
Local Reasoning about POSIX File Systems

Philippa Gardner, Gian Ntzik, and Adam Wright

Imperial College London
p.gardner@imperial.ac.uk

gian.ntzik08@imperial.ac.uk

adam.wright07@imperial.ac.uk

Abstract. We provide a program logic for specifying a core subset of
the POSIX file system and for reasoning about client programs.

Keywords: file systems, POSIX, local reasoning, separation logic

1 Introduction

Local reasoning was originally introduced in separation logic [20], where the
goal was to provide scalable, modular reasoning about low-level programs for
manipulating heaps defined as partial functions from addresses to values. Since
then, there has been much work on abstraction. We have separation logic with
abstract predicates for reasoning locally about e.g. linked lists [19], concurrent
abstract predicates for more abstract reasoning about e.g. sequential and concur-
rent sets [7, 22], context logic for reasoning abstractly about complex structured
data such as the W3C DOM library for XML update [13, 5, 21], and structural
separation logic for reasoning about concurrent trees [23, 12].

Despite these recent advances in abstract local reasoning, we still have in-
sufficient technology for reasoning abstractly about programs that manipulate
complex data by globally traversing the data structure to a place where they
locally update. Such programs are common place. For example, the POSIX file
system has an English specification which naturally describes commands which
globally follow directory paths to locally update files or directories1. We provide
a formal specification of a core subset of the POSIX file system, with the aim
to be as close to the POSIX English specification as we can. We achieve this
by extending structural separation logic with path promises that require stable
information about where a directory exists within a complete file system. It en-
ables us to provide integrated reasoning about the directory structure and the
standard heap within the same logic. We demonstrate this integrated reasoning
by verifying safety properties of a client software installer.

File systems are essential for manipulating persistent storage. The most com-
monly used file-system abstraction standard is POSIX [2]. We spent considerable
effort identifying a core subset of sequential POSIX, which is both faithful to the

1 Both files and directories are called ‘files’ in POSIX. We use the term ‘entries’ to
denote either directories or files.

standard and a natural subset with which to introduce our reasoning. Various
structures of the file-system state are naturally modelled as heaps: file heaps
mapping file identifiers (inodes) to bytes; file-descriptor heaps mapping file de-
scriptors to input/output related data. Separation logic can reason about these
heap structures. Our challenge is to reason about the directory structure, which
we regard as a tree-shaped hierarchy2, where directory tree nodes are identified
by global path resolution and their updates are naturally local.

We reason about this directory tree hierarchy, extending structural separa-
tion logic with path promises. Structural separation logic (SSL) is a program
logic for reasoning locally about complex structured data. With SSL, we can
for example reason about DOM commands which have direct access to tree
nodes using DOM identifiers [23, 12]. SSL allows fine-grained reasoning about
tree fragments using abstract heaps which provide instrumentation for separat-
ing and joining tree fragments. SSL is a substantial improvement over previous
work on context-logic reasoning about DOM. However, basic SSL cannot reason
about global paths. We extend SSL with promises which declare stable global
properties about data structures. The general theory is in Wright’s thesis [23].
Here we introduce the extension by studying POSIX, to ground our theory on
real application. We provide small axioms which naturally correspond to the
POSIX English standard. We provide integrated reasoning about the directory
tree structure and the standard heap structures. Although we concentrate on se-
quential POSIX, our results immediately extend to a disjoint concurrent POSIX
since our reasoning is underpinned by the views framework. In future, we will
explore shared-memory concurrent POSIX as defined by the standard. We use
our reasoning to verify that a client software installer behaves sensibly: if the
installer fails, the file system will be unchanged; if it succeeds, the program will
be successfully installed; and there will be no other possible outcomes.

Related Work There has been substantial work on the formal specification
of file systems [14, 17, 9, 4], even leading to a verification challenge by Joshi
and Holzmann [16, 10]. It is not feasible to give a comprehensive account of
this work in the space available; such an account will be in Ntzik’s thesis [18].
Here, we concentrate on demonstrating the advantages of our local directory
tree reasoning approach compared to reasoning about global directory trees and
heap structures with paths as addresses.

A natural question is whether we can use first-order reasoning about a global
tree directory, as in [8]. However, this leads to scalability problems. Consider the
incorrect specification of the rename(p/a, p’/b) command:

{ resolve(p, d[t + a[t′]]) ∧ resolve(p′, d′[t′′ ∧ ¬exists(b)]) }
rename(p/a, p’/b)

{ resolve(p, d[t]) ∧ resolve(p′, d′[t′′ + b[t′]]) }

2 In general, files and directories can be hard linked more than once. Most implemen-
tations only allow files to be linked more than once. This is a sensible choice as,
for example, cycles generated by directory hard links are not detected by recursive
traversal programs. We therefore regard POSIX as a tree-shaped hierarchy.

resolve(p, d[t + a[t′]]) states that path p resolves to the directory d containing
an arbitrary forest t and the directory a; also, resolve(p′, d′[t′′ ∧ ¬exists(b)])
states that p′ resolves to directory d′ with no b entry. This precondition is incor-
rect because POSIX specifies an error when p′ is a descendant of p/a: that
is, p′ is p/a/p′′ for some path p′′. To correct the specification we require a
syntactic path check to identify this error case. Now consider the command
rename(p/a, p’/b) ; rename(p’’/c, p’’’/d). In this case, we need syntac-
tic checks that p′ is not a descendant of p/a, p′′′ is not a descendant of p′′/c, and
also p′′/c is not a descendant of p/a. It is evident that this style of reasoning does
not scale. Those familar with separation logic might recognise that this example
is analogous to Reynolds’ list example for justifying separation logic.

A completely different approach, used in much of the work on the formal spec-
ification of file systems using Z [17] and other methods as [14], is to treat paths

as heap addresses. Define the set of heaps as Paths
fin⇀ Bytes ∪ P(FNames),

mapping paths to byte sequences in the file case, or sets of names in the di-
rectory case. This approach requires significant global constraints: for example,
for every path in the domain mapping to a directory, paths to every descendant
must also be in the domain and must be consistent with each other. This makes
the specification of rename(p/a, p’/b) even more complicated, as it not only
involves updating the heap cell of path p/a, but also the heap cells of all the
descendants to ensure the validity of their path addresses.

T

usr home opt

adw07 widget

widget : i data.wconf : j widgProg : i

bin

T

usr home opt

adw07 x

widget : i .wconf : j

bin

widget

data widgProg : i

xF F

T/opt

Fig. 1. The left-hand diagram represents a complete directory; the right, the same
directory instrumented with abstract addresses.

2 Example Specifications

A substantial part of the POSIX standard describes the file system. We focus on
a core fragment of 16 commands in this paper. Although small, it includes most
primitive commands that manipulate the structure and perform input-output
(IO). In fact, a large proportion of the file system commands can be implemented
using our core commands. This means that we can derive specifications of these
other commands without additional machinery, as we shall demonstrate.
First consider the English description of the rmdir command3:

3 This description only presents the case when the operation succeeds. When the
command fails, for example if path does not identify an existing file or directory, the

[r := rmdir(path)] Remove the directory identified by path and set r

to 0. The directory must be empty.

Intuitively, this command acts globally by traversing the global path path to
identify the location of the update, and it acts locally by removing the empty
directory whilst leaving the rest of the file system unchanged. We capture this
combination of global and local behaviour using structural separation logic ex-
tended with promises. Consider figure 1. The left hand side illustrates part of a
structured heap, consisting of a heap cell F whose structured value is a complete
directory tree. The right hand side illustrates part of an abstract heap, consist-
ing of the heap cell F whose value is now an incomplete directory tree with body
address x and an abstract heap cell with abstract cell address x whose value is a
pair consisting of a complete subdirectory and a path promise ‘⊺/opt’ providing
the stability condition that body address x must be at the end of ‘⊺/opt’. This
promise to x allows us to reason locally about the abstract heap cell x whilst
retaining the knowledge of its location in the global structure. Notice that the
two heaps illustrated in figure 1 describe the same state, in that they differ only
in the instrumentation added by abstract addresses. When we move from the
left to the right hand side view of the state we apply abstract allocation in that
we allocate a new abstract heap cell, while the converse is abstract deallocation.

With SSL and path promises, we can reason about such abstract heap cells.
Our assertion αP ↦ A[∅] describes the ownership of the abstract heap cell
denoted by logical variable α containing an empty directory A[∅] and assocaited
with path promise P. Using it, we are able to provide an axiomatic specification
of the rmdir command:

{path Z⇒ P/A ∧ r Ù − ⋆ E ⋆ αP ↦ A[∅]} r:=rmdir(path){r Ù 0 ⋆ E ⋆ αP ↦ ∅}

As well as the assertion for the abstract heap cell at α, the precondition con-
tains assertions about the store, derived from the standard variables as resource
approach [3]. The pure expression assertion path Z⇒ P/A states that expression
path has logical expression P/A as its value. This logical expression describes an
arbitrary path P followed by the directory or file name A. Similarly, the variable
assertion r Ù − states that the program variable r has some arbitrary value. The
postcondition states that variable r now has value 0, whilst abstract heap cell
α is empty with the path promise P. The additional variable resource predicate
E captures any additional variable resource needed to evaluate the expression
path, and is unchanged between the pre and postconditions.

This specification is small in that the precondition intuitively describes local
ownership of the minimum resource needed to safely run the command: the
variables r and those needed to evaluate path given by E ; and the abstract
cell address α with the directory being updated. It also describes the global
information that only directories satisfying path promise P associated with α
can be framed on. To illustrate this, consider the directory F ↦ ⊺[C+D[A[∅]]],
the path P = ⊺/D/A and the proof derivation:

result is to assign -1 to r and set the global variable errno to enoent. We discuss
error specifications in the appendix.

{path Ù ⊺/D/A ⋆ r Ù − ⋆ E ⋆F ↦ ⊺[C +D[A[∅]]] }
// abstract allocation

{path Ù ⊺/D/A ⋆ E ⋆ r Ù − ⋆ ∃α. (F ↦ ⊺[C +D[α]] ⋆ α⊺/D ↦ A[∅]) }
// existential elimination and frame rule

// and apply the axiom

{path Ù ⊺/D/A ⋆ r Ù − ⋆ E ⋆ α⊺/D ↦ A[∅] }
r := rmdir(path)

{path Ù ⊺/D/A ⋆ r Ù 0 ⋆ E ⋆ α⊺/D ↦ ∅}
// existential, frame rule reapplication

{path Ù ⊺/D/A ⋆ r Ù 0 ⋆ E ⋆ ∃α. (F ↦ ⊺[C +D[α]] ⋆ α⊺/D ↦ ∅) }
// abstract deallocation

{r Ù − ⋆ E ⋆F ↦ ⊺[C +D[∅]] }

The initial precondition contains a directory hierarchy beginning at the file
system root ⊺ with arbitrary contents captured by the logical variable C and
a directory named D that contains just the empty directory A. This does not
match the precondition of rmdir, and so we take the following steps. First, we
abstractly allocate a new abstract heap cell containing the A directory. Then, we
apply the standard Hoare logic existential elimination to set aside the existential
binding of α, and use the frame rule to set aside what rmdir does not need. We
now match rmdir’s precondition, where ⊺/D is P. Afer applying the axiom we
can reintroduce the resource and binding set aside with frame and existential
elimination, and abstractly deallocate the cell with address α.
Now consider the unlink command and its English specification:

[r := unlink(path)] Remove the link to the file identified by path.

Again, using SSL we can formalise the English specification with the following
small axiom:

{path Ù P/A ∧ r Ù − ⋆ E ⋆ αP ↦ A ∶ I} r:=unlink(path){E ⋆ r Ù 0 ⋆ αP ↦ ∅}

In the precondition, αP ↦ A ∶ I states that a file named A is found at abstract
cell address α at the end of path P. Note that the contents of the file are not
included in the precondition. When the last link to a file is removed, the file will
no longer be accessible by any path, and we assume a garbage collection step will
remove any associated file data. Notice that we do not remove the abstract heap
cell α. If the axiom destroyed this cell, the associated α body address (which
must exist in some data in the frame) would have no matching cell address. This
would break the stability of the system, where a cell address always match with
a body address at the appropriate path promise.

Finally, consider the stat command, which returns meta-data about the file
or directory identified by the path argument. In this paper, we take that meta-
data to be just the file type, D for directory and F for file. There is one axiom
for each file type; the directory case is:

{path Ù P/A ∧ t Ù − ⋆ E ⋆ αP ↦ A[β] }t:=stat(path){t Ù D ⋆ E ⋆ αP ↦ A[β] }

Notice that the specification uses body address β in αP ↦ A[β] to specify that
the content of A is not changed by the command. It does not need more de-

tailed knowledge of the contents of A since the command does not require this
knowledge to determine that the entry is a directory.

