
A Note on Context Logic

Philippa Gardner

Imperial College London

This note describes joint work with Cristiano Calcagno and Uri Zarfaty. It intro-

duces the general theory of Context Logic, and has been written for the Appsem

Summer School 2005. It should be read in conjunction with Reynold’s paper on

Separation Logic: A Logic for shared Mutable data Structures, and our paper

on Context Logic and Tree Update. We acknowledge support from EPSRC.

1 Introduction

Structured data update is pervasive in computer systems: examples include heap
update on local machines, information storage on hard disks, the update of
distributed XML databases, and general term rewriting systems. Programs for
manipulating such dynamically-changing data are notoriously difficult to write
correctly. Hoare Logics provide a standard technique for reasoning about update.
Such reasoning has been widely studied for heap update. Hoare reasoning has
however hardly been studied for other examples of update, such as tree update,
and there has been little attempt at a unified theory.

Calcagno, Gardner and Zarfaty have studied Hoare reasoning about data up-
date, using Context Logic for reasoning locally about structured data [CGZ05].
Our work arose from the work of O’Hearn, Reynolds and Yang on reasoning
locally about heap update using Separation Logic [Rey02,YO02,IO01]. Their pi-
oneering idea is that, if an update only accesses part of the data, leaving the
rest unchanged, then this locality property should also be reflected in the rea-
soning. The original Hoare Logic based on First-order Logic did not have this
property. In contrast, Separation Logic, a Hoare Logic based on Bunched Logic
of O’Hearn and Pym [OP99,Pym02], does have it. With Separation Logic, they
are able to reason about examples of heap update which had escaped modu-
lar reasoning in the traditional Hoare-logic style for over thirty years: pointer
arithmetic, concurrent imperative programs and passivity.

We have recently shown that the techniques for reasoning locally about
heap update can be adapted to reason locally about tree update (XML up-
date) [CGZ05]. This work was by no means straightforward. We initially as-
sumed that we could develop a Hoare logic based on Cardelli and Gordon’s
Ambient Logic, a logic for reasoning locally about static trees (ambients, fire-
walls, XML). However, Ambient Logic does not have enough expressive power
to reason about local update. Instead, we had to fundamentally change the way
we reason about structured data. We introduced Context Logic, which analyses
both data and contexts. Local data update typically identifies the portion of
data to be replaced, removes it, and inserts the new data in the same place. This
place of insertion is essential for reasoning about updates. Context Logic has

context application—data insertion in a context—as its central construct, plus
(adjunct) connectives for reasoning hypothetically about data insertion.

In this note, we provide a gentle introduction to the fundamental theory of
Context Logic. We first introduce the logic using examples of structured data,
emphasising the common nature of the logical reasoning. We use these examples
to illustrate the differences and similarities between Context Logic, Bunched
Logic and Ambient Logic. These examples also motivate our general theory of
Context Logic. We provide the general models, the forcing semantics and a
Hilbert-style proof theory for the basic logic. Calcagno and Yang have shown
completeness [YC05]. We then incorporate an additional zero formula, since
many of our example models have a zero data element, and show that it yields
interesting logical structure. Again, we provide the general models and proof
theory.

This note illustrates that, for our examples of structured data, there is an
intuitive–but adhoc–way of presenting the Context Logic for that data struc-
ture. One future challenge is to capture the spirit of this informal intuition, by
identifying an appropriate general account of structured data. As a first step,
we will look at Fiore’s generalised species of structures [Fio05]. In [CGZ05], we
give preliminary examples of local Hoare reasoning about data update based on
Context Logic reasoning: tree update, heap update which is exactly analogous
to reasoning using Separation Logic, and term rewriting which had escaped rea-
soning using Separation Logic. In each of these examples, the results and proofs
associated with our Hoare reasoning are remarkably similar. They give us some
assurance that, in the long-term, we will be able to find a unified theory of data
update using Context Logic.

2 Using Context Logic

We explore several examples of using Context Logic to reason about structured
data. Each example illustrates a different aspect of Context Logic reasoning.
We have purposely unified these examples as much as possible, as a way of
introducing the general theory of Context Logic given in section 3.

2.1 Context Logic for Sequences

As our first example of structured data, we use the set of sequences. It provides
a simple example to illustrate the difference between reasoning in Context Logic
and reasoning in Bunched Logic. We define a data set of sequences D and set of
contexts C, constructed from a signature set of names Σ:

sequences d ::= 0 | a ∈ Σ | d · d
contexts c ::= | d · c | c · d

2

We declare the following equations on sequences and contexts, which state that
the join operator · is associative with identity 0:

0 · d = d · 0 = d 0 · c = c · 0 = c
d1 · (d2 · d3) = (d1 · d2) · d3 d1 · (d2 · c) = (d1 · d2) · c
(c · d1) · d2 = c · (d1 · d2) (d1 · c) · d2 = d1 · (c · d2)

The application function ap : C × D → D is defined in the obvious way:

ap (, d) = d

ap (d′ · c, d) = d′ · ap (c, d)

ap (c · d′, d) = ap (c, d) · d′

We often write c(d) for ap (c, d).

