, JavaScript has full support for higher-order functions, meaning
that a function can take another function as an argument, or that a function can
return another function as a result. This behaviour is not easily captured, par-
ticularly in a program logic setting, but is often used in practice and verification
of JavaScript programs should ultimately be able to tackle it.

Challenge: To reason about higher-order functions of arbitrary complexity.

Scoping, Function Closures. In JavaScript, scope is modelled using environment
records (ERs). An ER is an internal object, created upon the invocation of a func-
tion, that maps the variables declared in the body of that function and its formal
parameters to their respective values. Variables are resolved with respect to a
list of ER locations, called a scope chain. In the non-strict mode of JavaScript,
standard JavaScript objects can also be part of a scope chain. In strict mode,
the only JavaScript object that can be part of a scope chain is the global object,
which is treated as the ER of the global code. Since functions in JavaScript can
be nested (e.g. Node, enqueue, dequeue) and can also be returned as outcomes of
other functions (e.g. the PQ function is returned by PQLib), it is possible to create
complex relationships between scope chains of various functions.

6

We discuss scoping through the enqueue function, which uses five variables
in its body: pri, val, n, Node, and counter. The scope chain of enqueue contains
the ERs corresponding to enqueue, PQLib, and global code. As pri and val are
formal parameters and n is a local variable of enqueue, they are stored in the ER
of enqueue. However, Node and counter are not declared in enqueue and are not
its formal parameters, so we have to look for them in the rest of the scope chain
associated with enqueue, and we find them in the ER corresponding to PQLib.
This means that when we reason about enqueue, we need to capture not only its
ER, but also a part of the ER of PQLib. We should also note that while the value
of Node is static, the value of counter is changed both by Node and by dequeue,
and that this change is visible by all of the functions of the library. Overall,
the interaction of scope chains in JavaScript is very intricate, especially in the
presence of multiple function closures. Therefore, our next challenge is:

Challenge:
To reason about scope chains and function
closures of arbitrary complexity.

Specification of JavaScript libraries.

There are two requirements necessary for the correct functioning of the prior-
ity queue library. First, the intention of the library developer is that all node
objects constructed using the Node function should have access to the function
insert. This means that the node objects themselves must not have the property
"insert". Second, we must always be able to construct a Node object. This means,
due to the semantics of JavaScript, that Node.Prototype and Object.Prototype

must not have properties "pri", "val" and "next", used in the node constructor,
declared as non-writable. We call these two requirements prototype safety. We
aim to provide a library specification for the priority queue that ensures pro-
totype safety, and believe that we have identified a desired pattern of library
behaviour suitable for JavaScript data structure libraries developed for Node.js.

Challenge:
To provide specifications of JavaScript
libraries that ensure prototype safety.

Hiding JavaScript internals. Our priority queue example illustrates some of the
complexities of JavaScript: extensible objects, prototype-based inheritance, func-
tions, scoping, and function closures. There is, in addition, much complexity that
is not exposed to the JavaScript developer: for example, property descriptors,
internal functions, as well as implicit type coercions, where values of one type are
coerced at runtime to values of another type in order to delay error reporting.
We would like to provide specifications that are as opaque as possible to such
hidden features: since the code does not expose them, the specification should
not expose them either. However, all of these features have to be taken into
account when verifying that a program satisfies a specification. One solution is
to provide abstractions that hide these internal details from view.

Challenge:
To create abstractions that hide the internals of JavaScript
as much as possible and allow the developer to write speci-
fications in the style of C++ and Java specifications.

7

3 A Pathway to JavaScript Verification

Logic-based symbolic verification has recently become tractable for C and Java,
with compositional techniques that scale and properly engineered tools applied
to real-world code: for example, Infer, Facebook’s tool based on separation logic
for reasoning about for C, C++, Objective-C and Java [6]; Java Pathfinder, a
model checking tool for Java bytecode programs [27]; CBMC, a bounded model
checker for C, currently being adapted to Java at Amazon [20]; and WALA’s
analysis for Java using the Rosette symbolic analyser [12].