The commands discussed in this section are enough to derive another POSIX
command: r := remove(path). According to its POSIX description, this com-
mand removes the file or empty directory identified by the path argument. In
figure 2 we implement remove and derive its specification using the stat, unlink
and rmdir commands discussed earlier. The specification that we derive is:

{path Ù P/A ∧ r Ù − ⋆ E ⋆ αP ↦ (A ∶ I ∨A[∅]) }
r := remove(path)

{r Ù 0 ⋆ E ⋆ αP ↦ ∅}

Note that this matches exactly the English description obtained from the POSIX
standard. Following the same process, we can use the core fragment of this paper
to “discover” formal specifications of many more complex commands of POSIX.

{ path Ù P/A ∧ r Ù − ⋆ E ⋆αP ↦ (A ∶ I ∨A[∅]) }
r := remove(path) ≜ local t {

t := stat(path);

{ ∃T. path Ù P/A ∧ r Ù − ⋆ t Ù T ⋆ E ⋆αP ↦ (A ∶ I ∧T = F) ∨ (A[∅] ∧T = D) }
if t = F

{ path Ù P/A ∧ r Ù − ⋆ E ⋆αP ↦ A ∶ I }
r := unlink(path);

{ path Ù P/A ∧ r Ù 0 ⋆ E ⋆αP ↦ ∅ }
else if t = D

{ path Ù P/A ∧ r Ù − ⋆ E ⋆αP ↦ A[∅] }
r := rmdir(path);

{ path Ù P/A ∧ r Ù 0 ⋆ E ⋆αP ↦ ∅ }
else r := -1;

{ r Ù 0 ⋆ t Ù − ⋆ E ⋆αP ↦ ∅ }
}
{ path Ù P/A ⋆ r Ù 0 ⋆αP ↦ ∅ }

Fig. 2. Implementation of remove and proof that it meets its specification.

3 File System Specification

We provide an axiomatic specification of our POSIX commands, based on struc-
tural separation logic extended with naturally stable promises for describing
update on abstract heaps. An abstract program state comprises: an abstract
file-system heap, which represents the directory tree and associated stored files,
as might intuitively reside on a hard disk; a process heap, which represents the
contents of computer memory during execution; and a variable store, which rep-
resents the values of program variables.

3.1 File-system Heap

Abstract file-system heaps are abstract heaps whose cells contain partial di-
rectories. Directories are defined using a set of inodes Inodes, ranged over by

ι, κ,⋯, and a set of file names FNames, ranged over by A,B,⋯, for naming
directories and files. Both sets are defined as in POSIX. Our partial directories
are instrumented by body addresses (context holes), drawn from the countably
infinite set of abstract addresses AbsAddrs, ranged over by x,y,z,⋯, with
(FNames ∪ {F} ∪ Inodes) ∩AbsAddrs = ∅ where F is the distinguished ad-
dress of the root directory.

Definition 1 (Directories). The set of unrooted directories, UDirs, is:

ud ∶∶= ∅ ∣ a ∶ ι ∣ a[ud] ∣ ud + ud ∣ x

where ∅ is the empty list of entries, a ∶ ι is a file link associating file name
a ∈ FNames with inode ι ∈ Inodes, a[ud] is a directory named a containing
unrooted abstract directory ud, + is directory composition and x ∈ AbsAddrs
is a body address. The directories have sibling-unique names, body addresses are
unique, and + is commutative and associative with identity ∅.

There is a distinguished ⊺ /∈ FNames representing the root directory of the
file-system tree. The set of rooted directories, RDirs, is defined as RDirs ≜
{⊺[ud] ∣ ud ∈ UDirs}. The set of directories, d ∈ Dirs, is defined by Dirs ≜
UDirs ∪ RDirs. Each directory entry has a type DETypes ≜ {F,D}: the F
denotes a hard link to a file, and D a directory.

Each body address can be replaced with a directory via context application.

Definition 2 (Context application). The addresses function, addrs ∶Dirs→
P(AbsAddrs) describes the set of body addresses in a directory. Context appli-
cation is the function ○∶ AbsAddrs→ (Dirs→ UDirs)⇀Dirs defined by:

d1 ○x ud2 = {d1[ud2/x] x ∈ addrs(d1) ∧ addrs(d1) ∩ addrs(ud2) ⊆ {x}
undefined otherwise

where d1[ud2/x] is the substitution of ud2 for x in d1. The function is only
defined only if the result is in Dirs.

Many POSIX commands refer to entries in the file system tree by absolute (or
rooted) paths through the directory tree. In general, POSIX paths are complex
with e.g. backwards paths (..) and symbollic links. In this paper, we work with
simple linear paths, just called paths for this paper, where the path structure
matches the inductive directory structure. In fact, general POSIX paths will be
very interesting for our overall agenda of local reasoning about complex data
structures, since they walk right across the structure. We should be able to
handle general paths using a combination of promises and obligations discussed
in the conclusions: the abstract address x will have the promise that the part of
the path in the context is stable, and the obligation to keep the part of the path
in the context stable.

Definition 3 (Paths and Resolution). The set of relative paths, RelPaths,
is defined by:

rp ∶∶= ε ∣ a ∣ rp/rp
where a ∈ FNames and the path composition / is associative with identity ε. The
set of absolute paths is AbPaths ≜ {⊺} ∪ {⊺/rp ∣ rp ∈ RelPaths}. The set of

abstract paths is AbsPaths = {p/x ∣ p ∈ AbPaths,x ∈ AbsAddrs}. The set of
paths, p ∈ Paths, is Paths ≜ RelPaths ∪AbPaths ∪AbsPaths.

The path resolution function resolve ∶ Paths ×Dirs⇀Dirs is defined by:

resolve(a, d + a ∶ ι) = a ∶ ι
resolve(a, d1 + a[d2]) = a[d2]
resolve(x,x + a[d2]) = x

resolve(a/rp, d1 + a[d2]) = resolve(rp, d2) if rp /≡ ε
resolve(⊺,⊺[d]) = ⊺[d]

resolve(⊺/rp,⊺[d]) = resolve(rp, d) if rp /≡ ε

In all other cases, the result is undefined.

A file-system heap is the union of three finite partial functions: from distin-
guished address F to the root directory which might be partial; from abstract ad-
dresses to absolute paths (expressing where the corresponding body address lies)
and directories; and from inodes to byte sequences representing file contents. We
construct file-system heaps in two phases: first, we define pre-file-system heaps;
then, we define well-formedness conditions to give the full definition.

Definition 4 (Pre-file-system Heap). Let Bytes be the set of finite byte
sequences. A pre-file-system heap, pfs ∈ PreFS, is a function in the set

({F}⇀ {ε} ×RDirs) ⊔ (AbsAddrs
fin⇀ AbPaths ×Dirs) ⊔ (Inodes fin⇀ Bytes)

Let inodes(d) denote the set of all inodes occurring in directory d. A pre-file-
system-heap, pfs, is complete if: dom(pfs) ∩AbsAddrs = ∅; pfs(F) = (ε, rd);
addrs(rd) = ∅; and inodes(rd) ⊆ dom(pfs)4.

Pre-file-system heaps may use abstract addresses incorrectly. For example,
two separate partial directories at different addresses may contain the same body
address, or the path promises may not correctly identify the location of the di-
rectory. We define a collapse relation, with which we give a well-formedness
condition that ensures addresses are used correctly. The collapse relation intu-
itively states that we can connect a cell address to the matching body address
with context application, if the paths match, as illustrated in figure 3.

yx

y

q

x

y

Q

p p/q p

Fig. 3. Collapse relation

Definition 5 (Collapse Relation). The one-step collapse relation, ↓ ⊆ PreFS×
PreFS, relates pfs1 ↓pfs2 if and only if there is some address addr ∈ AbsAddrs∪
{F} and unique y ∈ AbsAddrs such that:

1. pfs1(addr) = (p, d) and pfs1(y) = (py, dy);

4 Complete pre-file-system-heaps are thus simple DAGs, with sharing occurring only
at the leaves in the sense that two separate file names can point to the same inode.

2. y ∈ addrs(d);
3. there is some q ∈ Paths such that py = p/q;
4. resolve(q, d) = y;
5. pfs2 = pfs1[addr↦ (p, d ○y dy)]/y 5.

Let ↓* be the reflexive, transitive closure of ↓.
Using collapse, we can detect all pre-file-system heaps that use invalid ad-

dressing. Given pfs, the correct use of abstract addressing falls into three cases:

1. pfs is complete, and is thus trivially uses abstract addresses correctly.
2. pfs uses abstract addresses, but is related via collapse to a complete abstract

file system. In this case, the complete system it is related to must be unique
(see [23] for details).

3. pfs uses abstract addresses, but is not immediately related to a complete
file system. However, at least one other pre-abstract file system pfs′ can be
found such that the union of the two does collapse to a complete file system
(as in case 2). In this case, pfs is a partial file-system heap, missing some
data, but still using abstract addressing in a consistent way.

With the collapse relation, we can define file-system heaps.

Definition 6 (File-system Heaps). The set of file-system heaps, FS ranged
by fs, is defined as:

FS = {pfs ∈ PreFS ∃pfs′,pfs′′ ∈ PreFS. pfs ⊔ pfs′ ↓* pfs′′ ∧ pfs′′ is complete }
3.2 Process Heap

The process heap represents the contents of the heap during program execution.
It contains structures used for controlling access to files and directories: open file
descriptions and directory streams. An open file description is a record holding
information that controls file accesses: the inode and current offset of an open
file. It is used to support the commands read, write, lseek and close. The heap
addresses of open file descriptions, in POSIX terminology called file descriptors,
are given by the set OFAddrs and ranged by f, g,

A directory stream is an abstract data structure that captures the set of the
entries in a given directory and supports the opendir, readdir and closedir

commands. For example, when opendir(p) is used, a fresh directory stream
address from the set DSAddrs is allocated and mapped to a directory stream,
which provides a snapshot of the entry names in the directory given by path p.
Here, we deviate from POSIX. readdir returns the names of entries contained
within a directory. POSIX allows a high degree of non-determinism when using
readdir on a directory whilst modifying its contents. One may see some changes,
all changes, or none. We adopt a snapshot semantics. A copy of the set of entries
is taken when opendir is used. Calls to readdir return elements of that set in
a non-deterministic order, but will observe no future changes.

Definition 7 (Process Heaps). A process heap, denoted ph ∈ Ph, is a partial

function in the set (DSAddrs
fin⇀ P(FNames)) ⊔ (OFAddrs

fin⇀ (Inodes×N))
5 That is, pfs2 is equal to the function obtained from pfs1 by removing y from the

domain, mapping addr to (p, d ○y dy), and leaving the other mappings the same.

3.3 Programming Language

To write programs that use our POSIX subset, we define a standard imperative
sequential WHILE language. Variables are assigned values through a variable
store, σ ∶ Vars ⇀ Values, with the set of variable stores denoted Σ. Variables
are dynamically typed, with values drawn from the set:

Values ≜ Z ⊎ {true, false} ⊎RelPaths ⊎AbPaths ⊎Bytes ⊎ Inodes
⊎ OFAddrs ⊎DSAddrs ⊎DETypes

Program expressions are used as the rvalue of assignments and as param-
eters to control-flow commands. They consist of the standard literals, variable
lookup, arithmatic and boolean operations, and three file-system specific expres-
sions: path concatenation, Expr/Expr; base name extraction base(Expr); and
directory name extraction dirExpr. Expression evaluation [[⋅]]σ ∶ Expr → Σ ⇀
Values is mostly standard, with the file system specific evaluations being:

[[Expr/Expr′]]σ ≜ [[Expr]]σ/[[Expr′]]σ iff [[Expr′]]σ /∈ AbPaths
[[base(Expr)]]σ ≜a iff [[Expr]]σ ≡ ⊺/rp/a ∧ a /≡ ε
[[dir(Expr)]]σ ≜ rp iff [[Expr]]σ ≡ ⊺/rp/a ∧ a /≡ ε

[[base(Expr)]]σ ≜⊺ iff [[Expr]]σ ≡ ⊺
[[dir(Expr)]]σ ≜⊺ iff [[Expr]]σ ≡ ⊺

Together, file system heaps, process heaps and variable stores form the ab-
stract program states of file system programs.

Definition 8 (Abstract Program States). The set of abstract program
states, as ∈ AStates, is defined as: AStates ≜ FS ×Ph ×Σ

Our core POSIX commands can be classified into structural commands that
manipulate the file system structure, primitive IO commands that read and
write the contents of files, and state commands for querying the type of files.

