
in FOSSACS 2004 – www.wischik.com/lu/research/eft.html

Strong Bisimulation
for the Explicit Fusion Calculus

Lucian Wischik1 and Philippa Gardner2

1 University of Bologna, Italy. lu@wischik.com
2 Imperial College, London. pg@doc.ic.ac.uk

Abstract. The pi calculus holds the promise of compile-time checks for
whether a given program will have the correct interactive behaviour. The
theory behind such checks is called bisimulation. In the synchronous pi
calculus, it is well-known that the various natural definitions of (strong)
bisimulation yield different relations. In contrast, for the asynchronous pi
calculus, they collapse to a single relation. We show that the definitions
transfer naturally from the pi calculus to the explicit fusion calculus
(a symmetric variant of the synchronous pi calculus), where they also
collapse and yield a simpler theory.

The important property of an explicit fusion of names is that, in parallel
with a term, it allow the fused names to be substituted for each other.
This means that parallel contexts become as discriminating as arbitrary
contexts, and that open bisimilarity is more natural for the explicit fusion
calculus than it was for the pi calculus.

1 Introduction

The past few years have seen much interest in the pi calculus, as a foundation
for a new generation of programming languages for distributed and interactive
computation: for example, JoCAML [10,8] and Polyphonic C# [3] are inspired
by the join primitives which in turn arose from the pi calculus; and BPML [6]
and Microsoft Biztalk [9,25] are business process languages partially inspired by
the pi calculus. At the syntactic level, the pi calculus consists of simple primitives
for rendezvous between concurrent processes – simpler than threads, mutexes,
events and pipes, for instance, and more suited to message-based interactions
like HTTP. Semantically, the pi calculus holds the promise of behavioural types –
ie. compile-time verification that a piece of code obeys its intended protocol [7].

The standard paradigm for behavioural comparison in the pi calculus is bisim-
ulation: this is a game where one party tries to make an interaction that the
other party cannot match, and vice versa. If the two parties can match each
other exactly, they are said to be bisimilar. Two factors complicate the theory
of bisimilarity for the pi calculus. First, there are several natural definitions of
bisimilarity. Second, one of the implementable form of bisimilarity (symbolic or
efficient, based on open bisimilarity [24]) loses elegance through its need for
distinctions, which indicate when particular names can never become equal.

1

www.wischik.com/lu/research/eft.html

Since 1997 there has been interest in symmetric generalisations of the pi cal-
culus based on fusions [12,22,17]. These feature a symmetric interaction between
sender and receiver, where the sent name becomes ‘fused’ or equal to the received
name. (In contrast, pi calculus is asymmetric in that the sent name replaces the
received name.) The stated motivations for fusion calculi were to simplify the
basic pi primitives [22], to model graph reduction [12,17], and to model con-
current constraint programming [26]. In particular, we introduced the explicit
fusion calculus to simplify action graphs, which lead to Milner’s current work on
bi-graphs [21]. We implemented explicit fusions in the Fusion Machine [15], and
they were also used by the ongoing Microsoft ‘Highwire’ project.

The original contribution of this paper is to show how the four standard
definitions of strong bisimulation congruence, familiar from the pi calculus, can
be applied without modification to the explicit fusion calculus. (By contrast,
other fusion calculi have used unfamiliar customised bisimulations). We show
that the definitions collapse to a single relation in our fusion calculus – even
though they yield different relations in the pi calculus. The reason for the collapse
is that distinctions are no longer needed. (The collapsed relation turns out to be
the same as those yielded by the customised bisimulations used for other fusion
calculi [17].)

Bisimulation relations describe when two processes are behaviourally equiv-
alent. The simplest definition of behavioural equivalence is: ‘two processes are
equivalent if and only if they have the same behaviour in all contexts.’ But
the infinite quantification over contexts makes this definition impractical. In-
stead, one looks for a relation that has a co-inductive definition, and hopes that
it coincides with the contextual definition. There are actually four key ways
to define behavioural equivalence for process calculi: depending on whether
the relation is closed under initial contexts (‘shallow’ congruence) or under
subsequently-changing contexts as well (reduction-closed congruence); and or-
thogonally whether we just observe the channels over which messages are sent
(barbed) or also record the message and the resulting state (ground).

In the pi calculus, there is also a co-inductive definition of ground congruence,
called open bisimulation [24]. It is a comparatively complicated definition, which
uses distinctions to keep track of those names that must be kept apart (distinct
from each other) in the bisimulation analysis. For example, in the transition

(x)(u x.P)
(x)u x−→ P (1)

the fresh name x can never be substituted by another name; the distinctions
keep track of this fact. The relationship between the bisimulations for the pi
calculus are summarised below; interestingly, in the asynchronous variant of the
pi calculus, the congruences collapse [2]:

shallow-ground = reduction-closed ground = open
∩

reduction-closed-barbed
∩

shallow-barbed

2

We study analogous strong bisimulation relations for the explicit fusion cal-
culus [17]. Like all fusion calculi, the explicit fusion calculus has symmetric non-
binding input and output actions. What sets it apart is its simple local reaction
between input and output actions:

u x.P | u y.Q → x y | P | Q. (2)

Here the explicit fusion x y allows x and y to be used interchangeably through-
out the rest of the term. This ‘interchange’ power of fusions is what simplifies
open bisimulation. (Also, the locality of this reaction allows us to use the same
bisimulation definitions as the pi calculus; other fusion calculi use a non-local
reaction and so need customised versions of bisimulation).