There has been little work on logic-based symbolic verification for JavaScript.
As far as we are aware, the only relevant work is KJS [22,8], a tested executable
semantics of JavaScript in the K framework [24] which is equiped with a symbolic
execution engine. The aim of K is to provide a unified environment for analysing
programming languages such as C, Java and JavaScript. Specifications are writ-
ten in the reachability logic of K, and the authors use KJS to specify operations
on data structures, such as lists, binary search trees (BSTs) and AVL trees, and
to verify the correctness of several sorting algorithms. This work does not address
many of the challenges that laid out in the previous section. For example, it does
not provide a general, abstract way of reasoning about prototype chains, scope
chains, or function closures; the concrete shape of a prototype chain or a scope
chain always needs to be known. It does not provide JavaScript-specific abstrac-
tions, so the specifications are cumbersome and reveal all JavaScript internals.
The internal functions are always executed in full. More generally, previously
proven function specifications cannot be reused to jump over function calls, so
the function bodies always have to be executed. This significantly diminishes the
scalability of KJS. We argue that a more JavaScript-specific approach is needed
in order to make JavaScript verification tractable.

3.1 Choosing the Battleground

We believe that separation logic has much to offer JavaScript, since it provides a
natural way of reasoning modularly about the JavaScript heap. Gardner, Smith
and Maffeis developed a sound separation logic for a small fragment of JavaScript
with many syntactic and semantic simplifications [13]. Their goal was to demon-
strate that separation logic can be used to reason about the variable store em-
ulated in the JavaScript heap. This approach is not extensible to the entire
language. For example, consider the general assignment e1 = e2, where e1 and
e2 are arbitrary JavaScript expressions. Under the hood, this assignment evalu-
ates these two expressions and calls the GetValue and PutValue internal functions.
The evaluation of each expression, as well as each of these two internal functions
has tens of cases, so combining these case together would result in hundreds
of axioms for the JavaScript assignment alone. Such a logic would be extremely
difficult to prove sound, let alone automate. In order to reason about JavaScript,
we need to move to a simple intermediate representation.

Working directly with JavaScript is not tractable for verification based on

program logics. We need a simple intermediate representation.

8

3.2 Moving to a Simpler World

Our conclusion that some sort of an intermediate representation (IR) is nec-
essary for JavaScript verification is not surprising. Most analysis tools, both
for JavaScript [14,23,19,17,1,26] and other languages [2,3,9,15,7,6,12], use an IR.
The next step is to understand what the desired features of an IR for logic-based
JavaScript verification are. We believe that the following criteria need to be met.

1. Expressiveness. JavaScript is a highly dynamic language, with extensible
objects, dynamic field access, and dynamic function calls. These features
create an additional level of complexity for JavaScript when compared to
other object-oriented languages such as C++ and Java. They should be
supported natively by the IR.

2. Simple control flow. JavaScript has complicated control flow constructs:
for example, for-in, which iterates on the fields of an object; try-catch-
finally for handling exceptions; and the breaking out of loops to arbitrary
labelled points in the code. Logic-based symbolic verification tools today
typically work on IRs with simple control flow. In particular, many of the
separation-logic tools for analysing C, C++, and Java use goto-based IRs:
for example, [2,3,9,15,7,6]. This suggests that our IR for JavaScript should
be based on simple low-level control flow constructs.

One option is to use an IR that has already been developed for analysing
JavaScript code. We can broadly divide these IRs into two categories: (1) those
that work for analyses that are syntax-directed, following the abstract syntax
tree (AST) of the program, such as λJS [14], S5 [23], and notJS [19]; and
(2) those that aim at analyses based on the control-flow graph of the pro-
gram, such as JSIR [21], WALA [12,26] and the IR of TAJS [17,1]. The IRs
in (1) are normally well-suited for high-level analysis, such as type-checking and
type inference [14,23], whereas those belonging to (2) are generally the target
of separation-logic-based tools, such as Smallfoot [2], Slayer [3], JStar [9], Ver-
iFast [15], Abductor [7], and Infer [6], as well as tools for tractable symbolic
evaluation such as CBMC [20] and Klee[5].