Definition 9 (Core Fragment & Programming Language). The core
POSIX fragment consists of structural commands CStr ∈ CommStr, IO com-
mands CIO ∈ CommIO, and state commands CStat ∈ CommStat:

CStr ∶∶=
r := mkdir(path)∣ r := rmdir(path)∣ r := link(existing, new)

∣ r := unlink(path)∣ r := rename(old, new)

CIO ∶∶=

dir := opendir(path)∣ fn := readdir(dir) ∣ closedir(dir)
∣ fd := open(path, flags)∣ buffer := read(fd, size)

∣ size := write(fd, buffer)

∣ offset’ := lseek(fd, offset, whence)

∣ close(fd)
CStat ∶∶= t := stat(path)

The commands, C ∈ Comm, of the programming language are:

C ∶∶= var := Expr ∣ local var in C ∣ if Expr then C else C
∣ while Expr do C ∣ skip ∣ C ; C ∣ CStr ∣ CIO ∣ CStat

In POSIX, the commands are specified as C function interfaces. Here, we
adapt them to a simple imperative programming style for simplicity. Details
relating to the semantics of C are thus abstracted.

3.4 Program Logic

We describe our program logic for reasoning about POSIX programs, extending
structural separation logic [23, 12] with naturally stable promises for describ-
ing update on abstract heaps.6 Analogous to programs using variables and ex-
pressions, assertions use logical variables and expressions. Logical variables are
mapped to values by a logical environment, e ∈ LEnv, extending program val-
ues with directories, paths, abstract addresses, and sets of these values. Logical
expressions, denoted by E,E′, are defined and evaluated similarly to program ex-
pressions, disallowing program variables. We denote logical variables with block
capitals A,B,X,Y, . . ., except for abstract address variables denoted α,β,

Abstract Directory Cell αE ↦ φ

File Cell I
F↦ E

Open File Descriptor Cell X
OF↦ (I,E)

Directory Stream Cell X
DS↦ E

Normal Heap Cell E
H↦ E

Variable Value var Ù E
Expression Value Expr Z⇒ E

Empty Entry ∅
File Type Entry E ∶ I
Directory Type Entry E[φ]
File System Root ⊺[φ]
Logical Expression E
Entry List φ + φ
Context Application φ ○α φ
Path Resolution @E

Fig. 4. Assertion language

Assertions, P,Q ∈ Asrts, are constructed from: standard first order logic con-
nectives and quantifiers; the separating conjunction of separation logic, P ⋆Q,
and its unit, emp; and the specific assertions of figure 4 describing file-system
heaps, process heaps and variable stores. The key assertion is the directory cell
assertion, αE ↦ φ, which combines local information φ about the partial direc-
tory at α, and global information about the environment using path promise
E. It states that, at abstract cell address given by α, there is a partial subdi-
rectory satisfying directory assertion φ (to be explained) which can be rejoined
with the main directory using body address α which must be at the end of path
expression E. The splitting and joining of partial directories gives rise to novel
allocation and deallocation assertion axioms, which we discuss after introducing
the remaining assertions.

The file cell assertion, I
F↦ E, describes the file with inode address given by

the logical variable I and contents given by the byte sequence described by logical
expression E. The next three cell assertions describe elements of the process heap
and are directly lifted from definition 7. The final two describe the contents of
the variable store. The assertion var Ù E, as described previously in section 2,
maps the program variable var to the value given by the logical expression E.
Our core program commands accept parameters given by program expressions.
The assertion Expr Z⇒ E states that the program expression Expr evaluates to

6 We have been asked whether ramified separation logic for reasoning about dags might
be worth exploring [15]. It uses the sepish connective to say that there is possibly
some shared dag structure, but where it is not determined. Here, the dag structure
is fully determined at the leaves, so ramified separation logic is not appropriate.

the value of the logical expression E. This expression evaluation requires that we
own all the variables used in the expression. Since in an arbitrary expression the
variables are unknown, we will typically use this assertion in conjunction with
an exact assertion E , leading to assertions of the form Expr Z⇒ E ∧ E , where E
captures all the variable resource required to evaluate Expr.

Directory assertions, φ,ψ ∈ DirAsrts, are constructed from standard first-
order connectives and quantifiers, and the assertions of figure 4 describing the
structure of directories, context application and path resolution. Most have been
directly lifted from the structure of directories (definition 1). The context appli-
cation assertion, φ ○α ψ, taken from context logic, describes a directory tree that
can be separated into an partial directory satisfying φ and containing abstract
body address α, and a partial directory satisfying ψ. The assertion @E describes
directories in which the path given by E resolves.

Definition 10 (Derived Assertions). The standard first-order logic asser-
tions are derived from ⇒ and false. Additionally, we define the following:

◇φ ≜ ∃α. (true ○α φ)
complete ≜ ¬∃α.◇α
entry(A) ≜ A[true] ∨ ∃I. (A ∶ I)

|φ ≜ true + φ
top complete ≜ ¬∃α.| α

top(φ) ≜ φ ∧ top complete

can create(A) ≜ (¬|entry(A)) ∧ top complete
names(S) ≜ ∀A. (A ∈ S ⇐⇒ |entry(A)) ∧ top complete

The assertion ◇φ is read “somewhere φ”, and describes directories containing
some directory satisfying φ. The assertion |φ is similar, restricted to siblings.
The assertion complete describes directories that do not contain any abstract
body addresses and thus no subdirectory is missing; top complete is similar, but
restricted to siblings. The assertion top(φ) states that the directory entries satisfy
φ, and that no sibling entries have been split away. The assertion can create(A)
states that an entry named A can be safely created at the current sibling level
(used for commands that create new entries such as mkdir). Finally, names(S)
states that every name in the set S is present as an entry.

A crucial part of the reasoning is the abstract allocation and deallocation
axioms. They are similar to normal heap allocation and deallocation axioms, but
instead of introducing and deleting fresh heap cells, they introduce and delete
abstract heap cells in order to split and recombine partial directories. They are
essential for our local reasoning about directories, and are only possible due to
the recent technological advances of the views framework [6]. For uniformity, we
give these as axioms over the id command, which has no operational effect. It is
a technical device to enable axioms to be used whenever required.

Definition 11 (Abstract allocation and deallocation axioms). The ax-
ioms for abstract allocation and abstract deallocation are, respectively:

{αP ↦ ((φ1 ∧@q/β) ○β φ2)} id{∃γ. (αP ↦ (φ1 ∧@q/β) ○β γ ∗ γP/Q ↦ φ2)}

{∃γ. (αP ↦ (φ1 ∧@q/β) ○β γ ∗ γP/Q ↦ φ2)} id{αP ↦ ((φ1 ∧@q/β) ○β φ2)}

The first axiom is abstract allocation. The precondition states that there is
a partial directory at cell α with path promise P . This partial directory can

be viewed as two separate parts: the context directory described by φ1 which
contains a relative path Q ending in body address β; and the subdirectory de-
scribed by φ2. The postcondition states that directory really can be separated
into its two subparts: the subdirectory satisfying φ2 can by “allocated” into its
own abstract heap cell γ whose corresponding body address is at rooted path
P/Q; and the context directory satisfying φ1 still at α. Abstract dealloaction is
the converse: if we know that γ is at the end of path Q in a directory that is itself
at the end of path P, it is safe to combine the two using context application.

We justify the abstract allocation and deallocation axioms by refering to the
collapse relation in Definition 5. Abstract allocation is the assertion equivalent
of “expanding” by one step, in that the result introduces one additional abstract
address, but still collapses to the same complete heap. Deallocation is the equiva-
lent of a single collapse step, and will still result in the same complete file system.
Therefore, whilst abstract (de)allocation changes the abstract addressing in use
by a file system, it does not change the underlying file system.

3.5 Axiomatic Specification

Figure 5 provides the axioms for the commands used in our software installer
example, plus the axioms for rename as it is the most challenging command.
The rest are IO commands for regular files and their axioms are given in the
appendix. Each axiom must be stable with respect to both abstract addresses and
path promises. Axioms cannot introduce or remove abstract addresses, and must
not invalidate any path promises that have been issued. Commands that alter
paths (for example, rename) ensure this later point by requiring pre-conditions
contain no abstract body addresses.

Consider the mkdir(path) command. According to its POSIX description, it
creates a new empty directory identified by the path argument. An existing entry
with the same name must not already exist. In our specification’s precondition,
the path argument evaluates to a path of the form P/B/A, and the abstract heap
cell αP ↦ B[C ∧ can create(A)] states that the directory B must be at abstract
address α found at the end of path P with contents C where the predicate
can create(A) (definition 10) states that it is safe to create a new entry A.
Indeed, in the postcondition, a new empty directory named A is created. Note
that in the case we create a new directory directly under the root, in the path
expression P will be an empty path and B will be ⊺.

Next, consider link(existing, new), which creates a new hard link with
path new to the file identified by the path existing. Its first axiom is similar to
that of mkdir except that it involves two paths with one abstract heap cell for
each path. The α heap cell simply states that the existing path P/A identifies
a file link named A to the file with inode address I. The β heap cell states as in
mkdir that an entry with the name we want to create does not already exist. In
the postcondition this new entry is created with another file link to the same file.
Note that, in the first link axiom, the update takes place between two different
directories, while in the second they take place within the same directory.

The rename command moves and/or renames the entry identified by the
path old to that identified by new. Consider the first axiom case, where old

{ path Z⇒ P/B/A ∧ r Ù − ⋆ E ⋆
αP ↦ B[C ∧ can create(A)] }

r := mkdir(path)

{ r Ù 0 ⋆ E ⋆αP ↦ B[C +A[∅]] }

{ path Z⇒ P/A ∧ r Ù − ⋆
E ⋆αP ↦ A[∅] }

r := rmdir(path)

{ r Ù 0 ⋆ E ⋆αP ↦ ∅ }

{
existing Z⇒ P/A ∧ new Z⇒ P′/D/B ∧ r Ù − ⋆ E ⋆
αP ↦ A ∶ I ⋆ βP′ ↦ D[C ∧ can create(B)]

}

r := link(existing, new)

{ r Ù 0 ⋆ E ⋆αP ↦ A ∶ I ⋆ βP′ ↦ D[C +B ∶ I] }

{ existing Z⇒ P/D/A ∧ new Z⇒ P/D/B ∧ r Ù − ⋆ E ⋆
αP ↦ D[(C +A ∶ I) ∧ can create(B)] }

r := link(existing, new)

{ r Ù 0 ⋆ E ⋆αP ↦ D[C +A ∶ I +B ∶ I] }

{ path Z⇒ P/A ∧ r Ù − ⋆
E ⋆αP ↦ A ∶ I }

r := unlink(path)

{ r Ù 0 ⋆ E ⋆αP ↦ ∅ }

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

old Z⇒ P/A ∧ new Z⇒ P′/D/B ∧ r Ù − ⋆ E ⋆
αP ↦ A[C ∧ complete] ⋆

βP′ ↦ D [C′ ∧ can create(B)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
r := rename(old, new)

{ r Ù 0 ⋆ E ⋆αP ↦ ∅ ⋆ βP′ ↦ D[C′ +B[C]] }

{ old Z⇒ P/D/A ∧ new Z⇒ P/D/B ∧ r Ù − ⋆ E ⋆
αP ↦ D[(C +A[C′ ∧ complete]) ∧ can create(B)] }

r := rename(old, new)

{ r Ù 0 ⋆ E ⋆αP ↦ D[C +B[C′]] }

⎧⎪⎪⎪⎨⎪⎪⎪⎩

old Z⇒ P/A ∧ new Z⇒ P′/B ∧ r Ù − ⋆ E
⋆

αP ↦ A[C ∧ complete] ⋆ βP′ ↦ B[∅]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
r := rename(old, new)

{ r Ù 0 ⋆ E ⋆αP ↦ ∅ ⋆ βP′ ↦ B[C] }

{
old Z⇒ P/A ∧ new Z⇒ P′/B ∧ r Ù − ⋆ E ⋆

αP ↦ A ∶ I ⋆ βP′ ↦ B ∶ I′
}

r := rename(old, new)

{ r Ù 0 ⋆ E ⋆αP ↦ ∅ ⋆ βP′ ↦ B ∶ I }

{ old Z⇒ P/D/A ∧ new Z⇒ P/D/B ∧ r Ù − ⋆ E ⋆
αP ↦ D[(C +A ∶ I) ∧ can create(B)] }

r := rename(old, new)

{ r Ù 0 ⋆ E ⋆αP ↦ D[C +B ∶ I] }

{
old Z⇒ P/A ∧ new Z⇒ P′/D/B ∧ r Ù − ⋆ E ⋆
αP ↦ A ∶ I ⋆ βP′ ↦ D [C ∧ can create(B)]

}

r := rename(old, new)

{ r Ù 0 ⋆ E ⋆αP ↦ ∅ ⋆ βP′ ↦ D[C +B ∶ I] }

{ old Z⇒ P/A ∧ new Z⇒ P/A ∧ r Ù − ⋆ E ⋆
αP ↦ C ∧ entry(A) }

r := rename(old, new)

{ r Ù 0 ⋆ E ⋆αP ↦ C }

{ path Z⇒ P/A ∧ t Ù − ⋆ E ⋆
αP ↦ A[β] }

t := stat(path)

{ t Ù D ⋆ E ⋆αP ↦ A[β] }

{ path Z⇒ P/A ∧ t Ù − ⋆
E ⋆αP ↦ A ∶ I }

t := stat(path)

{ t Ù F ⋆ E ⋆αP ↦ A ∶ I }

{ path Z⇒ P/D ⋆ dir Ù − ⋆ E ⋆
αP ↦ D[top(C)] }

dir := opendir(path)

{ ∃H. (
dir Ù H ⋆ E ⋆

αP ↦ D[C ∧ names(A)] ⋆H
DS↦ A

) }

{
dir Ù H ⋆ fn Ù − ⋆ E ⋆

H
DS↦ A ∧A ≠ {}

}

fn := readdir(dir)

{
fn Ù B ⋆ dir Ù H ⋆ E ⋆
H

DS↦ (A ∖ { B}) ∧B ∈ A
}

{
dir Ù H ⋆ fn Ù − ⋆ E ⋆

H
DS↦ {}

}

fn := readdir(dir)

{ fn Ù ε ⋆ dir Ù H ⋆ E ⋆H
DS↦ {} }

{ dir Ù H ⋆H
DS↦ A }

closedir(dir)

{ emp }

Fig. 5. Some of the POSIX axiomatic specifications.

is a directory and new does not exist. This captured by the two abstract heap
cells α and β in the precondition. Note that in the α heap cell, we require the
directory A to be complete: we capture the entire subtree. This means that the
target of the operation is not the same as or a descendant of this directory. In
the postcondition, the entire contents of the directory, captured by C have been
moved to the target location. As in link we distinguish the cases of different
and same directory updates with distinct axioms.