Definition 1 (Formulae for Sequences). The Context Logic for Sequences
consists of a set of data formulae PD for describing properties of sequences and a
set of context formulae KC for describing properties of contexts. These formulae
are constructed from signature set Σ and variable set V, and are given by the
grammars:1

data formulae P ::= K(P) | K C P structural formulae
P ⇒ P | false additive formulae
0 | u | P · P u ∈ Σ ∪ V , specific data formulae
∃x.P x ∈ V , quantification

context formulae K ::= I | P B P structural formulae
K ⇒ K | False additive formulae
P · K | K · P specific context formulae
∃x.K x ∈ V , quantification

The key formulae are the structural formulae K(P), K C P , P1 B P2 and
I . The application formula K(P) specifies that a sequence can be split into a
context satisfying K applied to a subsequence satisfying P . For example, if we
define the context formula True , ¬False, then the formula True(P) states that
there is a subsequence satisfying property P . The next two formulae are both
(right) adjoints of application. The formula K/P is satisfied by a given sequence
if, whenever we insert the sequence into a context satisfying K, then the result
satisfies P . For example, the formula True / P states that, when the sequence is
put in any context, the resulting sequence satisfies property P . Meanwhile, P1 B

P2 is a statement on contexts. It is satisfied by a given context if, whenever we
insert in the context a sequence satisfying P1, then the result satisfies P2. Given
the derived data formula true , ¬false, the context formula true.P2 states that,

1 It is also simple and natural to include a formula for context composition and the
corresponding adjoints. We choose to omit these formulae since, so far, they have not
been necessary for our results. For simplicity, we also choose to work with one-holed
contexts rather than multi-holed contexts. It is simple to extend to the more general
setting.

3

regardless of what data is put in the context hole, the resulting sequence satisfies
property P2. This adjoint is essential for expressing weakest preconditions for
update commands. The context formula I specifies that a context equals the
empty context.

The specific data and context formulae arise from the specific data model
under consideration, in this case sequences. Since we do not start from a general
description of data, but rather just look at examples, this part of the logic is
adhoc. We will see however that the formulae are generated in a uniform way
from the grammars. In the case of sequences, the specific data formulae consist
of the formula 0 specifying that the sequence is empty, the formula u specifying
individual names and name variables, and the join formula P1 ·P2 specifying that
the sequence can be split into two parts, the first satisfying P1 and the second
P2. This join formula is in fact logically equivalent to (P1 ·)(P2). We choose to
define it directly, since the construction of the specific data formulae then follows
the data grammar. The construction of the specific context formulae P · K and
K · P follows the grammar of contexts: the formula P · K for example denotes
that a context can be split into a sequence satisfying P and a context satisfying
K.

The forcing semantics is given in definition 2 using two satisfaction relations:
the judgement σ, d �D P states that data formula P holds for a given sequence d
and a substitution σ that evaluates variables to names, whilst judgement σ, c �K

K states that context formula K holds for context c and substitution σ.

Definition 2 (Satisfaction for Sequences). We define two satisfaction rela-
tions σ, d �D P and σ, c �K K, by induction on the structure of data and context
formulae respectively:

σ, d �D K(P) iff ∃c ∈ C, d′ ∈ D. ap (c, d′) = d and σ, c �K K and σ, d′ �D P

σ, d �D K C P iff ∀c ∈ C.(σ, c �K K implies σ, ap (c, d) �D P)

σ, d �D P1 ⇒ P2 iff σ, d �D P1 implies σ, d �D P2

σ, d 6�D false

σ, d �D 0 iff d = 0

σ, d �D u iff σ(u) = d

σ, d �D P1 · P2 iff ∃d1, d2. σ, d1 �D P1 and σ, d2 �D P2

σ, d �D ∃x.P iff ∃a ∈ Σ. σ{a/x}, d �D P

σ, c �K I iff c =

σ, c �K P1 B P2 iff ∀ d ∈ D.(σ, d �D P1 implies σ, ap (c, d) �D P2)

σ, c �K K1 ⇒ K2 iff σ, c �K K1 implies σ, c �k K2

σ, c 6�K False

σ, c �K P · K iff ∃d, c1. c = d · c1 and σ, d �D P and σ, c1 �K K

σ, c �K K · P iff ∃c1, d. c = c1 · d and σ, c1 �K K and σ, d �D P

σ, c �K ∃x.K iff ∃a ∈ Σ. σ{a/x}, c �K K

4

We omit the subscripts D and K when the intended meaning is clear.

The cases for the structural formulae have been discussed already. The cases for
the additive formulae and quantifiers are standard. We use the standard derived
classical formulae for both data and context formulae: ¬P , true, P ∧ P , P ∨ P
and ∀x. P ; for contexts, we write True rather than true. We shall also use the
following derived formulae arising from the structural formula:

– �P , True(P) specifies that somewhere property P holds;
– P1 ∗ P2 , (0 . P1)(P2) specifies that it is possible to remove a subsequence

satisfying P2, and put in the empty sequence in the hole to obtain a sequence
satisfying P1;

– P1 I P2 , ¬(P1 B ¬P2) specifies that there exists a sequence satisfying
property P1 such that, when it is put in the hole of the given context, the
resulting sequence satisfies P2;

– K J P2 , ¬(K C ¬P2) specifies that there exists a context satisfying prop-
erty K such that, when the given sequence is put in the hole, the resulting
sequence satisfies P2.

The order of binding precedence is: ¬, �, {·, ∗}, ∧, ∨, {/, ., J, I}, ⇒, ∃, ∀. There
is no precedence between the elements in {·, ∗} and {/, ., J, I}, since it would
be impossible to remember!

Notice that the cases for the specific formulae are given up to the equational
theory of sequences. In fact, it is a typical result of this style of logic that there
is always a formula that can distinguish between data terms that are not equal.
This strength of analysis is exactly what is required to reason about heap and
tree update.