We believe that an IR for JavaScript verification should belong to (2). The
JSIR [21] and WALA [12,26] IRs both capture the dynamic features of JavaScript
and provide low-level control flow constructs. However, neither JSIR nor WALA
have associated compilers. In addition, they do not provide reference implemen-
tations of the JavaScript internal functions and built-in libraries, which makes it
very difficult for us to assess their usability. TAJS [17,1] does include a compiler,
originally for ECMAScript 3 (ES3) but now extended with partial models of the
ES5 standard library, the HTML DOM, and the browser API. As TAJS is used
for type analysis and abstract interpretation, its IR is more high-level than those
typically used for logic-based symbolic verification. In addition, we believe that
the aim for verification should be at least ECMAScript 5 (ES5) [10], which is
substantially different from ES3 and essentially provides the core language for
the more recent ES6 and ES7.

9

Another option is to consider using or adapting an IR supported by an ex-
isting separation-logic-based tool [2,3,9,15,7,6], where we would have to provide
the compiler from JavaScript, but the analysis for the IR could be reused. There
are two problems worth mentioning with this approach. First, these tools all tar-
get static languages that do not support extensible objects or dynamic function
calls. Hence, JavaScript objects could not be directly encoded using the built-
in constructs of these languages. Consequently, at the logical level, one would
need to use custom abstractions to reason about JavaScript objects and their
associated operations, effectively losing most of the native reasoning features of
the tool in question. Second, any program logic for JavaScript needs to take
into account the JavaScript binary and unary operators, such as toInt32 [10],
and it is not clear that these operators would be expressible using the assertion
languages of existing tools. This brings us to the following conclusion:

JavaScript requires a dedicated low-level control-flow-based IR for

verification: the simpler the IR, the better.

We have developed a simple JavaScript IR for our verification toolchain,
called JSIL. It comprises only the most basic control flow commands (uncon-
ditional and conditional gotos), the object management commands needed to
support extensible objects and dynamic field access, and top-level procedures.
In the following section, we use JSIL to discuss what it means to design and trust
the compilation and verification process. However, the methodology and princi-
ples that we lay out are general and apply to any verification IR for JavaScript.

3.3 Trusted compilation of JavaScript

The development of an appropriate IR is tightly connected with the development
of the compiler from JavaScript to the IR, which brings up two challenges that
need to be addressed:

1. The compilation has to capture all of the behaviours and corner cases of the
JavaScript semantics, and must come with strong guarantees of correctness.

2. The reasoning at JavaScript level has to be strongly connected with the
reasoning at the IR level; we refer to this as logic-preserving compilation.

To answer these two challenges, we unpack what it means to show that a
compiler can be trusted.

– Correctness by design. This approach assesses the compiler by looking
at the structure of the compiler code and at examples of compiled code.
It is greatly simplified by using semantics-driven compilation, where the
compiler and the compiled code follow the steps of the JavaScript English
standard line-by-line as much as possible. This approach is feasible, because
the JavaScript standard is given operationally, in an almost pseudo-code for-
mat. Given the complexity of JavaScript, this approach, albeit quite informal
in nature, can give some confidence, particularly to the compiler developer,
when it comes to compiler correctness. Ultimately, however, it is not formal
enough to be sufficient on its own.

10

– Correctness by testing. JavaScript is a real-world language that comes
with an official test suite, the ECMAScript Test262 [11]. Although Test262 is
known not to be comprehensive, it features over 20,000 tests that extensively
test most of the JavaScript behaviour. Correctly compiled JavaScript code
should pass all of the appropriate tests.

– Semantics-preserving compilation. This correctness condition for the
compiler is standard in compiler literature. It requires formalising the se-
mantics and memory model of JavaScript, formalising the semantics and
memory model of IR, giving a correspondence between the two memory
models, and, with this correspondence, proving that the semantics of the
JavaScript and compiled IR code match. For real-world languages, either a
pen-and-paper proof is given for a representative fragment or a mechanised
proof is given, in a proof assistant such as Coq, for the entire language.

– Logic-preserving compilation. This correctness condition for the com-
piler is not commonly emphasised in the analysis literature. It assumes
semantic-preserving compilation and additionally requires: giving a strong
correspondence between JavaScript and IR assertions; relating the seman-
tics of JavaScript triples with the semantics of the IR triples; and proving a
soundness result for the IR proof rules. In this way, one can formally lift IR
verification to JavaScript verification.

