
Imperial College of Science, Technology and Medicine
Department of Computing

Parametric Operational Semantics
for Consistency Models

Shale Xiong

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London and

the Diploma of Imperial College London, October 2019

Abstract

Cloud computing has become popular for its low cost. A storage sub-system is a key compo-

nent in many cloud computing infrastructures, and many systems have used so-called“NoSQL”

databases, where data is often organised in a key-value structure, for example Dynamo DB,

a distributed key-value store from Amazon Web Service (AWS). This is driven by the need

to store unstructured data, such as pictures, videos, or documents. Similar to traditional

relational databases, transactions are the de facto interfaces in cloud storages. Many dis-

tributed cloud storages often provide high availability and fault-tolerance, but adopt weak

consistency, where individual server is allowed to operate without synchronisation in certain

situation. Engineers and researchers have proposed various weak consistency models via refer-

ence implementations in their specific setting. However, there has been little work on formal,

implementation-independent definitions of consistency models. We introduce an interleaving

operational semantics, with the focus on the client-observable behaviour of atomic transactions

on distributed key-value stores. Our semantics builds on abstract states comprising centralised,

global key-value stores, representing the overall states of distributed systems and multiple, mu-

tually independent, partial client views, representing client-observable states. In each step, a

client with its view commits a transaction to the abstract key-value store, and this step must

satisfy certain conditions of the chosen consistency model, called an execution test, which is a

novel operational definition of this consistency model. We provide definitions of various well-

known consistency models such as snapshot isolation and causal consistency and show that our

definitions are equivalent to the well-known declarative definitions of consistency models. We

then explore two immediate applications of our semantics: specific implementation protocols

can be verified in our operational semantics via trace refinement; client programs can be shown

to satisfies invariant properties. These two applications show that our operational semantics

captures the interfaces between client programs and implementation protocols.

i

ii

Declaration

I herewith certify that all material in this thesis which is not my own work has been properly

acknowledged.

Shale Xiong

iii

iv

Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that:

you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

v

vi

‘Explore wide, yet garner with caution; be erudite, yet comment with consideration.’

Shi Su

“博观而约取，厚积而薄发”

苏轼

vii

viii

Acknowledgements

It is my honour to work with my supervisor, Philippa Gardner, my closest colleagues, Andrea

Cerone and Azalea Raad, and the entire research group. They kindly provided me with help

and guidance.

I also want to especially thank Oana Cocarascu. We shared an office for four years and it was

joyful four years. Without her, I would have not known how to enjoy the unfamiliar city as an

international student.

Lastly, thanks to my parents for their support. They provided me the chance to study abroad.

ix

x

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Thesis Outline . 6

2 Background 9
2.1 Consistency Models . 10
2.2 Declarative Semantics: Dependency Graphs . 14
2.3 Declarative Semantics: Abstract Executions . 17
2.4 Operational Semantics . 20

3 Overview 24
3.1 Centralised Key-value Stores and Views . 25
3.2 Application: Verification of Implementations . 30
3.3 Application: Invariants of Client Programs . 34

4 Operational Semantics 36
4.1 Abstract States: Global Stores and Client Views 37
4.2 Operational Semantics . 39

4.2.1 Programming Language . 40
4.2.2 Transaction Semantics . 41
4.2.3 Command Semantics and Program Semantics 44
4.2.4 Execution test and ET-traces . 49

4.3 Consistency Models on Key-value Stores . 53

5 Correctness of Execution Tests 66
5.1 Correspondence to Dependency Graph . 66
5.2 Operational Semantics on Abstract Execution 71

5.2.1 Declarative Model: Abstract Executions 71

xi

5.2.2 Operational Semantics on Abstract Execution 74
5.3 Correspondence to Kv-store Semantics . 78
5.4 Soundness and Completeness Constructors . 85
5.5 Soundness and Completeness of Execution Tests 90

6 Applications: Verification of Implementation Protocols 108
6.1 Verification of COPS Protocol . 109

6.1.1 Machine States . 109
6.1.2 Reference Implementation and Reference Semantics 111
6.1.3 Verification: Annotated Normalised Traces 118
6.1.4 Verification: Trace Refinement . 123

6.2 Verification of Clock-SI Protocol . 128
6.2.1 Clock-SI protocol . 128
6.2.2 Machine States . 132
6.2.3 Reference Implementation and Reference Semantics 134
6.2.4 Verification: Annotated Normalised Traces 142
6.2.5 Verification: Trace Refinement . 147

7 Applications: Invariants of Client Programs 152
7.1 Robustness: A Single Counter Library against PSI 153
7.2 Robustness for SI . 155

7.2.1 WSI Safe . 155
7.2.2 Robustness: A Multiple Counters Library against WSI 159
7.2.3 Robustness: A Banking Library Against WSI 161

7.3 Correctness: A Lock Pattern against PSI . 164

8 Conclusion and Future Work 171

Bibliography 176

A Auxiliary Proofs 183
A.1 Proofs for Section 4.2 (Operational Semantics) 183
A.2 Proofs for Section 5.1 (Correspondence to Dependency Graph) 189
A.3 Proofs for Section 5.2 (Operational Semantics on Abstract Execution) 192
A.4 Proofs for Section 5.3 (Correspondence to Kv-store Semantics) 195
A.5 Proofs for Section 5.4 (Soundness and Completeness Constructors) 202
A.6 Proofs for Section 6.1 (Verification of COPS Protocol) 204
A.7 Proofs for Section 6.2 (Verification of Clock-SI Protocol) 212

xii

List of Figures

2.1 An example of a dependency graph and time lines 15
2.2 An example of a static dependency graph . 17
2.3 An example of an abstract execution . 18

2.4 Example of relation
(
(SO ∪ WR);RW? ∪ WW

)+ 20

3.1 Example key-value stores (a, b, d, e) and client views (b, c) 27
3.2 Multiple counter example . 29
3.3 Examples of COPS states . 30
3.4 Read operation on [k1, k2] . 32
3.5 Examples of a COPS trace, a normalised COPS trace and kv-store trace encoding 34

4.1 Operational semantics of transactional commands 43
4.2 Operational semantics of sequential client commands parametrised by ET 45
4.3 An example of UpdateKV . 47
4.4 Operational semantics of programs . 48
4.5 Dependency relations on key-value store . 55
4.6 Execution tests . 56
4.7 Anomalies for RA and MR . 58
4.8 Anomalies for RYW, MW and WFR . 59
4.9 Anomaly disallowed by CC . 60
4.10 Anomalies for UA and PSI . 61
4.11 Long fork anomaly and commit before relation 62
4.12 Anomaly for SI and extra commit before relation for SI 64
4.13 Write skew anomaly, disallowed by SER . 64

5.1 Dependency graph . 68
5.2 Abstract execution . 72
5.3 Operational semantics on abstract executions 75

xiii

5.4 An example of AExecSnapshot (X , T), where T = {t0, t1, t2} 75

5.5 An example of X ′ = UpdateAExec (X , T,F , t3) 76

5.6 An example of XToTrace (X) . 83
5.7 An example of soundness constructor . 87
5.8 An example of completeness constructor . 89
5.9 Summary of correctness proofs of ETM . 106

6.1 Examples of COPS states . 110
6.2 COPS API: put . 114
6.3 COPS API: read . 116
6.4 COPS synchronisation and programs . 118
6.5 Definitions of COPSToKVS and COPSToKVTrace 124
6.6 An initial Clock-SI state with two shards, r1 and r2 128
6.7 An example of two shards concurrently assigning snapshot time to transactions . 130
6.8 Clock-SI two-phase commit protocol . 131
6.9 An example result of t1 and t2 . 132
6.10 Clock-SI: transaction start . 136
6.11 Clock-SI: transactional write . 137
6.12 Clock-SI: transactional read . 137
6.13 Clock-SI: transaction commit . 139
6.14 Clock-SI: semantics for programs . 141
6.15 Definitions of Clock-SI trace refinement . 148

7.1 Single counter library . 154
7.2 A kv-store under read atomic > that satisfies WSI-safe 156
7.3 WSI-safety . 157
7.4 An example kv-store of multi-counter library under WSI 160
7.5 An example of the banking library, part 1 . 162
7.6 An example of the banking library, part 2 . 163
7.7 Correctness of lock patterns where n < n′ and m < m′ 165

8.1 Summary of correctness proofs of ETM . 172
8.2 Allocation and deallcation on key-value stores 175

xiv

List of Definitions and Proofs

4.1 Definition (Client and transactional identifiers) 37

4.2 Definition (Session order) . 37

4.3 Definition (Keys, values and versions) . 37

4.4 Definition (Kv-stores) . 37

4.5 Definition (Well-formed kv-store) . 37

4.6 Definition (Views) . 38

4.7 Definition (Configurations) . 39

4.8 Definition (View snapshots) . 39

4.9 Definition (Stacks) . 40

4.10 Definition (Arithmetic and boolean expressions) 40

4.11 Definition (Programs, client commands and transactional commands) 40

4.12 Definition (Transactional snapshots) . 42

4.13 Definition (Operations and Fingerprints) . 42

4.14 Definition (Transactional local state transition relation) 43

4.15 Definition (GetOp function) . 43

4.16 Definition (Fingerprint combination operations) 44

4.17 Definition (Command semantics labels) . 44

4.18 Definition (Primitive command transition relation) 45

4.19 Definition (Fresh transaction identifiers) . 46

4.20 Definition (Kv-store update) . 46

4.21 Theorem (Well-defined UpdateKV) . 47

4.22 Definition (Client environments) . 48

4.23 Definition (First and Last functions) . 49

4.24 Definition (Program traces and reachable kv-stores) 49

4.25 Definition (Execution tests) . 50

xv

4.26 Definition (ET-reduction and ET-traces) . 50

4.27 Definition (Consistency models on kv-stores) . 51

4.28 Definition (ET-trace equivalence) . 52

4.29 Definition (Normalised ET-trace) . 52

4.30 Theorem (Equivalent normal ET-traces) . 52

4.31 Theorem (Equivalent expressibility) . 53

4.32 Definition (Visible transactions and prefix closure) 54

4.33 Definition (Dependency relations on kv-stores) 54

4.34 Definition (Execution test order) . 57

4.35 Theorem (Execution test order) . 57

5.1 Definition (Dependency graph) . 66

5.2 Definition (Kv-stores to dependency graphs) . 68

5.3 Definition (Dependency graphs to kv-stores) . 69

5.4 Theorem (Bijection between kv-stores and dependency graphs) 69

5.5 Definition (Abstract executions) . 72

5.6 Definition (Visibility axioms) . 73

5.7 Definition (Consistent models on abstract executions) 73

5.8 Definition (Abstract execution labels) . 74

5.9 Definition (Snapshots on abstract executions) 74

5.10 Definition (Fresh transaction identifiers and abstract execution update) 76

5.11 Proposition (Well-defined UpdateAExec function) 76

5.12 Definition (Abstract executions induced by programs) 77

5.13 Definition (Cuts of abstract executions) . 77

5.14 Theorem (Equal expressibility between declarative and operational semantics on
abstract executions) . 78

5.15 Definition (Abstract executions to dependency graphs, XToD, and kv-stores,
XToK) . 79

5.16 Definition (Compatibility between kv-stores and abstract executions) 80

5.17 Theorem (Compatibility of X and XToK (X)) 80

5.18 Definition (ET⊤-traces to abstract executions) 81

5.19 Theorem (Well-formed abstract executions of XToTrace) 82

5.20 Definition (Abstract executions to ET⊤-traces) 82

xvi

5.21 Theorem (Abstract executions to well-formed ET⊤-traces) 84

5.22 Definition (Abstract execution invariants for clients) 85

5.23 Definition (Soundness constructor) . 86

5.24 Theorem (Soundness of execution tests) . 87

5.25 Definition (Complete constructor) . 88

5.26 Theorem (Completeness of execution tests) . 90

5.27 Theorem (View closure equal to visibility closure) 91

5.28 Theorem (Minimum visibility relation for CC) 96

5.29 Lemma (Minimum visibility relation for CC) . 96

5.30 Theorem (Minimum visibility relation for (CP)) 100

5.31 Theorem (Minimum visibility relation for (PSI)) 102

6.1 Definition (COPS replica and version identifiers) 109

6.2 Definition (COPS versions and dependency sets) 110

6.3 Definition (COPS key-value stores and databases) 110

6.4 Definition (COPS client contexts and environments) 111

6.5 Definition (COPS commands and programs) . 112

6.6 Definition (COPS labels) . 113

6.7 Definition (List insertion) . 113

6.8 Definition (Re-fetch set) . 115

6.9 Definition (COPS configurations) . 117

6.10 Definition (COPS traces) . 117

6.11 Definition (Normalised COPS traces) . 119

6.12 Theorem (Equivalent normalised COPS traces) 119

6.13 Definition (COPS transaction identifiers) . 121

6.14 Definition (Annotated normalised COPS traces) 122

6.15 Definition (Centralised COPS kv-store) . 123

6.16 Definition (COPS context views) . 123

6.17 Definition (COPS atomic transactions) . 125

6.18 Definition (COPS kv-store traces) . 125

6.19 Theorem (COPS causal consistency) . 126

6.20 Proposition (COPS dependency relation to CC relation) 127

6.21 Definition (Clock-SI local times and versions) 132

xvii

6.22 Definition (Clock-SI key-value stores) . 132

6.23 Definition (Clock-SI machine states) . 133

6.24 Definition (Clock-SI client environments) . 134

6.25 Definition (Clock-SI runtime commands) . 134

6.26 Definition (Clock-SI semantics labels) . 135

6.27 Definition (MaxTime function) . 140

6.28 Definition (CLOCKUpdate function) . 140

6.29 Definition (Clock-SI configurations) . 141

6.30 Definition (Clock-SI traces) . 141

6.31 Definition (Annotated Clock-SI traces) . 142

6.32 Definition (Time and Snapshot Segments) . 143

6.33 Definition (Annotated normalised Clock-SI traces) 143

6.34 Theorem (Clock-SI equivalent normalised traces) 144

6.35 Proposition (Right mover: Clock-SI internal read and write steps) 145

6.36 Proposition (Left mover: Clock-SI preparation and commit steps) 146

6.37 Definition (Conversion of Clock-SI traces to kv-store program traces) 147

6.38 Definition (Clock-SI transaction identifiers) . 149

6.39 Theorem (Well-formed Clock-SI centralised kv-store) 149

6.40 Theorem (Clock-SI traces satisfying snapshot isolation) 150

7.1 Definition (Reachable kv-stores of a library) . 152

7.2 Definition (Robustness) . 152

7.3 Theorem (Serialisable kv-stores) . 153

7.4 Theorem (Robustness of Counter (k) against PSI) 154

7.5 Definition (WSI-safe) . 155

7.6 Theorem (Robustness of WSI) . 156
7.7 Proposition . 158
7.8 Proposition . 159
7.9 Theorem (Robustness of multi-counter against WSI) 160

7.10 Theorem (Robustness of the banking application against WSI) 164

7.11 Theorem (Mutual exclusion of the lock library under UA) 165

7.12 Theorem (Value coherence of of the lock library under PSI) 168

A.1 Proposition (Well-defined fingerprint combination operation) 183

xviii

A.2 Lemma (View-shift right move) . 186

A.3 Lemma (View-shift absorption) . 187

A.4 Proposition (Well-defined KToD) . 189

A.5 Proposition (Well-defined DToK) . 191

A.6 Proposition (Well-defined last-write-win resolution policy) 192

A.7 Proposition (Abstract execution cut to update) 194

A.8 Proposition (Well-defined XToD) . 195

A.9 Proposition (Well-formed views of GetView) . 196

A.10 Proposition (Update of abstract execution matching update of kv-store) 198

A.11 Proposition (Well-defined ApproxView) . 200

A.12 Proposition (Well-defined COPSInsert) . 204

A.13 Theorem (Right mover: re-fetch operations) . 205

A.14 Proposition (Monotonicity of COPS replica and client) 206

A.15 Theorem (Left mover: out-of-order write) . 206

A.16 Lemma (Re-fetching version on a larger COPS store) 208

A.17 Proposition (Fresh multiple-read transaction identifiers) 208

A.18 Proposition (Appending write operations) . 209

A.19 Proposition (Well-defined COPSToKVS) . 209

A.20 Proposition (Well-defined COPSViews) . 210

A.21 Proposition (Read and write steps on a larger Clock-SI database) 213

A.22 Proposition (Clock-SI unique transactional identifiers) 216

A.23 Lemma (Monotonic Clock-SI client local times) 216

A.24 Proposition (Well-formed Clock-SI views) . 217

A.25 Proposition (Well-formed Clock-SI fingerprints) 217

A.26 Lemma (Clock-SI WR) . 222

xix

xx

Chapter 1

Introduction

The internet is an essential part of modern society. On the internet, millions of applications
provide various services to improve life standard. People from all over the world can access these
services by simply a few clicks. However, behind the hood, the applications need to incorporate
massive client requests globally. This means that the cost of such globally scaled applications
is very high. Thus, a few big companies, that have already built and maintained global storage
and connectivity infrastructure for their internal applications, have stared renting out their
infrastructure so that other applications can focus on their businesses without worrying too
much about the low-level functionalities. People often refer to such infrastructure as clouds:
for example, Amazon Web Service (AWS) [Amazon, 2019] and Google Cloud Platform (GCP)
[Google, 2019]. They have become very popular for their low cost, high availability and high
fault-tolerance. Applications that are built on such clouds treat the clouds as black boxes
with which to interact via fixed interface. Yet behind the interface, the always-on and high-
performance infrastructure is implemented via globally-scaled distributed systems. There are
hundreds of data centres globally, each of which hosts tens of thousands of servers. All these data
centres are connected with low leniency lines, over which a well-designed and well-engineered
protocol guarantees consistency between centres.

One important service of the clouds are data storages or databases, since many applications
need to constantly access data. Transactions are the de facto interface for databases. In con-
trast to traditional centralised relational databases with transactions consisting of SQL queries,
many clouds focus on key-value stores with simple transaction interface. This means that each
interface call needs less computation to increase the throughput and decrease the response
time. One example of a key-value store is Amazon DynamoDB [Amazon, 2019; DeCandia
et al., 2007], a key-value database in AWS. Amazon DynamoDB provides GetItem, PutItem
and DeleteItem operations per key, and TransactGetItems and TransactWritesItems for
reading and writing a list of keys, respectively.

In traditional centralised databases, transactions can be seen as if they are executed one-by-one:
this is known as strict serialisibility, the strongest consistency model. The implementations of

1

Chapter 1. Introduction

strict serialisibility require that transactions appear to be executed in some global order, how-
ever, these transactions can be executed in a fine-grained way. System designers, then, proposed
weak consistency models, which allows more fine-grained interleaving. For example, the three
SQL isolation level, read uncommitted, read committed and repeatable read allows different level
of fine-grained interleaving between transactions. In distributed databases, because of the CAP
theorem [Gilbert and Lynch, 2002], to achieve high availability and high fault-tolerance, they
must sacrifice strong consistency and instead use weak consistency models. Engineers and re-
searchers for centralised and distributed databases have proposed many protocols employing
weak consistency models, with the focus on designing the internal implementation strategies to
tackle real-world constraints and maximise performance [Bailis et al., 2014; Lloyd et al., 2011;
Du et al., 2013; Lloyd et al., 2013; DeCandia et al., 2007]. The semantics of many specific
consistency models is originally captured by specific reference implementations. For example,
Berenson et al. [1995] proposed the implementation strategy for snapshot isolation (SI) on
centralised databases. In the implementation, each transaction works on a snapshot of the
database taken at the beginning, and commits the effect at the end. Many works [Daudjee and
Salem, 2006; Elnikety et al., 2005; Du et al., 2013] generalised this idea in distributed databases.
However, in distributed databases, data are distributed in servers, and synchronisation mes-
sages between servers might be delayed or dropped due to internet malfunction. Implementer
proposed parallel snapshot isolation (PSI) [Sovran et al., 2011; Raad et al., 2018; Ardekani
et al., 2013], where a transaction only takes a snapshot of a simple server. Causal consistency
(CC) introduces causal relation over transactions [Hutto and Ahamad, 1990; Lloyd et al., 2011;
Petersen et al., 1997; Belaramani et al., 2006] This model requires if a transaction observes
the effect of another transaction t, it must observe all transactions t depends on. Eventual
consistency is the base-line for many distributed systems, for example, Amazon DynamoDB
[DeCandia et al., 2007; Bailis et al., 2014], where transactions are always allowed to read from a
site without any synchronisation, but all synchronisation message must eventually be delivered
to all sites.

However, the details of such implementations are irrelevant for the clients; the clients can only
interact with these systems via the transaction interface. The behaviour of the transaction
interface is subtle under weak consistency models since that transactions are allowed to read
old values subject to certain constraints. Thus, these weak behaviours pose several challenges:
the formalisation of client-observable behaviour and the verification of database protocols and
client applications.

Much work has been done to formalise the semantics of such weak consistency models using
declarative semantics. Several graph-based general formalisms have been proposed, such as de-
pendency graphs [Adya, 1999] and abstract executions [Burckhardt et al., 2012; Cerone et al.,
2015a], to provide a unified semantics for formulating different consistency models. Depen-
dency graphs are directed graphs where nodes represent transactions and edges represent the
dependency between transactions including write-read (WR), write-write (WW) and read-write

2

Chapter 1. Introduction

(RW) dependency relations. Adya [1999] introduced dependency graphs to formalise SQL iso-
lation levels. Later, they are used to model weak memory behaviours [Doherty et al., 2019;
Alglave, 2010; Batty et al., 2016; Lahav et al., 2017, 2016; Batty et al., 2011; Chong et al., 2018;
Batty, 2014; Dongol et al., 2018]. Since the dependency relations can be over-approximated
statically from the code, many program analysis techniques on transactional applications are
built over dependency graphs [Fekete et al., 2005; Bernardi and Gotsman, 2016; Beillahi et al.,
2019; Cerone and Gotsman, 2016]. However, it is not easy to verify implementation protocols
for distributed systems using dependency graphs, because the three relations in dependency
graphs do not have direct connection to well-known implementation strategies.

Abstract executions are also directed graphs where nodes represent transactions and edges are
labelled with arbitration relation (AR) and visibility relation (VIS). The arbitration relation is
a total order over transactions. In centralised databases, this relation is the commit order. In
distributed databases, a resolution policy determines the order between transactions that write
to the same key, which overall is a partial order over all transactions. The arbitration relation,
therefore, can be recovered from the partial order. However, a transaction may not observe all
transactions that commit before, since transactions may commit to different sites. The visibility
relation determines, for every transaction, the set of visible transactions, which then determines
the actual read value for each key. Distributed database engineers and researchers prefer to use
abstract executions to define consistency models on distributed systems [Burckhardt et al., 2012;
Cerone and Gotsman, 2016; Cerone et al., 2015a] and replicated data types [Burckhardt et al.,
2014]. With the help of the total arbitration relation, these definitions of consistency models
match the English descriptions given by the implementers. Moreover, abstract executions are
useful for verifying implementation protocols. However, it is not clear how to directly use
abstract executions to reason about client programs, which requires client-observable history.

These two graph-based declarative models are well studied and both of them can cover many
consistency models. Cerone et al. [2017] have shown the connection between dependency graphs
and abstract executions. They convert definitions of consistency models on abstract executions
in certain patterns to those on dependency graphs and vice versa. However, these two graphs
define consistency models in an axiomatic style in the sense that they require the resulting
graphs obtained by executing the whole programs to the end and then rule out the invalid
graphs against the axioms associated with the shape of graphs. This is different from opera-
tional semantics which describes valid states and how they evolve. This means that axiomatic
approaches cannot be used to reason about invariants of client programs. Additionally, com-
pared with dependency graphs, abstract executions are better for verifying implementation
protocols. However, it is not an easy task to verify implementation protocols, since many pro-
tocols for specific consistency models are captured using reference implementations [Berenson
et al., 1995; Sovran et al., 2011; Raad et al., 2018; Bailis et al., 2014; Du et al., 2013; Lloyd
et al., 2011; Petersen et al., 1997], that is, in an operational style.

Unlike declarative approaches, there has been little work on general operational semantics for

3

Chapter 1. Introduction

describing a range of consistency models. Nagar and Jagannathan [2018] proposed a graph-
based operational semantics, which constructs abstract executions step by step. They develop
a model checking for program invariant based on their semantics. However, in their semantics,
each transition adds one operation instead of one transaction. This significantly increases the
searching space. Kaki et al. [2017] proposed a state-based semantics of which the abstract state
comprises a global state and client local states. Their semantics allows fine-grained interleaving
between clients. They can model SQL isolation levels and SI but not models weaker than
SI. Crooks et al. [2017] proposed a trace-based operational semantics, a variant of state-based
semantics. In their semantics, any new transaction must be compatible with respect to the whole
trace, Their notion of compatibility is subject to the consistency model definition. All those
general operational semantics only focused on one side of the challenges either program analysis
or verification of implementations: Nagar and Jagannathan [2018] and Kaki et al. [2017] focused
on program analysis, and Crooks et al. [2017] focused on verification of implementations.

We propose a new state-based operational semantics that models the interface of the distributed
systems, with the focus on the client-observable behaviours. Our abstract state comprises a
global, centralised multi-versioning key-value store (kv-store) which an abstraction of the state
of a distributed system, and several partial client views which contain partial information over
this kv-store. We have a standard interleaving semantics in that a client commits an atomic
transaction in each transition. Every transition is constrained by an execution test that deter-
mines if the client with a given view is allowed to commit the transaction. The execution test
gives rise to a consistency model. We specify many well-known consistency models using exe-
cution tests and validate them with respect to the well-known axiomatic definitions on abstract
executions. We believe that our semantics is an ideal mid-point for verifying implementations
and reasoning about client programs, in contrast to other operational semantics that focus on
one of the tasks. We prove two implementation protocols the COPS which is a fully replicated
database implementing causal consistency, and the Clock-SI which is a partitioned database
implementing snapshot isolation, using trace refinement. We show that our abstract states
are a faithful abstraction of the machine states of implementation protocols. We then prove
invariants of several client programs. For example, we are able to prove the robustness of a
single counter library against PSI and a multi-counter and a banking library against SI. We
also prove the correctness of a lock paradigm under PSI, despite not robust.

1.1 Contributions

paragraphOperational Semantics. The main contribution of this thesis is an interleaving oper-
ational semantics that focuses on the interface and client-observable behaviours of distributed
systems. The state of this semantics consists of a global centralised multi-versioning key-value
store (kv-store), which is the abstraction of the machine states of databases, and client-local
partial views on the kv-store, which models the information that clients observe. For each

4

Chapter 1. Introduction

transition, a client commits a transaction atomically. Our semantics is parametrised by an
execution test, which gives rise to a consistency model. An execution test determines if a client
with a given view is allowed to commit a transaction. We are able to define many weak consis-
tency models employed by distributed databases that satisfy the snapshot property1, including
causal consistency, snapshot isolation, parallel snapshot isolation and serialisability. We are
not able to model few well-known isolation levels such as read committed. However, we fo-
cus on protocols and applications employed by distributed databases, most of which guarantee
snapshot property. Given our semantics, we identify a new consistency model that lies between
(stronger than) parallel snapshot isolation (PSI) and (weaker than) snapshot isolation (SI).
We name it as weak snapshot isolation. This model disallows long fork anomaly, which is the
litmus test distinguishing PSI and SI.

Validation. We validate our operational semantics using abstract executions in the sense
that: our definitions of consistency models using execution tests are proven to be correct with
respect to the axiomatic definitions on abstract executions; the set of kv-stores induced by an
execution test for a consistency model is equivalent to the set of abstract executions induced
by the axiom for the consistency model. A kv-store is equivalent to an abstract execution if it
contains the same set of transactions. As a technical contribution, we provide an alternative
operational semantics on abstract executions, which can be parametrised by a set of axioms that
gives rise to a consistency model, where each transition in the abstract execution operational
semantics is committed in an atomic step. Our goal is to prove, given a consistency model, the
set of the reachable kv-stores are equivalent to the set of the reachable abstract execution, which
can be derived by equivalence between traces in kv-store and in abstract execution. Instead of
directly working on traces, we provide a soundness constructor that constructs a trace in our
kv-store operational semantics to a trace on abstract executions, and a completeness constructor
that is for the opposite direction. With the help of these constructors, we can lift soundness and
completeness conditions to the level of traces, and therefore, to the level of the set of kv-stores
and the set of abstract executions.

Applications. We showcase two applications of our operational semantics: the verification of
implementations; and the invariant properties of client programs. Our abstract machine state,
a multi-versioning kv-store and client views, is a faithful abstraction of the machine state of
implementation protocols. We verify COPS protocol [Lloyd et al., 2011], a replicated database
that implements causal consistency (Section 6.1), by: (1) giving a reference semantics of the
COPS protocol; (2) normalising traces induced by the COPS semantics in which transactions
are executed atomically; (3) encoding the normalised traces to our kv-store traces; and (4) prov-
ing every transition in the kv-store traces satisfies the execution test for causal consistency.

1The snapshot property is also known as atomic visibility in that a transaction takes a snapshot at the
beginning and commits the effect at the end.

5

Chapter 1. Introduction

Similarly, we verify Clock-SI [Du et al., 2013], a partitioned database that implements snapshot
isolation (Section 6.2). Our operational semantics tracks client-observable history. This en-
ables us to prove invariant properties of client programs (Chapter 7), for example, robustness.
Most existing techniques for robustness are based on declarative semantics, which requires the
final results obtained by executing client programs to the end. We prove robustness by proving
an invariant of each transition. We apply this technique to prove the robustness of a single
counter against parallel snapshot isolation (PSI) and multiple counters and banking examples
against snapshot isolation (SI). We find general conditions that guarantee robustness against
weak snapshot isolation and therefore any stronger models such as SI. To our knowledge, our
robustness results are the first to take into account client sessions. With sessions, we demon-
strate that multiple counters are not robust against PSI. Interestingly, without sessions order,
it can be shown that multiple counters are robust against PSI (model weaker than SI) using
static-analysis techniques [Bernardi and Gotsman, 2016]. These techniques are known not to be
applicable to sessions. Our semantics can prove specific invariant properties of client programs.
We show that a lock paradigm, despite being not robust, is correct under update atomic, a
consistency model disallowing conflict writes.

1.2 Thesis Outline

Chapter 2 Background. We start with the background. We briefly summary several well-
known consistency models defined by reference implementations [Berenson et al., 1995; Du
et al., 2013; Sovran et al., 2011; Raad et al., 2018; Hutto and Ahamad, 1990; Petersen et al.,
1997; Lloyd et al., 2011; Liu et al., 2018; Terry et al., 1994; Bailis et al., 2014], such as causal
consistency, parallel snapshot isolation and snapshot isolation. However, these definitions using
implementations are restricted in specific settings. Researchers then proposed several formal
semantics, including declarative and operational approaches. We cover two well-known declar-
ative semantics, dependency graphs [Adya, 1999] and abstract executions [Burckhardt et al.,
2012; Cerone et al., 2015a]. Many weak consistency models can be defined on these two declar-
ative models and they are proven to be the same [Cerone et al., 2017]. We only find few general
operational semantics including graph-based [Nagar and Jagannathan, 2018; Doherty et al.,
2019], state-based [Crooks et al., 2017; Kaki et al., 2017] and log-based [Koskinen et al., 2010;
Koskinen and Parkinson, 2015] operational semantics. All those general semantics are useful
to verify implementation protocols or reason about client programs. However, none of them,
we believe, are able to tackle both challenges.

Chapter 3 Overview. We give: (1) an overview of our operational semantics; (2) definitions
of various consistency models in our semantics; (3) validation of them with respect to well--
known definitions on abstract executions; and (4) two applications of our operational semantics,
verifying implementations and proving invariant properties of client programs. First, we de-

6

Chapter 1. Introduction

scribe the three key concepts of our operational semantics, kv-stores, views and execution tests
using two examples, the single and multiple counters. We show that how to present the state of
these counters using our global kv-store, and how to commit a transaction to the kv-store with
a partial view. We describe how to define several weak consistency models via the execution
tests and how these execute tests restrict the execution of the single and multiple counters. We
then summarise the two applications of our semantics: that is, we verify the COPS protocol,
a replicated database that implements causal consistency; and we prove robustness results of
the single, multiple counters, and a banking application via proving invariant properties, and
prove the correctness of a lock paradigm, despite being not robust.

Chapter 4 Operational Semantics. We formally define centralised kv-store, partial views,
our interleaving operational semantics and execution tests. Our kv-store abstracts the machine
states of distributed databases. Views abstract the information that is observable to clients.
Our semantics describes the interface, especially the client-observable behaviour, of distributed
key-value stores. Our semantics is parametrised by an execution test, which determines if
a client is allowed to commit a transaction with a given view. We then define many well-
known consistency models using our execute tests. All these models satisfy snapshot property
such as causal consistency (CC), parallel snapshot isolation (PSI), snapshot isolation (SI) and
serialisability (SER). We also identify a new consistency model that sits between PSI and SI
and we think that it retains good properties of both. We call this new consistency model weak
snapshot isolation (WSI).

Chapter 5 Correctness of Consistency Models. We prove definitions of consistency
models using our execution tests are correct with respect to the well-known declarative se-
mantics on abstract executions. We propose an alternative operational semantics on abstract
executions. This alternative semantics is parametrised by an axiom, which gives rise to a con-
sistency model. We show that, given an axiom A, the set of abstract executions induced by
the alternative semantics is the same set induced by directly applying the axiom on abstract
executions. We then show the set of kv-stores induced by our semantics under an execution test
ET is equivalent to the set of abstract execution tests the alternative semantics under an axiom
A. A kv-store is equivalent to an abstract execution if they contain the same transactions.
This equivalence is defined by: (1) showing a bijection between our kv-stores and dependency
graphs; and (2) using the result from [Cerone et al., 2017], which proved the connection between
dependency graphs and abstract executions. For technical contribution, we propose soundness
and completeness constructors in the sense that, if ET and A satisfy the soundness and com-
pleteness conditions, these constructors lift these conditions to the level of traces. We use these
two constructors prove the correctness of our definitions of consistency models.

7

Chapter 1. Introduction

Chapter 6 Applications: Verification of Implementations. In this and the next chap-
ter, we explore two immediate applications of our operational semantics: the correctness of
specific implementation protocols and the establishment of invariant properties such as robust-
ness of client applications. By contrast, in the literature these tasks tend to be carried out in
different declarative formalisms: clients are analysed using dependency graphs [Fekete et al.,
2005; Cerone and Gotsman, 2016; Bernardi and Gotsman, 2016; Cerone et al., 2015b; Nagar
and Jagannathan, 2018]; implementation protocols are verified using abstract execution graphs
[Burckhardt et al., 2014; Cerone et al., 2015a].

In this chapter, we verify two implementation protocols against our definitions of consistency
models: the COPS protocol which is fully replicated key-value stores [Lloyd et al., 2011] sat-
isfying causal consistency; and the Clock-SI protocol which is partitioned key-value stores [Du
et al., 2013] satisfying snapshot isolation. We demonstrate that the traces of these implementa-
tion protocols can be refined to traces in our semantics, and show that each transition in these
traces satisfies the execution test.

Chapter 7 Applications: Invariant Properties of Client Programs. We prove the ro-
bustness of the single counter against parallel snapshot isolation. We then show the robustness
of the multi-counter and a banking applications Alomari et al. [2008] against snapshot isola-
tion. These applications satisfy a general condition which guarantees the robustness of weak
consistency model and hence any stronger models such as snapshot isolation.

Chapter 8 Conclusion. To conclude, we summarise this thesis and the applications and
discuss the future work.

8

Chapter 2

Background

Distributed systems must make a trade-off between high partition-tolerance, high availability
and strong consistency, This is due to the CAP theorem [Gilbert and Lynch, 2002], which states
that systems can at most achieve two out of the three properties. Most systems choose partition-
tolerance and availability, and drop strong consistency. Those systems are thus implementing
weak consistency models. In fact, many well-known consistency models were originally invented
by implementers in that the actual implementations of these consistency models are simple and
have good performance in practice (Section 2.1).

However, it is impossible to compare different consistency models that are defined by pro-
viding implementation protocols. Much work has been done to formalise consistency models,
both declaratively and operationally. Many formalisms focus on consistency models that were
designed for centralised or distributed databases. More recently, these formalisms have been
adapted to model weak memory, which can be seen as a type of consistency model. In this
thesis, we focus on the consistency models that are mainly used in databases. On the declar-
ative side (in Sections 2.2 and 2.3), the two main general formalisms are dependency graphs
[Adya, 1999] (Section 2.2) and abstract executions [Burckhardt et al., 2012; Cerone et al., 2015a]
(Section 2.3). Both of them provide a unified semantics for formulating different consistency
models. [Cerone et al., 2017, 2015a] showed that the definitions of several consistency models
on these two formalisms are equivalent. We will informally explain these two formalisms in
this chapter and give the formal definitions in Chapter 5. Both declarative formalisms are im-
portant to us: (1) the machine states of our semantics are inspired by dependency graphs; and
(2) our definitions of consistency models are inspired by the definitions on dependency graphs
and proven to be sound and complete with respect to the definitions on abstract executions.

On the operational side (in Section 2.4), There has been little work on general operational
semantics for describing a range of consistency models (Section 2.4). There are graph-based
[Nagar and Jagannathan, 2018], state-based [Kaki et al., 2017; Crooks et al., 2017] and log-based
[Koskinen et al., 2010; Koskinen and Parkinson, 2015] operational semantics in the literature.
Nagar and Jagannathan [2018] proposed an operational semantics on abstract executions where

9

Chapter 2. Background

each transition appends a single read or write operation to abstract executions. They capture
consistency models by ruling out the invalid results with respect to the declarative definitions
on abstract executions. They developed a model-checking tool that can check robustness.
However, we believe that it is difficult to reason specific invariants of client programs, because
it is unknown how to efficiently encode these invariants in abstract executions. Kaki et al.
[2017] proposed an operational semantics with explicitly global and local states. However,
these semantics are designed to SQL isolation levels, but we think they cannot capture some
models in distributed systems such as parallel snapshot isolation. In their models, because
clients must agree on the global state, despite they might not observe all the state yet. Crooks
et al. [2017] proposed an operational semantics that can capture models from snapshot isolation
to serialisability. Each transition in their model commits a new transaction t, if t is compatible
to the entire trace in the sense that the any read operation in t must read from previous
transactions in the traces, and t is allowed to read from those transactions. This check gives
rise to a consistency model. Their models are useful to verifying implementation because of the
presence of the total order over all transactions. However, it is difficult to use their model to
prove invariants of client programs, which requires client observable history instead of the entire
history. Two log-based operational semantics [Koskinen et al., 2010; Koskinen and Parkinson,
2015], similar to our operational semantics, have a global state and client local states. These
two models capture the interface between clients and implementations. However, they focus
on serialisability and we believe it is difficult to generalise their models to other consistency
models.

In contrast to other operational semantics, we believe that our semantics is the first state-based
operational semantics that are suitable for verifying implementations of consistency models
and reasoning about client programs. Our abstract states are multi-versioning stores that
contain client-observable history, which enables us to prove invariants of client programs. Our
multi-versioning stores with meta-data are a faithful abstraction of many machine states of
implementations. This allows us to verify implementation protocols. To validate our semantics,
we propose an alternative graph-based operational semantics that is similar to some graph-
based semantics [Nagar and Jagannathan, 2018] in the literature. This alternative graph-based
semantics helps us build the correspondence between our state-based operational semantics and
the declarative semantics.

2.1 Consistency Models

Many weak consistency models were invented by database implementers to tackle real-world
constraints and maximise performance. The semantics of a specific consistency model can
be captured by a reference implementation for a specific setting, or described by forbidden
behaviours, known as anomalies.

10

Chapter 2. Background

Serialisability (SER). This model is de facto the standard consistency model for centralised
databases in the sense that many real-world transactional applications are designed with respect
to serialisability. It requires that all committed transactions can be seen as appear one after
another, despite that they may execute in a fine-grained interleaving way. Serialisability is
the strongest consistency model if one does not consider aborted transactions1. This model
was originally defined by implementation strategies using locks [Papadimitriou, 1986; Eswaran
et al., 1976]. Researchers proposed then the concept of history, a trace of fine-grained read and
write operations, and gave a formal definition of serialisability [Papadimitriou, 1986; Eswaran
et al., 1976]: there exists an equivalent history where transactions appear one after another.

SQL isolation levels. The four well-known SQL isolation levels (ANSI SQL-92), read un-
committed, read committed, repeatable read and serialisability, were summarised in [Berenson
et al., 1995]. In a centralised database where transactions are executed in a fine-grained way:

(1) read uncommitted allows transactions to read uncommitted values;

(2) read committed requires transactions read committed values, but two reads to the same
object in the same transaction may be different; and

(3) repeatable read requires transactions consistently read the same committed value.

The ANSI SQL-92 defines these consistency models via anomalies. In contrast to a specific lock-
based characterisation of these four isolation levels [Gray et al., 1988], definition by anomalies
was intended to allow non-lock-based implementations. However, Berenson et al. [1995] ar-
gued that these definitions are ambiguous. To tackle the ambiguity, [Adya, 1999] proposed
dependency graphs and gave formal definitions of these four consistency models. These four
consistency models are still the standard for many centralised databases. However, these defi-
nitions still have strong connections to lock-based implementations. In contrast, in distributed
databases where different sites work on different versions, precise implementation of these four
consistency models might lead to a huge performance penalty: (1) read uncommitted, read com-
mitted and repeatable read allow some level of fine-grained interleaving between transactions
executed in different distributed sites, which means more synchronisation messages between
sites; (2) serialisability requires constant synchronisation between distributed sites for consen-
sus, which means fewer transactions can run in parallel; (3) a distributed database expects some
level of partition intolerance, that is, at least a part of the database can still serve clients when
network partition happens. This leads to a discussion about multi-versioning implementation
strategy in distributed databases.

1A stronger model, opacity, requires that non-committed transactions cannot access inconsistent states
[Guerraoui and Kapalka, 2008].

11

Chapter 2. Background

Snapshot Isolation (SI). The discussion of SQL isolation levels leads to another consis-
tency model called snapshot isolation. In contrast to lock-based implementations, snapshot
isolation used the multi-versioning method from [Bernstein et al., 1986]. Berenson et al. [1995]
specified snapshot isolation in a centralised database with an English description of an im-
plementation strategy using transaction snapshot time and commit time. A transaction takes
a snapshot of the database at its starting time. For read operation, in contrast to reading
directly from the database, the transaction reads from the snapshot. When committing, the
transaction ensures that there is no conflicting write since the snapshot time, drops the effect
of any intermediate steps and only commits the final update of this transaction. Since then,
many centralised databases provide snapshot isolation alongside SQL isolation levels. Because
snapshot isolation has a strong connection to multi-versioning implementations of databases
in the sense that transaction works on their own snapshots of the database, this model fits in
distributed databases. Many works used the ideas of snapshot and commit time, and imple-
mented snapshot isolation in various distributed databases, including replicated [Daudjee and
Salem, 2006; Elnikety et al., 2005] and partitioned [Du et al., 2013] setting.

Parallel Snapshot Isolation (PSI). It is a natural fit to implement SI in distributed systems
in the sense that SI is designed for a multi-versioning implementation strategy. However, SI
still requires that two concurrent transactions observe the updates of other transactions in
the same order. This means that transactions on different sites must agree on their relative
order, which can be a time-consuming task. To reduce the need of constant synchronisation,
Sovran et al. [2011] proposed parallel snapshot isolation (PSI), a model slightly weaker than
SI. They proposed an implementation strategy for PSI that has similar patterns to those
implementations for SI, separating a transaction to three stages: snapshot, internal execution
and commit. However, a transaction takes a snapshot of the site instead of the entire database,
and the transaction is committed locally and then non-deterministically propagated to other
replicas. Using this strategy, transactions in different sites may observe updates in a different
order, because of the synchronisation delay. Ardekani et al. [2013] gave a formal description
of PSI by putting constraints on the read and write operations of each transaction. They also
proposed a better implementation on a multi-versioning replicated database where each version
maintains explicit dependency sets containing meta-data.

Causal Consistency (CC). Hutto and Ahamad [1990], inspired by the Lamport time [Lam-
port, 1978] and vector clock [Fidge, 1988; Mattern, 1989], first introduced the notion of causal
relation over single read and single write operations on a shared memory model. Both Lamport
time and vector clock are implementation techniques used to determine the order between oper-
ations. This model requires that if a transaction observes the effect of another transaction t, it
must observe all transactions t depends on. Bayou [Petersen et al., 1997] proposed a replicated
distributed system that implements CC via a propagation protocol that guarantees that if a

12

Chapter 2. Background

version ν, which is initially accepted by a replica r, has been delivered to a replica r′, then all
versions happens before ν in the replica r must be delivered to r′ before ν. However, Bayou
did not provide the full detail but only the focus on the propagation protocol. COPS [Lloyd
et al., 2011] refined the idea from [Petersen et al., 1997], implements CC on a multi-versioning
replicated database. Besides that COPS provides a fixed interface, that is, single-write and
multiple-read transactions, the implementation protocol is very simple with the help of some
meta-data. COPS has explicit client state, which is used to maintain the session order. Sep-
arately, Belaramani et al. [2006] proposed a specialised propagation protocol for CC with the
focus on file systems.

In contrast to SI and PSI, we did not find any partitioned database that implements CC. We
believe this is because there is no performance benefit to implement CC in a partitioned database.
Instead of focusing on the snapshot and commit time of a transaction, many implementation
protocols of CC focus on how to propagate the effect of a transaction from its initial replicas to
other replicas.

Read Atomic (RA). Bailis et al. [2014] gave a collection of implementations for read atomic
(RA) in partitioned databases, using two-phase commit for any write to ensure that writes
within the same transaction be propagated to the appropriate partitions. Read atomic ensures
that a transaction consistently reads from the same snapshot taken at the beginning and only
commits its change at the end. This is also known as snapshot property or atomic visibility.
Many previous consistency models including SER, SI, PSI and CC satisfy RA.

Other models. Cerone et al. [2015a] gave a formal definition of SI using abstract executions,
a formal declarative model that we will explain later. The definition splits SI into two parts:
consistency prefix (CP) and update atomic (UA). Consistency prefix requires that if a trans-
action sees the effect of another transaction t, it must see all transactions committed before
t. Note that, the order which transactions commit in CP depends on the resolution policy.
Update atomic requires no concurrent write to the same object. Liu et al. [2018] proposed a
implementation for update atomic UA in partitioned databases, using two-phase commit and
time-stamp.

Terry et al. [1994] introduced four session guarantees, monotonic read (MR), read your write
(RYW), monotonic write (MW) and write follow read (WFR), defining them via a loose description
of implementation strategies on replicated databases. However, we have not found any actual
implementation of these models. This is because in practice, we believe, applications on these
models have very weak behaviours. On the other hand, many well-known consistency models
imply these four session guarantees.

Many consistency models are originally invented using reference implementations on their spe-
cific setting. However, implementation details are irrelevant to clients, because they only work

13

Chapter 2. Background

with the interfaces. This means that clients should not need to know the implementation.
Another problem of these definitions using reference implementations is that it is difficult to
compare between different consistency models, and even between two implementations of the
same model. To solve these problems, researchers proposed [Adya, 1999; Burckhardt et al.,
2012] many semantics that focus on formal definitions of consistency models.

2.2 Declarative Semantics: Dependency Graphs

Adya [1999]’s work on dependency graphs provided the first general formal model that uniformly
specified several consistency models. Previously, many models were defined using reference
implementations or anomalies2 [Berenson et al., 1995]. In contrast, with dependency graphs,
consistency models were defined by disallowing certain cycles.

Adya [1999] used dependency graphs to give formal definitions of SQL isolation levels and
snapshot isolation. These formal, implementation-independent definitions of consistency mod-
els provide uniform definitions of SQL isolation levels and snapshot isolation. It becomes
possible to compare different consistency models and even explore the gap: for example, Adya
[1999] proposed two new consistency models, PL-2+, a consistency model similar to causal
consistency, and PL-2L, a variant of read committed.

There has been little work that uses dependency graphs to define the consistency models used
in distributed systems. Cerone et al. [2015b] explored how to use dependency graphs to specify
weak consistency models used in distributed systems, such as parallel snapshot isolation PSI.
The definitions of consistency models in distributed databases using dependency graphs are
difficult to understand. Models like SI and PSI are originally defined using the concept of
snapshot and commit times. There is no direct information about these times in dependency
graphs. Instead, database researchers seem to prefer to use abstract executions (we explain
in Section 2.3). However, dependency graphs have become a standard tool for studying weak
memory, in which accesses to the memory are not serialisible. [Alglave, 2010] adapted de-
pendency graphs to specify weak memory behaviours. Since then, much work [Batty et al.,
2011; Doherty et al., 2019; Batty et al., 2016; Lahav et al., 2016, 2017; Batty, 2014] focused on
specifying and fixing the C11 memory model.

A dependency graph is a directed graph where each node represents a transaction, consisting
of a unique transaction identifier and a set of read and write operations, and edges are labelled
with write-read (WR), write-write (WW) and read-write (RW) dependencies. Fig. 2.1a gives
an example of a dependency graph. In Fig. 2.1a, there are three transactions, t0, t1 and t2

respectively. The special initialisation transaction t0 initialise all the keys ki with the initial
value v0. The write-read dependency (WR) determines the source of every read operation. For
example, t1 reads key k2 with value v0 written by t0 in Fig. 2.1a. The write-write dependency

2Anomaly refers to disallowed behaviour.

14

Chapter 2. Background

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

WR (k2) ,WW (k1)

WR (k1) ,WW (k2)

RW (k2)RW (k1)

(a) An example of a dependency graph, containing the initialisation transaction t0 and two trans-
actions t1, t2.

t0

t2

t1

RW (k1)

WR (k2)

WW (k1)

WR (k1) WW (k2)

RW (k2)

Real time
(b) An example time line in a centralised database for Fig. 2.1a (WR in red, WW in blue and RW
in green).

t0

t2

t1

WR (k2)
WW (k1)

WR (k1)
WW (k2)

RW (k2)

RW (k1)

Real time
(c) An example time line in a distributed database for Fig. 2.1a, where t1 and t2 are committed
to different sites (WR in red, WW in blue and RW in green).

Figure 2.1: An example of a dependency graph and time lines

(WW) is a total order per key k, over all transactions that wrote to the key k. For example,
(t0, t1) ∈ WW on the key k1. The read-write anti-dependency (RW) is derived from other
two dependencies, in that if (t0, t2) ∈ WR and (t0, t1) ∈ WW on a key k, then (t2, t1) ∈ RW.
Intuitively, if (t2, t1) ∈ RW, then t2 read a value that has been overwritten by t1. The read-
write anti-dependency is crucial for specifying certain weak consistency models such as snapshot
isolation.

15

Chapter 2. Background

Fig. 2.1b presents the intuition of the dependency relations in a centralised database where
all transactions agree on a global clock. This global clock is often the physical time in the
centralised database. The write-read relation, (t0, t1) ∈ WR, intuitively means that the commit
of t0 happens before the start of t1 in a centralised database in Fig. 2.1b. The write-write
relation, (t0, t1) ∈ WW, means that the commit of t0 happens before the commit of t1. However,
this relation does not provide any information about the start points of transactions. The
write-write relation in a centralised database is usually determined by the physical as shown
in Fig. 2.1b. Last, the read-write relation, (t2, t1) ∈ RW, means that the starts of t2 happens
before the commit of t1, thus t2 does not observe the update of t1.

In centralised databases, these dependency relations can be determined by the start and com-
mit points of transactions. However, there is, in general, no total order over the start and
commit points of transactions in distributed databases. In these distributed databases, the
write-read dependency is directly determined by the observation of transactions in the sense
that if a transaction reads from another transaction, then there is a WR edge between them.
For example, in Fig. 2.1c, t1 reads the initialisation transaction but not t2. The write-write
dependency is determined by the resolution policy, which determines the order between two
transactions, if these transactions write to the same key. Note that an order determined by a
resolution policy may not agree with the actual physical time. For example, in a distributed
database, assume two transactions, t1 and t2, commit to two distinct sites. The resolution pol-
icy may decide t1 abstractly commits before t2, even thought t2 commits after t1 in the actual
physical time. One widely used resolution policy is last-write-wins [Vogels, 2009]. This policy
states that if two transactions write to the same key, the transaction with a greater abstract
time should be ordered after the transaction with the smaller abstract time. For example, in
Fig. 2.1c, there are WW edges from t0 to t1 and t2 respectively. In a distributed database, this
policy is implemented using Lamport time or vector time, which provides a partial order over
transactions. This partial order can be extended to a total order over all transactions.

Dependency graphs give uniform definitions for different consistency models where each consis-
tency model is defined by disallowing certain cycles. For example, serialisability (SER) enforces
that dependency graphs contain no cycle. This means that there exists a total order among
all transactions by extending the existing relations to a total order. Snapshot isolation (SI), a
model that is weaker than SER, only allows cycles with two adjacent RW edges. Adya [1999]
proved that this acyclic condition corresponds to the English description in [Berenson et al.,
1995]; however, the intuition is not apparent. The dependency graph in Fig. 2.1a is allowed
by SI but not by SER. With dependency graphs, the definitions of parallel snapshot isolation
and causal consistency models, two models that are mainly used in distributed systems, are
not straightforward. We give the definitions in Section 5.5.

Dependency graphs are suitable for reasoning about client programs. This is because the three
dependency relations in dependency graphs can be statically over-approximated. Assume the

16

Chapter 2. Background

wt (k1, 1) ; wt (k2, 2)t x := rd (k1) ; wt (k2, 3) t′

WR (k1) ,WW (k2)

RW (k1) ,WW (k2)

Figure 2.2: An example of a static dependency graph

following program:

Pstatic
def
= t :

[
wt (k1, 1) ; wt (k2, 2)

]
‖t′ :

[
x := rd (k1) ; wt (k2, 3)

]
,

where the commands x := rd (k1) and wt (k2, 3) means read from key k1 and write to key
k2, and the square bracket means a transaction. For brevity, in the explanation, we annotate
transactions with transaction identifiers, such as t, t′. In the program, there is a static write-read
edge and a static read-write edge, (t, t′) ∈ WR and (t′, t) ∈ RW, on k1, and static write-write
edges (t, t′), (t′, t) ∈ WW on k2, depicted in Fig. 2.2. These static relations contain all the
possible dependency relations of these two transactions. This means that, if certain cycles
do not exist in the static graph, it must be absent in the actual dependency graphs. Many
robustness3 and transaction chopping4 techniques have been described as properties of these
three static relations [Fekete et al., 2005; Bernardi and Gotsman, 2016; Cerone and Gotsman,
2016].

Dependency graphs are useful for reasoning about client programs. However, it appears to be
difficult to verify implementation protocols using the consistency definitions on dependency
graphs. Our state-based operational semantics, in contrast, is suitable for verifying imple-
mentation protocols. We believe that our machine states provide a faithful abstraction to the
machine states of many protocols, and we can verify transition in these protocols step by step.

2.3 Declarative Semantics: Abstract Executions

The baseline model for many distributed systems is eventually consistency [Vogels, 2009], which
states that if there are no new updates, then eventually all accesses return consistency values,
for example, the most up-to-date values. It is difficult to capture that eventually all transac-
tion observe the up-to-data value using dependency graphs. Burckhardt et al. [2012], therefore,
introduced abstract executions. To remedy this, Burckhardt et al. [2012] first defined a history

3Robustness: transactions executing under a weak consistency model, have the same behaviours as if exe-
cuting under serialisability.

4transaction chopping: chopping a transaction into several smaller transactions does not introduce new
behaviours.