Proposition 3. Logical equivalence corresponds to sequence and context equal-
ity:

d1 = d2 iff ∀P, σ. (σ, d1 `D P iff σ, d2 �D P)

c1 = c2 iff ∀K, σ. (σ, c1 `D K iff σ, c2 �D K)

The proof uses the so-called characteristic data and context formulae: for exam-
ple, given sequence d, the characteristic data formula Pd is a formula satisfying,
for all d1, σ, d1 �D Pd if and only if d = d1. The proof is left as an exercise.

We shall see that derived formula P1 ∗ P2 plays an important role in the
general theory of Context Logic. It is essential for reasoning about update, such
as the removal of a subsequence. We shall fully explore this derived formula in
section 3.2, in particular describing the derived adjoints. At this stage, we just
give a few sample formulae using ∗, to illustrate its expressive power:

true ∗ a contains a
(true ∗ a) ∗ a contains two as
true ∗ (a ∗ a) contains two consecutive as
a ∗ true a at the beginning or the end of the sequence

5

The first formula simply states that it is possible to take an a out of the sequence.
Contrast the second and third formulae. The second states that two separate as
can be removed, but nothing about their relative positions in the sequence. The
third formula states that two adjacent as can be removed. Thus, the derived
∗-connective is not associative. The last formula is quite an odd property. It
states that a subsequence can be removed to leave an a. This can only happen
if there is an a either at the beginning or the end of the sequence, since only
one subsequence can be removed. The first and last formulae illustrate that, for
sequences, the ∗ is not commutative.

It is instructive to compare the specific formula P1 · P2 with the general
formula P1 ∗ P2:

true · a a at the end of the sequence
true · a · true · a · trues contains two as
true · a · true contains an a
a · true a at the beginning of the sequence

We can also derive the two right adjoints for · : the formula P1·−P2 , (P1 ·)/P2

specifies that, whenever a sequence satisfying property P1 is joined to the left of
the given sequence, then the result satisfies P2; similarly, the formula P1 −·P2 ,

(· P2) / P1 specifies that, whenever a sequence satisfying property P1 is joined
to the right of the given sequence, then the result satisfies P2. For example, the
formula a−·P specifies that, when a is joined to the right of the sequence, then
the resulting sequence satisfies P . Similarly for a·− P . In contrast, notice that
the formula (a . P)(0) specifies that, whenever an a is put somewhere in the
given sequence, then the result satisfies property P .

A natural question is whether the Context Logic for sequences is more pow-
erful than a natural adaptation of Bunched Logic to sequences. This question
can be formulated within our setting, by asking whether every data formula for
the Context Logic for sequences is as expressive as the subset of data formulae
generated by the additive formulae, the specific data formulae, quantification,
and different structural data formulae given by

P · P | P −·P | P ·− P.

The satisfaction relation for these data formulae is defined as for the derived
formulae described above.

It takes some care to formulate the question of whether the sublogic is less
powerful than the full Context Logic for sequences. Consider the Context Logic
formula P ∗ a. We expect that, for every specific example of P ∗ a, there is
an equivalent data formula in the sublogic: that is, logical equivalence for the
sublogic corresponds to logical equivalence of the full logic. For example, the
formula (b·c)∗a is equivalent to a·b·c∨b·a·c∨b·c·a. However, we also believe that
it is not possible to give a formula in the sublogic which is equivalent to P ∗a and
is parametric in P : that is, does not depend on the structure of P . For example,
the formula True(b)∗a is equivalent to true ·b · true ·a · true∨ true ·a · true ·b · true,
which has very different structure to the previous example. This parametricity

6

property is essential for expressing the weakest preconditions, and is on-going
work.

2.2 Context Logic for Multisets

The set of multisets provides the simplest example of a data model where rea-
soning using Context Logic and Bunched Logic is essentially the same. Multisets
can be described in a similar fashion to sequences, with the extra condition that
· is commutative. With commutativity, notice that there is a bijection between

multisets and contexts, given by p : C → D where p(c) = c(0). In contrast, the
corresponding p for sequences is surjective, but not injective. We shall see that
this property has a significant effect on Context Logic: for multisets (and heaps),
the logic collapses to Bunched Logic; for sequences (and trees), it does not.

Definition 4 (Context Logic for Multisets). The formulae and satisfaction
relation for multisets is defined as for sequences, with the satisfaction relation
now depending on the stronger multiset equality.

In this case, we have P1 · P2 logically equivalent to P1 ∗ P2 as well as (P1 ·)P2.
In addition, K · P and P · K are logically equivalent to K(P).

With multisets, the structure of Context Logic collapses to the Bunched
Logic case. In particular, it is enough to work with a subset of the data formulae
consisting of the additive formulae, the specific data formulae, quantification and
a subset of the structural data formulae defined by2

P · P | P −·P

We let Df denote this fragment of data formulae.

Proposition 5. There exist translations ̂ : KC → PDf
and ̂ : PD → PDf

such
that

σ, c �K K ⇔ σ, c(0) �D K̂

σ, d �D P ⇔ σ, d �D P̂

Proof The translations are defined inductively on the structure of data and
context formulae. We just give the cases for the structural formulae and the
specific formulae; the cases for the additive formulae and quantification just
follow the structure of the formulae:

K̂(P) , K̂ · P̂ Î , 0

K̂ / P , K̂ −·P̂ P̂1 . P2 , P̂1 −·P̂2

0̂ , 0 û , u

The results follow by induction on the structure of the data and context formulae.
We leave the proof as an exercise.

2 The formula P ·− P is logically equivalent to P −·P .

7

2.3 Context Logic for Heaps

We now introduce our heap model. Our Context Logic reasoning for heaps has
much in common with the multiset example. The difference is due to the par-
tiality of the application operation, since location names must be unique.