What follows is an insight into our design process for JSIL and JS-2-JSIL,
and the main lessons that we have learnt from it. We knew we wanted to achieve
logic-preserving compilation, using a separation logic for reasoning about heap
manipulation. From the start, a fundamental decision was to make the JavaScript
and JSIL memory models as close to each other as possible. In the end, the only
difference is the modelling of scope chains. We also chose to design JS-2-JSIL
so that the compiled code follows the ECMAScript standard line-by-line, which
meant that the choices for JSIL were quite apparent. This approach proved to be
important for JS-2-JSIL. It leverages on the operational aspect of the standard,
making the inspection and debugging of compiled code considerably easier.

Semantics-driven compilation is greatly beneficial.

We believe that testing is an indispensable part of establishing compiler cor-
rectness for real-world languages such as JavaScript. Regardless of how precise
proof of correctness may be, there still is plenty of room for discrepancies to
arise: for example, the implementation of the compiler might inadvertently devi-
ate from its formalisation; or the formalised JavaScript semantics might deviate
from the standard. For us, it was testing that guided our debugging process;
without it, we would not be able to claim correctness of JS-2-JSIL.

Extensive testing of the compiled code is essential.

When writing a language compiler, one might claim that correctness-by-
design and correctness-by-testing are sufficient: there is a clear design structure
to the compiler that can be checked by looking at the code and by testing. This is

11

not enough when using the compiler for logic-based verification. In this case, we
require logic-preserving compilation which formally connects JavaScript verifica-
tion with JSIL verification. Logic-preserving compilation depends on semantic-
preserving compilation, which is difficult to prove for such a complex language
as JavaScript. We give a pen-and-paper proof correctness proof for a represen-
tative fragment of the language. We have given thought to providing a Coq
proof of correctness, leveraging on our previous JSCert mechanised specification
of JavaScript [4]. However, the process of formalising JSIL and JS-2-JSIL, and
then proving the correctness is beyond our manpower. In contrast, the proof
that the compiler is logic preserving is comparatively straightforward due to
the simple correspondence between the JavaScript and JSIL memory models.
Moreover, we noticed that the complexity of our proofs is strongly related to the
complexity of this correspondence.

Semantic- and logic-preserving compilation is essential for verification.

A simple correspondence between JavaScript and IR heaps is essential for

containing the complexity of any correctness proofs.

3.4 Tackling the Javascript Internal Functions

The internal functions are described in the standard only in terms of pseudo-
code and not JavaScript. They must, therefore, be implemented directly in the
IR. With these implementations, we have identified two options on how to use
them in verification.

– Inlining. The entire body of an internal function is inlined every time the
function is supposed to be called in the compiled code.

– Axiomatic specification. Internal functions are treated as procedures of
the IR and, as such, are fully axiomatically specified. Calls to internal func-
tions are treated as standard procedure calls of the IR.

We do not believe that inlining is a viable option. Given the sheer number
of calls to the internal functions and their intertwined nature, the size of the
compiled code would quickly spiral out of control. We would also entirely lose the
visual correspondence between the compiled code and the standard. Moreover,
the bulk of verification time would be spent inside this code and the overall
verification process would be very slow.

With axiomatic specifications, on the other hand, the calls to internal func-
tions are featured in the compiled code as procedure calls to their IR implemen-
tations. In that sense, the compiled code reflects the English standard. During
verification, the only check that has to be made is that the current symbolic
state entails a precondition of the specification, which is both at a higher level of
abstraction as well as faster than running the body of the function every time.

Axiomatic specifications of the internal functions are essential for

tractable JavaScript verification.

12

Creating axiomatic specifications does not come without its challenges. The
definitions of the internal functions are often intertwined, making it difficult to
fully grasp the control flow and allowed behaviours. Specifying such dependencies
axiomatically involves the joining of the specifications of all nested function calls
at the top level, which results in numerous branchings. Also, some of the internal
functions feature higher-order and, although it is possible to add higher-order
reasoning to separation logic [25], the soundness result is known to be difficult.
We believe that the resulting specifications, however, will be much more readable
than the operational definitions of the standard. We also hope that they can also
be easily reused for other types of analyses, by leveraging on executable code
created from the axiomatic specifications.