Finally, the dir:=opendir(path) command allocates a new directory stream
for the directory identified by path and assigns its address to dir. In the precon-
dition we require the contents of the directory to be complete at the top level with

the top(C) predicate (definition 10). In the allocated directory stream, H
DS↦ A,

the set of the directory’s entry names A is given by the names(A) predicate.
Elements of the directory stream are obtained via the readdir command, for
which we have two cases: one when the directory stream is not empty and one
where it is. Note that readdir non-deterministically selects which entry name
to return and remove from the A set. This mirrors the fact that in POSIX the
order of directory entries is implementation defined. The closedir command
simply deallocates the directory stream given as argument.

Definition 12 (Hoare Logic). The Hoare judgements ⊢ {P}C{Q}, are con-
structed by the POSIX command axioms and the standard inference rules of
separation logic (including the frame rule)7.

Soundness We believe it is enough to justify our axiomatic specification by
comparing it with the POSIX English standard, since the descriptions are nat-
urally close. However, this is perhaps a controversial point. In the appendix, we
give a theoretical soundness result, providing an operational semantics and prov-
ing soundness in the style of the views framework [6]. More interestingly, with
Tom Ridge, we are currently exploring a more practical soundness result. Ridge
has an ML implementation of the POSIX file system. Together, we are working
on a mechansied HOL soundness result with respect to his imlementation, plus
testing and comparision of his implementation with a real-world implementation.

4 Software Installer

We now demonstrate our reasoning by considering a software installer. Newly
obtained software is typically provided as a bundle, either downloaded onto the
users file system or provided on some media containing a file system. The goal
is to take this bundle and place the contents at the correct points in the users’
file system such that the software can run. This may involve other tasks such
as removing any previous installations and dealing with incompatible user files.
Software installers are a common class of client file system programs that perform
complex manipulatation of file system structure.

7 The angelic behaviour of abstract allocation means we do not have the rule of con-
junction. This is typical of angelic behaviours, as is well-known from concurrency
theory.

Here, we develop an installer for the fictional software “Widget Version 2”.
It supersedes “Widget Version 1”, but is incompatible with any V1 user configu-
ration files. Widget V2 consists of a program executable, ‘widgProg’ and a data
file, ‘widgData’. We follow common conventions for placing these files in the
file system [1]. The two files will be placed in the directory ‘⊺/opt/widget/’. The
program will be made usable by creating a hard link from ‘⊺/usr/bin/widget’
to the file ‘⊺/opt/widget/widgProg’. An example situation the installer may en-
counter is that in figure 1, where Widget V1 exists and the user ‘adw07’ has a
configuration file.

Even though our installer is fictional, it follows a common workflow found in
real practice. In our example, this workflow translates to the following steps:

1O Test if entries already exist at the locations we wish to place Widget V2 files.
If they exist, we expect ‘⊺/usr/bin/widget’ to be a file and ‘⊺/opt/widget’ to
be a directory. If this is the case, we remove them. If it is not, the installer
aborts without modifying the system to avoid damaging other components.

2O Check for V1 configuration files in home directories, and remove them where
they exist as they are assumed to be incompatible.

3O Copy Widget V2 files to the target location on the file system.
4O Make a link to the Widget V2 executable, so the user can run it.

Before implementing the installer we need to consider errors. So far, our
specifications describe only when commands succeed. However, commands can
also fail with an error result. Our installer relies on the stat command returning
an error when the path does not exist. We discuss error specifications for all of
the commands in the appendix. Here, we discuss only the enoent error for
stat, triggered when a path argument does not resolve to a file or directory. To
describe a file system tree in which a path cannot resolve, we define the following:

enoent(P) ≜ P ≡ ε ∨ (∃P′,A,B,P′′. P ≡ P′/A/B/P′′. αP′ ↦ A[can create(B)])
This predicate states that the path P has a prefix which can be resolved, but

a suffix which cannot. All paths which do not resolve will satisfy this specification
and with it, we can give the following error axiom for stat:

{path Z⇒ P ∧ t Ù − ⋆ errno Ù − ⋆ E ⋆ S ∧ enoent(P) }
t := stat(path)

{t Ù −1 ⋆ errno Ù enoent ⋆ E ⋆ S}

In the precondition we use the predicate on the value of path to assert that we
are in the error case. Note that we capture the state satisfying the predicate in
the logical variable S. In the postcondition, this state is preserved and the global
variable errno is assigned the error value, for which we use the same name as
the predicate for convenience.

To remove an existing Widget installation (point 2O) we need to be able to
remove non-empty directories. The command rmdir only removes empty direc-
tories. To remove a non-empty directory we can implement a program rmdirRec

that recursively removes all of a directories entries before removing the directory
itself. The specification is:

{path Z⇒ P/A ∧ r Ù − ⋆ E ⋆ αP ↦ A[complete] }
r := rmdirRec(path)

{r Ù 0 ⋆ E ⋆ αP ↦ ∅}
Finally, to copy files (point 4O), we can implement the program fileCopy

with the following specification:

{
source Z⇒ P/A ∧ target Z⇒ P′/D ∧ r Ù − ⋆ E

⋆ αP ↦ A ∶ I ⋆ βP′ ↦ D[C ∧ can create(A)] ⋆ I F↦ Sd
}

r := fileCopy(source, target)

{∃I′. r Ù 0 ⋆ E ⋆ αP ↦ A ∶ I ⋆ βP′ ↦ D[C +A ∶ I′] ⋆ I F↦ Sd ⋆ I′ F↦ Sd}

We have implemented both rmdirRec and fileCopy and derived their specifi-
cations in the appendix.

The installation of a simple, two file program is a surprisingly complex task.
We therefore specify our intuitions about good behaviour and prove that our
installer matches them. First, we develop abstractions to assist us in the speci-
fications. We use the following predicates to assert that entries may or may not
exist within a given directory resource:

out(C,A) ≜ top(C) ∧ ¬| entry(A) in(C,A) ≜ C + entry(A)
infile(C,A) ≜ C + ∃I. A ∶ I

The first predicate describes directory entries C in which an entry named A does
not exist, whereas the second describes entries C in which it does. infile(C,A)
is more specific and describes directory entries C with an A file entry.

We build a precondition for our installer out of several sub-assertions with
the help of the above predicates. In these, the assertion +X∈E φ is the iterated
version of +, interpreted as φ1+⋯+φ∣E∣ where each φi has X bound to a distinct
member of E.

instSrcPre ≜ δIL ↦ (widgProg ∶ J +widgData ∶ K) ⋆ J F↦ Prog ⋆K F↦ Dat

homePre ≜ α⊺ ↦ home [+(N,C)∈HN [infile(C, .wconf) ∨ out(C, .wconf)]]
binPre ≜ γ⊺/usr ↦ bin [in(B,widget) ∨ out(B,widget)]
optPre ≜ β⊺ ↦ opt [top(T) + (∅ ∨widget[Tw ∧ complete]]

Each of these describes the states that parts of the file system may be in for
the Widget installer to run safely. The directory entries and file data that make
up the Widget version 2 installation sources are described by instSrcPre. We
require them to be in a location given by the variable iloc. homePre captures
all the home directories of the system, along with the fact that some of them will
contain a Widget V1 ‘.wconf ’ configuration file. The binPre resource captures the
UNIX executables directory, that may contain a ‘widget’ entry. Finally, optPre

describes the target installation directory, which may already contain a previous
installation, which we require to be complete, as it will be deleted.

We combine these descriptions into a precondition, where we also snapshot
the initial state in the logical variable W, to show that nothing changes in the
event of an error.

Pins ≜ iloc Ù Il ⋆ r Ù − ⋆ errno Ù − ∧W ∧ instSrcPre ⋆ homePre ⋆ binPre ⋆ optPre

If the installer errors, we expect the file system to be unchanged. If it succeeds,
we expect Widget V1 to be installed successfully. There should be no other
outcome. We describe a successful installation with the following sub-assertions:

v2FilesPost(J,K) ≜ J
F↦ Prog ⋆K F↦ Dat

homePost ≜ α⊺ ↦ home [+(N,C)∈HN [C ∧ can create(.wconf)]]
binPost(J) ≜ γ⊺/usr ↦ bin[B +widget ∶ J]

optPost(J,K) ≜ β⊺ ↦ opt[T +widget[widgProg ∶ J +widgDat ∶ K]]

The postcondition is built from these sub-assertions.

Qins ≜
∃R,J′,K′. iloc Ù Il ⋆ r Ù R ⋆ errno Ù − ∧ (R = −1⇒W)

∧ R = 0⇒ (instSrcPre ⋆ homePost ⋆ optPost(J′,K′) ⋆ binPost(J′)
⋆ v2FilesPost(J′,K′))

Note that if the installer fails, the return variable r has value -1 and the state of
the file system is the same as in the precondition, captured by the logical variable
W. Otherwise, r is 0 and the state changes according to the sub-assertions that
we have defined.

Our installer implementation, along with a proof that it meets its speci-
fication, {Pins}installWidgetV2{Qins}, is given in figure 6. Throughout the
proof we make implicit use of the frame rule to temporarily discard irrelevant
state, and at the points of axiom application we implicitly use abstract alloca-
tion/deallocation as described in section 2.

5 Conclusions and Future Work

The POSIX file system provides an interesting challenge for local reasoning: com-
plex abstract data update with global rooted paths for identifying the place to do
local update. We have extended structural separation logic with path promises,
to provide a natural axiomatic specification of the POSIX file system; the general
theory is in [23]. We are able to verify properties of client programs such as the
software installer, demonstrating integrated reasoning for the file system and the
heap. Our POSIX reasoning provides an illustrative example of this combination
of abstract global and local reasoning; others include reasoning about the ith
element of a list [23] and the combination of JQuery and DOM.

The promises in our POSIX reasoning are naturally stable. Wright has also
explored the combination of promises and obligations: promises on abstract heap
cells give information about what can be relied upon by the environment; obliga-
tions gives information about what data fragments must guarantee; sometimes
both are needed for stability. In this paper, the only obligations are that the
abstract cell and body addresses must be preserved. In general, understanding
obligations is hard. A natural test example would be to extend the core POSIX
fragment presented here with non-linear paths (.. and symbollic links), where the
paths can move back and forth over the structure. We also believe obligations
will be useful for file-access permissions and shared-memory concurrency.

{Pins }
r := installWidgetV2 ≜
local t1, t2, hDir, user {

{ t1 Ù − ⋆ t2 Ù − ⋆ errno Ù − ⋆ binPre ⋆ optPre }
// Check for preexisting files (point 1O). The installer expects ⊺/usr/bin/widget
// to be a file and ⊺/opt/widget to be a directory, if they exist.
t1 := stat(‘⊺/usr/bin/widget’); t2 := stat(‘⊺/opt/widget’);

{ t1 Ù T1 ∧ (T1 = F ∨D ∨ −1) ⋆ t2 Ù T2 ∧ (T2 = F ∨D ∨ −1)
⋆ errno Ù E ∧ ((T1 = −1 ∨T2 = −1)⇒ E = enoent) ⋆ binPre ⋆ optPre

}

if t1 = D ∨ t2 = F
// There are preexisting entries, but not of a previous installation.
// The installer ends here without any modifications.
r = -1;

else
// Either previous entries do not exist, or they are of a previous installation.

