
Closed Action Calculi

Philippa Gardner1

Abstract

Action calculi provide a framework for capturing many kinds of interactive behaviour by focussing on the

primitive notion of names. We introduce a name-free account of action calculi, called the closed action calculi,

and show that there is a strong correspondence between the original presentation and the name-free presentation.

We also add free names plus natural axioms to the closed world, and show that the abstraction operator can

be constructed as a derived operator. Our results show that in some sense names are inessential. However,

the purpose of action calculi is to understand formalisms which mimic the behaviour of interactive systems.

Perhaps more significantly therefore, these results highlight the important presentational role that names play.

1 Introduction

Action calculi arose directly from the π-calculus and were introduced by Milner in 1993. They provide a nota-
tion for capturing many kinds of interactive behaviour by focussing on the primitive notion of names. Names
describe communication channels (or pointers or identifiers or locations) between agents, concepts fundamental
to interactive systems. There are many calculi which use names for describing interactive behaviour, including
the π-calculus [MPW92], the λ-calculus, several models of distributed migratory systems [CG97a, Sew97], the
spi-calculus used for describing security protocols [AG97] and the object calculus [AC96]. Action calculi are a
framework for investigating all these calculi in a unified setting. Such a unification is necessary for the analysis of
the similarities and differences between the many possible and existing calculi, and to allow the common study of
metatheory, such as behavioural congruences between agents.

An action calculus consists of a set of actions, constructed from constants which determine the specific action
calculus under consideration, and a reaction relation which describes the interactive behaviour of these constants.
Unlike the π-calculus, action calculi have two simple constructs for naming – 〈x〉 for using name x and abx(a)
for binding x to the action a. This paper shows that we can give a name-free presentation of action calculi,
called the closed action calculi. First, we show that there is a strong correspondence between closed action calculi
and Milner’s original presentation, which develops the results presented in [Gar95]. Second, we add free names
plus natural axioms to the closed world, and show that the abstraction operator can be constructed as a derived
operator. This second result is analogous to the standard connection between the λ-calculus and combinatory
logic, given for example in [HS86]. Just after this result was proved, Dusko Pavlovic [Pav97] independently added
free names to his models of closed action calculi and showed a similar result. In addition, he pointed out that the
results are analogues of the standard categorical notion of functional completeness for cartesian categories.

Our results show that in some sense names are inessential. However, the purpose of action calculi is to understand
formalisms which mimic the behaviour of interactive systems. Perhaps more significantly therefore, we shall see
that these results highlight the important presentational role that names play.
Summary In Section 2, we give an introduction to action calculi to make the paper self-contained. Further
details can be found in [Mil96]. In Section 3, we introduce the closed action calculi. Section 4 contains the
translations and results; the main proofs are given in the appendix. Section 5 extends the closed action calculi
with names and shows that the abstraction operator is derivable. In Section 6 we extend our results to the reflexive
and higher-order action calculi, and in Section 7 we assess our results and discuss related research.

2 Action Calculi

There are three presentations of the original definition of action calculi: the algebraic presentation, where actions
are equivalence classes arising from a set of terms and an equational theory on terms, the graphical presentation,
which gives an intuitive account using pictures, and the molecular form presentation, which give (weak) normal

1Address: University of cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG. Email:

Philippa.Gardner@cl.cam.ac.uk. The author acknowledges support of a Royal Society of Edinburgh BP Fellowship and an EPSRC

Advanced Fellowship.

1

forms for the algebraic terms and a direct syntax for the graphs. We concentrate on the algebraic presentation in
this paper; details of the other presentations are given in [Mil96].

In all the presentations, an action calculus is specified by a signature K = (P,K), which consists of a set P of
basic types, called primes and denoted by p, q, . . . , and a set K of constants, called controls. Each control K in K
has an associated arity ((m1, n1), . . . , (mr, nr)) → (m,n), where the m’s and n’s are finite sequences of primes,
called tensor arities; we write ε for the empty sequence, ⊗ for concatenation using infix notation, and write M

for the set of tensor arities. We usually refer to the tensor arities as just arities, when the meaning is clear. We
assume a fixed denumerable set X of names, each of which has a prime arity. We let x, y, . . . range over names,
and sometimes write xp to indicate that x has the prime arity p.

Definition 2.1 (Terms)
The set of terms over signature K , denoted by T(K), is constructed from the basic operators: identity idm,
composition ·, tensor ⊗, discard ωp, datum 〈xp〉, abstraction abxp , and the controls K. A term t is assigned an
arity t : m → n, for arities m and n, using the following rules:

idm : m → m

s : k → l t : l → m

s · t : k → m

s : k → m t : l → n

s⊗ t : k ⊗ l → m⊗ n

ωp : p → ε

〈xp〉 : ε → p

t : m → n

abxp(t) : p⊗m → p⊗ n

t1 : m1 → n1 . . . tr : mr → nr

K(t1, . . . , tr) : m → n

where, in the control term K(t1, . . . , tr), the arity of K is ((m1, n1), . . . , (mr, nr)) → (m,n).

If a term contains no control terms, we call it a wiring term. We write TX(K) to emphasise the underlying set
of names X , and T~x(K) to denote the set of terms whose free names are contained in {~x}. We omit the arity
subscripts on the basic operators when apparent. The notions of free and bound name are standard: abx binds x
and 〈x〉 represents a free occurrence of x. We write s{t/〈x〉} to denote the usual capture-avoiding substitution. The
set of names free in s, t, . . . is denoted by fn(s, t, . . .). Given a possibly empty sequence of names ~x = xp1

1 , . . . , xpr
r ,

we write |~x| for p1 ⊗ . . .⊗ pr. All terms and expressions used are well formed, and all equations are between terms
of the same arity.

Definition 2.2 (Derived operations)
To help us define the equational theory, we give an alternative form of abstraction (x)t, the permutations pm,n,
and some other standard abbreviations as follows:

(x)t
def
= abx(t) · (ω ⊗ id)

(~x)t
def
= (x1) · · · (xr)t, (~x = [x1, · · · , xr], all distinct, r ≥ 1)

〈~x〉
def
= 〈x1〉 ⊗ · · · ⊗ 〈xr〉, (~x = [x1, · · · , xr], r ≥ 1)

pm,n
def
= (~x, ~y)〈~y, ~x〉, (|~x| = m, |~y| = n)

2

We assume that ()t denotes the term t and 〈 〉 denotes the term idε. Notice that pm,n is defined using particular
names; with α-conversion, we shall be justified in choosing these names at will. Throughout this paper we shall
adopt the convention that all names appearing in a vector within round brackets are distinct.

The equational theory for action calculi consists of a set of equations upon terms generated by the action structure
axioms and the concrete axioms, given in definition 2.3. The action structure axioms, introduced in [Mil93], state
that an action calculus is a strict monoidal category whose objects are given by arities and whose morphisms are
defined by terms, with an endofunctor given by the abx operator. The concrete axioms describes the interplay
between the free and bound names.

Definition 2.3 (The theory AC)
The equational theory AC is the set of equations upon terms generated by the following axioms:

1. the action structure axioms
A1 : s · id = s = id · s

A2 : s⊗ idε = s = idε ⊗ s

A3 : id⊗ id = id

A4 : s · (t · u) = (s · t) · u

A5 : s⊗ (t⊗ u) = (s⊗ t)⊗ u

A6 : (s · t)⊗ (u · v) = (s⊗ u) · (t⊗ v)

A7 : abx(id) = id

A8 : abx(s · t) = abx(s) · abx(t)

2. the concrete axioms

γ : (x)t = ω ⊗ t (x 6∈ fn(t))

δ : (x)(〈x〉 ⊗ idm) = idp⊗m (xp)

ζ : pk,m · (t⊗ s) = (s⊗ t) · pl,n (s : k → l, t : m → n)

σ : (〈y〉 ⊗ idm) · (x)t = t{〈y〉/〈x〉} (xp, yp)

Remark 2.4
For historical reasons, we have chosen to consider the operator abx as primitive, and define the operator (x) in

terms of abx. An alternative approach is to treat (x) as primitive, and let abx be defined by abx(t)
def
= (x)(〈x〉⊗ t).