17

Chapter 2. Background

(W, k1, v0) (W, k2, v′0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

VIS,AR

VIS,AR

AR

Figure 2.3: An example of an abstract execution

that contains all single-read and single-write operations of all transactions and a partial order
over all single operations. This history is similar to that in [Papadimitriou, 1986], which was
used to defined serialisability. If the partial order on the history can be abstracted to two
relations, a visibility relation which determines for each transaction the set of observable trans-
actions, and an arbitration relation which is a total order in which transactions take effect,
then the history satisfies eventual consistency. The visibility relation allows a transaction to
read old values. The arbitration relation determines the final state of the overall distributed
system: that is, the state that transactions eventually should observe. The abstract execu-
tions in [Burckhardt et al., 2012] are defined in the level of single operations in transactions
to distinguish serialisability and eventual consistency. Burckhardt [2014] adapted abstract ex-
ecutions to replicated data types. In a replicated data type, instead of arbitrary transactions,
the primitive operations are a set of high-level APIs, for example, push and pop. They de-
fined well-known weak consistency models, such as causal consistency, based on replicated data
types. Separately, Cerone et al. [2015a] adapted abstract executions by only working at the
level of atomic transactions. With this approach, they were able to define weak consistency
models that satisfy snapshot property such as snapshot isolation and causal consistency. All
these definitions from [Burckhardt, 2014; Cerone et al., 2015a] restrict the visibility relations.
Since we focus on transactions and consistency models with snapshot property, we will work
with the formal definition of abstract executions from [Cerone et al., 2015a].

Burckhardt et al. [2012] used abstract executions, a graph-based model that has different types
of edges from dependency graphs, to distinguish eventual consistency from serialisibility. Later
on, more consistency models, which lie between eventual consistency and serialisability, were
defined in this framework, such as session-oriented consistency models (on replicated data
types [Burckhardt, 2014; Burckhardt et al., 2014]), causal consistency (on replicated data types
[Burckhardt, 2014; Burckhardt et al., 2014] and transactions [Cerone et al., 2015a]), parallel
snapshot isolation (on transactions [Cerone and Gotsman, 2016]) and snapshot isolation (on
transactions [Cerone et al., 2015a]).

An abstract execution [Cerone et al., 2015a] is a directed graph with nodes that represent
transactions and edges labelled with arbitration and visibility relations. The arbitration relation,
also known as arbitration order, is a total order over all transactions, which determines the order

18

Chapter 2. Background

in which transactions take effect. For example, in Fig. 2.3, there is arbitration order t0
AR−→

t1
AR−→ t2. This arbitration order intuitively corresponds to the commit order in centralised

databases. In distributed databases, the commit order is a partial order since transactions
might commit to different sites. If there is no commit order between two transactions, then
they might have conflicting writes. However, under eventual consistency, conflict transactions
must be ordered by resolution policy, which gives rise of total order among all transactions,
and henceforth the arbitration order. For example, in Fig. 2.3, transactions t1 and t2 may
be committed to different sites and the arbitration order from t1 to t2 is determined by a
certain resolution policy. The visibility relation determines, for every transaction, the set of
visible transactions, which then determines the actual read value for each key. For example,
in Fig. 2.3, both t1 and t2 only see the initialisation transaction t0 and both of them read the
initial value v0 for keys k1 and k2 respectively. Note that, for WR in dependency graphs, if
(t0, t1) ∈ WR, it means t1 must read the effect of t0 in the sense that t1 have actually read a
value written by t0. In contrast, if (t0, t1) ∈ VIS, it means that t1 is aware the effect of t0 and
may read from t0. Hence, researchers normally use terms like t1 ‘observes’ or ‘sees’ t0 to capture
the awareness but not necessarily direct read. When the set of visibility transactions contains
several transactions that write to the same key, the actual read value depends on the resolution
policy. One common resolution policy is last-write-wins stating that the latest write for a key
overwrites any previous write for the same key. This means, a transaction always reads from
the latest visible transaction.

In abstract executions, consistency models are defined by putting constraints on the visibility
edges. In contrast to dependency graphs, the definitions of many consistency models using ab-
stract executions, especially those models that mainly used in distributed databases, are more
intuitive and thus have become the de facto standard definitions. This is because AR is a total
order. Cerone and Gotsman [2016]; Cerone et al. [2017] proposed a technique that converts the
definitions of consistency models using abstract executions to the equivalent definitions using
dependency graphs, and vice versa. For example, serialisability (SER) is defined by VIS = AR
in abstract executions [Gilbert and Lynch, 2002], and the relation5 (WR ∪ WW ∪ RW ∪ SO)+

contains no cycle in dependency graphs [Adya, 1999]. Another example is consistency pre-
fix (CP), which states that if a transaction t sees some transaction t′, then t must see all
transactions committed before t′. This can be captured by AR;VIS ⊆ VIS6 in abstract execu-
tions [Cerone et al., 2015a]. The definition of CP on dependency graphs requires the relation(
(SO ∪ WR);RW? ∪ WW

)+ be acyclic [Cerone et al., 2015a]; this relation approximate the re-
lation AR in abstract executions as shown in Fig. 2.4. Hence, if

(
(SO ∪ WR);RW? ∪ WW

)+ is
acyclic in dependency graphs, then AR;VIS ⊆ VIS holds in the equivalent abstract executions.

In contrast to dependency graphs, abstract executions are more suitable for verifying implemen-

5R+ denotes the transitive closure of R.
6AR;VIS def

= {(t, t′) | ∃t′′. (t, t′′) ∈ AR ∧ (t′′, t′) ∈ VIS}.

19

Chapter 2. Background

t

t′′

t′
WR or SO

AR

RWAR

(a) Relations WR, SO, WR;RW or WR;RW with respect
to AR (AR in orange)

t

t′

WW, AR

(b) Commit before: WW

Figure 2.4: Example of relation
(
(SO ∪ WR);RW? ∪ WW

)+
tations as the arbitration relation is a faithful abstraction of many implementation mechanisms
such as Lamport time [Lamport, 1978] and vector clock [Fidge, 1988; Mattern, 1989]. The
Lamport time and vector clock determines a partial order over all transactions, which can
then be extended to the arbitration relation. The visibility relations is a faithful abstraction
explicit dependency meta-data used in implementations, which often contain information such
as the snapshot times of transactions. However, it is difficult to use abstract executions to
reason about client programs, since the model requires a total order among all transactions. In
contrast, it is better to use dependency graphs which only contain client-observable relations.

2.4 Operational Semantics

Unlike declarative approaches, there has been little work on general operational semantics for
describing a range of consistency models, state-based [Kaki et al., 2017; Crooks et al., 2017],
graph-based [Nagar and Jagannathan, 2018], and log-based operational semantics [Koskinen
et al., 2010; Koskinen and Parkinson, 2015]. Although these log operational semantics can only
model serialisability, they are similar to our general operational semantics in the sense that
they focus on client observable behaviours.

Kaki et al. [2017] proposed an operational semantics for SQL transaction programs under the
consistency models given by the standard ANSI/SQL isolation levels: namely, read uncom-
mitted, read committed, repeatable read and snapshot isolation. Their operational semantics
accesses a global, centralised store γ, and each client has its own local state σ, which interacts
with the global store in a fine-grained way.

γ, σ
t:{(W,k1,v)}−−−−−−→ γ, σ [k1 7→ v]

synchronisation−−−−−−−−−→

γ [k1 7→ v] , σ [k1 7→ v]
t:{(W,k2,v′)}−−−−−−→ γ [k1 7→ v] , σ [k1 7→ v] [k2 7→ v′] (2.1)

This means that, when a client executes a transaction, for example t in Eq. (2.1), with respect
to its own local state σ, the transaction may synchronise σ with γ before the commit of the
transaction. This means other transactions may observe the intermediate steps of t. Their

20

Chapter 2. Background

semantics is used to develop a program logic and prototype tool for reasoning about client
programs. They have not compared their definitions of several isolation levels (consistency
models) with the well-known definitions given in the literature. They capture models such as
snapshot isolation (SI), but not weaker models such as parallel snapshot isolation (PSI) and
causal consistency (CC) which are important for distributed databases. In their framework, any
change to the global store is immediately made available to all clients. This means that their
semantics is not suitable to capture weak consistency models such as PSI or CC where clients
may have different views on the system.

Crooks et al. [2017] proposed a trace semantics over a global centralised store, where the
behaviour of clients is formalised by the observations they make on the totally-ordered history
of states. They introduced concepts called read states and commit tests respectively. For each
read operation (R, k, v) in a transaction t, the read state is a state s where the k has value v. The
set of read states of a transaction t is the union of read states for all read operations in t. Read
states are similar to client views in our operational semantics, each of which determines the
snapshot of a transaction. A commit test determines, given the read states of a transaction t, if
t is allowed to commit. This is similar to the execution test in our semantics which determines,
given a client view, if a transaction is allowed to commit. An example trace of [Crooks et al.,
2017] that produces write skew anomaly is of the form:

s : {k1 7→ v0, k2 7→ v0}
t:{(W,k1,v),(R,k2,v0)}−−−−−−−−−−−→ s′ : {k1 7→ v, k2 7→ v0}

t′:{(R,k1,v0),(W,k2,v′)}−−−−−−−−−−−−→
s′′ : {k1 7→ v, k2 7→ v′}. (2.2)

The initial state s contains two keys k1 and k2, both of which have the initial value v0. Each
transition in the trace corresponds to a transaction. The first transaction t reads the initial
value of k2 and update the value of k1 to v. Since there is only the initial state, the read state
of t for k2 must be the singleton set {s}. The second transaction t′ reads the initial value of
k1 and updates the value of k2 to v′. Here the read states of the read operation (R, k1, v0) in
transaction t′ is the singleton set {s}, which means that this transaction did not read the latest
value for k1. Given this trace, each transaction must satisfy the commit test which gives rise
to a consistency model. For example the commit test for SI enforces that, for each transaction
t, there must exist a read state s such that:

(1) for any read operation, (R, k, v), the read value v matches s(k); and

(2) for any write operation, (W, k, v), the value of the key k has not been modified since the
state s.

For example, Eq. (2.2) is a valid SI trace. Note that each read operation has its own set of
read states, and a transaction might read from different read states for different keys. This
allows them to model consistency models that are weaker than SI. Given the read states and

21

Chapter 2. Background

commit tests, they can capture a wide range of consistency models from read committed to
serialisability.

They use their semantics to demonstrate the equivalence of several implementation-specific
definitions of SI. In their semantics, one-step trace reduction is determined by the whole
previous history of the trace and especially the total order of all transactions. However, the
usefulness of their approach for analysing client programs is not immediately apparent, since
observations made by their clients involve information that is not generally available to real-
world clients, such as the total order in which transactions commit.

For graph-based operational semantics, Nagar and Jagannathan [2018] proposed an operational
semantics over abstract executions X , rather than concrete centralised stores, in order to build
a model-checking tool for proving the robustness of applications against a given consistency
model:

X t:{(W,k1,v)}−−−−−−→ X ′ t′:{(R,k1,v′)}−−−−−−−→ X ′′ t:{(W,k2,v′)}−−−−−−→ X ′′′. (2.3)

Each transition in their semantics is a single operation in a transaction. Their traces may not
always be able to progress, because of the presence of the intermediate steps of transactions.
They are able to capture weaker consistency models such as PSI and CC. However, although
they focus on consistency models with the snapshot property, a transaction reads from an
atomic snapshot of the database and commits atomically, their semantics allows for the fine-
grained interleaving of operations in different transactions. We believe that this results in an
unnecessarily complicated semantics and it also increases the search space. In contrast, we
propose an operational semantics on abstract executions in which each transition is an atomic
transaction. This operational semantics is an intermediate step for proving our definitions
of consistency models on kv-stores are correct with respect to the declarative definitions on
abstract executions. In our abstract execution semantics, the scenario in Eq. (2.3) may look
like as the following:

X t:{(W,k1,v),(W,k2,v′)}−−−−−−−−−−−→ X ∗ t′:{(R,k1,v′)}−−−−−−−→ X ∗∗.

There have been some log-based operational semantics [Koskinen et al., 2010; Koskinen and
Parkinson, 2015] that focus on client observable behaviours. Koskinen et al. [2010] introduced
two semantics for serialisability, a pessimistic style and an optimistic style. They did not limit
themselves to simple read and write operations within transactions, but also allow operations
on abstract data types (ADTs). They model the state of a database as a log that contains a
list of operations and they achieve serialisability by enforcing some operations be left mover
operation (in the pessimistic case) or right mover operation (in the optimistic case). Left mover
and right mover operations state that an operation can be moved to the left (earlier) and the
right (later) respectively in the log without changing behaviours of other operations.

22

Chapter 2. Background

Koskinen and Parkinson [2015] proposed a model that further unifies several implementations
of serialisability. Their semantics consists of a global shared log g and client local logs l, where
a log is a list of operations. New operations are appended to the client local log, pushed to the
shared log and pulled from the shared log. An example trace is given in the following:

g : [o0, · · · , (W, k2, v′)] , l : [o′0, · · · , o′m]
t:pull−−−→ g : [o0, · · · , (W, k2, v′)] , l′ : [o′0, · · · , o′m, (W, k2, v′)]

t:{(W,k1,v)}−−−−−−→ g : [o0, · · · , (W, k2, v′)] , l′′ : [o′0, · · · , o′m, (W, k2, v′) , (W, k1, v)]
t:push−−−→ g′ : [o0, · · · , (W, k2, v′) , (W, k1, v)] , l′′ : [o′0, · · · , o′m, (W, k2, v′) , (W, k1, v)].

Similar to Koskinen et al. [2010], operations must satisfy left mover property when they are
pushed to the shared log. They were able to model database and ADTs by instantiating
appropriate operations. This means o can be, for example, operations like Enqueue or Dequeue.
Their global log g tracks the history of the database, which is similar to our kv-store tracking
the client-observable history. Each client in their semantics has local log, which is a subset of
the global store. This is similar to our client partial view. They use the semantics to prove
implementations of serialisability. However, it is unknown if their method can be generated to
capture consistency models weaker than serialisability.

Apart from transactions in distributed databases, Doherty et al. [2013] proposed an operational
semantics using I/O automata to define the correctness of transactional memory. An I/O
automata is a labelled transition system comprising a set of states, including starting states,
and a transition relation labelled with actions. In [Doherty et al., 2013], the states are standard
memories, functions from addresses to values, and the states for transactions. The transitions
are either external operations such as single read and write operations of transactions, or
external operations such as start, abort and commit operations. They defined specific I/O
automata which give rise to two new correctness conditions for transactional memory known
as TMS1 and TMS2, and used the semantics to prove implementations by proving simulation.
Lesani [2014] gave semantics to well-known correctness conditions for transactional memory
including opacity [Guerraoui and Kapalka, 2008], TMS1 and TMS2, using execution histories.
They verified many transactional memory algorithms using their semantics.

23

Chapter 3

Overview

We introduce an interleaving operational semantics for describing client-observable behaviours
of atomic transactions on distributed key-value stores. The abstract states of the semantics
comprise global centralised key-value stores (kv-stores) and partial client views. Our semantics
is parametric in the choice of an execution test, which gives rise to a consistency model. We
motivate our semantics via two intuitive examples, single-counter and multiple-counters. We
later will show that these two examples are robustness against parallel snapshot isolation and
snapshot isolation. An application is robust if the behaviours obtained by executing the ap-
plication under a weak consistency model can be obtained under serialisability. We show that
our semantics provide a mid-point for verifying distributed protocols, such as COPS protocol
[Lloyd et al., 2011], and proving invariant properties such as robustness. We provide a specific
semantics for COPS protocol, which implements causal consistency, and prove that the traces
induced by COPS semantics can be refined to causal consistency traces in our semantics. In
this chapter, we briefly explain how we verify the COPS protocol. The full details of verifying
COPS and Clock-SI are given in Chapter 6. Our semantics can be used to reason about client
programs, by proving invariant properties of these programs such as robustness. In contrast
to declarative semantics that requires working on the whole history of programs, we are able
to prove invariant properties step by step. We prove that, for example, the single-counter is
robust against parallel snapshot isolation. We also prove the correctness, despite non-robust, of
a lock paradigm under a weak model called update atomic. The full details of client reasoning
is given in Chapter 7.

The second application of our operational semantics is to prove invariant properties of trans-
actional libraries (Chapter 7). One such property is robustness. A library is robust if for all its
client programs P and all kv-stores K, if K is obtained by executing P under a weak model, then
K can also be obtained under the stronger model serialisability. That is, the library clients
have no observable weak behaviours.

To demonstrate this, we prove the robustness of the single-counter library discussed above
against PSI, and the robustness of a multi-counter library and the banking library of Alomari

24

Chapter 3. Overview

et al. [2008] against SI. We do the latter by proving general invariants that guarantee robustness
against our new proposed model WSI which is weaker than SI; hence our robustness proof against
WSI implies robustness against stronger models such as SI. As we discuss in Chapter 7, although
existing techniques in the literature can verify such robustness properties, they typically do so
by examining full traces. By contrast, we establish invariant properties at each execution step
of our operational semantics, thus allowing a simpler, more compositional proof.

As well as such robustness properties, we further use our operational semantics to prove library-
specific properties. In particular, we show that a lock library is correct under PSI, in that it
satisfies the mutual exclusion guarantee, even though it is not robust. To do this, we simply
encode such library-specific guarantees as invariants of the library, and establish them at each
step, as described above. By contrast, establishing such library-specific properties using the
existing techniques is more difficult. This is because unlike the kv-stores in our operational
semantics, existing techniques do not directly record the library state; rather, they record full
execution traces, making them less amenable for reasoning about such properties.

3.1 Centralised Key-value Stores and Views

Dependency graphs and abstract executions [Adya, 1999; Cerone et al., 2015a; Burckhardt
et al., 2012] provide a declarative description for modelling the behaviour of databases under
different consistency models. However, these graphs provide little information about how the
state of the database evolves throughout the execution of a program. By contrast, we provide
an interleaving operational semantics based on an abstract centralised state. The centralised
state comprises a centralised, multi-versioned key-value store, or kv-store, which is global in the
sense that it contains all the versions written by clients, and client views of the kv-store, or
views which are partial in the sense that clients may see different subsets of the versions in the
kv-store. Each update is given by either a simple primitive command or an atomic transaction.
The atomic transaction steps are subject to an execution test which analyses the current kv-
store and view of a given client to determine whether the update is allowed by the associated
consistency model.

We start with a simple transactional library, Counter (k), to introduce our kv-store and views.
Clients of this counter library can manipulate the value of key k via two transactions:

Inc (x, k) def
= [x := rd (k) ; wt (k, x + 1)] Read (x, k) def

= [x := rd (k)]

Command x := rd (k) reads the value of key k to local variable x and command wt (k, x + 1)

writes the value of x + 1 to key k. The code of each operation is wrapped in square brackets,
denoting that it must be executed atomically as a transaction.

Consider a replicated database, which is a distributed database where data is replicated in

25

Chapter 3. Overview

many sites1, also known as replicas. For simplicity, we assume that a client only interacts with
one replica. For such a replicated database, the correctness of atomic transactions is subtle,
depending heavily on the particular consistency model under consideration. For example,
consider the following client program

PLU ≡ (cl1 : Inc (x, k) || cl2 : Inc (x, k))

where we assume that the clients cl1 and cl2 work on different replicas and the k initially holds
value 0 in all replicas. Intuitively, since transactions are executed atomically, after both calls
to Inc (k) have terminated, the counter should hold the value 2. However, this is not always
the case in distributed database or even centralised databases. The atomicity of transactions
means that transactions take effect in one step. It does not mean that this effect is observable by
other clients. Distributed databases use consistency models to specify the interaction between
transactions2. One well-known consistency model is serialisability (SER), where transactions
appear to execute in a sequential (serial) order, one after another and a transaction must see
all previous transactions. For PLU, the key k must hold value 2 under SER. The implementation
of SER comes at a significant performance cost. Therefore, implementers are content with weak
consistency models [Bailis et al., 2014; Liu et al., 2018; Lloyd et al., 2011; Spirovska et al., 2018;
Li et al., 2012; Sovran et al., 2011; Ardekani et al., 2013; Ardekani et al., 2014; Du et al., 2013;
Binnig et al., 2014]. For databases especially distributed databases, weak consistency models
can increase performance and fault tolerance [Gilbert and Lynch, 2002]. In a weak consistency
model, replicas can accept new transactions without full synchronisation between distributed
sites. For example, if the replicas provide no synchronisation mechanism for transactions, then
it is possible for both clients in PLU to read the same initial value 0 for k at their distinct replicas,
update them to 1, and eventually propagate their updates to other replicas. Consequently, both
replicas are unchanged with value 1 for k. This weak behaviour is known as the lost update
anomaly, which is allowed under the consistency model called causal consistency (CC) [Lloyd
et al., 2011; Spirovska et al., 2018; Li et al., 2012] but not allowed under parallel snapshot
isolation (PSI) [Sovran et al., 2011] and snapshot isolation (SI) [Berenson et al., 1995].

Let us introduce our global kv-stores and partial client views by showing that we can reproduce
the lost update anomaly given by PLU. Our kv-stores are functions mapping keys to lists of
versions, where the versions record all the values written to each key together with the meta-
data of the transactions that access it: for each version, it contains: (1) the transaction that
initially wrote the version; and (2) the set of transactions that read the version. In the PLU

example, for simplicity, the initial kv-store only comprises a single key k, with only one initial
version (0, t0, ∅), stating that k holds value 0, the version writer is the special initialisation
transaction t0, and the version reader set is empty. Fig. 3.1a depicts this initial kv-store, with
the version represented as a box sub-divided in three sections: the value 0; the writer t0; and

1we use sites to refer to abstract nodes or servers in distributed systems.
2Traditional relational databases often use the term isolation levels.

26

Chapter 3. Overview

k 7→ 0
t0

∅
(a) Initial kv-store

k 7→ 0
t0

{t}
1

t

∅
(b) The resulting kv-store after
client cl1 commits t

k 7→ 0
t0

{t}
1

t

∅
(c) The view of cl2 with only
the initial version

k 7→ 0
t0

{t, t′}
1

t

∅
1

t′

∅
(d) After t′ of client cl2 with view in (c) (lost
update anomaly)

k 7→ 0
t0

{t}
1

t

{t′}
2

t′

∅
(e) After t′ of client cl2 with view in (b)

Figure 3.1: Example key-value stores (a, b, d, e) and client views (b, c)

the reader set ∅.

First, suppose that cl1 commits Inc on Fig. 3.1a. It does this by choosing a fresh transaction
identifier, t, and then proceeds with Inc (x, k). The transaction reads the initial version of k
with value 0 and then writes a new value 1 for k. The resulting kv-store is depicted in Fig. 3.1b,
where the reader set of initial version of k has been updated to reflect that it has been read by
t and a new version carrying value 1 has been added.

Second, client cl2 commits Inc on Fig. 3.1b. As there are now two versions available for k, we
must determine the version from which cl2 fetches its value, before executing Inc (x, k). This
is where client views come into play. Intuitively, a view of client cl2 comprises those versions
in the kv-store that are visible to cl2: that is, those that can be read by cl2. If more than one
version is visible, then the newest (right-most) version is selected, modelling the last-write-wins
resolution policy used by many distributed database [Vogels, 2009]. In our example, there are
two view candidates for cl2 when running Inc (x, k) on Fig. 3.1b: (1) one containing only
the initial version of k depicted in Fig. 3.1c; and (2) the other containing both versions of k
depicted in Fig. 3.1b. As we will explain in Section 4.1, views must include the initial version
of each key. With view in Fig. 3.1c, client cl2 chooses a fresh transaction identifier t′, reads
the initial value 0 and writes a new version with value 1, which yields the kv-store depicted in
Fig. 3.1d. Such a kv-store does not contain a version with value 2, despite two increments on
k, producing the lost update anomaly. For (2), client cl2 reads the newest value 1 and writes a
new version with value 2, which yields the kv-store depicted in Fig. 3.1e.

To avoid undesirable behaviour, such as the lost update anomaly, we use an execution test
that restricts the possible update at the point of the transaction commit. One such test is to
enforce a client to commit a transaction writing to k if and only if its view contains all versions

27

Chapter 3. Overview

available in the global state for k. This is captured by the following predicate

PreClosed

K, u,
⋃

k∈{k′ | (W,k′,_)∈F}

WW−1
K (k)

 (UA)

The predicate PreClosed (K, u, R) asserts that the view u on the kv-store K must be prefix
closed with respect to the relation R. The write-write dependency relation (t, t′) ∈ WWK,
similarly to the relation defined on dependency graphs, means that t′ overwrites to a key
previous written by t. For example in the kv-store K presented in Fig. 3.1b, transaction t

overwrites the initialisation version, (t0, t) ∈ WWK. The notation R? denotes the reflexivity
of the relation R. Our semantics uses fingerprints to capture the effect of transactions. A
fingerprint F is the read-write set of a transaction, which contains, for each key, the first read
before any subsequent writes and the last write. For example, given the view in Fig. 3.1c,
the fingerprint for the increment transaction for client cl2 is {(R, k, 0) , (W, k, 1)}: that is, the
transaction reads the key k with value 0 and writes the key with value 1. This means that if
the view u includes versions written by a transaction t, and if (t′, t) ∈ R, then u must include
versions written by t′. By Eq. (UA), it prevents cl2 from running Inc (x, k) on the kv-store
depicted in Fig. 3.1b with the view depicted in Fig. 3.1c that contains the initial version of k
written by t0. Instead, the view of cl2 must contain both versions of k, since cl2 writes a new
version to key k and (t0, t) ∈ WWK (k). Thus Eq. (UA) enforce cl2 to write a version with value
2 after running Inc (x, k). This particular test corresponds to update atomic (UA) that enforces
write-conflict-freedom of distributed kv-stores: at most one concurrent transaction can write to
a key at any one time. We will give all the formal definitions in Chapter 4.

The situation becomes more complicated when the library contains multiple counters where
each client can read and increments several counters in one session. For instance, consider the
following program:

PLF ≡

(
cl1 : [wt (k1, 1)] ; [wt (k2, 1)] || cl2 : [x := rd (k1) ; y := rd (k2)]

|| cl3 : [x := rd (k1) ; y := rd (k2)]

)
.

For simplicity, we assume that the initial kv-store contains two keys (Fig. 3.2a). Suppose that
cl1 executes first the transactions t and t′ that updates k1 and k2 to values 1 respectively.
This results in k1 and k2 having two versions with values 0 and 1 each. Client cl2 executes its
transaction t′′, using a view that contains both versions of k1, but only the initial version of
k2 and therefore client cl2 reads 1 for k1 and 0 for k2: that is, cl2 observes the update of k1
happening before the increment of k2. Finally, cl3 executes its transaction t∗ using a view that
contains both versions for k2, but only the initial version of k1 and therefore client cl3 reads 0

for k1 and 1 for k2, that is, cl3 observes the increment of k2 happening before the increment of
k1. This behaviour is known as the long fork anomaly (Fig. 3.2b).

The long fork anomaly is disallowed under strong models such as serialisability (SER) and

28

Chapter 3. Overview

k1 7→ 0
t0

∅
k2 7→ 0

t0

∅
(a) Initial kv-store

k1 7→ 0
t0

{t∗}
1

t

{t′′}
k2 7→ 0

t0

{t′′}
1

t′

{t∗}
(b) Transactions t′′ and t∗ observe the update to k1 and
k2 in different order (long fork anomaly)

Figure 3.2: Multiple counter example

snapshot isolation (SI), but is allowed under weaker models such as parallel snapshot isolation
(PSI), causal consistency (CC) and update atomic (UA). To capture such consistency models
and rule out the long fork anomaly as a possible result of PLF, we must strengthen the execution
test associated with the kv-store. For SER, we strengthen the execution test by ensuring that
a client can execute a transaction only if its view contains all versions available in the global
state, captured by the following predicate

PreClosed
(
K, u,WW−1

K
)
.

For SI, the candidate execution test recovers the order in which updates of versions have been
observed by different clients:

PreClosed
(
K, u, (WRK ∪ SO ∪ WWK)

+;RWK
?
)

where: (1) write-read dependency relation, such as (t, t′′) ∈ WRK in Fig. 3.2b, states that
a transaction, t, reads a version written by another transaction, t′′; (2) session order, SO,
determines, for each client cl, the commit order of transactions of cl; and (3) read-write an-
ti-dependency relation, such as (t∗, t) ∈ RWK, in Fig. 3.2b, states that a transaction, t∗, reads a
version that has been overwritten by another transaction, t. Given this strengthening, client cl3
must observe the second version of k1, because t

WRK−−−→ t′′
RWK−−−→ t′ Under such strengthened

execution tests for SER and SI, in the PLF example, cl2 cannot observe 1 for k2 after observing
0 for k1, if cl1 has already established that the increment on k2 happens after the one of k1.
We will give more detail about the formal definitions of many execution tests for well-known
consistency models in Chapter 4.

In Chapter 4 we give formal definition of our semantics and many examples of execution tests
and their associated consistency models on kv-stores. In Chapter 5, we show that our definitions
of consistency models use execution tests are equivalent to the declarative definitions on abstract
executions in the literature. To show the applications of our operational semantics, we use it
to verify several distributed protocols (Chapter 6) and prove the invariants of transactional
libraries (Chapter 7).

29

Chapter 3. Overview

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
r1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
r2

(a) An initial COPS state with two replicas (r1, r2) where each replica contains two keys (k1, k2)
with the initial versions

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v1, (t1, r1), ∅)

r1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v

′
1, (t1, r2), ∅) (k2, v2, (t2, r2), {(k1, t1, r2)})

r2

[wt (k1, v1)] [wt (k1, v′1)]

[wt (k2, v2)]

Timeline

(b) Clients commit a new version of k1 carrying value v1 to replica r1 and two new versions to r2
respectively and the new versions in r1 and r2 have not yet been synchronised to each other

Figure 3.3: Examples of COPS states

3.2 Application: Verification of Implementations

Kv-stores and views faithfully abstract the state of geo-replicated and partitioned databases,
and execution tests provide a powerful abstraction of the synchronisation mechanisms enforced
by these databases when committing a transaction. This makes it possible to use our semantics
to verify the correctness of distributed database protocols. We demonstrate this by showing
that the replicated database, COPS [Lloyd et al., 2011], satisfies causal consistency and the
partitioned database, Clock-SI [Du et al., 2013], satisfies snapshot isolation. We present an
intuitive account of how we verify the COPS protocol using trace refinement. We refer the
reader to Section 6.1 for the full details. In Section 6.2, we apply the same method to verify
Clock-SI.

COPS is a fully replicated database, with each replica storing multiple versions of each key as
shown in Fig. 3.3b. Each COPS version ν such as the version (k1, v1, (t1, r1), ∅) in Fig. 3.3b,
contains a key (k1), a value (v1), a unique time-stamp (t1, r1) denoting when a client first
wrote the version to the replica, and a set of dependencies (d = ∅), written DepSetOf (ν).
The time-stamp associated with a version ν has the form (t, r), where r identifies the replica
that committed ν, and t denotes the local time when r committed ν. Each dependency in
d = DepSetOf (ν) comprises a key and the time-stamp of the version on which ν directly
depends. We define the DEP relation, (t, r) DEP−−→ (t′, r′), to denote that the version identified
by (t, r) is included in the dependency set of the version identified by (t′, r′). COPS assumes a
total order over replica identifiers. As such, versions can be totally ordered lexicographically.

The COPS API provides two operations: put (k, v) for writing to a single key and read (K)

for atomically reading from multiple keys. Operations from a client is processed by a single

30

Chapter 3. Overview

replica. Each client maintains a context, which is a set of dependencies tracking the versions
the client observes.

We demonstrate how a COPS client cl interacts with a replica through the following example:

Pcops−cl ≡ cl : put (k1, v1) ; read ([k1, k2])

For brevity, we assume that there are two keys, k1 and k2, and two replicas, r1 and r2, where
r1 < r2 (Fig. 3.3a). We assume that client cl connects to replica r1 and initialises its local
context as û = ∅. To execute its first single-write transaction, cl requests to write v1 to k1 by
sending the message (k1, v1, d), where d = û, to its associated replica r1 and awaiting a reply.
Upon receiving the message, r1 produces a monotonically increasing local time t1, and uses it to
install a new version ν=(k1, v1, (t1, r1), d), as shown in Fig. 3.3b. Note that the dependency set
of ν is the cl context (d = ∅). Replica r1 then sends the time-stamp (t1, r1) back to cl1, and cl1

in turn incorporates (k1, t1, r1) in its local context, that is, cl observes its own write. Finally, r1
propagates the written version to other replicas asynchronously by sending a synchronisation
message using causal delivery: when a replica r′ receives a version ν ′ from another replica r, it
waits for all ν ′ dependencies to arrive at r′, and then accepts ν ′. As such, the set of versions
contained in each replica is closed with respect to the DEP relation. In the example above,
when other replicas receive ν from r1, they can immediately accept ν as DepSetOf (ν) = ∅.
Note that replicas may accept new versions from different clients in parallel.

To execute its second multi-read transaction, client cl requests to read from the k1, k2 keys by
sending the message {k1, k2} to replica r1 and awaiting a reply. Upon receiving this message, r1
builds a DEP-closed snapshot (a mapping from {k1, k2} to values) in two phases as follows. First,
r1 optimistically reads the most recent versions for k1 and k2, one at a time. This process may
be interleaved with other writes and synchronisation messages. For example, Fig. 3.4 depicts
a scenario where r1: (1) first reads (k1, v1, (t1, r1), ∅) for k1 (highlighted); (2) then receives two
synchronisation messages from r2 depicted in Fig. 3.4b, containing versions (k1, v

′
1, (t1, r2), ∅)

and (k2, v
′
2, (t2, r2), {(k1, t1, r2)}); and (3) finally reads (k2, v′2, (t2, r2), {(k1, t1, r2)}) for k2 (high-

lighted in Fig. 3.4c). As such, the current snapshot for {k1, k2} are not DEP-closed in the sense
that (k2, v′2, (t2, r2), {(k1, t1, r2)}) depends on a k1 version with time-stamp (t1, r2) which is big-
ger than (t1, r1) for k1. To remedy this, after the first phase of optimistic reads, r1 combines
(unions) all dependency sets of the versions from the first phase as a re-fetch set, and uses it
to re-fetch the most recent version of each key with the biggest time-stamp from the union
of the re-fetch set and the versions from the first phase. For instance, in Fig. 3.4d, replica
r1 re-fetches the newer version (k1, v

′
1, (t1, r2), ∅) for k1. Finally, the snapshot obtained after

the second phase is sent to the client, and then added to the client context. For their specific
implementation, Lloyd et al. [2011] informally argue that the snapshot sent to the client is
causally consistent. By contrast, we verify the COPS protocol using our operational definition
of causal consistency on our kv-store.

31

Chapter 3. Overview

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v1, (t1, r1), ∅)

r1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v

′
1, (t1, r2), ∅) (k2, v2, (t2, r2), {(k1, t1, r2)})

r2

[
x := rd (k1) ; //read v1
x := rd (k2) ;

]Timeline

(a) Replica r1 optimistically fetches the newest version for k1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v1, (t1, r1), ∅) (k1, v

′
1, (t1, r2), ∅)

(k2, v2, (t2, r2), {(k1, t1, r2)})

r1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v

′
1, (t1, r2), ∅) (k2, v2, (t2, r2), {(k1, t1, r2)})

r2

· · ·

Message 1: (k1, v
′
1, (t1, r2), ∅)

Message 2: (k2, v2, (t2, r2), {(k1, t1, r2)})

Timeline

(b) Replica r1 receives two individual synchronisation messages from r2

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v1, (t1, r1), ∅) (k1, v

′
1, (t1, r2), ∅)

(k2, v2, (t2, r2), {(k1, t1, r2)})

r1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v

′
1, (t1, r2), ∅) (k2, v2, (t2, r2), {(k1, t1, r2)})

r2

· · ·[
x := rd (k1) ; //read v1
x := rd (k2) ; //read v2

]
Timeline

(c) Replica r1 optimistically fetches the newest version for k2

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v1, (t1, r1), ∅) (k1, v

′
1, (t1, r2), ∅)

(k2, v2, (t2, r2), {(k1, t1, r2)})

r1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v

′
1, (t1, r2), ∅) (k2, v2, (t2, r2), {(k1, t1, r2)})

r2

· · ·[
x := v′1;
x := v2;

]
Timeline

(d) Replica r1 re-fetches a causally consistent snapshot for k1, k2 using the dependency sets.

Figure 3.4: Read operation on [k1, k2]

32

Chapter 3. Overview

To prove that COPS satisfies causal consistency, we give an operational semantics for COPS
that is faithful to the protocol, which allows fine-grained reads and writes, and show that
COPS traces can be refined to traces in our semantics under causal consistency in three steps:
(1) every COPS trace can be transferred to a normalised COPS trace, in which multiple reads
of a transaction are not interleaved by other transactions; and (2) the normalised COPS trace
can be refined to traces in our semantics, in which (3) each step satisfies ETCC.

The COPS operational semantics describes transitions over abstract states Θ comprising a set
of replicas, a set of client contexts and a program. For instance, the COPS trace that produces
Figs. 3.3 and 3.4 is depicted in Fig. 3.5a, stating that given client cl and replica r1: (1) cl writes
version (W, k1, (t1, r1)) to r1; (2) cl starts a multi-read transaction (s); (3) cl reads version
(R, k1, (t1, r1)) from r1; (4) r1 receives synchronisation messages (sync); (5) cl reads version
(R, k2, (t2, r2)) from r2; (6) cl enters the second phase of the multi-read transaction (p); (7) an
arbitrary step ι interferes; (8) cl re-fetches the version (R, k1, (t1, r2)) from r2 and puts it into
the snapshot; (9) an arbitrary step ι′ interferes; (10) cl puts the version (R, k2, (t2, r2)) into the
snapshot; (11) cl reads the values in the snapshot as the final reads for k1 and k, and commits
the multi-read transaction (e).

Recall that a multi-read transaction is not executed atomically in the replica, which is captured
by multiple read transitions in the trace. For example, the ι and ι′ steps in Fig. 3.5a interleave
the multi-read transaction from cl. Note that the optimistic reads are not observable to the
client and thus it suffices to show that the reads from the second re-fetch phase are atomic.
To show this, we normalise the trace as follows. For any multi-read transaction, we move all
reads from the re-fetch phase to the right towards the return step e, so that these reads are
no longer interleaved by others. An example of a normalised trace is given in Fig. 3.5b. For
any multi-read transaction, the re-fetch phase can only read a version committed before the
p step. For example, in Fig. 3.5a the multi-read transaction from cl can only read versions
in Θ5. As such, normalising traces does not alter the returned versions of transactions. After
normalisation, transactions in the resulting trace can be seen as if executed atomically.

We next show that normalised COPS traces can be refined to traces in our semantics. To do
this, we encode the abstract COPS states Θ as configurations in our operational semantics
(Fig. 3.5d). We map all COPS replicas to a single kv-store. The writer of a mapped version is
uniquely determined by the time-stamp of the corresponding COPS version, while its reader set
can be recovered by annotating read-only transactions in the traces: for example, we annotate
the read-only transaction from cl in the trace in Fig. 3.5d with trd. The COPS state in Fig. 3.3b
can be encoded as the kv-store depicted in Fig. 3.5c. Similarly, as the context of a client cl

identifies the set of COPS versions that cl sees, we can project COPS client contexts to our
client views over kv-stores. For example, the contexts of cl before and after committing its
second multi-read transaction in PCOPS is encoded as the client view depicted in Fig. 3.5d.

We finally show that every step in the kv-store trace satisfies ETCC. Note that existing verification

33

Chapter 3. Overview

Θ0
cl,r1:(W,k1,(t1,r1))−−−−−−−−−−→ Θ1

cl,r1:s−−−→ Θ2
cl,r1:(R,k1,(t1,r1))−−−−−−−−−−→ Θ3

r1:sync−−−−→ Θ4
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−→

Θ5
cl,r1:p−−−→ Θ6

ι−→ Θ7
cl,r1:(R,k1,(t1,r2))−−−−−−−−−−→ Θ8

ι′−→ Θ9
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−→ Θ10

cl,r1:e−−−→ · · ·

(a) The COPS trace that corresponds Figs. 3.3 and 3.4

Θ′
5

ι−→ Θ′
6

ι′−→ Θ′
7

cl,r1:p−−−→ Θ′
8

cl,r1:(R,k1,(t1,r2))−−−−−−−−−−→ Θ′
9

cl,r1:(R,k2,(t2,r2))−−−−−−−−−−→ Θ′
10

cl,r1:e−−−→ · · ·

(b) The normalised COPS trace

k1 7→ v0
(t0, r0)

∅
v1

(t1, r1)

∅
v′1

(t1, r2)

∅
k2 7→ v0

(t0, r0)

∅
v2

(t2, r2)

∅
(c) The kv-store encoding of Fig. 3.3a

k1 7→ v0
(t0, r0)

∅
v1

(t1, r1)

∅
v′1

(t1, r2)

∅
k2 7→ v0

(t0, r0)

∅
v2

(t2, r2)

∅

k1 7→ v0
(t0, r0)

∅
v1

(t1, r1)

∅
v′1

(t1, r2)

{trd}
k2 7→ v0

(t0, r0)

∅
v2

(t2, r2)

{trd}

(d) The step encoding the multi-read transaction in Fig. 3.5a, and views (highlighted) encoding
of the client contexts before and after the transaction

Figure 3.5: Examples of a COPS trace, a normalised COPS trace and kv-store trace en-
coding

techniques [Cerone et al., 2015a; Crooks et al., 2017] require examining the entire sequence of
operations of a protocol to show that it implements a consistency model. By contrast, we only
need to look at how the state evolves after a single transaction is executed. One of the key idea of
the proof is to show that the cl context is always closed to the relation DEP, which contains the
relation RCC = SO ∪ WRK. Recall that SO is session order, and WRK is write-read dependency
relation. This means that the view u induced by cl context satisfy PreClosed (K, u, RCC). we
refer the reader to Section 6.1 for the full details.

3.3 Application: Invariants of Client Programs

The second application of our operational semantics is to prove invariant properties of client
programs under a weak consistency model. One of such properties is robustness. A library
is robust if for all its client programs P and all kv-stores K, if K is obtained by executing P
under a weak model, then K can also be obtained under the stronger model serialisability.
That is, the library clients have no observable weak behaviours. With declarative semantics,

34

Chapter 3. Overview

Robustness requires checking the shape of the graphs obtained from the whole program. By
contrast, we prove robustness via proving an invariant over kv-stores K: that is, the relation
WRK ∪ SO ∪ WWK ∪ RWK is acyclic. We prove the robustness of the single counter library
discussed above (PLU) against PSI, and the robustness of a multi-counter library and the banking
library of Alomari et al. [2008] against SI. We do the latter by proving general invariants that
guarantee robustness against our new proposed model WSI which is weaker than SI; hence our
robustness proof against WSI implies robustness against stronger models such as SI.

We further use our operational semantics to prove library-specific properties. In particular,
we show that a lock pattern is correct under PSI, in that it satisfies the mutual exclusion
guarantee, even though it is not robust. To do this, we simply encode such library-specific
guarantees as invariants of the library, and establish them at each step, as described above.
By contrast, establishing such library-specific properties using the existing techniques is more
difficult, because unlike the kv-stores in our operational semantics, existing techniques do not
directly record the library state. Instead, they record full execution traces, making them less
amenable for reasoning about such properties. All the detail is presented in Chapter 7.

35

Chapter 4

Operational Semantics

We introduce our interleaving operational semantics for atomic transactions. The abstract
machine states of our semantics comprises two key concepts (Section 4.1): (1) global, centralised
multi-versioning key-value stores (kv-stores), which are abstraction of states of databases, and
(2) partial client views, which are client observable states. In Section 4.2, we present the rules
of our operational semantics. This semantics is parametrised by an execution test, that give
rise to a consistency model. We then show examples of execution tests for many well-known
consistency models in Section 4.3.

Notation. In the definitions, the notation A 3 a and a ∈ A denote that the elements of A
are ranged over by a and its variants such as a′, a0, · · ·. The notation [A] denotes the set of lists
over A, and [a0, · · · , an] denotes a list. Given l ∈ [A], the notation l|i , denoting the (i + 1)th

element from the list, is defined by:

l|i def
=

 ai if l = [a0, · · · , ai, · · · , an] ,
undefined otherwise.

Note that the index starts from 0. Given two lists l, l′ ∈ [A], the notation l :: l′ denotes the
concatenation of the two lists. The notation |l| denotes the size of the list. The notation
l [i 7→ a] denotes the update of the (i + 1)th component to a. For a tuple p, the notation p|i

denotes the (i + 1)th component and p [i 7→ a] denotes the update of the (i + 1)th component
to a. The notation A → B, A −⇀ B and A fin−⇀ B denotes the set of total, partial and partial
finite functions from A to B respectively. For a function f ∈ A → B, (similarly for A −⇀ B and
A fin−⇀ B), a ∈ A and b ∈ B, the notation f [a 7→ b] denotes the update of the function defined by:

f [a 7→ b] (a′) def
=

 b if a′ = a,
f(a′) otherwise.

36

Chapter 4. Operational Semantics

4.1 Abstract States: Global Stores and Client Views

We formally define the abstract states of our semantics in this section, which consists of a global,
centralised key-value store (kv-store) and several independent partial client views. A kv-store
comprises key-indexed lists of versions which record the history of the key with values and
meta-data of the transactions that have accessed the version including the writer and readers.

Definition 4.1 (Client and transactional identifiers). The set of client identifiers, CID 3 cl,
is a countably infinite set. The set of transaction identifiers, TxID 3 t, is defined by: TxID def

=

{tncl | cl ∈ CID ∧ n ∈ N}. Let TxID0
def
= {t0}] TxID.

Subsets of TxID are ranged over by T, T ′, T1, · · ·. The transaction identifier t0 denotes the
initialisation transaction and tncl identifies a transaction committed by client cl with n being
used to determine the client session order.

Definition 4.2 (Session order). The session order, SO, is defined by:

SO def
=
{
(tncl, t

n′

cl)
∣∣∣ cl ∈ CID ∧ tncl, t

n′

cl ∈ TxID ∧ n < n′
}
.

Each version has the form ν = (v, t, T), where v is a value, the writer t identifies the transaction
that wrote v, and the reader set T identifies the transactions that read v.

Definition 4.3 (Keys, values and versions). Assume a countably infinite set of keys, Key 3 k,
and a countably infinite set of values, Value 3 v, such that (Key ∪ {v0}) ⊆ Value, where
v0 is the initialisation value. The set of versions, Version 3 ν, is defined by: Version def

=

Value × TxID0 × P (TxID). Let ValueOf (ν), WriterOf (ν) and ReadersOf (ν) return the first,
second and third components of ν. Given a transaction identifier t ∈ TxID, the notation t ∈ ν

is defined by: t ∈ {WriterOf (ν)} ∪ ReadersOf (ν).

Our global centralised key-value stores (kv-stores) keep track of all the history versions for each
key. These stores model the overall global state of a system. They provide an abstraction to
real-world distributed systems where versions are stored in distributed sites. For example, the
COPS replicated database (explained in Section 3.2) can be abstracted to centralised kv-stores.

Definition 4.4 (Kv-stores). A kv-store is a function K ∈ Key → [Version]. Given an index
i ∈ N, let K (k, i) denote the ith element of the list of versions of k, defined by: K (k, i)

def
= K (k)|i .

Given a transaction t and a kv-store K, the transaction is included in K, written t ∈ K, if and
only if t is either the writer or one of the readers of a version in K: t ∈ K def⇔ ∃k, i. t ∈ K (k, i) .

The initial kv-store, K0, is defined by: K0 (k)
def
= [(v0, t0, ∅)] for all k ∈ Key.

37

Chapter 4. Operational Semantics

Definition 4.5 (Well-formed kv-store). A kv-store K is well-formed, written WfKvs (K), if and
only if, for any k ∈ Key and i, i′ ∈ N,

ReadersOf (K (k, i)) ∩ ReadersOf (K (k, i′)) 6= ∅
∨ WriterOf (K (k, i)) = WriterOf (K (k, i′)) ⇒ i = i′ (4.1)

ValueOf (K (k, 0)) = v0 (4.2)
∀t, t′ ∈ TxID. t = WriterOf (K (k, i)) ∧ t′ ∈ ReadersOf (K (k, i)) ⇒ (t′, t) /∈ SO? (4.3)
∀t, t′ ∈ TxID. t = WriterOf (K (k, i)) ∧ t′ = WriterOf (K (k, i′)) ∧ i < i′ ⇒ (t′, t) /∈ SO? (4.4)

where R? denotes the reflexive closure of R. Let KVS 3 K denotes the set of well-formed
kv-stores.

We focus on kv-stores whose consistency model satisfies the snapshot property, ensuring that
a transaction reads and writes at most one version for each key (Eq. (4.1)). As explained
in Chapter 2, snapshot property is a common assumption for distributed databases. We also
assume that the version list for each key k has the initial version (the left-most version) carrying
the initialisation value v0, written by the initialisation transaction t0 (Eq. (4.2)). Finally, we
assume that the kv-store agrees with the session order of clients: (1) a client cannot read a
version of a key that has been written by a future transaction within the same session (Eq. (4.3));
and (2) the order in which versions are written by a client must agree with its session order
(Eq. (4.4)).

A global kv-store provides an abstract centralised description of updates associated with dis-
tributed kv-stores that is complete in that no update has been lost in the description. By
contrast, in both replicated and partitioned distributed databases, a client may have incom-
plete information about updates distributed between machines. For example, a COPS client
cl (explained in Section 3.2) only tracks versions that cl has accessed in its client context. We
model this incomplete information using a view of the kv-store which provides a partial record
of the updates observed by a client.

Definition 4.6 (Views). Given a well-formed kv-store K ∈ KVS, the set of views on a kv-store,
ViewOn (K) 3 u, is defined by:

ViewOn (K)
def
= {u ∈ Key → P (N) | WfView (K, u)} ,

where WfView (K, u) is defined by: for any k, k′ ∈ Key and i, i′ ∈ N,

0 ∈ u (k) , (4.5)
i ∈ u (k) ⇒ 0 ≤ i < |K (k)| , (4.6)
i ∈ u (k) ∧ WriterOf (K (k, i)) = WriterOf (K (k′, i′)) ⇒ i′ ∈ u (k′) . (4.7)

Given two views u, u′ ∈ ViewOn (K), the order between them is defined by: u v u′ def⇔ ∀k ∈

38

Chapter 4. Operational Semantics

Dom (K) . u (k) ⊆ u′(k). The set of views is View def
=
⋃

K∈KVS ViewOn (K). The initial view,
u0, is defined by: u0 = λk ∈ Key. {0}.

A well-formed view u on a kv-store K must contain the initial version of each key (Eq. (4.5))
and the indexes in u must be in range (Eq. (4.6). We require that a client view be atomic in
that it can see either all or none of the updates of a transaction (Eq. (4.7)).

A view provides an abstraction to client local information. In COPS protocol, each client
maintains a context that contains all the versions it has accessed. This information in the
context can be captured by our view.

Definition 4.7 (Configurations). A configuration, Γ ∈ Conf, is a pair (K,U) with a kv-store
K ∈ KVS, and a view environment on the kv-store K, defined by: U ∈ ViewEnvOn (K)

def
=

CID fin−⇀ ViewOn (K). Let ViewEnv def
=
⋃

K∈KVS ViewEnvOn (K). The set of initial con-
figurations, Conf0 ⊆ Conf, contains configurations of the form (K0,U0), where K0 is the
initial kv-store and U0 is an initial view environment defined by: for any client cl ∈ Dom (U),
U (cl) = u0.

A configuration is a pair comprising a kv-store and a function describing the views of a finite
set of clients. Given a configuration (K,U) and a client cl, if u = U (cl) is defined then, for each
k, the configuration determines the sub-list of versions in K that cl observes. If i, i′ ∈ u (k)

and i < i′, then cl observes the values carried by versions K (k, i) and K (k, i′), and it also sees
that the version K (k, i′) is more up-to-date than K (k, i). It is therefore possible to associate
a snapshot with the view u, which identifies, for each key k, the last version included in the
view. This definition assumes that the database satisfies the last-write-wins resolution policy,
employed by many distributed key-value stores. However, our formalism can be adapted to
capture other resolution policies.

Definition 4.8 (View snapshots). Given K ∈ KVS and u ∈ ViewOn (K), the snapshot of u

on K is a function, Snapshot (K, u) : Key → Value, defined by:

Snapshot (K, u)
def
= λk.ValueOf (K (k,Max (u (k)))) ,

where Max (u (k)) is the maximum element in u (k).

In the COPS protocol, a multi-read transaction constructs a snapshot step by step. In our
semantics, the construction steps are captured by Snapshot.

4.2 Operational Semantics

We define the program syntax in Section 4.2.1, the semantics for transactional commands in
Section 4.2.2, and the semantics for programs in Section 4.2.3. Our semantics is parametrised
by execution tests, which are formally defined in Section 4.2.4.

39

Chapter 4. Operational Semantics

4.2.1 Programming Language

We assume standard variable stacks which are total functions from variables to values. We
assume standard arithmetic expressions and boolean expressions Assume a countably infinite
set of variables Var 3 x. Recall the definition of values in Def. 4.3. We assume standard
arithmetic expressions and boolean expressions built from values and program variables. For
brevity, the evaluation of expressions has no side-effects.

Definition 4.9 (Stacks). The set of client-local stacks or just stacks, Stack 3 s, is defined by
Stack def

= Var → Value.

Definition 4.10 (Arithmetic and boolean expressions). The set of arithmetic expressions,
Expressions 3 E, is defined by the grammar:

E ::= v | x | E + E | E × E | . . .

The evaluation of an expression E with respect to stack s, written JEKs, is defined inductively
by:

JvKs def
= v JxKs def

= s(x) JE1 + E2Ks def
= JE1Ks + JE2Ks JE1 × E2Ks def

= JE1Ks × JE2Ks . . .

for x ∈ Var and v ∈ Value. The set of boolean expressions, Booleans 3 B, is defined by the
grammar:

B ::= true | false | E = E | E < E | B ∧ B | B ∨ B | ¬B | . . .

The evaluation of an expression B with respect to stack s, written JBKs, is defined inductively
by:

JtrueKs def
= true JfalseKs def

= falseJE1 = E2Ks def
= JE1Ks = JE2Ks JE1 < E2Ks def

= JE1Ks < JE2KsJB1 ∧ B2Ks def
= JB1Ks ∧ JB2Ks JB1 ∨ B2Ks def

= JB1Ks ∨ JB2Ks J¬BKs def
= ¬JBKs . . .

Other unary and binary operations, such as subtraction − for arithmetic expression and greater
or equal comparison ≥ for boolean expression, are defined analogously.

A program P is a finite partial function from client identifiers to sequential client commands.
For clarity, we often write C1 ‖ . . . ‖ Cn as syntactic sugar for a program P with n clients
associated with identifiers cl1 . . . cln, where each client cli executes Ci. Client commands or just
commands, are built up from atomic transactions of the form of [T] and primitive commands
for manipulating stacks.

Definition 4.11 (Programs, client commands and transactional commands). The set of pro-
grams, Progs 3 P, is defined by: Progs def

= CID fin−⇀ Commands, where the set of client com-

40

Chapter 4. Operational Semantics

mands, Commands 3 C, is defined by:

C ::= skip | Cp | [T] | C ; C | C + C | C∗ Cp ::= x := E | assume (B)

for x ∈ Var, E ∈ Expressions and B ∈ Booleans. The set of transactional commands,
Transactions 3 T, is defined by the grammar:

T ::= skip | Tp | T ; T | T + T | T∗ Tp ::= x := E | assume (B) | x := rd (E) | wt (E, E)

Client commands C comprise skip, primitive commands Cp, atomic transactions [T], and
standard compound constructs: sequential composition C; C ; non-deterministic choice C+C; and
finite iteration C∗. The if (B) C1 else C2 can be encoded as (assume (B);C1)+(assume (¬B);C2).
Primitive commands include variable assignment x := E and assume statements assume (B)
which can be used to encode conditionals. The primitive commands are used for computations
based on client-local variables and can hence be invoked without restriction. Transactional
commands T comprise skip, primitive transactional commands Tp, and the standard compound
constructs. Primitive transactional commands comprise primitive commands, lookup x :=

rd (E) and mutation wt (E, E) used for reading and writing to kv-stores respectively, which can
only be invoked as part of an atomic transaction.