Recall that for Transition 1 in the pi calculus, the fresh x could never be
substituted by another name, and so had to be kept distinct. But in the ex-
plicit fusion calculus the x can be substituted – e.g. (x)(u x.P) | u y yields the
substitution {y/x}. Because distinct names cannot be generated, distinctions are
not needed. Without distinctions, open bisimulation degenerates to just closure
under substitution. And all reduction-closed congruences are by nature closed
under substitution, and therefore coincide with open bisimulation. (Recent work
combines fusions with the generation of distinct names [4]).

Here we do not study weak bisimulation congruences. Many have been stud-
ied by Fu [13,14] for the chi calculus. An interesting open problem is to explore
such congruences for the explicit fusion calculus, particularly since equators [18]
in a weak setting are similar to explicit fusions [19,16].

Structure. The structure of the paper is as follows. Section 2 presents the ex-
plicit fusion calculus and compares it to other fusion calculi. Section 3 gives the
definitions of barbs and labelled transitions for the calculus. Sections 4 and 5
define strong bisimulation and provide the results: Section 4 concentrates on the
reduction-closed congruences, and Section 5 relates these to shallow congruence.
The results in Section 4 were first reported in Wischik’s doctoral dissertation [27].

This paper has many definitions – an inherent necessity in the current project,
of showing how the standard definitions coincide for the explicit fusion calculus.
We have been parsimonious, using just two intermediate definitions in our proofs.

↓ Barbs (Def. 1), standard from the pi calculus
α−→ Labelled transitions (Def. 2), standard from pi
α−→e ‘Efficient’ transitions (Def. 3), used as intermediate in proofs
α−→s Structural transitions (Def. 4), must be customised for each calculus
∼b Reduction-closed barbed congruence (Def. 6), standard from pi
∼g Reduction-closed ground congruence (Def. 7), standard from pi
io∼g ‘Inside-outside’ bisimulation (Def. 8), used as intermediate in proofs
e∼g Efficient bisimulation (Def. 9), must be customised for each calculus
∼gs Shallow ground congruence (Def. 11), standard from pi

3

∼bs Shallow barbed congruence (Def. 11), standard from pi

2 Explicit Fusion Calculus

The explicit fusion calculus is defined in Table 1. It is like the pi calculus but
with two differences: first, it includes explicit fusions x y; second, it uses non-
binding input actions u x.P instead of binding input u(x).P . In the explicit fusion
calculus, reaction between non-binding output and non-binding input gives rise
to explicit fusions:

u x.P | u y.Q | R → x y | P | Q | R.

The effect of the fusion x y is global in scope: the x and the y can be used
interchangeably throughout the entire process, including R. To limit the scope of
the fusion, we use restriction. For example, restricting x in the above expression
we obtain

(x)(x y | P | Q | R) ≡ P{y/x} | Q{y/x} | R{y/x}.

Explicit fusions allow for the substitutive effects of reaction to be delayed, rather
than requiring the substitution be performed globally and immediately. This is
reminiscent of the use of explicit substitutions in the lambda calculus [1], used
in implementations to delay the substitutive effects of beta reduction.

We can emulate the pi-calculus reaction u x.P | u(y).Q → P | Q{x/y}, by
binding y in the input action:

u x.P | (y)(u y.Q) ≡ (y)(u x.P | u y.Q) (assuming y 6∈ fnP)
→ (y)(x y | P | Q)
≡ (y)(x y | P | Q{x/y}) (substitutive effect of fusion)
≡ (y)(x y) | P | Q{x/y} (scope intrusion)
≡ P | Q{x/y}.

Alpha-renaming can also be deduced from the laws of structural congruence:
(x)P ≡ (x)((y)(x y)|P) ≡ (xy)(x y|P{y/x}) ≡ (y)((x)(x y)|P{y/x}) ≡ (y)P{y/x}.

We remark upon what distinguishes explicit fusions from other fusion calculi.
They lack explicit fusions, and cannot therefore allow x y to be left behind after
reaction. Instead, they allow reaction only in the presence of a restricted x or y –
so the interchange power of the fusion can be immediately and fully discharged:

(x)(u x.P | u y.Q | R) → P{y/x} | Q{y/x} | R{y/x}.

The reaction is non-local, unlike reaction in the pi calculus and explicit fusion
calculus. But despite the difference in operational semantics, they end up yield-
ing the same bisimulation congruence as the explicit fusion calculus [17]. This
congruence has already been axiomatised for finite processes [22]. We remark

4

Table 1. The explicit fusion calculus

The terms P and contexts E in the explicit fusion calculus are

P ::= 0
∣∣ x y

∣∣ u x̃.P
∣∣ u x̃.P

∣∣ (x)P
∣∣ P |P

∣∣ !P

E ::=
∣∣ u x̃.E

∣∣ u x̃.E
∣∣ (x)E

∣∣ P |E
∣∣ E|P

∣∣ !E

The structural congruence on terms ≡ is the smallest equivalence satisfying the
following axioms, and closed with respect to contexts:

P |(Q|R) ≡ (P |Q)|R P |Q ≡ Q|P P |0 ≡ 0 !P ≡ P |!P
(x)(P |Q) ≡ (x)P | Q if x 6∈ fn(Q) (x)(y)P ≡ (y)(x)P

x y | y z ≡ x z | y z x y ≡ y x x x ≡ 0 (x)(x y) ≡ 0

x y | P ≡ x y | P{y/x}

The reaction relation is the smallest relation → satisfying the following axiom and
closed with respect to ≡ and contexts:

u x̃.P | u ỹ.Q → x̃ ỹ | P | Q

The explicit fusions in a term P generate an equivalence relation Eq(P) on names as
follows. (Given two equivalence classes F and G we write F ⊕G for their equivalence-
closed union, and F\x for when x is in a singleton class and all other names are related
as in F ; and I for the identity relation.)