In fact, there is a slightly simpler presentation using the alternative binding. Hasegawa [GH97] observed that the
equational theory AC can be generated by the axioms of a symmetric monoidal category, the σ-axiom and a stronger
δ′-axiom

(x)(〈x〉 ⊗ id) · t) = t, x 6∈ fn(t)

Definition 2.5
The static part of an action calculus AC(K) consists of the equivalence classes, called actions and denoted by
a, b, c, . . . , obtained by quotienting the terms in definition 2.1 by the equational theory. We sometimes write
ACX(K) to indicate that the names have come from the set X . The dynamic part of an action calculus AC(K), or
the reaction relation, is a transitive relation between terms with the same arity which is preserved under tensor,
composition, abstraction, and equality, and such that id does no react: that is, there is no s with id ց s.

The definition of the dynamics has purposely been kept general, since it is on-going research to fully understand
which dynamic relations describe interesting behaviour. It is typically generated from a set of rewrite rules. Notice
that, since the reaction relation is preserved by the equational theory, an equivalent way of stating the dynamics
is to define a relation on the actions as in [Mil96]. Also notice that since id does not react, it follows for arbitrary
wiring term u that u does not react. This fact is a corollary of the following lemma.

Proposition 2.6
Given wiring term u ∈ T(K) with arity m → n, there exists wiring terms v1, v2 such that v1 · u · v2 = idε.

3

Proof It is easy to prove that u = (~x)〈~y〉 in AC for |~x| = m and |~y| = n, by induction on the structure of wiring
term u. Let v1 = 〈~x〉 and v2 = (~y)〈 〉 to obtain the result. �

Example 2.7
We use a simple version of the asynchronous π-calculus [Bou92, HT92] as a running example throughout the paper.
The set of processes Proc are given by the abstract grammar

P ::= 0 | P |Q | x〈y〉 | x(z).P | ν(z)P (1)

These represent respectively the null process, parallel composition, the output of a name y on channel name x, the
process which can input a name along x, bind it to z and become P , and a declaration of a new private channel
which binds z in P. The act of passing a name to a process is described by the rule

x〈y〉 |x(z).P −→ P{y/z} (2)

The action calculus PIC for the asynchronous π-calculus is specified by the signature K = ({1}, {out, in,new}),
where the controls have arity rules

out : 1⊗ 1 → ε

t : 1 → 1

in(t) : 1 → 1 new : ε → 1

Each control corresponds to a construct in (1), as shown by the following translation ()′ : Proc → T(K):

0′ = idε

(P | Q)′ = P ′ ⊗Q′

(x〈y〉)′ = 〈x, y〉 · out

(x(z).P)′ = 〈x〉.in((z)P ′)

(ν(z)P)′ = new · (z)P ′

The rule generating the reaction relation for PIC is

〈x, y〉 · out⊗ 〈x〉 · in(t) ց 〈y〉 · t. (3)

Notice that when t is (z)t′, we have 〈y〉 · (z)t′ = t′{〈y〉/〈z〉}. A full account of the connection between this version
of the asynchronous π-calculus and PIC is given in [Mil96], including some extensions to the basic version given
here.

Example 2.8
We also give the action calculus LAMB, introduced by Milner in [Mil94b], as a step towards defining the higher-order
action calculi given in Section 6. Gardner and Hasegawa [GH97] have shown that it is related to a simply-typed
call-by-value λ-calculus arising from Moggi’s computational λ-calculus [Mog91]. Given a set of basic primes P , we
define the sets of higher-order primes P⇒ and higher-order arities M⇒ by the abstract grammars

p ::= p′ ∈ P | m ⇒ n
m ::= p | m⊗ n | ε

The action calculus LAMB is specified by the signature K = {P⇒, {λλλ, ap}}, where the controls have arity rules

t : m → n

λλλ(t) : ε → (m ⇒ n)
ap : (m ⇒ n)⊗m → n

The reaction relation is generated from the rules

σ′ : (λλλ(s)⊗ id) · (x)t ց t{λλλ(s)/〈x〉}
β : (λλλ(t)⊗ id) · ap ց t
η : λλλ((〈x〉 ⊗ id) · ap) ց 〈x〉

where σ′ can be viewed as explicit substitution.

4

3 Closed action calculi

We define a closed action calculus using a signature in a similar fashion to the definition of an action calculus. We
shall see however that, given an action calculus AC(K), the corresponding closed action calculus is generated from
a signature K

′ constructed from K .

Definition 3.1 (Closed Terms)
The set of closed terms over signature K = (P,K), denoted by CT(K), is constructed from the basic operators:
identity idm, composition ·, tensor ⊗, permutation p, copy ∆, discard ω, and the controls K. A closed term t is
assigned an arity t : m → n, for arities m and n, using the following rules:

idm : m → m

s : k → l t : l → m

s · t : k → m

s : k → m t : l → n

s⊗ t : k ⊗ l → m⊗ n

pm,n : m⊗ n → n⊗m

∆m : m → m⊗m

ωm : m → ε

t1 : m1 → n1 . . . tr : mr → nr

K(t1, . . . , tr) : m → n

where, in the control term K(t1, . . . , tr), the arity of K is ((m1, n1), . . . , (mr, nr)) → (m,n). If the closed term
contains no control terms, we call it a closed wiring term. As before, we shall omit the arity subscripts on the basic
operators when they are apparent.

Definition 3.2 (The Theory CAC′)
The equational theory CAC′ is the set of equations upon terms generated by the action structure axioms A1–A6
from definition 2.3, and the following:

B1 : ∆m · (ωm ⊗ id) = id

B2 : ∆m · pm,m = ∆m

B3 : pk,m · (s⊗ t) = (t⊗ s) · pl,n, s : m → n, t : k → l

B4 : pm,n · pn,m = id

B5 : pm⊗n,k = (id⊗ pn,k) · (pm,k ⊗ id)

B6 : ωm⊗n = ωm ⊗ ωn

B7 : ∆m⊗n = (∆m ⊗∆n) · (id⊗ pm,n ⊗ id)

B8 : ∆m · (∆m ⊗ id) = ∆m · (id⊗∆m)

Remark 3.3
We have chosen to define idm, ωm, ∆m and pm,n for arbitrary arities and include the axioms B5–B7. Since
arities can be uniquely factorized into primes, an alternative approach is to restrict the definitions to prime arities,
remove B5–B7 and define the composite cases in terms of the prime cases and the other operators. This alternative
approach is used in the definition of action calculi, since names are forced to have prime arity.

Remark 3.4
The equational theory CAC′ corresponds to the equational theory of a ps-monoidal category, recently studied by
Corradini and Gadducci [CG97b] in their work on graph rewriting.

5

Given an action calculus AC(K) where K = (P,K), we still need to identify the corresponding closed action
calculus. We cannot just use the same signature K in the closed world. In the open world, we have free names
occuring inside controls which are bound outside the controls. For example, using the action calculus PIC given in
example 2.7, we have the term

(x, y)in(〈x, y〉).

In order to express this term in the closed world, we declare a family of controls inm for every m ∈ M. The
purpose of the index m is to record the fact that terms inside the control inm have been closed with respect to
some sequence of names ~x, where |~x| = m. For example, if we close the term in(〈x, y〉) using sequence [xp, yq]
we obtain the closed term inp⊗q(idp,q). If however we close the same term using sequence [yq, xp], we obtain the
closed term inq⊗p(pq,p). Intuitively, these two closed terms should be connected since they have come from the
same term in(〈x, y〉). This intuition is captured by adding extra equalities to link controls with related indexing.
For example, the controls inp⊗q and inq⊗p are connected by the equality

(pp,q ⊗ id) · inq⊗p(t) = inp⊗q((pp,q ⊗ id) · t),

which results in inp⊗q(id) and (pp,q ⊗ id) · inq⊗p(pq,p) being equal. Using these extra equalities on the indexed
controls, we obtain the tight correspondence we are seeking.

Definition 3.5
Given signature K = (P,K), the corresponding closed signature K

′ has the same set of primes P and the control
set

K′ = {Kl : l ∈ M and K ∈ K},

such that, if the arity of K is ((m1, n1), . . . , (mr, nr)) → (m,n), then the arity of Kl is ((l ⊗ m1, n1), . . . , (l ⊗
mr, nr)) → (l ⊗m,n).