4.2.2 Transaction Semantics

In our operational semantics, transactions are executed atomically: that is, reduced in one
step. This choice simplifies our semantics in that there is no fine-grained interleaving between
transactions. It just means that transactions can be treated as executed in one step from the
point of individual clients. However, it is still possible for an underlying implementation such
as COPS, to access the distributed kv-store in a fine-grained manner. In Section 3.2, we have
explained that read-only transactions are executed in a fine-grained method, however, clients
do not observe the intermediate steps. In Section 6.1, we give a formal proof that a fine-grained
COPS trace is equivalent to a coarse-grained trace in the sense that transactions are executed
atomically.

Intuitively, given a configuration Γ = (K,U), when a client cl executes a transaction [T], it
performs the following steps:

(1) the client constructs an initial snapshot σ of K using its view U (cl) as defined in Def. 4.8;

(2) the client executes T in isolation over σ accumulating the effects (the reads and writes)
of the execution of T; and

(3) the client commits the transaction [T] by incorporating these effects into K.

41

Chapter 4. Operational Semantics

We explain the semantics for executing T (step (2)) in this section. In Section 4.2.3, we explain
how to construct the initial snapshot (step (1)) and commit the transaction (step (3)). The rules
for executing transactional commands is given in Fig. 4.2. The machine state of a transaction
consists of a stack s, a transactional snapshot σ that tracks the current value for each key, and
a fingerprint F that tracks the effect of a transaction.

Definition 4.12 (Transactional snapshots). The set of transactional snapshots, Snapshot 3 σ,
is defined by: Snapshot def

= Key → Value.

Note that the view snapshot Snapshot (K, u) defined in Def. 4.8, is a transactional snapshot.
When the meaning is clear, we call a transactional snapshot a snapshot.

To capture the effects of executing a transaction T on a snapshot σ of kv-store K, we identify a
fingerprint of T on σ which captures the values that T reads from σ, and the values that T writes
to σ and intends to commit to K. Execution of a transaction in a given configuration (Def. 4.7)
may result in more than one fingerprint due to non-determinism, for example non-deterministic
choice T + T.

Definition 4.13 (Operations and Fingerprints). Let Op 3 o denote the set of read operations
(R) and write operations (W) defined by: Op def

= {(l, k, v) | l ∈ {R, W} ∧ k ∈ Key ∧ v ∈ Value}.
Let ϵ be the empty operation and Op0

def
= Op] {ϵ}. A fingerprint F is a set of operations,

F ⊆ Op. The set of well-formed fingerprints, Fp 3 F , is defined by:

Fp def
=

{
F

∣∣∣∣∣ F ⊆ Op ∧ ∀k ∈ Key.∀l ∈ {R, W} . ∀v, v′ ∈ Value.

{(l, k, v), (l, k, v′)} ⊆ F ⇒ v = v′

}
.

We use the empty operation ϵ to captures primitive commands that has no effect on kv-store.
A well-formed fingerprint, F ∈ Fp, contains at most one read operation and at most one write
operation for each key and contains no empty operation ϵ.

Fig. 4.1 presents the rules for transactional commands. The rules for compound transactional
commands are standard. The rule TChoice non-deterministically chooses one side. The rule
TIter either terminates the loop T∗ reducing to skip, or unwinds one step reducing to T ; T∗.
A sequence of transactional commands is executed from left to right as expected, modelled by
the rules TSeqSkip and TSeq.

The only non-standard rule is TPrimitive, which updates the snapshot and the fingerprint of
a transaction: (1) the premise (s, σ)

Tp
(s′, σ′) describes how executing Tp affects the local state

(the client stack s and the snapshot σ) of a transaction; and (2) the premise o = GetOp (s, σ, Tp)

identifies the operation associated with Tp, which can be a read, a write or an empty operation.
The fingerprint combination operation, F<Co, adds a read/write operation to a fingerprint and
ignores the empty operation ϵ.

42

Chapter 4. Operational Semantics

 : (Stack × Snapshot × Fp × Transactions)× (Stack × Snapshot × Fp × Transactions)

TPrimitive
(s, σ)

Tp
(s′, σ′) o = GetOp (s, σ, Tp)

(s, σ,F) , Tp (s′, σ′,F <C o) , skip

TChoice
i ∈ {1, 2}

(s, σ,F) , T1 + T2 (s, σ,F) , Ti

TIter

(s, σ,F) , T∗ (s, σ,F) , skip + (T ; T∗)

TSeqSkip

(s, σ,F) , skip ; T (s, σ,F) , T

TSeq
(s, σ,F) , T1 (s′, σ′,F ′) , T′

1

(s, σ,F) , T1 ; T2 (s′, σ′,F ′) , T′
1 ; T2

Figure 4.1: Operational semantics of transactional commands (Tp is defined in Def. 4.14,
GetOp is defined in Def. 4.15 and <C is defined in Def. 4.16)

Definition 4.14 (Transactional local state transition relation). Given a primitive transactional
command Tp ∈ Transactions, the transition relation over client local stacks and transactional
snapshots, Tp ⊆ (Stack × Snapshot)× (Stack × Snapshot), is defined by:

(s, σ) x:=E (s [x 7→ JEKs] , σ), (s, σ)
assume(B)

(s, σ) if JBKs = true,

(s, σ)
x:=rd(E)

(s [x 7→ σ (JEKs)] , σ), (s, σ)
wt(E,E′)

(s, σ [JEKs 7→ JE′Ks]).
The assignment, x := E, evaluates the expression E and assigns the value to the local variable
x. The assume command, assume (B), does not affect the stack nor snapshot if the boolean B is
evaluated to be true. Otherwise the boolean B is false and there is no transition. The look-
up, x := rd (E), reads from the key JEKs, that is, the evaluation of the expression E, and assign
the value associated with the key, σ (JEKs), to the local variable x. The mutation, wt (E, E′),
updates the snapshot, assigning the key JEKs with a new value JE′Ks.
Definition 4.15 (GetOp function). Given a stack s ∈ Stack and a transactional snapshot σ ∈
Snapshot, the operation associated with a primitive transactional command Tp ∈ Transactions
is defined by:

GetOp (s, σ, x := E) def
= ϵ, GetOp (s, σ, assume (E)) def

= ϵ,

GetOp (s, σ, x := rd (E)) def
= (R, JEKs, σ (JEKs)) , GetOp (s, σ, wt (E, E′))

def
= (W, JEKs, JE′Ks) .

where ϵ is the empty operation.

43

Chapter 4. Operational Semantics

The function GetOp (s, σ, Tp) defines the operation associated with every primitive transactional
command Tp: (1) the empty operation (ϵ) for the assignment and assume commands, because
these primitive command do not contribute to the fingerprint; (2) a read operation (label R)
for look-up; and (3) a write operation (label W) for mutation.

Definition 4.16 (Fingerprint combination operations). Given the operation definition in
Def. 4.13, the fingerprint combination operation, <C : P (Op) × Op0 → P (Op), is defined
by:

F <C (R, k, v) def
=

F] {(R, k, v)} if ∀l ∈ {R, W} .∀v′ ∈ Value. (l, k, v′) /∈ F

F otherwise

F <C (W, k, v) def
= (F \ {(W, k, v′) | v′ ∈ Value})] {(W, k, v)} ,

F <C ϵ
def
= F .

The fingerprint combination operation, F <C o, accumulates the effect of the operation o to the
fingerprint F . A read operation from k is added to a fingerprint F only if F has no entry for k,
thus only recording the first value read for k (before a subsequent write). In contrast, a write
to k is always added to F by removing the existing writes, thus only recording the last write
to k. The <C preserves the well-formedness of fingerprints (Prop. A.1 on page 183).

4.2.3 Command Semantics and Program Semantics

The command semantics describes transitions of the form (K, u, s) , C (cl,_)−−−→ET (K′, u′, s′) , C′,
stating that given the kv-store K, client view u and client-local stack s, the client cl may
execute command C for one step, updating the kv-store to K′, the client-local stack to s′, and
the command to its continuation C′. The rules for commands are given in Fig. 4.2. The rules
for compound commands are standard. The only non-standard rule is CAtomicTrans.

Each transition step is labelled with the client cl and the information about the transition,
which is either of the form (cl, •) denoting that cl executes a primitive command that requires
no access to K, or (cl, u,F) denoting that cl commits an atomic transaction with final fingerprint
F under the view u.

Definition 4.17 (Command semantics labels). The set of kv-store semantics labels, PLabels 3
ι, is defined by:

PLabels def
= {(cl, •) | cl ∈ CID}]

{(cl, u,F) | ∃K ∈ KVS. cl ∈ CID ∧ F ∈ Fp ∧ u ∈ ViewOn (K)}

The semantics is parametric in the choice of execution test ET, which is used to generate the
consistency model on kv-stores under which a transaction can execute. In Chapter 5, we give

44

Chapter 4. Operational Semantics

−→ET : (KVS × View × Commands)× PLabels × (KVS × View × Commands)

CAtomicTrans
u v u′′ σ = Snapshot (K, u′′)

(s, σ, ∅) , T ∗ (s′, σ′,F) , skip CanCommitET (K, u′′,F)
t ∈ NextTxID (cl,K) K′ = UpdateKV (K, u′′,F , t) ViewShiftET (K, u′′,K′, u′)

(K, u, s) , [T]
(cl,u′′,F)−−−−−→ET (K′, u′, s′) , skip

CPrimitive
s

Cp
s′

(K, u, s) , Cp
(cl,•)−−−→ET (K, u, s′) , skip

CChoice
i ∈ {1, 2}

(K, u, s) , C1 + C2
(cl,•)−−−→ET (K, u, s) , Ci

CIter

(K, u, s) , C∗ (cl,•)−−−→ET (K, u, s) , skip + (C ; C∗)

CSeqSkip

(K, u, s) , skip ; C (cl,•)−−−→ET (K, u, s) , C

CSeq
(K, u, s) , C1

ι−→ET (K′, u′, s′) , C′
1

(K, u, s) , C1 ; C2
ι−→ET (K′, u′, s′) , C′

1 ; C2

Figure 4.2: Operational semantics of sequential client commands parametrised by ET
(Snapshot, NextTxID and UpdateKV are defined in Defs. 4.8, 4.19 and 4.20, and Cp is
defined in Def. 4.18)

many examples of execution tests for well-known consistency models. In Section 5.5, we prove
that our definitions of consistency models using execution tests are equivalent to the existing
declarative definitions of consistency models.

In Fig. 4.2, the rule for primitive commands, CPrimitive, depends on the transition relation,
Cp ⊆ Stack×Stack, that simply describes how the primitive command Cp affects a client local
stack. As the rule CPrimitive only changes the client local state, this rule is labelled with
(cl, •).

Definition 4.18 (Primitive command transition relation). Given a primitive command Cp ∈
Commands, the transition relation over client local stacks, Cp ⊆ Stack × Stack, is defined by:

s x:=E s [x 7→ JEKs] , s
assume(B)

s if JBKs = true.

Fig. 4.2 gives the operational semantics of commands. The rules for compound commands are
standard. Rules CChoice, CIter and CSeqSkip are associated with primitive command
label (cl, •) because they only affect the commands. The label for CSeq is the same as the
premise.

45

Chapter 4. Operational Semantics

The only interesting rule is the CAtomicTrans rule, which describes the execution of an
atomic transaction under the execution test ET. The first premise, u v u′′, states that the
current client view u of the executing command may be advanced to a newer view u′′. This
premise captures that a client, prior to committing a transaction, receives synchronisation mes-
sages. Given the new view u′′, the transaction obtains the snapshot σ of the kv-store K, and
executes T locally to completion (skip), updating the stack to s′ while accumulating the fin-
gerprint F . These steps are given by the second, σ = Snapshot (K, u′′), and the third premise,
(s, σ, ∅) , T ∗ (s′, σ′,F) , skip, of CAtomicTrans. Note that the resulting snapshot σ′ is
ignored as the effect of the transaction is recorded in the fingerprint F . This is because we focus
on consistency models satisfying the snapshot property, hence intermediate steps of a trans-
action are not observable to other transactions. Prior to commit, the CanCommitET (K, u′′,F)

premise ensures that under the execution test ET, the final fingerprint F of the transaction is
compatible with the (original) kv-store K and the client view u′′, which is used to take the initial
snapshot, and thus the transaction can commit. Note that the CanCommit check is parametrised
by the execution test ET. This is because the conditions checked upon committing depend on
the consistency model under which the transaction is to commit. In Section 4.3, we define
CanCommit for several execution tests associated with well-known consistency models.

Now the client cl is ready to actually commit the transaction. This results in a new kv-store
K′ and the client view u′′ shifts to a new view u′:

(1) pick a fresh transaction identifier t ∈ NextTxID (cl,K) that is greater than any previously
used identifiers;

(2) compute the new kv-store via K′ = UpdateKV (K, u′′,F , t); and

(3) shift the view to u′, checking if it is permitted under execution test ET using predicate
ViewShiftET (K, u′′,K′, u′).

Definition 4.19 (Fresh transaction identifiers). Given a kv-store K ∈ KVS, the set of next
available transaction identifiers for a client cl, written NextTxID (cl,K), is defined by:

NextTxID (cl,K)
def
= {tncl | tncl ∈ TxID ∧ ∀m ∈ N.∀tmcl ∈ TxID. tmcl ∈ K ⇒ m < n} .

The fresh transaction identifier for a client cl must be strictly greater than all existing identifiers
in the kv-store for the same client cl. This ensures that SO can be determined by the transaction
identifiers. Note that the next transaction can be annotated by any number that is bigger
than any previous ones, instead of simply adding by ONE. This is useful when we verify
implementation protocols in Chapter 6: many implementation protocols use relative times,
which do not increase by one.

Definition 4.20 (Kv-store update). Given a kv-store K ∈ KVS, a view u ∈ ViewOn (K), a

46

Chapter 4. Operational Semantics

k 7→ 0
t0

{t′}
1

t′

∅
k 7→ 0

t0

{t′, t}
1

t′

∅
(a) UpdateKV (K, u, {(R, k, 0)}] F , t) (view u is highlighted)

k 7→ 0
t0

{t′}
1

t′

∅
k 7→ 0

t0

{t′, t}
1

t′

∅
2

t

∅
(b) An example of UpdateKV (K, u, {(W, k, 2)}] F , t) (view u is highlighted)

Figure 4.3: An example of UpdateKV

fingerprint F ∈ Fp and a fresh transaction identifier t ∈ TxID, the new kv-store is defined by:

UpdateKV (K, u, ∅, t) def
= K,

UpdateKV (K, u, {(R, k, v)}] F , t)
def
= let i = Max< (u (k)) and (v, t′, T) = K (k, i) in

let V = K (k) [i 7→ (v, t′, T ∪ {t})] in

UpdateKV (K [k 7→ V] , u,F , t) ,

UpdateKV (K, u, {(W, k, v)}] F , t)
def
= UpdateKV (K [k 7→ (K (k) :: [(v, t, ∅)])] , u,F , t).

The function UpdateKV (K, u,F , t) describes how the fingerprint F of the transaction t is ex-
ecuted under the view u updates the kv-store K: (1) for each read (R, k, v) ∈ F , it adds t to
the reader set of the last version of k in u, which corresponds to the last-write-wins resolution
policy, depicted in Fig. 4.3a; and (2) for each write (W, k, v), it appends a new version (v, t, ∅)
to K (k), depicted in Fig. 4.3b.

The function UpdateKV is well-defined in that for any K, u,F , t, cl such that K and F are well-
formed, u ∈ ViewOn (K) and t ∈ NextTxID (K, cl), the resulting kv-store UpdateKV (K, u,F , t)

is a well-formed kv-store.

Theorem 4.21 (Well-defined UpdateKV). Given a well-formed kv-store K ∈ KVS, a view
on the kv-store u ∈ ViewOn (K), a well-formed fingerprint F ∈ Fp and a fresh transaction
identifier t ∈ NextTxID (K, cl) for a client cl, the new kv-store K′ = UpdateKV (K, u,F , t) is a
uniquely defined and well-formed kv-store.

Proof sketch. Intuitively, the fingerprint F contains at most one read and one write per key,
therefore the resulting kv-store must be unique defined. The fresh transaction identifier t is
strictly greater than any existing identifiers in K for the same client cl, and the view is a well-
formed view on the kv-store K, therefore the resulting kv-store must be well-formed. The full
detail is given in appendix A.1 on page 183. �

Observe that as with CanCommit, the ViewShift predicate is parametrised by the execution
test ET. Again, this is because the conditions checked for shifting the client view depend on the

47

Chapter 4. Operational Semantics

−→ET : (KVS × ViewEnv × ClientEnvs × Progs)× Labels ×
(KVS × ViewEnv × ClientEnvs × Progs)

Prog
u = U (cl) s = E (cl) C = P (cl) ι = (cl, · · ·) (K, u, s) , C ι−→ET (K′, u′, s′) , C′

(K,U , E) , P ι−→ET (K′,U [cl 7→ u′] , E [cl 7→ s′]) , P [cl 7→ C′]

Figure 4.4: Operational semantics of programs

consistency model. In Section 4.3, together with CanCommit, we define ViewShift for several
execution tests associated with well-known consistency models.

Instead of the CAtomicTrans rule, it would be possible to separate the non-deterministic
view shift, u v u′′ into a separate rule: that is a client can always non-deterministically
advance its view. This choice models client non-deterministically receiving an update from the
distributed system. However, many real-world distributed systems only passively respond to
client requests. We choose the approach in our CAtomicTrans rule where clients update
their views only when they commit a new transaction.

We focus on consistency models that satisfies snapshot property. For brevity, our semantics has
the snapshot property built in:

(1) a view u must be atomic in that it can see either all or none of the update of any
committed transaction (Eq. (4.7));

(2) the initial snapshot for a transaction, σ = Snapshot (K, u), contains the latest observable
value for each key, which means that σ contains either all or none of the updates from
other transactions; and

(3) the fingerprint of a transaction contains the first read before any write and the last write
for each key, which means that no internal operations are observable by other transactions.

The operational semantics of programs is given in Fig. 4.4, comprising rule Prog which captures
the execution of a program step P given configuration, (K,U) ∈ Conf, and client environment,
E ∈ ClientEnvs. A client environment E tracks the local stacks for clients.

Definition 4.22 (Client environments). The set of client environments, ClientEnvs 3 E, is
defined by: ClientEnvs def

= CID fin−⇀ Stack.

We assume that the domain of the client environment contains (the client view environment)
the domain of the program throughout the execution: Dom (P) ⊆ Dom (E) (Dom (P) ⊆ Dom (U),
respectively). This ensures that progress of our semantics: each client cl in the program P has

48

Chapter 4. Operational Semantics

its local variable stack E (cl) and view U (cl). Program transitions are simply defined in terms
of the transitions of their constituent client commands. This yields a standard interleaving
semantics for transactions of different clients: a client executes a transaction in an atomic
step without interference from the other clients. Given an execution test ET, a valid kv-store
program trace η of a program P is a finite trace induced by our operational semantics starting
a valid initial state (K0,U0), E0: that is, the domains of U0 and E0 contains the domain of P.

Definition 4.23 (First and Last functions). Given any trace t of the form s0 −→ · · · −→ sn,
functions First (t) and Last (t) are defined by: First (t) def

= s0 and Last (t) def
= sn.

Definition 4.24 (Program traces and reachable kv-stores). Given an execution test ET, and a
program P, the set of program traces, PTraces (ET, P, n) 3 η, is defined by:

PTraces (ET, P, 0) def
=

{
(K0,U0, E) , P

∣∣∣∣∣ U0 ∈ ViewEnvOn (K0)

∧ Dom (P) ⊆ Dom (U0) ∪ Dom (E)

}

PTraces (ET, P, n+ 1)
def
=

{
η

_−→ET (K,U , E) , P′

∣∣∣∣∣ η ∈ PTraces (ET, P, n)
∧ Dom (P′) ⊆ Dom (U) ∪ Dom (E)

}

and the set of reachable kv-stores, written JPKET, is defined by:

JPKET
def
= {K | ∃n.∃η ∈ PTraces (ET, P, n) . ((K,_,_),_) = Last (η)} .

A kv-store K is reachable with respect to a program P, written K ∈ JPKET , if and only if K is
the kv-store of the final state of a valid kv-store program trace of P. This notion defines the
expressibility of our semantics. In Section 5.4, we will show our semantics are equally expressive
as declarative semantics on abstract executions. This expressibility result is a foundation to
prove our definitions of consistency models are equivalent to declarative definitions on abstract
executions.

4.2.4 Execution test and ET-traces

We define consistency models for our kv-stores, by introducing the notion of an execution test
that specifies whether a client is allowed to commit a transaction in a given kv-store. Each
execution test induces a consistency model as the set of kv-stores obtained by having clients
non-deterministically commit transactions so long as the constraints imposed by the execution
test are satisfied. We explore a range of execution tests associated with well-known consistency
models in the literature. In this section, we formally define execution tests and traces induced
by them. In Section 4.3, we give examples of execution tests for several well-known consistency
models and, in Chapter 5, we demonstrate that our definitions of consistency models are equiv-
alent to the established axiomatic definitions over abstract executions [Burckhardt et al., 2012;
Cerone et al., 2015a] and dependency graphs [Adya, 1999].

49

Chapter 4. Operational Semantics

An execution test ET is a set of tuples of the form (K, u,F ,K′, u′), stating that, under ET, a
transaction with the fingerprint F and the given view u is allowed to commit to the kv-store
K, and resulting in the new kv-store K′ and the new view u′.

Definition 4.25 (Execution tests). Given a CanCommit and a ViewShift predicate, an execu-
tion test ET is a subset of KVS×View×Fp×KVS×View, such that: for all (K, u,F ,K′, u′) ∈ ET,

u ∈ ViewOn (K) ∧ u′ ∈ ViewOn (K′) (4.8)
∀k ∈ K.∀v ∈ Value. (R, k, v) ∈ F ⇒ K (k,Max< (u (k))) = v (4.9)
CanCommit (K, u,F) ∧ ViewShift (K, u,K′, u′) . (4.10)

Let CanCommitET and ViewShiftET denote the CanCommit and ViewShift predicates for ET
respectively. Let ExecutionTest 3 ET denote the set of all execution tests.

We use the notation (K, u)
F−→ET (K′, u′) as we can think of the ET tuple as a transition on

kv-stores and views. Note that the well-formed conditions enforce last-write-wins policy as the
value v read in the fingerprint for any key k must match with the value in the last version
for the key k in the view u: Eq. (4.9) requires that any read operation of the key k in the
fingerprint F must read from the last version contained in the view u. An execution test ET is
defined using two predicates CanCommitET and ViewShiftET , as shown in Eq. (4.10), that used
in the rule CAtomicTrans in Fig. 4.2 We give several examples of execution tests which give
rise to consistency models on kv-stores in Section 4.3.

Given an execution test ET, an ET-reduction of the form (K,U) ι−→ET (K′,U ′) is a labelled tran-
sition relation over configurations, where the label describes either an arbitrary view shift for
a client or the commitment of a fingerprint. The set of ET-traces contains all finite sequences
of ET-reductions starting from an initial configuration.

Definition 4.26 (ET-reduction and ET-traces). The set of ET-reduction labels, ETLabels 3 ι,
is defined by:

ETLabels def
= {(cl, u) | cl ∈ CID ∧ u ∈ View}] {(cl,F) | cl ∈ CID ∧ F ∈ Fp} .

Given an execution test ET, the ET-reduction is a labelled transition over configurations,
(K,U) ι−→ET (K′,U ′), defined by:

(1) if ι = (cl, u) for a client cl ∈ CID and a view u ∈ ViewOn (K), then

(K,U) (cl,u)−−−→ET (K,U [cl 7→ u]) (4.11)

and U (cl) v u; and

50

Chapter 4. Operational Semantics

(2) if ι = (cl,F) for a fingerprint F , then

(K,U) (cl,F)−−−→ET (K′,U [cl 7→ u]) (4.12)

where (K,U (cl))
F−→ET (K′, u) and K′ = UpdateKV (K,U (cl) ,F , t) (defined in Def. 4.20)

for t ∈ NextTxID (cl,K) (defined in Def. 4.19).

The set of ET-traces, ETTraces (ET) 3 τ , is defined by:

ETTraces (ET) def
=
⋃
n∈N

ETTracesN (ET, n)

ETTracesN (ET, 0) def
= {Γ0 | Γ0 ∈ Conf0}

ETTracesN (ET, n+ 1)
def
=
{
τ

ι−→ET Γ
∣∣∣ ι ∈ ETLabels

}
where the set of initial configurations Conf0 is defined in Def. 4.7, and the set of all traces
induced by execution tests is then defined by:

ETTraces def
=

⋃
ET∈ExecutionTest

ETTraces (ET) .

A transaction in an ET-trace is either a view-shift (Eq. (4.11)) or a transaction step (Eq. (4.12)).
An arbitrary client cl advances its view to a new view u, including more versions, in a view-shift
step; this intuitively analogous the client receive synchronisation messages. In a transaction
step, a client cl commits a fingerprint F , updating the kv-store to K′ and view to u, if this
transition satisfies the execution test ET, that is, (K,U (cl))

F−→ET (K′, u).

Following similar styles in dependency graphs and abstract executions, in which the consistency
models are defined in a way that independent from the programs, the consistency model induced
by an execution test ET, written ConsisModel (ET), is the set of all kv-stores in the ET-traces.

Definition 4.27 (Consistency models on kv-stores). The consistency model induced by an
execution test ET, written ConsisModel (ET), is defined by

ConsisModel (ET) def
= {K | ∃τ ∈ ETTraces (ET) . (K,_) = Last (τ)} .

In this thesis, we mainly use our operational semantics defined in Section 4.2, and kv-store
program traces and reachable kv-store JPKET defined in Def. 4.24. However, the definition of ET-
trace is an important intermediate step to show that our definition of consistency models using
execution tests for kv-stores are equivalent to the declarative definitions on abstract executions
(Chapter 5). ET-traces define the expressibility of the execution test ET, which not necessary
the same as the expressibility of our operational semantics under the ET, in which the latter
takes into account of programs. Also note that in the definition of ET-traces, the view-shifts and

51

Chapter 4. Operational Semantics

transaction commits are decoupled. In contrast, in our operational semantics (CAtomicTrans
in Fig. 4.2), view-shifts (the first premise in CAtomicTrans) and transaction commits are
combined in a single step. In Theorem 4.31, we present a non-trivial proof showing that these
two are equally expressive in the sense that ET-traces and operational semantics are equally
expressive in the sense that any kv-store K ∈ ConsisModel (ET) can be obtained as a result of
executing some program P under the execution test ET, and vice versa.

We first introduce normalised ET-traces, in which a transaction step of a client cl is followed
by a view-shift step of cl. We then show that every ET-trace τ has an equivalent normalised
ET-trace τ ′ and we can construct a program and a trace of this program from the normalised
ET-trace and vice versa. Two traces τ and τ ′ are equivalent, written τ ' τ ′ if the kv-stores
in the final states of the two traces are the same. A normalised ET-trace τ is a trace where
updates and view-shifts for a client must appear together.

Definition 4.28 (ET-trace equivalence). Two ET-traces τ, τ ∈ ETTraces are equivalent, writ-
ten τ ' τ ′, if and only if, ∃K ∈ KVS. Last (τ) = (K,_) ∧ Last (τ ′) = (K,_).

Definition 4.29 (Normalised ET-trace). A ET-trace τ ∈ ETTraces is normalised, written
NormalisedTrace (τ), is defined by:

NormalisedTrace (Γ0)
def⇔ true

NormalisedTrace
(
τ

ι−→ET Γ
ι′−→ET Γ′

)
def⇔ NormalisedTrace (τ)

∧ ∃cl ∈ CID.∃u ∈ View.∃F ∈ Fp.

(ι = (cl, u) ⇔ ι′ = (cl,F)).

Theorem 4.30 (Equivalent normal ET-traces). For any τ ∈ ETTraces, there exists an equiv-
alent normalised trace τ ∗, that is, τ ' τ ∗ and NormalisedTrace (τ ∗).

Proof sketch. We perform the following transformations over the trace τ until it is normalised:
for any client cl,

(1) we eliminate the last view-shift(s), if there is no more commit steps from cl afterwards;

(2) we move any intermediate view-shift to the right until it is immediately followed by a
commit or another view-shift from cl;

(3) we combine any adjacent view-shifts from cl into one view-shift; and

(4) for any commit step that does not follow a view-shift, we insert an identical view-shift
before the commit step.

All steps are guaranteed to terminate since there only are finite steps in the trace, and after
each transformation the new trace is one step closer becoming a normalised trace. The full
detail is in appendix A.1 on page 185. �

52

Chapter 4. Operational Semantics

We now prove that our operational semantics and the ET-traces have the same expressibility,
in the sense that both give rise of the same set of kv-stores.

Theorem 4.31 (Equivalent expressibility). For any ET ∈ ExecutionTest, ConsisModel (ET) =⋃
P∈ProgsJPKET, where ConsisModel is defined in Def. 4.27 and JPKET is defined in Def. 4.24.

Proof sketch. We prove two directions respectively. For ConsisModel (ET) ⊇
⋃

P∈ProgsJPKET ,
given any program trace η, by induction on the length of η, we construct a ET-trace τ and show
that the final kv-stores in η and τ are the same. In each step, if the next transition in η is a
local computation, we throw away the local computation. Otherwise, the next transition is a
transaction step. We split the view-shifts from the transaction commits, and append these two
steps to τ . It is easy to see that the final kv-stores of these two traces are the same.

Consider ConsisModel (ET) ⊆
⋃

P∈ProgsJPKET . By Theorem 4.30, assume a normalised ET-trace
τ . By induction on the length of τ , two steps per iteration, We construct a program P that
matches the fingerprints, and then enforces the same scheduling, so that we have a program
trace η with the same final kv-store. In each step, let cl be the next scheduled client and F
be the fingerprint of the new transaction. We now inductively construct a new transaction
with the transactional command T, which is then appended to the end of the command of cl.
For any read operation in the fingerprint, we append a new look-up command to T. After we
convert all read operations, for any write operation, we append a new mutate command to T.
Now we append a transaction step, combining the view-shift and fingerprint steps, to the trace
η. It is easy to see that the final kv-stores of these two traces are the same. The full proof is
given in appendix A.1 on 187. �

4.3 Consistency Models on Key-value Stores

We give several examples of execution tests which give rise to consistency models on kv-stores.
Recall that the snapshot property and the last-write-wins policy are hard-wired into our seman-
tics. This means that we can only define consistency models that satisfy these two constraints.
Although this prevents us expressing interesting consistency models such as read committed
[Berenson et al., 1995], we are able to express a large variety of consistency models employed
by distributed kv-stores, from read atomic (RA) to serialisability (SER).

Notation. Given two relations r, r′ ⊆ A × A, the notation a r−→ a′ denotes (a, a′) ∈ r. The
notation r?, r+, r∗ denotes the reflexive, transitive, and transitive and reflexive closures of r. The
notation r−1 denotes the inverse relation defined by r−1 def

= {(a′, a) | (a, a′) ∈ r}. The notation
r ; r′ denotes relation composition defined by r ; r′ def

= {(a, a′) | ∃a′′ ∈ A. (a, a′′) ∈ r ∧ (a′′, a′) ∈ r′} .

Recall that an execution test ET (Def. 4.25) comprises tuples of the form (K, u,F ,K′, u′) where
CanCommitET (K, u,F) and ViewShiftET (K, u,K′, u′). We define CanCommit and ViewShift

53

Chapter 4. Operational Semantics

for several consistency models, using a couple of auxiliary definitions. CanCommitET (K, u,F)

predicate requires the view u be closed with respect to a relation R on transactions in K, in
the sense that for any transaction t being the writer of a version in u, if (t′, t) ∈ R+, then any
version written by t′ must be included in u. This closure property is captured by PreClosed.

Definition 4.32 (Visible transactions and prefix closure). Given a kv-store K ∈ KVS and a
view on the kv-store u ∈ ViewOn (K), the set of visible transactions is defined by:

VisTrans (K, u)
def
= {WriterOf (K (k, i)) | i ∈ u (k)}

where WriterOf is defined in Def. 4.3. Given a binary relation on transactions, R ⊆ TxID ×
TxID, a view u is prefix closed or closed with respect to a kv-store K and the relation R, written
PreClosed (K, u, R), if and only if

VisTrans (K, u) =
(
(R∗)−1(VisTrans (K, u)) \ ReadOnlyTrans (K)

)
,

where the set of read-only transactions, ReadOnlyTrans (K), is defined by:

ReadOnlyTrans (K)
def
= {t | t ∈ K ∧ ∀k ∈ Key.∀i ∈ N. t 6= WriterOf (K (k, i))} .

The prefix closure, PreClosed, states that if transaction t is visible in u in that a version
written by t is included in u, that is, t ∈ VisTrans (K, u), then all transactions t′ such that
(t′, t) ∈ R∗ are also visible in u. The set of prefix closed transactions, (R∗)−1(VisTrans (K, u)),
may contain read-only transactions. However, the read-only transactions have no directly effect
on the view in the sense that it does not affect the snapshot induced by the view. Therefore,
the predicate PreClosed requires that (R∗)−1(VisTrans (K, u))\ReadOnlyTrans (K) contains the
same transactions as VisTrans (K, u). Note that a read-only transaction t may indirectly affect
the view. For example, given a kv-store K and a view u, if (1) R = WR ∪ SO, (2) (t′′, t) ∈ WR,
(3) (t, t′) ∈ SO, and (4) t′ ∈ VisTrans (K, u), then {t, t′′} ⊆ (R∗)−1(VisTrans (K, u)) and thus
t′′ ∈ (R∗)−1(VisTrans (K, u)) \ ReadOnlyTrans (K).

We define dependency relations for kv-stores, inspired by analogous relations for dependency
graphs due to Adya [1999]. The relations are write-read (WR), write-write (WW) and read-write
(RW). These three dependency relations, and the session order SO defined in Def. 4.2, are the
basic building blocks for defining consistency models using execution tests: the view must be
closed with respect to certain combination of these four relations. Note that we specifically use
the same names as in dependency graphs (Chapter 5). This is to emphasis the similarity of
dependency relations in kv-stores and in dependency graphs.

Definition 4.33 (Dependency relations on kv-stores). Given a kv-store K ∈ KVS and a key
k ∈ Key:

54

Chapter 4. Operational Semantics

k 7→
t0

{t2}
t1

∅
t2

∅
WR

WW WW
WW

RW
(a) An example of dependency relations on key-value store with values omitted

t0

t1

t2

WR

WW
RW

(b) An example time line contains the starts and commits of transactions, with dashed line being
able to stretched

Figure 4.5: Dependency relations on key-value store

(1) the write-read dependency on key k, written WRK (k), is defined by:

WRK (k)
def
= {(t, t′) | ∃i. t = WriterOf (K (k, i)) ∧ t′ ∈ ReadersOf (K (k, i))} ;

(2) the write-write dependency on key k, written WWK (k), is defined by:

WWK (k)
def
= {(t, t′) | ∃i, i′. t = WriterOf (K (k, i)) ∧ t′ = WriterOf (K (k, i′)) ∧ i < i′} ; and

(3) the read-write anti-dependency on key k, written RWK (k), is defined by:

RWK (k)
def
= {(t, t′) | ∃i, i′. t ∈ ReadersOf (K (k, i))∧t′ = WriterOf (K (k, i′))∧i < i′ ∧ t 6= t′} .

The write-read, write-write and read-write dependencies on the kv-store K are then defined by:
RK

def
=
⋃

k∈Key RK (k) for R ∈ {WR,WW,RW}.

Fig. 4.5a illustrates an example kv-store and its dependency relations, and Fig. 4.5b is an
example time line, if transactions in Fig. 4.5a are executed in a centralised database. The
write-read dependency, (t0, t2) ∈ WR, states that transaction t2 reads a version written by t0.
This means that t2 starts after the commit of t0, hence t2 observes effect of t0, depicted in
Fig. 4.5b. The write-write dependency, (t0, t1) ∈ WW, states that transaction t1 overwrites a
version written by t0. This means that t1 commits after the commit of t0. However, there is no
information about the starts of these two transactions, which means these two transactions may
be executed concurrently, as shown in Fig. 4.5b. Note that WW is a total order over all writers of
a key. Last, the read-write anti-dependency, (t2, t1) ∈ RW, states that t2 reads a version that has
been over-written by t1. This means that t2 starts before the commit of t1, depicted in Fig. 4.5b,

55

Chapter 4. Operational Semantics

ET PreClosed (K, u, RET) ViewShift (K, u,K′, u′) Page
>/RA true true 57
MR true u v u′ 58

RYW true

∀t ∈ K′ \ K.∀k ∈ K′. ∀i.

WriterOf
(
K′(k, i)

) SO?

−−→ t

⇒ i ∈ u′(k)

58

MW RMW
def
= SO ∩ WWK true 58

WFR RWFR
def
= WRK; (SO ∩ RWK)

? true 59
CC RCC

def
= SO ∪ WRK ViewShiftMR∩RYW (K, u,K′, u′) 59

UA RUA
def
=
⋃

(W,k,_)∈FWW−1
K (k) true 60

UA† RUA
def
=
⋃

(W,k,_)∈FWW−1
K (k) ViewShiftMR∩RYW (K, u,K′, u′) 60

PSI RPSI
def
= RUA ∪RCC ∪ WWK ViewShiftMR∩RYW (K, u,K′, u′) 61

CP
RCP

def
=

SO;RWK
? ∪ WRK;RWK

? ∪ WWK
ViewShiftMR∩RYW (K, u,K′, u′) 62

WSI RWSI
def
= RUA ∪RCP ViewShiftMR∩RYW (K, u,K′, u′) 64

SI RSI
def
= RUA ∪RCP ∪ (WWK;RWK) ViewShiftMR∩RYW (K, u,K′, u′) 63

SER RSER
def
= WW−1

K true 63

(a) Execution tests of well-known consistency models, SO is given in Def. 4.2 on page 37.

SER SI WSI PSI UA† MR

UA

RYW

CP CC MW

WFR
(b) Hierarchy over execution test in Fig. 4.6a

Figure 4.6: Execution tests

hence, t2 does not observe the effect of t1. Note that a transaction might read and write the
same, however, RW is irreflexive, hence (t2, t2) /∈ RW in Fig. 4.5a. The anti-dependency can be
derived from WR and WW in that (t, t′) ∈ RW def⇔ ∃t′′. (t′′, t) ∈ WR ∧ (t′′, t′) ∈ WW.

Recall that execution tests are defined using ViewShift and CanCommit predicates. We now
give several definitions of ViewShift and CanCommit for well-known consistency models in
Fig. 4.6a. In Chapter 5, we demonstrate that the associated consistency models on kv-stores
correspond to well-known consistency models on abstract executions.

Before we explain all the consistency models, it is straightforward to define a partial order v
over them, depicted in Fig. 4.6b, that is, if ET v ET′, then all the reachable kv-stores by ET are
also reachable by ET′. This order states that ET stronger than ET′.

56

Chapter 4. Operational Semantics

Definition 4.34 (Execution test order). The order v on execution tests is defined by:

ET v ET′ def
= ConsisModel (ET) ⊆ ConsisModel (ET′)

where ConsisModel is defined in Def. 4.27.

Theorem 4.35 (Execution test order). Given two execution tests ET and ET′, for all kv-stores
K,K′, views u, u′, and fingerprint F , if CanCommitET (K, u,F) ⇒ CanCommitET′ (K, u,F) and
ViewShiftET (K, u,K′, u′) ⇒ CanCommitET′ (K, u,K′, u′), then ET v ET′.

Proof sketch. By the definition of ConsisModel, it is enough to prove that for a trace τ that
satisfies ET, this trace τ also satisfies ET′. By Theorem 4.30, we prove this by induction on
normalised τ .

• [Base Case: (K,U)] It is straightforward that (K,U) satisfies both ET and ET′.

• [Base Case: τ
(cl,u)−−−→ET (K,U ′)

(cl,F)−−−→ET (K′,U ′′)] By inductive hypothesis, we know that τ
satisfies ET′. The first view shift is independent from execution test, hence τ (cl,u)−−−→ET′ (K,U ′)

satisfies ET′. Let consider the transaction step. By the definition of ET-trace in Def. 4.28,
we know CanCommitET (K, u,F) and ViewShiftET (K, u,K′,U ′′(cl)) for some client cl.
Therefore, we know CanCommitET′ (K, u,F) and ViewShiftET′ (K, u,K′,U ′′(cl)), by the
hypothesis, which means that τ

(cl,u)−−−→ET′ (K,U ′)
(cl,F)−−−→ET′ (K′,U ′′) satisfies ET′. �

Read atomic (>/RA) This model [Bailis et al., 2014] is a variant of eventual consistency
[Burckhardt et al., 2012] for atomic transactions. It is the weakest model we can capture, as
CanCommitRA and ViewShiftRA are always true. We sometimes write > or ET⊤ for this model.
In contrast to atomic in ACID [Haerder and Reuter, 1983] stating that a transaction takes effect
in one atomic step, RA states that either none or all effect of a transaction is observed by others.
RA is also known as atomic visibility or snapshot property, since in the implementations of RA, a
transaction takes an atomic snapshot of the database at the beginning of the transaction, and
commits the effects at the end.

Read atomic is hard-wired in our semantics: (1) a view must include all or none of versions
written by a transaction; and (2) in the atomic transaction rule, CAtomicTrans, any in-
termediate steps of a transaction cannot be observed by other transactions. RA prohibits the
kv-store in Fig. 4.7a, as transaction t′ reads the second version of k2 carrying value v2, but not
the second version of k1 carrying value v1, which are both written by transaction t.

Terry et al. [1994] proposed four session guarantees, including monotonic read (MR), read your
write (RYW), monotonic write (MW) and write follows read (WFR) models However, they only
gave informal description of these models in replicated databases. Burckhardt et al. [2014]

57

Chapter 4. Operational Semantics

k1 7→ v0
t0

{t′}
v1

t

∅
k2 7→ v0

t0

∅
v2

t

{t′}
(a) Disallowed by RA

k 7→ v0
t0{
t2cl
} v1 t1{

t1cl
}

(b) Disallowed by MR

Figure 4.7: Anomalies for RA and MR

gave formal definitions on abstract executions using axioms on the visibility relations. Our
definitions of these models are correct with respect to theirs. Burckhardt et al. [2014] also
proposed two extra session guarantees, called write follow read in arbitration and monotonic
write in arbitration. These two models restrict the arbitration relations on abstract executions.
We may not be able to capture these two models, because we do not have the total order
information over transactions in our kv-store.

Monotonic read (MR) This model states that after committing a transaction, a client cannot
lose information in that it can only see increasingly more versions from a kv-store. This prevents,
for example, the kv-store in Fig. 4.7b, since client cl first reads the latest version of k in t1cl, and
then reads the older, initial version of k in t2cl. As such, the ViewShiftMR predicate in Fig. 4.6a
ensures that clients can only extend their views, that is, u v u′ for views u, u′ before and after
committing. When this is the case, clients can then always commit their transactions, and thus
CanCommitMR is simply defined as true.

Read your write (RYW) This model states that a client must always see all the versions
written by the client itself. Under RYW the kv-store in Fig. 4.8a is prohibited as the initial
version of k holds value v0 and client cl tries to update the value of k twice. For its first
transaction t1cl, it reads the initial value v0 and then writes a new version with value v1. For its
second transaction t2cl, it reads the initial value v0 again and write a new version with value v2.
The ViewShiftRYW predicate defined by:

ViewShiftRYW (K, u,K′, u′)
def⇔ ∀t ∈ K′ \ K.∀k ∈ K′. ∀i.

WriterOf (K′(k, i))
SO?

−−→ t ⇒ i ∈ u′(k),

rules out this kv-store in Fig. 4.8a by requiring that the client view u′, after the commits the
transaction t1cl with t1cl ∈ K′ \ K, must include t1cl. When this is the case, clients can always
commit their transactions, and thus CanCommitRYW is simply true.

Monotonic write (MW) This model states that if a client cl sees a version of a key k that
was written by another client cl′, then it must see all versions of k that were previously written
by cl′. In other words, the view u of the client cl over a kv-store K must be closed with

58

Chapter 4. Operational Semantics

k 7→ v0
t0{
t1cl, t

2
cl

} v1 t1cl∅ v2
t2cl

∅
(a) Disallowed by RYW.

k1 7→ v0
t0

{t}
v1

t1cl

∅
k2 7→ v0

t0

∅
v2

t1cl

∅
v3

t2cl

{t}
(b) Disallowed by MW

k1 7→ v0
t0

{t}
v1

t′

∅
k2 7→ v0

t0

∅
v2

t′{
t1cl
} v3 t2cl{t}

(c) Disallowed by WFR

Figure 4.8: Anomalies for RYW, MW and WFR

respect to the relation SO ∩ WWK, before cl can commit a transaction; this is modelled by
PreClosed (K, u, SO ∩ WWK). The resulting view can be any view. Thus ViewShiftMW is
simply true. Monotonic write prohibits the kv-store in Fig. 4.8b, since transaction t reads the
third version of k2 written by t2cl, but not version written by t1cl in key k1, where (t1cl, t

2
cl) ∈

SO ∩ WWK (k2).

Write follow read (WFR) This model states that, prior to committing a transaction, if a client
cl sees a version on a key k written by some client cl′ (possibly equal to cl), then it must also see
the versions of the same key k previously read by cl′. This condition is modelled by the predicate
PreClosed (K, u, RWFR) with RWFR = WRK; (SO ∩ RWK)

?. Note that if t WRK−−−→ t′
(SO∩RWK)?−−−−−−−→ t′′,

then: (1) transactions t′, t′′ are from the same client; (2) t′ reads a version of some k written
by t; and (3) later t′′ writes a newer version of the same key k. The kv-store in Fig. 4.8c
is disallowed by WFR, since transaction t reads the third version of key k2 written by cl, who
previous read the second version of key k2 written by t′. However, transaction t did not read
the second version of k1 also written by t′.

We now give the definitions of well-known consistency models in distributed databases, includ-
ing causal consistency (CC) [Shapiro et al., 2011; Lloyd et al., 2011; Burckhardt et al., 2012],
parallel snapshot isolation (PSI) [Sovran et al., 2011; Ardekani et al., 2013], snapshot isola-
tion (SI) [Berenson et al., 1995] and serialisability (SER) [Papadimitriou, 1979]. Researchers
[Burckhardt et al., 2015; Bernardi and Gotsman, 2016; Cerone et al., 2015a] proposed that the
definition of SI on abstract executions can be separated into two different consistency models,
update atomic (UA) and consistent prefix (CP). They also realised that PSI can be defined as
the conjunction of UA and CC on abstract executions. Note that, in Fig. 4.6a, the ViewShift for
CC, CP, PSI and SI are defined as the conjunction of the MR and RYW session guarantees. This
is because MR and RYW are easy to implement in that each client maintains some meta-data
about its own history. As explained in Section 2.1, many consistency models are originally
defined using specific implementation strategies for tackling certain constraints in distributed

59

Chapter 4. Operational Semantics

k1 7→ v0
t0

{t}
v1

t1cl

∅
k2 7→ v0

t0

∅
v2

t2cl

{t1
cl′
}

k3 7→ v0
t0

∅
v3

t2
cl′

{t}

Figure 4.9: Anomaly disallowed by CC

databases.

Causal consistency (CC) This models subsumes the four session guarantees discussed above.
As such, the ViewShiftCC predicate is defined as ViewShiftMR∩RYW. Additionally, CC strengthens
the session guarantees by requiring that if a client observes the effect of a transaction t prior
to committing a transaction, then it must also observes transactions t′ that t observes. If a
client observes a version written by t, then t clearly observes all transactions t′ from which
t directly reads. Moreover, t must observe previous transactions from the same client. This
is captured by the CanCommitCC predicate in Fig. 4.6a, defined as PreClosed (K, u, RCC) with
RCC

def
= SO ∪ WRK.

For example, the kv-store in Fig. 4.9 is disallowed by CC: the version of key k3 carrying value
v3 depends on the version of key k1 carrying value v1, since t1cl

SO−→ t2cl
WRK−−−→ t1cl′

SO−→ t2cl′ .
However, transaction t must have been committed by a client with view included v3 but not v1.

Update atomic (UA) This model disallows concurrent transactions writing to the same key, a
property known as write-conflict freedom: when two transactions, t and t′ write to the same key,
one transaction must see the version written by the other. Note that, in distributed systems,
the resolution policy only determines the commit order of these two transitions but provide
no information about the starts. This means these two transactions may concurrently write
to the same key, depicted in Fig. 4.10c. Write-conflict freedom is enforced by CanCommitUA

which allows a client to write to key k only if its view includes all versions of k. For example,
prior to committing, the view of t′ includes versions written by t, hence t′ must start after
t. Similarly, prior to committing, the view of t′′ includes versions written by t and t′, which
ensures t′′ starts after t and t′. In other words, its view is closed with respect to the WW−1(k)

relation for all keys k written in the fingerprint F . Recall that a view must include the initial
version (left-most version) for each key. UA prevents the kv-store in Fig. 4.10a, known as lost
update anomaly, as t and t′ read initial version of k and update it to v1 and v2 respectively. As
client views must include the initial versions, once t commits a new version ν with value v1 to
k (the second version in Fig. 4.10a), then t′ must include ν in its view as there is a WW edge
from the initial version to ν. As such, when t′ subsequently updates k, it must read from ν,
and not the initial version as depicted in Fig. 4.10a.

This model is originally proposed for the purpose of decomposing of SI, which are defined as a
disjointed union of UA and CP (we will explain later). However, UA by itself is not useful since

60

Chapter 4. Operational Semantics

k 7→ v0
t0

{t, t′}
v1

t

∅
v2

t′

∅
(a) Lost update anomaly, disallowed
by UA.

k1 7→ v0
t0

∅
v1

t1cl

∅
v2

t1
cl′

{t}
k2 7→ v0

t0

{t}
v3

t1cl

∅
(b) Allowed by CC and UA but disallowed by PSI

t

t′

t′′

view ind.

view ind.view ind.

WW

WW

WW

(c) An example of concurrent writes with dashed line being able to stretched

Figure 4.10: Anomalies for UA and PSI

there are no guarantees even on a single session, that is, a client can lose views arbitrary after
an update. We proposed UA† as a strengthen in Fig. 4.6a, which requires MR and RYW alongside
the original UA.

Parallel snapshot isolation (PSI) This model can be informally described as:

(1) when a transaction t observes the effect of another transaction t, it must also observes
the effects of transactions that t′ observes;

(2) when two transactions, t and t′ write to the same key, one must see the effects from
another.

Intuitively, this model is the combination of causal consistency and update atomic. In abstract
executions with a total order over transactions, This model is indeed defined as the conjunction
of the definitions of CC and UA [Cerone et al., 2015a]. However, we cannot simply define
CanCommitPSI as the conjunction of the CanCommit predicates for CC and UA, because in our
semantics we do not have the total order. However, the dependency relation provides enough
information. The challenge here is the meaning of observation between transactions. In CC,
the dependence are straightforwardly defined RCC = WR ∪ SO. This is not enough here. Recall
that CanCommitUA requires that a transaction writing to a key k must be able to see all previous
versions of k. This means that when write-conflict freedom is enforced, a version ν of k observes
on all previous versions of k, for example Fig. 4.10c. This observation leads us to include
write-write dependencies (WWK) in RPSI. Hence, the closure relation for PSI is defined by
RPSI

def
= RUA ∪ RCC ∪ WWK. The kv-store in Fig. 4.10b shows an example kv-store that satisfies

61

Chapter 4. Operational Semantics

k1 7→ v0
t0{
t2
cl′

} v1 t{
t1cl
} k2 7→ v0

t0{
t2cl
} v2 t′{

t1
cl′

}
(a) Long fork anomaly, disallowed by CP

t

t′′

t′
WR or SO

commit before

RWcommit before

(b) Commit before relation: WR, SO, WR;RW or
WR;RW

t

t′

WW and commit before

(c) Commit before: WW

Figure 4.11: Long fork anomaly and commit before relation

CanCommitCC ∧ CanCommitUA, but not CanCommitPSI. Assume the commit order is t1cl, t1cl′ , t. The
transactions t1cl, t

1
cl′ are trivially allowed to commit to the kv-stores under CC, UA and PSI. The

transaction t can commit under UA since it does not write any new version, and under CC since
there is no causal relation between t1cl and t1cl′ . However, t read the third version of key k1

written by t1cl′ , hence there are edges t1cl
WW−−→ t1cl′ , which means if the view used by t includes

versions written by t1cl′ , the view also need to includes versions written by t1cl under PSI. Yet t

did not read the second version of key k2 written by t1cl.

Consistent prefix (CP) If the total order in which transactions commit is known, consistent
prefix (CP) can be described as a strengthening of CC: if a client sees the versions written by
a transaction t, then it must also see all versions written by transactions that commit before
t. Although kv-stores only provide partial information about the transaction commit order via
the dependency relations, this is sufficient to formalise consistent prefix.

In practice, we approximate the order in which transactions commit in a trace that terminates
with a final kv-store K via the WRK,WWK,RWK and SO relations. This approximation is
defined by

RCP
def
= WRK;RWK

? ∪ SO;RWK
? ∪ WW,

is best understood in terms of an idealised implementation of CP on a centralised database, where
the snapshot of a transaction is determined at its start point and its effects are made visible to
future transactions at its commit point. With respect to this centralised implementation, first,
if (t, t′) ∈ WRK, then t must commit before t′ starts, and hence before t′ commits (Fig. 4.11b).
Similarly, if (t, t′) ∈ SO, then t commits before t′ starts, and thus before t′ commits (Fig. 4.11b).
Second, recall that (t′, t′′) ∈ RWK denotes that t′′ reads a version that is later overwritten
by t′; that is, t′ cannot see the write of t′′, and thus t′ must starts before t′′ commits. As
such, if t commits before t′ starts as (t, t′) ∈ WRK or (t, t′) ∈ SO, and t′ starts before t′′

62

Chapter 4. Operational Semantics

commits as (t′, t′′) ∈ RWK, then t must commit before t′′ commits (Fig. 4.11b). In other
words, if (t, t′′) ∈ WRK;RWK or (t, t′′) ∈ SO;RWK, then t commits before t′′ (Fig. 4.11b).
Last, if (t, t′) ∈ WWK, then t must commit before t′ (Fig. 4.11c). Therefore the relation,
RCP, approximates the order in which transactions commit. We then define CanCommitCP in
Fig. 4.6a by requiring that the client view be closed with respect to RCP. Our definition for
CP via approximating the commit order, is correct with respect to the declarative definition
proposed by Cerone et al. [2017].

Consistent prefix disallows the long fork anomaly shown in Fig. 4.11a, where clients cl and cl′

observe the updates to k1 and k2 in different orders. Assuming without loss of generality that
t2cl′ was the last transaction committed, then prior to committing its transaction cl′ must see
the initial version of k1 with value v0 and both version of k2; this is because a view must always
include the initial versions and cl′ read the second version of k2 carrying value v2 in transaction
t1cl′ . However, since t

WRK−−−→ t1cl
SO−→ t2cl

RWK−−−→ t′, then cl′ should also see the second version of
k1 with value v1, leading to a contradiction.

Snapshot isolation (SI) This model can be informally described as:

(1) when a transaction t observes the effect of another transaction t′, then t must observe
transactions that commits before t′;

(2) when two transactions, t and t′ write to the same key, one must see the effects by another.

When the total order in which transactions commit is known, snapshot isolation (SI) can be
defined compositionally from CP and UA. However, as with PSI, our semantics does not have the
total order. We cannot directly define RSI as RCP∪RUA. Additionally, we include WWK;RWK in
RSI. Because when the centralised CP implementation (discussed in Section 4.3) is strengthened
with write-conflict freedom, then a write-write dependency between two transactions t and t′

does not only mandate that t commits before t′ commits but also before t′ starts. Consequently,
if (t, t′′) ∈ WWK;RWK, then t must commit before t′′ commit (Fig. 4.12b). Therefore in
Fig. 4.6a, CanCommitSI is defined as the closure on relation RSI

def
= RUA ∪RCP ∪ (WWK;RWK).