We consider unary heaps, which are finite partial functions from locations
to values. We present them as a collection of unary cells a 7→ b, where a, b are
elements from signature set Σ ∪ {nil}: the a ∈ Σ denotes the unique location
name of the cell, and b ∈ Σ ∪ {nil} the value it contains. The adaptation of this
case to n-ary cells is trivial. We define a data set of heaps, denoted D, and a set
of contexts C, using l(d) to denote the set of locations in heap d and similarly
l(c) for contexts:

heaps d = 0 | a 7→ b | d1 · d2, l(d1) ∩ l(d2) = ∅
contexts c = | c · d | d · c, l(d) ∩ l(c) = ∅

Heaps and contexts satisfy analogous equations to those satisfied by multi-
sets. The key difference between heaps and multisets is the enforced uniqueness
of the location names, and therefore the partiality of the · operation and
application. This partiality is factored into the definition of satisfaction.

Definition 6 (Formulae for Heaps). The Context Logic for heaps consists of
data formulae and context formulae constructed from the signature set Σ∪{nil}
and variable set V. They are defined as for sequences, except that the specific
data and context formulae are defined by

specific data formulae 0 | u 7→ v | P · P u, v ∈ Σ ∪ {nil} ∪ V
specific context formulae P · K | K · P

Again, the formulae P · P , P −·P , P ·− P , P · K and K · P are derivable. We
assume that 7→ binds more strongly than the other operators.

Definition 7 (Satisfaction for Heaps). As for the sequence case (defini-
tion 2), we define two satisfaction relations σ, d �D P and σ, c �K K, where
in this case d denotes a heap and c denotes a heap context. These relations are
defined by induction on the structure of heap and context formulae respectively.
We just give the cases which differ from definition 2:

σ, d �D K C P iff
∀c ∈ C.(σ, c �K K and c(d′) defined implies σ, c(d) �D P)

σ, d �D u 7→ v iff d = σ(u) 7→ σ(v)

σ, c �K P1 B P2 iff
∀ d ∈ D.(σ, d �D P1 and c(d′) defined implies σ, c(d) �D P2)

In section 2.2, we showed how the structure of Context Logic collapses in the
multiset case. This collapse also occurs for heaps.

The formula u 7→ v specifies that the given heap has just one cell, with loca-
tion given by σ(u) and value given by σ(v). Here are some additional definitions

8

and properties about locations and pointers:

u 7→ v ∧ u 7→ v′ one cell with location σ(u) and value σ(v) = σ(v′)

u 7→ , ∃x. u 7→ x one cell with location σ(u) and any value
u 7→ ∧ v 7→ one cell with location σ(u) = σ(v)
u 7→ ∗ v 7→ two different cells with locations σ(u) 6= σ(v)

u ↪→ , u 7→ ∗ true at least a cell with address σ(u)
u ↪→ ∗ v ↪→ at least two different cells
u ↪→ v ∗ v ↪→ u at least two different cells which point to each other

2.4 Context Logic for Trees

We discovered Context Logic by studying trees, in particular recognising that
the Ambient Logic does not have enough expressive power to reason about tree
update. Consider the data set of trees D and set of contexts C, again constructed
from a signature set of names a ∈ Σ:

trees d ::= 0 | a[d] | d · d
contexts c ::= | a[c] | d · c | c · d

with the analogous equations on trees and contexts as for the sequence case. The
application function is defined as before, with the additional case

ap (a[c], d) = a[ap (c, d)]

We have also studied the cases when · is commutative for trees and con-
texts (as in the Ambient Calculus), and when the names are unique resulting
in application being partial (viewing the names as node identifiers). Even when
· is commutative, Context Logic reasoning is stronger than Bunched Logic

reasoning.

Definition 8 (Formulae for Trees). The Context Logic for trees consists of
data formulae and context formulae constructed from the signature set Σ and
variable set V. They are defined as for sequences, except that the specific data
and context formulae are defined by

specific data formulae 0 | u[P] | P · P u ∈ Σ ∪ V
specific context formulae u[K] | P · K | K · P u ∈ Σ ∪ V

The only formulae requiring explanation are u[P] and u[K], which states that a
tree has a top node denoted by σ(u) and subtree satisfying property P ; similarly
for u[K].

Definition 9 (Satisfaction for trees). The satisfaction relations for trees are
defined analogously to the relations given in definition 2 for sequences. The only
case not covered by that definition are

σ, d �D u[P] iff ∃d′ ∈ D. d = σ(u)[d′] and σ, d′ �D P
σ, c �K u[K] iff ∃c′ ∈ C. c = σ(u)[c′] and σ, c′ �K K

9

As before, P1 · P2, P1 −·P2 and P1·− P2 are derivable from the other constructs.
The join formula allows us to reason about the horizontal structure of tree: for
example, b[true] · a[true] denotes a tree with two top nodes b and a, with b to
the left of a. When · is commutative, the ordering between b and a is lost.
The adjoints −· and ·− let us reason about properties that are satisfied when
given trees are added horizontally. When · is commutative, then P1 −·P2 is
equivalent to P1·− P2. Notice that u[P] is logically equivalent to (u[])(P), and
states that a tree has top node denoted by u and subtree satisfying property P .
The node formulae allow us to express vertical path information: for example,
the formula true ·b[true ·c[true] ·true] ·true specifies that the given tree has a path
b\c. It has a derivable right adjoint u ∝ P ′ , u[] / P ′ which states that, when a
tree is put under a top node u, then the resulting tree satisfies property P ′. For
example, the formula b ∝ (a[true]−·P1) states that when a given tree is put in a
context b[] · a[d] for an arbitrary tree d then the resulting tree satisfies property
P1. These derived formulae are all present in the (static) Ambient Logic.