{ r Ù − ⋆ t1 Ù F ∨ t1 Ù −1 ⋆ t2 Ù D ∨ t2 Ù −1 ⋆ binPre ⋆ optPre }
if t1 = F

// Remove previous installation executable.
r := unlink(‘⊺/usr/bin/widget’);

if t2 = D
// Remove previous installation directory. We apply the rmdirRec specification.

{ t2 Ù D ⋆ r Ù − ⋆ β⊺ ↦ opt[T +widget[Tw ∧ complete]] }
r := rmdirRec(‘⊺/opt/widget’);
{ t2 Ù D ⋆ r Ù 0 ⋆ β⊺ ↦ opt[T] }

{ r Ù 0 ⋆ t1 Ù F ∨ t1 Ù −1 ⋆ t2 Ù D ∨ t2 Ù −1 ⋆ γ⊺/usr ↦ bin[B] ⋆ β⊺ ↦ opt[T] }
// Remove any stale Widget configuration files (point 2O)

{ hDir Ù − ⋆ user Ù − ⋆α⊺ ↦ home [+(N,C)∈HN [infile(C, .wconf) ∨ out(C, .wconf)]] }
hDir := opendir(‘⊺/home’);
user := readdir(hDir);

⎧⎪⎪⎨⎪⎪⎩
∃Hd,U,Us. hDir Ù Hd ⋆ user Ù U ⋆Hd

DS↦ Us
⋆ α⊺ ↦ home [+(N,C)∈H N [out(C, .wconf) +N ∈ Us⇒ (∅ ∨ ∃I. .wconf ∶ I) ∧N /∈ Us⇒ ∅]]

⎫⎪⎪⎬⎪⎪⎭
while user ≠ ε

// We iterate over every user’s home directory and delete the file.
// If the file does not exist, then unlink returns -1 as in stat.
r := unlink(‘⊺/home’/user/‘.wconf’); user := readdir(hDir);

closedir(hDir);
// In the end, there are no Widget V1 configuration files.

{α⊺ ↦ home [+(N,C)∈H N [C ∧ can create(.wconf)]] }

// Now we create the new installation, copy the new Widget files
// and link the executable (Points 3O and 4O)

⎧⎪⎪⎨⎪⎪⎩

r Ù − ⋆ iloc Ù Il ⋆ δIl ↦ v2DirPre ⋆α⊺ ↦ homePost

⋆ γ⊺/usr ↦ bin[B] ⋆ β⊺ ↦ opt[T] ⋆ J
F↦ Prog ⋆K

F↦ Dat

⎫⎪⎪⎬⎪⎪⎭
r := mkdir(‘⊺/opt/widget’);
r := fileCopy(instLoc/‘widgProg’, ‘⊺/opt/widget’);
r := fileCopy(instLoc/‘widgData’, ‘⊺/opt/widget’);
r := link(‘⊺/opt/widget/widgProg’, ‘⊺/usr/bin/widget’); r := 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∃J’,K’. r Ù 0 ⋆ iloc Ù Il ⋆ instSrcPre ⋆ homePost

⋆ β⊺ ↦ opt [T +widget [widgProg ∶ J’ +widgData ∶ K’]]
⋆ γ⊺/usr ↦ bin[B +widget ∶ J’] ⋆ J’

F↦ Prog ⋆K’
F↦ Dat

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
}

{ ∃R,J′,K′. iloc Ù Il ⋆ r Ù R ⋆ errno Ù − ∧ (R = −1⇒W)
∧ R = 0⇒ (instSrcPre ⋆ homePost ⋆ optPost(J′,K′) ⋆ binPost(K′) ⋆ v2FilesPost(J′,K′)) }

{Qins }

Fig. 6. Widget V2 software installer.

References

[1] Filesystem Hierarchy Standard Group. Filesystem hierarchy standard.

[2] POSIX.1-2008, IEEE 1003.1-2008, The Open Group Base Specifications Issue 7.

[3] Variables as resource in separation logic. Electronic Notes in Theoretical Computer
Science, 155:247 – 276, 2006.

[4] K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying a File System Imple-
mentation. In LNCS: Formal Methods and Software Engineering. 2004.

[5] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. SIG-
PLAN Not., 2005.

[6] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang. Views:
compositional reasoning for concurrent programs. POPL, 2013.

[7] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Con-
current abstract predicates. In ECOOP. 2010.

[8] K. Fisher, N. Foster, D. Walker, and K. Q. Zhu. Forest: a language and toolkit
for programming with filestores. ICFP, 2011.

[9] L. Freitas, Z. Fu, and J. Woodcock. POSIX file store in Z/Eves: an experiment
in the verified software repository. Engineering of Complex Computer Systems,
IEEE International Conference, 2007.

[10] L. Freitas, J. Woodcock, and A. Butterfield. POSIX and the verification grand
challenge: A roadmap. In ICECCS, 2008.

[11] P. Gardner, G. Ntzik, and A. Wright. Local Reasoning about File Systems: Tech-
nical Report. Technical report, Imperial College London, 2012
http://www.doc.ic.ac.uk/~gn408/POSIXFS/.

[12] P. Gardner, A. Raad, M. Wheelhouse, and A. Wright. Abstract Local Reasoning
for Concurrent Libraries, Submitted, 2013.

[13] P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local Hoare reasoning
about DOM. In PODS, 2008.

[14] W. H. Hesselink and M. Lali. Formalizing a hierarchical file system. REFINE,
2009.

[15] A. Hobor and J. Villard. The ramifications of sharing in data structures. POPL,
2013.

[16] R. Joshi and G. J. Holzmann. A mini challenge: build a verifiable filesystem.
Form. Asp. Comput., 2007.

[17] C. Morgan and B. Sufrin. Specification of the UNIX Filing System. Software
Engineering, IEEE Transactions on, 1984.

[18] G. Ntzik. Local Reasoning about File Systems. PhD thesis, 2014 (Expected).

[19] M. Parkinson and G. Bierman. Separation logic and abstraction. POPL, 2005.

[20] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, 2002.

[21] G. Smith. Local Reasoning about Web Programs. PhD thesis, 2011.

[22] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style rea-
soning in a logic for higher-order concurrency. ICFP, 2013.

[23] A. Wright. Structural Separation Logic. PhD thesis, Imperial College London,
2013.

Appendix

Satisfaction Relation

Definition 13 (Satisfaction Relation). The satisfaction relations, ⊧P ∶ LEnv→
AStates×Asrts and ⊧φ∶ LEnv→Dirs×DirAsrts, for the abstract state and
directory assertions of figure 4, parameterised by a logical environment, are de-
fined as:

e, (fs,ph, σ) ⊧P αE ↦ φ ⇐⇒ ∃d. fs((∣α∣)e) = ((∣E∣)e, d) ∧ e, d ⊧φ φ
e, (fs,ph, σ) ⊧P X

F↦ E ⇐⇒ fs((∣X∣)e) = (∣E∣)e
e, (fs,ph, σ) ⊧P X

OF↦ (I,E)⇐⇒ ∃f. (∣X∣)e = f ∧ f ∈ OFAddrs ∧ ph(f) = ((∣I ∣)e, (∣E∣)e)
e, (fs,ph, σ) ⊧P X

DS↦ E ⇐⇒ ∃n. (∣X∣)e = n ∧ n ∈ DSAddrs ∧ ph(n) = (∣E∣)e
e, (fs,ph, σ) ⊧P E

H↦ E′ ⇐⇒ ∃n. (∣E∣)e = n ∧ n ∈ N+ ∧ ph(n) = (∣E′∣)e
e, (fs,ph, σ) ⊧P var Ù E ⇐⇒ σ(var) = (∣E∣)e
e, (fs,ph, σ) ⊧P Expr Z⇒ E ⇐⇒ [[Expr]]σ = (∣E∣)e

e, d ⊧φ ∅ ⇐⇒ d = ∅
e, d ⊧φ E1 ∶ E2 ⇐⇒ d = (∣E1∣)e ∶ (∣E2∣)e
e, d ⊧φ E[φ] ⇐⇒ ∃d′. d = (∣E∣)e[d′] ∧ e, d′ ⊧φ φ
e, d ⊧φ ⊺[φ] ⇐⇒ ∃d′. d = ⊺[d′] ∧ e, d′ ⊧φ φ
e, d ⊧φ E ⇐⇒ d = (∣E∣)e
e, d ⊧φ φ1 + φ2 ⇐⇒ ∃d′, d′′. d = d′ + d′′ ∧ e, d′ ⊧φ φ1 ∧ e, d′′ ⊧φ φ2

e, d ⊧φ φ1 ○α φ2 ⇐⇒ ∃d′,x, d′′. d = d′ ○x d′′ ∧ e[α↦ x], d′ ⊧φ φ1 ∧ e, d′′ ⊧φ φ2

e, d ⊧φ @E ⇐⇒ resolve((∣E∣)e, d) defined

IO Command Axioms

Here we include axioms for IO commands on regular files in figure 7. These
supplement the axioms of figure 5. Together, these provide the specification for
commands when they succeed. Error specifications are discussed in the next
section.

Errors

So far, in figure 5 we have given specifications of when the POSIX commands
succeed. In any other case they fail. In POSIX this generally means that an
error code is returned to explain the cause of the failure. Programmers should
examine this error code, and take remedial action if the command failed. Errors
are also sometimes required to perform elementary tasks. For example, to see if
a path p exists in the file system, one typically performs stat(p) and checks if
an error is returned. No error indicates that the path resolves.

We model the following errors that are relevant to our POSIX fragment:

1. enoent: A component of a path does not resolve to an existing file or
the path is an empty string. For example, this error occurs when resolv-
ing ⊺/a/b/c/d, but the directory ⊺/a/b does not exist in the file system.

2. enotdir: A component of the path prefix is not a directory. For example,
this error occurs when resolving ⊺/a/b/c/d, but ⊺/a/b identifies a file rather
than a directory.

3. eexist: The path resolves to an existing file or directory. For example, the
link(existing, new) command returns this error as it expects no file to
exist at the new path.

4. enotempty: The path argument names a directory that is not an empty
directory. This error occurs when the path identifies a directory that has
entries, but the command expected an empty directory. For example, the
rmdir command returns this error.

5. eperm: The intended operation is not supported by the POSIX implementa-
tion. This error occurs when you attempt to use a command, but the POSIX
implementation running the program does not support using the command
on the resource identified by the path. For example, as we do not allow hard
links to directories, our link command returns this error when it is applied
to directories.

6. einval: The arguments supplied to the intended operation are of the wrong
form. For example, in order to avoid creating cycles, rename(old, new)

returns this error if new is a descendant old.

Commands communicate their success or failure via their return value. Most
commands return 0 when they succeed — open and opendir return non integer
values when they succeed — and −1 otherwise. If −1 is returned, a constant
integer value representing the error is assigned to the global variable errno. The
types of errors each command can fail with are given in table 1.

Command Possible errors

r := mkdir(path) enoent, enotdir, eexist
r := rmdir(path) enoent, enotdir∗, enotempty
r := link(to, from) enoent∗, enotdir, eperm

eexist (only for the from parameter)
r := unlink(path) enoent∗, enotdir, eperm
r := rename(old, new) enoent∗, enotdir∗, enotempty,

eisdir, einval
t := stat(path) enoent, enotdir
fd := open(path, flags) enoent∗, enotdir, eisdir
o := lseek(fd, off, wh) No errors
sz := write(fd, str) No errors
str := read(fd, size) No errors
close(fd) No errors
h := opendir(path) enoent, enotdir
s := readdir(h) No errors
closedir(h) No errors

Table 1. Possible errors that each command can return

However, we still consider certain types of command failure to be program
faults. Calling wrire(fd) with an fd that does not correspond to a valid file
descriptor still faults in our specifications, despite POSIX considering this an
ebadf error. We make this distinction based on an intuition of ownership. File
descriptors are owned and managed by the programs that create them. Writing
a program that could encounter ebadf is always going to be a programmer
mistake. We can use our program logic to prove that a program does not fault:
it would never cause ebadf to occur. Error checking for ebadf could then be
elided as unnecessary.

On the other hand, the file system is a shared resource, not owned by any one
program. Even in our non-concurrent system, there is nothing to stop someone
mutating the file system against our expectations before our program runs. Thus,
it is sensible and expected that programmers use errors as a form of “defensive
programming”, to cater for unanticipated external changes to the file system
structure. We can use our reasoning to determine if a program detects all possible
error cases, and more importantly how it handles them.

For each command, and each error it can produce, we provide a small axiom
that describes the states on which the command will produce the error. Each
additional small axiom describes all the states that cause a specific error code.