Observe that the kv-store in Fig. 4.12a shows an example kv-store that satisfies CanCommitUA ∧
CanCommitCP, but not CanCommitSI. In Fig. 4.12a, transaction t4 must be the last transaction.
It must include all versions of k2 because of write-conflict freedom. However, since t1

WWK−−−→
t2

RWK−−−→ t3, transaction t4 should read the second version of k1 carrying value v1, contradicting
the fact that t4 read the initial version of k1.

Strict serialisability (SER) This model is the strongest consistency model in any frame-
work that abstracts from aborted transactions, requiring that transactions execute in a total
sequential order. The CanCommitSER thus allows a client to commit a transaction only when

63

Chapter 4. Operational Semantics

k1 7→ v0
t0

{t4}
v1

t1

∅
v2

t2

∅
k2 7→ v0

t0

{t2}
v3

t3

{t4}
v4

t4

∅
(a) Allowed by UA and CP, and henceforth WSI, but disallowed by SI

t

t′

t′′

view ind.

WW

commit before

RW

(b) Commit before relation: WW;RW

Figure 4.12: Anomaly for SI and extra commit before relation for SI

k1 7→ v0
t0

{t′}
v1

t

∅
k2 7→ v0

t0

{t}
v2

t′

∅

Figure 4.13: Write skew anomaly, disallowed by SER

the client view on the kv-store is complete in that the view is closed with respect to WW−1
K .

This requirement prevents the kv-store in Fig. 4.13. Without loss of generality, suppose that
t commits before t′, then the client committing t′ must see the version of k1 written by t, and
thus cannot read the outdated value v0 for k1. This example, known as write skew anomaly, is
allowed by all other execution tests in Fig. 4.6a.

We were surprised to find a new interesting consistency model using our kv-stores. This model,
which we call weak snapshot isolation (WSI), is defined by combining CP and UA. Under WSI, a
client view must be close with respect to relation RWSI = RCP ∪ RUA, in contrast to SI-relation
RSI = RCP ∪RUA ∪ WWK;RWK.

WSI is stronger than CP and UA by definition, it therefore forbids all the anomalies forbidden by
these consistency models, for example the long fork (Fig. 4.11a) and the lost update (Fig. 4.10a).
Moreover, WSI is strictly weaker than SI. As such, WSI allows all SI anomalies such as the write
skew (Fig. 4.13), but allows behaviour not allowed under SI such as that in Fig. 4.12a. We can
construct a (CP ∩ UA)-trace terminating in kv-store K by executing transactions t1, t2, t3 and t4

in this order. In particular, t4 is executed using u = {k1 7→ {0} , k2 7→ {0, 1}} that is allowed
by WSI given that WWK;RWK 6⊆ RWSI. However, the same trace is not a valid SI-trace as
explained in Section 4.3.

To justify this consistency model in full, it would be useful to explore its implementations. Here
we focus on the possible benefits of implementing WSI: as WSI is a weaker consistency model

64

Chapter 4. Operational Semantics

than SI, we believe that WSI implementations would outperform known SI implementations.
Nevertheless, the two consistency models are very similar in that many applications that are
correct under SI are also correct under WSI. We give an example of such an application in
Section 7.2.

We have introduced two key concepts: abstract multi-versioning key-value stores and partial
client views (Section 4.1), and our interleaving operational semantics where transactions are
executed in atomic steps (Section 4.2). This semantics is parametrised by an execution test that
determines if a client with a given view is allowed to commit a transaction (Section 4.2). Our
semantics assume last-write-wins resolution policy and snapshot property; many well-known
consistency models in distributed systems assume these two properties. We have then given
the definitions of many well-known consistency models using execution tests, such as causal
consistency, parallel snapshot isolation and snapshot isolation (Section 4.3).

First, our semantics focuses on the abstract states, rather than the interaction between trans-
actions as in declarative semantics, such as [Nagar and Jagannathan, 2018; Adya, 1999; Cerone
and Gotsman, 2016; Cerone et al., 2015a], which are graph-based semantics on distributed
databases, operationally or declaratively. This immediately allows us to directly reason about
the states (in Chapter 7), while in previous work [Nagar and Jagannathan, 2018; Cerone et al.,
2015a,b; Cerone and Gotsman, 2016], they can only reason about general invariants that can
be encoded as properties on the shapes of the graphs. Second, we provide an operational se-
mantics and operational definitions of consistency models. In contrast to declarative semantics
[Adya, 1999; Cerone and Gotsman, 2016; Cerone et al., 2015a], it is easier to use our semantics
to verify implementation protocols via trace refinement (in Chapter 6).

However, before we show the two applications, we have to justify our semantics, proving that
our definitions of consistency models in our operational semantics are equivalent to well-known
declarative definitions on abstract executions in Chapter 5: given an consistency model M an
execution test ETM , we show that the set of all the reachable states (of the form of kv-stores)
in our semantics,

⋃
P∈ProgsJPKETM defined in Def. 4.24, is equivalent to the set of reachable

states (of the form of abstract executions) in the declarative semantics for M .

65

Chapter 5

Correctness of Execution Tests

We prove the correctness of execution tests with respect to axiomatic definitions on abstract ex-
ecutions. First, we demonstrate that there is a bijection between our kv-stores and dependency
graphs in Section 5.1. In Section 5.2, we give an alternative operational semantics on abstract
executions. Using the bijection between kv-stores and dependency graphs, and the connection
between dependency graphs and abstract executions [Cerone et al., 2017; Cerone and Gotsman,
2016], in Section 5.3, we demonstrate connections between traces obtained by our semantics
on kv-store and traces obtained by the semantics on abstract executions. In Section 5.4, we
define soundness and completeness constructors for proving the correctness of our definitions of
consistency models using execution tests. Using these two constructors, we only need to prove
a notion of soundness and completeness between execution tests and the axioms on abstract
executions, and the constructors lift the result to the level of traces. Finally, in Section 5.5,
we show that definitions of consistency models using execution tests defined in Section 4.3 are
sound and complete with respect to the definitions using axioms on abstract executions.

5.1 Correspondence to Dependency Graph

Dependency graphs [Adya, 1999] provide one well-known formalism for specifying consistency
models. Adya [1999] originally used dependency graphs to model ANSI-SQL isolation levels,
which are the first formal and abstract definitions, in contrast to previous definitions using
reference implementations or anomalies.

A dependency graph G is a directed labelled graph, where the nodes denote transactions, and
the edges denote dependencies between transactions, including session order SO, write-read
dependency WR, write-write dependency WW and read-write anti-dependency RW.

Definition 5.1 (Dependency graph). Given the session order defined in Def. 4.2, the set of
dependency graphs, DGraphs 3 G, is defined by:

DGraphs def
= {(T, SO,WR,WW,RW) | WfDGraph (T,WR,WW,RW)} .

66

Chapter 5. Correctness of Execution Tests

where the well-formed condition for a dependency graph, WfDGraph, is defined by:

WfDGraph (T,WR,WW,RW)
def⇔ T ∈

((
TxID0

fin−⇀ Fp
)
] {t0 7→ {(W, k, v0) | k ∈ Key}}

)
∧

∀k ∈ Key.

(
Wfwr (WR, T, k) ∧ Wfww (WW, T, k)

∧ Wfrw (WR,WW,RW, k)

)

and the well-formed conditions, Wfwr, Wfww and Wfrw, for the three dependency relations are
defined by:

Wfwr (WR, T, k) def⇔ (5.1)
∀t, t′, t′′. (t, t′) ∈ WR ⇒ (W, k,_) ∈ T (t) ∧ (R, k,_) ∈ T (t′) (5.2)
(R, k,_) ∈ T (t′) ∧ ∃t∗. (W, k,_) ∈ T (t∗) ⇒ (t∗, t′) ∈ WR (5.3)
(t, t′) ∈ WR ⇒ (t′, t) /∈ SO? (5.4)
(t′, t) ∈ WR ∧ (t′′, t) ∈ WR (T, k) ⇒ t′ = t′′ (5.5)

Wfww (WW, T, k) def⇔ (5.6)
∀t, t′. (W, k,_) ∈ T (t) ∧ (W, k,_) ∈ T (t′)

⇒ t = t′ ∨ (t, t′) ∈ WW ∨ (t′, t) ∈ WW (total-WW)
(t, t′) ∈ WW ⇒ (W, k,_) ∈ T (t) ∧ (W, k,_) ∈ T (t′) (5.7)
(t, t′) ∈ WW ⇒ t′ 6= t ∧ (t′, t) /∈ WW (irref-asym-WW)
WW = WW+ (transitive-WW)
(t, t′) ∈ WW ⇒ t′ 6= t0 (5.8)
(t, t′) ∈ WW ⇒ (t′, t) /∈ SO (5.9)

Wfrw (WR,WW,RW, k)
def⇔ (5.10)

RW =
{
(t, t′) ∃t′′. (t′′, t) ∈ WR ∧ (t′′, t′) ∈ WW ∧ t 6= t′

}
. (5.11)

Given a dependency graph G, let TG,WRG,WWG and RWG return the first, the third to fifth
projection respectively, and WRG (k) ,WWG (k) and RWG (k) be the relations on the key k. Let
notations t ∈ G and o ∈ G(t) denote t ∈ Dom (T) and o ∈ T (t) respectively.

Fig. 5.1 gives an example dependency graph. Each node in a dependency graph is a fingerprint
labelled with the unique transaction identifier. The special initialisation transaction t0 initialises
all keys, with a set of infinite write operations. Recall that there are infinite many of keys. Apart
from the initialisation transaction that contains infinite write operations, other transactions
must contain finite operations. Edges are labelled with dependency relations SO,WR,WW and
RW. Session order SO is defined in Def. 4.2. The write-read dependency, (t, t′) ∈ WR (k),
means that a transaction t′ read from a value of k written by another transaction t (Eq. (5.2)).
Note that any read operation must read from a transaction (Eqs. (5.3) and (5.5)). The write-
read dependency must agree with session order (Eq. (5.4)). Given a key k, the write-write

67

Chapter 5. Correctness of Execution Tests

(W, k1, v0) (W, k2, v′0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

WR,WW

WR,WW

RWRW

Figure 5.1: Dependency graph

dependency on k is a strict total order, that is, a total, irreflexive asymmetric and transitive
relation over set of transactions S

def
= {t | (W, k,_) ∈ T (t)}:

(1) Eq. (total-WW) means WW is a total relation over the set S;

(2) Eq. (5.7) means that WW does not contain transactions that are not in S;

(3) Eq. (irref-asym-WW) means WW is irreflexive and asymmetric;

(4) Eq. (transitive-WW) means WW is transitive.

Given two transactions t, t′, if (t, t′) ∈ WW (k), then intuitively t′ overwrites a value of k

previously written by t. The initial transaction t0 writes the initial value of k, hence (t0, t) ∈
WW (k) for any transaction t that writes k in Eq. (5.8). The write-write dependency must
agree on session order in Eq. (5.9). Last, read-write anti-dependency RW is derived from WR
and WW. Intuitively, if (t, t′) ∈ RW (k), the transaction t read a value v on the key k written
by some transaction t′′ that is later overwritten by t′.

In dependency graphs, consistency models are specified using axioms that rule out invalid
graphs that contain certain cycles. For example, snapshot isolation require that graphs only
contain cycles with at least two adjacent read-write anti-dependency edges, that is, relation
(SO ∪ WRG ∪ WWG);RW−1

G is acyclic [Adya, 1999; Cerone and Gotsman, 2016].

In our kv-store semantics, we adopt the same names for the dependency relations between
transactions. This is to emphasise the similarity between the dependency relations on kv-stores
and the dependency relations on dependency graphs. In fact, there is a bijection between our
global kv-stores and dependency graphs. We first show how to extract a dependency graph
from a kv-store.

Definition 5.2 (Kv-stores to dependency graphs). Given a kv-store K ∈ KVS, the dependency
graph induced by the kv-store, written KToD (K), is defined by:

KToD (K)
def
= (KToT (K) , SO,WRK,WWK,RWK)

68

Chapter 5. Correctness of Execution Tests

where KToT (K) is defined by

KToT (K) = λt ∈ K. {(W, k, v) | ∃i ∈ N.K (k, i) = (v, t,_)}]
{(R, k, v) | ∃i ∈ N.∃T ⊆ TxID.K (k, i) = (v,_, T) ∧ t ∈ T} .

Given a kv-store K, the dependency graph induced by the kv-store is given by KToD (K). The
auxiliary function KToT (K) converts the kv-store K to the set of nodes in the dependency
graph. The three dependency relations on the dependency graph are exactly the same depen-
dency relations on kv-store defined in Def. 4.33. It is easy to see that the dependency graph
induced by the kv-store KToD (K) is well-formed. More detail is given in Prop. A.4 on page
189.

Next, we show how to convert a dependency graph G to a kv-store via function DToK.

Definition 5.3 (Dependency graphs to kv-stores). Given a dependency graph G, and a trans-
action t that writes a key k, the version for k written by t is defined by:

VerOf (G, k, t) def
= let (W, v, k) ∈ G(t) in (v, t, {t′ | (t, t′) ∈ WRG (k)}) .

The version list for k, written VerListOf (G, k), is defined by:

VerListOf (G, k) def
= let T = {t, t′ | (t, t′) ∈ WWG (k)} in

[VerOf (G, k,WWnth (G, T, 0)) , · · · ,VerOf (G, k,WWnth (G, T, |T | − 1))]

WWnth (G, T, 0) def
= FirstWW (WWG)

WWnth (G, T, n+ 1)
def
= WWnth (G, T \ {FirstWW (WWG)} , n)

FirstWW (WWG)t where ∀t′ ∈ T. t = t′ ∨ (t, t′) ∈ WWG (k)

The kv-store induced by G, written DToK (G), is defined by:

DToK (G) = λk ∈ Key.VerListOf (G, k) .

Given a key k and a transaction t that writes k, the version VerOf (G, k, t) comprises the value of
k written by t, the writer being t, and the reader set that contains all transactions t′ that read
from t, that is, (t, t′) ∈ WR. Given all versions of k, function VerListOf (G, k) determines the
order over the versions with respect to WW (k) relation. Recall that if (t, t′) ∈ WWG (k), then
t′ committed after t. This means that the version written by t′ precedes the version written
by t in the list of VerListOf (G, k). It is straightforward that DToK (G) satisfies the well-formed
conditions for kv-store in Def. 4.5. More detail is given in Prop. A.5 on page 191.

We now show the bijection between our kv-stores and dependency graphs. This is a key
intermediate step to link our global kv-stores to abstract executions.

69

Chapter 5. Correctness of Execution Tests

Theorem 5.4 (Bijection between kv-stores and dependency graphs). There is a bijection be-
tween kv-stores and dependency graphs.

Proof. Because KToD (K) and DToK (G) are well-defined respectively (detail is given in Props. A.4
and A.5), it remains to prove K = DToK (KToD (K)) and G = KToD (DToK (G)).

(1) [Case: K = DToK (KToD (K))] Let G = KToD (K). Fix a key k and

K (k) = [(v0, t0, T0), · · · , (vn, tn, Tn)] .

By the definition of KToD, it follows that: (i) (W, k, vi) ∈ G(ti); (ii) for all t ∈ Ti,
(R, k, vi) ∈ G(t); and (iii) WWG = WWK and WRG = WRK. Then by definition of DToK,
specifically VerListOf, it is easy to see DToK (G) (k) = VerListOf (G, k) = K (k).

(2) [Case: G = KToD (DToK (G))] Let K = DToK (G). First, we prove TG = TKToD(K).
Consider a transaction t and an operation o such that o ∈ G(t).

(i) [Case: o = (R, k, v)] Because G is well-formed, there exists a transaction t′ such that
(t′, t) ∈ WRG (k). By definition of DToK, there exists an index i and a reader set T

such that o ∈ G(t) ⇔ K (k, i) = (v, t′, T) ∧ t ∈ T. Then by definition of KToD, we
have o ∈ KToD (K) (t). This means that o ∈ G(t) ⇔ o ∈ KToD (K) (t).

(ii) [Case: o = (W, k, v)] Because G is well-formed, that is, WWG (k) is a total order on
all transactions that wrote key; by definition of DToK, there exists an index i and
a reader set T such that o ∈ G(t) ⇔ K (k, i) = (v, t′, T). By definition of KToD, we
have o ∈ KToD (K) (t). This means that o ∈ G(t) ⇔ o ∈ KToD (K) (t).

Second, we prove WRG = WRKToD(K) and WWG = WWKToD(K). consider a key k and the
write-write relation on all transactions t0, · · · , tn that write k, t0

WWG(k)−−−−−→ · · · WWG(k)−−−−−→ tn.
Consider Ti for 0 ≤ i < n such that ∀t ∈ Ti. (ti, t) ∈ WRG. By the definition of DToK,
K (k) = DToK (G) (k) = [(v0, t0, T0), · · · , (vn, tn, Tn)]. Now by the definition of WWK

and WRK, we have WRG (k) =∈ WRK (k) and WWG (k) = WWK (k) . By definition of
KToD, then we have WWK = WWKToD(K) and WRK = WRKToD(K), it follows WWG =

WWKToD(DToK(G)) and WRG = WRKToD(DToK(G)). Last, because RWG relation can be derived
from WWG and WRG, it is easy to see RWG = RWKToD(K). �

Consistency models in dependency graphs are specified as checks of acyclicicity. For example,
snapshot isolation requires the relation

(
(WRG ∪ SO ∪ WWG) ;RW?

G
)+ be acyclic [Adya, 1999].

In this thesis, we prove that our definitions using execution tests in Section 4.3 are equivalent
to definitions on abstract executions in the following chapter. We only use dependency graphs
as an intermediate step to link the individual kv-store to abstract execution.

70

Chapter 5. Correctness of Execution Tests

Hence, we refer the readers to [Cerone et al., 2015a,b, 2017; Cerone and Gotsman, 2016] for
the definitions of other well-known consistency models on dependency graphs. Note that de-
pendency graphs can be used to formally define consistency models weaker than read atomic,
such as read commit and read uncommit [Adya, 1999], however, it is out of the scope of this
thesis.

5.2 Operational Semantics on Abstract Execution

Abstract executions [Burckhardt et al., 2012; Cerone et al., 2015a] are an alternative declarative
formalism for defining consistency models. We give the formal definition of abstract executions
adopted from [Cerone et al., 2015a]. We then propose an alternative operational semantics
on abstract executions in Section 5.2, which is used in Section 5.3 and Section 5.5 to prove
correctness of our definitions of consistency models with respect to the axiomatic definitions
on abstract executions. This alternative semantics is parametrised by an axiom A, which gives
rise to a consistency model. The goal is to prove the set of kv-store induced by an execution
test is equivalent to the set of abstract executions induced by an axiom. Given A, we show that
the set of abstract executions induced by the alternative semantics is the same set induced by
applying the axiom directly to all possible graphs (Section 5.2). We show that the set of kv-
store program traces under ET⊤ is equivalent to the set of abstract executions test traces with
the axiom being the maximum (Section 5.3). We propose soundness and complete constructors,
in the sense that if an execution test ET and an axiom A satisfy certain conditions, these two
constructors lift them to the level of traces. Last, we use these two constructors to show that
our definitions of consistency models are correct with respect to the definitions on abstract
executions.

5.2.1 Declarative Model: Abstract Executions

Abstract executions [Burckhardt et al., 2012; Cerone et al., 2015a] are an alternative formalism
for defining consistency models. As with dependency graphs, an abstract execution X is a di-
rected graph where nodes represent transactions, and edges represent certain relations between
transactions:

(1) visibility relation which means that, if (t, t′) ∈ VIS, then transaction t′ observes t, or in
other words, t is visible to t; and

(2) arbitration relation, also known as arbitration order, which means that if (t, t′) ∈ AR,
then the update of the t′ overwrite the update of t, or in other words, t happens before t′.

An example abstract execution graph is given in Fig. 5.2. There are three transactions t0, t1, t2
where t0 is the initialisation transaction that initialises all keys to value v0. Transactions in

71

Chapter 5. Correctness of Execution Tests

(W, k1, 0) (W, k2, 0) · · ·t0

(R, k2, v0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

VIS,AR

VIS,AR

AR

Figure 5.2: Abstract execution

abstract executions are totally ordered by arbitration relation AR, for example, t0
AR−→ t1

AR−→
t2. Transaction t1 reads key k2 with value v0 and update key k1 to v1. Then transaction t2,
that only observe the effect of t0 given by the visibility relation VIS, reads key k1 with value v0

and update key k2 to v2. This mean that k1 and k2 have values v1 and v2 respectively, in the
final state of the database.

Definition 5.5 (Abstract executions). Given the definition of SO (Def. 4.2), the set of abstract
executions, AExects 3 X , is defined by: AExects def

= {(T, SO,VIS,AR) | WfAExec (T,VIS,AR)}
where the well-formed condition, WfAExec, is defined by:

WfAExec (T,VIS,AR) def⇔

T ∈
((

TxID0
fin−⇀ Fp

)
] {t0 7→ {(W, k, v0) | k ∈ Key ∧ v0 ∈ InitialValue (k)}}

)
Wfar (AR, T) ∧ Wfvis (VIS, T,AR) .

The well-formed conditions on visibility and arbitration relations, Wfar and Wfvis, are defined:

Wfar (AR, T) def⇔ ∀t, t′ ∈ Dom (T) .
t = t′ ∨ (t, t′) ∈ AR ∨ (t′, t) ∈ AR (total-AR)
∧ (t, t) /∈ AR (irreflexive-AR)
∧ (t, t′) ∈ AR ⇒ (t′, t) /∈ AR (asymmetric-AR)
∧ AR = AR+ (transitive-AR)
∧ (t0, t) ∈ AR (5.12)
∧ SO ⊆ AR (5.13)

Wfvis (VIS, T,AR) def⇔ ∀t, t′ ∈ Dom (T) .∀k ∈ Key.∀v ∈ Value.

((t, t′) ∈ VIS ⇒ (t′, t) /∈ SO) (5.14)
∧ VIS ⊆ AR (5.15)
∧ (t0, t) ∈ VIS (5.16)

∧

(
(R, k, v) ∈ T (t)

⇒ (W, k, v) ∈ T
(
MaxVisTrans

(
(T,VIS,AR),VIS−1(t), k

))) (5.17)

72

Chapter 5. Correctness of Execution Tests

where MaxVisTrans ((T,VIS,AR), T, k) defined by:

MaxVisTrans ((T,VIS,AR), T, k) def
= MaxAR ({t | ∃v ∈ Value. t ∈ T ∧ (W, k, v) ∈ T (t)})

with MaxAR (T ′) returning the maximum transaction in T ′ with respect to AR. Given an abstract
execution X , let TX , VISX and ARG be the first, third and fourth projections. Notation t ∈ G
and G(t) denote t ∈ Dom (T) and T (t) respectively. Let the initial abstract execution X0 =

({t0 7→ {(W, k, v0) | k ∈ Key ∧ v0 ∈ InitialValue (k)}} , ∅, ∅).

For a well-formed abstract execution, the arbitration relation AR is a strict total order over all
the transactions (Eq. (total-AR), Eq. (asymmetric-AR), Eq. (irreflexive-AR) and Eq. (transitive-
AR)) starting from the initialisation transaction (Eq. (5.12)), and agrees with the session order
SO (Eq. (5.13)). The visibility relation VIS agrees with the session order (Eq. (5.14)) and
arbitrary order (Eq. (5.15)) Transactions always see the initialisation transaction t0 (Eq. (5.16)).
Lastly, we only consider abstract executions that apply the last-write-wins policy, that is, a
transaction reading k always fetches the latest visible write (VIS-predecessor) on k (Eq. (5.17)).

Given an abstract execution X , A set of visibility axioms A, defined in Def. 5.6, specifies the
minimum visibility relation in X : that is, for all visibility axiom A ∈ A, the visibility relation
VISX satisfies A(X) ⊆ VISX . Each A gives rise to a consistency model defined in Def. 5.7.
Def. 5.7 is a well-known definition that we adopt from [Cerone et al., 2015a,b, 2017; Cerone
and Gotsman, 2016]. In this thesis, we enforce a well-form condition on the set of visibility
axioms A, which is satisfied by the definitions of consistency models presented in Fig. 4.6a.
Given two abstract executions X ,X ′, if they contain the same sub-graph of transactions T , if
and only if, the sub-graphs of X and X ′ by projecting to T are the same. The well-formed
condition for A requires that for any sub-graphs of transactions T between two arbitrary
abstract executions X ,X ′, the subsets of minimum visibility edges by projecting to the sub-
graph T in both abstract executions, that is, A(X)∩ (T ×T) and A(X ′)∩ (T ×T) respectively,
are the same. This intuitively means that A must be local to T , other transactions and edges
in X and/or X ′ cannot affect the minimum edges for T .

Definition 5.6 (Visibility axioms). The set of visibility relation axioms or axioms, VisAxioms 3
A, is defined by: VisAxioms def

= AExects → P (TxID × TxID), such that whenever two ab-
stract executions X ,X ′ contain the same subset of transactions T , written X 'T X ′, then
A(X)∩ (T ×T) = A(X ′)∩ (T ×T). Two abstract executions X ,X ′ contain the same sub-graph
of transactions T , if and only if

∀t, t′ ∈ T. TX (t) = TX (t′) ∧
(
t

VISX−−−→ t′ ⇔ t
VISX′−−−→ t′

)
∧
(
t

ARX−−→ t′ ⇔ t
ARX′−−−→ t′

)
.

The subsets of VisAxioms are ranged over A,A0,A′, · · ·.

Definition 5.7 (Consistent models on abstract executions). An abstract execution X satisfies
a set of axioms A, written AExecSat (X ,A), if and only if ∀A ∈ A. A(X) ⊆ VISX . The set of

73

Chapter 5. Correctness of Execution Tests

abstract executions induced by a set of axioms A is defined by:

ConsisModelAxioms (A)
def
= {X | AExecSat (X ,A)} .

5.2.2 Operational Semantics on Abstract Execution

We introduce an operational semantics on abstract executions. This operational semantics
is an intermediate step for proving the correctness of execution tests defined in Fig. 4.6a.
Given a consistency model M , In this section, we prove that reachable abstract executions in
the operational semantics satisfied the declarative definition of M , and vice versa. Then, in
Sections 5.3 to 5.5, we show that trace simulation between operational semantics on abstract
executions for M and operational semantics on kv-stores for M , for all M presented in Fig. 4.6a.

The operational semantics on abstract executions is given in Fig. 5.3. Each labelled transition
is of the form (X , E) , P ι−→A (X ′, E ′) , P′. The label is either a primitive command, (cl, •), or a
transaction commit step, (cl, T,F), with the given visible set of transactions T . The semantics
is parametrised by the set of visibility axioms A.

Definition 5.8 (Abstract execution labels). The set of abstract execution labels, ALabels 3 ι,
is defined by

ALabels def
= {(cl, •) | cl ∈ CID} ∪ {(cl, T,F) | cl ∈ CID ∧ T ⊆ TxID ∧ F ∈ Fp} .

In Fig. 5.3, except the rule AAtomicTrans, other rules are standard and mimic the counter-
parts in Figs. 4.2 and 4.4. The rule AAtomicTrans describes how a client cl with the set of
visible transactions T , commits a transaction [T], in a similar way as the rule CAtomicTrans
in Fig. 4.2. Prior to executing the transactional command T, the client cl picks the set of visible
transactions T (the second and third premises t0 ∈ T ∧ T ⊆ Dom (T)). This set of transactions
determines an initial snapshot that contains the latest visible value of each key, captured by the
fourth premise σ ∈ AExecSnapshot (X , T) in AAtomicTrans. The function AExecSnapshot
models the last-write-win policy. Given a set of visible transactions T , the snapshot induced by
T contains the last value for each key. For example, in Fig. 5.4, if T = {t0, t1, t2}, the snapshot
AExecSnapshot (X , T) = {k1 7→ v1, k2 7→ v2}, because t0

AR−→ t1
AR−→ t2. It is straightforward

that AExecSnapshot is a valid snapshot, since t0 ∈ T and t0 initialise all the keys in a well-formed
abstract execution.

Definition 5.9 (Snapshots on abstract executions). The function, AExecSnapshot : AExects×
P (TxID) → Snapshot, is defined by: for all keys k ∈ Key,

AExecSnapshot (X , T)
def
= λk. let t = MaxVisTrans (X , T, k) and (W, k, v) ∈ TX (t) in v

where MaxVisTrans is defined in Def. 5.5.

74

Chapter 5. Correctness of Execution Tests

−→A : (AExects × Stack × Commands)× ALabels × (AExects × Stack × Commands)

AAtomicTrans
X = (T, SO,VIS,AR)

t0 ∈ T T ⊆ Dom (T) σ ∈ AExecSnapshot (X , T) (s, σ, ∅) , T ∗ (s′, σ′,F) , skip
t ∈ NextAExecTxID (X , cl) X ′ = UpdateAExec (X , T,F , t) ∀A ∈ A. A−1(X ′)(t) ⊆ T

(X , s) , [T]
(cl,T,F)−−−−→A (X ′, s′) , skip

APrimitive
s

Cp
s′

(X , s) , Cp
(cl,•)−−−→A (X ′, s′) , skip

AChoice
i ∈ {1, 2}

(X , s) , C1 + C2
(cl,•)−−−→A (X , s) , Ci

AIter

(X , s) , C∗ (cl,•)−−−→A (X , s) , skip + (C ; C∗)

ASeqSkip

(X , s) , skip ; C (cl,•)−−−→A (X , s) , C

ASeq
(X , s) , C1

ι−→A (X , s) , C′
1

(X , s) , C1 ; C2
ι−→A (X , s) , C′

1 ; C2

−→A : (AExects × ClientEnvs × Progs)× ALabels × (AExects × ClientEnvs × Progs)

AProg
s = E (cl) C = P (cl) ι = (cl, · · ·) (X , s) , C ι−→A (X , s′) , C′

(X , E) , P ι−→A (X ′, E [cl 7→ s′]) , P [cl 7→ C′]

Figure 5.3: Operational semantics on abstract executions

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

VIS,AR

VIS,AR

AR

Figure 5.4: An example of AExecSnapshot (X , T), where T = {t0, t1, t2}

The transaction command T is executed with the initial snapshot σ, resulting a final fingerprint
F where the final snapshot σ′ is ignored (the fifth premise in AAtomicTrans). As with
CAtomicTrans, the client cl is now ready to commit the transaction with the fingerprint F :

(1) pick the next fresh transaction identifier t ∈ NextAExecTxID (K, cl) (we allows any trans-

75

Chapter 5. Correctness of Execution Tests

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

(R, k1, v1) (W, k2, v′2) t3

VIS,AR

VIS,AR

AR

VIS,AR

VIS,AR

VIS,AR

VIS,AR

Figure 5.5: An example of X ′ = UpdateAExec (X , T,F , t3), where T = {t0, t1, t2} and
F = {(R, k1, v1) , (W, k2, v′2)} and new edges are label with color, VIS in purple and AR in
orange

action identifiers with bigger number, similar to Def. 4.19);

(2) compute the new abstract execution via X ′ = UpdateAExec (X , T,F , t) (an example is
given in Fig. 5.5); and

(3) check if the new visibility edges satisfy the axioms A: that is, A−1(X ′)(t) ⊆ T for all
A ∈ A.

Definition 5.10 (Fresh transaction identifiers and abstract execution update). Given an ab-
stract execution X and a client cl, the set of next available transaction identifiers, written
NextAExecTxID (X , cl), is defined by:

NextAExecTxID (X , cl)
def
= {tncl | tncl ∈ TxID ∧ ∀m ∈ N.∀tmcl ∈ X .m < n} .

Given a set of visible transactions T ⊆ TxID, a fingerprint F ∈ Fp, and a fresh transaction
t ∈ NextAExecTxID (X , cl), the new abstract execution, written UpdateAExec (X , T,F , t), is
defined by:

UpdateAExec (X , T,F , t)
def
= let (T,VIS,AR) = X in

(T ∪ {t 7→ F} ,VIS ∪ {(t′, t) | t′ ∈ T} ,AR ∪ {(t′, t) | t′ ∈ X}) .

Proposition 5.11 (Well-defined UpdateAExec function). Given an abstract execution X ∈
AExects, a set of transactions T ⊆ X with t0 ∈ T , a fresh transaction identifier t ∈
NextAExecTxID (K, cl) for some client cl, and a fingerprint F ∈ Fp such that

∀k ∈ Key. ∀v ∈ Value. (R, k, v) ∈ F ⇒ MaxVisTrans (X , T, k) , (5.18)

76

Chapter 5. Correctness of Execution Tests

the new abstract execution UpdateAExec (X , T,F , t) is a well-formed abstract execution.

Proof sketch. This is straightforward since t ∈ NextAExecTxID (X , cl) is a fresh transition iden-
tifier annotated with a greater number than any previous transaction identifiers in the same
session. Therefore the AR of the new abstract execution is well-formed. The fingerprint con-
tains the maximum visible value of each key k, if there is a read operation for k. Therefore the
VIS of the new abstract execution is well-formed. The full proof is given in appendix A.3 on
page 192. �

This operational semantics on abstract executions are equally expressive as the axiomatic defini-
tions in that, given a set of axioms A, both formalisms yield the same set of abstract executions.
We first define the notion of reachable abstract executions of a program P, written JPKA .

Definition 5.12 (Abstract executions induced by programs). Given a program P, the set of
abstract executions obtained by executing the program under a set of axioms A is defined by:

JPKA def
= {X | ∃n. (X ,_,_) = Last (ATracesN (A, P, n))}

where ATracesN is defined by:

ATracesN (A, P, 0) def
= {(X0, E) , P | Dom (P) ⊆ Dom (E)}

ATracesN (A, P, n+ 1)
def
=
{
π

ι−→A (X , E) , P′
∣∣∣ π ∈ ATracesN (P, n) ∧ Dom (P′) ⊆ Dom (E)

}
.

In Theorem 5.14, we prove that operational semantics on abstract executions is equivalent to
the declarative semantics, that is

⋃
P∈ProgsJPKA = ConsisModelAxioms (A) for a set of visibility

axioms A, where ConsisModelAxioms is the well-known definition defined in Def. 5.7.

We first introduce cuts of an abstract execution X , which are used to construct traces where
the final state X . This means that for all transactions in X , there is a trace,

X0

(cl,t1,VIS−1(t1),TX (t1))
−−−−−−−−−−−−−→A · · ·

(cl,ti,VIS−1(ti),TX (ti))
−−−−−−−−−−−−−→A Xi

(cl,ti+1,VIS−1(ti+1),TX (ti+1))
−−−−−−−−−−−−−−−−−→A · · ·

(cl,tn,VIS−1(tn),TX (tn))
−−−−−−−−−−−−−−→A Xn

where Xn = X , and for each i, VIS−1 (ti) is the set of visibility transactions and TX (ti) is the
fingerprint. We then define AExectCut (X , i)

def
= Xi. Note that the zero-cut is the graph that

only contains the initialisation transaction.

Definition 5.13 (Cuts of abstract executions). The cut of an abstract execution X induced by
the first i transactions, written AExectCut (X , i), is defined by:

AExectCut (X , i)
def
= let T = ARClose (X , i) in

(λt ∈ T. TX (t) ,VISX ∩ {(t, t′) | t, t′ ∈ T} ,ARX ∩ {(t, t′) | t, t′ ∈ T})

77

Chapter 5. Correctness of Execution Tests

where ARClose (X , i) is defined by: ARClose (X , i)
def
= {t0, · · · , ti} for transactions t0, · · · , ti such

that t0
ARX−−→ · · · ARX−−→ ti

ARX−−→ · · · ARX−−→ t|X |−1.

As explained before, given an abstract execution X , it is easy to see that the ith cut is the result
of committing next transaction (with respect to AR) to the ith cut. The detail of the proof is
given in Prop. A.7 on page 194. In the trace induced by AExectCut,

AExectCut (X , 0)
(cl,t1,VIS−1(t1),TX (t1))
−−−−−−−−−−−−−→A · · ·

(cl,ti,VIS−1(ti),TX (ti))
−−−−−−−−−−−−−→A AExectCut (X , i)

(cl,ti+1,VIS−1(ti+1),TX (ti+1))
−−−−−−−−−−−−−−−−−→A · · ·

(cl,tn,VIS−1(tn),TX (tn))
−−−−−−−−−−−−−−→A AExectCut (X , n)

there is no program, yet it is easy to construct the program by the fingerprints, TX (t1) , . . . ,

TX (tn). This is a key step to prove that an abstract execution induced by declarative semantics
is reachable in the operational semantics.

Theorem 5.14 (Equal expressibility between declarative and operational semantics on abstract
executions). For any A ⊆ VisAxioms, the operational semantics capture the same set of abstract
executions as direct axiomatic definitions on abstract definitions, that is,

⋃
P∈ProgsJPKA =

ConsisModelAxioms (A).

Proof sketch. It is easy to see that
⋃

P∈ProgsJPKA ⊆ ConsisModelAxioms (A) since each step
in the traces from the program P is constrained by A. The opposite way,

⋃
P∈ProgsJPKA ⊇

ConsisModelAxioms (A), can be derived from the following result: given an abstract execution
X such that X ∈ ConsisModelAxioms (A), and for all i,

AExectCut (X , i+ 1) = UpdateAExec
(
X ′,VIS−1

X (t) , t, TX (t)
)

where {t} = AExectCut (X , i+ 1)\AExectCut (X , i) and X ′ = AExectCut (X , i). We inductively
construct the program P from the fingerprint TX (t) such that

(AExectCut (X , 0) , E0) , P
(cl,t1,VIS−1(t1),TX (t1))
−−−−−−−−−−−−−→A · · ·

(cl,ti,VIS−1(ti),TX (ti))
−−−−−−−−−−−−−→A

(AExectCut (X , i) , Ei) , Pi

(cl,ti+1,VIS−1(ti+1),TX (ti+1))
−−−−−−−−−−−−−−−−−→A (AExectCut (X , i+ 1) , Ei+1), Pi+1

The full detail is given in appendix A.3 on page 193. �

5.3 Correspondence to Kv-store Semantics

We explain the connection between abstract executions and kv-stores via dependency graphs.
We show the connection between views on the kv-stores and visibility relations on the abstract
executions. We then show how to construct an ET⊤-trace from an abstract execution, and vice
versa. This means that ET⊤-traces and abstract executions are equally expressive, which is a key

78

Chapter 5. Correctness of Execution Tests

result for proving the correctness of our definitions of consistency models. In this section, we
only consider the traces that do not involve P but only committing fingerprint. In Section 5.4,
we will go further and discuss the trace installed with P.

We show how to convert an abstract execution to a dependency graph. The definition of XToD
is adapted from [Cerone et al., 2015a; Cerone and Gotsman, 2016]. By the definition of DToK
defined in Def. 5.3, we therefore can convert an abstract execution to a kv-store.

Definition 5.15 (Abstract executions to dependency graphs, XToD, and kv-stores, XToK).
Given an abstract execution X ∈ AExects, the dependency graph is defined by XToD (X)

def
=

(TX ,WRX ,WWX ,RWX) where the dependency relations on abstract execution are defined by:

(1) write-read dependency relation is defined by: WRX
def
=
⋃

k∈Key WRX (k) where

WRX (k)
def
=

{
(t, t′)

∣∣∣∣∣ t = MaxVisTrans
(
X ,VIS−1

X (t′) , k
)

∧ ∃v ∈ Value. (W, k, v) ∈ TX (t) ∧ (R, k, v) ∈ TX (t′)

}
,

(2) write-write dependency relation is defined by: WWX
def
=
⋃

k∈Key WWX (k) where

WWX (k)
def
= {(t, t′) | (t, t′) ∈ ARX ∧ ∃v, v′ ∈ Value. (W, k, v) ∈ TX (t) ∧ (W, k, v′) ∈ TX (t′)} ,

(3) read-write anti-dependency relation is defined by: RWX
def
=
⋃

k∈Key RWX (k) where

RWX (k)
def
=

{
(t, t′)

∣∣∣∣∣
(
MaxVisTrans

(
X ,VIS−1

X (t) , k
)
, t′
)
∈ ARX

∧ ∃v, v′ ∈ Value. (R, k, v) ∈ TX (t) ∧ (W, k, v′) ∈ TX (t′)

}
.

Given DToK in Def. 5.3, the kv-store induced by the abstract execution X is defined by:

XToK (X) = DToK (XToD (X)) .

Each abstract execution X determines a unique and well-formed dependency graph, defined by
G = XToD (X), because: (1) AR is a total order; and (2) X applies last-write-wins in the sense
that a transaction always reads from the latest visible transaction given by MaxVisTrans defined
in Def. 5.5. The full proof is given in appendix A.4 on 195. Therefore, XToK (X) is a uniquely
defined and well-formed kv-store, by Prop. A.5. However, abstract executions are not bijective
to kv-stores in that several abstract executions may be encoded to the same kv-store. Because:
(1) kv-stores do not have the total arbitration order of transactions, and (2) kv-stores only
track the actually WR dependency, in contrast to the potential write-read dependency captured
by visibility relation.

Apart from the correspondence between individual kv-stores and abstract executions, there is
a correspondence between views on kv-stores and visibility relations on abstract executions.

79

Chapter 5. Correctness of Execution Tests

Recall that snapshots in kv-stores are computed from views, while in abstract executions, these
snapshots are computed from visibility relations. A kv-store K is compatible with an abstract
execution X , written K ∼ X , if and only if any snapshot made on K can be obtained by an
snapshot made on X , and vice versa.

Definition 5.16 (Compatibility between kv-stores and abstract executions). Given an abstract
execution X , the view induced by a set of visible transactions T on X , written GetView (X , T), is
defined by: GetView (X , T)

def
= λk ∈ Key. {0} ∪ {i | WriterOf (XToK (X) (k, i)) ∈ T} . A kv-store

K and an abstract execution X are compatible, written K ∼ X , if and only if:

(1) for any transaction t,

t ∈ K ⇔ t ∈ X (5.19)

(2) for any subset of transactions T ⊆ X such that t0 ∈ T ,

AExecSnapshot (X , T) = Snapshot (K,GetView (X , T)) (5.20)

(3) given the definition of VisTrans, defined in Def. 4.32, for any view u ∈ ViewOn (K) on
kv-store K,

Snapshot (K, u) = AExecSnapshot (X ,VisTrans (K, u)) . (5.21)

Given a set of transactions T , the GetView function extracts a view that includes all versions
written by any transaction in T . A kv-store K is compatible with an abstract execution X , if
and only if: (1) they contain the same set of transactions (Eq. (5.19)); and (2) the snapshot
induced by a set of transactions T on X , is the same as the snapshot induced by the view
GetView (X , T) on K (Eq. (5.20)) and (3) vice versa (Eq. (5.21)).

Theorem 5.17 (Compatibility of X and XToK (X)). For any abstract execution X , X ∼
XToK (X).

Proof sketch. It can be derived from the definition of XToK. Given X , let K = XToK (X).
Eq. (5.19) trivial holds. Note that, given an abstract execution X and a set of transactions T ,
the view GetView (X , T) is well-formed on XToD (X) (detail is given in Prop. A.9 on page 196).
For Eq. (5.20), it is sufficient to prove

AExecSnapshot (X , T) (k) = Snapshot (K,GetView (X , T)) (k).

Note that WWK = WWX ⊆ ARX . This means if two transactions t, t′ both write to key k, and
if t, t′ ∈ T , then the AExecSnapshot (X , T) (k) may include the value written by t′ but not t.
Similarly by definition of GetView and Snapshot, the snapshot Snapshot (K,GetView (X , T)) (k)

80

Chapter 5. Correctness of Execution Tests

may contain the value of version written by t′ but not t. Therefore, we have the prove for
Eq. (5.20). Similarly, Eq. (5.21) can be derived by WWK = WWX ⊆ ARX . The full proof is
given in appendix A.4 on page 195. �

We now show how to construct an abstract execution from an ET⊤-trace, via TraceToX (τ)

defined in Def. 5.18. Recall that ET⊤ is defined by CanCommit⊤
def⇔ true and ViewShift⊤

def⇔
true. The opposite direction is given in Def. 5.20. These two results are the foundation to
prove specifies execution test ETM for consistency model M is correct with respect to the set
of visibility axioms AM .

Recall that it is enough to only consider normalised traces Theorem 4.30. Given a normalised
ET⊤-trace τ ,

τ = (K0,U0)
(cl1,u1)−−−−→ET⊤ (K0,U ′

0)
(cl1,F1)−−−−→ET⊤ (K1,U1)

(cl2,u2)−−−−→ET⊤ (K1,U ′
1)

(cl2,F2)−−−−→ET⊤ (K2,U2)
(cl3,u3)−−−−→ET⊤ · · · (cln,un)−−−−→ET⊤

(
Kn−1,U ′

n−1

) (cln,Fn)−−−−→ET⊤ (Kn,Un)

function TraceToX inductively constructs a set of possible abstract executions X :

(1) a view-shift transition, (cli, ui) in the trace τ does not affect X ; and

(2) a fingerprint transition (cli,Fi) with a given view ui corresponds to a new transaction
node append to X via UpdateAExec, of which the set of visible transactions, T contains
all the writers of the versions include in the view u, that is VisTrans (K′,U (cl)), and some
arbitrary read-only transactions Trd.

It is safe to include any numbers of read-only transactions, because the read-only transactions
do not affect the snapshots. By the construction, the arbitrary order in the abstract executions
X ∈ TraceToX (τ) matches the commit order in the trace τ .

Definition 5.18 (ET⊤-traces to abstract executions). Given an ET⊤ trace τ , the set of abstract
executions, written TraceToX (τ), is defined by:

TraceToX ((K0,U0))
def
= ({t0 7→ {(k, v0) | k ∈ Key ∧ v0 ∈ InitialValue (k)}} , ∅, ∅)

TraceToX
(
τ

(cl,u)−−−→⊤ (K,U)
)

def
= TraceToX (τ)

TraceToX
(
τ

(cl,F)−−−→⊤ (K,U)
)

def
= let (K′,U ′) = Last (τ) , t = K \ K′,

Trd ⊆ {t′ | ∀l, k, v. (l, k, v) ∈ TX (t′) ⇒ l = R} ,
T = VisTrans (K′,U (cl)) ∪ Trd and X ∈ TraceToX (τ)

in {UpdateAExec (X , T,F , t)} .

where VisTrans is defined in Def. 4.32.

81

Chapter 5. Correctness of Execution Tests

Theorem 5.19 (Well-formed abstract executions of XToTrace). Given an ET⊤-trace τ , an
abstract execution X such that X ∈ TraceToX (τ), is a well-formed abstract execution and
Last (τ)|0 = XToK (X).

Proof sketch. It is trivial by induction on the length of the trace. For view-shift transition, we
directly apply inductive hypothesis. For fingerprint transition, the result can be derived from
the following result (Prop. A.10 on page 198): Given: (1) a kv-store K; (2) an abstract execution
X such that K = XToK (X); (3) a view u = GetView (K, T) for transaction set T ⊆ X with
t0 ∈ T ; and (4) the next abstract execution X ′ = UpdateAExec (X , T,F , t) for some fingerprint
F and fresh transaction t ∈ NextAExecTxID (X , cl), then UpdateKV (K, u,F , t) = XToK (X ′).
The full detail is given in appendix A.4 on 197. �

Inversely, given an abstract execution X , function XToTrace (X), defined in Def. 5.20, defines
a set of ET⊤-traces in its normalised form such that any such trace τ satisfies Last (τ)|0 =

XToK (X).

Given an abstract execution X such that

t0
ARX−−→ t1

ARX−−→ · · · ARX−−→ tn

we can construct an ET⊤-trace inductively in the order of AR. In the (i+1)th step of XToTraceN,
that is XToTraceN (X , i+ 1), the next transaction ti must be the difference between ith and
(i+ 1)th cut of X . Let cl be the client that commits ti, and τ be a trace from the result of ith

step of XToTraceN. We can construct a new trace by appending a view-shift step and then a
fingerprint step:

(1) the view-shift step advances the view of cl to a new view u that extracts from the set of
visible transactions of ti, that is, u = GetView

(
X ,VIS−1 (ti)

)
;

(2) the fingerprint step simply commits the fingerprint TX (ti) in the sense that it updates
the kv-store to K′ and shift the view u to a new view u′ afterwards.

The abstract execution does not contains the precise information about view u′, but it can be
approximated using ApproxView function, that is: (1) if there is more transactions from the
same client cl, the view after commit can be extracted from the intersection of the visible set of
the immediate next transaction of cl, that is, VIS−1

X (tmcl), and the set of transactions committed
before tncl, that is, (AR−1

X)
?
(tncl); and (2) otherwise, the view after commit can be any valid view

on K′. It is easy to see that ApproxView always returns a set of valid view (the detail is given
in Prop. A.11 on page 200).

Definition 5.20 (Abstract executions to ET⊤-traces). Given an abstract execution X ∈ AExects
and an index i ∈ N, the set of ET⊤-traces induced by the abstract execution, XToTrace (X), is

82

Chapter 5. Correctness of Execution Tests

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

(R, k1, v1) (W, k2, v′2) t3

VIS,AR

VIS,AR

AR

VIS,AR

VIS,AR

VIS,AR

VIS,AR

(a) An example X

k1 7→ v0
t0

∅
v1

t1

∅
k2 7→ v0

t0

{t1}
· · ·

(cl1,F1)

(b) An example trace τ containing t0, t1

k1 7→ v0
t0

∅
v1

t1

∅
k2 7→ v0

t0

{t1}
k1 7→ v0

t0

∅
v1

t1

∅
k2 7→ v0

t0

{t1}
· · ·

(cl1,F1) (cl2, u2)

(c) An example trace τ ′ containing t0, t1 and view-shift of t2, where u2 = {k1 7→ {0} , k2 7→ {0}}

k1 7→ v0
t0

∅
v1

t1

∅
k2 7→ v0

t0

{t1}
k1 7→ v0

t0

{t2}
v1

t1

∅
k2 7→ v0

t0

{t1}
v2

t2

∅
· · ·

(cl2, u2) (cl2,F2)

(d) An example trace τ ′′ containing t0, t1, t2, where F2 = {(R, k1, v1) , (W, k2, v′2)} and (t2, t3) /∈ SO

k1 7→ v0
t0

∅
v1

t1

∅
k2 7→ v0

t0

{t1}
k1 7→ v0

t0

{t2}
v1

t1

∅
k2 7→ v0

t0

{t1}
v2

t2

∅
· · ·

(cl2, u2) (cl2,F2)

(e) An example trace τ ′′ containing t0, t1, t2, where F2 = {(R, k1, v1) , (W, k2, v′2)} and (t2, t3) ∈ SO

Figure 5.6: An example of XToTrace (X)

defined by:
XToTrace (X) = XToTraceN (X , |X | − 1) ,

where, given definition of AExectCut in Def. 5.13, XToTraceN (X , |X |) is defined by:

XToTraceN (X , 0)
def
= {(K0,U0) | ∀cl ∈ Dom (U0) .U0 (cl) = {0}}

XToTraceN (X , i+ 1)
def
= let X ′ = AExectCut (X , i) ,X ′′ = AExectCut (X , i+ 1) ,

{tncl} = X ′′ \ X ′, τ ∈ XToTraceN (X , i) , (K,U) = Last (τ) ,
F = TX (tncl) ,K′ = UpdateKV (K, u,F , tncl) ,

and u = GetView
(
X ,VIS−1 (tncl)

)
inτ

(cl,u)−−−→ET (K,U [cl 7→ u])
(cl,F)−−−→ET (K′,U [cl 7→ u′])

∣∣∣∣∣∣ u′ ∈ ApproxView (X , i+ 1, tncl)

83

Chapter 5. Correctness of Execution Tests

ApproxView (X , i, tncl)
def
= let X ′ = AExectCut (X , i) in

{
GetView (X ′, T)

∣∣∣ T ⊆ VIS−1
X (tmcl) ∩ (AR−1

X)
?
(tncl)

}
if tmcl ∈ X ∧m > n ∧ ∀t.¬

(
tncl

SO−→ t
SO−→ tmcl

)
ViewOn (XToK (X ′)) otherwise

Let us consider a concrete example in Fig. 5.6. Given the abstract example depicted in Fig. 5.6a,
assume that Fig. 5.6b is a trace τ and its final kv-store after t0 and t1. The next transaction is
t2. In the definition of XToTraceN in Def. 5.20, we append one view-shift and one fingerprint
steps to τ for each transaction in abstract execution. The view-shift step (cl2, u2) advances the
view to a new view u = GetView

(
X ,VIS−1 (t2)

)
, depicted in Fig. 5.6b; this view includes all

versions written by the visibility transactions VIS−1 (t2). The fingerprint step (cl2,F2) commits
fingerprint F2 to the kv-store, updating the kv-store to K′ = UpdateKV (K, u2,F2, t2); the
result kv-store is shown in Figs. 5.6d and 5.6e. Last, the view u to a new view vi′. In the
abstract execution, there is no direct information about u′, however, it can be approximated
via ApproxView:

(1) if there is more transaction t3 from the same client as t2, that is, (t2, t3) ∈ SO, then
the view u′ can be approximated by projecting the visibility transactions of t3, that is,
u′ = GetView (X ′, T) and T ⊆ VIS−1

X (t3)∩ (AR−1
X)

?
(t2), which guarantees that the u′ does

not contract with t3 (Fig. 5.6e);

(2) if there is no more transaction from the same client as t2 (for example, (t2, t3) /∈ SO in
Fig. 5.6d) the view u′ can be arbitrary (Fig. 5.6d).

Given an abstract execution, any trace τ in XToTrace (X) is a valid ET⊤-trace, and the kv-store
K in the final configuration can be directly extracted from X in the sense that K = XToK (X).

Theorem 5.21 (Abstract executions to well-formed ET⊤-traces). Given an abstract execution
X , any trace τ ∈ XToTrace (X) is a valid ET⊤-trace and the final kv-store K such that (K,_) =

Last (τ) satisfies that K = XToK (X).

Proof sketch. Given the definition of XToTrace, we prove a stronger result that, for any number
i, kv-store K, view environment U and trace τ ,

τ = XToTraceN (X , i) ∧ (K,U) = Last (τ) ∧ K = XToK (AExectCut (X , i)) .

This result can be proved by induction on the number i. Note that in each inductive step, there
are two more transitions, a view-shift transition and a fingerprint transition. Assume the next
transaction is identified by t, from a client cl. For the view-shift transition, we prove that the
new view, which is the view induced by the visible transactions of t, contains more versions

84

Chapter 5. Correctness of Execution Tests

than the view of cl. This can be derived from the definition of ApproxView. For the fingerprint
transition, we prove the new kv-store K by committing t is equivalent to the ith cut of X , that
is, K = XToK (AExectCut (X , i)). This can be proven by the inductive case of the definition of
XToTrace. The full proof is given in appendix A.4 on page 200. �

5.4 Soundness and Completeness Constructors

We show how all the results illustrated so far can be put together to show that a consistency
model using an execution test ET on kv-stores is sound and complete with respect to the
declarative definition using visibility axioms A on abstract. This means that, the set of kv-
stores induced by ET for some program P is compatible with the set of abstract execution tests
induced by A, that is,

⋃
P∈ProgsJPKET = {XToK (X) | X ∈ ConsisModelAxioms (A)}. Note that,

our operational semantics talks about the execution of some programs P, while the well-known
declarative semantics only talks about fingerprints. We introduce soundness and completeness
constructors, which lift the conditions on execution tests ET and visibility axioms A with respect
to single transitions to the level of traces, and therefore to the level of reachable kv-stores and
abstract exactions. Recall that in the abstract execution operational semantics, the client
cl loses information of the visible transactions immediately after it commits a transaction t.
However, in our kv-store semantics, the view u′ after cl commit t must satisfy ViewShift
predicate. In Def. 5.20 when we convert abstract executions to kv-store traces, we can easy
approximate u′ due to ViewShift⊤

def
= true. However, for any execution test ET such that

ViewShiftET is not always true, We introduce a notation of abstract execution invariant on the
visible transactions I, which, for each client cl, tracks the minimum set of visible transactions
I (X , cl) for the next transaction of cl. This invariant I on abstract executions is analogous
to the ViewShift on kv-stores. In Def. 5.23, we use the invariant to define the soundness
constructor from an execution test ET to a set of visibility axioms A in the sense that ET is
sound to A, there must exist an invariant aexecinv such that I satisfies some conditions. This
soundness is lifted to the level of traces of kv-stores and abstract executions in Theorem 5.24.