3.5 JavaScript Verification Toolchain

We are currently developing a JavaScript verification toolchain (JaVerT), which
targets the strict mode of the ES5 standard. It requires the JavaScript code to be
annotated with assertions written in our assertion language for JavaScript (JS
Logic). These annotations comprise specifications (the pre- and postconditions)
for functions and global code, together with loop invariants and unfold/fold
instructions for any user-defined predicates, such as a predicate for describing
priority queues. JaVerT also features a number of built-in predicates that pro-
vide abstractions for the key concepts of JavaScript; in particular, for prototype
inheritance, scoping, function objects and function closures. Such predicates en-
able the developer to move away from the complexity of the JavaScript semantics
and write specifications in a logically clear and concise manner.

Fig. 3. JaVerT: JavaScript Verification Toolchain

13

Figure 3 presents the architecture of JaVerT, which rests on an infrastructure
that consists of three components: (1) JS-2-JSIL, our semantics-preserving3 and
logic-preserving compiler from JavaScript to JSIL which has been tested using
the official Test262 test suite, passing all the appropriate tests; (2) JSIL Verify,
our semi-automatic tool for JSIL verification, based on a sound program logic
for JSIL (JSIL Logic); and (3) our JSIL Logic axiomatic specifications of the
JavaScript internal functions, which have been verified using JSIL Verify against
their corresponding JSIL implementations.

Given a JavaScript program annotated with JS Logic specifications, JaVerT
uses our JS-2-JSIL compiler to translate it to JSIL and the JS-2-JSIL logic trans-
lator to translate JS Logic annotations to JSIL Logic. The resulting annotated
JSIL program is then automatically verified by JSIL Verify, taking advantage of
our specifications of the JavaScript internal functions.

Thus far, we have used JaVerT to specify and verify a variety of heap-
manipulating programs, including operations on lists (e.g. insertion sort), pri-
ority queues and BSTs, as well as a number of small JavaScript programs that
showcase our treatment of prototype chains, scoping, and function closures. All
examples can be found online at [16] and are continually being updated.

4 Specifying the Priority Queue Library

We illustrate JaVerT specifications by specifying the enqueue and dequeue meth-
ods of the priority queue library, given in Figure 1. We show how these specifi-
cations are used to verify the client program given in lines 58-62 of the example.

In order to specify enqueue and dequeue, we first need to have a predicate
Queue, describing a priority queue, and the predicate QueueProto, describing the
priority queue prototype. The predicate Queue(lq, qp, np, pri_q, len) describes a
priority queue at location lq, whose prototype is qp, whose nodes have node pro-
totype np, whose maximum priority is pri_q, and which contains len nodes. The
predicate QueueProto(qp, np, c) describes a priority queue prototype at location
qp for those priority queues built from node objects whose node prototype is np.
The parameter c records the value of the variable counter of the example (line
3), and holds the total number of existing node objects.

These two abstractions, which we will not unfold in detail here, capture,
among others, the resource associated with the Node, insert, enqueue, and dequeue

function objects, as well as the resource corresponding to the function closures
of enqueue and dequeue: in particular, for enqueue, we need the variable prop-
erty Node from the ER of PQLib; and, for dequeue, we need the variable resource
counter from that same ER. They also capture the resources necessary to express
prototype safety for both Node and PQ, which we describe using a technique from
[13] for reasoning about the absence of properties in an object. We explicitly
require the insert property of node object n, and the pri, val, and next proper-
ties of Node.prototype and Object.prototype not to be in the heap, as illustrated

3 The formal result that the compiler is semantics-preserving has been done for a
fragment of the language.

14

in Figure 4 by the properties in red with value None. Note that the Queue and
QueueProto predicates do not expose the internals of JavaScript, such as property
descriptors and scope chains. Moreover, they do not expose functions not acces-
sible to the client, such as the Node function. They do expose Node.prototype via
the np parameter, but this is expected since the client can access it through the
_head property of a queue.