Recall the derived formula P1 ∗P2 , (0.P1)(P2). In the tree case, this speci-
fies that a tree can be split into a subtree satisfying P2 and a context such that,
when 0 is put in the hole, then the resulting tree satisfies P1. Even when · is
commutative, this formula is not equivalent to P1 ·P2, which only splits the tree
at the top level. For example, the formula b[c[0]]·a[true] describes a tree with two
top nodes b and a. In contrast, with the formula b[c[0]] ∗ a[true], the a node can
be inside the b node. Just as for the sequence case, there is a natural question
of whether Context Logic for trees with commutativity is as expressive as the
(static) Ambient Logic. Using a size argument, we can prove that this is not the
case without some form of recursion. With the somewhere modality �P added
to the Ambient Logic, we believe we are in a similar situation to the sequence
case. We can explore the expressivity of Context Logic for trees compared with
the data subformulae constructed from the join and node formulae, their corre-
sponding adjoints, and a modality operator. Given P ∗ a[0], we conjecture that,
for each P , there is an equivalent formula expressible in the sublogic, but that
this formula is not parametric in P .

2.5 Context Logic for Terms

So far, all our examples of structured data have had a zero element, and a
horizontal join operator. As our final example, we study the set of terms arising
from function symbols of fixed arity, with no zero element. We shall see that
the zero element has an important role to play in our development of Context
Logic (section 3.2). We therefore find the term example interesting, since it is
a natural example which does not have this structure. Consider the data set
of terms D and set of contexts C, constructed from a signature Σ consisting of
n-ary function symbols:

terms d ::= f(d1, . . . , dn), f : n ∈ Σ
contexts c ::= | f(d1, . . . , c, . . . , dn), f : n ∈ Σ

10

The application function is

ap (, d) = d

ap (f(d1, . . . , c, . . . , dn), d) = f(d1, . . . , ap (c, d), . . . , dn)

Definition 10 (Formulae for Terms). The Context Logic for terms consists
of data formulae and context formulae constructed from the signature set Σ and
variable set V. They are defined as for sequences, except that the specific data
and context formulae are defined by

specific data formulae f(P1, . . . , Pn), f : n ∈ Σ
specific context formulae f(P1, . . . , K, . . . , Pn), f : n ∈ Σ

In an analogous fashion to the tree case, we can derive the formula f(P1, . . . , Pn) ,

f(P1, . . . , , . . . , Pn)(Pi), with its corresponding right adjoints.

Definition 11 (Satisfaction for Terms). The satisfaction relations for terms
are defined analogously to the tree case with

σ, d �D f(P1, . . . , Pn) iff d = f(d1, . . . , dn) and di �D Pi

σ, c �D f(P1, . . . , K, . . . , Pn) iff

∃c′ ∈ C, d1, ..., dn ∈ D. c = f(d1, . . . , c
′, . . . , dn) ∧ σ, di �D Pi ∧ σ, c′ �K K

Our Context Logic reasoning about terms is a trivial adaptation of our reasoning
about other examples studied in this section, since terms decompose nicely into
context/subterm pairs. Unlike the other examples, it is not possible to define
a derived join formula P1 · P2, due to the fixed arity structure of the func-
tion symbols. There is also no formula 0 specifying a zero data element, since
such an element does not exist with terms. Our simple reasoning about terms
demonstrates the full generality of our Context Logic approach, compared with
Bunched Logic and Ambient Logic whose fundamental structure depends on the
join connective and zero formula.

3 General Theory of Context Logic

We develop the underlying general theory of Context Logic, giving the proof
theory, the models and the forcing semantics. We do this in two stages: first we
look at the basic theory of Context logic, restricting our attention to the struc-
tural and additive formulae; then we look at Context Logic with an additional
zero formula 0, since many of our examples include a zero element and it yields
interesting logical structure.

3.1 Context Logic

We study the basic theory of Context Logic, focusing on the structural and
additive formulae.

11

Definition 12 (Formulae). The basic Context Logic consists of a set of data
formulae and a set of context formulae, described by the grammars:

data formulae P ::= K(P) | K C P structural formulae
P ⇒ P | false additive formulae

context formulae K ::= I | P B P structural formulae
K ⇒ K | False additive formulae

The models for Context Logic generalise the specific examples we gave in
section 2. Each of the specific examples consisted of a data set D, a context set
C containing the empty context , and an application function applying contexts
to data. In the general models, we have abstract sets D and C, which we still
call the data and context sets respectively, a partial application function, and a
set I of distinguished elements of C which play the role of the empty context.

Definition 13 (Models). A model M for Context Logic is a tuple (D, C, ap ,
I) such that

1. D and C are sets
2. ap : C × D ⇀ D is a partial function, called the application function
3. I ⊆ C acts as a left identity to ap : that is,

– ∀d ∈ D, ∃i ∈ I. ap (i, d) defined;
– ∀d ∈ D, ∀i ∈ I. ap (i, d) defined implies ap (i, d) = d.

The forcing semantics for an arbitrary model is just an abstract version of the
forcing semantics for sequences (definition 2).