Definition 5.22 (Abstract execution invariants for clients). An abstract execution invariant
on the visible transactions or just an invariant is a function I : AExects × CID → P (TxID)

such that for any clients cl,

I (X , cl) ⊆ X , (5.22)

∀T ⊆ X .∀F ∈ Fp.∀i ∈ N.∀cl′ ∈ CID.∀ticl′ ∈ TxID. cl 6= cl′

⇒ I
(
UpdateAExec

(
X , T,F , ticl′

)
, cl
)
= I (X , cl) . (5.23)

Given a client cl, the invariant I (X , cl): (1) must be a subset of transactions in the abstract
execution (Eq. (5.22)); and (2) must be stable in the sense that the set does not modify by new
transactions committed by different clients cl′ (Eq. (5.23)), which is similar to our operational

85

Chapter 5. Correctness of Execution Tests

semantics on kv-stores: cl′ cannot modify the view of cl. Give the invariant, we define the
soundness constructor: that is, the notion of the soundness of an execution test ET with respect
to a set visibility axioms A.

Definition 5.23 (Soundness constructor). An execution test ET is sound with respect to a set
of visibility axioms A, if and only if there exists an invariant I such that: for any client cl,
views u, u′, transaction identifier t, fingerprint F , kv-stores K,K′, abstract execution X and set
of transactions T , assume that:

(1) K describes the same state as X , that is, K = XToK (X);

(2) cl is the next scheduled client and t ∈ NextTxID (K, cl) is the next transaction;

(3) K′ = UpdateKV (K, u,F , t) is the new kv-store of committing t to K with fingerprint F
under view u;

(4) this step satisfies the execution test, (K, u)
F−→ET (K′, u′);

(5) T = VisTrans (K, u) is the set of visible transactions induced by u such that I (X , cl) ⊆ T ;

then there exists a corresponding new abstract execution X ′ such that

∃Trd ⊆ ReadOnlyTrans (X) .X ′ = UpdateAExec (X , T ∪ Trd,F , t)

∧ ∀A ∈ A. A(X ′)
−1
(t) ⊆ T ∪ Trd (5.24)

∧ I (X ′, cl) ⊆ VisTrans (K′, u′) (5.25)

where ReadOnlyTrans (X)
def
= {trd | ∀l, k, v. (l, k, v) ∈ TX (trd) ⇒ l = R} and NextTxID,UpdateKV,

VisTrans,UpdateAExec,XToK are defined in Defs. 4.19, 4.20, 4.32, 5.10 and 5.15 respectively.

The soundness constructor states that: given an execution test ET, there exists an invariant
such that for any element (K, u,F ,K′, u′) in ET such that (K, u)

F−→ET (K′, u′), and any abstract
execution X which can be extracted to K in the sense that K = XToK (X), then there exists a set
of read-only transactions Trd, together with the set of visible transactions induced by the view,
T = VisTrans (K, u), such that the abstract execution X is updated to X ′ by the fingerprint F
and with the visible set of transactions being Trd ∪T , and: (1) this update is allowed by the set
of visibility axioms (Eq. (5.24)); and (2) the invariant holds on the new graph X ′ (Eq. (5.25)).
This constructor means that given an execution test ET, if a transaction t is allowed to K with
a given view u, updating the kv-stores and view to K′ and vi′, then Let us take Fig. 5.7 as
an example. Assume a step on kv-stores under ETRYW depicted in Fig. 5.7a: client cl2 commit
transaction t2 to the kv-store K with view u2, updating them to K′ and u′

2 respectively. Then
assume an abstract execution X , depicted in Fig. 5.7b, such that K = XToK (X). The invariant
I (X , cl) contains all the version written by the client cl, of which in X we give formal definition

86

Chapter 5. Correctness of Execution Tests

k1 7→ v0
t0

∅
v1

t1

∅
k2 7→ v0

t0

{t1}
k1 7→ v0

t0

{t2}
v1

t1

∅
k2 7→ v0

t0

{t1}
v2

t2

∅
(cl2,F2)

(a) Client cl2 commit transaction t2 to the kv-store K with view u2, updating them to K′ and u′2
respectively

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1VIS,AR

(b) An example X such that K = XToK (X), where I (X , cl2) = ∅

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

VIS,AR

VIS,AR

AR

(c) New abstract execution X ′ = UpdateAExec (X , T ∪ Trd,F2, t2), where I (X , cl2) ⊆ T = {t0, t1}
and Trd = ∅

Figure 5.7: An example of soundness constructor

in 94. For example, in Fig. 5.7b, I (X , cl2) = ∅. This means the set of visibility transactions
T satisfies I (X , cl2) ⊆ T = VisTrans (K, u2) = {t0}, as in the hypothesis in Def. 5.23. The
Def. 5.23 then states that, if ETRYW is sound with respect to the ARYW = {λX . SOX} [Burckhardt
et al., 2014], then there exists a set of read-only transactions Trd, picking Trd = ∅ here, and a
new abstract execution X ′ = UpdateAExec (X , T ∪ Trd,F2, t2), depicted in Fig. 5.7c, satisfying
Eqs. (5.24) and (5.25). Eq. (5.24) states that the new transaction t2 satisfies the visibility
axioms ARYW, that is, SO−1

X ′ (t2) = ∅ ⊆ T . Eq. (5.25) states that the invariant holds under X ′,
that is, I (X ′, cl2) = {t2} ⊆ VisTrans (K′, u′) = {t0, t2}. This soundness constructor can be
lifted to the level of traces.

Theorem 5.24 (Soundness of execution tests). Given an execution test ET is sound with respect
to a set of visibility axioms A, then⋃

P∈Progs
JPKET ⊆ {XToK (X) | X ∈ ConsisModelAxioms (A)} .

Proof sketch. By Theorem 4.31 stating that
⋃

P∈Progs = ConsisModel (ET), it suffices to prove
the following result

ConsisModel (ET) ⊆ {XToK (X) | X ∈ ConsisModelAxioms (A)} .

Let I be the invariant that gives rise of soundness. We prove a stronger result that, for any

87

Chapter 5. Correctness of Execution Tests

ET-trace τ , there exists an abstract execution X that satisfies A and preserves I, that is,

τ = (K0,U0)
_−→∗

ET (K,U) ∧ K = XToK (X) ∧ X ∈ ConsisModelAxioms (A)

∧ ∀cl ∈ Dom (U) . I (X , cl) ⊆ VisTrans (K,U (cl))

First, the trace τ must be a ET⊤-trace, and by Theorem 5.19 for any X ′ ∈ TraceToX (τ), it
satisfies that K = XToK (X ′). We now show that we can always find an abstract execution
X ∈ TraceToX (τ) such that AExecSat (X ,A) and I (X , cl) ⊆ Tcl for a client cl, a set of
transactions Tcl = VisTrans (K,U (cl)) ∪ Trd and a set of read-only transactions Trd in X . We
prove it by induction on the length of τ . Note that by Theorem 4.30, it is safe to assume that
τ is a normalised trace. The inductive case can be derived by the definition of the soundness
constructor. The full proof is given in appendix A.5 on page 202. �

The completeness constructor is given in Def. 5.25. If an execution test ET is complete with
respect to A, if and only if, a transaction step t on abstract execution for a client cl can be
converted to an equivalent step on kv-store. We convert the set of visible transactions VIS−1

X (t)

of t into the view u used to update the kv-store, and approximates the view u′ after the update.
This step on kv-store must satisfy execution test ET.

Definition 5.25 (Complete constructor). An execution test ET is complete with respect to a
set of visibility axioms A, if and only if, for any abstract executions X ,X ′,X ′′, kv-stores K′,K′′,
indexes i, n, views u′, u′′, client cl, transaction identifier ticl and set of transactions T such that:

(1) X is the final abstract execution;

(2) X ′ = AExectCut (X , n) and X ′′ = AExectCut (X , n+ 1) are the nth and (n + 1)th cuts of
X respectively;

(3) {ticl} = X ′′ \ X ′ is the last transaction in X ′′, and this transaction is from client cl;

(4) T = VIS−1
X (ticl) is the set of visible transactions of ticl;

(5) K′ = XToK (X ′) and K′′ = XToK (X ′′) describe the same states as X ′ and X ′′, respectively;
and

(6) u = GetView (K′, T) is the view before ticl;

then there exist a set of transactions T ′ committed before ticl, that is, (AR−1
X)

?
(ticl) such that

∃t ∈ X . t = MinSO
({

t′
∣∣ t′ ∈ X ∧ (ticl, t

′) ∈ SO
})

⇒ T ′ ⊆ VIS−1
X (t) (5.26)

∧ u′ = GetView (X , T ′) ∧ (K′, u)
TX (ticl)−−−−→ET (K′′, u′). (5.27)

where AExectCut,GetView are defined in Defs. 5.13 and 5.16.

88

Chapter 5. Correctness of Execution Tests

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

(R, k1, v1) (W, k2, v′2) t3

VIS,AR

VIS,AR

AR

VIS,AR

VIS,AR

VIS,AR

VIS,AR

(a) An example X where (t2, t3) ∈ SO

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1VIS,AR

(b) The first cut of X ′ = AExectCut (X , 1)

(W, k1, v0) (W, k2, v0) · · ·t0

(R, k2, v′0) (W, k1, v1)
t1

(R, k1, v0) (W, k2, v2)
t2

VIS,AR

VIS,AR

AR

(c) The second cut of X ′′ = AExectCut (X , 2)

k1 7→ v0
t0

∅
v1

t1

∅
k2 7→ v0

t0

{t1}
k1 7→ v0

t0

{t2}
v1

t1

∅
k2 7→ v0

t0

{t1}
v2

t2

∅
(cl2,F2)

(d) Transaction step of txid2, updating K′ = XToK (X ′) and view u′ = GetView
(
K′,VIS−1 (t2)

)
to new kv-store K′′ = XToK (X ′′) and new view u′ = GetView (K′, T ′)

Figure 5.8: An example of completeness constructor

For any abstract execution X and the nth and (n+ 1)th cuts of the abstract execution X , that
is, X ′ and X ′′ respectively, the complete constructor states that: given the new transaction
{ticl} = X ′′ \ X ′ in the (n + 1)th cut, and the view inducted visible set of the transaction,
u′ = GetView (K′, T) where K′ = XToK (X ′), then there exists an approximation of the view,
u′′, such that, the fingerprint TX (ticl) is committed to the kv-store K′ with the view u′, updates
the kv-store to K′′ = XToK (X ′′) and the view u′ to u′′. The view u′′ is defined by intersection
of the set of transactions T ′ committed before ticl, that is, (AR−1

X)
?
(ticl), and T ′ agrees with the

next transaction t (if exists) of the same client cl, that is, T ′ ⊆ VIS−1
X (t) (Eq. (5.26)). This

update on kv-store must satisfies ET (Eq. (5.27)).

89

Chapter 5. Correctness of Execution Tests

Let us take Fig. 5.8 as an example. Assume the final abstract execution X that satisfies read
your write, depicted in Fig. 5.8a. Note that (t2, t3) ∈ SO in X . We focus on the first and second
cuts, X ′ and X ′′, shown in Figs. 5.8b and 5.8c, in which t2 is the last transaction in X ′′ with
the set of visible transactions being T = {t0}. We pick T ′ = {t0, t1, t2} and we now show that
it satisfies Eqs. (5.26) and (5.27). Because t3 is from the same client as t2 in X , and the set of
visible transactions of t3 is VIS−1 (t3) = k {t0, t1, t2}, Eq. (5.27) holds as T ′ ⊆ VIS−1 (t3). Given
T ′, Eq. (5.27) holds, that is, (K′, u)

TX (t2)−−−→RYW (K′′, u′) shown in Fig. 5.8d. The completeness
constructor can be lifted to the level of traces.

Theorem 5.26 (Completeness of execution tests). Given an execution test ET that is complete
with respect to a set of visibility axioms A, then {XToK (X) | X ∈ ConsisModelAxioms (A)} ⊆⋃

P∈ProgsJPKA.

Proof sketch. By Theorem 4.31 stating that
⋃

P∈ProgsJPKA = ConsisModel (ET), it suffices to
prove the following result

{XToK (X) | X ∈ ConsisModelAxioms (A)} ⊆ ConsisModel (ET) .

It is sufficient to prove that: for any abstract execution X ∈ ConsisModelAxioms (A), there
exists an ET-trace τ such that Last (τ)|0 = XToK (X) . We prove a stronger result: that is,
for any cut of X such as X ′ = AExectCut (X , i), there exists an ET-trace τ such that, for any
kv-store K, view environment U and a set of clients CL,

CL = {cl | ∃tncl. tncl ∈ X} ∧ (K,U) = Last (τ) ⇒ K = XToK (X ′) ∧∀cl ∈ CL.∀t ∈ X ′. t = MaxARX ({t′ | t ∈ X ′ ∧ t′ = t_cl}) ⇒ ∃T ′ ⊆ (AR−1
X)

?
(t).(

∃t′′. t′′ = MinSO ({t′ | t′ ∈ X ∧ (t, t′) ∈ SO}) ⇒ T ′ ⊆ VIS−1
X (t′′)

)
∧ U (cl) = GetView (X , T ′)

 .

Since X ∈ ConsisModelAxioms (A), then X ∈ ConsisModelAxioms (A⊤). By Def. 5.20 and The-
orem 5.21, any trace τ in XToTrace (X) must be a valid ET⊤-trace and the kv-store in the final
state of τ is compatible with X . We now prove that τ is a ET-trace and preserves the invariant
above by induction one the cut i. The inductive case can be derived from the completeness
constructor. The full proof is given in appendix A.5 on page 203. �

5.5 Soundness and Completeness of Execution Tests

We prove all the execution tests in Section 4.3 are sound and complete with the corresponding
set of visibility axioms. We first prove Theorem 5.27 stating that the prefix closure property on
views on kv-stores matches the closure property of visibility relation on abstract executions. For
example, an execution test ET with CanCommit defined by PreClosed (K, u, SO) is intuitively
sound and complete with respect to the axioms A = {λX . SO;VISX}: both of them requires

90

Chapter 5. Correctness of Execution Tests

that, if a transaction t observes effect of another transaction t′ (observation means a view in
kv-stores and visible transactions in abstract executions), then t must also observe effect of
transactions t′′ from the same client as t′. However, ET focuses on versions, that is, transactions
that at least has one write operation, while A covers also read-only transactions. Hence,
Eq. (5.28) states that, given a view u such that PreClosed (K, u, SO) and the set of transactions
T = VisTrans (K, u) induced by the view, there exists a set of read-only transactions Trd such
that (T ∪ Trd) ⊆ (SO)−1(T ∪ Trd). Recall the definition of PreClosed (K, u, SO) in Def. 4.32:

VisTrans (K, u) =
(
(SO∗)−1(VisTrans (K, u)) \ ReadOnlyTrans (K)

)
,

which means that T ∪ Trd = (SO∗)−1(T) ⊆ (SO∗)−1(T ∪ Trd), and therefore (T ∪ Trd) ⊆
(SO)−1(T ∪ Trd). This means that, if u is used to commit a transaction t to kv-stores, the
equivalent steps in abstract executions must satisfy A. One possible set of visible transactions
of t is T ∪ Trd: (SO;VISX)

−1 (t) = SO−1 (T ∪ Trd) ⊆ T ∪ Trd. The inverse from A to ET is also
true, described in Eq. (5.29).

Theorem 5.27 (View closure equal to visibility closure). Assume K and X such that K =

XToK (X). Assume relations RK and RX such that RK = RX . For any transaction t and
fingerprint F , view u ∈ ViewOn (K) and set of transaction T ⊆ X ,

PreClosed (K, u, RK) ∧ T = VisTrans (K, u)

⇒ ∃Trd ⊆ ReadOnlyTrans (X) . (T ∪ Trd) ⊆ R−1
X (T ∪ Trd), (5.28)

T ⊆ R−1
X (T) ∧ u = GetView (X , T) ⇒ PreClosed (K, u, RK) . (5.29)

Proof. We prove Eqs. (5.28) and (5.29) respectively.

(1) [Case: Eq. (5.28)] Let T = VisTrans (K, u). Let Trd = (R∗
K)

−1(VisTrans (K, u)) \ T be
the set of read-only transactions. Recall the definition of PreClosed in Def. 4.32:

T = VisTrans (K, u) =(
(R∗

K)
−1(VisTrans (K, u)) \ {t | t ∈ K ∧ ∀k. ∀i. t 6= WriterOf (K (k, i))}

)
.

It follows that T =
(
(R∗

K)
−1(T) \ Trd

)
. By RK = RX , we have T ∪ Trd = (R∗

X)
−1(T). For

any transaction trd ∈ Trd, it must be the case that (trd, t) ∈ (R∗
K) for some transaction

t ∈ T ; therefore T ∪ Trd = (R∗
X)

−1(T ∪ Trd).

(2) [Case: Eq. (5.29)] Let T ′ = VisTrans (K, u) be the set of visible transactions and Trd =

{t | t ∈ K ∧ ∀k. ∀i. t 6= WriterOf (K (k, i))} be the set of all read-only transactions. Since
u = GetView (X , T) then T ′ ⊆ T \ Trd. By the definition PreClosed, it suffices to prove
the following result,

T ′ = (R∗
K)

−1(T ′) \ Trd

91

Chapter 5. Correctness of Execution Tests

It is trivially T ′ ⊆
(
(R∗

K)
−1(T ′) \ Trd

)
then it remains to prove that

(
(R∗

K)
−1(T ′) \ Trd

)
⊆

T ′. Since R∗
K =

⋃
i∈N R

i
K, We now prove the following result:

∀i ∈ N.
(
(Ri

K)
−1
(T ′) \ Trd

)
⊆ T ′

by induction on i.

(i) [Base Case: i = 0] Because T ′ = T \ Trd, it is trivial that
(
(R0

K)
−1
(T ′) \ Trd

)
⊆ T ′

and (R0
K)

−1
(T ′) ⊆ T .

(ii) [Inductive Case: i > 0] By the inductive hypothesis, we have
(
(Ri−1

K)
−1
(T ′) \ Trd

)
⊆

T ′. We now consider
(
(Ri

K)
−1
(T ′) \ Trd

)
⊆ T ′. Assume two transactions t, t′ such

that t ∈ T ′ and (t′, t) ∈ Ri
K. Note that t must have write since t ∈ T ′. There must

exist t′′ such that t′
RK−−→ t′′

Ri−1
K−−−→ t. By inductive hypothesis, t′′ ∈ T . Since

RK = RX and T ⊆ R−1
X (T), then t′ ∈ T . If t′ wrote to a key, then t′ ∈ T ′. Otherwise

t′ is a read only transaction and t′ ∈ Trd. Thus
(
(Ri

K)
−1
(T ′) \ Trd

)
⊆ T ′. �

We prove all the execution tests in Section 4.3 are sound and complete with the corresponding
set of visibility axioms:

MR page 92 RYW page 94 MW page 95 WFR page 95 CC page 96
UA page 99 CP page 99 PSI page 102 SI page 104 SER page 105

We prove that the four sessions guarantees, MR, RYW, MW and WFR are sound and complete with
respect to the axiomatic definitions presented in [Burckhardt et al., 2014] (the definitions in
Fig. 22 in the appendix on page 37). For the well-known consistency models, including CC, PSI,
SI and SER: (1) we first construct the definitions containing the minimum visibility relation
from the definitions presented in [Cerone et al., 2015a] using the method presented in [Cerone
and Gotsman, 2016]; and we prove that these models are sound and complete with respect to
these definitions with minimum visibility.

Monotonic Read The execution test ETMR is sound with respect to the axiomatic definition
AMR

def
= {λX .VISX ; SO}) [Burckhardt et al., 2014]. By Defs. 5.22 and 5.23, we choose the

invariant as the following,

IMR (X , cl)
def
=
⋃

ticl∈X
VIS−1

X (ticl) \ ReadOnlyTrans (X) .

We prove that ETMR is sound respective to AMR. Assume two kv-stores K,K′, two views u, u′

and a transaction t for a client cl, a fingerprint F such that: (1) (K, u)
F−→MR (K′, u′);

(2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre K′ = UpdateKV(K, u,F , t). Assume an

92

Chapter 5. Correctness of Execution Tests

abstract execution X such that K = XToK (X). Let T = VisTrans (K, u) be the set of visible
transactions and Trd be a set of read-only transactions defined by:

Trd =
⋃

ticl∈X
VIS−1

X (ticl) ∩ ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23.

(1) [Case: ∀A ∈ AMR. A(X ′)−1(t) ⊆ T ∪ Trd] By the definition of AMR, suppose transactions
t′, t′′ such that t′

VISX′−−−→ t′′
SO−→ t. Note that t′, t′′ ∈ X . Consider t′. If t′ is read-only

transaction, then t′ ∈ Trd. If t′ has write, then t′ ∈ IMR (X , cl). Since IMR (X , cl) ⊆ T ,
therefore t′ ∈ T .

(2) [Case: IMR (X ′, cl) ⊆ VisTrans (XToK (X ′) , u′)] Because (K, u)
F−→MR (K′, u′), it must be

the case that u v u′ and thus T = VisTrans (K, u) = VisTrans (K′, u) ⊆ VisTrans (K′, u′).
Also, because K = XToK (X) and K′ = XToK (X ′), thus T ⊆ VisTrans (XToK (X ′) , u′).
Note that {ticl | ticl ∈ X ′} = {ticl | ticl ∈ X} ∪ t. Last, we obtain

IMR (X ′, cl) =
⋃

ticl∈X ′VIS−1
X ′ (ticl) \ ReadOnlyTrans (X ′)

=
⋃

ticl∈X
VIS−1

X (ticl) ∪ T \ ReadOnlyTrans (X)

= IMR (XToK (X) , u) ∪ T

= T ⊆ VisTrans (XToK (X ′) , u′)

Given the two cases above, we proof the soundness of ETMR. �

The execution test ETMR is complete with respect to the axiomatic definition AMR
def
= {λX .VISX ; SO})

[Burckhardt et al., 2014]. We prove that ETMR is complete respective to AMR. Assume an ab-
stract execution X that satisfies AMR and a transaction t ∈ X . Assume ith and (i + 1)th cuts,
X ′ = (X , i) and X ′′ = (X , i+ 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1

X (tncl) be
the set of visible transactions, and u = GetView (X , T) be the view with respect to T . Consider
if there are more transactions from the client cl in X after tncl.

(1) [Case: (tncl, t′) ∈ SO for t′ ∈ X] Let the transaction t = MinSO ({t′ | (tncl, t′) ∈ SO ∧ t′ ∈ X ′}).
For this case, let view u′ = GetView

(
X , (AR−1

X)
?
(tncl) ∩ VIS−1

X (t)
)

. By AMR, it follows that
T = VIS−1

X (tncl) ⊆ VIS−1
X (t), and therefore u v u′ which implies ETMR.

(2) [Case: ¬ ((tncl, t
′) ∈ SO)] For this case, let view u′ = GetView

(
X , (AR−1

X)
?
(tncl)

)
; this triv-

ially implies u v u′ and thus ETMR. �

93

Chapter 5. Correctness of Execution Tests

Read Your Write The execution test ETRYW is sound with respect to the axiomatic definition
ARYW = {λX . SOX} [Burckhardt et al., 2014]. We pick the following invariant:

IRYW (X , cl)
def
=
⋃

ticl∈X
(SO−1)

?
(ticl) \ ReadOnlyTrans (X) .

We prove that ETRYW is sound respective to ARYW. Assume two kv-stores K,K′, two views
u, u′ and a transaction t for a client cl, a fingerprint F such that: (1) (K, u)

F−→RYW (K′, u′);
(2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre K′ = UpdateKV(K, u,F , t). Assume an
abstract execution X such that K = XToK (X). Let T = VisTrans (K, u) be the set of visible
transactions and Trd be a set of read-only transactions defined by:

Trd =
⋃

ticl∈X
(SO−1)

?
(ticl) ∩ ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23.

(1) [Case: ∀A ∈ A. A(X ′)−1(t) ⊆ T ∪ Trd] Suppose transactions t, t′ such that t, t′ ∈ X and
(t′, t) ∈ SO. If t′ is a read-only transaction, t′ ∈ Trd. Otherwise, t′ has write, by the
definition of IRYW, it follows that t′ ∈ IRYW (X , cl) and therefore t′ ∈ T .

(2) [Case: I (X ′, cl) ⊆ VisTrans (XToK (X ′) , u′)] Because (K, u)
F−→RYW (K′, u′), it must be

that:
∀k, i. (WriterOf (K′(k, i)) , t) ∈ SO? ⇒ i ∈ u′(k)

and therefore

∀t′.∃k, v. (W, k, v) ∈ X ′(t′) ∧ (t′, t) ∈ SO? ⇒ t′ ∈ VisTrans (XToK (X ′) , u′) .

Note that
⋃

ticl∈X ′ (SO−1)
?
(ticl) = (SO−1)

?
(t). Therefore, we have

I (X ′, cl)RYW =
⋃

ticl∈X ′SO−1(ticl) \ ReadOnlyTrans (X)

=
(
(SO−1)

?
(t)
)
\ ReadOnlyTrans (X)

⊆ VisTrans (XToK (X ′) , u′)

Given the two cases above, we proof the soundness of ETRYW. �

The execution test ETRYW is complete with respect to the axiomatic definition ARYW = {λX . SOX}
[Burckhardt et al., 2014]. We prove that ETRYW is complete respective to ARYW. Assume an
abstract execution X that satisfies ARYW and a transaction t ∈ X . Assume ith and (i+1)th cuts,
X ′ = (X , i) and X ′′ = (X , i + 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1

X (tncl)

be the set of visible transactions, and u = GetView (X , T) be the view with respect to T . We
construct the final view u′ depending on whether tncl is the last transaction for the client cl.

94

Chapter 5. Correctness of Execution Tests

(1) [Case: (tncl, t′) ∈ SO for t′ ∈ X] Let the transaction t = MinSO ({t′ | (tncl, t′) ∈ SO ∧ t′ ∈ X ′}).
For this case, let view u′ = GetView

(
X , (AR−1

X)
?
(ticl) ∩ VIS−1

X (t)
)

. By ARYW, it follows
that, for any transaction t′, if (t′, ticl) ∈ SO?, then t′ ∈ VIS−1

X (t). Since SO ⊆ AR, we
know that t′ ∈ (AR−1

X)
?
(ticl) ∩ VIS−1

X (t). Therefore, for any version K′(k, j) such that
(WriterOf (K′(k, j)) , t) ∈ SO?, then j ∈ u′(k).

(2) [Case: ¬ ((tncl, t
′) ∈ SO)] For this case, let u′ = GetView

(
X , (AR−1

X)
?
(ticl)

)
be the final

view. It is easy to see that u′ satisfies RYW. �

Monotonic Write and Write Follows Read The execution test ETMW is sound with respect
to the axiomatic definition [Burckhardt et al., 2014],

AMW = {λX .(SO ∩ WWX);VISX})

We pick the invariant as empty set, I (X , cl) = ∅, since there is no constraint on the view after
update.

We prove that ETMW is sound respective to AMW. Assume two kv-stores K,K′, two views u, u′

and a transaction t for a client cl, a fingerprint F such that: (1) (K, u)
F−→MW (K′, u′);

(2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre K′ = UpdateKV(K, u,F , t). Assume an
abstract execution X such that K = XToK (X). Let T = VisTrans (K, u) be the set of visible
transactions and Trd be a set of read-only transactions defined by:

Trd ⊆ ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23. For Eq. (5.24) and by the definition of UpdateAExec,
it suffices to prove that there exists a set of read-only transaction Trd such that

(T ∪ Trd) ⊆ R−1
MW (T ∪ Trd). (5.30)

Recall that CanCommitMW (K, u,F) = PreClosed (K, u, RMW) such that RMW = SO ∩ WWK. Note
that WWK = WWX . By Eq. (5.28) and Theorem 5.27, then Eq. (5.30) holds. Eq. (5.25) is
trivially true since I (X , cl) = ∅. �

The execution test ETMW is complete with respect to the axiomatic definition [Burckhardt et al.,
2014],

AMW = {λX .(SO ∩ WWX);VISX})

We prove that ETMW is complete respective to AMW. Assume an abstract execution X that
satisfies AMW and a transaction t ∈ X . Assume ith and (i + 1)th cuts, X ′ = (X , i) and X ′′ =

(X , i + 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1
X (tncl) be the set of visible

transactions, and u = GetView (X , T) be the view with respect to T . It sufficient to prove

95

Chapter 5. Correctness of Execution Tests

that PreClosed (K, u, RMW). Note that u = GetView (X , T) = GetView (X ′, T). Therefore by
Eq. (5.29) and Theorem 5.27, then PreClosed (K, u, RMW) holds. �

The soundness and completeness of our definition of WFR with respect to the axiomatic defini-
tion, AMW = {λX .WRX ; (SO ∩ RWX);VISX}), can be prove directly using Theorem 5.27. �

Causal Consistency The widely accepted definition for causal consistency is that VIS is
transitive and SO ⊆ VIS on abstract executions [Cerone et al., 2015a]. Yet it is for the sack
of elegant definition, while there is a equivalent minimum visibility relation (Theorem 5.28)
defined by: ACC

def
= {λX . (WRX ∪ SO);VISX ⊆ VISX , λX . SO ⊆ VISX}, where WRX is defined in

Def. 5.15.

Theorem 5.28 (Minimum visibility relation for CC). For two abstract executions X ,X ′, the
following constrain on visibility,

(WRX ∪ SO);VISX ⊆ VISX ∧ SO ⊆ VISX (5.31)

is equivalent to

VISX ′ ;VISX ′ ⊆ VISX ′ ∧ SO ⊆ VISX ′ (5.32)

in that ∀t ∈ TxID.∀F . (F = TX (t) ⇔ F = X ′(t)) ∧ ARX = ARX ′ .

Proof. For an abstract execution X that satisfies Eq. (5.31), by Lemma 5.29, there exists X ′

that satisfies Eq. (5.32). Assume an abstract execution X ′ that satisfies Eq. (5.32). Since
WRX ′ ⊆ VISX ′ by the definition of WRX ′ , thus X ′ satisfies Eq. (5.31). �

Lemma 5.29 (Minimum visibility relation for CC). For any abstract execution X , if it satisfies
ACC, there exists a new abstract execution X ′ such that SO ∈ VISX and

∀t ∈ TxID.∀F . (F = TX (t) ⇔ F = X ′(t)) ∧ ARX = ARX ′ ∧ VISX ′ ;VISX ′ ⊆ VISX ′ . (5.33)

Proof. We erase some visibility relation for each transaction following the arbitration order AR
until the visibility is transitive. Intuitively, the final visibility relation is exactly (WRX ∪ SO)+.
Assume the ith transaction ti with respect to the arbitration order. Let Ri be a new visibility
for the transaction ti such that Ri|2 = {ti} for all indexes i and the union of visibility relations⋃

0≤j≤i Ri is transitive. We preserve that, for each index i, cut of abstract execution X ′ =

AExectCut (X , i) and visibility relation VIS′ =
⋃

0≤j≤i Rj, the following invariant holds:

VIS′;VIS′ ⊆ VIS′, (5.34)
∀t ∈ X . (t, ti) ∈ Ri ⇒ (t, ti) ∈ (WRX ′ ∪ SO). (5.35)

We prove the above by induction on the number i.

96

Chapter 5. Correctness of Execution Tests

(1) [Base Case: i = 0] By the definition of AExectCut, we know that X0 = AExectCut (X , 0)

and Eqs. (5.34) and (5.35) trivially hold.

(2) [Inductive Case: i > 0] Suppose that, for the (i− 1)th step, the abstract execution X ′′ =

AExectCut (X , i− 1) and the visibility relation VIS′′ =
⋃

0≤j≤i−1Rj satisfy Eqs. (5.34)
and (5.35). Let consider ith step, the transaction ti, the cut X ′ = AExectCut (X , i) and
the visibility relation VIS′ =

⋃
0≤j≤i Rj. Initially we take R as an empty set. First, we

include {(t, ti) | (t, ti) ∈ WRX} to R and, by the definition of WRX , it trivially does not
affect any read operation for the transaction ti. Then we do the same for SO as that we
include {(t, ti) | (t, ti) ∈ SO} to R. Note that SO cannot affect any read operation for the
transaction ti neither, otherwise it contradicts to that SO ⊆ VISX and the definition of
WRX .

For relations R′ = R;
⋃

0≤j≤i−1Rj and then Ri = R ∪ R′, it easy to see that R ∈ VISX

and, then by inductive hypothesis, R′ ∈ VISX . We prove that the Ri does not affect any
read operation for the transaction ti by contradiction. Assume distinct transactions t, t′

such that t′′
R∪R′

−−−→ t′
R∪R′

−−−→ ti, and immediately by the definition of R and R′, then
t′′

R′

−→ t′
R−→ ti. Assume that t′′ change the read operation for a key k in ti. This means

that there exists a transaction t∗ such that (t∗, ti) ∈ WRX (k) and (t∗, t′′) ∈ ARX , where
the latter implies that (t′′, ti) ∈ WRX (k); there is a contradiction and thus Ri does not
affect any read operation for the transaction ti.

We now prove that Eqs. (5.34) and (5.35) still hold.

(i) [Case: Eq. (5.34)] Assume a relation R∗ =
⋃

0≤j≤i−1Rj and transactions t, t′, t′′

such that
t

R∗∪Ri−−−−→ t′
R∗∪Ri−−−−→ t′′.

If t R∗

−→ t′
R∗

−→ t′′, then by inductive hypothesis, t R∗

−→ t′′. Note that t
Ri−→ t′

R∗

−→
t′′ cannot happen, because it contradict to that t′ = ti and (t′′, ti) ∈ ARX . Thus
consider t

R∗

−→ t′
Ri−→ t′′. It must be the case that t′′ = ti and by the definition of

Ri, we know that t
Ri−→ t′′.

(ii) [Case: Eq. (5.35)] By the construction, Eq. (5.35) hold. �

We pick the invariant as ICC = IMR ∪ IRYW. We prove that ETCC is sound respective to ACC.
Assume two kv-stores K,K′, two views u, u′ and a transaction t for a client cl, a fingerprint
F such that: (1) (K, u)

F−→CC (K′, u′); (2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre
K′ = UpdateKV(K, u,F , t). Assume an abstract execution X such that K = XToK (X). Let
T = VisTrans (K, u) be the set of visible transactions and Trd be a set of read-only transactions
defined by:

Trd ⊇
⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
∩ ReadOnlyTrans (X) .

97

Chapter 5. Correctness of Execution Tests

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23. Assume

T ′
rd =

⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
∩ ReadOnlyTrans (X) .

and T ′′
rd = Trd \ T ′

rd. We construct T ′′
rd in the following proof. By the definition of soundness,

we prove the following results:

SO−1(t) ⊆ T ∪ T ′
rd (5.36)

((WRX ′ ∪ SO);VISX ′)−1(t) ⊆ T ∪ T ′
rd ∪ T ′′

rd (5.37)
ICC (X ′, cl) ⊆ VisTrans (XToK (X ′) , u′) (5.38)

Eq. (5.36) can be proven in the same way as in monotonic read on page 92 We now prove
Eq. (5.37). Initially we take T ′′

rd to be an empty set. Recall X ′ = UpdateAExec (X , T ∪ Trd,F , t).
Note that VIS−1

X ′ (t) = T ∪ T ′
rd ∪ T ′′

rd. By Eq. (5.28) in Theorem 5.27, there exists T ′′
rd such that

T ∪ T ′′
rd is closed in the relation WRX ′ ∪ SO. Now consider a transaction trd ∈ T ′

rd and assume
a transaction t′ such that t′

WRX′∪SO−−−−−−→ trd. There are two cases depending on trd.

(1) [Case: trd
VISX′−−−→ t′′

SO−→ t for some t′′] For this case, we have

t′
WRX′∪SO−−−−−−→ trd

VISX′−−−→ t′′
SO−→ t ⇒ t′

WRX∪SO−−−−−→ trd
VISX−−−→ t′′

SO−→ t

⇒ t′
VISX−−−→ t′′

SO−→ t.

By IMR, we know that t′ ∈ IMR ∪ T ′
rd.

(2) [Case: trd
SO−→ t] For this case, we have

t′
WRX′∪SO−−−−−−→ trd

SO−→ t ⇒ t′
WRX∪SO−−−−−→ trd

SO−→ t

⇒ t′
VISX−−−→ t′′

SO−→ t.

By IMR, we know that t′ ∈ IMR ∪ T ′
rd.

This means that T ∪ T ′
rd ∪ T ′′

rd = T ∪ Trd is closed in the relation (WRX ′ ∪ SO). Last, Eq. (5.38)
can be proven in the same way as in monotonic read on page 92 and read your write one page
94. �

We prove that ETCC is complete respective to ACC. Assume an abstract execution X that satis-
fies ACC and a transaction t ∈ X . Assume ith and (i+1)th cuts, X ′ = (X , i) and X ′′ = (X , i+1).
Let tncl = X ′′ \X ′ be the next transaction, T = VIS−1

X (tncl) be the set of visible transactions, and
u = GetView (X , T) be the view with respect to T . By Theorem 5.28, it is sufficient to prove with
respect to the following visibility axioms, A′

CC
def
= {λX .VISX ;VISX ⊆ VISX , λX . SO ⊆ VISX}.

98

Chapter 5. Correctness of Execution Tests

By the definition of ETCC, we prove CanCommitCC and ViewShiftMR∪RYW respectively. Since
(WRX ∪ SO);VISX ⊆ VISX ;VISX ⊆ VISX , then CanCommitCC can be derived from Theorem 5.27
and Eq. (5.29) and ViewShiftRYW can be proven in the same way as in read your write on page
94. By VISX ; SO ⊆ VISX ;VISX ⊆ VISX , ViewShiftMR can be proven in the same way as in
monotonic read on page 92.

Update Atomic The execution test ETUA is sound with respect to the axiomatic definition
AUA = {λX .WWX}. We pick the invariant as IUA (X , cl) = ∅, given the fact of no constraint on
the final view. We prove that ETUA is sound respective to AUA. Assume two kv-stores K,K′, two
views u, u′ and a transaction t for a client cl, a fingerprint F such that: (1) (K, u)

F−→UA (K′, u′);
(2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre K′ = UpdateKV(K, u,F , t). Assume an
abstract execution X such that K = XToK (X). Let T = VisTrans (K, u) be the set of visible
transactions and Trd be a set of read-only transactions defined by:

Trd ⊆ ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23. Because the invariant is empty set, it remains to
prove the following result:

WW−1
X ′ (t) ⊆ T ∪ Trd.

Assume a transaction t′ such that (t′, t) ∈ WWX ′ (k) for some key k. By WWX ′ = WWK′ , we
have (t′, t) ∈ WWK′ (k). Because t′ is a transaction already existing in K, then we have that
WriterOf (K (k, i)) = t′ for some index i. Since t also wrote to the key k, that is, (W, k, v) ∈ F for
some value v. By the definition of ETUA, we know that i ∈ u (k). Recall that T = VisTrans (K, u).
This means t′ ∈ T . �

The execution test ETUA is complete with respect to the axiomatic definition AUA = {λX .WWX}.
We prove that ETUA is complete respective to AUA. Assume an abstract execution X that
satisfies AUA and a transaction t ∈ X . Assume ith and (i + 1)th cuts, X ′ = (X , i) and X ′′ =

(X , i + 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1
X (tncl) be the set of visible

transactions, and u = GetView (X , T) be the view with respect to T . Let consider a key k that
have been overwritten by the transaction tncl. By the visibility axiom WWX ⊆ VISX , for any
transaction t that writes to the same key k and was committed before tncl, they must be included
in the visible set, that is, t ∈ VIS−1

X (tncl). Note that t WWX−−−→ tncl ⇒ t
ARX−−→ tncl ⇒ t ∈ XToK (X ′).

Since the transaction t wrote to the key k, it means that WriterOf (XToK (X ′) (k, j)) = t for
some index j and then by the definition of u = GetView (X , T), we have j ∈ u (k), which implies
CanCommitUA (XToK (X ′) , u,F). �

Consistency Prefix An abstract execution X satisfies consistency prefix (CP), if it satisfies
ARX ;VISX ⊆ VISX and SO ⊆ VISX [Bernardi and Gotsman, 2016]. Cerone and Gotsman [2016]

99

Chapter 5. Correctness of Execution Tests

proposed a method that can compute and express AR and VIS using WR,WW,RW and SO.

Theorem 5.30 (Minimum visibility relation for (CP)). For any abstract execution X , if it
satisfies (

(SO ∪ WRX);RWX
? ∪ WWX

)
;VISX ⊆ VISX SO ⊆ VISX (5.39)

then there exists a new X ′ such that TX (t) = X ′(t) for all t ∈ Dom (X), and

ARX ′ ;VISX ′ ⊆ VISX ′ SO ⊆ VISX ′ (5.40)

and vice versa.

Proof. We construct X from X ′ and vice versa.

(1) [Case: X to X ′] Assuming an abstract execution X that satisfies Eq. (5.39). We use
the same method presented in [Cerone and Gotsman, 2016]. We solve the following
inequalities (the first five are universally true for all abstract execution and the last two
are for CP)

WR ⊆ VIS WW ⊆ AR VIS ⊆ ARVIS;RW ⊆ AR AR;AR ⊆ AR
SO ⊆ VIS AR;VIS ⊆ VIS

The visibility and arbitration relations can be defined by

AR def
=
(
(SO ∪ WR);RW? ∪ WW ∪R

)+ (5.41)

VIS def
=
(
(SO ∪ WR);RW? ∪ WW ∪R

)∗
; (SO ∪ WR) (5.42)

for some relation R ⊆ AR. We take R such that it extends the relation Eq. (5.41) to a
total order and thus we have a new X ′ that satisfies Eq. (5.40).

(2) [Case: X ′ to X] Assume an abstract execution X ′ that satisfies Eq. (5.40). We have(
(SO ∪ WRX);RWX

? ∪ WWX
)
;VISX ⊆

(
(VISX ′ ∪ VISX ′);ARX ′

? ∪ VISX ′
)
;VISX

VISX ′ ;VISX ′

ARX ′ ;VISX ′

VISX ′

Therefore, the abstract execution X ′ satisfies Eq. (5.39). �

The execution test ETCP is sound with respect to the axiomatic definition

ACP
def
=
{
λX .

(
(SO ∪ WRX);RWX

? ∪ WWX
)
;VISX , λX . SO

}
.

100

Chapter 5. Correctness of Execution Tests

We pick the invariant ICP = IMR ∪ IRYW. We prove that ETCP is sound respective to ACP. Assume
two kv-stores K,K′, two views u, u′ and a transaction t for a client cl, a fingerprint F such that:
(1) (K, u)

F−→CP (K′, u′); (2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre K′ = UpdateKV(K,

u,F , t). Assume an abstract execution X such that K = XToK (X). Let T = VisTrans (K, u)

be the set of visible transactions and Trd be a set of read-only transactions defined by:

Trd ⊇
⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
\ ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23. Assume

T ′
rd =

⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
∩ ReadOnlyTrans (X) .

and T ′′
rd = Trd \ T ′

rd. We construct T ′′
rd in the following proof. By the definition of soundness,

we prove the following result:

SO−1(t) ⊆ T ∪ T ′
rd (5.43)(

(SO ∪ WRX);RWX
? ∪ WWX

)−1
(t) ⊆ T ∪ T ′

rd ∪ T ′′
rd (5.44)

ICP (X ′, cl) ⊆ VisTrans (XToK (X ′) , u′) (5.45)

Eq. (5.43) can be proven in the same way as in monotonic read on page 92. We now prove
Eq. (5.44). Similar to causal consistency on page 96, initially we take T ′′

rd to be an empty
set. By Theorem 5.27 and Eq. (5.28), there exists T ′′

rd such that T ∪ T ′′
rd is closed under(

(SO ∪ WRX);RWX
? ∪ WWX

)
. Now consider a transaction trd ∈ T ′

rd and assume a transaction

t′ such that t′
((SO∪WRX);RWX

?∪WWX)
−−−−−−−−−−−−−−−−→ trd. Since trd is a read-only transaction, thus t′ (SO∪WRX)−−−−−−→

trd and the rest proof is exactly the same as as in causal consistency on page 96. Last, Eq. (5.45)
can be proven in the same way as in monotonic read and read your write on pages 92 and 94
respectively. �

The execution test ETCP is complete with respect to ACP. By Theorem 5.30, it suffice to prove
that it is complete with respect to the following definition,

{λX .ARX ;VISX , λX . SO}

We prove that ETCP is complete respective to ACP. Assume an abstract execution X that
satisfies ACP and a transaction t ∈ X . Assume ith and (i + 1)th cuts, X ′ = (X , i) and X ′′ =

(X , i + 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1
X (tncl) be the set of visible

transactions, and u = GetView (X , T) be the view with respect to T . By the definition of ETCP,
we prove CanCommitCP, ViewShiftMR and ViewShiftRYW respectively. Recall that(

(SO ∪ WRX);RWX
? ∪ WWX

)
;VISX ⊆

(
VISX ;RWX

? ∪ ARX
)
;VISX ⊆ ARX ;VISX ⊆ VISX .

101

Chapter 5. Correctness of Execution Tests

Then CanCommitCP can be derived from Theorem 5.27 and Eq. (5.29). The predicate ViewShiftRYW

can be proven in the same way as in read your write on page 94. Because VISX ; SO ⊆
ARX ;VISX ⊆ VISX , then ViewShiftMR can be proven in the same way as in monotonic read on
page 92. �

Parallel Snapshot Isolation An abstract execution X satisfies parallel snapshot isolation
(PSI), if it satisfies {λX .VISX ;VISX , λX . SO, λX .WWX}), which is intersection of CC and UA on
abstract executions [Cerone et al., 2015b,a]. Similar to causal consistency on page 96, there
exists a minimum visibility relation.

Theorem 5.31 (Minimum visibility relation for (PSI)). For two abstract executions X ,X ′, the
following constrain on visibility,

(WRX ∪ WWX ∪ SO);VISX ⊆ VISX SO ⊆ VISX WWX ⊆ VISX (5.46)

is equivalent to

VISX ′ ;VISX ′ ⊆ VISX ′ SO ⊆ VISX ′ WWX ⊆ VISX (5.47)

in that ∀t ∈ TxID.∀F . (F = TX (t) ⇔ F = X ′(t)) ∧ ARX = ARX ′ .

Proof. The proof is similar to Theorem 5.28. For X that satisfies Eq. (5.46), we construct a
new abstract execution X ′ with a new visibility relation VISX ′ such that VISX ′ = (WRX ∪ SO∪
WWX)

+ and for the similar reason as Lemma 5.29, the new abstract execution X ′ satisfies
Eq. (5.47). Assume an abstract execution X ′ that satisfies Eq. (5.47). Since WRX ′ ⊆ VISX ′ by
the definition of WRX ′ , thus X ′ satisfies Eq. (5.46). �

The execution test ETPSI is sound with respect to the axiomatic definition

APSI
def
= {λX . (WRX ∪ WWX ∪ SO) ;VISX , λX . SO, λX .WWX} .

We pick the invariant as IPSI = IMR ∪ IRYW. We prove that ETPSI is sound respective to APSI.
Assume two kv-stores K,K′, two views u, u′ and a transaction t for a client cl, a fingerprint
F such that: (1) (K, u)

F−→PSI (K′, u′); (2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre
K′ = UpdateKV(K, u,F , t). Assume an abstract execution X such that K = XToK (X). Let
T = VisTrans (K, u) be the set of visible transactions and Trd be a set of read-only transactions
defined by:

Trd ⊇
⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
∩ ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

102

Chapter 5. Correctness of Execution Tests

satisfies Eqs. (5.24) and (5.25) in Def. 5.23. Assume

T ′
rd =

⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
∩ ReadOnlyTrans (X) .

and T ′′
rd = Trd \ T ′

rd. We construct T ′′
rd in the following proof. By the definition of soundness,

we prove the following result

SO−1(t) ⊆ T ∪ T ′
rd (5.48)

WW−1(t) ⊆ T (5.49)
(WRX ′ ∪ SO ∪ WWX ′)−1(t) ⊆ T ∪ T ′

rd ∪ T ′′
rd (5.50)

IPSI (X ′, cl) ⊆ VisTrans (XToK (X ′) , u′) (5.51)

Eqs. (5.48) and (5.49) can be proven in the same way as in monotonic read on page 92 and
update atomic on page 99 respectively. We now prove Eq. (5.50). Initially we take T ′′

rd to be an
empty set. Note that VIS−1

X ′ (t) = T ∪T ′
rd∪T ′′

rd. By Theorem 5.27 and Eq. (5.28), there exists T ′′
rd

such that T ∪T ′′
rd is closed under WRX ′ ∪SO∪WWX ′ . Now consider a transaction trd ∈ T ′

rd and
assume a transaction t′ such that t′

WRX′∪SO∪WWX′−−−−−−−−−−→ trd. Since trd is a read-only transaction,
thus t′

(SO∪WRX)−−−−−−→ trd and the rest proof is exactly the same as in causal consistency on page
96. Last, Eq. (5.51) can be proven in the same way as in monotonic read and read your write
on pages 92 and 94 respectively. �

The execution test ETPSI is complete with respect to the axiomatic definition APSI. By Theo-
rem 5.31, it suffices to prove completeness with respect to the following definition,

{λX .VISX ;VISX , λX . SO, λX .WWX}

We prove that ETPSI is complete respective to APSI. Assume an abstract execution X that
satisfies APSI and a transaction t ∈ X . Assume ith and (i + 1)th cuts, X ′ = (X , i) and
X ′′ = (X , i + 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1

X (tncl) be the set of
visible transactions, and u = GetView (X , T) be the view with respect to T . By the defini-
tion of ETPSI, we prove CanCommitPSI, ViewShiftMR and ViewShiftRYW respectively. Recall that
CanCommitPSI = PreClosed (K, u, RUA ∪ WRK ∪ SO ∪ WWK). It is easy to see that

PreClosed (K, u, RUA ∪ WRK ∪ SO ∪ WWK)

⇔ PreClosed (K, u, RUA) ∧ PreClosed (K, u,WRK ∪ SO ∪ WWK)

The predicate PreClosed (K, u, RUA) can be proven in the same way as in update atomic on
page 99 since WWX ⊆ VISX . Because

(WRX ∪ SO ∪ WWX) ;VISX ⊆ (VISX) ;VISX ⊆ VISX .

Then CanCommitCP can be derived from Theorem 5.27 and Eq. (5.29). The predicate ViewShiftRYW

103

Chapter 5. Correctness of Execution Tests

can be proven in the same way as in read your write on page 94. Since VISX ; SO ⊆ ARX ;VISX ⊆
VISX ViewShiftMR can be proven in the same way as in monotonic read on page 92. �

Snapshot Isolation An abstract execution X satisfies snapshot isolation (SI), if it satisfies
{λX .ARX ;VISX , λX . SO, λX .WWX}), which is intersection of CP and UA on abstract executions
[Cerone and Gotsman, 2016; Cerone et al., 2015a]. Cerone and Gotsman [2016] also proposed
the minimum visibility relation that gives rise of the following equivalent definition

ASI
def
=
{
λX .

(
(WRX ∪ SO ∪ WWX);RWX

?
)
;VISX , λX . SO, λX .WWX

}
.

The execution test ETSI is sound with respect to the axiomatic definition ASI We pick the
invariant ISI = IMR ∪ IRYW. We prove that ETSI is sound respective to ASI. Assume two kv-
stores K,K′, two views u, u′ and a transaction t for a client cl, a fingerprint F such that:
(1) (K, u)

F−→SI (K′, u′); (2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre K′ = UpdateKV(K,

u,F , t). Assume an abstract execution X such that K = XToK (X). Let T = VisTrans (K, u)

be the set of visible transactions and Trd be a set of read-only transactions defined by:

Trd ⊇
⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
∩ ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23. Assume

T ′
rd =

⋃
{ticl | ticl∈X}

(
VIS−1

X (ticl) ∪ (SO−1)
?
(ticl)

)
∩ ReadOnlyTrans (X) .

and T ′′
rd = Trd \ T ′

rd. By the definition of soundness, we prove the following result:

SO−1(t) ⊆ T ∪ T ′
rd (5.52)

WW−1(t) ⊆ T (5.53)(
(WRX ∪ SO ∪ WWX);RWX

?
)−1

(t) ⊆ T ∪ T ′
rd ∪ T ′′

rd (5.54)
IPSI (X ′, cl) ⊆ VisTrans (XToK (X ′) , u′) (5.55)

Eqs. (5.52) and (5.53) can be proven in the same way as in monotonic read and update atomic
on pages 92 and 99 respectively. We now prove Eq. (5.54). Initially we take T ′′

rd to be an empty
set. Note that VIS−1

X ′ (t) = T ∪T ′
rd ∪T ′′

rd. By Theorem 5.27 and Eq. (5.28), there exists T ′′
rd such

that T ∪T ′′
rd is closed in the relation

(
(WRX ∪ SO ∪ WWX);RWX

?
)
. Now consider a transaction

trd ∈ T ′
rd and assume a transaction t′ such that t′

(WRX∪SO∪WWX);RWX
?

−−−−−−−−−−−−−−→ trd. Since trd is a
read-only transaction, thus t′ (SO∪WRX)−−−−−−→ trd and the rest proof is exactly the same as in causal
consistency on page 96. Last, Eq. (5.55) can be proven in the same way as in monotonic read
and read your write on pages 92 and 94 respectively. �

104

Chapter 5. Correctness of Execution Tests

The execution test ETSI is complete with respect to the axiomatic definition ASI. By Cerone
and Gotsman [2016], it suffices to prove completeness with respect to the following definition,

{λX .ARX ;VISX , λX . SO, λX .WWX} .

We prove that ETSI is complete respective to ASI. Assume an abstract execution X that
satisfies ASI and a transaction t ∈ X . Assume ith and (i + 1)th cuts, X ′ = (X , i) and X ′′ =

(X , i + 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1
X (tncl) be the set of visible

transactions, and u = GetView (X , T) be the view with respect to T . By the definition of ETSI,
we prove CanCommitSI, ViewShiftMR and ViewShiftRYW respectively. Recall that CanCommitSI =

PreClosed
(
K, u, RUA ∪

(
(WRX ∪ SO ∪ WWX);RWX

?
))

. It is easy to see that:

PreClosed
(
K, u, RUA ∪

(
(WRX ∪ SO ∪ WWX);RWX

?
))

⇔
PreClosed (K, u, RUA) ∧ PreClosed

(
K, u,

(
(WRX ∪ SO ∪ WWX);RWX

?
))

.

The predicate PreClosed (K, u, RUA) can be proven in the same way as in update atomic on
page 99 Given the following result:(

(WRX ∪ SO ∪ WWX);RWX
?
)
;VISX ⊆

(
VISX ;RWX

?
)
;VISX ⊆ ARX ;VISX ⊆ VISX ,

then PreClosed
(
K, u,

(
(WRX ∪ SO ∪ WWX);RWX

?
))

can be derived from Eq. (5.29) in Theo-
rem 5.27. The predicate ViewShiftRYW can be proven in the same way as in read your write on
page 94. Because VISX ; SO ⊆ ARX ;VISX ⊆ VISX , then ViewShiftMR can be proven in the same
way as in monotonic read on page 92. �

Serialisability The execution test ETSER is sound with respect to the axiomatic definition
ASER

def
= {λX .AR} [Cerone et al., 2015a]. We pick the invariant as ISER (X , cl) = ∅. We

prove that ETSER is sound respective to ASER. Assume two kv-stores K,K′, two views u, u′

and a transaction t for a client cl, a fingerprint F such that: (1) (K, u)
F−→SER (K′, u′);

(2) t ∈ NextTxID (K, cl); and (3) the new kv-sotre K′ = UpdateKV(K, u,F , t). Assume an
abstract execution X such that K = XToK (X). Let T = VisTrans (K, u) be the set of visible
transactions and Trd be a set of read-only transactions defined by:

Trd = ReadOnlyTrans (X) .