Definition 3.6
The static part of a closed action calculus CAC(K′) consists of the equivalence classes, called closed actions and
denoted by a, b, c, . . . , obtained by quotienting the closed terms in definition 3.1, generated by the closed signature
K
′ , by the equational theory CAC generated by the axioms in definition 3.2 plus the control axioms

D1 : ωn ⊗Km(t1, . . . , tr) = Kn⊗m(ωn ⊗ t1, . . . ,ωn ⊗ tr)

D2 : (id⊗ pm,n ⊗ id) ·Kk⊗n⊗m(t1, . . . , tr) = Kk⊗m⊗n((id⊗ pm,n ⊗ id) · t1, . . . , (id⊗ pm,n ⊗ id) · tr)

D3 : (id⊗∆m ⊗ id) ·Kk⊗m⊗m(t1, . . . , tr) = Kk⊗m((id⊗∆m ⊗ id) · t1, . . . , (id⊗∆m ⊗ id) · tr)

Before defining the reaction relation for CAC(K′), we first prove a property of the equational theory CAC which
does not hold for AC. The impact of this result is that we must include an extra condition for the reaction relation
of a closed action calculus. We require a few preliminary definitions. We write p ∈ m if m = p1 ⊗ . . . ⊗ pr and
p = pi, and say that m is contained in n if p ∈ m implies p ∈ n. A closed context is a term with a hole in it.
Formally, it is described by the abstract grammar

C ::= [] | s⊗ C | C ⊗ s | s · C | C · s | K(. . . , C, . . .)

where s ∈ CT(K). A closed wiring context W is a closed context which contains no controls. Given closed wiring
term u and closed term s, we cannot always find a context C such that C[u⊗ s] = s, as the following proposition
shows.

Proposition 3.7
Given a closed wiring term u : m → n and closed term s : k → l, where m is not contained in k, there is no context
C such that C[u⊗ s] = s in CAC.

Proof It is easy to show, for a closed wiring term u : m → n, that n is contained in m using induction on the
structure of u. Using this result, we can show for W [s] : k → l, where s : m → n is a closed term and W is a
closed wiring context, that m is contained in k. To prove the main result that C[u⊗ s] 6= s, it is enough to prove
the result for all closed wiring contexts W , since if C contained a control the inequality would be automatic. We
know that m is contained in the domain arity of W [u⊗ s], and so the result holds. �

6

Definition 3.8
The dynamic part of the closed action calculus CAC(K′) is a transitive relation between closed terms with the
same arity which is preserved under tensor, composition and equality, and such that

1. id does not react;

2. for closed terms s and t, if id⊗ s ց id⊗ t then s ց t.

By proposition 3.7, we know that condition 2 cannot follow from the other closure properties. We shall see in see
in Section 4 that the corresponding property for AC(K) is admissible, and so condition 2 is a necessary property
of the reaction relation for closed action calculi. Conditions 1 and 2 of definition 3.8 imply, for an arbitrary closed
wiring term u, that u does not react and that u ⊗ s ց u ⊗ t implies s ց t. This last fact is a corollary of the
following proposition.

Proposition 3.9
Given closed wiring term u : k → l, there exist closed wiring terms s and t such that s · u · t = idk in CAC.

Proof (Sketch) First, we define the the basic terms basicnp inductively on n ≥ 0, by

basic0p = ωp

basicn+1
p = ∆p · (basic

n
p ⊗ idp)

For arbitrary closed wiring term u, we have u = (u1 ⊗ . . .⊗ un) · perm in CAC, where the ui are basic terms, and
perm is a permutation term, defined by the grammar

t :: id |p | t · t | t⊗ t

This fact is proved by induction on u. The only interesting case is when u = v · w for closed wiring terms v and
w. By the induction hypothesis, v = (v1 ⊗ . . .⊗ vl) · perm1 and w = (w1 ⊗ . . . ⊗ wk) · perm2. Using axiom B3 in
definition 3.2 for permuting tensors, we have

v · w = (v1 ⊗ . . .⊗ vl) · (w
′
1 ⊗ . . .⊗ w′

k) · perm
′

where w′
1 ⊗ . . .⊗ w′

k is a permutation of w1 ⊗ . . . ⊗ wk and perm′ is a permutation term. The proof follows by a
secondary induction on l.

To prove the result, let u = (u1⊗ . . .⊗un) ·perm for basic terms ui and permutation term perm. By axiom B1 of
definition 3.2, observe that for all n ≥ 1 there exists a terms tn such that basicnp · tn = idp, and that ∆p · (basic

0
p ⊗

idp) = idp. Using this observation and the fact that the permutation terms have inverses, it is easy to construct s
and t such that s · u · t = idk in CAC. �

Remark 3.10
Notice that, unlike proposition 2.6 for AC(K), we do not have the stronger result that there exists closed wiring
terms s and t such that s · u · t = idε in CAC, since it would contradict proposition 3.7.

In the next section, we shall see that a reaction relation for AC(K) determines a corresponding relation for
CAC(K′), and vice versa.

4 Translations

We give the equality-preserving translations between action calculi and their corresponding closed action calculi,
to provide a formal justification for the closed action calculi. These translations are also used to relate the reaction
relations.

7

4.1 Action Calculi to Closed Action Calculi

We define a family of functions [[]]~x : T~x(K) → CT(K′) indexed by the sequence of names ~x. We call these functions
closure functions.

Definition 4.1
The closure functions [[]]~x : T~x(K) → CT(K′), for each list of distinct names ~x = [xp1

1 , . . . , xpr
r], are defined

inductively on the structure of terms in T~x(K) as follows:

[[id]]~x = ω|~x| ⊗ id

[[s · t]]~x = (∆|~x| ⊗ id) · (id|~x| ⊗ [[s]]~x) · [[t]]~x

[[s⊗ t]]~x = (∆~x ⊗ id) · (id⊗ p|~x|,k ⊗ id) · ([[s]]~x ⊗ [[t]]~x)

[[abx(t)]]~x = (id⊗∆p ⊗ id) · (p|~x|,p ⊗ id⊗ id) · (id⊗ [[t{y/x}]]~x,y), yp 6∈ {~x}

[[〈x〉]]~x = ωpi⊗...⊗pi−1
⊗ idpi

⊗ ωpi+1⊗...⊗pr
, x = xi, i ∈ {1, . . . , r}

[[ωp]]~x = ω|~x| ⊗ ωp

[[K(t1, . . . , tr)]]~x = K|~x|([[t1]]~x, . . . , [[tr]]~x)

Whenever we write [[]]~x, we assume that ~x is a list of distinct names. We shall often wish to distinguish a particular
name in such a list. We therefore write ~x, y, ~z to denote a sequence of distinct names with the name y distinguished.
In the definition of [[]]~x, the abstraction case is perhaps the most confusing. The idea of viewing the behaviour of
[[]]~x as the closure of a term using ~x becomes clearer when we use the alternative form of abstraction (x)t, as the
following proposition shows.

Proposition 4.2
We have the equality [[(x)t]]~x = [[t{〈y〉/〈x〉}]]~x,y in CAC for some y 6∈ {~x} with the same arity as x.

Proof The proof follows by straightforward equational reasoning. �

Also, notice that [[abx(t)]]~x and [[(x)t]]~x are defined using a chosen y 6∈ {~x}. The next lemma shows that this choice
of y is not important.

Lemma 4.3
We have the equality [[t]]~x,u,~y = [[t{v/u}]]~x,v,~y in CAC, if u and v have the same arity.

Proof The proof is by easy induction on the structure of t. �

The following three lemmas illustrate the connection between the closure functions [[]]~x and [[]]~y , when {~x} ⊆ {~y}.
They are proved by induction on the structure of term t. In each proof, the interesting case is when t has the
form K(t1, . . . , tr), since this case shows that the proofs rely directly on the control axioms D1–D3 introduced in
Section 3. The details are not difficult and can be found in [Gar94].

Lemma 4.4
1. [[t]]y,~x = ωp ⊗ [[t]]~x in CAC, when yp 6∈ fn(t).

2. [[t]]~x,~y,~z = (id⊗ p|~y|,|~z| ⊗ id) · [[t]]~x,~z,~y in CAC.

3. (id⊗∆p ⊗ id⊗ id) · [[t]]~x,u,v,~y = [[t{u/v}]]~x,u,~y in CAC if u and v have the same arity.