The properties of each error code are independent of its use by any one
command. For example, failing to resolve a path correctly is the same whether
the command that failed is open or mkdir. As such, in figure 8 we provide
predicates that describe the states on which resolving a given path would result
in each error. We name the predicates identically to the error they represent.
There are two variants of enoent: enoent∗(path) is satisfied when path or
any prefix of path do not resolve, and enoent(path) is satisfied simply when
any prefix of path does not resolve. Similarly there are two variants of enotdir.

With these error predicates, we can axiomatize commands that may return
errors. Here, we consider the stat command:

{ path Z⇒ P/A ∧αP ↦ A ∶ I }
t, r := stat(path)

{ t Z⇒ F ∧ r Z⇒ 0 ∧αP ↦ A ∶ I }

{ path Z⇒ P/A ∧αP ↦ A[β] }
t, r := stat(path)

{ t Z⇒D ∧ r Z⇒ 0 ∧αP ↦ A[β] }

{ S ∧ enoent∗(path) }
t, r := stat(path)

{ r Z⇒ −1 ∧ errno Z⇒ enoent ∧ S }

{ S ∧ enotdir(path) }
t, r := stat(path)

{ r Z⇒ −1 ∧ errno Z⇒ enotdir ∧ S }

Error cases for the rest of the commands of table 1 are defined similarly.

Example Proofs

Here we give the implementations and proofs for the removal of a non-empty
directory and file copying.

rmdirRec

Recall the intuitive specification of rmdirRec from the software installer example.

{path Z⇒ P/A ∧ r Ù − ⋆ E ⋆ αP ↦ A[complete] }
r := rmdirRec(path)

{r Ù 0 ⋆ E ⋆ αP ↦ ∅}
Our implementation of this command and a proof sketch of the specification

is given in figure 9. Notice that at each loop iteration, we use abstract allocation
to address the entry we are going delete. When we remove, e.g. with unlink, we
implicitly apply the Frame Rule to isolate only that resource. Specifications of
the cases where rmdirRec fails with an error can be easily derived.

fileCopy

Finally, following is the specification of fileCopy.

{
source Z⇒ P/A ∧ target Z⇒ P′/D ∧ r Ù − ⋆ E

⋆ αP ↦ A ∶ I ⋆ βP′ ↦ D[C ∧ can create(A)] ⋆ I F↦ Sd
}

r := fileCopy(source, target)

{∃I′. r Ù 0 ⋆ E ⋆ αP ↦ A ∶ I ⋆ βP′ ↦ D[C +A ∶ I′] ⋆ I F↦ Sd ⋆ I′ F↦ Sd}

Because file sizes can exceed available process memory, they are copied chunk
by chunk. In figure 10 we show an implementation of a chunked file copy com-
mand and prove it’s correct with respect to the above specification.

Soundness

We reason about programs manipulating abstract program states (definition
8) that contain instrumentation in the form of abstract addresses and path
promises. Operationally, commands operate on machine states where the in-
strumentation is erased.

Definition 14 (Machine States). Machine states, s ∈ States, are those ab-
stract program states of definition 8 where the file system heap is complete.

States ≜ {s ∈ AStates ∣ s ↓1 is complete}

We relate abstract states to machine states via reification. Reification ac-
counts for the (possibly) partial file system by using completions. Process heaps
are not instrumented, so are reused unchanged.

Definition 15 (Reification). The reification function, ⌊⋅⌋ ∶ AStates→ P(States),
is defined by:

⌊as⌋ = {(fs, as ↓2, as ↓3) ∣ fs ∈ completion(as ↓1)}

where completion(fs) ≜ {fsc ∈ FS ∣ fs′ ∈ FS ∧ fsc = fs ⊔ fs′ ∧ fsc is complete} where
↓i denotes the ith projection. We lift reification to sets of instrumented states
pointwise.

The operational semantics of our programming language are directly derived
from the operational semantics of the Views framework.

Definition 16 (Program Evaluation). The evaluation relation, ⇓, relates
programs and their initial states to either a terminal state or a distinguished
fault state ☇, where ☇ /∈ Values. Command/state pairs not in the relation are
deemed to be divergent.

⇓⊂ (Comm × States) × (States ⊎ {☇})

We derive the evaluation relation from the operational semantics framework in
Views.

We use the standard partial correctness fault avoiding interpretation of Hoare
triples.

Definition 17 (Hoare Triple Interpretation).

⊧ {P}C{Q} ⇐⇒ ∀e ∈ LEnv, s ∈ ⌊JP Ke⌋ . C, s /⇓ ☇ ∧
(∃s′.C, s ⇓ s′ ⇒ s′ ∈ ⌊JQKe⌋)

Theorem 1 (Soundness). If ⊢ {P}C{Q}, then ⊧ {P}C{Q}.

We prove theorem 1 via the Views framework of [6]. Readers interested in
the details of Views are refered to [6], which gives a detailed account of the
parameters and properties required to prove the soundness theorem. Here we
simply instantiate the parameters of the Views framework and prove the required
properties.

Definition 18 (File Systems Atomic Commands). The atomic commands
are those of definition 9.

Definition 19 (File Systems View Monoid). The File Systems View Monoid
is:

FSView ≜ (P(AStates), ○, u)
where

1. (ifs1,ph1, σ1) ○′ (ifs2,ph2, σ2) = (ifs1 ⊔ ifs2,ph1 ⊔ph2, σ1 ⊔ σ2)
2. ○ is the lift of ○′ to sets
3. u = {(∅,∅,∅)}.

Definition 20 (File Systems Axiomatisation). The File System Axiomati-
sation is given in figures 5 and 7.

Definition 21 (File System Machine States). The machine states are the
program states of definition 14.

Definition 22 (File System Interpretation of Atomic Commands). The
File System interpretation of Atomic Commands are given in figures 11 and 12.

Definition 23 (File Systems View Reification). The File System View
Reification is the lift of the Instrumented State Reification of definition 15 to
sets.

Definition 24 (File Systems View Disjunction). The File Systems View
Disjunction function is set union, ∪.

We now prove each of the required properties. We begin with some additional
lemmas. The Views framework assumes that the ∗ of Views is the separating
conjunction. As we work with logical environments, we have “baked” * into the
assertion language. Assertions are then transformed into views by interpreta-
tion through a logical environment. However, the ∗ of our assertion language is
essentially identical to the ∗ of our Views monoid.

Lemma 1 (∗ equivalence). Let ∗ be the separating conjunction of our asser-
tion language, figure . Recall that the separating conjunction of our views monoid
is ○. For all p, q ∈ P(AStates), e ∈ LEnv, it is the case that

Jp ∗ qKe = JpKe ○ JqKe

Proof. Calculating using definitions 13 and 19

Jp ∗ qKe= {as ∈ AStates ∣ e, as ⊧ p ∗ q}
= {(ifs1 ● ifs2,ph1 ●ph2, σ) ∣ ifs1,ph1, σ ⊧ p, ifs2,ph2, σ,⊧ q}
= {(ifs1,ph1, σ) ○′ (ifs2,ph2, σ) ∣ ifs1,ph1, σ ⊧ p, ifs2,ph2, σ,⊧ q}
= {P ○′ Q ∣ P ∈ JpKe ,Q ∈ JqKe}
= JpKe ○ JqKe

Lemma 2 (Atomic Soundness of Commands).

Proof. We will cover only characteristic examples of commands in our fragment.
Atomic soundness for the remaining command axioms is proven similarly.

First, consider the mkdir command axiom in figure 5. By the satisfaction
relation (definition 13) we have:

q
path Z⇒ P/B/A ∧αP ↦ B[C ∧ ¬top entry(A) ∧ ¬top address] ⋆ r

y
e

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ifs,ph, σ) ∈ AStates ∣
∃ifs1, ifs2,ph1,ph2 . ifs = ifs1 ● ifs2 ∧ ph = ph1 ●ph2

∧ [[path]]σ = (∣P∣)e/(∣B∣)e/(∣A∣)e
∧ ∃.id. ifs1((∣α∣)e) = ((∣P∣)e, (∣B∣)e[id]) ∨ ifs1(F) = ⊺[id] ∧ id = (∣C∣)e

∧ ¬(∃id′, id′′, ι. id = id′ + ((∣A∣)e[id′′] ∨ (∣A∣)e ∶ ι))
∧ ¬(∃x, id′. id = id′ + x)
∧ e, (ifs2,ph2, σ) ⊧′ r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= ass

the set of instrumented pre-states. By reification, the pre-states are:

⌊ass⌋
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(fs,ph, σ)∣fs ∈ completion(as ↓1) ∧ ph = as ↓2 ∧σ = as ↓3
∧ [[path]]σ = (∣P∣)e/(∣B∣)e/(∣A∣)e

∧ ∃id, id′,x.fs(F) = id ○x (∣B∣)e[id′]
∧ resolve((∣P∣)e/x, id) = x ∧ noent(id′, (∣A∣)e)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Then, by the command interpretation

[[mkdir(path]](⌊ass⌋)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(fs,ph, σ)∣ph = as ↓2 ∧σ = as ↓3
∧ [[path]]σ = (∣P∣)e/(∣B∣)e/(∣A∣)e

∧ ∃id, id′,x.fs(F) = id ○x (∣B∣)e[id′ + (∣A∣)e[∅]]
∧ resolve((∣P∣)e/x, id) = x

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

we obtain the post-states.

By the satisfaction relation we get the instrumented post-states from the com-
mand axiom’s postcondition:

r
αP ↦ B[C +A[∅]] ⋆ r

z

e
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ifs,ph, σ) ∈ AStates ∣
∃ifs1, ifs2,ph1,ph2 . ifs = ifs1 ● ifs2 ∧ ph = ph1 ●ph2

∧ [[path]]σ = (∣P∣)e/(∣B∣)e/(∣A∣)e
∧ (∃.id. ifs1((∣α∣)e) = ((∣P∣)e, (∣B∣)e[id + (∣A∣)e[∅]])

∧ e, (ifs2,ph2, σ) ⊧′ r

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
= ass′

where facts about the variable store are derived from logical variable immutability.
The instrumented pre and post-states have the same completing pre-instrumented
file systems pifsc in their completions. By this, it is easy to see that:

[[mkdir(path]](⌊ass⌋) = ⌊ass′⌋

Structural and state commands are proven in a similar way.

Now consider the third axiom of the open command. By the satisfaction
relation we have:

s
path Z⇒ P/A ∧ flags Z⇒ O TRUNC ∧αP ↦ A ∶ I ⋆ I

F↦ S ⋆ emp ⋆ r
{

e
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ifs,ph, σ) ∈ AStates ∣
∃ifs1, ifs2,ph1,ph2 . ifs = ifs1 ● ifs2 ∧ ph = ph1 ●ph2

∧ [[path]]σ = (∣P∣)e/(∣A∣)e ∧ [[flags]]σ = O TRUNC
∧ ifs1((∣α∣)e) = ((∣P∣)e, (∣A∣)e ∶ (∣I∣)e) ∧ ifs1((∣I∣)e) = (∣S∣)e

∧ e, (ifs2,ph2, σ) ⊧′ r

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
= ass

the set of instrumented pre-states. We reify these to pre-states:

⌊ass⌋
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(fs,ph, σ)∣fs ∈ completion(as ↓1) ∧ ph = as ↓2 ∧σ = as ↓3
∧ [[path]]σ = (∣P∣)e/(∣A∣)e ∧ [[flags]]σ = O TRUNC

∧ ∃id. fs(F) = id ○x (∣A∣)e ∶ (∣I∣)e
∧ resolve((∣P∣)e/x, id) = x ∧ fs(I) = (∣S∣)e

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

We use the pre-states as input to the command interpretation

[[fd := open(path, flags)]](⌊ass⌋)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(fs′,ph′, σ′)∣ph = as ↓2 ∧σ = as ↓3
∧ σ′ = σ[fd↦ f] ∧ ph′ = ph[f ↦ ((∣I∣)e,0)]

∧fs′ = fs[I↦ ε] ∧ f /∈ dom(ph)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

to obtain the post-states. Again, by the satisfaction relation we get the instru-
mented post-states.

t

∃Fd.
⎛
⎝
fd Z⇒ Fd ∧αP ↦ A ∶ I
⋆ I

F↦ ε ⋆ Fd
OF↦ (I,0)

⎞
⎠
⋆ r

|

e
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ifs,ph, σ) ∈ AStates ∣
∃ifs1, ifs2,ph1,ph2 . ifs = ifs1 ● ifs2 ∧ ph = ph1 ●ph2

∧ [[fd]]σ = (∣Fd∣)e
∧ ifs1((∣α∣)e) = ((∣P∣)e, (∣A∣)e ∶ (∣I∣)e) ∧ ifs1((∣I∣)e) = ε
∧ ph1((∣Fd∣)e) = ((∣I∣)e,0) ∧ e, (ifs2,ph2, σ) ⊧′ r

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
= ass′

Again, the completions of the instrumented pre and post-states are the same and
thus it is easy to see that:

[[fd := open(path, flags]](⌊ass⌋) = ⌊ass′⌋

Lemma 3 (Entailment Properties). File System Entailment satisfies En-
tailment Locality.