Definition 14 (Satisfaction for Models). Given a model M, we define two
satisfaction relations M, d �D P and M, c �K K by induction on the structure
of data and context formulae respectively. The cases for the additive connectives
are standard. The cases for the structural connectives are

M, d �D K(P) iff ∃c ∈ C, d′ ∈ D. (ap (c, d′) = d ∧M, c �K K ∧M, d′ �D P)

M, d �D K C P iff ∀c ∈ C.(M, c �K K ∧ ap (c, d) defined ⇒ M, ap (c, d) �D P)

M, c �K I iff c ∈ I

M, c �K P1 B P2 iff ∀ d ∈ D.(M, d �D P1 ∧ ap (c, d) defined ⇒ M, ap (c, d) �D P2)

In the application case, we assume that ap (c, d′) = d means ap (c, d′) is defined
and equals d. We use the same derived formulae as those given in section 2.

Example 15. Our examples of structured data—sequences, multisets, heaps, trees,
terms—are models of Context Logic. Other models include

– FunD = (D,D ⇀ D, ap , {i}) where D is an arbitrary set, D ⇀ D denotes
the set of partial functions from D to D, ap is standard function application,
and i is the identity function;

12

– MonD = (D,D, ap , {0}) where D is a monoid consisting of monoidal oper-
ator · : D × D → D with unit 0, and application is defined by

ap (d1, d2) , d1 · d2;

a specific example is when D = {0, a} with a · a = a;

– two trivial models: Triv0 = (∅, ∅, ∅ : ∅ → ∅, ∅) and Triv1 = (D, C, ap , C)
with ap (c, d) = d for all c ∈ C, d ∈ D;

– given two models M1 = (D1, C1, ap 1, I1) and M2 = (D2, C2, ap 2, I2) such
that D1,D2 and C1, C2 are disjoint, then define model M1 + M2 = (D1 ∪
D2, C1 ∪ C2, ap , I1 ∪ I2) with

ap (c, d) = ap 1(c, d), d ∈ D1, c ∈ C1

ap 2(c, d), d ∈ D2, c ∈ C2

undefined, otherwise

We give a simple Hilbert-style proof theory, in which the axioms and rules
for the structural operators just state that K / P2 and P1 . P2 are right adjoints
of K(P1), and I is the identity of application. Calcagno and Yang have shown
that this proof theory is sound and complete with respect to the satisfaction
relation of our models [YC05].

Definition 16 (Proof Theory). The Hilbert-style proof theory for Context
Logic consists of the following axioms and rules 3:

the axioms and rules for the additive formulae (using the derived connectives ∧
and ¬ to simplify the presentation):

P `D P false `D P

P `D P1 P `D P2

P `D P1 ∧ P2

P `D P1 ∧ P2

P `D Pi

P1 ∧ P2 `D P3

P1 `D P2 −·P3

P `D P1 −·P2 P `D P1

P `D P2

¬¬P `D P ¬¬K `K K

K `K K False `K K

K `K K1 K `K K2

K `K K1 ∧ K2

K `K K1 ∧ K2

K `K Ki

K1 ∧ K2 `K K3

K1 `K K2 −·K3

K `K K1 −·K2 K `K K1

K `K K2

3 We concentrate on boolean Context Logic for this note.

13

the axioms and rules for the structural formulae:

P a`D I(P)

K1 `K K2 P1 `D P2

K1(P1) `D K2(P2)

K(P1) `D P2

K `K P1 B P2

K `K P1 B P2 P `D P1

K(P) `D P2

K(P1) `D P2

P1 `D K C P2

P1 `D K C P2 K1 `K K

K1(P1) `D P2

In order to state the soundness and completeness theorem, we introduce some
notation. Given model M = (D, C, ap , I), we define:

M, P �D P ′ , ∀d ∈ D.M, d �D P ⇒ M, d �D P ′

M, K �K K ′ , ∀c ∈ C.M, c �K K ⇒ M, c �K K ′

Theorem 17 (Soundness and Completeness). The proof theory is sound
and complete with respect to the satisfaction relations of the models: that is,

P `D P ′ ⇔ (M, P �D P ′ for all models M)
K `K K ′ ⇔ (M, K �K K ′ for all models M)

Proof. Soundness follows by easy induction on the derivation of K `K K ′ and
P `D P ′ respectively. Completeness is proved by Calcagno and Yang [YC05]
in two steps. First, they show completeness for models where the application is
a relation. The proof is an adaptation of a standard technique used in modal
logic: the construction of a canonical model built from maximal consistent sets
of formulae. Second, they show that each relational model is bisimilar to a func-
tional model, and satisfies the same formulae. This implies completeness for the
functional models.

A key impact of the soundness and completeness result is that, in order to
demonstrate that a property does not hold, it is enough to find a counter-example
in a specific model. Consider the following general properties of Context Logic:

`D (K1 ∧ K2)(P) ⇒ K1(P) ∧ K2(P)

`D (P1 . P2)(P1) ⇒ P2 ∧ �P1

`D (P2 ∧ �P1) ⇒ (P1 I P2)(P1)

The proofs of these properties are left as an exercise. The reverse implications do
not hold. For the first case, let K1 , ¬I and K2 , I and P , true. The reverse
implication is not satisfied by most models and data elements. For example,
consider the multiset model Mult with element a. Then Mult, a � I(true) since
a = ()(a) and Mult, a � (¬I)(true) since a = (· a)(0), but clearly Mult, a 6�
(¬I ∧ I)(true) since no context satisfies ¬I ∧ I . Notice however that this reverse
implication does hold for the models Trivi, since (¬I)(true) cannot be satisfied

14

by a data element in either model. The other cases are left as an exercise. It
is possible to show that both reverse implications are false by appealing to the
same (very simple) instances of P1 and P2.