The results above illustrate that the closure functions behave as expected. Using these results, we prove that
these functions preserve equality. The proof uses the technical device of working with judgements of the form
{~x} ⊢ s = t, which denotes that s = t in AC and that fn(s, t) ⊆ {~x}, in order to give precise control of names in
actions. The details are given in the appendix.

Theorem 4.5
Given s, t,∈ T~x(K), if s = t in the equational theory AC then [[s]]~x = [[t]]~x in CAC.

8

4.2 Closed Action Calculi to Action Calculi

There is also an equality-preserving translation from the closed action calculus to the corresponding action calculus.
This translation, together with the closure functions defined in the previous section, yields a tight correspondence
between the static parts of AC(K) and CAC(K′). Recall that the indexing on the controls is used to record the
information that the terms inside the controls have been closed using a sequence of names of the appropriate arity.
We use this information during the translation in an essential way to incorporate free names inside the controls.

Definition 4.6
The translation 〈〈 〉〉 : CT(K′) → T∅(K) is defined inductively on the structure of closed terms as follows:

〈〈id〉〉 = id

〈〈s · t〉〉 = 〈〈s〉〉 · 〈〈t〉〉

〈〈s⊗ t〉〉 = 〈〈s〉〉 ⊗ 〈〈t〉〉

〈〈∆m〉〉 = (~x)〈~x, ~x〉, |~x| = m

〈〈pm,n〉〉 = pm,n, |~x| = m, |~y| = n

〈〈ωm〉〉 = ωm

〈〈Km(t1, . . . , tr)〉〉 = (~x)K((〈~x〉 ⊗ id) · 〈〈t1〉〉, . . . , (〈~x〉 ⊗ id) · 〈〈tr〉〉), |~x| = m.

The proof that 〈〈 〉〉 preserves equality is easier than the corresponding proof for [[]], and again involves working
with judgements of the form {~x} ⊢ s = t where fn(s, t) ⊆ {~x}. The proof is given in the appendix.

Theorem 4.7
Given closed terms s, t ∈ CT(K), if s = t in the equational theory CAC then 〈〈s〉〉 = 〈〈t〉〉 in AC.

In the appendix we also give the proof of the theorem below, which states how the translations [[]]~x and 〈〈 〉〉 are
connected.

Theorem 4.8
1. Given t ∈ T~x(K), we have 〈〈[[t]]~x〉〉 = (~x)t in AC.

2. Given s ∈ CT(K), we have [[〈〈s〉〉]]∅ = s in CAC.

4.3 Relating the reaction relations

We relate the reaction relations for action calculi and their corresponding closed action calculi. In particular, we
give general results which show that a reaction relation for an action calculus generates a reaction relation in the
corresponding closed world, and vice versa. We look at the examples PIC and LAMB given in Section 2, whose
reaction relations are generated by a finite set of rules. The LAMB example shows that we cannot generate the
reaction relations in the closed world by simply translating the rules from the open world. We shall see in Section 5
that such a translation is possible when we add free names to closed action calculi.

Definition 4.9
Let ց be a relation for AC(K). Define a binary relationR on closed terms in CT(K′) by sR t if and only if
〈〈s〉〉 ց 〈〈t〉〉 in AC(K).

We show that the relation R is a reaction relation for CAC(K′). The interesting part of the proof is to show
that condition 2 in definition 3.8 holds. It relies on a property of the equational theory AC that, for wiring term u
and term s, there is a wiring context W such that W [u⊗ s] = s, which is independent of the structure of s. This
property follows directly from proposition 2.6.

Proposition 4.10
The relation R given in definition 4.9 is a reaction relation for CAC(K′).

9

Proof It is easy to prove that R is transitive, and is closed under composition, tensor and the equational theory.
It is also easy to prove, given closed wiring term u, that uRs does not occur for any closed term s using the fact
that 〈〈u〉〉 is a wiring term. To prove condition 2 of definition 3.8, assume that (u ⊗ s)R(u ⊗ t), and hence that
〈〈u〉〉 ⊗ 〈〈s〉〉 ց 〈〈u〉〉 ⊗ 〈〈t〉〉. Since 〈〈u〉〉 is a wiring term, by proposition 2.6 we have wiring terms w1 and w2 such that
w1 · u · w2 = idε. We therefore have

(w1 ⊗ idm) · (〈〈u〉〉 ⊗ 〈〈s〉〉) · (w2 ⊗ idn) = 〈〈s〉〉 ց (w1 ⊗ idm) · (〈〈u〉〉 ⊗ 〈〈t〉〉) · (w2 ⊗ idn) = 〈〈t〉〉

where s : m → n, and hence sR t. �

We call R in definition 4.9 the reaction relation for CAC(K′) generated by ց.

We can also generate a reaction relation for AC(K) from a reaction relation in the corresponding closed world.

Definition 4.11
Let ց be a reaction relation for CAC(K′). Define a binary relation S on terms in T(K) by sS t if and only if
[[s]]~x ց [[t]]~x in CAC(K′) whenever fn(s) ⊆ {~x}.

Remark 4.12
It is easy to prove that [[s]]~x = u⊗ [[s]]fn(s), where u is a wiring term. We can therefore just consider the case when
{~x} = fn(s) in the above definition.

Proposition 4.13
The relation S in definition 4.11 is a reaction relation for AC(K).

Proof To prove transitivity of S, assume that s S t and t S u, and let {~x} = fn(s, u) and {~y} = fn(t)\{~x}. We
have [[s]]~y,~x ց [[t]]~y,~x ց [[u]]~y,~x. By the transitivity of ց and lemma 4.4, we have

ω|~y| ⊗ [[s]]~x ց ω|~y| ⊗ [[u]]~x.

Using condition 2 of definition 3.8, we have [[s]]~x ց [[u]]~x, and hence R is transitive. The relation S is closed under
tensor, composition and abstraction. It is easy to prove that, for wiring term u, the relation uS s does not occur for
any s. To prove closure under equality, assume that s = s′ and t = t′ in AC, and s′ S t′, and let {~x} = fn(s, t) and
{~y} = fn(s′, t′)\{~x}. By theorem 4.5 and the definition of R, we have [[s]]~y,~x = [[s′]]~y,~x and [[t]]~y,~x = [[t′]]~y,~x in CAC,
and [[s]]~y,~x ց [[t]]~y,~x. By lemma 4.4, it follows that ω|~y| ⊗ [[s]]~x ց ω|~y| ⊗ [[t]]~x. Using condition 2 of definition 3.8, we
have [[s]]~x ց [[t]]~x, and hence s S t. �

We call S in definition 4.11 the reaction relation for AC(K) generated by ց.

Proposition 4.14
Let ց be a reaction relation for AC(K), let R be the reaction relation for CAC(K′) generated from ց, and let S be
the reaction relation for AC(K) generated from R. The relations S and ց are equal. The analogous result holds
if we start from a reaction relation for CAC(K).

Proof The proof follows easily from theorem 4.8. �

A reaction relation is typically generated from a set of rules. We would like a simple connection between
such rules for action calculi and closed action calculi, but the LAMB example in Section 2 shows that this is not
straightforward. The PIC example is a simple case, in that one reaction rule in the open world corresponds to a
reaction rule in the closed world. The LAMB example requires more care, since the number of reaction rules in
the open and closed world are not the same.

Example 4.15
The closed action calculus corresponding to PIC in example 2.7 has signature ({1}, {outm, inm,newm : m ∈ M),
and a reaction relation generated by the rule

(∆k⊗1 ⊗ id1) · (id⊗ pk⊗1,1) · (outk ⊗ ink(t)) ց (id⊗ ω1 ⊗ id) · t

10

Example 4.16
The closed action calculus corresponding to LAMB in example 2.8 has signature (P⇒, {λλλm, apm : m ∈ M⇒), where
P⇒ and M⇒ are given in example 2.8, the arity rules for λλλk and apk are

t : k ⊗m → k ⊗ n

λλλk(t) : k → (m ⇒ n)
apk : k ⊗ (m ⇒ n)⊗m → n

and the reaction relation is generated by the rules

λλλk(t) ·∆m⇒n ց ∆k · (λλλk(t)⊗ λλλk(t))

λλλk(t) · ωm⇒n ց ωk

∆k · (idk ⊗λλλk(s)) ·λλλk⊗(m⇒n)(t) ց λλλk((∆k ⊗ id) · (id⊗ λλλk(s)⊗ id) · t)

(∆k ⊗ id) · (id⊗ λλλk(s)⊗ id) · apk ց s

λλλk((∆⊗ id) · apk) ց id

The last two rules correspond to the β- and η-rule respectively in example 2.8. The first three rules provide the
individual cases necessary to mimic in the closed world the substitution of a term t for a name in the open world.
In general, we can have an arbitrary number of reaction rules in the closed world corresponding to one reaction
rule in the open world. For example, if we extend the control set of LAMB by an artitrary control set K, then the
corresponding closed action calculus would contain a reaction rule

(∆k ⊗ id) · (id⊗ λλλk(s)⊗ id) ·Kk⊗(m⇒n)(t1, . . . , tr) ց

Kk((∆k ⊗ id) · (id⊗λλλk(s)⊗ id) · t1, . . . , (∆k ⊗ id) · (id⊗λλλk(s)⊗ id) · tr)

for each control K ∈ K.