Proof. Let p ⊧ q. By the definition of ⊧, we have that for all e ∈ LEnv, JpKe ⊆
JqKe. We must show that p ≼ q. Recall the definition of ≼: p ≼ q ⇐⇒ ∀r ∈
P(AStates), e ∈ LEnv, ⌊p ∗ r⌋ ⊆ ⌊q ∗ r⌋. Thus, the lemma requires us to show
that if JpKe ⊆ JqKe, then ⌊Jp ∗ rKe⌋ ⊆ ⌊Jq ∗ rKe⌋, for all choices of logical envi-
ronments and views r. But, considering lemma 1, this follows immediately as
entailment is just subset inclusion.

Lemma 4 (Disjunction Properties). File System Disjunction has Join Dis-
tributivity and is a Join morphism.

Proof. Our Disjunction function is set union. Therefore, for Join Distributivity,
we must show p, qi ∈ P(AStates) and index set I, p ∗⋃i∈I{qi} = ⋃i∈I{p ∗ qi } .
For the Join Morphism property, we need to show ⌊⋃i∈I{pi}⌋ = ⋃i∈I{⌊pi⌋}. Both
properties follow from the set lifting definition of reification.

Finally, the soundness of the abstract allocation/deallacotion axioms (defini-
tion 11) is justified by the fact that they only change the instrumentation. The
reifications of pre- and post-condition are the same. With these results, we can
conclude our reasoning is sound.

Proof (Proof of Soundness Theorem). By lemmas 2, 3, 4 according to the Views
framework, the partial correctness result follows. The fault avoiding result follows
by the fact that ☇ /∈ States.

{ path Z⇒ P/B/A ∧ fd Ù − ⋆ E ⋆αP ↦ B[C ∧ can create(A)] }
fd := open(path, flags)

⎧⎪⎪⎨⎪⎪⎩
∃Fd, I.

⎛
⎝
fd Ù Fd ⋆ E ⋆αP ↦ B[C +A ∶ I]

⋆ I
F↦ ∅b ⋆ Fd

OF↦ (I,0)
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

{ path Z⇒ P/A ∧ flags Z⇒ 0 ∧ fd Ù − ⋆ E ⋆αP ↦ A ∶ I ⋆ I
F↦ S }

fd := open(path, flags)
⎧⎪⎪⎨⎪⎪⎩
∃Fd.

⎛
⎝
fd Ù Fd ⋆ E ⋆αP ↦ A ∶ I
⋆ I

F↦ S ⋆ Fd
OF↦ (I,0)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

{ path Z⇒ P/A ∧ flags Z⇒ O TRUNC ∧ fd Ù − ⋆ E ⋆αP ↦ A ∶ I ⋆ I
F↦ S }

fd := open(path, flags)
⎧⎪⎪⎨⎪⎪⎩
∃Fd.

⎛
⎝
fd Ù Fd ⋆ E ⋆αP ↦ A ∶ I
⋆ I

F↦ ∅b ⋆ Fd
OF↦ (I,0)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
{ fd Ù Fd ⋆ Fd

OF↦ (I,Offset) }
close(fd)

{ emp }

{ fd Ù Fd ∧ to Z⇒ O′ ∧ wh Z⇒ SEEK SET ∧O′ ≥ 0 ⋆ off Ù − ⋆ E ⋆ Fd
OF↦ (I,O) }

off := lseek(fd, to, wh)

{ off Ù O′ ⋆ fd Ù Fd ⋆ E ⋆ Fd
OF↦ (I,O′) }

{ fd Ù Fd ∧ to Z⇒ O′ ∧ wh Z⇒ SEEK CUR ∧ (O +O′ ≥ 0) ⋆ off Ù − ⋆ E ⋆ Fd
OF↦ (I,O) }

off := lseek(fd, to, wh)

{ off Ù O +O′ ⋆ fd Ù Fd ⋆ E ⋆ Fd
OF↦ (I,O +O′) }

{
fd Ù Fd ∧ to Z⇒ O′ ∧ wh Z⇒ SEEK END ∧ ∣S∣ +O′ ≥ 0

off Ù − ⋆ E ⋆ I
F↦ S ⋆ Fd

OF↦ (I,O)
}

off := lseek(fd, to, wh)

{ off Ù ∣S∣ +O′ ⋆ fd Ù Fd ⋆ E ⋆ I
F↦ S ⋆ Fd

OF↦ (I, ∣S∣ +O′) }

{
fd Ù Fd ∧ buf Z⇒ S ∧ ∣S′∣ = O ∧ ∣S′′∣ = ∣S∣

⋆ sz Ù − ⋆ E ⋆ I
F↦ S′ ⋅ S′′ ⋅ S′′′ ⋆ Fd

OF↦ (I,O)
}

sz := write(fd, buf)

{ sz Ù ∣S∣ ⋆ fd Ù Fd ⋆ E ⋆ I
F↦ S′ ⋅ S ⋅ S′′′ ⋆ Fd

OF↦ (I,O + ∣S∣) }

{
fd Ù Fd ∧ buf Z⇒ S ∧ ∣S′∣ = O ∧ ∣S′′∣ < ∣S∣
⋆ sz Ù − ⋆ E ⋆ I

F↦ S′ ⋅ S′′ ⋆ Fd
OF↦ (I,O)

}

sz := write(fd, buf)

{ sz Ù ∣S∣ ⋆ fd Ù Fd ⋆ E ⋆ I
F↦ S′ ⋅ S ⋆ Fd

OF↦ (I,O + ∣S∣) }

{ fd Ù Fd ∧ buf Z⇒ S ∧O ≥ ∣S′∣ ∧ I
F↦ S′ ⋆ sz Ù − ⋆ E ⋆ Fd

OF↦ (I,O) }
sz := write(fd, buf)

{ sz Ù ∣S∣ ⋆ fd Ù Fd ⋆ E ⋆ I
F↦ S′ ⊙

O−∣S′ ∣
0 ⋅ S ⋆ Fd

OF↦ (I,O + ∣S∣) }

{
fd Ù Fd ∧ sz Z⇒ Len ∧ ∣S∣ = O ∧ ∣S′∣ = Len

⋆ buf Ù − ⋆ E ⋆ I
F↦ S ⋅ S′ ⋅ S′′ ⋆ Fd

OF↦ (I,O)
}

buf := read(fd, sz)

{ buf Ù S′ ⋆ fd Ù Fd ⋆ E ⋆ I
F↦ S ⋅ S′ ⋅ S′′ ⋆ Fd

OF↦ (I,O + Len) }

{
fd Ù Fd ∧ sz Z⇒ Len ∧ ∣S∣ = O ∧ len > ∣S′∣
⋆ buf Ù − ⋆ E ⋆ I

F↦ S ⋅ S′ ⋆ Fd
OF↦ (I,O)

}

buf := read(fd, sz)

{ buf Ù S′ ⋆ fd Ù Fd ⋆ E ⋆ I
F↦ S ⋅ S′ ⋆ Fd

OF↦ (I,O + ∣S′∣) }

{ fd Ù Fd ∧ sz Z⇒ Len ∧O > ∣S∣ ⋆ buf Ù − ⋆ E ⋆ I
F↦ S ⋆ Fd

OF↦ (I,O) }
buf := read(fd, sz)

{ buf Ù ∅b ⋆ fd Ù Fd ⋆ E ⋆ I
F↦ S ⋆ Fd

OF↦ (I,O) }

Fig. 7. Axiomatic specifications for IO commands.

enoent∗(path) ≜ (path Z⇒ ε) ∨ (∃P,A,B,P′. path Z⇒ P/A/B/P′

∧ αP ↦ A [true ∧ ¬top entry(B) ∧ ¬top address])

enoent(path) ≜ (path Z⇒ ε) ∨ (∃P,A,B,P′. path Z⇒ P/A/B/P′ ∧P′ ≠ ε
∧ αP ↦ A [true ∧ ¬top entry(B) ∧ ¬top address])

enotdir∗(path) ≜ ∃P,A,P′. path Z⇒ P/A/P′ ∧ αP ↦ ∃I. A ∶ I
enotdir(path) ≜ ∃P,A,P′. path Z⇒ P/A/P′ ∧ αP ↦ ∃I. A ∶ I
eexist(path) ≜ ∃P,A. path Z⇒ P/A ∧ αP ↦ entry(A)

enotempty(path) ≜ ∃P,A. path Z⇒ P ∧ αP ↦ entry(A)
eperm(path) ≜ ∃P,A. path Z⇒ P/A ∧ αP ↦ A[true]
eisdir(path) ≜ eperm(path)

einval(old,new) ≜ ∃P,P′,A. old Z⇒ P/A ∧ new Z⇒ P′ ∧ αP ↦ (A[C] ∧ ∃P′′. @A/P′′/β) ⋆ βP′ ↦ true

Fig. 8. Definitions of the error predicates used in command specifications.

{ path Z⇒ P/A ∧ r Ù − ⋆ E ⋆αP ↦ A[C ∧ complete] }
r := rmdirRec(path) ≜ local dirH, dirEnt, t {

dirH := opendir(path);
if dirH ≠ null

{ ∃H.
path Z⇒ P/A ∧ E ⋆ r Ù − ⋆ dirH Ù H ⋆

αP ↦ A[C ∧ names(A) ∧ complete] ⋆H
DS↦ A

}

dirEnt := readdir(dirH);

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃H,A,
B,C′ .

path Z⇒ P/A ∧ E ⋆ r Ù − ⋆ dirH Z⇒ H ⋆ dirEnt Z⇒ B ∧

αP ↦ A

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

entry(B) + (C′ ∧ names(A))
∨

B = 0 ∧A = ∅ ∧∅

⎞
⎟
⎠
∧ complete

⎤⎥⎥⎥⎥⎥⎦
⋆ H

DS↦ A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
while dirEnt ≠ ε

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∃H,A,
B,C′, β

.

path Z⇒ P/A ∧ E ⋆ r Ù − ⋆ dirH Z⇒ H ⋆ dirEnt Z⇒ B ∧
αP ↦ A [β + (C′ ∧ names(A) ∧ complete)]
⋆ βP/A ↦ (entry(B) ∧ complete) ⋆H

DS↦ A

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
t := stat(path/dirEnt);

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∃H,A,
B,C′, β

.

path Z⇒ P/A ∧ E ⋆ r Ù − ⋆ dirH Z⇒ H ⋆ dirEnt Z⇒ B ∧ t Z⇒D ∨ F
∧ αP ↦ A [β + (C′ ∧ names(A) ∧ complete)]
⋆ βP/A ↦ (entry(B) ∧ complete) ⋆H

DS↦ A

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
if t = F

unlink(path/dirEnt);
else

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∃H,A,
B,C′, β

.

path Z⇒ P/A ∧ E ⋆ r Ù − ⋆ dirH Z⇒ H ⋆ dirEnt Z⇒ B
∧ path/dirEnt Z⇒ P/A/B ∧

αP ↦ A [β + (C′ ∧ names(A) ∧ complete)]
⋆ βP/A ↦ ∃C′′. B[C′′ ∧ complete] ⋆H

DS↦ A

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
rmdirRec(path/dirEnt);

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∃H,A,
B,C′, β

.

path Z⇒ P/A ∧ E ⋆ r Ù − ⋆ dirH Z⇒ H ⋆
αP ↦ A [β + (C′ ∧ names(A) ∧ complete)]

⋆ βP/A ↦ ∅ ⋆H
DS↦ A

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
dirEnt := readdir(dirH);

{ ∃H. path Z⇒ P/A ∧ E ⋆ r Ù − ⋆ dirH Z⇒ H ⋆ dirEnt Z⇒ 0 ∧αP ↦ A[∅] ⋆H
DS↦ ∅ }

closedir(dirH); rmdir(path); r := 0
else r := dirH; }

{ r Z⇒ 0 ∧ E ⋆αP ↦ ∅ }

Fig. 9. Proof that rmdirRec meets its specification (we sketch only one branch of the
if for space). We use the rule of disjunction to merge the two possible results for stat.

