
JaVerT: JavaScript Verification and Testing Framework
Invited Talk

Philippa Gardner
Imperial College London, UK

pg@imperial.ac.uk

ABSTRACT
We present a novel, unified approach to the development of compo-
sitional symbolic execution tools, which bridges the gap between
traditional symbolic execution and compositional program reason-
ing based on separation logic. We apply our approach to JavaScript,
providing support for full verification, whole-program symbolic
testing, and automatic compositional testing based on bi-abduction.

CCS CONCEPTS
• Theory of computation→ Separation logic; Program anal-
ysis; Logic and verification; • Software and its engineering →
Automated static analysis;

KEYWORDS
Symbolic execution, Separation logic, Formal semantics, JavaScript
ACM Reference Format:
Philippa Gardner. 2018. JaVerT: JavaScript Verification and Testing Frame-
work: Invited Talk. In The 20th International Symposium on Principles
and Practice of Declarative Programming (PPDP ’18), September 3–5, 2018,
Frankfurt am Main, Germany. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3236950.3236974

ACKNOWLEDGMENTS
This invited talk is based on joint work with José Fragoso Santos,
Petar Maksimović, and Gabriela Sampaio.

Compositional Symbolic Analysis
Traditional symbolic execution has beenwidely applied to the analy-
sis of programs written in both static and dynamic languages. To
this day, however, it remains mainly focussed on whole-program
analysis. Such an analysis has two drawbacks. First, it is not aligned
with the way in which programmers write their code. Developers
tend to import various external modules, so the assumption that the
entire codebase is always at our disposal for analysis is tenuous at
best. Second, it does not scale well, as minor changes to one part of
the code require the entire analysis to be repeated. We believe that
an analysis that can be used to reason about programs as they are
written and can scale to large codebases needs to be compositional.

Separation logic provides compositional analysis of programs.
Recent tools based on separation logic have been shown to be

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6441-6/18/09.
https://doi.org/10.1145/3236950.3236974

tractable for real-world programs embedded within large software
environments. The prime example of this is Infer [1], a fully auto-
matic compositional tool that is part of the code review pipeline
at Facebook and is aimed at lightweight bug-finding for programs
written in static languages such as C, C++, Java, and Objective C.
Infer owes its scalability precisely to the compositionality of the un-
derlying analysis. In particular, it can generate function summaries
that can then be re-used in the analysis of other functions.

We propose a novel approach to the development of composi-
tional symbolic execution tools, which connects traditional sym-
bolic execution and compositional program reasoning based on
separation logic. Tool developers familiar with both forms of analy-
sis are likely to have an intuition that such a connection is possible.
We make this intuition precise. We develop a unified theory of
compositional symbolic execution, designed in such a way that
it can be directly implemented. By doing so, we bring tangible
benefits to both worlds: symbolic execution tools gain access to suc-
cinct summaries in the form of separation logic specifications; and
separation logic proof systems become tightly linked to efficient
implementations based on symbolic execution.

We apply our approach to provide compositional symbolic execu-
tion for JavaScript. We stress that JavaScript is just an exemplar, and
strongly believe that our overall approach is language independent.
We introduce JaVerT 2.0, a verification and testing framework for
JavaScript (ECMAScript 5 Strict). JaVerT 2.0 supports: full verifica-
tion, which significantly improves on our previous semi-automatic
verification tool, JaVerT [5]; whole-program symbolic testing, which
is two orders of magnitude faster than our previous symbolic tool,
Cosette [4]; and, for the first time, automatic compositional testing
based on bi-abduction. The implementation of JaVerT 2.0 is directly
guided by our unified theory.

Just as it was the case for JaVerT and Cosette, the analysis of
JaVerT 2.0 is performed on JSIL, our intermediate representation
for JavaScript. JSIL is a simple goto language that natively supports
the main dynamic features of JavaScript, namely extensible objects,
dynamic property access, and dynamic function calls. It comes with
JS-2-JSIL, a trusted, thoroughly tested compiler from JavaScript to
JSIL. We have purposefully designed the memory model of JSIL to
match the memory model of JavaScript, allowing us to easily lift
the results of our analyses done on compiled JSIL code back to the
original JavaScript code.