Fig. 4. Prototype safety for Node objects

The following specification of enqueue states that it should be executed on a
priority queue of arbitrary length len, that the total number of existing nodes c

needs to be not greater than 42, and that it receives two arguments pri and val

with pri of type Num. The postcondition states that enqueue returns a priority
queue with len + 1 nodes and maximum priority max(pri_q, pri), and that the
total number of nodes has increased by one. Due to space requirements, we omit
the specification of enqueue corresponding to the error case in which the total
number of existing nodes is greater than 42.{

Queue(this, qp, np, pri_q, len) * QueueProto(qp, np, c) *
types(pri: Num) * c <= 42

}
enqueue(pri, val){

Queue(ret, qp, np, max(pri q, pri), len+1) * QueueProto(qp, np, c+1)
}

The following specification of dequeue states that it should be executed on a
priority queue with length len greater than 0 and maximum priority pri_q. The
postcondition states that, afterwards, the length of the queue has decreased by
one, its priority has not increased, and the overall total number of nodes has
decreased by one. The function also returns a standard object with two fields,
pri with value pri_q and val with value #val which is existentially quantified.
We prefix existentially quantified variables with a ‘#’. In the postcondition,
the standardObject and dataField abstractions hide the internal properties and
property descriptors of JavaScript objects. Again, due to space requirements, we
omit the specification of dequeue where the queue from which we are dequeueing
is empty and an error is thrown.{

Queue(this, qp, np, pri q, len) * QueueProto(qp, np, c) * len > 0
}

dequeue(){
Queue(this, qp, np, pri’, len-1) * QueueProto(qp, np, c-1) * pri’ <= pri_q *

standardObject(ret) * dataField(ret, "pri", pri_q) * dataField(ret, "val", #val)

}

Given the specifications of enqueue and dequeue, we can verify the client
program in lines 59-62. We show a proof sketch below, where we use the assertion

15

scope(x: v) to state that variable x has value v in the current scope. Starting from
an empty queue with maximum priority 0, we create three nodes, obtaining a
queue with three nodes and maximum priority 3. Then, we dequeue the head of
the queue (which we can do, as we know that the queue has 3 nodes), obtaining
a queue with 2 nodes and existentially quantified priority #pri not greater than
3. Moreover, in the end, the variable r is bound to an object with two fields: pri,
with value 3; and val, with value #val which is existentially quantified.

{
scope(q: qv) * Queue(qv, qp, np, 0, 0) * QueueProto(qp, np, 0) * scope(r: undefined)

}
q.enqueue(1, "last"); q.enqueue(3, "bar"); q.enqueue(2, "foo"){

scope(q: qv) * Queue(qv, qp, np, 3, 3) * QueueProto(qp, np, 3) * scope(r: undefined)
}

var r = q.dequeue(){
scope(q: qv) * Queue(qv, qp, np, #pri, 2) * QueueProto(qp, np, 2) * #pri <= 3 *

scope(r: #r) * standardObject(#r) * dataField(#r, "pri", 3) * dataField(#r, "val", #val)

}

These specifications show that it is possible to successfully abstract over
JavaScript internals, allowing both the library developer and the client developer
to write specifications that are as free as possible from JavaScript-specific clutter.

4.1 Discussion

We conclude with a brief discussion of two important aspects of specifying
JavaScript libraries: capturing prototype safety; and enforcing encapsulation.
The situation for prototype safety is straightforward. It is not possible to verify
a specification of client code if it compromises prototype safety. The situation
for encapsulation is more subtle. In the example, a client can break encapsula-
tion by modifying node objects or Node.prototype. There are ways of breaking
encapsulation that we could choose to allow. The client could, for instance, add
more functionalities to Node.prototype or add more properties to node objects,
and this would not break the existing functionalities. However, there are ways of
breaking encapsulation that we should certainly disallow. The client could, for
instance, change the values of the pri, val, or next properties of a node object,
or change the implementation of the insert function in Node.prototype. One way
to ensure full encapsulation would be to keep the Queue and QueueProto predi-
cates opaque to the client code. Hence, in order to be successfully verified, client
code can only interact with a priority queue via its established interface, that
being the enqueue and dequeue methods. By keeping library predicates opaque,
we make sure that client code cannot break the existing abstractions.