5 Closed Action calculi with Names

We extend the closed action calculi with free names, and show that abstraction can be defined as a derived operator.
In independent work, Pavlovic has given similar results to those presented in this section [Pav97].

Definition 5.1 (Extended Terms)
The set of extended terms over closed signature K

′ and name set X , denoted by CTX(K′), is generated from the
rules in definition 3.1, plus the rule:

〈x〉 : ε → p, xp ∈ X.

The name x is free in any extended term containing 〈x〉. In the action calculi setting, we have axiom σ
which allows the movement of names through the sequential composition. We mimic this movement of names, by
incorporating three natural axioms which allow names to be copied, discarded and to move inside controls.

Definition 5.2 (The Extended Theory CACX)
The equational theory CACX is the set of equations upon the extended terms generated by the axioms in defini-
tion 3.2, plus the axioms

〈x〉 ·∆ = 〈x〉 ⊗ 〈x〉

〈x〉 · ω = idε

(〈x〉p ⊗ id) ·Kp⊗m(t1, . . . , tn) = Km((〈x〉p ⊗ id) · t1, . . . , (〈x〉
p ⊗ id) · tn)

The definition of a reaction relation for CACX(K′) is the same as the one given in definition 3.8.
Using the free names, we can derive an abstraction for the extended terms. This definition is similar to the

standard way of defining abstraction in combinatory logic, which leads to the well-known connection with the
λ-calculus (see for example [HS86]).

11

Definition 5.3 (Abstraction)
Given the extended term t : m → n in CACX(K′) and name xp ∈ X , the abstraction [x]t : p⊗m → n is defined by
induction on the structure of t:

[x]〈x〉 = idp

[x]〈y〉 = ωp ⊗ 〈y〉

[x]∆ = ωp ⊗∆

[x]id = ωp ⊗ id

[x]ω = ωp ⊗ ω

[x]p = ωp ⊗ p

[x](t1 · t2) = (∆p ⊗ id) · (id⊗ [x]t1) · [x]t2

[x](t1 ⊗ t2) = (∆p ⊗ id) · (id⊗ pp,m ⊗ id) · ([x]t1 ⊗ [x]t2)

[x](Km(t1, . . . , tn)) = Kp⊗m([x]t1, . . . , [x]tr)

The following results show that we have equalities corresponding to the axioms γ, σ and δ from definition 2.3, and
that equality is preserved by this derived abstraction.

Lemma 5.4
1. [x]t = ω ⊗ t when x 6∈ fn(t);

2. (〈x〉 ⊗ id) · [y]t = t{〈x〉/〈y〉};

3. [x]((〈x〉 ⊗ id) · t) = t, x 6∈ fn(t);

4. s = t in CACX implies [x]s = [x]t in CACX .

Proof The details are straightforward. In part 4, the following easy technical result was helpful: if x 6∈ fn(s),
then

1. [x]s · t = (idp ⊗ s) · [x]t;

2. [x](t · s) = [x]t · s;

3. [x](s⊗ t) = (pp,m ⊗ id) · (s⊗ [x]t);

4. [x](t⊗ s) = [x]t⊗ s.

Now that we have defined the abstraction [x]s, the translations between ACX(K) and CACX(K′) are simple.
Using lemma 5.4, it is straightforward to check that these translations are equality-preserving and inverse to each
other.

Definition 5.5 (Translation)
The translation ()′ : TX(K) → CTX(K) is defined inductively by:

(id)′ = id

(pm,n)
′ = pm,n

(〈x〉)′ = 〈x〉

(s · t)′ = s′ · t′

(s⊗ t)′ = s′ ⊗ t′

((x)t)′ = [x]t′

(K(t1, . . . , tr))
′ = K0(t

′
1, . . . , t

′
r)

Proposition 5.6
1. If t ∈ TX(K) with arity m → n, then t′ ∈ CTX(K′) with the same arity, and fn(t) = fn(t′).

12

2. s = t in AC implies s′ = t′ in CACX .

Definition 5.7 (Translation)
The translation ()◦ : CTX(K′) → TX(K) is defined inductively on the structure of closed terms by:

(idm)◦ = idm

(pm,n)
◦ = pm,n

(〈x〉)◦ = 〈x〉

(s · t)◦ = s◦ · t◦

(s⊗ t)◦ = s◦ ⊗ t◦

(∆m)◦ = (~x)(〈~x〉 ⊗ 〈~x〉), |~x| = m

(ωm)◦ = (~x)idε, |~x| = m

(Km(t1, . . . , tr))
◦ = (~x)K((〈~x〉 ⊗ id) · t◦1, . . . , (〈~x〉 ⊗ id) · t◦r), |~x| = m,~x 6∈ fn(t1, . . . , tn).

Proposition 5.8
1. If t ∈ CTX(K) with arity m → n, then t◦ ∈ TX(K) with the same arity, and fn(t) = fn(t◦).

2. s = t in CACX implies s◦ = t◦ in AC.

Proposition 5.9
1. Given t ∈ TX(K), we have (t′)◦ = t in AC.

2. Given t ∈ CTX(K′), we have (t◦)′ = t in CACX .

Proof The proof of 1 depends on showing that ([x]t)◦ = (x)t◦ in AC. The proof of 2 depends on lemma 5.4. �

Since we have a derived abstraction in CACX(K′), the rules for generating the reaction relation for AC(K)
simply translate to rules for generating the corresponding reaction relation for CACX(K′). We illustrate this with
the LAMB example.

Example 5.10
The closed action calculus extended with names, and corresponding to LAMB in example 2.8, has the same signature
as in the closed action calculus in example 4.15, and a reaction relation generated by the rules

(λ0(s)⊗ id) · [x]t ց t{λ0(s)/〈x〉}

(λ0(t)⊗ id) · ap0 ց t

λ0((〈x〉 ⊗ id) · ap0) ց 〈x〉

These rules are the ()′-translations of the original rules for LAMB.

6 Extensions of Action calculi

Milner has introduced two extensions of action calculi: the higher-order action calculi [Mil94b], which allow the
substitution of actions as well as names for names, and the reflexive action calculi [Mil94a], which in the presence of
higher-order features gives recursion. We extend closed action calculi to include higher-order and reflexive features,
and obtain results analogous to those given in Section 4.

6.1 Higher-order action calculi

Recall the action calculus LAMB given in example 2.8. The controls λλλ and ap, and their accompanying reaction
rules, describe a uniform way of packing up a term t using λλλ, substituting the resulting term for names, and
unpacking the term using ap. These controls therefore describe a way of moving terms around, which is a natural
extension to the basic structure of action calculi. Higher-order action calculi capture this extension explicitly, by
viewing λλλ and ap as basic operators rather than controls, and by extending the equational theory by equalities
corresponding to the σ′, β and η axioms.

13

Definition 6.1 (Higher-order action calculi)
The higher-order action calculus HAC(K) is given by extending the definition of action calculi as follows:

1. the sets of higher-order primes and arities are the same as in definition 2.8;

2. the set of higher-order terms HT(K) is generated by the rules in definition 2.1 using a name set X ranging
over P⇒, plus the rules

t : m → n

λλλ(t) : ε → (m ⇒ n)
ap : (m ⇒ n)⊗m → n

3. the equational theory HAC is generated from the axioms in definition 2.3, plus the axioms

(λλλ(s)⊗ id) · (x)t = t{λλλ(s)/〈x〉}

(λλλ(s)⊗ idm) · ap = s

λλλ((〈x〉 ⊗ idm) · ap) = 〈x〉

4. a reaction relation for HAC(K) is the same as that given in definition 2.5.