We have successfully applied JaVerT 2.0 both to whole-program
and compositional symbolic testing of real-world JavaScript li-
braries, finding previously unknown bugs, and to the verification
of small data structure libraries. The results that we have obtained
so far indicate that JaVerT 2.0 is scalable. In the future, we will aim
at highly used JavaScript frameworks, such as jQuery or React.js.

https://doi.org/10.1145/3236950.3236974
https://doi.org/10.1145/3236950.3236974
https://doi.org/10.1145/3236950.3236974


PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany P. Gardner

BI-ABDUCTION
FUNCTOR

ABSTRACTION
FUNCTOR

Concrete
State

Symbolic
State

Instrumented
State

SEMANTICS
FUNCTOR

General
State

Figure 1: Unified Symbolic Analysis: Functors + State Instantiations

Methodology
Symbolic analyses tend to closely follow the semantics of their
targeted languages. This results in overly verbose, repetitive for-
malisms and implementations with a lot of code duplication. We
propose a new methodology for designing compositional symbolic
analyses that factors out the overlap between the semantics and the
analysis, leading to streamlined formalisms with minimal redun-
dancy and more modular implementations. The key insight of our
methodology consists of splitting the semantics of the targeted lan-
guage, in our case JSIL, into two components: a Semantics Functor
and a state instantiation.

The Semantics Functor (SF). The Semantics Functor is the
bedrock for both the formal development and the implementation
of symbolic analyses. It describes the behaviour of the language
commands in terms of general state functions that capture the fun-
damental ways in which one can interact with the JSIL state: for
example, evaluating an expression, allocating a new object, retriev-
ing the value of a given property of a given object, checkingwhether
or not the state satisfies a given constraint, etc. More concretely,
the Semantics Functor is parameterised by a state signature that it
uses to define the behaviour of JSIL commands, returning a JSIL se-
mantics that is consistent with the state instantiation. In JaVerT 2.0,
we parameterise the Semantics Functor with three state instantia-
tions: concrete, instrumented, and symbolic, respectively obtaining
the concrete, instrumented, and symbolic semantics of JSIL.

The Concrete Semantics. The concrete semantics allows us
to run JSIL programs concretely, which is essential for ensuring
that the Semantics Functor captures the intended behaviour of the
language. It also allows us to test our infrastructure against the

ECMAScript official test suite, Test262 [3], by first compiling it to
JSIL and then executing it concretely. In this way, we establish trust
in the compilation.

The Instrumented Semantics. We know from separation
logic [10] that the frame property is essential for local composi-
tional reasoning about programs that alter the heap state. Intuitively,
the frame property means that the output of a program does not
change when the state in which it is run successfully is extended.
The JSIL semantics, however, just like JavaScript semantics, does
not observe the frame property: it is possible to change the output
of a JSIL/JavaScript program and even introduce bugs by extending
the state in which the program was run. Our solution is to design
an instrumented semantics [4] that exhibits the frame property by
explicitly keeping track of object properties that we know are not
present. By having the instrumented semantics as a proper interim
stage between the concrete semantics and the symbolic semantics,
we obtain more modular reasoning and substantially simpler proofs
than previous approaches based on weak locality [6, 7].

The Symbolic Semantics. The symbolic semantics represents
the core of our symbolic analysis. It is obtained by lifting the instru-
mented state instantiation to the symbolic level, following standard
approaches [13, 14], and plugging it into the Semantics Functor.
Unlike the majority of the existing bug-finding symbolic execution
tools for JavaScript [8, 12, 15] which target specific bug patterns and
are not rigorously formalised, the symbolic semantics underpinning
JaVerT 2.0 is fully general and proven sound.

Error Reporting. One of the main novelties of our proposed archi-
tecture is its unique emphasis on error reporting. State instantiations



JaVerT: JavaScript Verification and Testing Framework PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

State Functors

State Implementation Semantics Abstraction Bi-Abduction
Abstraction

+
Bi-Abduction

Concrete Concrete
Execution

Executable
Specifications - -

Instrumented Instrumented
Execution

Executable
Specifications

Automatic Concrete
Test Synthesis

Automatic Concrete Test
Synthesis with Specs

Symbolic Whole-Program
Symbolic Testing Verification Automatic

Symbolic Testing
Automatic

Compositional Testing
Table 1: Use cases: combining functors and state implementations

are required to include an error reporting mechanism that accu-
rately describes the causes of failure whenever an error occurs.
We distinguish two types of errors: must-errors and may-errors.
Must-errors correspond to the well-known errors that can occur
during the execution of a program; for instance: (i) type errors,
when the type of a given value is wrong, and (ii) resource errors,
when a command requires a given spatial resource and we know
with certainty that this resource is absent. May-errors occur when
the semantics does not have enough information to execute the
command at hand; for instance, during a property lookup, the in-
spected object property might be missing, in which case we do not
know whether or not it exists. We note that may-errors only occur
at the instrumented and symbolic levels, where states are inter-
preted as partial. At the concrete level, all errors are must-errors,
as we have full information about the state.