Eq(x y) = {(x, y), (y, x)} ∪ I Eq(u x̃.P) = I

Eq(P |Q) = Eq(P)⊕ Eq(Q) Eq(u x̃.P) = I

Eq((x)P) = Eq(P)\x Eq(0) = I

Eq(!P) = Eq(P)

We write P ` x y as shorthand for (x, y) ∈ Eq(P). Note that P ≡ Q implies Eq(P) =
Eq(Q), and that P ` x y if and only if P ≡ x y | P .

that the full polyadic reaction rule, using many xs and ys, is more complicated.
It is also not clear how to implement the rule, since practical implementations
(eg. Pict, CML) keep no record to distinguish a locally-generated (restricted)
name from one that is pre-existing (free).

Following Milner [20], we will assume well-sorted terms: the sorting prevents
arity mismatches such as u x | u yz. Moreover, fusions only fuse names of the
same sort. We do not define the sorting system; it is sufficient to note just that
each name x has a sort S, written x:S, which prevents mismatches.

5

3 Barbs and Labelled Transitions

The two standard ways to characterise the behaviour of a program are through
observations (barbs) and labelled transitions. We define them here. We in fact
give three definitions of the labelled transitions: the first is quotiented by ≡ and
is the same as for the pi calculus; the second introduces a new fusion labelled
transition ?u v−→; and the third uses the fusion transitions to provide a structurally
inductive characterisation, which is easier to use in proofs. All three are all
equivalent (Theorem 5).

Formally, assume an infinite set N of names. Let µ range over {u, u : u ∈ N},
α over {τ, u, u : u ∈ N}, and λ over {τ, u, u, ?u v : u, v ∈ N}. Write x 6∈ µ (or α
or λ) when x does not occur in the label.

Definition 1 (Barbs) The observation relation between terms and barbs µ, de-
noted P ↓ µ, is the smallest relation satisfying

µx̃.P ↓ µ P | Q ↓ µ if P ↓ µ

(x)P ↓ µ if P ↓ µ and x 6∈ µ

Q ↓ µ if Q ≡ P ↓ µ

For labelled transitions, we use a symmetric generalisation of Milner’s con-
cretions [20]. As an example, we write P

µ−→ I : P ′ to indicate that the term P
can perform an input or output action µ, sending or receiving the data I, and
end up in state P ′. Concretions are defined in Table 2.

Definition 2 (Labelled transitions) The labelled transition relation P
α−→

I : P ′ is the smallest relation satisfying

µx̃.P
µ−→ x̃ : P P | Q α−→ C | Q if P

α−→ C

u x̃.P | u ỹ.Q
τ−→ x̃ ỹ | P | Q (x)P α−→ (x)C if P

α−→ C and x 6∈ α

Q
α−→ D if Q ≡ P

α−→ C ≡ D

This definition of labelled transitions is the same as that of the pi calculus. The
pi calculus also has an inductively defined alternative, but it does not carry over
to the explicit fusion calculus. Instead, as a first step towards our own customised
inductive characterisation, we extend our labelled transition system with fusion
transitions. The fusion transitions are generated from the rule

u x.P | v y.Q
?u v−→e x y | P | Q

where ?u v−→ indicates that the left-hand term contains an input and an output
on the channels u and v. This means that the term has the potential for a tau
transition in the context u v | .

6

Table 2. Concretions

Concretions have the form (x̃)(ỹ : P) where the names in x̃ are distinct and contained
in ỹ, and no x ∈ x̃ is fused by Eq(P). Let C, D range over concretions. For a concretion
(x̃)(ỹ : P), we call the context I = (x̃)(ỹ :) the interface of the concretion, and we
write the concretion as I : P . The names x̃ are bound in this concretion.

Structural congruence on concretions is defined by: (x̃1)(ỹ1 : P1) ≡ (x̃2)(ỹ2 : P2) if
and only if there exist fresh names x̃ of the same size as x̃1 and x̃2, and permutations
π1, and π2 and substitutions σ1 = {x̃/π1x̃}, σ2 = {x̃/π2x̃} such that P1σ1 ≡ P2σ2 and
ỹ1σ1 is identical to ỹ2σ2 up to Eq(P1).

The operators of restriction, composition and application on concretions are as fol-
lows. Assume by alpha-renaming that x̃1 and x̃2 do not intersect, and x̃1 binds no
name free in P2 and x̃2 binds no names free in P1.