The closed higher-order action calculi similarly arise from the closed version of LAMB given in example 4.15. The
basic operators are extended by the family of operators λλλk and apk, and the equational theory is extended by
equalities corresponding to the rewrite rules.

Definition 6.2
The closed higher-order action calculus CHAC(K′) is given by extending the definition of the closed action calculus
CAC(K′) as follows:

1. the sets of higher-order primes and arities are the same as in definition 2.8;

2. the set of closed higher-order terms CHT(K′) is generated by the rules in definition 2.1, together with rules
for λλλk and apk given in example 4.16;

3. the equational theory CHAC is generated from the axioms in definition 2.3, the higher-order axioms

λλλk(t) ·∆m⇒n = ∆k · (λλλk(t)⊗λλλk(t))

λλλk(t) · ωm⇒n = ωk

∆k · (idk ⊗λλλk(s)) ·λλλk⊗(m⇒n)(t) = λλλk((∆k ⊗ id) · (id⊗λλλk(s)⊗ id) · t)

(∆k ⊗ id) · (id⊗ λλλk(s)⊗ id) · apk = s

λλλm⇒n((∆⊗ id) · apm⇒n) = id

the control axioms D1-D3 from definition 3.6 and an extra control axiom

(∆k ⊗ id) · (id⊗ λλλk(s)⊗ id) ·Kk⊗(m⇒n)(t1, . . . , tr) =

Kk((∆k ⊗ id) · (id⊗ λλλk(s)⊗ id) · t1, . . . , (∆k ⊗ id) · (id⊗λλλk(s)⊗ id) · tr)

for each control Kk;

4. a reaction relation on closed higher-order terms is defined similarly to the reaction relation for CAC(K′) in
definition 3.6.

The functions [[]]~x : T~x(K) → CT(K′) and 〈〈 〉〉 : CT(K′) → T(K) in definitions 4.1 and 4.6 are easily extended to
account for the higher-order setting:

[[λλλ(t)]]~x = λλλ|~x|([[t]]~x)

[[ap]]~x = ap|~x|

〈〈λλλk(t)〉〉 = (~x)λλλ((〈~x〉 ⊗ id) · (〈〈t〉〉), |~x| = k

〈〈apk〉〉 = (~x)ap, |~x| = k

We have analogous results to those given in theorems 4.5, 4.7 and 4.8.

14

6.2 Reflexive action calculi

The reflexive action calculi [Mil94a] are action calculi extended by an additional operator ↑p, called the reflexion
operator, which constructs a term ↑pt : m → n from t : p⊗m → p⊗n. This operator provides a notion of feedback
and, together with the higher-order features described in the previous section, is enough to capture recursion.
Mifsud [Mif96] and Hasegawa [Has97] have shown that it corresponds to the trace operator of Joyal, Street and
Verity [JSV96].

Definition 6.3
The reflexive action calculus RAC(K) is given by extending the definition of the action calculus AC(K) as follows:

1. the set of reflexive terms RT(K) is generated by the rules in definition 2.1, plus a rule for the reflexion
operator

t : p⊗m → p⊗ n

↑p(t) : m → n

2. the equational theory RAC is generated from the axioms in definition 2.3, plus the reflexive axioms

id = ↑pidp

id = ↑ppp,p

↑pt⊗ id = ↑p(t⊗ id)

↑ps · t = ↑p(s · (idp ⊗ t))

s · ↑pt = ↑p((idp ⊗ s) · t)

↑q↑pt = ↑p↑q((pq,p ⊗ id) · t · (pp,q ⊗ id))

3. a reaction relation on reflexive terms defined similarly to the reaction relation for AC(K) in definition 2.5.

Remark 6.4
The original definition of reflexive action calculi [Mil94a] also has the axiom

(x)↑pt = ↑p((pp,q ⊗ id) · (x)t)

Hasegawa [Has97] observed that this axiom follows from the other axioms.

Remark 6.5
In [Mil94a], the first axiom is not included in the original definition of reflexive action calculi, although it is
discussed as a natural extension. We chose to include it here, although our result to not depend on it. One reason
for our choice is that this axiom is necessary to prove the analogous result to proposition 2.6.

It is easy to extend the closed action calculi to account for reflexion, using the same reflexive operator and axioms.

Definition 6.6
The closed reflexive action calculus CRAC(K′) is given by extending the definition of the closed action calculus
CAC(K′) as follows:

1. the set of closed reflexive terms CRT(K′) is generated by the rules in definition 2.1, plus the rule for the
reflexive operator given definition 6.3;

2. the equational theory CRAC is generated from the axioms in definition 2.3, together with the reflexive axioms
in 6.3 and the control axioms D1–D3 in definition 3.6;

3. a reaction relation on closed reflexive terms defined similarly to the reaction relation for CAC(K′) in defini-
tion 3.6.

The functions [[]]~x : T~x(K) → CT(K′) and 〈〈 〉〉 : CT(K′) → T(K) in definitions 4.1 and 4.6 are easily extended to
account for the reflexive setting:

[[↑pt]]~x = ↑p((pp,|~x| ⊗ id) · [[t]]~x)

〈〈↑pt〉〉 = ↑p(〈〈t〉〉)

We have analogous results to those given in theorems 4.5, 4.7 and 4.8; the details can be found in [Gar94].

15

7 Conclusions and Related Work

We have introduced the closed action calculi, and shown that they are as expressive as the corresponding action
calculi. We have also shown that our ideas simply extend to the higher-order and reflexive extensions of action
calculi. The price we pay is one of presentation. The term (x, y)(L(〈x, y〉) ⊗K(〈y〉)) in the action calculi setting
has the corresponding closed term (∆|x,y| ⊗ idm⊗n) · (id⊗ p|y|,m ⊗ idn) · (L|x,y|(id) ⊗ ω ⊗K|y|(id)). In the first
term, it is completely apparent how the actions contained in L and K are related. In the second term, we require
a global analysis of the term to understand the relationships. The names and abstraction provide a local way of
describing these connections.

Power has given the categorical models of the closed action calculi [Pow96]. In [Gar94], Gardner observed that
the wiring terms yield a strict cartesian category. Power has taken this further, by showing the full categorical
structure of closed action calculi. His models are constructed from a triple (C,S, F), where C is a strict cartesian
category which models the wiring terms, S is a strict symmetric monoidal category which models arbitrary terms,
and F is an strict symmetric monoidal functor which embeds the cartesian structure in the symmetric monoidal
structure. The controls correspond to natural transformations in S, which are natural with respect to C. This
naturality condition corresponds to the control axioms D1–D3 given in definition 3.6. Finally, there is a local
preorder between morphisms in S, which corresponds to the dynamics.

Pavlovic has also explored related categorical models for closed action calculi. We have already observed that he
has similar results to those in Section 5, which adds free names to the closed action calculi. In Power’s setting, this
amounts to freely adding indeterminants 〈x〉 : ε → p to the cartesian category C in such a way that the relevant
structure is preserved. Pavlovic points out that the results are an extension of the standard notion of functional
completeness for cartesian closed categories.

As well as the categorical models, we also have a type-theoretic presentation. Gardner and Hasegawa [GH97]
show that closed action calculi can be described using known ideas from type theory, with sequents of the form
~x, ~y ⊢ t : n where |~y| is the domain arity m, the domain arity, and ~x contains the free names. Their results use
an observation of Plotkin that the controls K correspond to the general binding operators of Aczel. They extend
their results to the closed higher-order action calculi, and extend Power’s models to capture the higher-order
features. Their higher-order models relate to Moggi’s semantic framework, which he calls ‘notions of computation’.
Hasegawa also extends the results to account for reflexion [Has97]. In particular, he shows that the reflexion
operator corresponds to adding a trace operator, due to Joyal, Street and Verity [JSV96], to the symmetric
monoidal category S.

Barber, Gardner, Hasegawa and Plotkin [BGHP97] have also given a direct type-theoretic presentation of action
calculi, with sequents of the form ~x; ~y ⊢ t : n where the names ~x and ~y are kept separate: the ~x behave in an
intuitionistic fashion, and the ~y in a linear fashion. This type theory has a sound translation in Benton’s type
theory of intuitionistic linear logic [Ben95], corresponding to the relation of Benton’s models of linear logic to
Power’s models of action calculi. The conservativity of the syntactic translation is proved by a model-embedding
construction using the Yoneda lemma.