Must-errors can only be reported to the user; they cannot be
corrected as we know that they must [sic!] occur. In contrast, may-
errors can either be corrected or reported. In both cases, the missing
information is added to the state. When reporting a may-error to
the user, we add the information that turns the error into a must-
error. When correcting a may-error, we add the information that
is required by the semantics to successfully execute the command
that originally triggered the error.

The Abstraction Functor (AF). Compositional program rea-
soning mandates that we are able to re-use the results of analysing
a given procedure when analysing a procedure that calls it. In
JaVerT 2.0, we use separation-logic specifications as procedure
summaries. To this end, we design a new functor, the Abstraction
Functor, which receives a state signature as input and generates a
new state signature with a built-in mechanism for executing pro-
cedure calls abstractly using separation logic specifications. The
main role of the Abstraction Functor is to establish the connection
between the JSIL assertion language and JSIL states. The key inno-
vation is that instead of defining the meaning of assertions in terms
of concrete states using a standard satisfiability relation [10], the
meaning of assertions is defined with respect to an arbitrary state
signature, connecting our assertion language to concrete, instru-
mented, and symbolic JSIL states in a single place. Additionally, the
Abstraction Functor allows the user to describe their data structures
using inductive predicates, and also provides mechanisms for their
automatic folding and unfolding during the analysis.

By plugging the symbolic state into the Abstraction Functor and
the resulting state into the Semantics Functor, we are able to use

our infrastructure for implementing a verification tool for JSIL. In
a nutshell, we verify that a JSIL procedure satisfies its specification
by: (1) converting the precondition of the procedure to a symbolic
state; (2) symbolically executing the procedure on that symbolic
state; and (3) checking that all the obtained final symbolic states
entail the postcondition of the procedure. The abstraction functor
is essential for steps (1) and (3).

The Bi-Abduction Functor (BF). To support automatic test-
ing, we extend the JSIL symbolic semantics with a bi-abductive
mechanism [2] for automatically inferring the missing resource
of may-errors. Instead of creating the bi-abductive analysis from
scratch, we design the Bi-Abduction Functor. It receives a state
signature and generates a new state signature with a built-in mech-
anism for on-the-fly correction of may-errors during execution.

By plugging the symbolic state into the Bi-Abduction Functor
and the resulting state into the Semantics Functor, we obtain a
modular implementation of a bi-abductive analysis for JSIL with
clear meta-theoretical results. By combining the Abstraction and
the Bi-Abduction Functors, we enable the resulting bi-abductive
analysis to make use of previously inferred specifications when
analysing new procedures.

Use Cases
In Table 1, we summarise the different ways in which one can com-
bine the proposed functors and state implementations to obtain
different types of analysis for dynamic languages. For static lan-
guages, the table would have only the concrete and the symbolic
state implementations, and the analyses at the instrumented level
would transfer to the concrete level. We walk through the columns
of the table, each corresponding to a different combination of func-
tors that can be applied to a state implementation, briefly describing
the obtained analysis for each of the cases.

Semantics Functor. If we instantiate the Semantics Func-
tor with the concrete/instrumented/symbolic state imple-
mentation, we obtain the concrete/instrumented/symbolic

interpreter. The concrete JSIL interpreter is useful for establishing
the correctness of both the Semantic Functor and our compiler
from JavaScript to JSIL, JS-2-JSIL. The symbolic JSIL interpreter is
used to enable a whole-program symbolic testing tool in the style of
Cosette [4], where users can write symbolic tests using first-order
assertions and obtain correctness guarantees up to a bound. We
have no direct application for the instrumented interpreter.



PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany P. Gardner

Semantics + Abstraction Functor. If we instantiate the
Abstraction Functor with the concrete/instrumented/sym-
bolic state implementation, and use that state to instanti-

ate the Semantics Functor, we obtain a concrete/instrumented/sym-
bolic JSIL interpreter with support for executable specifications.
More concretely, the obtained interpreters include a mechanism
for using separation logic specifications to abstractly execute pro-
cedure calls. Furthermore, the abstract symbolic interpreter can be
used to enable a verification tool in the style of JaVerT [5], where
users can write inductive predicates and separation logic specifica-
tions to describe the behaviour of their programs and obtain full
functional correctness guarantees.

Semantics + Bi-abduction Functor. If we instantiate
the Bi-abduction Functor with the instrumented/symbolic
state implementation, and use that state to instantiate the

Semantics Functor, we obtain an instrumented/symbolic JSIL inter-
preter with support for bi-abductive inference of missing resource.
More concretely, the obtained interpreters include a mechanism
for automatically correcting may-errors during execution, allowing
it to proceed as if no error had occurred. Note that at the con-
crete level there are no may-errors; therefore, the application of
the Bi-abduction Functor to the concrete state implementation is
pointless. Furthermore, the bi-abductive symbolic interpreter can
be used for automatic symbolic testing, where users can test their
code for the absence of native errors without having to write the
tests themselves.