(z) (x̃)(ỹ : P)
def
=

(x̃)(ỹ : P) if z ∈ {x̃}
(zx̃)(ỹ : P) if z ∈ {ỹ}\{x̃}
(x̃)(ỹ : (z)P) otherwise

(x̃1)(ỹ1:P1) | (x̃2)(ỹ2:P2)
def
= (x̃1x̃2)(ỹ1ỹ2 : P1 | P2)

(x̃1)(ỹ1:P1) @ (x̃2)(ỹ2:P2)
def
= (x̃1x̃2)(ỹ1 ỹ2 | P1 | P2)

We sometimes write just P to stand for the empty concretion ()(∅ : P).

Definition 3 (Extended transitions) The extended labelled transition rela-
tion P

λ−→e I : P is the smallest relation satisfying

µx̃.P
µ−→e x̃ : P P | Q λ−→e C | Q if P

λ−→e C

u x̃.P | u ỹ.Q
τ−→e x̃ ỹ | P | Q (x)P λ−→e (x)C if P

λ−→e C and x 6∈ λ

u x̃.P | v ỹ.Q
?u v−→e x̃ ỹ | P | Q Q

λ−→e D if Q ≡ P
λ−→e C ≡ D

We remark that the fusion calculus of Victor and Parrow uses a different fu-
sion transition. Recall that the fusion calculus requires certain restrictions to be
present before allowing reaction. It uses the transition u x.P | u y.Q

!x y−→fu P | Q
to indicate that, if eventually x or y are restricted, then a tau transition will be
possible. Another alternative fusion label has appeared recently in work by Mil-

ner [21]. Milner’s fusion label P
u v|−→ P ′ denotes that u v| is a minimal context

necessary to allow reaction: that is to say, P
?u v−→ P ′ and (u, v) 6∈ Eq(P). This

is part of Milners’ programme to treat transition labels as minimal contexts. It
would be interesting to give such a labelled transition system for the explicit
fusion calculus, and compare the resulting bisimulation with the bisimulations
given here.

7

Our fusion transitions allow for an inductive characterisation of labelled tran-
sitions – that is, one where the left hand side is not quotiented by structural
congruence. We need to introduce one more feature relating to explicit fusions.
The point is that u v | u x.P undergoes a u−→ transition, but it is also struc-
turally congruent to u v | v x.P which undergoes a v−→ transition. Thus, explicit
fusions in a term can change the labels of the transitions it undergoes. We write
P ` λ = λ′ when P contains sufficient explicit fusions to turn the label λ into λ′.
The definition is given below, and generalises that of Table 1 which only applies
to names.

Definition 4 (Structurally-derived transitions) The labelled transition
system P

λ−→s I : P ′ is the smallest relation satisfying

u x̃.P
u−→s x̃ : P u x̃.P

u−→s x̃ : P

P
u−→s C Q

v−→s D

P | Q ?u v−→s C@D

P
u−→s C Q

v−→s D

P | Q ?u v−→s C@D

P
?u u−→s C

P
τ−→s C

P
λ−→s C

P | Q λ−→s C | Q

Q
λ−→s D

P | Q λ−→s P | D

P
λ−→s C P ` λ=λ′

P
λ′
−→s C

∗

P | !P λ−→s C

!P λ−→s C

P
λ−→s C x 6∈ λ

(x)P λ−→s (x)C

P
λ−→s C ≡ D

P
λ−→s D

The rule marked ∗ uses the judgement P ` λ1 = λ2 defined by

P ` ?u v =?v u

P ` x = y if (x, y) ∈ Eq(P)
P ` x = y if (x, y) ∈ Eq(P)
P ` ?x y =?u v if (x, u) ∈ Eq(P) and (y, v) ∈ Eq(P).

We remark that the normal τ−→ transition is deduced from identity fusion tran-
sitions ?x x−→. The following extended example illustrates both the ability of an
explicit fusion to rename a label (marked * in the rules), and also the deduction
of a τ−→ transition:

u v | u x.P | v y.Q
?u v−→s u v | x y | P | Q

u v | u x.P | v y.Q
?u u−→s u v | x y | P | Q

u v | u x.P | v y.Q
τ−→s u v | x y | P | Q

(∗)

Finally, we state the equivalence of these various kinds of observations and
labels. Recall that µ ranges over {u, u}, α ranges over {u, u, τ}, and λ ranges
over {u, u, τ, ?u v}.

8

Theorem 5 (Labelled transition systems)

1. P ↓ µ if and only if there exists C such that P
µ−→ C.

2. P
α−→ C if and only if P

α−→e C.
3. P

λ−→e C if and only if P
λ−→s C.

Proof. Parts 1 and 2 follow from the definitions. Part 3 was given in [17]. �

4 Bisimulation Congruence

In this section we define the strong reduction-closed congruences for the explicit
fusion calculus, and show that they are equivalent. The congruences we study
are: (1) standard barbed and ground bisimulation congruences using labelled
transitions; (2) the inside-outside bisimulation; and (3) a co-inductive efficient
characterisation. The inside-outside bisimulation is the key to showing that all
the congruences are equivalent. (The co-inductive efficient characterisation was
the only one studied in [17].)

First we give the definitions of barbed and ground congruence. Barbed con-
gruence is defined using the reaction relation and the observations (barbs);
ground congruence depends on the labelled transitions.

Definition 6 (Barbed congruence) A relation S on terms in the calculus is
a (strong) barbed bisimulation iff whenever P S Q then

1. P ↓ µ if and only if Q ↓ µ
2. if P → P ′ then Q → Q′ such that P ′ S Q′

3. if Q → Q′ then P → P ′ such that P ′ S Q′.