⎧⎪⎪⎨⎪⎪⎩

source Z⇒ P/A ∧ target Z⇒ P′/D ∧ E ⋆ r Z⇒ − ⋆αP ↦ A ∶ I
⋆ βP′ ↦ D[C ∧ ¬top entry(A) ∧ ¬top address] ⋆ I

F↦ Sd

⎫⎪⎪⎬⎪⎪⎭
r := fileCopy(source, target) ≜
local s, sourceH, targetH, buffer {
sourceH := open(source, 0);
if sourceH ≠ -1

targetH := open(target/base(source), 0);
if targetH ≠ -1

buffer := read(sourceH, 4096); // Copy in chunks of 4096 chars

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ Sh,Th, I′,Sd′,Sb,Sd′′.
sourceH Ù Sh ⋆ targetH Ù Th ⋆ buffer Ù Sb

∧ Sd = Sd′ ⋅ Sb ⋅ Sd′′ ∧ ((∣Sb∣ < 4096 ∧ Sd′′ = ε) ∨ ∣Sb∣ = 4096)
∧ αP ↦ A ∶ I ⋆ βP′ ↦ D[C +A ∶ I′] ⋆ I

F↦ Sd

⋆ I′
F↦ Sd′ ⋆ Sh

OF↦ (I, ∣Sd′ ⋅ Sb∣) ⋆Th
OF↦ (I′, ∣Sd′∣)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
while |buffer| = 4096

s := write(targetH, buffer);
buffer := read(sourceH, 4096);

// We read less than 4096, so it was the last chunk
s := write(targetH, buffer);

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∃ Sh,Th, I′,Sd′,Sb.
sourceH Ù Sh ⋆ targetH Ù Th ⋆ buffer Ù Sb ∧ s Ù ∣Sb∣

∧ Sd = Sd′ ⋅ Sb ∧αP ↦ A ∶ I ⋆ βP′ ↦ D[C +A ∶ I′]
⋆ I

F↦ Sd ⋆ I′
F↦ Sd ⋆ Sh

OF↦ (I, ∣Sd′ ⋅ Sd∣) ⋆Th
OF↦ (I′, ∣Sd∣)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
close(sourceH); close(targetH); r := 0

else close(sourceH); r := targetH
else r := sourceH }

{ ∃ I′.r Z⇒ 0 ⋆ E ⋆αP ↦ A ∶ I ⋆ βP′ ↦ D[C +A ∶ I′] ⋆ I
F↦ Sd ⋆ I′

F↦ Sd }

Fig. 10. Code for fileCopy, with a proof sketch of its specification.

ent(id, a) ≜ ∃ι. id = a ∶ ι ∨ ∃id′. id = a[id′]
noent(id, a) ≜/∃ id′, id′′.id ≡ ent(id′) + id′′

[[mkdir(path]](fs,ph, σ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{(fs[F ↦ id ○x b[id′ + a[∅]]],ph, σ)} iff [[path]]σ = p/b/a ∧ fs(F) ≡ id ○x b[id′] ∧ resolve(p/x, id) = x ∧ noent(id′, a)
{(fs[F ↦ ⊺[id + a[∅]]],ph, σ)} iff [[path]]σ = ⊺/a ∧ fs(F) ≡ ⊺[d] ∧ noent(d, a)
{☇} otherwise

[[rmdir(path)]](fs,ph, σ) = {{(fs[F ↦ id],ph, σ)} iff [[path]]σ = p/a ∧ fs(F) ≡ id ○x a[∅] ∧ resolve(p/x, id) = x

{☇} otherwise

[[link(existing, new)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(fs[F ↦ (id ○x d[id′ + b ∶ ι]) ○y a ∶ ι],ph, σ)} iff

[[existing]]σ = p/a ∧ [[new]]σ = p′/d/b
∧ fs(F) ≡ (id ○x d[id′]) ○y a ∶ ι ∧ resolve(p′/x, id) = x

∧ resolve(p/y, id ○x d[id′]) = y ∧ noent(id′, b)

{(fs[F ↦ (⊺[id′ + b ∶ ι]) ○x a ∶ ι],ph, σ)} iff

[[existing]]σ = p/a ∧ [[new]]σ = ⊺/b
∧ fs(F) ≡ ⊺[id′] ○x a ∶ ι ∧ resolve(p′/x,⊺[id]) = x

∧ noent(id′, b)

{☇} otherwise

[[unlink(path)]](fs,ph, σ) = {{(fs[F ↦ id ○x ∅],ph, σ)} iff [[path]]σ = p/a ∧ fs(F) ≡ id ○x a ∶ ι ∧ resolve(p/x, id) = x

{☇} otherwise

[[rename(old, new)]](fs,ph, σ) =

⎧⎪⎪⎨⎪⎪⎩

{(fs[F ↦ (id ○x ∅) ○y b ∶ ι],ph, σ)} iff

[[old]]σ = p/a ∧ [[new]]σ = p′/b
∧ fs(F) ≡ (id ○x a ∶ ι) ○y b ∶ j ∧ resolve(p/x, id) = x

∧ resolve(p′/y, id) = y

{(fs[F ↦ (id ○x d[id′ + b ∶ ι]) ○y ∅],ph, σ)} iff

[[old]]σ = p/a ∧ [[new]]σ = p′/d/b
∧ fs(F) ≡ (id ○x d[id′]) ○y a ∶ ι ∧ resolve(p′/x, id) = x

∧ resolve(p/y, id ○x d[id′]) = y ∧ noent(id′, b)

{(fs[F ↦ ⊺[id + b ∶ ι] ○x ∅],ph, σ)} iff

[[old]]σ = p/a ∧ [[new]]σ = ⊺/b
∧ fs(F) ≡ ⊺[id] ○x a ∶ ι ∧ resolve(p/x,⊺[id]) = x

∧ noent(id, b)

{(fs[F ↦ (id ○x b[id′]) ○y ∅],ph, σ)} iff

[[old]]σ = p/a ∧ [[new]]σ = p′/b
∧ fs(F) ≡ (id ○x b[∅]) ○y a[id′] ∧ resolve(p/x, id) = x

∧ resolve(p′/y, id) = y

{(fs[F ↦ (id ○x d[id′ + b[id′′]]) ○y ∅],ph, σ)} iff

[[old]]σ = p/a ∧ [[new]]σ = p′/d/b
∧ fs(F) ≡ (id ○x d[id′]) ○y a[id′′] ∧ resolve(p′/x, id) = x

∧ resolve(p/y, id ○x d[id′]) = y ∧ noent(id′, b)

{(fs[F ↦ ⊺[id + b[id′]] ○x ∅],ph, σ)} iff

[[old]]σ = p/a ∧ [[new]]σ = ⊺/b
∧ fs(F) ≡ ⊺[id] ○x a[id′] ∧ resolve(p/x,⊺[id]) = x

∧ noent(id, b)

{(fs,ph, σ)} iff

[[old]]σ = p/a ∧ [[new]]σ = p/a
∧ fs(F) ≡ id ○x id′ ∧ resolve(p/x, id) = x

∧ ent(id′, a)

{☇} otherwise

[[t := stat(path)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{(fs,ph, σ[t↦ F)} iff [[path]]σ = p/a ∧ fs(F) ≡ id ○x a ∶ ι ∧ resolve(p/x, id) = x

{(fs,ph, σ[t↦ D)} iff [[path]]σ = p/a ∧ fs(F) ≡ id ○x a[id′] ∧ resolve(p/x, id) = x

{(fs,ph, σ[t↦ enoent)} iff [[path]]σ = p/a ∧ fs(F) ≡ ⊺[d] ∧ resolve(p/a,⊺[d]) = udf
{☇} otherwisen

Fig. 11. Interpretation of the structural and state commands of our subset.

[[fd := open(path, flags)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(fs,ph[f ↦ (ι,0)][ι↦ ε], σ[fd↦ f])} iff
[[path]]σ = p/b/a ∧ fs(F) ≡ id ○x b[id′] ∧ resolve(p/x, id) = x

∧ noent(id′, a) ∧ f /∈ dom(ph) ∧ ι /∈ dom(fs)

{(fs,ph[f ↦ (ι,0)][ι↦ ε], σ[fd↦ f])} iff
[[path]]σ = ⊺/a ∧ fs(F) ≡ ⊺[d]
∧ noent(d, a) ∧ f /∈ dom(ph) ∧ ι /∈ dom(fs)

{(fs,ph[f ↦ (ι,0)], σ[fd↦ f])} iff
[[path]]σ = p/a ∧ [[flags]]σ = 0 ∧ fs(F) ≡ id ○x a ∶ ι
∧ resolve(p/x, id) = x ∧ f /∈ dom(ph) ∧ ι ∈ dom(fs)

{(fs,ph[f ↦ (ι,0)][ι↦ ε], σ[fd↦ f])} iff
[[path]]σ = p/a ∧ [[flags]]σ = O TRUNC ∧ fs(F) ≡ id ○x a ∶ ι
∧ resolve(p/x, id) = x ∧ f /∈ dom(ph) ∧ ι ∈ dom(fs)

{☇} otherwise

[[off := lseek(fd, to, wh)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(fs,ph[f ↦ (ι, offset)], σ[off↦ offset])} iff
[[fd]]σ = f ∧ [[to]]σ = offset ∧ [[wh]]σ = SEEK SET

∧ ph(f) = (ι, o) ∧ offset ≥ 0

{(fs,ph[f ↦ (ι, o + offset)], σ[off↦ o + offset])} iff
[[fd]]σ = f ∧ [[to]]σ = offset ∧ [[wh]]σ = SEEK CUR

∧ ph(f) = (ι, o) ∧ o + offset ≥ 0

{(fs,ph[f ↦ (ι, ∣bs∣ + offset)], σ[off↦ ∣bs∣ + offset])} iff
[[fd]]σ = f ∧ [[to]]σ = offset ∧ [[wh]]σ = SEEK END

∧ ph(f) = (ι, o) ∧ fs(ι) = bs ∧ ∣bs∣ + offset ≥ 0

{☇} otherwise

[[sz := write(fd, buf)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(fs[ι↦ bs′ ⋅ bs ⋅ bs′′],ph[f ↦ (ι, ∣bs∣ + o)], σ[sz↦ ∣bs∣])} iff
[[fd]]σ = f ∧ [[buf]]σ = bs ∧ ph(f) = (ι, o)
∧ fs(ι) ≡ bs′ ⋅ bs′′′ ⋅ bs′′ ∧ ∣bs′∣ = o ∧ ∣bs′′′∣ = ∣bs∣

{(fs[ι↦ bs′ ⋅ bs],ph[f ↦ (ι, ∣bs∣ + o)], σ[sz↦ ∣bs∣])} iff
[[fd]]σ = f ∧ [[buf]]σ = bs ∧ ph(f) = (ι, o)
∧ fs(ι) ≡ bs′ ⋅ bs′′ ∧ ∣bs′∣ = o ∧ ∣bs′′∣ < ∣bs∣

{(fs[ι↦ bs′(⊙
zs

0) ⋅ bs],ph[f ↦ (ι, ∣bs∣ + o)], σ[sz↦ ∣bs∣])} iff
[[fd]]σ = f ∧ [[buf]]σ = bs ∧ ph(f) = (ι, o)
∧ fs(ι) ≡ bs′ ∧ o ≥ ∣bs′∣ ∧ zs = o − ∣bs′∣

{☇} otherwise

[[buf := read(fd, sz)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(fs,ph[f ↦ (ι, o + size)], σ[buf↦ bs′])} iff
[[fd]]σ = f ∧ [[sz]]σ = size ∈ N ∧ ph(f) = (ι, o)
∧ fs(ι) ≡ bs ⋅ bs′ ⋅ bs′′ ∧ ∣bs∣ = o ∧ size = ∣bs′∣

{(fs,ph[f ↦ (ι, o + ∣bs′∣)], σ[buf↦ bs′])} iff
[[fd]]σ = f ∧ [[sz]]σ = size ∈ N ∧ ph(f) = (ι, o)
∧ fs(ι) ≡ bs ⋅ bs′ ∧ ∣bs∣ = o ∧ size > ∣bs′∣

{(fs,ph, σ[buf↦ ε])} iff
[[fd]]σ = f ∧ [[sz]]σ = size ∈ N ∧ ph(f) = (ι, o)
∧ fs(ι) ≡ bs ∧ o > ∣bs∣

{☇} otherwise

[[close(fd)]](fs,ph, σ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{(fs,ph ↾ (dom(ph) − {f}), σ)} iff [[fd]]σ = f ∧ f ∈ dom(ph)

{☇} otherwise

[[dir := opendir(path)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(fs,ph[n↦ A], σ[dir↦ n])} iff
[[path]]σ = p/b ∧ fs(F) ≡ id ○x b[id′] ∧ resolve(p/x, id) = x

∧ n /∈ dom(ph) ∧ ∀a. a ∈ A ⇐⇒ ∃id′′, id′′′. id′ ≡ id′′ + ent(id′′′, a)
{☇} otherwise

[[fn := readdir(dir)]](fs,ph, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(fs,ph[n↦ A ∖ {a}], σ[fn↦ a])} iff [[dir]]σ = n ∧ ph(n) = A ∧ a ∈ A

{(fs,ph, σ[fn↦ 0])} iff [[dir]]σ = n ∧ ph(n) = ∅

{☇} otherwise

Fig. 12. Interpretation of IO commands of our subset.