An interesting question is under what conditions the reverse implications
are satisfied. This is not just a theoretical game. Such conditions are used in
the proofs of the existence of weakest preconditions for Hoare triples based on
Context Logic (and Bunched Logic). We consider two definitions: a data formula
P is exact if at most one data element (up to equality) satisfies it; a data formula
P is precise if, for an arbitrary data element, it specifies unique subdata.

Definition 18. Define a data formula P to be exact for model M iff ∀d1, d2.

M, d1 � P and M, d2 � P implies d1 = d2.

Define a data formula P to be precise for model M iff ∀d1, d2, c1, c2.

ap (c1, d1) = ap (c2, d2) and M, d1 � P ∧M, d2 � P implies (c1 = c2 ∧ d1 = d2)

We point out some examples of exactness and preciseness. In the sequence
model, the formula a is exact, but not precise since the sequence a·a = (a·)(a) =
(·a)(a). In the multiset model, formula a is exact and precise. In the heap model,
a 7→ b is exact and precise, whereas a 7→ is precise but not exact. In the tree
model, a[0] is exact and not precise, and a[true] is neither exact or precise. In
contrast, the tree model with unique identifiers is like the heap model, with a[0]
exact and precise, and a[true] is precise but not exact. The justification for these
facts are left as a simple exercise for the reader. Using exactness and preciseness,
we can prove the reverse implications of the general properties given above:

– given an arbitrary model M, if P is precise then

M, K1(P) ∧ K2(P) �D (K1 ∧ K2)(P)

– given an arbitrary model M, if P1 is exact then

M, (P1 I P2)(P1) �D P2 ∧ �P1 and M, P2 ∧ �P1 �D (P1 . P2)(P1)

The proof of these results is simple.

3.2 Context Logic with Zero

Many of the examples in section 2.1 include a specific data formula 0, corre-
sponding for example to the empty heap or tree. In this section, we include a
zero formula as a structural data formula, viewing it as a fundamental part of
the logical structure.

Definition 19 (Formulae with Zero). The Context Logic with Zero consists
of data and context formulae as in Definition 12, with the additional structural
data formula 0.

15

Definition 20 (Model with Zero). A model M for Context Logic with Zero
is a tuple (D, C, ap , I,0) where

1. (D, C, ap , I) is a model of Context Logic;
2. 0 ⊆ D;
3. the projection p : C → D defined by p(c) = d ⇔ ∃ o ∈ 0. ap (c, o) = d is a

total surjective function from C to D;
4. ∀c ∈ C, ∀o ∈ 0. p(c) = o ⇒ c ∈ I.

The projection function p maps every element in C to a unique element in D, by
applying it to a zero element. The projection function is surjective, which means
that every data element has a zero element as a sub-element (such a projection
function exists for all the examples in section 2.1, except terms). Notice that we
can define an embedding relation e : D × C with e(d, c) if and only if p(c) = d.
We write e(d) for {c ∈ C : e(d, c)}. The relation e is not necessarily a function:
for example, in the tree model e(b[0]) = {b[], ·b[0], b[0] · }. The pair (e, p) is an
embedding-projection pair: that is ∀d ∈ D. {p(c) | c ∈ e(d)} = {d}. Condition 4
places a strong connection between I and 0: from definition 13, we have p(i) ⊆ 0
for all i ∈ I; we also have e(o) ⊆ I for all o ∈ 0.

Definition 21 (Satisfaction for Models with Zero). Given a model with
zero M, the two satisfaction relations M, d �D P and M, c �K K are defined
by induction on the structure of data and context formulae respectively as in
definition 14, with the additional case

M, d �D 0 iff d ∈ 0

Sequences, multisets, heaps and trees are all models of Context Logic with
Zero. The term model with signature set {f : 1, g1 : 0, g2 : 0} is not: if 0
does not contain g2 (and similarly for g1), then g2 cannot be in the image of p
contradicting surjectivity; however g1, g2 cannot both be in 0 since then p() = g1

and p() = g2, contradicting well-formedness of function p. Notice that, if the
signature set is {f : 1, g : 0}, then the term model with zero set {g : 0} is a
model for Context Logic with zero.

Now consider the models of Context Logic introduced in example 15.

– The model FunD = (D,D ⇀ D, ap , {i}) cannot be extended to include a
zero set in general. Assume it can, with the zero set denoted by 0. If 0 contains
more than one element, say d1 and d2, then p(i) = {d1, d2} which contradicts
condition 3. If 0 contains just one element d, then the constant function fd

which always returns the answer d is a counterexample to condition 4.
– The tuple MonD = (D,D, ap , {0}, {0}) is a model of Context Logic with

Zero.
– Triv0 = (∅, ∅, ∅ : ∅ → ∅, ∅, ∅) is a trivial model of Context Logic with zero.

It is not possible to extend Triv1 = (D, C, ap , C) with a zero set in general.
For example, consider D = {d1, d2}. Since p must be surjective, the zero set
much be D, but this implies that p is not well-defined.

16

– Given two models M1 = (D1, C1, ap 1, I1,01) and M2 = (D2, C2, ap 2, I2,02)
such that D1,D2 and C1, C2 are disjoint, then define model M1 + M2 =
(D1 ∪ D2, C1 ∪ C2, ap , I1 ∪ I2,01 ∪ 02) with ap defined as in example 15.