Let X ′ = UpdateAExec (X , T ∪ Trd,F , t) be the new abstract execution. We now check if X ′

satisfies Eqs. (5.24) and (5.25) in Def. 5.23. It is easy to see that AR−1
X ′ (t). �

The execution test ETSER is complete with respect to the axiomatic definition ASER
def
= {λX .AR}

[Cerone et al., 2015a]. We prove that ETSER is complete respective to ASER. Assume an
abstract execution X that satisfies ASER and a transaction t ∈ X . Assume ith and (i+1)th cuts,
X ′ = (X , i) and X ′′ = (X , i+ 1). Let tncl = X ′′ \ X ′ be the next transaction, T = VIS−1

X (tncl) be

105

Chapter 5. Correctness of Execution Tests

W
ell-know

n
declarative

se-
m

antics
on

ab-
stract

executions
using

visibility
axiom

A
M

O
perationalse-

m
antics

on
ab-

stract
executions

using
visibility

axiom
A

M
pre-

sented
in

Sec-
tion

5.2

O
perationalse-

m
antics

on
ab-

stract
executions

using
the

top
visibility

axiom
A

⊤
=

∅

V
isibility

axiom
A

M

O
perationalse-

m
antics

on
kv-

stores
using

the
top

execution
test

ET
⊤

Execution
test

ET
M

O
perationalse-

m
antics

on
kv-

stores
using

the
top

execution
test

ET
M

T
heorem

5.14:
equal

expressibil-
ity

D
efs.5.18

and
5.20

in
Sec-

tion
5.3:

sound-
ness

and
com

-
pleteness

con-
structors

respec-
tively

D
efs.5.23

and
5.25

in
Sec-

tion
5.4:

con-
structors

between
traces

respec-
tively

T
heorem

s
5.24

and
5.26:

equal
expressibility

Section
5.5:

proofs
for

con-
sistency

m
od-

els
M

show
n

in
Fig.4.6a

Figure 5.9: Summary of correctness proofs for definitions of consistency models M using
execution tests in Fig. 4.6a

the set of visible transactions, and u = GetView (X , T) be the view with respect to T . Since
ARX = VISX thus it must be the case that u includes all the versions. �

106

Chapter 5. Correctness of Execution Tests

We summary the key constructors and proofs for justifying our definitions of consistency models
using execution tests on kv-stores in Fig. 5.9. The goal is to prove that given a consistency
model M , all the reachable states in the declarative definitions using a set of visibility axioms
AM on abstract execution are reachable on our operational semantics parametrised by ETM ,
and vice versa (dashed line in Fig. 5.9). We first propose an operational semantics on abstract
executions, which are equivalent to the axiomatic semantics (Section 5.2). This alternative
semantics is also parametrised by a chosen consistency model. Both semantics on kv-stores
and abstract executions can be de-composed to the base-line traces, that is, parametrised by
read atomic, and the checks for consistency model M . In Section 5.3, we show the equivalence
of the base-line traces: we prove simulation between traces, where, in each step, individual kv-
store and abstract execution are proven equivalent using dependency graphs. In Section 5.4,
we present the soundness and completeness constructors, showing the equivalence between
individual transitions. If ETM and AM satisfy the two constructors, then the constructors lift
the equivalence to the level of traces. Last, in Section 5.5 we prove our definitions ETM satisfy
conditions in the constructors with respect to the well-known definitions AM . In the following
two chapters, we use our operational semantics to verify implementation protocols and reason
client programs.

107

Chapter 6

Applications: Verification of
Implementation Protocols

We give the formal definition of our operational semantics in Chapter 4, and show it is equivalent
to the well-known declarative semantics based on abstract executions in Chapter 5. We verify
two implementation protocols using our semantics: In this chapter, we show how to use our
semantics to verify implementation protocols the COPS protocols in Section 6.1, a full replicated
distributed database that satisfies causal consistency; and the Clock-SI protocol in Section 6.2,
a fully partitioned distributed database that satisfies snapshot isolation.

In comparison to the declarative semantics described in Chapter 5, which describes the en-
tered history of a program, and on which consistency models are defined by ruling out invalid
executions, An operational semantics is much suitable for verifying implementation, using the
standard trace refinement technique, which are well studied in, for example, verifying algo-
rithms. Although there is no formal proof, both COPS [Lloyd et al., 2011] and Clock-SI [Du
et al., 2013] developers informally argue the correctness in an operational style, showing invari-
ants their systems. In this thesis, We formally verify these two protocols against our operational
semantics in the following steps:

(1) we provide a formal model and semantics that are faithful to the pseudo-code;

(2) because implementation often executes transactions in a fine-grained way, we introduce
leftmover and rightmover, steps that are allowed moving left, delaying these steps, or
moving right, advancing these steps, and use these movers to normalise traces of the
specific semantics, transferring to traces where transactions are interleaved;

(3) we then convert the normalised traces to kv-store traces by encoding the database states
to kv-stores and client session states to views, and simulating fine-grained steps in imple-
mentation protocol by coarse-grained steps in our kv-store semantics; and

(4) last, we prove that each step in the kv-store traces satisfies the desired execution test.

108

Chapter 6. Applications: Verification of Implementation Protocols

6.1 Verification of COPS Protocol

As explained in Section 3.2, COPS is a fully replicated database that implements causal con-
sistency. Each replica keeps all history versions of keys, where each version ν̂ has a unique and
totally ordered identifier, and tracks a set of version identifiers, DepSetOf (ν̂), that ν̂ depends
on A replica r may not contain the most update to date version for each key, but r contains
enough versions that can build a causally consistent snapshot, in the sense that if a Verizon ν̂

exists in r, then versions in DepSetOf (ν̂) also exist in r. A client interacts with the database
via a sequence of either single-write and multiple-read transactions, which are committed to
the same replica in order. From the client point of view, a single-write transaction inserts a new
version to the replica, and a multiple-read transaction reads a list of versions that are causally
consistent in one step. Internally, transactions are executed in fine-grained way, yet all the
intermediate steps are transparent to clients.

To verify COPS protocol, we first give a formal operational reference semantics for COPS
protocol in Sections 6.1.1 and 6.1.2. In this semantics, we focus on the internal executions
of the database, including single write, single read and synchronisation steps. A single-write
transaction corresponds to a single write step in the semantics, while a multiple-read transaction
is decomposed to several single read steps. Steps from different transactions and replicas are
interleaved. In Section 6.1.3, we show that certain write steps are leftmover and certain read
steps are rightmover; this allowed us to normalised traces in the COPS operational semantics.
we show how to simulate a normalised COPS trace by a kv-store trace, and prove the kv-store
trace satisfies causal consistency. The challenge is to convert the version order to WR and
SO relation, and show the “dependence relation” and informal “causal consistency” notions in
COPS can be refined to our formal causal consistency definition.

Notation. We pick the same letters for the concepts that have similar meaning with respect
to those in our kv-store operational semantics, and annotate them with hat, for example, COPS
version ν̂.

6.1.1 Machine States

In the COPS protocol, each replica tracks all the history versions, depicted in Fig. 6.1. There is
no explicit transactional identifier. Instead, there is the COPS version identifier, which consists
of the replica identifier which initially accepted the version and the local time when the version
was accepted.

Definition 6.1 (COPS replica and version identifiers). The set of COPS replica identifiers,
COPSRep 3 r, is a countably finite set that is totally ordered by a relation <. The set of local
time, Time 3 n, is defined by Time def

= N. The set of COPS version identifiers, COPSVerID 3 id,

109

Chapter 6. Applications: Verification of Implementation Protocols

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v1, (t1, r1), ∅)

r1

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)
(k1, v

′
1, (t1, r2), ∅) (k2, v2, (t2, r2), {(k1, t1, r2)})

r2

Figure 6.1: Examples of COPS states

is defined by: COPSVerID def
= Time × COPSRep. The order over versions identifiers is defined

by:
(n, r) v (n′, r′)

def⇔ n < n′ ∨ (n = n′ ∧ (r < r′)

As explained in Section 3.2, a COPS version ν̂ consists of a value, a identifier and a dependency
set that contains the versions on which ν̂ depends.

Definition 6.2 (COPS versions and dependency sets). The set of dependency sets, COPSDep 3
d is defined by: COPSDep def

= P (Key × COPSVerID). The set of COPS versions, COPSVer 3
ν̂, is defined by: COPSVer def

= Value × COPSVerID × COPSDep. Let ValueOf (ν̂), IdOf (ν̂)
and DepSetOf (ν̂) denote the first, second and third projections of ν̂ respectively.

A COPS database comprises a finite number of replicas. Each replica r consists of a local
multi-version key-value store and a local time. A COPS replica tracks all the history versions
that are uniquely identified and ordered by their writers. Without losing generality, versions
for a key are organised as a list in the key-value store. However, the relative position of versions
does not affect the semantics, since all versions are ordered by their timestamps.

Definition 6.3 (COPS key-value stores and databases). The set of COPS local key-value stores
or just COPS local stores, is defined by:

COPSKVS def
=
{
K̂ ∈ Key → [COPSVer]

∣∣∣ WfCOPSKvs
(
K̂
)}

where WfCOPSKvs is defined by: for any keys k, k′ ∈ Key, indices i, i′ ∈ N and the initial value
v0,

K̂ (k, 0) = (v0, (r0, 0), ∅), (6.1)

IdOf
(
K̂ (k, i)

)
= IdOf

(
K̂ (k′, i′)

)
⇒ k = k′ ∧ i = i′, (6.2)

IdOf
(
K̂ (k, i)

)
v IdOf

(
K̂ (k, i′)

)
⇔ i < i′. (6.3)

Given two COPS local stores, the order, written K̂ v K̂′, is defined by:

K̂ v K̂′ def⇔ ∀k ∈ Key.∀i ∈ N.∀ν̂ ∈ COPSVer. ν̂ = K̂ (k, i)

⇒ ∃i′ ∈ N.∃ν̂ ′ ∈ COPSVer. ν̂ = K̂′(k, i′).

110

Chapter 6. Applications: Verification of Implementation Protocols

The set of COPS databases, COPS 3 R, is defined by:

COPS def
=

R ∈ COPSRep fin−⇀
(COPSKVS × Time)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀r, r′ ∈ Dom (R) .∀K̂, K̂′ ∈ COPSKVS.

∀k, k′ ∈ Key.∀i, i′ ∈ N.

R (r) = (K̂,_) ∧R (r′) = (K̂′,_) ∧(
IdOf

(
K̂ (k, i)

)
= IdOf

(
K̂′(k′, i′)

)
⇔

k = k′ ∧ K̂ (k, i) = K̂′(k′, i′)

)

.

A COPS version will be eventually replicated to all replica. This means that versions with
the same identifier in different replicas must be the same version. This is captured by the
well-formed condition for COPS.

Each COPS client cl maintains a local context tracking versions that cl have read or written.
When a client commits a new version, the client context becomes the dependency set of the new
version. Hence, we model both dependency sets and client contexts as sets of pairs comprising
keys and replica identifiers. Each client cl also tracks the replica identifier with which cl

interacts. Note that a client always interacts with the same replica.

Definition 6.4 (COPS client contexts and environments). The set of COPS client contexts,
COPSCtx 3 û, is defined by COPSCtx def

= P (Key × COPSVerID). The set of COPS
client context environments, COPSCtxEnv 3 Û , is defined by: COPSCtxEnv def

= CID fin−⇀
(COPSCtx × COPSRep).

6.1.2 Reference Implementation and Reference Semantics

eparagraphCOPS API. A COPS client interacts with a replica via two fixed APIs: put and
read. The client commits a new value v for a key k to a replica r by calling put (k, v). Upon
receiving the new value v for k, the replica assigns a new version identifier to the value, sends
back the acknowledgement to the client and then broadcasts the new version to other replicas
via synchronisation messages (Fig. 6.1). COPS only allows writing of one key per transaction.
By contrast, a client can read a list of keys K by calling read (K). Upon receiving the request,
the replica prepares a snapshot for K in a fine-grained way, reading one key at a time. To track
the intermediate states of read (K), we introduce fine-grained commands COPSRuntimeCmd.
As explained in Section 3.2, a replica prepares the causally dependent snapshot for K in two
phases. For brevity, we encoding the runtime intermediate state in the syntax. The syntax
read (K) : V̂ corresponds to the optimistic-read phase. The version buffer V̂ initially is empty.
For each key in K, the client reads the current latest version for next key in K and puts the
version in V̂ . The syntax read (K) : (V̂ , D) corresponds to the phase change. The re-fetch set
D contains, for each key in K, the version with the maximum version identifier over versions
ν̂ in V̂ or any versions on which ν̂ depend. The syntax read (K) : (V̂ , D, V̂ ′) corresponds to
the re-fetch phase. For each key in K, the client reads the version ν contained in D and put it

111

Chapter 6. Applications: Verification of Implementation Protocols

in V̂ ′, if ν has greater version identifier than the version in V̂ . Otherwise, the client copies the
version in V̂ to V̂ ′.

Definition 6.5 (COPS commands and programs). The set of COPS commands, COPSCmd 3
Ĉ, is defined by:

Ĉ ::= put (k, v) |read (K) |Ĉ ; Ĉ

for any key k ∈ Key, key set K ⊆ Key and v ∈ Value. The set of COPS fine-grained
commands, COPSRuntimeCmd 3 R, is defined by:

R ::= put (k, v) |read (K) |read (K) : V̂|read (K) : (V̂ , D)|read (K) : (V̂ , D, V̂ ′)|R ; R

for any V̂ , V̂ ′ ∈ [COPSVer] and D ∈ [COPSDep]. The sets of COPS programs, COPSProg 3
P̂, and COPS fine-grained programs, COPSRuntimeProg 3 I, are defined by: COPSProg def

=

CID fin−⇀ COPSCmd and COPSRuntimeProg def
= CID fin−⇀ COPSRuntimeCmd respectively.

We now explain the reference implementation of the COPS protocol, and the semantics of
the protocols. For manipulating COPS program traces, we label each transition in the traces.
Given a client cl and replica r, the labels can be introduced intuitively as following:

(1) (cl, r, (W, k, v) , id, d) denotes that cl commits a new version of a key k to a replica r with
a value v, a version identifier id = (r, n) and a dependency set d;

(2) (cl, r, S) denotes that cl starts of a multi-read transaction and S means the start of a
multiple read transaction;

(3) (cl, r, (R, k, v) , id, d, Opt) denotes that cl reads a version of key k from r indexed by a
version identifier id with a value v and a dependency set d in the optimistic-read phase,
and Opt means a optimistic read;

(4) (cl, r, P) denotes that cl starts re-fetch phase and P means phase change;

(5) (cl, r, (R, k, v) , id, d, Ref) denotes that cl reads a version of key k from r indexed by a
version identifier id with a value v and a dependency set d in the re-fetch phase, and Ref
means a re-fetch read;

(6) (cl, r, û, E) denotes that r returns the set of versions û to cl and E means the end of a
multiple read transaction; and

(7) (r, id) denotes that r receives a synchronisation message containing a version with a
identifier id.

112

Chapter 6. Applications: Verification of Implementation Protocols

Definition 6.6 (COPS labels). The set of COPS labels, COPSLabels 3 ι, is defined by:

COPSLabels def
=

⋃
cl∈CID,r∈COPSRep

k∈Key,v∈Value
id∈COPSVerID,d∈COPSDep

(cl, r, S) , (cl, r, (W, k, v) , id, d) ,

(cl, r, (R, k, v) , id, d, Opt) , (cl, r, P) ,

(cl, r, (R, k, v) , id, d, Ref) , (cl, r, û, E) , (r, id)

 .

COPS provides two APIs: put and read. A client will send the request to a replica and
awaiting a reply. For these two APIs, we explain the reference implementation first and give
the semantics. We argue that the semantics captures the implementation.

Reference implementation for put. When a client calls put function depicted in Fig. 6.2a,
it sends a new value v for key k with the context ctx to a replica repl. Upon receiving the
new value, replica r creates a new version for k where:

(1) the value is v;

(2) the identifier consists of the next available local time-stamp ltime (line 3) and the replica
identifier repl.id (line 5); and

(3) the dependency set is the client context deps = ctx (line 4).

Replica repl then commits the new version to its local store via list_insert (line 6), which
inserts the new version (v, id, deps) to the list repl.kv[k] in the sense that the new list
preserves the order over version identifiers. Now the replica is ready to send back the ac-
knowledgement message to the client comprising the new version identifier. Upon receiving the
acknowledgement message, the client updates the client context, adding this new version in its
context (line 8). Last, replica repl broadcasts this new version by calling asyn_broadcast.

Reference semantics for put. The semantics of put is captured by rule COPSWrite in
Fig. 6.2b. The configuration comprises a COPS store K̂, a client context û and a replica local
time n. The first and second premises construct the new identifier id = (r, n+ 1) and the new
version ν̂ as expected. This new version is inserted into K̂ via COPSInsert, updating the COPS
store to K̂′ = COPSInsert

(
K̂, k, ν̂

)
.

Definition 6.7 (List insertion). Given a COPS store K̂ ∈ COPSKVS and a version ν̂ ∈
COPSVer for a key k ∈ Key, the function COPSInsert

(
K̂, k, ν̂

)
is defined by:

COPSInsert
(
K̂, k, ν̂

)
def
= let V̂ = K̂ (k) and [ν̂0, · · · , ν̂i, ν̂i+1, · · · , ν̂n] = V̂

where IdOf (ν̂i) v IdOf (ν̂) v IdOf (ν̂i+1)

in K̂ [k 7→ [ν̂0, · · · , ν̂i, ν̂, ν̂i+1, · · · , ν̂n]]

113

Chapter 6. Applications: Verification of Implementation Protocols

1 // mixing the client API and system API
2 'repl' receive 'put(k,v)' request from a client with 'ctx' {
3 ltime = inc(repl.local_time);
4 deps = ctx;
5 txid = (ltime ++ repl.id);
6 list_insert(repl.kv[k],(v, txid, deps));
7 return txid;
8 ctx += (k, txid);
9 asyn_broadcast(k, v, txid, deps);

10 }

(a) Reference implementation for put

COPSWrite
#3, 5 : id = (r, n+ 1)

#6 : ν̂ = (v, id, û) #6 : K̂′ = COPSInsert
(
K̂, k, ν̂

)
#8 : û′ = û] {(k, id)}(

K̂, û, n
)
, put (k, v) (cl,r,(W,k,v),id,û)−−−−−−−−−→

(
K̂′, û′, n+ 1

)
, skip

(b) Reference semantics for put, where #n denotes line n in Fig. 6.2a

k1 7→ v0
id0

d0
v2

id2

d2
k1 7→ v0

id0

d0
v1

id1

d1
v2

id2

d2

COPSInsert
(
K̂, k, (v1, id1, d1)

)

(c) An example of COPSInsert, where id0 v id1 v id2

Figure 6.2: COPS API: put

where the version identifier order v is defined in Def. 6.1.

The function K̂′ = COPSInsert
(
K̂, k, ν̂

)
inserts the version ν̂ in a position that preserves the

order, depicted in Fig. 6.2c. This resulting K̂′ is well-formed (the proof is given in appendix A.6
on page 204). The last premise in rule COPSWrite in Fig. 6.2b, û′ = û] {(k, id)}, updates
the client context, incorporating the new version in the new context û′.

Reference implementation for read. Fig. 6.3a presents the reference implementation for
read, where a client requests a snapshot for a list of distinct keys ks from a replica r. As
explained in Section 3.2, the replica constructs this snapshot in two phases. In the first
optimistic-read phase (line 3 in Fig. 6.3a), the client reads the latest version for each key using
get_by_version with LATEST label, one key at a time. However, interleaving may happen
between two reads.

At the end of the first phase, the client collects the versions (line 4) taken in the optimistic
phase and their dependency sets (line 7), and computes a re-fetch set, which determines versions
that will be fetched in the second phase. Specifically, the re-fetch set, ccv in line 7, contains
the version with the maximum time-stamp for each key. The client initialises ccv with versions

114

Chapter 6. Applications: Verification of Implementation Protocols

fetched in the optimistic phase, and traverses all dependency entry dep in all dependency sets
deps. If dep contains a version of a key dep.key in ks, and if the version identifier dep.id is
greater than the current version identifier stored in the ccv[dep.key], then ccv[dep.key] is
updated to dep.id.

In the re-fetch phase, for each key k in ks, if the version fetched in the first phase, rst[k].vers,
has smaller time-stamp than that of the version in the re-fetch set, ccv[k], then client should
re-fetch the version of ccv[k] (line 10). At the end of this re-fetch phase, rst contains the
snapshot, which Lloyd et al. [2011] informally argued that the snapshot should guarantee causal
consistency in the sense that any reads from the snapshot must satisfy the closure of visibility.
This aligns with the axiom of VIS;VIS ⊆ VIS on abstract executions. Last, this snapshot, rst,
is sent back to the client, and the client adds all the versions in rst to the context (line 11).

Reference semantics for read. The semantics for read are given in Fig. 6.3b. The rule
COPSStart (Fig. 6.3b) checks the uniqueness of K by predicate Unique (K) and initialises
the first phase, updating the command to read (K) : ∅ with an empty list ∅. This transition
does not access the store, hence is labelled with (cl, r, S). This optimistic-read phase is captured
by rule COPSOpt in Fig. 6.3b. Client cl reads the latest version ν̂i in K̂ for next key ki: that is,
ν̂i = K̂

(
k,
∣∣∣K̂ (k)

∣∣∣− 1
)

. The resulting fine-grained command tracks version ν̂i in the version list
(V̂ :: [ν̂i]), analogous to rst in line 3. This transition is labelled with the information including
client cl, replica r, read operation (R, ki, vi), the version identifier idi and the dependency set
di, The Opt in the label indicates the first phase.

The phase change is captured by rules COPSSet, which computes the re-fetch set, analogous
to lines 4 and 7. The function D = VerLower

(
K, V̂

)
is the re-fetch set of K, in the sense that

D|i is the version of K|i , which has the maximum time-stamp over versions of K|i that is either
V̂|i or any versions on which V̂ depends.

Definition 6.8 (Re-fetch set). Given a key set K and list of versions for the key set V̂ the
function VerLower

(
K, V̂

)
is defined by:

VerLower
(
K, V̂

)
def
= let n = |K| − 1 and [k0, · · · , kn] = K

in
[
VerLowerN

(
k0, V̂ , 0

)
, · · · ,VerLowerN

(
kn, V̂ , n

)]
VerLowerN

(
k, V̂ , i

)
def
= Max⊑

({
id
∣∣∣ id = IdOf

(
V̂|i

)
∨ ∃i′. (k, id) ∈ DepSetOf

(
V̂|i′
)})

.

The rule COPSSet then update the fine-grained command to read (K) : (V̂ , D), tracking D.
This rule is labelled with (cl, r, P), which contains the client cl, the relica r and the phase change
label P.

The rule COPSRefetch in Fig. 6.3b captures the semantics of the re-fetch phase. In this
phase, the client re-fetches the newer versions contained in the re-fetch set, one at a time. If the

115

Chapter 6. Applications: Verification of Implementation Protocols

1 'repl' receive 'read(ks)' request from a client with 'ctx' {
2 for k in ks
3 { rst[k] = get_by_version(repl,k,LATEST); }
4 for k in ks { ccv[k] = rst[k].id; }
5 for k in ks {
6 for dep in rst[k].deps
7 if (dep.key ∈ ks) ccv[dep.key] = max (ccv[dep.key], dep.id);
8 }
9 for k in ks

10 if (ccv[k] > rst[k].id) rst[k] = get_by_version(repl,k,ccv[k]);
11 for (k,id,deps) in rst { ctx += (k,id,deps); }
12 return to_vals(rst);
13 }

(a) Reference implementation for read

COPSStart
Unique (K)(

K̂, û, n
)
, read (K)

(cl,r,S)−−−−→
(
K̂, û, n

)
, read (K) : ∅

COPSOpt
#2 : K = [k0, · · · , ki, · · · , km] #2 : V̂ = [ν̂0, · · · , ν̂i−1] #2 : i− 1 < m

#3 : K̂
(
ki,
∣∣∣K̂ (ki)

∣∣∣− 1
)
= (vi, idi, di) = ν̂i ι = (cl, r, (R, ki, vi) , idi, di, Opt)(

K̂, û, n
)
, read (K) : V̂ ι−→

(
K̂, û, n

)
, read (K) : (V̂ :: [ν̂i])

COPSSet
|K| =

∣∣∣V̂∣∣∣ #7 : D = VerLower
(
K, V̂

)
(
K̂, û, n

)
, read (K) : V̂ (cl,r,P)−−−−→

(
K̂, û, n

)
, read (K) : (V̂ , D)

COPSRefetch
#5 : K = [k0, · · · , ki, · · · , km]

V̂ = [ν̂0, · · · , ν̂m] #5 : V̂ ′ =
[
ν̂ ′
0, · · · , ν̂ ′

i−1

]
#5 : i− 1 < m

D|i = id #10 : (vi, idi, di) =

{
K̂ (ki, j) if IdOf (ν̂i) v id ∧ id = IdOf

(
K̂ (ki, j)

)
ν̂i otherwise

#10 : V̂ ′′ = V̂ ′ :: [(vi, idi, di)] ι′ = (cl, r, (R, ki, vi) , idi, di, Ref)(
K̂, û, n

)
, read (K) : (V̂ , D, V̂ ′)

ι−→
(
K̂, û, n

)
, read (K) : (V̂ , D, V̂ ′′)

COPSFinish
|K| =

∣∣∣V̂ ′
∣∣∣ #11 : û′ =

{
(k, id)

∣∣∣ ∃i. k = K|i ∧ (_, id,_) = V̂ ′
|i

}
(
K̂, û, n

)
, read (K) : (V̂ , D, V̂ ′)

(cl,r,û′,E)−−−−−→
(
K̂, û ∪ û′, n

)
, skip

(b) Reference semantics for read, where #n denotes line n in Fig. 6.3a

Figure 6.3: COPS API: read

version identifier contained in the re-fetch set, id = D|i , for the key ,ki, has greater time-stamp
than the version of ki read in the first phase, that is, ν̂i, then it re-fetches the version identified
by id, that is, K̂ (ki, j). Otherwise, there is no need to re-fetch for the key ki. In the resulting
buffer V ′′, we track either the re-fetched version of ki or copy the same version, ν̂i, from the first

116

Chapter 6. Applications: Verification of Implementation Protocols

phase. Note that versions in V ′′ matches those in rst in line 10. The label of this transition
tracks the client cl, the replica r, the key ki, the value vi, the version identifier idi and the
dependency set di. The label Ref denotes re-fetch phase. At the end of the re-fetch phase, the
final snapshot is returned to the client, which is subsequently added in the context. The rule
COPSFinish captures line 11 in the reference implementation. This rule update the client
context to û ∪ û′, and the command to skip.

The rules for read and write are lifted to a program-level interleaving semantics presented in
Fig. 6.4b. The rule COPSClient captures that a client takes a fine-grained step. A COPS
configuration Θ comprises a COPS database R and a COPS client environment Û . Any client
from the environment Û must be served by a replica in R.

Definition 6.9 (COPS configurations). The set of COPS configurations, COPSConf 3 Θ, is
defined by:

COPSConf def
=

(R, Û) ∈
COPS × COPSCtxEnv

∣∣∣∣∣∣ ∀cl ∈ Dom
(
Û
)
.∀r ∈ COPSRep.

Û (cl) = (_, r) ⇒ r ∈ Dom (R)

 .

The set of initial COPS configurations, COPSConf0 3 Θ0, is defined by:

COPSConf0
def
=

{
(R, Û) ∈

COPSConf

∣∣∣∣∣ ∀r ∈ COPSRep.∀cl ∈ CID.

R (r) = ((λk ∈ Key. [(v0, t0, ∅)]), 0) ∧ Û (cl) = (∅,_)

}
.

Synchronisation Between Replicas Replicas broadcast synchronisation messages for every
new version. Since versions are ordered and messages are assumed to be eventually delivered,
this guarantees COPS satisfies eventual consistency: that is, all replicas eventually reach the
same state. Once a replica receives a message with a new version ν̂, it accepts the version only
if all the versions that ν̂ depends on exist in the replica (Fig. 6.4a). Otherwise, the replica
waits for this condition to be satisfied (line 2). Last, if the message contains a later local
time n in the version identifier id = (n, r), the receiver replica will update its local time to n.
Rule COPSSync in Fig. 6.4b models the synchronisation. Note that a COPS trace has no
unfinished read operation. Two COPS traces are equivalent if and only if the last configurations
match.

Definition 6.10 (COPS traces). The set of COPS traces, COPSTrace 3 ζ, is defined
by: COPSTrace def

=
{
ζ
∣∣ ∃n,Θ, P̂. ζ ∈ COPSTraceN (n) ∧ Last (ζ) = (Θ, P̂) ∧ P̂ ∈ COPSProg

}
,

where COPSProg is defined in Def. 6.5. The function COPSTraceN is defined by:

COPSTraceN (0)
def
=
{
Θ0, P̂0

∣∣ Θ0 ∈ COPSConf0 ∧ P̂0 ∈ COPSProg
}

COPSTraceN (n+ 1)
def
=

{
ζ

ι−→ Θ, I

∣∣∣∣∣ ζ ∈ COPSTraceN (n) ∧Θ ∈ COPSConf

∧ I ∈ COPSRuntimeProg

}

117

Chapter 6. Applications: Verification of Implementation Protocols

1 'repl' receive synchronisation 'message(k,v,id,deps)' {
2 for (k',id') in deps { wait until (_,id',_) ∈ repl.kv(k'); }
3
4 list_isnert(repl.kv[k],(v,id,deps));
5 (remote_local_time ++ replid) = id;
6 repl.local_time = max(remote_local_time , repl.local_time);
7 }

(a) The reference implementation for COPS synchronisation

−→ : COPSConf × COPSRuntimeProg × COPSLabels × COPSConf × COPSRuntimeProg

COPSClient
R (r) = (K̂, n)

Û (cl) = (û, r) I(cl) = R ι = (cl, r, · · ·)
(
K̂, û, n

)
, R ι−→

(
K̂′, û′, n′

)
, R′

R′ = R
[
r 7→ (K̂′, n′)

]
Û ′ = Û [cl 7→ (û′, r)] I′ = I [cl 7→ R′](

R, Û
)
, I ι−→

(
R′, Û ′

)
, I′

COPSSync
r 6= r′ R (r) = (K̂, n) R (r′) = (K̂′, n′) id /∈ K̂′ K̂ (k, i) = ν̂ IdOf (ν̂) = id

#2 : ∀id′. (_, id′) ∈ DepSetOf (ν̂) ⇒ id′ ∈ K̂′ #4 : K̂′′ = COPSInsert
(
K̂′, k, ν̂

)
(n′′,_) = IdOf (ν̂) #4,#6 : R

[
r′ 7→ (K̂′′,Max (n′, n′′))

]
(
R, Û

)
, I (r′,id)−−−→

(
R′, Û

)
, I

(b) Reference semantics for COPS synchronisation and programs, where #n denotes line n in
Fig. 6.4a

Figure 6.4: COPS synchronisation and programs

where COPSConf0 and COPSConf are defined in Def. 6.9, and COPSRuntimeProg is defined
in Def. 6.5. Two traces ζ, ζ ′ are equivalent, written ζ ' ζ ′, if and only if, the last configurations
are equal, ζ ' ζ ′

def⇔ Last (ζ) = Last (ζ ′).

6.1.3 Verification: Annotated Normalised Traces

We introduce normalised COPS traces, where the re-fetch phase of any multiple read transaction
is executed atomically, and annotated normalised COPS traces, where transactions are assigned
with unique COPS transaction identifiers.

A normalised COPS trace is a trace where: (1) the order of single-write transactions in the
trace agrees on the order over the transaction identifiers (Eq. (6.4)); (2) the re-fetch phase of
multiple-read transactions cannot be interleaved (Eq. (6.5)). The first property ensures that
any version of a key is always the latest version of the key. The second property ensures that
multiple-read transactions appear to be atomic with respect to clients. In COPS, there is

118

Chapter 6. Applications: Verification of Implementation Protocols

no direct information about read-only transactions. We give explicit identifiers for read-only
transactions in a normalised trace. We call the resulting trace an annotated normalised COPS
trace.

Definition 6.11 (Normalised COPS traces). A normalised COPS trace ζ ∈ COPSTrace,
written NCOPSTrace (ζ), if and only if: for the length of the trace n = |ζ|, states Θ0, · · · ,Θn−1,
labels ι1, · · · , ιn−1, clients cl, cl′, replicas r, r′, keys k, k′ values v, v′, version identifiers id, id′,
contexts û, û′ and indices i, i′,

ζ = Θ0
ι1−→ · · · ιn−1−−→ Θn−1

∧ ιi = (cl, r, (W, k, v) , id, d) ∧ ιi′ = (cl′, r′, (W, k′, v′) , id′, d′) ∧ i < i′ ⇒ id v id′, (6.4)

(ιi = (cl, r, P) ∨ ιi = (cl, r, (R, k, v) , id, d, Ref)) ∧ i′ = i+ 1

⇒ ιi′ = (cl, r, (R, k′, v′) , id′, d′, Ref) ∨ ιi′ = (cl, r, û, E) . (6.5)

The normalised COPS trace is the key for proving that COPS satisfies causal consistency against
our semantics. In COPSWrite rule, the new version is inserted into the list via COPSInsert
that preserves the order of the new list. However, in a normalised race, by Eq. (6.4), it is
enough to append the new version to the end of the list and guarantees to preserve the order
(Prop. A.18). The second property, Eq. (6.5), ensures that any multiple-read transaction can
be treated as an atomic step, stating that, if a step ιi is a re-fetch set step P or a re-fetch read
step Ref from a client cl, then the next step is a re-fetch read or a read return step E from cl.
Although the read return step and fe-fetch set step have no effect to the database, they are
bundled with all re-fetch reads. These two steps are used later, as a explicit boundary for the
entire re-fetch phase. Recall that in COPSRefetch rule, only the versions that are put in
the buffer V ′′ will be included in the snapshot to the client. This means that the atomicity of
the re-fetch phase is enough for showing atomicity of the entire transaction. Every COPS trace
can be transferred to its equivalent normalised COPS trace by swapping steps.

Theorem 6.12 (Equivalent normalised COPS traces). Given a COPS trace ζ ∈ COPSTrace,
there is an equivalent normalised COPS trace ζ1 such that ζ ' ζ1 ∧ NCOPSTrace (ζ1).

Proof. let ζ1 = ζ initially. We perform the following equivalent transformation until ζ1 is a
normalised COPS trace. First, we move every re-fetch operation (in the second phase) to the
right, delaying the re-fetch, until the operation is directly followed by the end of the transaction
or other re-fetch operation from the same transaction. Second, we move the out-of-order write
operation to the left. In the rest of the proof, we use _ to denote a machine state.

(1) Right mover: re-fetch operation. Take the first end of transaction step, (cl, r, û, E),
where one of its re-fetch operations, (cl, r, (R, k, v) , id, d′, Ref), is interleaved by other
client: that is, for three trace segments ζ ′, ζ ′′, ζ ′′′ and a step ι,

ζ1 = ζ ′
(cl,r,(R,k,v),id,d′,Ref)−−−−−−−−−−−−→ _ ι−→ ζ ′′

(cl,r,û,E)−−−−−→ ζ ′′′ ∧ ι 6= (cl, r, (R, k′, v′) , id′, d′′, Ref) .

119

Chapter 6. Applications: Verification of Implementation Protocols

The ι can be moved left:(
ζ ′

ι−→ _ (cl,r,(R,k,v),id,d′,Ref)−−−−−−−−−−−−→ ζ ′′
(cl,r,û,E)−−−−−→ ζ ′′′

)
' ζ1.

If the label ι is not a write operation, it is easy to see that ι and the re-fetch operation can
be swapped. If the label ι is a write operation, it must not interfere the re-fetch operation.
Because any re-fetch operations can only read versions written before the phase change
step. The full proof of the right mover is given in Theorem A.13 on page 205.

Assign the new trace to ζ1 and go back to step (1). There are finite number of transitions
in a trace. After each iteration of step (1), a re-fetch transition of a transaction moves
closer to the end label of the transaction. Therefore, step (1) must terminate. The final
trace ζ1 satisfies Eq. (6.5).

(2) Left mover: out-of-order writes. Given a trace ζ1 satisfying Eq. (6.5), take two
out-of-order write operations with the shortest distance in between, (cl, r, (W, k, v) , id, d)
and (cl′, r′, (W, k′, v′) , id′, d′), and the operation immediately before the latter write, ι:

ζ1 = ζ ′
(cl,r,(W,k,v),id,d)−−−−−−−−−→ ζ ′′

(cl′,r′,(W,k′,v′),id′,d′)−−−−−−−−−−−−→ ζ ′′′ ∧ id′ v id,

Note that there is no other out-of-order in the trace segment ζ ′′. We show that any step ι

in ζ ′′ that may interfere (cl′, r′, (W, k′, v′) , id′, d′) can be moved before (cl, r, (W, k, v) , id, d).
Then we move the out-of-order write (cl′, r′, (W, k′, v′) , id′, d′) before (cl, r, (W, k, v) , id, d).

We immediately have cl 6= cl′ and r 6= r′, because the replica time must monotoni-
cally increase (detail is given in Prop. A.14 on page 206). Let first consider any step
with label ι in the trace segment ζ ′′. The step ι cannot be a write step. Assume
ι = (cl′′, r′′, (W, k′′, v′′) , id′′, d′′). Since all version identifier is unique and ordered (detail is
given in Prop. A.14 on page 206), this means that (i) id′′ v id′ v id; (ii) id′ v id′′ v id; or
(iii) id′ v id v id′′. However, all the cases above contradict that we pick two out-of-order
write with the shortest distance. Hence, ι can be snapshot, optimistic read, phase change,
re-fetch read and commit steps for multi-reads, and synchronisation.

Second, we focus on the first step ι that are from cl′ and r′ in the trace segment ζ ′′. The
label ι cannot depends on (cl, r, (W, k, v) , id, d). If ι is a synchronisation step, it must be
the case that ι = (r′, id′′) such that id′′ v id′, because the replica time must monotonically
increase (detail is given in Prop. A.14 on page 206). This means id′′ v id′ v id. Let
consider ι be a step for multi-reads from r′ and a client cl′′ (cl′′ might be cl′). If ι is a local
computation including snapshot, phase change and commit steps, it is trivial ι does not
depend on (cl, r, (W, k, v) , id, d). If ι is a optimistic read or re-fetch read, that reads from
a version of a key k′′ identified by id′′. The step ι does not depend on (cl, r, (W, k, v) , id, d)
in the sense that ¬

(
(k, id)

DEP−−→ (k′′, id′′)
)

. Assume (k, id)
DEP−−→ (k′′, id′′). It means

that id v id′′. Because the replica time must monotonically increase (detail is given in

120

Chapter 6. Applications: Verification of Implementation Protocols

Prop. A.14 on page 206), then id′′ v id′. Hence, id v id′, which leads to contradiction.
Given above, it allows us to inductively move the first ι of a step for multi-reads from r′

and a client cl′′ in the trace segment ζ ′′ before the step (cl, r, (W, k, v) , id, d). This yields
a new trace:(

ζ ′
_−→ ζ3

(cl,r,(W,k,v),id,d)−−−−−−−−−→ ζ2
ι1−→ _ (cl′,r′,(W,k′,v′),id′,d′)−−−−−−−−−−−−→ ζ ′′′

)
' ζ1 ∧ id′ v id

where the prefix of ζ3 is ζ ′ and followed by steps that are from cl′ and r′, and ζ2 contains
the rest steps in ζ ′. Note that ζ2 contains any steps in ζ ′′ that are not from cl′ nor r′,

Now consider the last step ι′ of ζ2, which must from a client cl′′ and a replica r′′ that are
different from cl′ and r′ respectively. because different replicas and clients do not interfere
with each others, it is easy to see that ι′ can be move to right, delaying this step. In other
words, the out-of-order write operation can be moved to the left. We perform this until
the two out of order writes are adjacent:(

ζ ′
_−→ ζ3

(cl,r,(W,k,v),id,d)−−−−−−−−−→ _ (cl′,r′,(W,k′,v′),id′,d′)−−−−−−−−−−−−→ ζ4

)
' ζ1 ∧ id′ v id

where ζ4 contains steps in ζ2 and then steps in ζ ′′′. We now can swap the two out-of-order
writes: (

ζ ′
_−→ ζ3

(cl′,r′,(W,k′,v′),id′,d′)−−−−−−−−−−−−→ _ (cl,r,(W,k,v),id,d)−−−−−−−−−→ ζ4

)
' ζ1 ∧ id′ v id.

Assign the new trace to ζ1 and go back to step (2). For each iteration of step (2), two
out-of-order write operations move closer to each other and eventually swap position.
Because there are finite number of transitions in a trace and thus finite number of out-
of-order write operations, then step (2) must terminate. The full proof of this left mover
is given in Theorem A.15 on page 206. The final trace ζ1 satisfies Eq. (6.4).

After steps (1) and (2), the trace ζ1 is a normalised COPS trace as NCOPSTrace (ζ1). �

In our kv-store semantics (Chapter 4), we assign a unique identifier for every transaction in
CAtomicTrans in Fig. 4.2. In COPS semantics, there is no explicit transaction identifier.
We encode the COPS version identifier as COPS transaction identifier for the single-write
transaction who committed the version. We then annotate multiple-read transactions with
transaction identifiers that preserves the session order using the read-only transaction counter
m in t̂

(n,r,m)
cl .

Definition 6.13 (COPS transaction identifiers). The set of COPS transaction identifiers,
COPSTxID 3 t̂, is defined by:

COPSTxID def
=
{
t̂
(n,r,m)
cl

∣∣∣ cl ∈ CID ∧ r ∈ COPSRep ∧ n,m ∈ N
}
∪ {t0} .

121

Chapter 6. Applications: Verification of Implementation Protocols

The order over transactions is defined by:

t̂
(n,r,m)
cl v t̂

(n′,r′,m′)

cl′
def⇔ n < n′ ∨ (n = n′ ∧ (r < r′ ∨ (r = r′ ∧m < m′))).

The COPS transaction identifier t̂
(n,r,m)
cl contains a client identifier cl, a local time n, a replica

identifier r and an extra counter m for read-only transactions. For the single write transaction,
the transaction identifier is the version identifier (n, r) and m = 0. we then use the extra
counter m to annotate read-only transactions. Note that, transaction identifiers are order
lexicographically. If we encode all tuples, (r, n,m), as individual numbers, all these encodes
numbers must be totally ordered. Therefore, there is a bijection between COPSTxID and
kv-store transaction identifiers TxID defined in Def. 4.1.

We first assign COPS transaction identifiers to single-write transactions: that is, we extend
the version identifiers with the client identifiers and the reader counters m being zero. We
then assign COPS transaction identifiers with non-zero read-only counters to multiple-read
transactions: that is, for each multiple-read transaction, we annotate the re-fetch operations
and the end operation with the next available identifier in Ê ∈ CID → COPSTxID. To preserve
the session order, we update Ê for the client cl, if cl commits a new transaction. By construction,
the transaction identifiers that are assigned to multiple-read transactions must be unique. The
detail is given in Prop. A.17 on page 208.

Definition 6.14 (Annotated normalised COPS traces). A client local time environment is
defined by: Ê ∈ CID → COPSTxID. Given a normalised COPS trace ζ ∈ ANCOPSTrace,
the annotated normalised COPS trace is defined by:

COPSToExt
(
(Θ0, P̂0), Ê

)
def
= (Θ0, P̂0),

COPSToExt
(((

R, Û
)
, I ι−→ ζ

)
, Ê
)

def
=

(
R, Û

)
, I

ι,t̂
(n,r,0)
cl−−−−→ COPSToExt

(
ζ, Ê

[
cl 7→ t̂

(n,r,1)
cl

])
if ι = (cl, r, (W, k, v) , (n, 0), d) ,(

R, Û
)
, I ι,Ê(cl)−−−→ COPSToExt

(
ζ, Ê
)

if ι =
(
cl, r, (R, k, v) , t̂, d, Ref

)
,(

R, Û
)
, I ι,Ê(cl)−−−→ COPSToExt

(
ζ, Ê

[
cl 7→ t̂

(n,r,m+1)
cl

])
if ι = (cl, r, û, E) ∧ Ê (cl) = t̂

(n,r,m)
cl ,(

R, Û
)
, I ι−→ COPSToExt

(
ζ, Ê
)

otherwise.

For each single-write transaction, we explicitly annotate it with a transaction identifier, contain-
ing the new version identifier and the client identifier. Moreover, for each read-only transaction,
we explicitly assign it with a transaction identifier, and use the reader counter to encoding the
session order SO. Note that the COPS transaction identifiers of the forms t̂(n,r,m)

cl is isomorphic
to the transaction identifiers in kv-store (Def. 4.1).

122

Chapter 6. Applications: Verification of Implementation Protocols

6.1.4 Verification: Trace Refinement

We show how to encode a COPS machine state in our centralised kv-store, and client contexts
as views on the kv-store. Given a kv-store program trace η encoding a COPS trace, we then
show that η can be obtained under the execution test of causal consistency.

For each annotated normalised COPS trace, the final configuration corresponds to a kv-store
by replaying all the transactions on the initial kv-store. This means:

(1) For a single-write transaction, it appends a new version to the K with the writer, being
the annotated transaction identifier defined in Def. 6.14 and the reader set, being the
empty set (the first case in the induction case of COPSToKVS in Fig. 6.5); and

(2) For a read-only transaction, it adds the annotated transaction identifier to the reader sets
of versions being read (the second case in the induction case of COPSToKVS in Fig. 6.5).

Note that, the final configuration itself contains enough information for all the write transac-
tions, however, we need the trace to recover the annotated identifiers for multiple-read trans-
actions.

Definition 6.15 (Centralised COPS kv-store). Given an annotated normalised COPS trace
ζ ∈ ANCOPSTrace the centralised kv-store induced by the trace, written COPSToKVS (ζ), is
defined in Fig. 6.5.

Recall the properties of annotated normalised COPS traces:

(1) multiple-read transactions are annotated with unique identifiers (detail in Prop. A.17 on
page 208); and

(2) it is safe to append new versions (detail in Prop. A.18 on page 209).

This mean that the kv-store K = COPSToKVS (ζ) is well-formed (defined in Def. 4.5). Also by
the notion of COPSToKVS, the kv-store only contains versions in ζ and vice versa. The detail
is given in Prop. A.19 on page 209.

Given the kv-store, K, encoding the final configuration of an annotated normalised COPS trace,
the final context û for every client can be encoded to a view u on K in the sense that the view
u contains all versions ν that are included in û and versions that ν depends on, directly or
indirectly.

Definition 6.16 (COPS context views). Assume an annotated normalised COPS trace ζ.
Given the last configuration ((R, Û),_) = Last (ζ) and the kv-store K = COPSToKVS (ζ), the

123

Chapter 6. Applications: Verification of Implementation Protocols

COPSToKVS (Θ
0 ,P̂)

def
=

K
0 ,

COPSToKVS (
ζ

ι−→ (R
,Û)

,I)
def
=

let
K

=
COPSToKVS

(ζ
)

in

K [k
7→

K
(k
)
:: [(v

,t̂
(n

,r,0
)

cl
,∅)]]

if
ι
=

(cl,r,(W
,k
,v
)
,(n

,r),d
)
,t̂

(n
,r,0

)
cl

K [k
7→

K
(k
) [i7→ (

v
,t̂

(n
,r ′,0

)

cl ′
,T

]
t̂ ′)]]

if
ι
= ((cl,r,(R

,k
,v
)
,(n

,r
′),d

,Ref
),t̂ ′)

,∧K
(k
)|i

=
(v
,t̂

(n
,r ′,0

)

cl ′
,T

),

K
otherw

ise.

COPSToKVTrace (Θ
0 ,P̂)

def
=

let
s
0
=

λx
∈

V
ar

.0
in (COPSToKVS (Θ

0 ,P̂)
,COPSViews (Θ

0 ,P̂)
,λ

cl∈
Dom (P̂)

.s
0)

,COPSToKVProg (P̂)
COPSToKVTrace (

ζ
ι−→ (R

,Û)
,I)

def
=

let
((K

,U
,E

),P
)
=

Last
(COPSToKVTrace

(ζ
))
,
K

′
=

COPSToKVS (
ζ

ι−→ (R
,Û)

,I)
,

U
′
=

COPSViews (R
,Û)

,
and

P
′
=

COPSToKVProg
(I
)

In
{

COPSToKVTrace
(ζ
)

(cl,U
(cl),F

)
−−−−−−→

⊤
(K

′,U
′,E

)
,P

′
if
ι
=

(cl,r,(W
,k
,v
)
,id

,d
)
,t̂,∧F

=
{(W

,k
,v
)}

COPSToKVTrace
(ζ
)

if
ι
=

(cl,r,S
)∨

ι
=

(cl,r,(R
,k
,v
)
,id

,d
,Opt

)∨
ι
=

(r,id
)

COPSToKVTrace (
ζ

ι−→
ζ
′

ι ′
−→ (R

,Û)
,I)

def
=

let
((K

,U
,E

),P
)
=

Last
(COPSToKVTrace

(ζ
))
,
K

′
=

COPSToKVS (
ζ

ι−→
ζ
′

ι ′
−→ (R

,Û)
,I)

,

U
′
=

COPSViews (R
,Û)

,
and

P
′
=

COPSToKVProg
(I
)

in
COPSToKVTrace

(ζ
)

(cl,U
′(cl),F

)
−−−−−−−→

⊤
(K

′,U
′,E

′)
,P

′

where
ι
=

(cl,r,P
)∧

ζ
′
=

_
(cl,r,(R

,k
0
,v

0
),id

0
,d

0
,Ref

),t̂
−−−−−−−−−−−−−−−→

···
(cl,r,(R

,k
n
,v

n
),id

n
,d

n
,Ref

),t̂
−−−−−−−−−−−−−−−→

_
∧
ι ′
=

(cl,r,û
′,E

)
,t̂∧

F
=

{(R
,k

0 ,v
0)
,···

,(R
,k

n ,v
n)}

∧
E
′
=

E
[x

0 7→
v
0]···[x

n
7→

v
n]

Figure 6.5: Definitions of COPSToKVS and COPSToKVTrace
124

Chapter 6. Applications: Verification of Implementation Protocols

view environment induced by the client context Û , written COPSViews
(
R, Û

)
, is defined by:

COPSViews
(
R, Û

)
(cl)

def
= λk ∈ Key.

i

∣∣∣∣∣∣∣∣
∃k′ ∈ Key. ∃id, id′ ∈ COPSVerID.

(k′, id′) ∈ Û (cl) ∧ (k, id)
DEP∗

R−−−→ (k′, id′)

∧ id′ = IdOf (K (k, i))

 ∪ {0} ,

where the COPS dependency relation, DEPR, is defined by:

DEPR
def
=

⋃
(K,_)∈Image(R)

{
((k, id) , (k′, id′))

∣∣∣∣∣ ∃i. id′ = IdOf (K (k′, i))

∧ (k, id) ∈ DepSetOf (K (k′, i))

}
.

The relation DEPR on a COPS database R denotes dependency relations between versions. If
((k, id) , (k′, id′)) ∈ DEPR, then (k, id) is included in the dependent set of the version identified
by id′. Since all versions have unique transactions, it is easy to see that the view induced by
the COPS client context is well-formed. The detail is given in Prop. A.20 on page 210.

Last, it is easy to convert the COPS syntax, namely put and read APIs, to transactional syntax
in our kv-store semantics.

Definition 6.17 (COPS atomic transactions). Given a COPS command Ĉ ∈ COPSCmd,
the kv-store command, COPSToKVCmd : COPSRunCommands → Commands, induced by a
COPS runtime command is defined by:

COPSToKVCmd (put (k, v)) def
= [wt (k, v)] ,

COPSToKVCmd (read ([k0, · · · , kn]))
def
= [x0 := rd (k0) ; · · · ; xn := rd (kn)] ,

COPSToKVCmd
(

read ([k0, · · · , kn]) : V̂
)

def
= [x0 := rd (k0) ; · · · ; xn := rd (kn)] ,

COPSToKVCmd
(

read ([k0, · · · , kn]) : (V̂ , D)
)

def
= [x0 := rd (k0) ; · · · ; xn := rd (kn)] ,

COPSToKVCmd
(

read ([k0, · · · , kn]) : (V̂ , D, V̂ ′)
)

def
= [x0 := rd (k0) ; · · · ; xn := rd (kn)] ,

COPSToKVCmd (R ; R′)
def
= COPSToKVCmd (R) ; COPSToKVCmd (R′) .

The kv-store program induced by a COPS runtime program is defined by:

COPSToKVProg (I) def
= λcl ∈ Dom (I) .COPSToKVCmd

(
P̂(cl)

)
.

We now encode the COPS trace ζ into a kv-store program trace η. Recall that we encode run-
time information in the syntax of the read-only transaction API; this information is transparent
to clients in our kv-store operational semantics.

Definition 6.18 (COPS kv-store traces). Given an annotated normalised COPS trace ζ ∈
ANCOPSTrace, the kv-store traces induced by ζ, written COPSToKVTrace (ζ), is defined in

125

Chapter 6. Applications: Verification of Implementation Protocols

Fig. 6.5.

We convert a COPS trace ζ to a kv-store trace η, in the definition of COPSToKVTrace in
Fig. 6.5.

(1) The base case of COPSToKVTrace convert the initial COPS configuration to an initial kv-
store configuration: both configurations contain the same amount of clients, and stacks
in kv-store semantics being initialised to all zero.

(2) In the first inductive case of COPSToKVTrace, we convert all steps except re-fetch read
steps. Assume a COPS trace

ζ
ι−→
(
R, Û

)
, I

and ((K,U , E), P) = Last (COPSToKVTrace (ζ)) being the last configuration in ζ. Let
η = COPSToKVTrace (ζ) be the kv-store trace that encodes ζ. If the next step ι is
start of read-only transaction S, optimists read Opt and synchronisation step, the new
kv-store trace is exactly η, because these steps are transparent to clients. If the new step
is a single-write transaction (cl, r, (W, k, v) , id, d), then we simulate this transaction in the
kv-store trace, that is

η
(cl,U(cl),F)−−−−−−→⊤ (K′,U ′, E) , P′

(3) In the second inductive case of COPSToKVTrace, we convert the read-only transaction.
Assume a COPS trace

ζ
ι−→ ζ ′

ι′−→
(
R, Û

)
, I

and ((K,U , E), P) = Last (COPSToKVTrace (ζ)) being the last configuration in ζ. Assume
that cl is the next scheduled client. Recall that we ignore all optimistic read operations in
the first phase, and by the definition of normalised traces in Def. 6.11, all re-fetch reads
from a transaction t̂ must be wrapped between the phase change step ι labelled with P and
end step ι′ labelled with E. In the definition, we collect all the re-fetch read operations in
ζ ′ as the fingerprint F of the transaction t̂ in kv-store trace. We use the view u = U ′(cl)

that encodes the new client context after the read (noting U ′ = COPSViews
(
R, Û

)
), as

the view for t̂, which guarantees the well-formed of the trace: the transaction reads the
latest versions in the view u. The view after the update simply remains the same as u.
Therefore we have the new kv-store trace

COPSToKVTrace (ζ) (cl,U ′(cl),F)−−−−−−−→⊤ (K′,U ′, E ′) , P′

Given kv-store program traces η under the read atomic > that encode COPS traces, we prove
that every step in these traces satisfies the execution test for CC.

Theorem 6.19 (COPS causal consistency). Given an annotated normalised COPS trace ζ ∈
ANCOPSTrace, the kv-store traces, η = COPSToKVTrace (ζ), can be obtained under ETCC.