We write ·∼b for the largest barbed bisimulation. A barbed bisimulation S is
additionally a reduction-closed barbed congruence iff whenever P S Q then, for
all contexts E, E[P] S E[Q]. We write ∼b for the largest reduction-closed barbed
congruence.

Definition 7 (Ground congruence) A relation S is a (strong) ground bisim-
ulation iff whenever P S Q then, assuming I binds no names free in P or Q,

1. P
α−→ I : P ′ implies Q

α−→ I : Q′ and P ′ S Q′ and
2. Q

α−→ I : Q′ implies P
α−→ I : P ′ and P ′ S Q′.

We write ·∼g for the largest ground bisimulation. A ground bisimulation S is
additionally a reduction-closed ground congruence iff whenever P S Q then
E[P] S E[Q] for all contexts E. We write ∼g for the largest reduction-closed
ground congruence.

We now define inside-outside bisimulation, which is the natural form of open
bisimulation for the explicit fusion calculus. To motivate it, we first consider
some example terms which are ground bisimilar but not ground congruent.

9

(1) The terms u v and 0 are ground bisimilar, since neither undergoes any
transitions. But consider them inside the context | u | v . The first allows a
reaction; the second does not. Two congruent terms must necessarily contain the
same explicit fusions inside.

(2) We use the abbreviation τ.R = (u)(u | u.R) with u fresh. Consider the
programs

P
def= !y.x.τ.z | !x.y.τ.z

Q
def= !(w)(y.w | x.w.z)

The two are ground bisimilar. However, in a context x y | , then Q has an action
z−→ after two steps, but P has one only after three. Two congruent terms must

necessarily behave in the same way under explicit fusion contexts. Closure under
fusion contexts is like closing under substitutions; the example programs P and
Q were first given by Sangiorgi and Boreale [5] to show that ground bisimulation
is not closed under substitution.

We will see that the two conditions given above are necessary and sufficient
to prove congruence. The two conditions are formalised in the following bisimu-
lation:

Definition 8 (Inside-outside bisimulation) A ground bisimulation S is an
inside-outside bisimulation iff whenever P S Q then

1. Eq(P) = Eq(Q),
2. for all fusions x y: x y|P S x y|Q.

We write io∼g for the largest inside-outside bisimulation.

Our final bisimulation has a simple co-inductive definition that avoids all
quantifications over any sort of context; it is standard to call such a bisimulation
efficient. Recall that the fusion transition

u x.P | v y.Q
?u v−→ x y | P | Q

indicates that, in the presence of an explicit fusion u v, the terms can react.
This means that quantification over a term’s fusion labels is as discriminating
as quantifying over explicit fusion contexts.

Definition 9 (Efficient bisimulation) An efficient bisimulation is a symmet-
ric relation S such that if P S Q then, assuming I binds no names free in Q,

1. Eq(P) = Eq(Q),
2. P

α−→e I : P ′ implies Q
α−→e I : Q′ and P ′ S Q′,

3. P
?u v−→e P ′ implies u v|Q τ−→e Q′ and u v|P ′ S Q′.

We write e∼g for the largest efficient bisimulation.

10

We remark on why the third condition in the definition of e∼g is as it is. The

intuition is that e∼g should coincide with io∼g. Now io∼g says that, if P can react in a

context u v, then so can Q. The labelled transition P
?u v−→e C also declares that P

can react in the context, but it actually declares more information: not just that
it can react in the context, but also that it actually contains input and output
commands on u and v. Therefore, in the definition of efficient bisimulation, the
consequent must remove this extra information about it containing u and v.

Theorem 10 ∼b = ∼g = io∼g = e∼g.

Proof. We first show that ∼b=∼g. It is apparent from the definitions that
∼g⊆∼b. The opposite direction, that ∼b⊆∼g, requires more work. The issue
is that, for a transition P

µ−→ I:P ′, ground bisimulation ∼g records the data
and resulting state I:P ′, while barbed bisimulation ∼b discards it. Our task is
to create a context R which can reconstruct it. In particular, given a transition
P

µ−→ I:P ′, we deduce that P |R undergoes a tau transition, and hence (by
barbed bisimilarity) so does Q|R, and we need an R sophisticated enough to
deduce that Q

µ−→ I:Q′.
We use a family of contexts R = u ỹ.φ where all the names ỹ are fresh, and φ

is a fusion of two fresh names. This fusion φ acts as our litmus paper: supposing
that P

u−→ I:P ′, then P will react with R to liberate φ. By the assumption of
barbed bisimilarity, Q|R makes a matching transition which also liberates φ, and
so the matching transition must have involved R, and there must be a transition
Q

u−→ J :Q′. The remainder of the work is then to show that the interfaces I and
J match. This amounts to picking apart the fusions involving ỹ, which is possible
because each y ∈ ỹ is fresh and distinct. More detail is given in Proposition 38
of [27].

For the proof that ∼g⊆
io∼g, consider the three requirements in the definition

of P
io∼g Q: first that P

·∼g Q, which is also a requirement of ∼g; second that
x y|P io∼g x y|Q, which is a special case of the more general context closure in
∼g; third that Eq(P) = Eq(Q). For the proof of this third point we start by
supposing the contrary: that there exist two congruent terms P ∼g Q but with
a pair of names u, v such that (u, v) ∈ Eq(P) but (u, v) 6∈ Eq(Q). Consider P in
the example context u x | v y | x , where x and y are fresh names. This undergoes
the transitions

P | u x | v y | x τ−→ P | x y | x y−→ P | x y.