Acknowledgments. Fragoso Santos, Gardner, and Maksimović were supported
by the EPSRC Programme Grant REMS: Rigorous Engineering for Mainstream
Systems (EP/K008528/1), and the Department of Computing in Imperial Col-
lege London. Naudžiūnienė was supported by an EPSRC DTA award. Maksi-
mović was also partially supported by the Serbian Ministry of Education and
Science through the Mathematical Institute of Serbian Academy of Sciences and
Arts, projects ON174026 and III44006.

16

References

1. E. Andreasen and A. Møller. Determinacy in static analysis for jquery. In OOP-
SLA, 2014.

2. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO, 2005.

3. J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for systems-level code.
In CAV, 2011.

4. M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene,
A. Schmitt, and G. Smith. A Trusted Mechanised JavaScript Specification. In Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL’14, pages 87–100. ACM Press, 2014.

5. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In R. Draves and
R. van Renesse, editors, 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California,
USA, Proceedings, pages 209–224. USENIX Association, 2008.

6. C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving fast
with software verification. In NASA Formal Methods, pages 3–11. Springer, 2015.

7. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. In POPL, 2009.

8. A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu. Semantics-based program
verifiers for all languages. In Proceedings of the 31th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’16), pages 74–91.
ACM, Nov 2016.

9. D. Distefano and M. Parkinson. jStar: Towards practical verification for Java. In
OOPSLA, 2008.

10. ECMAScript Committee. The 5th edition of the ECMAScript Language Specifi-
cation. Technical report, ECMA, 2011.

11. ECMAScript Committee. Test262 test suite. https://github.com/tc39/test262,
2017.

12. S. Fink and J. Dolby. WALA — The T.J. Watson Libraries for Analysis.
http://wala.sourceforge.net/, 2015.

13. P. Gardner, S. Maffeis, and G. Smith. Towards a program logic for JavaScript.
In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’13, pages 31–44. ACM Press, 2012.

14. A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of Javascript. In Proceed-
ings of the 24th European Conference on Object-Oriented Programming (ECOOP),
Lecture Notes in Computer Science, pages 126–150. Springer, 2010.

15. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
Verifast: A powerful, sound, predictable, fast verifier for c and java. In NASA
Formal Methods, pages 41–55. Springer, 2011.

16. JaVerT Team. Javert. http://goo.gl/au69SV, 2017.

17. S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In
Proceedings of the 16th International Static Analysis Symposium (SAS), volume
5673 of Lecture Notes in Computer Science, pages 238–255. Springer, 2009.

18. J. Jones. Priority queue data structure. https://github.com/jasonsjones/queue-pri,
2016.

17

19. V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wie-
dermann, and B. Hardekopf. JSAI: a static analysis platform for javascript. In
FSE, pages 121–132, 2014.

20. D. Kroening and M. Tautschnig. CBMC – C bounded model checker. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume 8413
of LNCS, pages 389–391. Springer, 2014.

21. B. Livshits. JSIR, An Intermediate Representation for JavaScript Analysis, 2014.
http://too4words.github.io/jsir/.

22. D. Park, A. Stefănescu, and G. Roşu. Kjs: A complete formal semantics of
javascript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015, pages 346–356, New York, NY,
USA, 2015. ACM.

23. J. G. Politz, M. J. Carroll, B. S. Lerner, J. Pombrio, and S. Krishnamurthi. A
Tested Semantics for Getters, Setters, and Eval in JavaScript. In Proceedings of
the 8th Symposium on Dynamic Languages, 2012.

24. G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

25. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested hoare triples and
frame rules for higher-order store. Logical Methods in Computer Science, 7(3),
2011.

26. M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation tracking
for points-to analysis of javascript. In ECOOP, pages 435–458, 2012.

27. W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input generation with java
pathfinder. In Proceedings of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA ’04, pages 97–107, New York, NY, USA,
2004. ACM.

18

http://too4words.github.io/jsir/

	Towards Logic-based Verification of JavaScript Programs