126

Chapter 6. Applications: Verification of Implementation Protocols

Proof sketch. By the definition of ETCC, we prove ETMR, ETRYW and PreClosed (K, u,WRK ∪ SO)

separately. It is easy to prove every step satisfies ETMR and ETRYW, because a client context
monotonic increases and always contains versions written by the client itself. In Prop. 6.20, we
show that the relation DEP∗

R contains all edges in the relation (WRK ∪ SO)+; this implies that
the any view u that encodes a client context, must be always close with respect to (WRK ∪ SO)+,
and hence predicate PreClosed (K, u,WRK ∪ SO) holds. The detail is given in appendix A.6
on page 210. �

Proposition 6.20 (COPS dependency relation to CC relation). Given an annotated normalised
COPS trace ζ ∈ ANCOPSTrace and the kv-store program trace η = COPSToKVTrace (ζ), let
K be the final kv-store such that (K,_,_) = Last (η) and R be the final state of COPS database
such that (R,_,_) = Last (ζ). Given two versions K (k, i) written t̂ and K (k′, i′) written by t̂′,
if t̂(n,r,0)cl

(WRK∪SO)+−−−−−−−→ t̂
(n′,r′,0)

cl′
then (k, (n, r))

DEP∗
R−−−→ (k′, (n′, r′)).

Proof. Let t̂ = t̂
(n,r,0)
cl and t̂′ = t̂

(n′,r′,0)

cl′
. By the hypothesis, both transactions are single-write

transactions, which means that (t̂, t̂′) /∈ WRK. For any transaction in COPS, it either is a
read-only transaction or a single-write transaction. Recall that SO is transitive. This means

that t̂ (WRK∪SO)+−−−−−−−→ t̂′ if and only if t̂ (WR?
K;SO)

+

−−−−−−−→ t̂′ and thus it is sufficient to prove the following
result

t̂
WR?

K;SO−−−−−→ t̂′ ⇒ (k, (n, r))
DEP∗

R−−−→ (k′, (n′, r′)). (6.6)

(1) [Case: t̂
SO−→ t̂′] Assume that t̂, t̂′ are from client cl that interacts with replica r. For

this case, transaction t̂ must commit before t̂′: that is

ζ = · · · (cl,r,(W,k,v),(n,r),d),t̂−−−−−−−−−−−→ · · · (cl,r,(W,k′,v′),(n′,r′),d′),t̂′−−−−−−−−−−−−−−→ · · ·.

By rule COPSWrite and the COPS invariant that replica time monotonically increases
(detail is given in Prop. A.14 on page 206), it follows that (k, (r, n)) ∈ d′ which implies
Eq. (6.6).

(2) [Case: t̂
WRK−−−→ t̂′′

SO−→ t̂′ for a read-only transaction t̂′′] Assume that t̂′′, t̂′ are from
client cl that interacts with replica r. For this case, we know

ζ = · · · (cl,r,(R,k,v),(n,r),d,Ref),t̂′′−−−−−−−−−−−−−−→ · · · (cl,r,û,E),t̂′′−−−−−−→ · · · (cl,r,(W,k′,v′),(n′,r′),d′),t̂′−−−−−−−−−−−−−−→ · · ·.

By rules COPSRefetch and COPSFinish, (k, (n, r)) ∈ d and then by the COPS
invariant that replica time monotonically increases (detail is given in Prop. A.14 on page
206), it follows that (k, (n, r)) ∈ d′ which implies Eq. (6.6). �

127

Chapter 6. Applications: Verification of Implementation Protocols

key-value store: (k1, v0, 0)

Preparation set: ∅

r1, Local Time: 0

key-value store: (k2, v0, 0)

Preparation set: ∅

r2, Local Time: 0

Figure 6.6: An initial Clock-SI state with two shards, r1 and r2, which contains keys k1 and
k2 respectively

6.2 Verification of Clock-SI Protocol

Clock-SI [Du et al., 2013] is a partitioned distributed NoSQL database, in which each site, also
called shard, contains a distinct partition of keys. Clock-SI implements snapshot isolation: (1) a
simplified version where each session contains only one transaction and (2) a full version where
each session can have multiple transactions. Here we verify the full version. The key idea of
Clock-SI is to extend the timestamp-based, centralised implementation for SI initially presented
in [Berenson et al., 1995]. In Clock-SI, all servers, or shards, do not agree on a global physical
time, however, the time diffidence between shards is often bound. Therefore, a transaction t in
Clock-SI takes the local time of a shard as the transaction start time. This transaction t moves
between shards to read keys, however, t can only progress when the shards local time are later
than the transaction start time, otherwise t waits. At the end of t, it commits all the write
operations to the appropriate shards, using a two-phase commit protocol. Under this protocol,
a transaction is allowed to commit only if there is another transaction that concurrently writes
to the same key.

We give an informal description of Clock-SI protocol in Section 6.2.1 and a formal, fine-grained
operational semantics in crefsec:clock-si-model,sec:clock-si-semantics. Similar to the verification
of COPS, we introduce the normalised Clock-SI traces in Section 6.2.4, where transactions in
the traces are not interleaved. We then convert normalised Clock-SI traces to kv-store traces
and show the kv-store traces satisfies the execution test for SI.

Notation. We pick the same letters for the concepts that have similar meaning with respect
to those in our kv-store operational semantics, and annotate them with tilde, for example,
Clock-SI key-value store K̃.

6.2.1 Clock-SI protocol

Clock-SI is a fully partitioned distributed key-value database, with each shard storing all history
version of a distinct part of keys as shown in Figs. 6.6 to 6.9. Each version in a shard, for
example (k1, v0, 0) in Fig. 6.6, consists of a key, k1, a value, v0, and the time this version has
been committed, n = 0. A transaction in Clock-SI contains arbitrary read and write operations,

128

Chapter 6. Applications: Verification of Implementation Protocols

and internal computation. For example, the following program PClock, contains two clients, each
of which has one transaction. Both the transactions read the value of keys k1 and k2, and if
the values are the initial value v0, they updates k1 or k2 respectively.

PClock
def
= cl1 :

[
x := rd (k1) ; y := rd (k2) ;
if (x = v0 && y = v0) wt (k2, v′)

]
cl2 :

[
z := rd (k1) ; m := rd (k2) ;
if (z = v0 && m = v0) wt (k1, v)

]
.

The idea of Clock-SI is that:

(1) a transaction t tracks a transaction snapshot time STimeOf (t) = n, and when reading a
key k, the transaction reads the latest value for k before n; and

(2) when committing, the transaction uses a two-phase commit protocol in that new versions
first commit to the preparation sets of the shards, as shown in Fig. 6.8, and then commit
to key-value stores.

Each shard r tracks a local time, which is the actual physical time of the shard. In an ideal
situation, local times in different shards should be the same. However, this is impossible in
practice. A client also carries a local time that tracks the commit time of its last transaction,
which is used to maintain the session order over transactions from the client.

Let us describe the protocol using the program PClock. A client commits a transaction and the
client local time as the minimum transaction snapshot time to an arbitrary shard, and awaiting
confirmation. Upon receiving the transaction t, the shard r acts as the coordinator of the
transaction:

(1) r decides the transaction snapshot time of t;

(2) r executes the commands of t and tracks the effect of these commands in a read-write
set; and

(3) r commits the effect of t, all new values, to the appropriate shards using a two-phase
commits protocol.

Assume that cl1 commits its transaction t1 to shard r1 with client local time 0. This local time
is the transaction snapshot time for the new transaction. Upon receiving the new transaction,
coordinator r1 assigns the coordinator local time n as STimeOf (t1), only if n is greater than
the minimum transaction snapshot time. For example, in Fig. 6.7, r1 waits until the local
time becomes 1, and then assigns 1 as STimeOf (t1). Similarly, r2 assigns 1 as STimeOf (t2) in
parallel. The coordinator also initialises the read-write set to be the empty set. The read-write
set is the same as the fingerprint in our kv-store semantics, which tracks the observable effect
of the transaction, containing at most one read and one write operation of each key.

129

Chapter 6. Applications: Verification of Implementation Protocols

key-value store: (k1, v0, 0)

Preparation set: ∅

r1, Local Time: 1

key-value store: (k2, v0, 0)

Preparation set: ∅

r2, Local Time: 1

∅
t1, Snapshot Time: 1

∅
t2, Snapshot Time: 1

Figure 6.7: Shard r1 assigns the snapshot time to transaction t1 and shard r2 assigns the
snapshot time to transaction t2 in parallel

After the initialisation, it is ready to execute the transaction. Let us take t1 as an example.
For any lookup command, for example x := rd (k1), the coordinator first checks if there is an
entry of k1 in the read-write set of t1. If there is a write operation of k1, for example (W, k1, v),
it means that the transaction has updated the key internally. If there is a read operation of
k1, for example (R, k1, v), it means that the transaction has read the key before. In both cases,
because snapshot isolation satisfies snapshot property, the transaction reads value v in the
previous write operation or in the previous read operation from the read-write set respectively.
If there is no entry of k1, the coordinator sends a request to the shard r1 containing key k1,
and STimeOf (t1), which is used to fetch to correct value. Upon receiving the request, shard r1

waits until:

(1) the shard-local time is greater than STimeOf (t1); and

(2) there is no version of k1 in the preparation set that has time-stamp smaller than STimeOf (t1).

If both conditions are satisfied, then there is no new version of k1 that might commit before
STimeOf (t1). Shard r1 then replies with the latest value of k1 before STimeOf (t1). For any
mutation command, for example k2 := rd (v′), the coordinator erases any previous write oper-
ations of k2 and adds a new write operation (W, k2, v′). Note that different transactions might
execute in parallel as shown in Fig. 6.8a.

When a transaction reaches the end, skip, the final read-write set contains the effect of this
transaction, for example the read-write set for t depicted in Fig. 6.8a. The coordinator then
commits any updates in the read-write set to appropriate shards, using a two-phase commits
protocol. In the first commit phase, for any write operation such as (W, k2, v′) in Fig. 6.8b, the
coordinator sends a commit request to the shard that contains the key. Upon receiving the
commit request, the shard will accept the new version if there is no conflicting write: that is,
any versions of the key that has been committed or prepared in the shard since STimeOf (t1).
For example in Fig. 6.8a, the new value v′ for k2 can commit in shard r2, since there are no
other versions of k2 with time-stamp greater than STimeOf (t1) = 1. If there is no conflicting
write, the shard assigns the shard-local time as the preparation time of the new version, and
puts the version in the preparation set as shown in Fig. 6.8b. In the successful case, the shard

130

Chapter 6. Applications: Verification of Implementation Protocols

key-value store: (k1, v0, 0)

Preparation set: ∅

r1, Local Time: 2

key-value store: (k2, v0, 0)

Preparation set: ∅

r2, Local Time: 2

(R, k1, v0) (R, k2, v0) (W, k2, v′)
t1, Snapshot Time: 1

(R, k1, v0) (R, k2, v0)
t2, Snapshot Time: 1

(a) The final fingerprint of t1

key-value store: (k1, v0, 0)

Preparation set: ∅

r1, Local Time: 2

key-value store: (k2, v0, 0)

Preparation set: (k2, v
′, 2)

r2, Local Time: 2

(R, k1, v0) (R, k2, v0) (W, k2, v′)
t1, Snapshot Time: 1

(R, k1, v0) (R, k2, v0)
t2, Snapshot Time: 1

(b) The preparation phase of t1

key-value store: (k1, v0, 0)

Preparation set: ∅

r1, Local Time: 2

key-value store: (k2, v0, 0)

Preparation set: (k2, v
′, 2)

r2, Local Time: 2

(R, k1, v0) (R, k2, v0) (W, k2, v′)
t1, Commit Time: 2

(R, k1, v0) (R, k2, v0)
t2, Snapshot Time: 1

(c) The commit phase of t1

Figure 6.8: Clock-SI two-phase commit protocol

replies with the preparation time of the new versions. Otherwise, the shard rejects the new
version due to conflicting writes; and the coordination might abort or restart the transaction.

In the second phase, the coordinator picks the maximum time over all preparation times as the
commit time of this transaction. For example in Fig. 6.8c, the commit time of t1 is 2. The
coordinator finally sends the commit time to all shards that contain prepared versions for this
transaction. Upon receiving the commit time n, the shard first updates its local time to n, if the
local time is behind n. The shard updates the time of prepared versions for this transaction to
be n and commits them to the local key-value store. For example, Fig. 6.9a shows the resulting
state after t1. Note that, despite that there is a new version for k2, this new version does not
affect t2 because: (1) the new version commits after STimeOf (t2), hence it does not affect any
read of t2; and (2) t2 does not update k2, hence t2 can commit successfully. An example result
of PClock is given in Fig. 6.9b, which exhibits the write skew anomaly.

Du et al. [2013] informally argued that Clock-SI implements snapshot isolation. First, a trans-
action t carrying a snapshot time STimeOf (t) read the latest values of keys. Note that the
two-phase commits protocol guarantees that when the transaction reads from a shard, there
must be no version that can commit before STimeOf (t). Second, the transaction commits its
final effect via the two-phase commits protocol, which guarantees all the versions commit at

131

Chapter 6. Applications: Verification of Implementation Protocols

key-value store: (k1, v0, 0)

Preparation set: ∅

r1, Local Time: 2

key-value store: (k2, v0, 0) (k2, v
′, 2)

Preparation set: ∅

r2, Local Time: 2

(R, k1, v0) (R, k2, v0) (W, k1, v)
t2, Snapshot Time: 1

(a) Client cl1 commits t1 to r1, while t2 are still running

key-value store: (k1, v0, 0) (k1, v, 2)

Preparation set: ∅

r1, Local Time: 2

key-value store: (k2, v0, 0) (k2, v
′, 2)

Preparation set: ∅

r2, Local Time: 2

(b) Client cl2 commits t2 to r2

Figure 6.9: An example result of t1 and t2

the same time to appropriate shards. Recall that the commit time is the maximum time over
all preparation times. This means if there is no conflict write between the snapshot and the
preparation time in a shard, then it must be no conflict write until the commit time, because
any prepared version blocks further update to the key.

6.2.2 Machine States

A shard in Clock-SI comprises a local time and all the history versions of a partition of keys.
Each version consists of a value, a time when the version committed and a version state, which
is prepared or committed. In the semantics of Clock-SI, the shards do not explicitly have the
preparation set, instead, annotates versions with their states.

Definition 6.21 (Clock-SI local times and versions). The set of Clock-SI local times is defined
by: ClockTime def

= N. Assume a set of version states ClockState def
= {prepared, committed}.

Given the set of values (Def. 4.3), the set of Clock-SI versions, ClockVersions 3 ν̃, is defined
by: ClockVersions def

= Value×ClockTime×ClockState. Given a version ν̃, let ValueOf (ν̃),
TimeOf (ν̃) and StateOf (ν̃) return the first, second and third projections of ν̃ respectively. Given
two versions ν̃, ν̃ ′, the order between them, written ν̃ v ν̃ ′, is defined by:

(v, n, l) v (v, n′, l′)
def⇔ (n = n′ ∧ l = l′) ∨ (l = prepared ∧ l′ = committed ∧ n ≤ n′).

If two versions ν̃ v ν̃ ′, then they are either the same version, or ν̃ ′ is newer than ν̃ in the
two-phase commit protocol, that is, ν̃ ′ is confirmed to commit and but ν̃ is just prepared. The
local key-value store, K̃, of a shard contains all the history versions, which is a partial function
from keys to lists of Clock-SI versions.

Definition 6.22 (Clock-SI key-value stores). The set of Clock-SI local key-value stores or

132

Chapter 6. Applications: Verification of Implementation Protocols

Clock-SI local store is defined by:

ClockKVS def
=
{
K̃ ∈ Key −⇀ [ClockVersions]

∣∣∣ WfClockSIKvs
(
K̃
)}

,

where WfClockSIKvs is defined by: for any key k ∈ Dom
(
K̃
)

and indices i, i′,

K̃ (k, 0) = (v0, t̃0, committed), (6.7)

∀v, v′ ∈ Value. ∀n, n′ ∈ ClockTime.∀l, l′ ∈ ClockState.

K̃ (k, i) = (v, n, l) ∧ K̃ (k, i′) = (v′, n′, l′) ∧ i < i′ ⇒ n < n′. (6.8)

The set of initial Clock-SI key-value stores, ClockKVS0 3 K̃0, is defined by:

ClockKVS0
def
=
{
K̃0

∣∣∣ ∀k ∈ Dom
(
K̃0

)
. K̃0 (k) = [(v0, 0, committed)]

}
.

The order K̃ v K̃′ is defined by point-wise lifting:

K̃ v K̃′ def⇔ ∀k ∈ Key.∀i ∈ N. K̃ (k, i) v K̃′(k, i).

In a well-formed a Clock-SI key-value store, the first version of each key key is the initial version,
with the initial value v0 and time 0, and the versions for key are ordered over their commit
times, captured by the well-formed condition Eq. (6.8). Given the order between versions
defined in Def. 6.21, the order between Clock-SI key-value store is defined pointwise.

In a Clock-SI database, versions associated with a key are stored in a distinct shard. This is
captured by the definition of Clock-SI machine states, R, comprising a function mapping shard
identifiers, r, to their key-value stores and shard local times. Recall that the diffidence between
shard local times are bound, however, we do not put any constraint here, because we focus
on the correctness of Clock-SI, while the upper bound guarantees progress, which is out of the
scoop.

Definition 6.23 (Clock-SI machine states). Assume a set of shards identifiers, ClockShard 3
r. The set of Clock-SI machine states, ClockSI 3 R, is defined by:

ClockSI def
=

R ∈ ClockShard fin−⇀

ClockKVS × ClockTime

∣∣∣∣∣∣∣∣
∀r, r′ ∈ Dom (R) .∀K̃, K̃′ ∈ ClockKVS.

r 6= r′ ∧ (K̃,_) = R (r) ∧ (K̃′,_) = R (r′)

⇒ Dom
(
K̃
)
∩ Dom

(
K̃′
)
= ∅

 .

The set of initial Clock-SI machine states, ClockSI0 3 R0, is defined by:

ClockSI0
def
=
{
R0

∣∣∣ ∀r ∈ Dom (R0) .∃K̃0 ∈ ClockKVS0.R0 (r) =
(
K̃0, 0

)}
.

Given R, let ShardOfR (k) denote the shard containing the key k. Let R (k) denote the list

133

Chapter 6. Applications: Verification of Implementation Protocols

of versions associated with the key k, defined by: R (k)
def
= R (ShardOfR (k))|0 (k). The order,

R v R′, is defined by:

∀r ∈ Dom (R) .∀K̃, K̃′ ∈ ClockKVS. ∀n, n′ ∈ ClockTime.

R (r) = (K̃, n) ⇒ R′(r) = (K̃′, n′) ∧ K̃ v K̃′ ∧ n ≤ n′.

As explained in Section 6.2.1, transactions in a client session are executed sequentially, yet
they might commit to different shards. To handle that, each client maintains a local time,
initially being zero, that determines the session order between transactions from this client.
The Clock-SI client environments tracks all client local times.

Definition 6.24 (Clock-SI client environments). Given the set of client identifiers defined in
Def. 4.1, the set of Clock-SI client environments, ClockClientEnv 3 Ũ , is defined by:

ClockClientEnv def
=
{
Ũ ∈ CID fin−⇀ ClockTime

}
.

The set of initial Clock-SI client environments, ClockClientEnv0 3 Ẽ0, is defined by:

ClockClientEnv0
def
=
{
Ẽ0
∣∣∣ ∀cl ∈ Dom

(
Ẽ0
)
. Ẽ0 (cl) = 0

}
.

Given two Clock-SI environments Ũ , Ũ ′, the order, Ũ v Ũ ′, is defined by:

Ũ v Ũ ′ def⇔ ∀cl ∈ Dom
(
Ũ
)
. Ũ (cl) ≤ Ũ ′(cl).

6.2.3 Reference Implementation and Reference Semantics

We now give a formal operational semantics to Clock-SI. The semantics models the fine-grained
execution described in Section 6.2.1, including:

(1) transaction initialisation, when the coordinator sets up the transaction start time;

(2) fine-grained single read and write operations inside transactions; and

(3) the two-phase commit protocol for committing new values.

For brevity, we use the syntax to track the intermediate state of transactions.

Definition 6.25 (Clock-SI runtime commands). The set of preparation buffers, ClockBuffer 3
B, is defined by ClockBuffer def

= [Key × N× ClockTime]. Given the set of commands, C
(Def. 4.11), the set of Clock-SI runtime commands, ClockRunCommands 3 R, is defined:

R ::= [T]F ,B
n,r | C | R ; C

134

Chapter 6. Applications: Verification of Implementation Protocols

for some fingerprint F , Clock-SI time n and shard r. The set of Clock-SI runtime programs,
ClockRunProgs 3 I, is defined by: ClockRunProgs def

= CID fin−⇀ ClockRunCommands.

Each runtime transaction, [T]F ,B
n,r , has the following phases:

(1) the coordinator executes the command of the transaction T, reading keys locally or re-
motely and accumulating the effect to the read-write set F ;

(2) when T is reduced to skip, the coordinator sends the new values of keys in F to the
shards R that contain these keys, and collects the replies that contain receiving times,
storing them in B; and

(3) upon receiving all replies, the coordinator picks the maximum time in B as the actual
commit time, and sends the time to R, hence committing the transaction.

Note that, in the Clock-SI protocol, a shard clockshard will reject new values of keys, hence
the entire transaction t, if there are conflicting writes to these keys: this can happen in the
step (2), where clockshard rejects the new version because there is another value already either
in the key-store or in the committing buffer, whose prepared or committed time is after the
transaction start time of t. If this happens the coordinator of t will restart the transaction
with a newer transaction start time. However, this restart is not observable by clients. Hence,
our operational semantics of Clock-SI focuses on successful transactions. For the purpose
of swapping operations in Section 6.2.4, steps in the operational semantics of Clock-SI are
explicitly annotated with labels.

Definition 6.26 (Clock-SI semantics labels). The set of Clock-SI semantics labels is defined
by:

ClockLabels def
=

⋃
cl∈CID,r∈ClockShard,

l∈{W,R,P},k∈Key,

v∈Value,n∈ClockTime

{
(cl, r, n, S) , (cl, r, (l, k, v), n) ,

(cl, r, n, E) , (r, n)

}

The snapshot label, (cl, r, n, S), states that the client cl starts a transaction at time n in the
coordinator r. The label of the form (cl, r, (l, k, v), n) means a step in internal execution l = W
or l = R, or a step in the first phase (preparation phase) of two phase commit protocol: a
transaction with client cl and coordinator r writes l = W, reads l = R or prepares l = P key k

with value v. For write and read label, the time n is the snapshot time of the transaction. For
preparation label, the time n is the preparation time. Label (cl, r, n, E) corresponds the final
commit transition of a transaction. Label (r, n) corresponds to a time tick transition in which
the shard r advances its local time.

135

Chapter 6. Applications: Verification of Implementation Protocols

1 transSnapshot(trans , clientTime)
2 wait until clientTime < getShardClockTime();
3 trans.snapshotTime = getShardClockTime();
4 trans.read-write -set = ∅;
5 trans.state = active;

(a) Reference implementation of transSnapshot

CSISnapshot
#2 : R (r) = (_, n′) #2 : n′ > n

(R, n, s) , [T]
(cl,r,n′,S)−−−−−→ (R, n, s) , [T]∅,∅n′,r

(b) Reference semantics for transSnapshot, where #n denotes line n in Fig. 6.10a

Figure 6.10: Clock-SI: transaction start

Transaction initialisation As explained in Section 6.2.1, a client commits a transaction to
an arbitrary shard and then awaits the confirmation. Upon receiving the request, the shard acts
as the coordinator of the transaction in that it is responsible for fetching values of keys locally or
remotely, and committing any new values to the appropriate shards using a two-phase commits
protocol. The coordinator initialises the transaction snapshot time, by calling transSnapshot.
The reference implementation for transSnapshot is given in Fig. 6.10:

(1) the coordinator assigns the shard local time as the snapshot time for this transaction,
trans, if the coordinator local time is greater than the minimum transaction snapshot
time, clientTime, (line 2 in Fig. 6.10a), otherwise, the shard postpones the transaction;

(2) the coordinator initialises the read-write set, read-write-set, of the transaction as the
empty set; and

(3) transaction state is set to be active.

Rule CSISnapshot in Fig. 6.10b captures the semantics of transSnapshot. The resulting
runtime transaction, of the form [T]F ,B

n,r , tracks the runtime information of this transaction,
tracking the snapshot time n, a the coordinator r, the initial fingerprint F = ∅ and the prepa-
ration buffer B = ∅.

Write operation We now explain how the coordinator executes the internal command of a
transaction. For any mutation command of the form wt (k, E), the coordinator calls transWrite
defined in Fig. 6.11b. The function erases any previous write entry of the key and adds the new
value of the key to the read-write set. Rule CSIWrite in Fig. 6.12b captures the semantics
of this function. The new write operation is added into F via <C. Recall that the fingerprint
combination operation <C is defined in Def. 4.16.

136

Chapter 6. Applications: Verification of Implementation Protocols

1 transWrite(trans , k, v)
2 trans.read-write -set = trans.read-write -set \ (w,k,-);
3 trans.read-write -set = trans.read-write -set + (w,k,v);

(a) Reference implementation of transWrite

CSIWrite
k = JE1Ks v = JE2Ks

(R, n, s) , [wt (E1, E2) ; T]F ,∅
n′,r

(cl,r,(W,k,v),n′)−−−−−−−−→ (R, n, s) , [T]
F<C(W,k,v),∅
n′,r

(b) Reference semantics of transWrite

Figure 6.11: Clock-SI: transactional write

1 transRead(trans , k)
2 if ((w,k,v) in trans.read-write -set) return v;
3 else if ((r,k,v) in trans.read-write -set) return v;
4 else {
5 v = readFromShard(shard , trans.snapshotTime);
6 trans.read-write -set = trans.read-write -set + (r,k,v);
7 return v;
8 }
9

10 readFromShard(shard , snapshotTime , k)
11 wait snapshotTime < getShardClockTime();
12 i = 0;
13 for ver of getStore()
14 if (ver.key = k and ver.time <= snapshotTime) {
15 wait until ver.state == committed;
16 if(i <= ver.time) i = ver.time;
17 }
18 return getValue(k,i);

(a) Reference implementation of transRead

CSIReadL
k = JEKs #2,#3 : (W, k, v) ∈ F ∨ ((W, k, v) /∈ F ∧ (R, k, v) ∈ F)

(R, n, s) , [x := rd (E) ; T]F ,∅
n′,r

(cl,r,(R,k,v),n′)−−−−−−−−→ (R, n, s [x 7→ v]) , [T]F ,∅
n′,r

CSIReadS
k = JEKs ∀l, v. (l, k, v) /∈ F #5 : r′ = ShardOfR (k) (K̃, n′′) = R (r′)

#11 : n′′ > n′ #13,#14 : Ṽ =
{
ν̃ ′
∣∣∣ ∃i. K̃ (k, i) = ν̃ ′ ∧ TimeOf (ν̃ ′) ≤ n′

}
#15 : ∀ν̃ ∈ Ṽ . StateOf (ν̃) = committed #16 : (k, v,_) = Max

(
Ṽ
)

(R, n, s) , [x := rd (E) ; T]F ,∅
n′,r

(cl,r′,(R,k,v),n′)−−−−−−−−−→ (R, n, s [x 7→ v]) , [T]
F<C(R,k,v),∅
n′,r

(b) Reference semantics of transRead, where #n denotes line n in Fig. 6.12a

Figure 6.12: Clock-SI: transactional read

137

Chapter 6. Applications: Verification of Implementation Protocols

Read operation For any look-up command of the form x := rd (E), the coordinator calls
transRead defined in Fig. 6.12a. If the key has been updated or read in the transaction, the
coordinator directly reads from the read-write set of the transaction, that is, lines 2 and 3
respectively in Fig. 6.12a. Rule CSIReadL in Fig. 6.12b captures the semantics of a local
read. Otherwise, the transaction reads from the shard that contains the key via function call
readFromShard defined in Fig. 6.12a. Once receiving the read request, the remote shard, first,
will wait until the local time is greater than the transaction snapshot time (line 11), and then
wait until all the versions with time-stamps smaller than the snapshot time are committed
successfully (line 15). If both conditions are satisfied, the transaction replies with the latest
version before the snapshot time (lines 16 and 18). The coordinator then will add the version
into the read-write set (line 6). Rule CSIReadS rule in Fig. 6.12b captures the semantics or
remote read. The premise n′′ > n′ states that the snapshot time precedes the local shard time.
The variable Ṽ captures all the versions, either in the prepared or committed states, that has
smaller timestamp than the transaction snapshot time, n′. Recall that, it must also include
the prepared versions, because these versions may turn to committed versions in the future.
The premise StateOf (ν̃) = committed states that versions ν̃ ∈ Ṽ have committed successfully,
hence it is safe to read, because the list cannot change any more. The last premise fetches the
version with the maximum time-stamp in Ṽ , that is, (k, v,_) = Max

(
Ṽ
)

. This version is then
added into the fingerprint F . Note that, both read and write steps do not change the client
local time.

Two-phase commit protocol: prepared phase When the transactional command reaches
the end, that is, skip, the coordinator commits all the write operations in the final read-write
set to the appropriate shards using a two-phase commit protocol. The reference implemen-
tation is given in Fig. 6.13a. In the first phase, for every write operation, (w,k,v), in the
write-read set, trans.read-write-set, the coordinator asynchronously sends the new value
v, and the snapshot time snapshotTime of the transaction, that is, a message of the form
“prepare (k, v, n)” to the shard that contains k (line 5), and awaiting a reply (line 6). Upon
receiving the preparation request, the remote shard checks if there is a concurrent write since
the snapshot time snapshotTime. If there is no conflicting write (line 18), the shard assigns
the shard local time as the prepared time (line 19), adds the new value v of k together with the
prepared time to the preparation set (line 20), and echoes the message but modifies the time to
be the prepared time (line 21). Note that versions in the preparation set are visible to others.
If a transaction t wants to read a key, and if there is a prepared version of the key for which the
preparation time is smaller than the snapshot time of the transaction, the transaction t must
wait until this entry has been committed or aborted. Also, prepared versions will stop other
transactions committing to the same key.

Rule CSIPrepare in Fig. 6.13b states that the shard r receives a new value v of a key k.
The premise n′ < n′′ requires that the local time of the shard r be greater than the snapshot

138

Chapter 6. Applications: Verification of Implementation Protocols

1 commitTrans(trans)
2 prep = [];
3 snapshotTime = trans.snapshotTime;
4 for (w,k,v) in trans.read-write -set {
5 send ``prepare (k,v,snapshotTime)'' to shardOf(k);
6 wait ``(k,v,t)'';
7 prep = prep + (k,v,t);
8 }
9

10 commitTime = maxTime(prep)
11
12 for (k,v,t) in prep {
13 send ``commit (k,v,commitTime)'' to shardOf(k);
14 }
15
16 On receive ``prepare (k,v,snapshotTime)''
17 wait snapshotTime < getShardClockTime();
18 if noConcurrentWriteSince(k,snapshotTime) {
19 preparedTime = getShardClockTime();
20 log ``(k,v,preparedTime ,prepared)'' in preparation set;
21 send ``(k,v,preparedTime)'';
22 } else {
23 // restart this transaction entirely.
24 ...
25 }
26
27 On receive ``commit (k,v,commitTime)''
28 insert(k,v,commitTime ,committed);

(a) Reference implementation of commitTrans

CSIPrepare
#4 : (W, k, v) ∈ F #5 : r = ShardOfR (k) (K̃, n′′) = R (r)

#17 : n′ < n′′ #18 : Ṽ = K̃ (k) #18 : ∀i. 0 ≤ i <
∣∣∣Ṽ∣∣∣⇒ TimeOf

(
Ṽ(i)

)
< n′

#20 : R′ = R
[
r 7→ (Ṽ :: [(v, n′′, prepared)] , n′′)

]
(R, n, s) , [skip]F ,B

n′,r

(cl,r′,(P,k,v),n′′)−−−−−−−−−→ (R′, n, s) , [skip]
F\{(W,k,v)},B⊎{(k,|Ṽ|,n′′)}
n′,r

CSICommit
∀k, v. (W, k, v) /∈ F

#10 : n′′ = MaxTime (B) #21,#28 : R′′ = CLOCKUpdate (R,B, n′′)

(R, n, s) , [skip]F ,B
n′,r

(cl,r,n′′,E)−−−−−→ (R′′, n′′, s) , skip

(b) Reference semantics of commitTrans, where #n denotes line n in Fig. 6.13a

Figure 6.13: Clock-SI: transaction commit

time n′. The second last premise, TimeOf
(
Ṽ(i)

)
< n′, states that no conflicting write: that

is, existing versions of key k must have smaller time-stamp than the snapshot time n′. In our
semantics of Clock-SI, we do not explicitly have preparation set, but labels versions with their
states. Hence, we add the version into the store and labelled them with the preparation time n′′

139

Chapter 6. Applications: Verification of Implementation Protocols

and state tag prepared (the last premise of CSIPrepare). Finally, this new version is erased
from the fingerprint F , and added into the buffer, updating the buffer to B]

{
(k,
∣∣∣Ṽ∣∣∣ , n′′)

}
.

Note that the label of this transition tracks the preparation time of this version, instead of the
snapshot time.

Two-phase commit protocol: commit phase In the second phase of commit, the co-
ordinator collects all the replies (line 7), assigns the final commit time commitTime of this
transaction as the maximum of all the preparation times (line 10). The coordinator then send
a message of the form commit (k,v,commitTime) to the shards that contain versions of this
transaction. Upon receiving the commit time n′, the shard inserts the versions at n′ to their lo-
cal stores (line 28). For brevity, the entire second phase is captures by a commit step transition,
rule CSICommit, in the semantics. The actual commit time is given by MaxTime function in
the premise of CSICommit.

Definition 6.27 (MaxTime function). Given a set of preparation buffers B, MaxTime is defined
by MaxTime (B) def

= Max (Times (B)), where Times (B) def
= {n | (_,_, n) ∈ B}.

The last premise, CLOCKUpdate (R,B, n′′), inserts all the preparation versions. This func-
tion alters the time-stamp of versions included in the buffer B to the actual commit time n′′,
and changes the state tag to committed. Function CLOCKUpdate (R,B, n′′) is defined point-
wise on all the key-value store in R. Given a key k, and the version at ith index, in the
preparation buffer, that is (k, i,_) ∈ B, and given the commit time n, the auxiliary function
CLOCKUpdateKVS

(
K̃, k, i, n

)
update the key-value store K̃ in the shard that hosts k, updating

the state of ith version of k to committed, and the time to the commit time n.

Definition 6.28 (CLOCKUpdate function). Given a Clock-SI machine state R, a set of prepa-
ration buffers B, and a time n, CLOCKUpdate is defined by:

CLOCKUpdate (R, ∅, n) def
= R

CLOCKUpdate (B] {(k, i,_)} , n) def
= let r = ShardOfR (k) , (K̃, n′) = R (r) ,

and K̃′ = CLOCKUpdateKVS
(
K̃, k, i, n

)
in

CLOCKUpdate (R,B)
[
r 7→ (K̃′, n′)

]
where CLOCKUpdateKVS is defined by:

CLOCKUpdateKVS
(
K̃, k, i, n

)
def
= let ν̃ = K̃ (k) , (v,_,_) = ν̃(n)

and ν̃ ′ = ν̃ [i 7→ (v, n, committed)] in K̃′ = K̃′ [k 7→ ν̃ ′] .

program The operational semantics of Clock-SI is a standard interleaving semantics, depicted
in Fig. 6.14, where a client takes a step in turn, captured by CSITrans. The abstract states
of Clock-SI semantics comprise the machine states of Clock-SI and client environments.

140

Chapter 6. Applications: Verification of Implementation Protocols

CSITrans
n = Ũ (cl) s = E (cl) R = I(cl) ι = (cl, · · ·) (R, n, s) , R ι−→ (R′, n′, s′) , R′(

R, Ũ , E
)
, I ι−→

(
R′, Ũ [cl 7→ n] , E [cl 7→ s′]

)
, I [cl 7→ R′]

CSITick
(K̃, n) = R (r) R′ = R

[
r 7→ (K̃, n+ n′)

]
(
R, Ũ , E

)
, I (r,n+n′)−−−−−→

(
R′, Ũ , E

)
, I

Figure 6.14: Clock-SI: semantics for programs

Definition 6.29 (Clock-SI configurations). the set of Clock-SI configurations, ClockConf 3
Θ, is defined by: ClockConf def

= ClockSI × ClockClientEnv. and the set of initial Clock-SI
configurations, ClockConf0 3 Θ, ClockConf0

def
= ClockSI0 × ClockClientEnv0.

Last, in Clock-SI, the shard local times are the physical times. To model the physical time
ticks, a shard can arbitrarily advance its local time, captured by CSITick.

We present the formal, fine-grained operational semantics for Clock-SI. Recall that a commit
may fail in the first phase due to conflicting writes, however, we only focus on the correctness
of this protocol, hence, our reference operational semantics only models the successful cases.
Therefore the set of Clock-SI traces only contains successful traces in that all clients reach the
end, skip

Definition 6.30 (Clock-SI traces). The set of Clock-SI traces, ClockTrace 3 ϕ, is defined by

ClockTrace def
=
⋃
n∈N

{
ϕ

∣∣∣∣∣ ∃P ∈ Progs. ϕ ∈ ClockTraceN (n) ∧ Last (ϕ) = ((_,_,_), P)
∧ ∀cl ∈ Dom (P) . P (cl) = skip

}

where ClockTraceN is defined by:

ClockTraceN (0)
def
=

(R0, Ẽ0, E0
)
, P0

∣∣∣∣∣∣
R0 ∈ ClockSI0 ∧ Ẽ0 ∈ ClockClientEnv0

∧ P ∈ Progs ∧ Dom (P0) ⊆ Dom
(
Ẽ0
)
∩ Dom (E0)

ClockTraceN (n+ 1)

def
=
{

Last (ϕ) ι−→
(
R′, Ũ ′, E ′

)
, I′
∣∣∣ ϕ ∈ ClockTraceN (n) ∧ ι ∈ ClockLabels

}
Two traces, ϕ, ϕ′, are equivalent, written ϕ ' ϕ′, if and only if

∀R,R′. (R,_) = Last (ϕ) ∧ (R′,_) = Last (ϕ′) ⇒ Dom (R) = Dom (R′)

∧ ∀r ∈ Dom (R) , K̃, K̃′.
(
R (r) = (K̃,_) ∧R (r′) = (K̃′,_) ⇒ K̃ = K̃′

)
.

Two machine states are equivalent if for each shard r, the key-value stores of r have the same

141

Chapter 6. Applications: Verification of Implementation Protocols

state. Two Clock-SI traces are equivalent if and only if the final machine states of the two
traces are equivalent. This notation of trace equivalence is important for the verification of
Clock-SI protocol: we will show that the fine-grained trace can be converted to an equivalent
normalised trace that transactions do not interleave in Section 6.2.4. This normalised trace,
can be encoded into a kv-store trace in Section 6.2.5, and proven satisfied the execution test
for SI.

6.2.4 Verification: Annotated Normalised Traces

We now introduce annotated Clock-SI traces and annotated normalised Clock-SI traces. For
the purpose of manipulating a Clock-SI trace, we annotate the read, write and preparation
operations in the trace, with the actual commit time of this transaction obtained in the commit
phase of the two-phase commit. An annotate normalised trace is a trace where transitions of
transactions are not interfered by other transactions. This annotate normalised traces are the
key for verifying Clock-SI protocol, because transactions in the traces are executed atomically.

Given a Clock-SI trace, for each transaction, we annotate read, write and preparation steps
with the commit time of the transaction. This extra information is useful for swapping these
steps. We call the new traces annotated Clock-SI traces.

Definition 6.31 (Annotated Clock-SI traces). Given a Clock-SI trace, an extended Clock-SI
trace is defined inductively by:

AnnoClock
((

R, Ũ , E
)
, P
)

def
=
(
R, Ũ , E

)
, P

AnnoClock
((

R, Ũ , E
)
, P ι−→ ϕ

)
def
=

(
R, Ũ , E

)
, P ι−→ AnnoClock (ϕ) ι 6= (cl, r, (l, k, v), n)(

R, Ũ , E
)
, P ι,n′

−−→ AnnoClock (ϕ)

ι = (cl, r, (l, k, v), n) ∧ (cl, r, n′, E) = FirstCommit (ϕ, cl)

where FirstCommit (ϕ, cl) returns the first commit for client cl in the trace ϕ. Let AClockTrace
denote the set of the extended traces.

In an annotated Clock-SI trace, a transaction might interfere with others, but in our kv-store
trace, a transaction is executed atomically. We now introduce annotated normalised Clock-
SI traces in which transactions are executed atomically. We then show that every annotated
Clock-SI trace can be transformed into an annotated normalised trace. In the normalised, we
separate transactions into two parts:

(1) snapshot step, (r, n′); and

(2) the rest including read, write, preparation, and commit steps.

142

Chapter 6. Applications: Verification of Implementation Protocols

The first snapshot step is allowed to interfered with any other steps, since it has no direct
effect. Additionally, the time tick step is also allowed to interfere with other steps. This leads
us to define a notion of time and snapshot segments, TickAndSnapshot (ϕ, r) these only contain
snapshot and time tick steps in shard r.

Definition 6.32 (Time and Snapshot Segments). Given a shard r, a trace segment ϕ only
contains time-tick steps in r or snapshot steps in r, written TickAndSnapshot (ϕ, r), if and
only if

∃m.m = |ϕ| ∧ ∀α̃0, · · · , α̃m−1, ι1, · · · , ιm−1. ϕ = α̃0
ι1−→ α̃1

ι2−→ · · · ιn−1−−→ α̃m−1

⇒
∧

0<i<m

∃cl′, n′. (ιi = (r, n′) ∨ ιi = (cl′, r, n′, S)) .

In a normalised trace ANCLOCKTrace (ϕ), defined by Eq. (6.9), any read, write or preparation
step ι from a transaction from a client cl and its coordinator r is followed by arbitrary numbers of
time tick steps or snapshot steps in the coordinator r, captured by TickAndSnapshot predicate,
and then followed by a step ι′ from the same transaction. More specifically, if a step ι is a write
(W), read (R), or preparation (P) step from a client cl, and the coordinator shard r, and if
this trace is in normalised form, then the following client observable step ι′ must be also steps
from the cl, that is, ι′ is a write (W), read (R), preparation (P), or a commit step (E), from the
same client cl. We include the commit step as a guard, indicating the end of a transaction.
Recall that, both time tick in r, and snapshot step from other client do not directly affect the
execution of the current transaction, therefore between ι and ι′, arbitrary numbers of these two
steps are allowed, captured by TickAndSnapshot predicate.

Definition 6.33 (Annotated normalised Clock-SI traces). An annotated normalised Clock-SI
trace, written ANCLOCKTrace (ϕ), is defined by: for all trace segments ϕ′, ϕ′′, ϕ′′′, labels ι, ι′,
clients cl, cl′, shards r, r′, keys k, k′, values v, v′, times n, n′

ϕ = ϕ′ ι−→ ϕ′′ ι′−→ ϕ′′′∧
(ι = (cl, r, (W, k, v) , n, n′′) ∨ ι = (cl, r, (R, k, v) , n, n′′) ∨ ι = (cl, r, (P, k, v) , n, n′′))

⇒ TickAndSnapshot (ϕ′′, r) ∧(
ι′ = (cl, r, (W, k′, v′) , n, n′′) ∨ ι′ = (cl, r, (R, k′, v′) , n, n′′)

∨ ι′ = (cl, r, (P, k′, v′) , n′, n′′) ∨ ι′ = (cl, r, n′′, E)

)
. (6.9)

In Clock-SI, there two important times, snapshot time and preparation time, which, the former
decides the fingerprint of the transaction, and the latter decides if the transaction is allowed
(no conflict write) to commit. Recall that rule CSIReadS in Fig. 6.12b fetches the lastest
values prior the snapshot time. Rule CSIPrepare in Fig. 6.13b check if all existing versions
are committed or prepared before the preparation time of the current transaction. This means,
given a transaction t any internal read and write steps can be swap to the right, delaying these

143

Chapter 6. Applications: Verification of Implementation Protocols

steps in the trace. and any preparation and commit steps can be swap to the left, executing
earlier these steps in the trace. Note that if we swap a preparation or commit step with a time
tick step, the preparation or commit time may be different, hence, when we swap these two
steps, we should also carry the time tick together. The formal claim is in Theorem 6.34.

Theorem 6.34 (Clock-SI equivalent normalised traces). For any annotated Clock-SI trace ϕ,
there exists an equivalent normalised trace ϕ1, that is, ϕ ' ϕ1 and ANCLOCKTrace (ϕ1).

Proof. Initially let ϕ1 = ϕ. We then preform the following transformation on the trace ϕ1 until
it satisfies ANCLOCKTrace (ϕ1).

(1) Left mover: Clock-SI preparation and commit steps. Given the trace ϕ1, take
the transaction t with the earliest commit time such that: a preparation step of this
transaction, ι1 = (cl, r, (P, k, v) , n′, n), and the next preparation step or commit step of
this transaction, ι′ have been interfered by steps from other clients. This means that:

ϕ1 = ϕ2
ι2−→ ϕ′ ι′′−→

(
R, Ũ , E

)
, I ι−→ ϕ′′′ ι′−→ ϕ′′

∧ TickAndSnapshot (ϕ′′′, r)

∧ (ι′ = (cl, r, (P, k, v) , n′′, n) ∨ ι′ = (cl, r, n, E))

∧ ∃cl′, r′, r′′, l′, k′, v′, n′, n1. cl 6= cl′ ∧ r 6= r′′

∧

(
ι = (cl′, r′, (l′, k′, v′), n′, n1) ∨ ι = (cl′, r′′, n′, S)
∨ ι = (cl′, r′, n′, E) ∨ ι = (r′′, n′)

)
(6.10)

where ϕ′ may also contain steps of transaction. However, let first focus on the step ι. Note
that since we always pick the first transaction with labels ι1, ι

′ of the form in Eq. (6.10).
Therefore, if ι is a read, write or preparation step, or a commit step from other client,
the transaction of ι must commit after n′, that is, n1 ≥ n. By Eq. (6.10), n1 ≥ n and
Prop. 6.36, it allows use to move ι to the left: for some trace segment ϕ3 modified from
ϕ′′′ and ι2 modified from ι:(

ϕ2
ι1−→ ϕ′ ι′′−→ ϕ3

ι′−→ _ ι2−→ ϕ′′
)
' ϕ1

We assign the new trace to ϕ1 and go back to the beginning of step (1). This process
must terminate because each iteration the labels ι and ι′ moves closer to each other and
there are only finite transactions in the trace. In the end, the trace ϕ1 satisfies: (i) the
preparation steps and commit step for each transaction are not interfered by other clients;
and (ii) transactions commit in the order of their commit times. This means that: for all
trace segments ϕ′, ϕ′′, ϕ′′′, labels ι, ι′, client cl, cl′, shard r, r′, keys k, k′, values v, v′, times

144

Chapter 6. Applications: Verification of Implementation Protocols

n, n′, n′′

ϕ1 = ϕ′ ι−→ ϕ′′ ι′−→ ϕ′′′ ∧ ι = (cl, r, (P, k, v) , n, n′′)

⇒ TickAndSnapshot (ϕ′′, r) ∧ (ι = (cl, r, (P, k′, v′) , n′) ∨ ι = (cl, r, n′, E))

∧ ∀ι′′ ∈ ϕ′′′.∀r′, cl′, k′′, v′′, n′′′, n1. (ι
′′ = (cl′, r′, (P, k′′, v′′) , n′′′, n1) ⇒ n1 ≥ n′′) . (6.11)

(2) Right mover: Clock-SI internal read and write steps. Given an annotated trace
ϕ1 that satisfies Eq. (6.11). We now move all the internal reads and writes of a transaction
towards the preparation and commit of the transaction. Given the trace ϕ1, we pick a
read or write ι such that: for some R, Ũ , E , I,

ϕ1 = ϕ′ ι−→
(
R, Ũ , E

)
, I ι′−→ ϕ′′ ∧ (ι = (cl, r, (W, k, v) , n, n′) ∨ ι = (cl, r, (R, k, v) , n, n′))

∧ ∀l, k′, v′, n′′. ι′ 6= (cl, r, (l, k′, v′), n′′) ∧ ι′ 6= (cl, r, n′, E)

By Prop. 6.35, we can move the ι to the right, which yields(
ϕ′ ι′−→

(
R′, Ũ ′

)
, E ′ I′−→

ι

ϕ′′
)
' ϕ1

for some new R′, Ũ ′, E ′, I′. We assign the new trace to ϕ1 and go back to the beginning of
step (2). This process must terminate because each iteration the labels ι of a transaction
moves closer to the first preparation step or commit step of the same transaction, and
there are only finite transactions in the trace. In the end, the trace ϕ1 is a normalised
trace, that is, ANCLOCKTrace (ϕ1). �

Proposition 6.35 (Right mover: Clock-SI internal read and write steps). Assume a Clock-SI
trace ϕ ∈ AClockTrace, and two adjacent transitions with labels ι, ι′ such that

ϕ = ϕ′ ι′′−→
(
R, Ũ , E

)
, I ι−→

(
R′, Ũ ′, E ′

)
, I′ ι′−→ ϕ′′

∧ (ι = (cl, r, (W, k, v) , n, n′′) ∨ ι = (cl, r, (R, k, v) , n, n′′))

∧ ∀l, k′, v′, n′, n′′′. ι′ 6= (cl, r, (l, k′, v′), n′, n′′′) ∧ ι′ 6= (cl, r, n′′′, E)

where the rest free variables are universally quantified. The transition labelled by ι can be moved
to the right, that is, there exists a new equivalent trace ϕ1 such that

ϕ1 = ϕ′ ι′′−→ _ ι′−→ _ ι−→ ϕ′′ ∧ ϕ ' ϕ1.

Proof sketch. By CSIWrite, any write step does not depend on the state of Clock-SI database.
By CSIReadL, any read step that reads from the local state of a transaction does not depend
on the state of Clock-SI database. Therefore, for these two cases, it is trivial that we can move
ι to the right. By CSIReadS, any read step that reads from a shard, must access a shard

145

Chapter 6. Applications: Verification of Implementation Protocols

whose local time is greater than the snapshot time of the transaction and all versions in the
shard with times smaller than the snapshot time must be committed successfully. This means,
the read step ι can be moved to the right, since any future steps will not affect the read. The
full proof is in appendix A.7 on page 212. �

Proposition 6.36 (Left mover: Clock-SI preparation and commit steps). Assume a Clock-SI
trace ϕ ∈ AClockTrace, two transitions with labels ι, ι′, and a time-tick trace segment ϕ1 such
that

ϕ = ϕ′ ι′′−→
(
R, Ũ , E

)
, I ι−→ ϕ2

ι′−→ ϕ′′

∧ TickAndSnapshot (ϕ1, r) ∧ (ι′ = (cl, r, (P, k, v) , n′′, n) ∨ ι′ = (cl, r, n, E))

∧ ∃cl′, r′, r′′, l′, k′, v′, n′, n1. cl 6= cl′ ∧ r 6= r′′ ∧ n1 ≥ n

∧ (ι = (cl′, r′, (l′, k′, v′), n′, n1) ∨ ι = (cl′, r′′, n′, S) ∨ ι = (cl′, r′, n′, E) ∨ ι = (r′′, n′))

where the rest free variables are universally quantified. The transition labelled by ι, together
with the time-tick trace segment ϕ1, can be moved to the left, that is, there exists a new time-tick
trace segment ϕ2, a new label ι1 and a new equivalent trace such that

TickAndSnapshot (ϕ2, r) ∧
(
ϕ′ ι′′−→ ϕ2

ι′−→ _ ι1−→ ϕ′′
)
' ϕ. (6.12)

Proof sketch. We know that ι must come from a client that differs from the client of ι′.

(1) Consider the cases that ι is a read and write step. Since any future steps will not affect
any read and write step, thus, it is safe to move ι′ and ϕ1 to the left. In Eq. (6.12), ι1 = ι.

(2) If ι is a transaction snapshot step, then ι must starts at a shard that is different from the
shard of ι′. Therefore, it is safe to move ι′ and ϕ1 to the left. In Eq. (6.12), ι1 = ι.

(3) If ι is a time-tick step, then ι must on a shard that is different from the shard of ι′.
Therefore, it is safe to move ι′ and ϕ1 to the left. In Eq. (6.12), ι1 = ι.

(4) Consider ι is a transaction preparation step. If this is a preparation step on a shard that
is different a from from the shard of ι′, it is safe to move ι′ and ϕ1 to the left. For this
case, ι1 = ι in Eq. (6.12). Consider this is a preparation step on the same shard of ι′.
By the hypothesis, the transaction of ι = (cl′, r′, (l, k′, v′), n′, n1) must commit after the
transaction of ι′, thus it is safe to alter the preparation time in ι to a later time as the
same as the preparation time in ι′. This means change ι to ι1 = (cl′, r′, (l, k′, v′), n, n1)

This allows us to move ι1 and ϕ1 to the left.

(5) Consider ι is a transaction commit step. This case is similar to the case of preparation
step. In Eq. (6.12), ι1 = ι.

The full proof is given in appendix A.7 on page 214. �

146

Chapter 6. Applications: Verification of Implementation Protocols

6.2.5 Verification: Trace Refinement

By Theorem 6.34, it is enough to only consider annotated normalised traces. We verify Clock-SI
protocol by first converting normalised Clock-SI traces to our kv-store program traces. We then
show that these kv-store program traces can be obtained under the execution test for snapshot
isolation ETPSI.

Definition 6.37 (Conversion of Clock-SI traces to kv-store program traces). Given an an-
notated normalised Clock-SI trace ϕ, the kv-store program trace induced by the trace, written
ClockToKVTrace (ϕ), is defined in Fig. 6.15. The auxiliary predicate CLOCKAtomic (ϕ, cl, r, n),
and the auxiliary functions for extracting static program, fingerprint and view, ClockStaticProg,
ClockFp and ClockView, are defined in Fig. 6.15.

The base case for ClockToKVTrace convert the initial configuration of Clock-SI to the initial
configuration in kv-store. The first inductive case, directly drop the next label ι, if ι is a
snapshot (S) or time tick step, because this step is transparent to client. The second inductive
case convert a sequence of steps from a transaction in Clock-SI to an atomic step in our kv-store
semantics. Assume a trace

ϕ
ι−→ ϕ′ ι′−→

(
R, Ũ , E ′

)
, I

where:

(1) label ι is the first internal step of a transaction, that is, ι = (cl, r, (l, k, v),m, n)∧l ∈ {R, W},
and m and n is the snapshot time and the commit time of this transaction;

(2) the trace segment ϕ1 = Last (ϕ) ι−→ ϕ′ ι′−→
(
R, Ũ , E ′

)
, I contains and only contains all the

internal steps (with the same commit time n) of this transaction, yet including arbitrary
steps of snapshot and time tick steps, captured by CLOCKAtomic (ϕ1, cl, r, n) predicate;
and

(3) label ι′ is the commit step of this transaction, also defined inside CLOCKAtomic predicate.

Recall that in an annotated normalised Clock-SI trace CLOCKAtomic (ϕ1, cl, r, n), We know that
the read, write and preparation steps of a transaction can only be interfered by time-tick
or snapshot steps. The predicate CLOCKAtomic (ϕ′, cl, r, n) states that the trace segment ϕ′

contains all the read, write and preparation steps of the same transaction from the client cl

with the same coordinator r and the commit time n.

We now explain the detail of the second inductive case. First, the transactional identifier t̃(n,m)
cl

in the encoding kv-store trace, defined in Def. 6.38, is annotated with the client cl that commits
the transaction, and the commit n and snapshot time m of the transaction. Note that it is
useful to annotate the transaction identifiers with the snapshot times, however, it does not
affect the encoding. Clock-SI identifiers in a store must be unique, because transactions for a
client must have unique commit times. The detail is given in Prop. A.22 on page 216.