Definition 22 (Proof Theory with Zero). The proof theory for Context
Logic with Zero extends definition 16 with the following zero axioms (we use
the derived I to provide a more intuitive presentation of the axioms):

P `D (0 I P)(0) 0 I P a`K 0 B P

0 I 0 `K I

The first axiom states that every data element has a zero element as subdata.
It implies that � 0 is always true, and corresponds to the projection in the models
being surjective. In the second axiom, the implication from left to right states
that all the zero elements behave in a similar fashion when put in a context. It
corresponds to the projection being a function. The implication from right to left
implies the existence of a zero element (except in a trivial case such as Triv0).
It corresponds to the property that, if a context satisfies 0 . P , then it cannot
be for the vacuous reason that there are no zero elements, and implies that the
projection function is total. Recall the general property `D (P1 . P2)(P1) ⇒
P2 ∧ �P1, and the fact that the reverse implication holds when P1 is exact.
Although zero formula is not exact for all models (for example, we can combine
two disjoint models), the zero axioms imply (0 . P)(0) a`D P . From the third
axiom, we can derive I a`D 0 I 0 a`D 0 . 0. It corresponds to the condition 4
of definition 20.

There is another way to think about these axioms. Consider the derived
formulae: Kp , K(0) and P e , 0 . P . The following entailments are derivable:

P ep `D P

¬(P e) a`D (¬P)e

0e `D I

These entailments are equivalent to the axioms given in definition 22. The first
entailment implies that the pair (()e, ()p) in a model is an embedding-projection
pair; the second that negation distributes over ()e, or alternatively that ()e has
a right adjoint given by ¬((¬)p); the third that ()e lifts 0 to I .

Theorem 23 (Soundness and Completeness with Zero). The proof theory
for Context Logic with Zero is sound and complete with respect to the satisfaction
relations of the models.

Proof. The proof by Calcagno and Yang is analogous to the proof for Context
Logic without a zero formula. Note that, when application is a relation (used
in the first part of the proof), the projection remains a total surjective function
due to the zero axioms of definition 22.

17

Recall that we introduced the derived data formula

P1 ∗ P2 , (0 . P1)(P2)

for sequences in section 2.1, and showed that ∗ is neither associative nor commu-
tative. Using the embedding/projection notation, so that P1 ∗ P2 can be viewed
as P e

1
(P2), there is a natural way to define the two right adjoints of ∗ in Context

logic with zero:

P1 ∗− P , P e
1

C P

P2 −∗ P , ¬((¬(P2 B P))p)

The first adjoint is straightforward. It states that, whenever a context applied to
a zero element satisfies P1, then the context applied to the given data element
satisfies P . The second adjoint is more complicated, although observe the simi-
larities with the right adjoint of ()e given above. It states that, whenever data
satisfying P2 replaces a zero element of the given data, then the resulting data
satisfies P . For example, for sequences we have the derived formulae:

a −∗ P inserting a anywhere in the given sequence makes P hold
a ∗− P adding a to either side of the given sequence makes P hold

Lemma 24 (Adjoints). P1 ∗− and P2 −∗ are the right adjoints of P1 ∗ and
∗ P2, respectively: that is.

P1 ∗ P2 `D P ⇔ P2 `D P1 ∗− P

P1 ∗ P2 `D P ⇔ P1 `D P2 −∗ P

Proof. The first result is immediate since K C is right adjoint of K(). The sec-
ond follows from the adjunction properties of . and ()e, together with excluded
middle and the second axiom in definition 22.

Lemma 25 (Unit). P ∗ 0 ⇔ P ⇔ 0 ∗ P

Proof. The first equivalence follows immediately from the first axiom in defini-
tion 22. The second equivalence follows from the third axiom and I being the
left identity of application.

This derived connective ∗ also has a derived counterpart in the underlying
models for zero. Define the relation ∗ ⊆ (D × D) × D by d1 ∗ d2 , {ap (c, d2) :
∃c. g(c) = d1}. For example, in the tree model with a commutative join operator
· , we have b[a[0]] ∗ c[0] = {b[a[c[0]]], b[a[0] · c[0]], b[a[0]] · c[0]}. The connection

between this ∗-relation on data and the ∗-connective on data formulae is given
by

d �D P1 ∗ P2 iff ∃d1, d2 ∈ D. d = d1 ∗ d2 ∧ d1 �D P1 ∧ d2 �D P2.

When the projection function p in the model with zero is a bijection, then
the ∗-operator on data is a function. In fact, we can prove a stronger result.

18

Given a model M = (D, C, ap , I), we define a relation ∼⊆ C × C by c1 ∼
c2 iff ∀d ∈ D. ap (c1, d) = ap (c2, d). We say that M is extensional iff ∀c1, c2 ∈ C.
c1 ∼ c2 ⇒ c1 = c2. All the models in section 2.1 are extensional; the model
Triv1 is not. Given an extensional model with zero, then the projection function
p is an isomorphism if and only if ∗ is a function.

References

[CGZ05] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In
POPL, 2005.

[Fio05] Marcelo Fiore. Mathematical models of computational and combinatorial
structures. In FOSSACS, volume LNCS 3441, pages 25–45. Springer, 2005.

[IO01] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, 2001.

[OP99] P. O’Hearn and D. Pym. Logic of bunched implications. Bulletin of Symbolic

Logic, 5(2):215–244, 1999.
[Pym02] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Impli-

cations. Applied Logic Series. Kluwer Academic Publishers, 2002.
[Rey02] J.C. Reynolds. Separation logic: a logic for shared mutable data structures.

Invited Paper, LICS’02, 2002.
[YC05] Hongseok Yang and Cristiano Calcagno. Completeness results for Context

Logic and BI. In preparation, 2005.
[YO02] H. Yang and P. O’Hearn. A semantic basis for local reasoning. FOSSACS,

2002.

19