In summary, the work on closed action calculi has led to a good understanding of the static part of action calculi:
in particular, the presentational role that names play, and the connections with known ideas from type theory and
category theory. It remains on-going research to fully understand the dynamics of action calculi. In particular, we
hope that the type-theoretic and categorical presentations of action calculi will provide useful criteria for assessing
which dynamic relations describe interesting interactive behaviour.

Acknowledgements My thanks go to Robin Milner for his encouragement and many interesting discussions
regarding this work, and to Masahito Hasegawa for his comments on a previous draft.

References

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[AG97] M. Abadi and A. Gordon. A calculus for cryptgraphic protocols. In Proceedings of the Fourth ACM
Conference of Computer and Communications Security, 1997.

[Ben95] N. Benton. A mixed linear and non-linear logic; proofs, terms and models. In Proceedings of Computer
Science Logic. LNCS 933, Springer-Verlag, 1995.

16

[BGHP97] A. Barber, P. Gardner, M. Hasegawa, and G. Plotkin. From action calculi to linear logic. Presented at
Computer Science Logic, Aarhus, and accepted for publication, 1997.

[Bou92] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sofia-Antipolis,
1992.

[CG97a] L. Cardelli and A. Gordon. Mobile ambients. Draft, 1997.

[CG97b] A. Corradini and F. Gadducci. An algebraic presentation of term graphs via ps-monoidal categories.
Submitted for publication, 1997.

[Gar94] P.A. Gardner. A name-free account of action calculi. Full manuscript, 1994.

[Gar95] P.A. Gardner. A name-free account of action calculi. In S. Brookes, M. Main, A. Melton, and M. Mislove,
editors, Mathematical Foundations of Programming Semantics. ENTCS 1, Elsevier, 1995.

[GH97] P.A. Gardner and M. Hasegawa. Types and models for higher-order action calculi. In Theoretical
Aspects of Computer Software, Sendai, 1997.

[GM94] P.A. Gardner and R. Milner. Action calculi VIII: Contextual Action Calculi. Manuscript, 1994.

[Has97] M. Hasegawa. Models of Sharing Graphs (A Categorical Semantics of Let and Letrec). PhD thesis,
LFCS, University of Edinburgh, 1997.

[HS86] J.R. Hindley and J. Seldin. Introduction to Combinators and Lambda-calculus. Cambridge University
Press, 1986.

[HT92] K. Honda and M. Tokoro. On asynshronous communication semantics. In Object-based Concurrent
Computing, LNCS 612, pages 21–51, 1992.

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical Proceedings of the
Cambridge Philosophical Society, 119(3), 1996.

[Mif96] A. Mifsud. Control Structures. PhD thesis, LFCS, University of Edinburgh, 1996.

[Mil93] Robin Milner. Action calculi, or syntactic action structures. In Andrzej M. Borzyszkowski and Ste-
fan Sokolowski, editors, Mathematical Foundations of Computer Science. LNCS 711, Springer-Verlag,
pages 105–121, 1993.

[Mil94a] R. Milner. Action calculi V: Reflexive Action Calculi. Manuscript, 1994.

[Mil94b] R. Milner. Higher-order action calculi. In Proceedings of Computer Science Logic. LNCS 832, Springer-
Verlag, 1994.

[Mil96] R. Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and Control, 100:1–77,
1992.

[Pav97] Dusko Pavlovic. Categorical logic of names and abstraction in action calculi. To appear in Mathematical
Structures in Computer Science, 1997.

[Pow96] A. J. Power. Elementary control structures. In Proceedings of CONCUR ’96. LNCS 1119, Springer-
Verlag, 1996.

[Sew97] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical report 453, Computer
Laboratory, University of Cambridge, 1997.

17

A Appendix

In this appendix, we prove the key results of the paper, which relate action calculi and their corresponding closed
action calculi. Our proofs involve the technical device of working with judgements of the form {~x} ⊢ s = t, which
denote that s = t in AC and that fn(s, t) ⊆ {~x}.

Definition A.1
The equational theory with names, denoted by ACn, is defined by the following rules, where {~x} denotes a set of
distinct names and the arity information is omitted since it is apparent2:

{~x} ⊢ s = t, s = t an axiom of AC, fn(s, t) ⊆ {~x}

{~x} ⊢ s = s, fn(s) ⊆ {~x}

{~x} ⊢ s = t

{~x} ⊢ t = s

{~x} ⊢ s = t {~x} ⊢ t = u

{~x} ⊢ s = u

{~x, y} ⊢ s = t

{~x} ⊢ (y)s = (y)t
y 6∈ {~x}

{~x} ⊢ s = t

{~x} ⊢ u · s = u · t {~x} ⊢ s · u = t · u
fn(u) ⊆ {~x}

{~x} ⊢ s = t

{~x} ⊢ u⊗ s = u⊗ t {~x} ⊢ s⊗ u = t⊗ u
fn(u) ⊆ {~x}

{~x} ⊢ si = ti, i = 1, . . . , r

{~x} ⊢ K(s1, . . . , sr) = K(t1, . . . , tr)

Proposition A.2
1. {~x} ⊢ s = t in ACn implies fn(s, t) ⊆ {~x}.

2. {~x, y} ⊢ s = t in ACn and z 6∈ {~x} imply {~x, z} ⊢ s{z/y} = t{z/y} in ACn.

3. (weakening) {~x} ⊢ s = t in ACn and y 6∈ {~x} imply {~x, y} ⊢ s = t in ACn.

4. (strengthening) {~x, y} ⊢ s = t ∈ ACn and y 6∈ fn(s, t) imply {~x} ⊢ s = t ∈ ACn.

Proof The proofs of parts (1) to (3) are easy. The proof of part (4) is less straightforward. It relies on the
connection between ACn and the alternative presentation of actions using the molecular forms. See [GM94] for a
detailed proof. �

Proposition A.3
s = t in AC if and only if fn(s, t) ⊢ s = t in ACn.

Proof Both implications are easy. The implication from left to right requires proposition A.2. �

We have shown the connection between AC and ACn. It remains to prove the connection between ACn and CAC.
First, we state some technical results about the translation [[]]~x used to simplify the proof that the translation
preserves equality.

Lemma A.4
The following hold in CAC:

1. [[s⊗ t]]~x = [[s]]~x ⊗ [[t]][], if fn(t) = ∅;

2We use a rule with two conclusions as shorthand for two rules with the same premises and one conclusion each.

18

2. [[t⊗ s]]~x = (p|~x|,m ⊗ id) · ([[t]][] ⊗ [[s]]~x), if fn(t) = ∅ and t : m → n;

3. [[s · t]]~x = [[s]]~x · [[t]][], if fn(t) = ∅;

4. [[t · s]]~x = (id⊗ [[t]][]) · [[s]]~x, if fn(t) = ∅;

5. [[pm,n]]~x = ω|~x| ⊗ pm,n;

6. [[〈~x〉]]~x = id|~x|.

Proof The proof involves straightforward equational reasoning. �

Theorem A.5
{~x} ⊢ s = t in AC implies [[s]]~x = [[t]]~x in CAC.

Proof The proof that the translation [[]]~x preserves the basic axioms involves simple equational reasoning using
the axioms A1–A6 and B1–B8. It is easy to prove that the reflexive, symmetric and transitive rules, and the
structural rules are preserved under translation; the structural rule for abstraction requires lemma 4.3. Here we
prove that the concrete axioms are preserved.

The proof that the axiom γ is preserved requires lemmas 4.4 and A.4.

[[ωp ⊗ s]]~x
A.4
= (p|~x|,p ⊗ id) · (ωp ⊗ [[s]]~x)

4.4
= (p|~x|,p ⊗ id) · [[s]]y,~x, y 6∈ {~x}

4.4
= [[s]]~x,y

= [[(y)s]]~x

The proof that the axiom δ is preserved is easy.

[[(x)(〈x〉 ⊗ id)]]~x = [[〈y〉 ⊗ id]]~x,y y 6∈ {~x}
A.4
= ω|~x| ⊗ id⊗ id

= [[id]]~x

Proving that σ is preserved requires lemma 4.4. Let ~x be ~y, u : p, ~z such that |~y| = k and |~z| = l.