But no single transition in Q can result in x y; therefore no
y−→ can follow a

single tau transition; therefore P and Q are not congruent. This contradiction
proves that if P ∼g Q then Eq(P) = Eq(Q).

Continuing in the forward direction, io∼g⊆
e∼g is apparent from the definitions.

Finally, we show that e∼g⊆∼g. It is clear from the definitions that e∼g is a
ground bisimulation; it remains to prove that it is a reduction-closed congruence.

11

The proof for this was given in [17]. We sketch the proof briefly here: construct
S as the smallest relation that contains e∼g and that is closed under

1. if P ≡ P1 S Q1 ≡ Q then P S Q;
2. if P S Q then (x)P S (x)Q, µx̃.P S µx̃.Q and !P S !Q;
3. if P1 S Q1 and P2 S Q2 then P1|P2 S Q1|Q2.

Clearly S is a reduction-closed congruence. It remains to prove that it is an
efficient bisimulation, which is done by a lengthy induction on its construction.
We only remark on why the third closure condition is as strong as it is. Imagine
the weaker condition that if P S Q then P |R S Q|R and R|P S R|Q. Now
consider the replication case, that P

α−→ I : P ′ giving !P α−→ P ′|!P . We can
deduce that !Q α−→ Q′|!Q and P ′ S Q′. But now we need closure conditions on
S that are strong enough to deduce that P ′|!P S Q′|!Q. The weaker conditions
are not adequate. �

5 Shallow Congruence

In the previous section we considered ‘reduction-closed congruences’ – i.e. the
largest congruences that are also bisimulations. These model the situation where
environments change during execution (the norm in distributed computation). In
this section we consider ‘shallow congruences’ – the largest congruences contained
in bisimulation. These model the situation where a sub-program’s context is fixed
at compile-time. They are generally called just ‘congruences’ in the literature.

Intuitively, one might expect the reduction-closed and shallow congruences
to generate the same relations, since one could presumably write an initial envi-
ronment sophisticated enough to model a subsequently-changing environment.
This result holds for ground congruences in the synchronous pi calculus. How-
ever, it is not true for the barbed congruences in the synchronous pi calculus.
To prove the analogous result for the weak barbed congruences associated with
the asynchronous pi calculus, Fournet and Gonthier [11] actually had to use a
Universal Pi-calculus Machine for their initial environment, and they used it to
simulate the execution of a Goedelised version of a program.

In the explicit fusion calculus, we prove that the shallow congruences coincide
with the reduction-closed congruences. Our proof technique, like that of Fournet
and Gonthier, involves creating an initial sophisticated environment. But because
we are using ground rather than barbed bisimulation, and thanks to the inside-
outside bisimulation for explicit fusions, our environment is much simpler.

Definition 11 (Shallow Congruence)

1. Two terms P and Q are shallow ground congruent iff for all contexts E,
E[P] ·∼g E[Q]. We write ∼gs for the largest shallow ground congruence.

2. Two terms are shallow barbed congruent iff for all contexts E, E[P] ·∼b

E[Q]. We write ∼bs for the largest shallow barbed congruence.

Theorem 12 ∼gs ⊆ io∼g.

12

Proof. We will construct a relation S such that clearly ∼gs⊆S, and prove that

S ⊆ io∼g. The intuition is as follows. If two terms are related by ∼gs, then they
are congruent when placed in any initial context. We will design an particular
context RN parameterised by a set of sorted names N , and define

S= {(P,Q) : RN |P
·∼g RN |Q for all N ⊇ fnP |Q }.

To prove that S is a io∼g, we need RN to be sophisticated enough to demonstrate

the four properties of io∼g (Definition 8): whenever P S Q then

1. Eq(P) = Eq(Q);
2. x y|P S x y|Q for any fusion x y, for x, y ∈ fnP |Q;
3. P

τ−→ P ′ implies Q
τ−→ Q′ with P ′ S Q′;

4. P
µ−→ I:P ′ implies Q

µ−→ I:Q′ with P ′ S Q′.

(Actually, Definition 8 combines the final two properties into a single line. We
have separated them here because they involve very different proof techniques.)

We now define RN . It uses a family of fresh channels rS as part of a ‘database’
of names N : if x:S ∈ N then RN will contain ! rSx. (The subscript S indicates
the sort of x; a sortless proof is also possible). It also uses fresh channels to signal
the tests of each of the four properties: tS1 for a test of property 1, tS2 for a
test of property 2, and tS4a and tS4b to signal an input or output commitment
for property 4. In the following, for the last three cases we write S ∈ N to
range over {S : (n:S ∈ N)}; and in the final case we write r xi to stand for the
correctly-sorted r (ie. indexed by the sort of xi).