Semantics + Abstraction + Bi-abduction Functor. If
we instantiate the Abstraction Functor with the instru-
mented/symbolic state implementation, then use that state

to instantiate the Bi-Abductive Functor, and then use that state to
instantiate the Semantic Functor, we obtain a symbolic semantics
with support for bi-abductive inference of missing resource and exe-
cutable specifications. At the symbolic level, this combination yields
automatic compositional testing in the style of Infer [1], where users
can obtain, without providing any annotations, specifications that
describe the behaviour of their functions up to a bound, and where
specifications of previously analysed functions can be re-used for
the analysis of functions that call them. The obtained specifications
serve two important purposes. First, those that describe failed ex-
ecutions reveal potentially undesired behaviours and bugs in the
analysed code. Second, those that describe successful executions
can be straightforwardly re-used to construct a systematic symbolic
test suite for the analysed program.

Evaluation
JaVerT 2.0 currently supports: whole-program symbolic testing,
verification, and automatic compositional testing. It unifies and
significantly advances our previous work on whole-program sym-
bolic testing (Cosette, [4]) and verification (JaVerT, [5]). It improves
Cosette by providing a native implementation of a symbolic execu-
tion for JSIL which is two orders of magnitude more performant
than the original Cosette implementation based on Rosette [13, 14],
a symbolic virtual machine for the development of solver-aided
languages. It improves JaVerT by providing built-in support for

automatic unfold/fold reasoning over user-defined inductive pred-
icates and meaningful error reporting. Finally, JaVerT 2.0 is the
first tool to support fully automatic compositional testing based on
bi-abduction for dynamic languages.

We evaluate the three styles of analysis that our unified frame-
work currently supports focussing on a number of simple data
structure libraries. Our results demonstrate an improvement over
the state-of-the-art in verification, scalability of whole-program
symbolic testing, and creation of useful specifications using bi-
abduction, minimising the annotation burden of the developer. Fur-
thermore, we symbolically test the real-world Buckets.js [11] data
structure library, which has over 65K downloads on npm [9]. We
reproduce previously known bugs [4], but also discover a new one.
The times that we obtain are competitive, which indicates that our
analysis can scale to much larger codebases.

REFERENCES
[1] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter

Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In
NASA Formal Methods, Klaus Havelund, Gerard Holzmann, and Rajeev Joshi
(Eds.). Springer International Publishing, 3–11.

[2] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011.
Compositional Shape Analysis by Means of Bi-Abduction. J. ACM 58, 6 (Dec.
2011), 26:1–26:66.

[3] ECMA TC39. 2017. Test262 test suite. https://github.com/tc39/test262.
[4] José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and

Philippa Gardner. 2018. Symbolic Execution for JavaScript. In Proceedings of the
45th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(PPDP’18) (accepted for publication).

[5] José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienė, Thomas Wood, and
Philippa Gardner. 2018. JaVerT: JavaScript Verification Toolchain. PACMPL 2,
POPL (2018), 50:1–50:33. https://doi.org/10.1145/3158138

[6] Philippa Gardner, Sergio Maffeis, and Gareth Smith. 2012. Towards a program
logic for JavaScript. In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’13). ACM Press, 31–44.

[7] Philippa Gardner, Gareth Smith, Mark J. Wheelhouse, and Uri Zarfaty. 2008.
Local Hoare reasoning about DOM. In Proceedings of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2008. 261–270.

[8] Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. SymJS: automatic
symbolic testing of JavaScript web applications. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014. 449–459.

[9] npm, Inc. 2018. npm, a package manager for javascript. https://www.npmjs.com.
[10] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data

Structures. In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science (LICS ’02). IEEE Computer Society, Washington, DC, USA, 55–74.

[11] Mauricio Santos. 2016. Buckets-JS: A JavaScript Data Structure Library.
https://github.com/mauriciosantos/Buckets-JS.

[12] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A Symbolic Execution Framework for JavaScript. In 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oak-
land, California, USA. 513–528.

[13] Emina Torlak and Rastislav Bodík. 2013. Growing solver-aided languages with
rosette. In ACM Symposium on New Ideas in Programming and Reflections on
Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31,
2013. 135–152.

[14] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine
for solver-aided host languages. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014. 54.

[15] Erik Wittern, Annie T. T. Ying, Yunhui Zheng, Julian Dolby, and Jim Alain Laredo.
2017. Statically checking web API requests in JavaScript. In Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017. 244–254.

https://doi.org/10.1145/3158138

	Abstract
	Acknowledgments
	References