[[(〈u〉 ⊗ id) · (x)s]]~y,u,~z
A.4
= (∆k⊗p⊗l ⊗ id) · (id⊗ ωk ⊗ id⊗ ωl ⊗ id) · [[s{v/x}]]~y,u,~z,v

= (id⊗∆p ⊗ id⊗ id) · (id⊗ id⊗ pp,l ⊗ id) · [[s{v/x}]]~y,u,~z,v

= (id⊗∆p ⊗ id⊗ id) · [[s{v/x}]]~y,u,v,~z
4.4
= [[s{v/x}{u/v}]]~y,u,~z

= [[s{u/x}]]~y,u,~z

The proof that ζ is preserved by the translation involves simple equational reasoning.

[[pk,m · (t⊗ s)]]~x
A.4
= (id⊗ pk,m) · (∆|~x| ⊗ id) · (id⊗ p|~x|,m ⊗ id) · ([[t]]~x ⊗ [[s]]~x)

B5,B4
= (∆|~x| ⊗ id) · (id⊗ p|~x|⊗k,m) · ([[t]]~x ⊗ [[s]]~x) · pn,l · pl,n

B3
= (∆|~x| ⊗ id) · (id⊗ p|~x|⊗k,m) · p|~x|⊗m,|~x|⊗k · ([[s]]~x ⊗ [[t]]~x) · pl,n

B5,B4
= (∆|~x| ⊗ id) · (p|~x|,|~x|⊗k ⊗ id) · ([[s]]~x ⊗ [[t]]~x) · pl,n

= (∆|~x| ⊗ id) · (p|~x|,|~x| ⊗ id⊗ id) · (id⊗ p|~x|,k ⊗ id) · ([[s]]~x ⊗ [[t]]~x) · pl,n

B2
= [[s⊗ t]]~x · pl,n

A.4
= [[(s⊗ t) · pl,n]]~x

19

Corollary A.6
s = t in AC implies [[s]]fn(s,t) = [[t]]fn(s,t) in CAC.

Proof The proof follows immediately from proposition A.3 and theorem A.5. �

Theorem A.7
s = t in CAC implies ∅ ⊢ 〈〈s〉〉 = 〈〈t〉〉 in ACn.

Proof The proof that the axioms A1–A6 and B1–B8 are preserved under translation is easy, since 〈〈 〉〉 preserves
the structure of these axioms and the corresponding equalities hold in ACn. The proof that the structural rules,
and the reflexive, symmetric and transitive rules are preserved is trivial using the induction hypothesis. The
interesting cases are the axioms D1–D3.

∅ ⊢ 〈〈Kn⊗m(ωn ⊗ t1, . . . ,ωn ⊗ tr)〉〉

= (~y, ~x)K((〈~y, ~x〉 ⊗ id) · (ω ⊗ 〈〈t1〉〉), . . . , (〈~y, ~x〉 ⊗ id) · (ω ⊗ 〈〈tr〉〉)), |~y| = n, |~x| = m
γ,σ
= (~y, ~x)K((〈~x〉 ⊗ id) · 〈〈t1〉〉, . . . , (〈~x〉 ⊗ id) · 〈〈tr〉〉)

= (~y)〈〈Km(t1, . . . , tr)〉〉
γ
= ωn ⊗ 〈〈Km(t1, . . . , tr)〉〉

= 〈〈ωn ⊗Km(t1, . . . , tr)〉〉

∅ ⊢ 〈〈Kk⊗m⊗n((id⊗ pm,n ⊗ id) · t1, . . . , (id⊗ pm,n ⊗ id) · tr)〉〉

= (~x, ~y, ~z)K((〈~x, ~y, ~z〉 ⊗ id) · (id⊗ pm,n ⊗ id) · 〈〈t1〉〉, . . . ,

(〈~x, ~y, ~z〉 ⊗ id) · (id⊗ pm,n ⊗ id) · 〈〈tr〉〉)), |~x| = k, |~y| = m, |~z| = n
σ
= (~x, ~y, ~z)K((〈~x, ~z, ~y〉 ⊗ id) · 〈〈t1〉〉, . . . , (〈~x, ~z, ~y〉 ⊗ id) · 〈〈tr〉〉)
σ
= (~u,~v, ~w)((〈~u, ~w,~v〉 ⊗ id) · (~x, ~z, ~y)K((〈~x, ~z, ~y〉 ⊗ id) · 〈〈t1〉〉, . . . , (〈~x, ~z, ~y〉 ⊗ id) · 〈〈tr〉〉)
σ
= (id⊗ pm,n ⊗ id) · 〈〈Kk⊗n⊗m(t1, . . . , tr)〉〉

= 〈〈(id⊗ pm,n ⊗ id) ·Kk⊗n⊗m(t1, . . . , tr)〉〉

∅ ⊢ 〈〈Kk⊗m((id⊗∆m ⊗ id) · t1, . . . , (id⊗∆m ⊗ id) · tr)〉〉

= (~x, ~y)K((〈~x, ~y〉 ⊗ id) · (id⊗ copym ⊗ id) · 〈〈t1〉〉, . . . , (〈~x, ~y〉 ⊗ id) ·

(id⊗ copym ⊗ id) · 〈〈tr〉〉), |~x| = k, |~y| = m
σ
= (~x, ~y)K((〈~x, ~y, ~y〉 ⊗ id) · 〈〈t1〉〉, . . . , (〈~x, ~y, ~y〉 ⊗ id) · 〈〈tr〉〉)
σ
= (~x, ~y)((〈~x, ~y, ~y〉 ⊗ id) · (~u,~v, ~w)K((〈~u,~v, ~w〉 ⊗ id) · 〈〈t1〉〉, . . . , (〈~u,~v, ~w〉 ⊗ id) · 〈〈tr〉〉))
σ
= (id⊗ copym ⊗ id) · 〈〈Kk⊗m⊗m(t1, . . . , tr)〉〉

= 〈〈(id⊗∆m ⊗ id) ·Kk⊗m⊗m(t1, . . . , tr)〉〉

Corollary A.8
s = t in CAC implies 〈〈s〉〉 = 〈〈t〉〉 in AC.

Theorem A.9
1. Given t ∈ T~x(K), we have ∅ ⊢ 〈〈[[t]]~x〉〉 = (~x)t in ACn.

2. Given s ∈ CT(K), we have [[〈〈s〉〉]]~x = ω|~x| ⊗ s in CAC.

Proof Both parts are proved by induction on the structure of t. We just give the control case for each part, to
illustrate the movement of names through the controls. The other cases invlove simple equational reasoning.

∅ ⊢ 〈〈[[K(t1, . . . , tr)]]~x〉〉 = 〈〈K|~x|([[t1]]~x, . . . , [[tr]]~x)〉〉

IH
= (~x)K((〈~x〉 ⊗ id) · (~x)t1, . . . , (〈~x〉 ⊗ id) · (~x)tr)
σ
= (~x)K(t1, . . . , tr)

20

[[〈〈Km(s1, . . . , sr)〉〉]]~x = [[(~y)K((〈~y〉 ⊗ id) · 〈〈s1〉〉, . . . , (〈~y〉 ⊗ id) · 〈〈sr〉〉)]]~x, |~y| = m

= [[K((〈~z〉 ⊗ id) · 〈〈s1〉〉, . . . , (〈~z〉 ⊗ id) · 〈〈sr〉〉)]]~x,~z

= K|~x|⊗m([[(〈z〉 ⊗ id) · 〈〈s1〉〉]]~x,~z, . . . , [[(〈z〉 ⊗ id) · 〈〈sr〉〉]]~x,~z)

A.4
= K|~x|⊗m([[〈~z〉 ⊗ id]]~x,~z · s1, . . . , [[〈~z〉 ⊗ id]]~x,~z · sr)

IH
= K|~x|⊗k(ω|~x| ⊗ s1, . . . ,ω|~x| ⊗ sr)

D1
= ω|~x| ⊗Km(s1, . . . , sr)

�

Corollary A.10
1. Given t ∈ T~x(K), we have 〈〈[[t]]~x〉〉 = (~x)t in AC.

2. Given s ∈ CT(K), we hae [[〈〈s〉〉]]∅ = s in CAC.

21