RN =
∏

n:S∈N

! rSn database

|
∏

S∈N

!rS(x).rS(y).(ãb̃)tS1xyãb̃.(x ã.a1 | y b̃) property 1

|
∏

S∈N

!rS(x).rS(y).(cd)tS2xycd.(c x.d | c y) property 2

|
∏

S∈N

(
!rS(u).u(x̃).tS4aux̃.(!r x1 | . . . | !r xn)

| !rS(u).u(x̃).tS4bux̃.(!r x1 | . . . | !r xn)

)
property 4

It remains to demonstrate how this initial context RN can establish each of
the properties. We start with property 4, because it will explain the database.
Assume that P

u−→ I:P ′ with I = (z̃)(ỹ :). Then these transitions are possible:

RN | P τ−→ τ−→ (z̃x̃)(ỹ x̃ | RN | P ′ | t ux̃.(!r x1| . . . |!r xn))
≡ (z̃)(RN | P ′ | t uỹ.(!r y1| . . . |!r yn))

tS4a−→ (z̃)(uỹ : RNỹ | P ′).

Hence also RN |Q makes the transition RN |Q
τ−→ τ−→tS4a−→ (z̃)(uỹ : RNỹ|Q′) with

RNỹ|P ′ ·∼g RNỹ|Q′. This transition must have come from Q
u−→ (x̃)(ỹ : Q′), so

13

proving the property. But there is an extra issue with property 4, which explains
the database N and why definition of S was for N equal or greater than the free
names of P and Q. If the transition P

u−→ I:P ′ emits names ỹ in the interface
I, even as bound names, then subsequent tests of the properties must test over
ỹ as well as N . This is satisfied because, after the name ỹ has been emitted, we
obtain the larger testing context RNỹ.

For property 1, for any x, y ∈ N we have RN |P
τ−→ τ−→ t S1−→ (ãb̃)(xyãb̃ :

x ã.a1 | y b̃ | RN | P). If P ` x y then this makes the further transitions τ−→ b 1−→
for b1 the first element of b̃. By bisimilarity, RN |Q makes the same transitions –
which can only have happened because Q ` x y as well. (In the case where x and
y have empty sort, giving ã and b̃ with zero arity, then a1 does not exist and this
test would not work. The solution is to first use a transformation ·̂ that converts
all zero-arity channels into single-arity channels with a dummy argument. Then
use S= {(P,Q) : RN |P̂

·∼g RN |Q̂}. We will ignore this additional complexity,
since it does not substantially affect the proof.)

For property 2, for any x, y ∈ N then RN |P
τ−→ τ−→ t S2−→ τ−→ d−→ x y | RN | P .

By bisimilarity RN |Q makes the same transitions. Therefore (x y|P, x y|Q) ∈S.
For property 3, suppose P

τ−→ P ′. Then RN |P
τ−→ RN |P ′ and (through

bisimilarity) RN |Q
τ−→ T ′ with RN |P ′ ·∼g T ′. Where did this tau transition

come from? Not from RN interacting with Q, since they have no prefixes in
common. Not from RN on its own, since this could only have been an interaction
between !r n and one of the four tests, in which case T ′ would admit either

τ−→
tS1−→ or τ−→

tS2−→ or u−→tS4a−→ or u−→tS4b−→. But none of these is matched by R|P ′,
so the reaction must have come from Q alone, i.e. RN |Q

τ−→ RN |Q′ and hence
RN |P ′ ·∼g RN |Q′. �

Theorem 13 (Barbed congruence) ∼g = ∼gs = ∼bs.

Proof. The first part is a trivial corollary of Theorem 12. The second uses ‘strati-
fication of bisimilarities’ as in the pi calculus ([23], Theorem 2.2.9). Stratification
uses the operators of match and internal choice which are absent in the explicit
fusion calculus – but they can easily be encoded [23]. �

6 Conclusions and Future Work

One of Parrow’s instincts behind the fusion calculus [22] was that it would yield
a straightforward bisimulation theory: that the standard congruences would co-
incide, and that open bisimulation would be simpler. Parrow and Victor defined
a congruence for the fusion calculus, hyperequivalence, but its definition is non-
standard and perhaps a little complicated. This paper provides an in-depth ac-
count of strong bisimulation for the explicit fusion calculus. We have taken the
standard congruence definitions from the pi calculus, shown that they can be
applied directly to the explicit fusion calculus, and proved that they describe the

14

same relation. Our proof techniques rely on the inside-outside bisimulation (Def-
inition 8), which is analogous to (and simpler than) open bisimulation for the
pi calculus. These results surprised us. The connections between fusion bisimu-
lation and pi bisimulation have not previously been apparent, since each fusion
calculus has used its own customised definitions of transitions and bisimulation.
By contrast, we use standard definitions.

Acknowledgements. Wischik was partly supported by EPSRC. The authors
thank Parrow, Victor and Sangiorgi for illuminating discussions.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375–416, 1991.
http://research.microsoft.com/Users/luca/Papers/ExplicitSub.pdf

2. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the
asynchronous pi calculus. Theoretical Computer Science, 195(2):291–324, 1998.
http://www.inria.fr/RRRT/RR-2913.html

3. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for
C#. In ECOOP 2002, LNCS 2374:415–440.
http://research.microsoft.com/∼nick/polyphony/PolyphonyECOOP.A4.pdf

4. M. Boreale, M. Buscemi, and U. Montanari. D-fusion: a distinctive fusion
calculus. Submitted for publication, 2003.

5. M. Boreale and D. Sangiorgi. Some congruence properties for pi-calculus
bisimilarities. Theoretical Computer Science, 198(1–2):159–176, 1998.
ftp://ftp-sop.inria.fr/mimosa/personnel/davides/congruence.ps.gz

6. Business Process Management Initiative. Business process modelling notation
(BPML). http:// www.bpmi.org/.

7. S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: Model checking
message-passing programs. In POPL’02, pages 45–57. ACM Press.
http://research.microsoft.com/behave/popl02.ps

8. S. Conchon and F. L. Fessant. Jocaml: Mobile agents for objective-caml. In
ASA’99 / MA’99, pages 22–29. IEEE, Computer Society Press.
http://pauillac.inria.fr/jocaml/

9. M. Corporation. Biztalk server. http:// www.microsoft.com/ biztalk/.
10. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the

join-calculus. In POPL’96, pages 372–385. ACM Press. http://research.
microsoft.com/∼fournet/papers/reflexive-cham-join-calculus.ps

11. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous
calculi. In ICALP’98, LNCS 1443:844–855.
http://research.microsoft.com/∼fournet/papers/hierarchy.ps

12. Y. Fu. The chi-calculus. In Proceedings of ICAPDC ’97, pages 74–81. IEEE,
Computer Society Press.

13. Y. Fu. Bisimulation lattice of chi processes. In ASIAN 1998, LNCS 1538:245–262.
http://link.springer-ny.com/link/service/series/0558/bibs/1538/

15380245.htm

14. Y. Fu. Open bisimulations on chi processes. In CONCUR 1999,
LNCS 1664:304–319. http:
//link.springer.de/link/service/series/0558/papers/1664/16640304.pdf

15

http:// research.microsoft.com/ Users/ luca/ Papers/ ExplicitSub.pdf
http:// www.inria.fr/ RRRT/ RR-2913.html
http:// research.microsoft.com/ ~nick/ polyphony/ PolyphonyECOOP.A4.pdf
ftp:// ftp-sop.inria.fr/ mimosa/ personnel/ davides/ congruence.ps.gz
http:// research.microsoft.com/ behave/ popl02.ps
http:// pauillac.inria.fr/ jocaml/
http:// research.microsoft.com/ ~fournet/ papers/ reflexive-cham-join-calculus.ps
http:// research.microsoft.com/ ~fournet/ papers/ reflexive-cham-join-calculus.ps
http:// research.microsoft.com/ ~fournet/ papers/ hierarchy.ps
http:// link.springer-ny.com/ link/ service/ series/ 0558/ bibs/ 1538/ 15380245.htm
http:// link.springer-ny.com/ link/ service/ series/ 0558/ bibs/ 1538/ 15380245.htm
http://link.springer.de/link/service/series/0558/papers/1664/16640304.pdf
http://link.springer.de/link/service/series/0558/papers/1664/16640304.pdf

15. P. Gardner, C. Laneve, and L. Wischik. The fusion machine. In CONCUR 2002,
LNCS 2421:418–433. http://www.wischik.com/lu/research/fm.html

16. P. Gardner, C. Laneve, and L. Wischik. Linear forwarders. In CONCUR 2003,
LNCS 2761:415–430. http://www.wischik.com/lu/research/linfwd.html

17. P. Gardner and L. Wischik. Explicit fusions. In MFCS 2000, LNCS 1893:373–382.
18. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical

Computer Science, 152(2):437–486, 1995.
ftp://ftp.dcs.qmw.ac.uk/lfp/kohei/OLD/fst93.ps.gz

19. M. Merro. On the expressiveness of chi, update and fusion calculi. In EXPRESS
1998, volume 16.2 of Electronic Notes in Theoretical Computer Science. Esevier.
http://www.elsevier.nl/locate/entcs/volume16.2.html

20. R. Milner. Communicating and Mobile Systems: the Pi-calculus. Cambridge
University Press, 1999.

21. R. Milner. Bigraphical reactive systems. In CONCUR 2001, LNCS 2154:16–35.
http://www.cl.cam.ac.uk/users/rm135/bigraphs.pdf

22. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In LICS’98, pages 176–185. IEEE, Computer Society Press.
http://www.docs.uu.se/∼victor/tr/fusion.shtml

23. D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

24. D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Informatica,
33:69–97, 1996.
ftp://ftp-sop.inria.fr/mimosa/personnel/davides/sub.ps.gz

25. S. Thatte. XLANG: Web services for business process design. http://
www.gotdotnet.com/ team/ xml wsspecs/ xlang-c/.

26. B. Victor and J. Parrow. Concurrent constraints in the fusion calculus. In
ICALP’98, LNCS 1443:455–469.
http://www.docs.uu.se/∼victor/tr/ccfc.shtml

27. L. Wischik. Explicit Fusions: Theory and Implementation. PhD thesis, University
of Cambridge, 2001. http://www.wischik.com/lu/research/efti.html

16

http:// www.wischik.com/ lu/ research/ fm.html
http:// www.wischik.com/ lu/ research/ linfwd.html
ftp:// ftp.dcs.qmw.ac.uk/ lfp/ kohei/ OLD/ fst93.ps.gz
http:// www.elsevier.nl/ locate/ entcs/ volume16.2.html
http:// www.cl.cam.ac.uk/ users/ rm135/ bigraphs.pdf
http:// www.docs.uu.se/ ~victor/ tr/ fusion.shtml
ftp:// ftp-sop.inria.fr/ mimosa/ personnel/ davides/ sub.ps.gz
http:// www.docs.uu.se/ ~victor/ tr/ ccfc.shtml
http:// www.wischik.com/ lu/ research/ efti.html