147

Chapter 6. Applications: Verification of Implementation Protocols

ClockToKVTrace ((R
0 ,Ẽ

0 ,E
0)

,P
0)

def
=

((K
0 ,U

0 ,E
0)
,P

0)
w

here
U
0
= (

λ
cl∈

Dom (Ẽ
0)

.u
0)

ClockToKVTrace (
ϕ

ι−→ (R
,Ũ

,E
′)
,I)

def
=

ClockToKVTrace
(ϕ
)

where
ι
=

(cl,r,n
,S
)∨

ι
=

(r,n
)

ClockToKVTrace (
ϕ

ι−→
ϕ
′

ι ′
−→ (R

,Ũ
,E

′)
,I)

def
=

let
η
=

ClockToKVTrace
(ϕ
)and ((R

,Ũ
,E)

,P)
=

Last
(η
)

in
η

(cl,u
,F

)
−−−−→

ET
(K

′,U
[cl7→

u
′],E

′)
,ClockStaticProg

(I
)

where
ι
=

(cl,r,(l,k
,v
),m

,n
)∧

l∈
{R

,W}
∧
ϕ
1
=

Last
(ϕ
)

ι−→
ϕ
′

ι ′
−→ (R

,Ũ
,E

′)
,I

∧
CLOCKAtomic

(ϕ
1 ,cl,r,n

)

∧
F

=
ClockFp

(∅
,ϕ

1)∧
u
=

ClockView
(K

,m
)∧

K
′
=

UpdateKV
(K

,u
,F

,t
n
,m

cl
)∧

u
′
=

ClockView
(K

′,n
)

CLOCKAtomic
(ϕ
,cl,r,n

)
def
⇔

∃
m
.m

=
|ϕ|∧

∀
α̃
0 ,···

,α̃
m
−
1 ,ι

1 ,···
,ι

m
−
1 .ϕ

=
α̃
0

ι
1
−→

α̃
1

ι
2
−→

···
ι
m

−
1

−−−→
α̃
m
−
1

⇒
∧0

<
i<

m
−
1 ∃

l∈
{R

,W
,P}

.∃
cl ′,r

′,k
,v
,n

′.(ι
i
=

(cl,r,(l,k
,v
),n

′,n
)∨

ι
i
=

(cl ′,r,n
′,S

)∨
ι
i
=

(r,n
))

∧
ι
m
−
1
=

(cl,r,n
,E
)

ClockStaticProg
(I
)

def
=

λ
cl∈

Dom
(I
)
.ClockStaticCm

d
(I
(cl))

ClockStaticCm
d
(R
)

def
=

[T
]

ifR
=

[T
] F

,B
n
,r

,

[T
];C

ifR
=

[T
] F

,B
n
,r

;C
,

C
otherw

ise.

ClockView
(K

,n
)

def
=

λ
k
.{
i|∃

m
,cl.W

riterOf(K
(k
,i))

=
t
mcl ∧

m
≤

n}

ClockFp (F
, (R

,Ũ
,E)

,P)
def
=

F

ClockFp (F
,ϕ

ι−→ (R
,Ũ

,E)
,I)

def
= {

ClockFp
(F

,ϕ
)
<C

(l,k
,v
)

ι
=

(cl,r,(l,k
,v
),n

,n
′)∧

l∈
{R

,W}
ClockFp

(F
,ϕ

)
otherw

ise

Figure 6.15: Definitions of ClockToKVTrace, ClockStaticProg, ClockFp and ClockView func-
tions, and definition of CLOCKAtomic predicate

148

Chapter 6. Applications: Verification of Implementation Protocols

Definition 6.38 (Clock-SI transaction identifiers). The set of Clock-SI transaction identifiers,
ClockTxID 3 t̃, is defined by:

ClockTxID def
=
{
t̃
(n,m)
cl

∣∣∣ cl ∈ CID ∧ n,m ∈ ClockTime
}
.

Given two identifiers t̃
(n,m)
cl , t̃

(n′,m′)

cl′
, the order t̃

(n,m)
cl v t̃

(n′,m′)

cl′
is defined by

t̃
(n,m)
cl v t̃

(n′,m′)

cl′
def
= n ≤ n′ ∨ (n = n′ ∧m ≤ m′).

Second, the views before, u, and after, u′, the update are determined by the snapshot, n

and commit time, m respectively, that is, u = ClockView (K,m) and u′ = ClockView (K′, n)

in Fig. 6.15. The function ClockView (K,m) defined in Fig. 6.15 collects all versions with
timestamps smaller than m in the K. The view u is well-formed, because transactions are
committed at the same time to all shards. The detail is given in Prop. A.24 on page 217.

Third, the fingerprint of this transaction, F contains all the internal read and write operations
of this transaction, via function F = ClockFp (∅, ϕ1) in Fig. 6.15. Given an initial fingerprint
F0 = ∅, function ClockFp (F0, ϕ) composites the read and write operations in ϕ′ using the
fingerprint combination operator <C. This final fingerprint F = ClockFp (F0, ϕ) is well-formed,
that is, it contains the first read of each key and the last write of each key. Detail is given in
Prop. A.25 on page 217.

Last, given η = ClockToKVTrace (ϕ) as the trace converted from ϕ as shown in Fig. 6.15,
the second inductive case of ClockToKVTrace, append a new transaction (cl, u,F) to trace η

updating the kv-store to K′ with view u = ClockView (K,m) and fingerprint ClockFp (∅, ϕ1),
and then updating the view of client cl to u′ = ClockView (K′, n).

This kv-store trace defined by η = ClockToKVTrace (ϕ), is correctly encoded ϕ, and sat-
isfies the read atomic >, by showing that: (1) every transition in the program kv-store
η = ClockToKVTrace (ϕ) is well-formed; and (2) if a version exists in Last (η), then it also
exists in Last (ϕ), and vice versa.

Theorem 6.39 (Well-formed Clock-SI centralised kv-store). Assume an annotate normalised
Clock-SI trace ϕ and the kv-store trace induced by the Clock-SI trace η = ClockToKVTrace (ϕ).
Let (K,U , E , P) = Last (η) and (R, Ũ , E , I) = Last (ϕ). The final kv-store K is well-formed, and
K only contains versions that exist in R, and vice versa, that is,

∀k, i, v, cl, n,m, T.K (k, i) = (v, t̃
(n,m)
cl , T) ⇒ ∃r, K̃, i′.

r = ShardOfR (k) ∧ (K̃,_) = R (r) ∧ K̃ (k, i′) = (v, n,_), (6.13)

∀k, r, K̃, i, v, n. r = ShardOfR (k) ∧ (K̃,_) = R (r) ∧ K̃ (k, i) = (v, n,_) ⇒
∃i′, cl,m, T.K (k, i) = (v, t̃

(n,m)
cl , T). (6.14)

Proof sketch. We prove this by induction on the trace ϕ. In the base case, Eqs. (6.13) and (6.14)

149

Chapter 6. Applications: Verification of Implementation Protocols

trivially hold. In the inductive case, by the definition of ClockToKVTrace, we need to prove
that the new kv-store, K′ = UpdateKV

(
K, u,F , t̃

(n,m)
cl

)
, as the result of committing a new

transaction t̃
(n,m)
cl with fingerprint F and view cl, is still well-formed. Note that we have the

following results:

(1) by inductive hypothesis, the kv-store K is well-formed;

(2) the pre-view u is well-formed on K, the fingerprint F is well-formed fingerprint, and the
transaction identifier t̃

(n,m)
cl must be a unique, of which details are given in Props. A.22,

A.24 and A.25; and

(3) client local times in Clock-SI monotonically increases (Lemma A.23), hence t̃
(n,m)
cl ∈

NextTxID (K, cl).

Given the above and Theorem 4.21, the new kv-store K′ is well-formed. Then, Eqs. (6.13)
and (6.14) can be derived by the definition of ClockToKVTrace, since the function does not
create or remove any versions. The full proof is given in appendix A.7 on page 218. �

By the result of Theorem 6.39, kv-store program traces induced by annotated normalised Clock-
SI traces are valid traces that satisfy ET⊤. Now we prove that each step in these kv-store traces
satisfies ETSI. The key is (1) to link the snapshot and commit times of all transactions, to
relations WR, WW and RW; and to show that in the Clock-SI protocol, the snapshot and
commit times of individual transaction lead to views that satisfy closure property of ETSI

presented in Fig. 4.6a.

Theorem 6.40 (Clock-SI traces satisfying snapshot isolation). Given an annotated normalise
Clock-SI trace ϕ, the kv-store trace induced by the Clock-SI trace η = ClockToKVTrace (ϕ) is a
trace that can be obtained with the execution test for SI.

Proof sketch. Consider a step in the trace η:

(K,U , E) , P (cl,u,F)−−−−→ET (K′,U [cl 7→ u] , E ′) , P′.

By the definition of ETSI, we need to prove ETMR, ETRYW and

PreClosed
(
K′, u,

(
(WRK′ ∪ SO ∪ WWK′)+;RW−1

K′

)∗) (6.15)

PreClosed

K, u,
⋃

(W,k,_)∈F

WW−1
K′ (k)

 (6.16)

ETMR can be derived by Lemma A.23 that client local time monotonically increases, and the
definition of ClockView. ETRYW can be derived by CSICommit, where the client local time is set

150

Chapter 6. Applications: Verification of Implementation Protocols

to be the commit time, and then by the definition of ClockView: all the versions committed by
the client must be included in the new view. Given the property of normalised traces:

(1) if two transactions
(
t̃
(n,m)
cl , t̃

(n′,m′)

cl′

)
∈ R for R ∈ {WR,WW, SO}, we have the commit

time of the first transaction n is smaller than the snapshot time of the second transaction
m′, thus n < m′ < n′; and

(2) if two transactions Tuplet̃
(n,m)
cl , t̃

(n′,m′)

cl′
∈ RW, we have the snapshot time of the first

transaction m is smaller than the commit time of the second transaction n′, that is
m < n′.

Recall that the snapshot time is always smaller than commit time. If
(
t̃
(n,m)
cl , t̃

(n′,m′)

cl′

)
∈(

(WRK′ ∪ SO ∪ WWK′)+;RW−1
K′

)∗ then n < n′. Then by the definition of ClockView, we prove
Eq. (6.15). Last, by the CSIPrepare, when a version is set to preparation stage, there is no
conflict write, then Eq. (6.16) holds. The full detail is given in appendix A.7 on page 219. �

We verify two protocols, COPS in Section 6.1 and Clock-SI in Section 6.2, via trace refinement
in this chapter. Because system engineers did not have a formal definition of their protocols, but
only pseudo-code, we first give formal operation semantics that captured these two protocols.
The traces in these specific semantics is fine-grained in a sense that transactions are not executed
in atomic steps. It is not direct to encode these fine-grained traces into our kv-store traces,
hence we convert the traces to normalised traces where transactions are not interleaving by
other transactions, and then convert normalised traces to kv-store traces, by squashing several
transactional steps in normalised traces to atomic steps in kv-store traces. Last, we show
that the kv-store traces satisfy our definitions of causal consistency and snapshot isolation
respectively. The key steps of these proofs are to link the synchronisation mechanisms in COPS
and Clock-SI, to the closure properties of causal consistency and snapshot isolation presented
in Fig. 4.6a, respectively.

We have shown that our state-based operational semantics is useful in term of verifying imple-
mentation protocols:

(1) it is easier to map the system states in the specific protocols to our abstract kv-stores and
views in comparison to the graph-based states, such as dependency graphs and abstract
executions in Chapter 5, and [Nagar and Jagannathan, 2018]; and

(2) it is more piratical to map the semantics/pseudo-code of the specific protocols to steps
in our kv-store operational semantics, in comparison with the declarative semantics in
Chapter 5.

151

Chapter 7

Applications: Invariants of Client
Programs

In Chapter 6, we show that our semantics can be used to verify implementation protocols. In
this chapter, we focus on the client and use our operational semantics to prove the invariant
properties of several client libraries. Clients only need to know the interface, our state-based
abstract semantics, without knowing any details of the implementations. Hence, we show that
our semantics is an ideal abstract interface to link implementations and clients.

Clients for specific applications often cannot commit arbitrary transactions, but via a set of pre-
defined APIs, namely, transactional client library, L. These APIs are transactional operations
which can be used by its clients to access the underlying kv-store. For instance, the counter
library on a key k discussed in Chapter 3 is defined by:

Counter (k) def
= {Inc (x, k) , Read (x, k) | x ∈ Var} .

Note that Inc (x, k) uses the x to return the new value. A program P is a client program of L,
written P ∈ L, if and only if the transactional calls in P are to operations of L.

In this chapter, we will show several libraries are robust against PSI and SI respectively.
In general, robustness states that all the reachable states under a weak consistency model,
are also reachable in serialisability. In our kv-store semantics, the robustness, defined in
Def. 7.2, states that the set of reachable kv-stores of a library, defined in Def. 7.1, is a subset
of ConsisModel (SER).

Definition 7.1 (Reachable kv-stores of a library). The set of reachable kv-stores of a library L

under execution test ET, written JLKET, is defined by: JLKET
def
=
⋃

P∈LJPKET, where J_KET is defined
in Def. 4.24.

Definition 7.2 (Robustness). A library L is robust with respect to an execution test ET, if and
only if JLKET ⊆ ConsisModel (ETSER), where ConsisModel is defined in Def. 4.27.

152

Chapter 7. Applications: Invariants of Client Programs

The correctness of many client libraries can be derived from robustness, because many client
programs are designed with respect to serialisability. Hence, it is an important property for
many libraries. In contrast to previous work on checking robustness [Bernardi and Gotsman,
2016; Cerone and Gotsman, 2016; Cerone et al., 2017; Nagar and Jagannathan, 2018] by either
examining the full history [Nagar and Jagannathan, 2018] or using static-analysis techniques
that cannot be extended to support client sessions [Bernardi and Gotsman, 2016; Cerone and
Gotsman, 2016; Cerone et al., 2017], we encode robustness as an invariant property and establish
it at each step. This means that: (1) we do not need to check the entire execution history; and
(2) we take client sessions into account.

In Section 7.1 we prove the robustness of the single-counter library discussed in Chapter 3 is
against PSI. In Section 7.2.2 and Section 7.2.3, we prove the robustness of a multi-counter
library and a banking library of Alomari et al. [2008] against SI. We do the latter by proving
that multi-counter and bank libraries satisfy a general invariant property, which we call WSI-
safe. In Section 7.2.1, we show that WSI-safe guarantees robustness against our new proposed
model WSI. Because WSI is weaker than SI, hence any robustness proof against WSI directly
implies robustness against stronger models such as SI.

We further use our operational semantics to prove library-specific properties. In Section 7.3, we
show that a lock library is correct under PSI, in a sense that it satisfies the mutual exclusion
guarantee under PSI, even though it is not robust against PSI. To do this, we simply encode
such library-specific guarantees as invariants of the library, and establish them at each step,
as described above. By contrast, establishing such library-specific properties using the existing
techniques is more difficult. This is because unlike the kv-stores in our operational semantics,
existing techniques do not directly record the library state, but they record full execution traces,
making them less amenable for reasoning about such properties.

7.1 Robustness: A Single Counter Library against PSI

We first present Theorem 7.3, states a acyclic property on kv-stores K ∈ ConsisModel (ETSER)

that are reachable under serialisability. Specifically, it states that any reachable kv-store K
under ETSER contains no cycle in the relation (WRK ∪ SO ∪ WWK ∪ RWK)

+. This result can be
directly derived from the well-known result in [Adya, 1999].

Theorem 7.3 (Serialisable kv-stores). For all kv-stores K,

∀t ∈ TxID. (t, t) /∈ (WRK ∪ SO ∪ WWK ∪ RWK)
+ ⇔ K ∈ ConsisModel (ETSER)

Proof. Assume a kv-store K such that

∀t ∈ TxID. (t, t) /∈ (WRK ∪ SO ∪ WWK ∪ RWK)
+. (7.1)

153

Chapter 7. Applications: Invariants of Client Programs

k 7→ 0
t0

{t1}] T0

1
t1

{t2}] T1

· · ·
· · ·
· · ·

n− 1
tn−1

{tn}] Tn−1

n
tn

Tn

(a) Invariant of the reachable the single counter library under PSI

k 7→ 0
t0

{t1}] T0

1
t1

{t2}] T1

· · ·
· · ·
· · ·

n− 1
tn−1

{tn}] Tn−1

n
tn

Tn

(b) The relation WR ∪ SO ∪ WW ∪ RW on the reachable kv-stores in Fig. 7.1a

Figure 7.1: Single counter library

By the definition of KToD in Def. 5.2 Eq. (7.1) holds, if and only if, G = KToD (K), and

∀t ∈ TxID. (t, t) /∈ (WRG ∪ SO ∪ WWG ∪ RWG)
+. (7.2)

By [Adya, 1999], Eq. (7.2) holds, if and only if, G is a reachable dependency graph under
SER, and then by the definition of DToK in Def. 5.3, DToK (G) ∈ ConsisModel (ETSER). By
the bijection between kv-stores and dependency graphs (Theorem 5.4), we then have K =

DToK (KToD (K)) ∈ ConsisModel (ETSER). �

Using Theorem 7.3, we only need to check the state of the abstract kv-store so to determine
if this kv-store can be obtained under serialisability, without re-constructing a kv-store trace
under serialisability. More specifically, To prove the robustness of a library L, we prove that
for every program P ∈ L, every transition of every trace of P does not introduce cycle.

Given Theorem 7.3, it is easy to see that single-counter library is not robust against CC. Since
the kv-store depicted in Fig. 3.1d is allowed under CC, it is not a serialisable kv-store due to
the cycle t′

RW−−→ t
WW−−→ t′.

As PSI satisfies (UA), we know that if a transaction t updates k (by calling Inc (x, k)) and
writes a new version ν to k, then it must have read the version of k immediately preceding
ν: that is, ∀t ∈ K.∀i ∈ N. t = WriterOf (K (k, i)) ⇒ t ∈ ReadersOf (K (k, i− 1)). Moreover,
as PSI enforces monotonic reads (MR), the order in which clients observe the versions of k by
calling Read (x, k) is consistent with the order of versions in K (k). As such, the kv-stores
K ∈ JCounter (k)KPSI have the invariant depicted in Fig. 7.1a and defined below:

K (k) = [(0, t0, {t1}] T0) , (1, t1, {t2}] T1) , · · · , (n− 1, tn−1, {tn}] Tn−1) , (n, tn, Tn)]

where ti /∈ Tj for any i, j.

Theorem 7.4 (Robustness of Counter (k) against PSI). Any reachable kv-store of the single-
counter library under the execution test of PSI, that is, K ∈ JCounter (k)KPSI, contains no cycle

154

Chapter 7. Applications: Invariants of Client Programs

in the relation (WRK ∪ SO ∪ WWK ∪ RWK)
+, that is:

∀t ∈ K. (t, t) /∈ (WRK ∪ SO ∪ WWK ∪ RWK)
+.

Proof. Let prove this by extending (WRK ∪ SO)+ to a total order 99K, depicted in Fig. 7.1b.
First we pick a total order over all client identifiers, written cl

CT−→ cl′. We consider all the read-
only transactions Ti for an index i. For any transactions t, t′ ∈ Ti. If t, t′ come from the same
client, then t 99K1 t′ if t SO−→ t′ . Otherwise, they are from different clients, and then t 99K1 t′ if
t = t_cl, t′ = t_

cl′
and cl

CT−→ cl′. Note that SO is acyclic, which means that the relation 99K1 is a
total over Ti. Second, let consider the increment transactions. We define t 99K2 t′, if t = ti, t′ =
tj and i < j. Third, for a version in an index i, we define t 99K3 t′, if t = ti and t′ ∈ Ti; or t 99K3
t′, if t ∈ Ti and t′ = ti+1. Last, the relation 99K is defined by: 99K= (99K1 ∪ 99K2 ∪ 99K3)+,
depicted in Fig. 7.1b. It is trivial that (WRK ∪ SO ∪ WWK ∪ RWK)

+ ∈99K, which contains no
cycle. This is because ti /∈ Tj for all i, j. �

7.2 Robustness for SI

Snapshot isolation SI is a well-known consistency to programmers, due to the good perfor-
mance. Much work focuses on checking robustness against SI, due to the popularity of SI,
such as [Bernardi and Gotsman, 2016; Cerone and Gotsman, 2016; Cerone et al., 2017; Nagar
and Jagannathan, 2018]. However, those checks rely on the entire history of programs. We
present a state-based approach in this section, by simply checking the shape of transactions
from a library L, in a sense that, if transactions from a library L are either read-only transac-
tions, or transactions that always read and write a set of keys simultaneously, then the library
L guarantees robustness against WSI and hence SI. We call this shape property WSI-safe (Sec-
tion 7.2.1). We then show that a multi-counter library and bank library satisfy this property
in Section 7.2.2 and Section 7.2.3, respectively.

7.2.1 WSI Safe

Given a library L, we say the library is WSI-safe, if all the reachable kv-store satisfies Eqs. (7.3)
to (7.5).

Definition 7.5 (WSI-safe). A library L is WSI-safe, if and only if, any reachable kv-store

155

Chapter 7. Applications: Invariants of Client Programs

k1 7→ v0
t0

{t, t′, t′′}
v1

t′

∅
v′1

t′′

∅
k2 7→ v0

t0

{t, t′′}
v2

t′′

∅

Figure 7.2: A kv-store under read atomic > that satisfies WSI-safe

K ∈ JLKETWSI satisfies the following conditions:

∃P ∈ Progs.K ∈ JPKWSI ∧ ∀t ∈ TxID.∀k ∈ Key.∀i ∈ N.(
∀i′ ∈ N. t ∈ ReadersOf (K (k, i)) ∧ t 6= WriterOf (K (k, i′))

⇒ ∀k′ ∈ Key. ∀i′′ ∈ N. t 6= WriterOf (K (k′, i′′))

)
(7.3)

∧ (t 6= t0 ∧ t = WriterOf (K (k, i)) ⇒ ∃i′ ∈ N. t ∈ ReadersOf (K (k, i′))) (7.4)

∧

(
t 6= t0 ∧ t = WriterOf (K (k, i)) ∧ ∃k′ ∈ Key. ∃i′ ∈ N.
t ∈ ReadersOf (K (k′, i′)) ⇒ ∃i′′ ∈ N. t = WriterOf (K (k′, i′))

)
(7.5)

The WSI-safe is a property on kv-store. Eq. (7.3) state that if a transaction, for example t in
Fig. 7.2, reads from a key k without writing to k, then the transaction must be a read-only
transaction. Eq. (7.4) state that if a transaction, for example t′ in Fig. 7.2, writes to k, then
it must also read from it, a property known as no-blind-write. Last, Eq. (7.5) states that if a
transaction, for example t′′ in Fig. 7.2, writes to k, then it must also write to all keys it reads.
We call Eqs. (7.4) and (7.5) together strict no-blind-writes. Given a library L, when all its
reachable kv-stores under WSI satisfy WSI-safe, then L must be robust against WSI, because,
first, read-only transactions can be safely re-ordered, without affect other transactions. Second,
the rest transactions must satisfy strict no-blind-writes, and they cannot concurrently write to
the same key due to UA from PSI. For example, transactions t′ and t′′ concurrently write the
key k1 in Fig. 7.2, which is disallowed by UA. With these two intuition in mind, we now give
the formal proof in Theorem 7.6. We prove this result by replacing certain relations given the
WSI-safe property, and then showing a contradiction.

Theorem 7.6 (Robustness of WSI). Any WSI-safe library is robust against WSI.

Proof. Assume a reachable kv-store K ∈ JLKWSI for a library ι that is WSI-safe. Then by Def. 7.2
and Theorem 7.3 it is sufficient to prove acyclicity of the relation (WRK ∪ SO ∪ WWK ∪ RWK)

+.
By Prop. 7.7 the relation (WRK ∪ SO)+ must be acyclic. Now consider the relation (WRK ∪
SO∪WWK)

+. Assume two transactions t, t′ such that (t, t′) ∈ WWK. By Eq. (7.4), if transaction
t writes a version, it must read the immediate previous version,

∀k ∈ Key. ∀i ∈ N. t = WriterOf (K (k, i+ 1)) ⇒ t ∈ ReadersOf (K (k, i)) . (7.6)

156

Chapter 7. Applications: Invariants of Client Programs

k 7→ · · ·
· · ·
· · ·

_
t

T
· · ·

· · ·
· · ·

_
t′

T ′] {t′′}
_

t′′

_
(a) t

WR−−→ · · · WR−−→ t′
WR−−→ t′′ replaces t

WW−−−→ t′′

k 7→ · · ·
· · ·
· · ·

_
ti

_
· · ·

· · ·
· · ·

k′ 7→ · · ·
· · ·
· · ·

_
_
T ∪ {ti}

_
ti

_
· · ·

· · ·
· · ·

_
ti+1

_
(b) t

WW−−−→ t′ replaces t
RW−−→ t′ where t has a write

Figure 7.3: WSI-safety

By the definition of WWK, there exists two versions, ith and jth versions of a key k,

t = WriterOf (K (k, i)) ∧ t′ = WriterOf (K (k, j)) ∧ i < j.

Therefore, by Eq. (7.4), we have (t, t′) ∈ WRK
+ depicted in Fig. 7.3a. This means that the

relation (WRK ∪ SO ∪ WWK)
+ is acyclic. We now prove acyclicity of the relation (WRK ∪ SO∪

WWK ∪ RWK)
+ by contradiction. Assume a transaction t such that

t
(WRK∪SO∪WWK∪RWK)+−−−−−−−−−−−−−−−→ t

Since (WRK ∪ SO ∪ WWK)
+ cannot have cycle, it must be the case that the cycle contains RWK.

There exists t1 to tn such that

t = t1 ∧ t = tn ∧ t1
R∗
−→ t2

RWK−−−→ t3
R∗
−→ · · · RWK−−−→ tn−1

R∗
−→ tn (7.7)

where R = WRK ∪ SO ∪ WWK. We now convert some edges in the cycle; this yields equivalent
cycle.

(1) ti
RWK−−−→ ti+1 for ti writing a key k. By the definition of RWK, transaction ti must

read a key k′ that is overwritten by ti+1, that is, ti ∈ ReadersOf (K (k′, j)) for some index
j. Since ti wrote the key k, by Eq. (7.5), transaction ti must also write the key k′. Then
by Eq. (7.5) and JPKUA ⊆ JPKWSI, transaction ti must also write the (j +1)th version of the
key k′: that is, ti ∈ WriterOf (K (k′, j + 1)), and therefore ti

WWK−−−→ ti+1. This result is
illustrated in Fig. 7.3b.

After replace all the possible RWK edges to WWK in the cycle in Eq. (7.7), the rest RWK

edges must start from a read only transaction: that is, for any transactions t′, t′′ in the
new cycle,

t′
RWK−−−→ t′′ ⇒ ∀k′′ ∈ Key.∀z ∈ N. t′ 6= WriterOf (K (k′′, z)) . (7.8)

157

Chapter 7. Applications: Invariants of Client Programs

This means that any RW edge must start from a read-only transaction.

(2) · · · RW−−→ ti
R∗
−→ ti+1

RW−−→ · · · in the new cycle. Transaction ti at least wrote a
key, but by Eq. (7.8), the transaction ti+1 is a read-only transaction, thus ti 6= ti+1. This
means that · · · RW−−→ ti

R+

−−→ ti+1
RW−−→ · · ·.

(3) ti
WWK−−−→ ti+1. By Eq. (7.4) and JPKUA ⊆ JPKWSI, we know that ti

WRK
+

−−−−→ ti+1 depicted in
Fig. 7.3a.

After steps (1) to (3), we have cycle of the form:

t = t1 = t′1 ∧ t′ = tn = t′m ∧ t′1
R′∗

−−→ t′2
RW−−→ t′3

R′+

−−→ · · · RW−−→ t′m−1

R′∗

−−→ t′m

for some transactions t′1 to t′m and R′ = WR∪SO. Note that
{
t′j
∣∣ 1 ≤ j ≤ m

}
⊆ {ti | 1 ≤ i ≤ n}

for ti defined in Eq. (7.7). This means that t
((WR∪SO);RW?)

∗

−−−−−−−−−−→ t. Because of JPKCP ⊆ JPKWSI and
Prop. 7.8, these must be no cycle in the relation ((SO ∪ WRK);RW?

K)
+, which contradicts with

the assumption. Therefore, the relation (WRK ∪ SO ∪ WWK ∪ RWK)
+ is acyclic. �

In the proof for Theorem 7.6, we use two acyclicity properties on kv-stores. We prove these
properties as invariants: (1) a kv-store K reachable under ET⊤ contains no (SO ∪ WRK) cycles
(Prop. 7.7), where ET⊤ is the most permissive execution test defined in Fig. 4.6a; and (2) a
kv-store K reachable under ETCP contains no ((SO ∪ WRK);RW−1

K) cycles (Prop. 7.8). The first
result, Prop. 7.7, is a general result on our kv-store semantics stating that there is no out-of-
order executions between transactions (t, t′) ∈ SO or (t, t′) ∈ WR. The second result, Prop. 7.8,
can be derived from the definition of CP, which requires that view must be closed with respect
to relation ((SO ∪ WRK);RW−1

K).

Proposition 7.7. Any kv-store K ∈ ConsisModel (ET⊤) satisfies (SO ∪ WRK)
+ ∩ Id = ∅.

Proof sketch. From the definition of ConsisModel defined in Def. 4.27 we know a kv-store K ∈
ConsisModel (ET⊤) must be reachable with a given program. This means that Prop. 7.7 can
be seen as an invariant property. We prove it by induction on the length of a trace. For the
base case, the initial kv-store K0 trivially contains no cycles. For the inductive case, since local
computation steps do not rely on the kv-store, let us focus on the case where the last transaction
step has the form: (K,U , E) , P (cl,u,F)−−−−→ET (K′,U ′, E ′) , P′, where K contains no R

def
= (SO ∪ WRK)

cycles by the inductive hypothesis. Let t be the new transaction in K′. We then proceed by
contradiction and assume that K′ has a R cycle. As K contains no R cycles, this cycle must
involve t, i.e. t

R−→ t1
R−→ · · · R−→ tn

R−→ t, where t1, · · · , tn are distinct. As t is the last
transaction and t /∈ K, we cannot have t

SO−→ t1. Similarly, all versions written by t have
empty reader sets, and thus we cannot have t

WRK′−−−→ t1. This then leads to a contradiction as
t

SO∪WRK′−−−−−−→ t1. Therefore, the new kv-store K′ satisfies (SO ∪ WRK′)+ ∩ Id = ∅. �

158

Chapter 7. Applications: Invariants of Client Programs

Proposition 7.8. Any kv-store K ∈ ConsisModel (ETCP) satisfies ((SO ∪ WRK);RW?
K)

+∩Id = ∅.

Proof sketch. We proceed as in the proof of Prop. 7.7. For the inductive case, consider

(K,U , E) , P (cl,u,F)−−−−→ET (K′,U ′, E ′) , P′

where K contains no R
def
= ((SO ∪ WRK);RW?

K) cycles by the inductive hypothesis. Recall that
R1;R2

def
= {(a, c) | ∃b. (a, b) ∈ R1 ∧ (b, c) ∈ R2}. Let us then assume K′ has a R cycle which

must include the new transaction t. There are then two cases as follows where t1, · · · , tn are
distinct:

(1) [Case: t
R−→ t1

R−→ · · · R−→ tn
R−→ t] This cycle cannot exist as t is the last transaction

in K′. More concretely, as in Prop. 7.7 we know we cannot have t
SO−→ t1 or t

WRK′−−−→ t1.
For analogous reasons, we cannot have t

SO−→ t′
RWK′−−−→ t1 or t

WRK′−−−→ t′
RWK′−−−→ t1, for

some transaction t′ ∈ K.

(2) [Case: t1
R−→ · · · R−→ tn

(SO∪WRK′)−−−−−−−→ t
RWK′−−−→ t1] From ETCP the view u of t must contains

all versions written by t1, · · · , tn. As such, we cannot have t
RWK′−−−→ t1 as by RWK′ we

know u is behind the versions written by t1. �

7.2.2 Robustness: A Multiple Counters Library against WSI

A multi-counter library on a set of keys K is defined by Counters (K)
def
=
⋃

k∈K Counter (k).
Let take K = {k1, k2} as an example. In this multi-counter library, a client is allowed to access
both k1 and key2 in a session, however, not in a transaction, for example

cl1 : Inc (x, k1) ; Inc (x, k2) ; Read (x, k1) ; Read (x, k1) ‖
cl2 : Inc (y, k1) ; Inc (y, k2) ; Read (y, k1) ; Read (y, k2) .

One possible result of the program above is shown in Fig. 7.4. Client cl1 executes its two
increments on k1 and k2 first, then cl2 increments these two keys afterwards. Note that, under
WSI and hence PSI, client cl2 includes all versions of k1 and k2 respectively, when incrementing
(reading and then writing) these two keys. Last, both clients execute their last reads on both
keys respectively, where clients, especially cl1, are allowed to read old values as long as the
view satisfies the closure on relation SO;RW? ∪WR;RW? ∪WW, as required by WSI defined in
Fig. 4.6a. Hence, cl1 read the second versions of both keys, instead of the latest versions.

As discussed in Chapter 3, the multi-counter library is not robust against PSI. We show
that this library is WSI-safe in Theorem 7.9, and therefore robust against WSI and all stronger
models such as SI. It is easy to see that: any transaction yielding from Inc (x, k), must read
and then write the key k, hence satisfies Eqs. (7.4) and (7.5), and Eq. (7.3) is irrelevant; and any

159

Chapter 7. Applications: Invariants of Client Programs

k1 7→ 0
t0{
t1cl1
} 1

t1cl1{
t3cl1, t

1
cl2

} 2
t1cl2{
t3cl2
} k2 7→ 0

t0{
t2cl1
} 1

t2cl1{
t4cl1, t

2
cl2

} 2
t2cl2{
t4cl2
}

Figure 7.4: An example kv-store of multi-counter library under WSI

transaction yielding from Read (x, k) must be a read-only transaction on key k, hence satisfies
Eq. (7.3), and Eqs. (7.4) and (7.5) are irrelevant.

Theorem 7.9 (Robustness of multi-counter against WSI). For a set of keys K, the multi-counter
library Counters (K) is robust against WSI.

Proof. It is sufficient to show that Counters (K) is WSI-safe. Let (K0,U0) be an initial con-
figuration such that Dom (P0) ⊆ Dom (U0), and let E be a client environment such that
Dom (P0) ⊆ Dom (E). Let η be a trace obtained by execution a program P ∈ Counters (K) with
the initial state being (K0,U0), E . We prove that the final kv-store K in the trace η satisfies
Eqs. (7.3) to (7.5) by induction on the length of traces η.

(1) [Case: η = (K0,U0, E) , P0] The initial kv-store K0 trivially satisfies Eqs. (7.3) to (7.5).

(2) [Case: η = η′
ι−→ET (K,U , E) , P] If the next step ι is a local computation, then by the

inductive hypothesis, K must be WSI-safe. Let (K′,U ′, E ′), P′ = Last (η′) be the last
configuration. Consider that ι is a transaction step.

(i) [Case: ι from Read (x, k)] The label ι must be ι = (cl, u,F) for some cl, view u

and fingerprint F such that F = {(R, k, v)}. The resulting kv-store is given by the
following:

K = K′ [k 7→ K′(k) [i 7→ (v, t′, T] {t})]]

for i = Max (u (k)) and K′(k, i) = (v, t′, T). By the inductive hypothesis, in the new
kv-store K, transactions that already exist in K′ satisfy Eqs. (7.3) to (7.5). Since the
new transaction t is a read-only transaction, t satisfies Eq. (7.3), which state that if
a transaction only read a key, then it disallowed to write to any key, and Eqs. (7.4)
and (7.5) are irrelevant, of which the hypothesis contains conditions about writing
to a key.

(ii) [Case: ι from Inc (x, k)] The label ι must be ι = (cl, u,F) for some cl, view u and
fingerprint F such that F = {(R, k, v) , (W, k, v + 1)}. Since transaction t writes to
key k. Then by UA the view for the key must included all versions associated with
the key, we have u (k) = {n | 0 ≤ n < |K′(k)|}. Then the resulting kv-store K is:

K = K′ [k 7→ (V :: [(v′, t, ∅)])]

160

Chapter 7. Applications: Invariants of Client Programs

where V = (K′(k) [i 7→ (v, t′, T] {t})]), i = |K′(k)| − 1 and K′(k, i) = (v, t′, T). As
the new transaction t reads the latest version of k and writes a new version to k

and the inductive hypothesis, the new kv-store K satisfies Eqs. (7.3) to (7.5). First,
the hypothesis of Eq. (7.3) contains conditions about only reading a key, hence it is
irrelevant here. Eq. (7.4) requires if a transaction write a key, k here, it must also
read it, which is true here, and Eq. (7.5) talks about reading and writing to several
keys in one transaction, which is irrelevant here. �

7.2.3 Robustness: A Banking Library Against WSI

Alomari et al. [2008] present a banking library that they shown to be robust against SI. Alo-
mari et al. [2008] informally argued this banking library is robust: (1) they identified a notion
of dangerous dependency between transactions, which, they argued, can lead to violation of
robustness of SI; and (2) they argued this banking example contains no such dangerous depen-
dencies. We show that this library is also robust against WSI and hence SI by proving invariant
property. The banking example is based on relational databases and has three tables: account,
saving and checking.

Account
Name CID
Alice 00001
Bob 00002
· · · · · ·

Saving
CID Balance

00001 33
00002 87
· · · · · ·

Checking
CID Balance

00001 -1
00002 5
· · · · · ·

The account table maps customer names to customer IDs (Account(Name, CID)), the saving
table maps customer IDs to their saving balances (Saving(CID, Balance)) and the checking
table maps customer IDs to their checking balances (Checking(CID, Balance)). The balance of
a saving account must be non-negative but a checking account may have a negative balance.

For simplicity, we encode the saving and checking tables as a kv-store, and forgo the account
table as it is an immutable lookup table. We model each customer ID as an integer n ∈ N and
assume that balances are integer values. We then define the key associated with customer n

in the checking table as nc
def
= 2n; and define the key associated with n in the saving table as

ns
def
= 2n+ 1.

The banking library provides five transactional operations for accessing the database, where

161

Chapter 7. Applications: Invariants of Client Programs

ns 7→ v0
t0

{t, t′′}
v1

t

∅
nc 7→ v0

t0

{t′}
v2

t′

{t′′}
(a) Client n reads the balance in transaction t′′

ns 7→ v0
t0

{t}
v1

t

∅
nc 7→ v0

t0

{t′}
v2

t′

{t′′}
v2 + 10

t′′

∅
(b) Client n deposits 10 pounds to its checking account in transaction identifier t′′ and then
withdraws 10 pounds in t′′′

ns 7→ v0
t0

{t}
v1

t

{t′′}
v′1 + 10

t′′

{t′′′}
v′1

t′′′

∅
nc 7→ v0

t0

{t′}
v2

t′

∅
(c) Client n deposits 10 pounds to its saving account, DepositChecking (n, v), via transaction
identifier t′′, where v = 10

Figure 7.5: An example of the banking library, part 1

the ret is special variable that carries the return value or a transaction.

Balance (n) def
= [x := rd (ns) ; y := rd (nc) ; ret := x + y]

DepositChecking (n, v) def
= [if (v ≥ 0) { x := rd (nc) ; wt (nc, x + v) }]

TransactSaving (n, v) def
= [x := rd (ns) ; if (v + x ≥ 0) { wt (ns, x + v) }]

Amalgamate (n, n′)
def
=

[
x := rd (ns) ; y := rd (nc) ; z := rd (n′

c) ;

wt (ns, 0) ; wt (nc, 0) ; wt (n′
c, x + y + z)

]

WriteCheck (n, v) def
=

x := rd (ns) ; y := rd (nc) ;

if (x + y < v) { wt (nc, y − v − 1) }
else { wt (nc, y − v) }
wt (ns, x)

The Balance (n) operation returns the total balance of customer n in ret. This is a read-only
transaction on keys ns and nc, hence it is allowed to read old values under WSI, for example
t′′ in Fig. 7.5a. The DepositChecking (n, v) operation deposits v to the checking account of
customer n when v is non-negative, by reading the checking account nc and writing back a
new value, for example t′′ in Fig. 7.5c. Otherwise the checking account remains unchanged.
When v ≥ 0, operation TransactSaving (n, v) deposits v to the saving account of n, for
example t′′ in Fig. 7.5b. When v < 0, operation TransactSaving (n, v) withdraws v from the
saving account of n only if the resulting balance is non-negative, for example t′′′ in Fig. 7.5b,
otherwise the saving account remains unchanged. Note that both DepositChecking (n, v)
and TransactSaving (n, v) must read the latest value of the checking account nc and saving
account ns respectively under WSI, because the view must include all versions of nc and ns

162

Chapter 7. Applications: Invariants of Client Programs

ns 7→ v0
t0

{t1}
v1

t1

{t}
0

t
∅

nc 7→ v0
t0

{t2}
v2

t2

{t}
0

t
∅

n′
s 7→ v0

t0

{t3}
v3

t3

∅
n′
c 7→ v0

t0

{t4}
v4

t4

{t}
v1 + v2 + v4

t
∅

(a) Client n amalgamates to client n′ in transaction t

ns 7→ v0
t0

{t, t′′}
v1

t

{t′′}
v1

t′′

∅
nc 7→ v0

t0

{t′}
v2

t′

{t′′}
0

t′′

∅
(b) Client n writes a check in transaction t′′ with value v2

ns 7→ v0
t0

{t, t′′}
v1

t

{t′′}
v1

t′′

∅
nc 7→ v0

t0

{t′}
v2

t′

{t′′}
−v1 − 2

t′′

∅
(c) Client n write a check in transaction t′′ with value v1 + v2 + 1

Figure 7.6: An example of the banking library, part 2

respectively, if a transaction wants to write it. The Amalgamate (n, n′) operation moves the
combined checking and saving funds of consumer n to the checking account of customer n′.
In this operation, a transaction will read and write checking and saving account of n, and
checking account of n′, for example t in Fig. 7.6a. Lastly, WriteCheck (n, v) cashes a cheque
of customer n in the amount v by deducting v from its checking account, for example t′′ in
Fig. 7.6b. However, if n does not hold sufficient funds, that is, the combined checking and
saving balance is less than v, customer n is penalised by deducting one additional pound, for
example t′′ in Fig. 7.6c. Alomari et al. [2008] argue that to make the banking library robust
against SI, the WriteCheck (n, v) operation must be strengthened by writing back the balance
to the saving account (via wt (ns, x)), even though the saving balance is unchanged, as shown
in Figs. 7.6b and 7.6c where transaction t′′ read val1 and write back the same value to ns.
This also matches our WSI-safety property: if t′′ does not write back some value to ns, this
transaction will violate Eq. (7.5) in Def. 7.5. The banking library for a set of customers N ,
written Bank (N), is defined by

Bank (N)
def
=

Balance (n) , DepositChecking (n, v) ,
TransactSaving (n, v) , Amalgamate (n, n′) ,

WriteCheck (n, v)

∣∣∣∣∣∣∣∣ n, n
′ ∈ N ∧ v ∈ Var

The banking library is more complex than the multi-counter library discussed in Section 7.2.2.
Nevertheless, with the strengthen of wt (ns, x) in WriteCheck (n, v), all banking transactions
are either read-only or satisfy the strictly-no-blind-writes property; the banking library is WSI-

163

Chapter 7. Applications: Invariants of Client Programs

safe. As such, we can prove its robustness against WSI in a similar fashion to that of the
multi-counter library.

Theorem 7.10 (Robustness of the banking application against WSI). The bank library Bank (N)

is robust against WSI.

Proof. It is sufficient to prove that any kv-store K of library Bank (N) is WSI-safe. As Balance (n)
is read-only, it immediately satisfies Eq. (7.3) and Eqs. (7.4) and (7.5) are irrelevant. When
v ≥ 0, then the operation DepositChecking (n, v) both reads and writes nc, and thus preserves
Eqs. (7.4) and (7.5), and Eq. (7.3) is irrelevant. Similar, when v ≥ 0, then DepositChecking (n, v)
leaves the kv-store unchanged Eqs. (7.4) and (7.5) are trivially preserved, and Eq. (7.3) is irrele-
vant. Lastly, the TransactSaving (n, v) , Amalgamate (n, n′) and WriteCheck (n, v) operations
always read and write the keys they access, thus satisfying Eqs. (7.4) and (7.5), and Eq. (7.3)
is irrelevant. �

In our approach to proving robustness, we prove the invariant property in each step. For
example, in the banking example, we only need to check the new transaction satisfies the
Eqs. (7.3) to (7.5). In contrast, the previous approach based on execution graphs (dependency
graphs) requires checking the shape of entire graphs.

7.3 Correctness: A Lock Pattern against PSI

A client program might still have the desired behaviour even if it is not robust. We now show
a lock library is correct under UA. The distributed lock library providing lock (k), tryLock (k)
and unlock (k) operations on the key k, is defined by:

tryLock (k) def
= [x := rd (k) ; if (x = 0) {wt (k, CIDcl) ; m := true }else{ m := false }]

lock (k) def
= do{ m := false; tryLock (k) }until(m = true)

unlock (k) def
= [wt (k, 0) ; m := false]

The tryLock operation reads the value of the key k. If the value is zero (the lock is available),
the operation sets it to the client ID, CIDcl, and assign true to the local variable m. Otherwise
the transaction does not change k and assigns false to m. Note that m carries the boolean
outside the transaction. The lock operation calls tryLock until it successfully acquires the
lock. The unlock operation simply sets the key k to zero.

Consider the set of programs PLK where clients cl and cl′ compete for the lock k:

PLK
def
= (cl : (lock (k) ; ...; unlock (k))∗ ‖ cl′ : (lock (k) ; ...; unlock (k))∗)

164

Chapter 7. Applications: Invariants of Client Programs

k 7→ 0
t0

{tncl} ∪ T0

ClientIDcl

tncl{
tn

′

cl

}
∪ T1

0
tn

′

cl

{tm
cl′
} ∪ T2

ClientIDcl′
tm
cl′

{tm′

cl′
} ∪ T3

0
tm

′

cl′

T4

· · ·
· · ·
· · ·

Figure 7.7: Correctness of lock patterns where n < n′ and m < m′

The locking library in PLK is correct, in that only one client can hold the lock at a time, when
executed under serialisability. Since all the operations are trivially WSI-safe, PLK is robust and
hence correct under WSI and any stronger model such as SI. However, PLK is not robust under
UA and PSI, because the lock operation might read any old value of key k until it reads the
up-to-date value of k and acquires the lock. Nevertheless, we show that PLK is still correct under
UA. We capture the correctness, that is, mutual exclusion: for all i, if i > 0, then:

ValueOf (K (k, i)) 6= 0 ⇔ ValueOf (K (k, i− 1)) = 0 (7.9)
ValueOf (K (k, i)) = CIDcl ⇒ ∃n.WriterOf (K (k, i)) = WriterOf (K (k, i+ 1)) = tncl. (7.10)

It is straightforward to show that under UA, only one client can hold the key Eq. (7.9), and
the same client releases the lock Eq. (7.10). This mutual exclusion property is illustrated in
Fig. 7.7.

Theorem 7.11 (Mutual exclusion of the lock library under UA). Given the lock program, PLock,
defined by: for a set of clients CL, a key k and a critical section containing command C,

PLock
def
= λcl ∈ CL. (lock (k) ; C; unlock (k))∗

where k /∈ fv (C), all reachable kv-stores K ∈ JPLockKUA satisfy Eqs. (7.9) and (7.10).

Proof. By the definition of JPLockKUA defined in Def. 4.24, if K ∈ JPLockKUA, then there exists a
trace η with the final state (K,U , E), P: η ∈ PTraces (PLock, UA) ∧ (K,U , E), P = Last (η) . Let
FirstTr (C) be the first tryLock or unlock transaction of the command C. We prove that that
K satisfies Eqs. (7.9) and (7.10), and the following result:(

ValueOf (K (k, |K (k)| − 1)) = 0 ⇒ ∀cl ∈ Dom (P) .FirstTr (P (cl)) = tryLock (k)
)

∧

∃cl, n.K (k, |K (k)| − 1) = (CIDcl, t
n
cl,_) ⇒ ∀cl′ ∈ Dom (P) .

(cl = cl′ ⇒ FirstTr (P (cl)) = unlock (k))
∨ (cl 6= cl′ ⇒ FirstTr (P (cl)) = tryLock (k))

 (7.11)

by induction on the trace η. Eq. (7.11) means that: (1) if the latest value of k is zero (the first
conjunction), then all clients are competing the lock; and (2) otherwise the latest value is CIDcl

for a client cl (the second conjunction), then cl holds the lock and is responsible for releasing

165

Chapter 7. Applications: Invariants of Client Programs

the lock, and other clients are competing the lock.

(1) [Base Case: η = (K0,U0, E0) , P] It is trivial that the configuration satisfies Eqs. (7.9)
to (7.11).

(2) [Inductive Case: η = η′
ι−→ET (K′′,U ′′, E ′′) , P′′] Let (K′,U ′, E ′), P′ = Last (η′). By the in-

ductive hypothesis, K′, P′ satisfies Eqs. (7.9) to (7.11). If ι is a local computation
ι = (cl, •), we have K′′ = K′ and U ′′ = U ′. Therefore, the final configuration trivially sat-
isfies Eqs. (7.9) to (7.11). Otherwise, ι is a transaction step. Assume ι = (cl, u,F), for a
scheduled client cl with view u and fingerprint F . This transaction might be a transaction
of tryLock, unlock, or any transaction [T] in the critical section C. If the transaction
is [T], because k /∈ fv (C), we have K′(k) = K′′(k) and FirstTr (P′(cl)) = FirstTr (P′′(cl)).
This means K′′ and P′′ satisfy Eqs. (7.9) to (7.11). We now consider ι be a transaction step
of tryLock or unlock. Given the value of the last version of k in K′, we fix ι = (cl, u,F)

and consider the following two possible cases.

(i) [Case: K′(k, |K′(k)| − 1) = (0, tn
′

cl′ , T
′)] By Eq. (7.11), we have

∀cl′′ ∈ Dom (P′) .FirstTr (P′(cl′′)) = tryLock (k)

and the next transaction for cl is tryLock (k) transaction.
(a) [Case: u (k) = {i | 0 ≤ i < |K′(k)| − 1}] The value for k in the snapshot σ =

Snapshot (K′, u) must be zero: that is, σ (k) = 0. By the definition of tryLock,
the final fingerprint will be F ′ = {(R, k, 0) , (W, k, CIDcl)} where CIDcl is the
unique client ID of cl. By the execution test for UA, this fingerprint F is al-
lowed to commit with the given view u′. Let K′′ = UpdateKV (K′, u,F , t) for
a fresh tncl ∈ NextTxID (K′, cl). We have K′′(k, |K (k)| − 1) = (CIDcl, t

n
cl, ∅).

By the definition of tryLock, we also have E ′′(cl)(m) = true, which means
FirstTr (P′′(cl)) = unlock. For other client cl′ 6= cl, by the inductive hypothesis,
we have FirstTr (P′′(cl′)) = tryLock. Therefore, K′′ and P′′ satisfy Eqs. (7.9)
to (7.11).

(b) [Case: u (k) ⊂ {i | 0 ≤ i < |K′(k)| − 1}] Note that the view u cannot be a view
that leads to a snapshot σ = Snapshot (K′, u) in which the value of key k

is zero: that is, σ (k) = 0. Because in this case, the fingerprint will be
F = {(R, k, 0) , (W, k, CIDcl)}. However, it is disallowed to commit under UA.
Because this fingerprint writes to key k, but the view for k does not contain
all version of k. Thus, u must be a view such that Snapshot (K′, u) (k) 6= 0.
The final fingerprint will be {(R, k, Snapshot (K′, u) (k))}. Because it is a read-
only transaction, it is trivial that this fingerprint is allowed to commit under UA
and K′(k, |k| − 1) = K′′(k, |k| − 1). By the definition of tryLock, we also have
E ′′(cl)(m) = false, which means FirstTr (P′′(cl)) = tryLock. By the inductive
hypothesis, K′′ and P′′ satisfy Eqs. (7.9) to (7.11).

166

Chapter 7. Applications: Invariants of Client Programs

(ii) [Case: K′(k, |K′(k)| − 1) = (CIDcl′ , t
n′

cl′ , T
′)] By Eq. (7.11), we have two possible cases,

depending on if cl = cl′.

(a) [Case: cl = cl′] By Eq. (7.11), the next transaction for cl is unlock. The final
fingerprint F must be F = {(W, k, 0)}. In this case, the view must be u (k) =

{i | |0 ≤ i < |K′(k)| − 1}, otherwise it is disallowed to commit by UA. Let K′′ =

UpdateKV (K′, u,F , t) for a fresh tncl ∈ NextTxID (K′, cl). We have K′′(k, |K (k)|−
1) = (0, tncl, ∅). By the definition of unlock, we have FirstTr (P′′(cl)) = tryLock.
For other client cl′ 6= cl, by the inductive hypothesis, we have FirstTr (P′′(cl′)) =

tryLock. Therefore, K′′ and P′′ satisfy Eqs. (7.9) to (7.11).
(b) [Case: cl 6= cl′] The next transaction for cl is tryLock (k) transaction, and the

view u cannot be a view such that Snapshot (K′, u) (k) = 0. Otherwise finger-
print will be F = {(R, k, 0) , (W, k, CIDcl′)}, which disallowed to commit under
UA. Thus, we have Snapshot (K′, u) (k) 6= 0. By the definition of tryLock, the
fingerprint F = {(R, k, Snapshot (K′, u) (k))}. It is trivial that this fingerprint is
allowed to commit under UA, because the transaction is a read-only transaction.
By the definition of tryLock, we also have E ′′(cl)(m) = false, which means
FirstTr (P′′(cl)) = tryLock. This means that cl does not successfully lock the
lock, and the lock still holds by cl′. Therefore, K′′ and P′′ satisfy Eqs. (7.9)
to (7.11). �

Theorem 7.11 guarantees the critical section protected by the lock execute as an non-interleaving
block. For example, let us consider the following program:

Pexample
def
= (cl : (lock (k) ; t1 : [T1] ; t2 : [T2] ; unlock (k)) ‖

cl′ : (lock (k) ; t3 : [T3] ; t4 : [T4] unlock (k)))

where for brevity, we label the static code with dynamic transaction identifiers. The possible
execution orders among these four transactions are either t1, t2, t3, t4 or t3, t4, t1, t2, but situation
like t1, t3, t2, t4 cannot happen, because when cl executes t1, the client cl must already hold the
lock, and by Theorem 7.11, cl2 cannot acquire the lock simultaneously, which is formally capture
by the predicate CSec (η) defined in Theorem 7.12. The base case of CSec (η) simply states
that the initial state satisfies CSec predicate. The first inductive case states that if a client cl

does a local computation, or does not successfully acquire the lock, this step preserves CSec
predicate. The second inductive case states that if a trace segment η′ is protected by the lock,
ι, and unlock ι′ steps of client cl, then η′, captured by NoInterfere (η′, cl), cannot contains
and lock and unlock steps from other clients cl′. Note that clients cl′ are still allowed to read
the value of lock k but will not be able to acquire the lock,

However, the lock library under UA does not guarantees, for example, t4 observes the effect of
t1. This falls back to the main discussion of this thesis that transactions are allowed some level
of weak behaviours, that is, one transaction t does not necessarily observe the effect of another

167

Chapter 7. Applications: Invariants of Client Programs

transaction t′, although t happens before t′. In the case of UA, if a transaction does not contain
any write operation, UA allows it to read old value without any constraint. This contradicts with
programmer’s intuition of a lock that is captured by Coherence in Theorem 7.12. The base case
of Coherence states that the initial configuration satisfies the predicate. The first inductive
case states that any steps that are not protected between the lock and unlock steps preserves
the property of Coherence. The second inductive case, Coherence

(
η

ι−→ET η′
ι′−→ET (K,U , E) , P

)
states that, if ι and ι′ lock and unlock steps from client cl, then all the steps from cl in η′ must ob-
serve all previous transactions in η, which is captured by TCoherence (η′, cl, {t | t ∈ K′}) where
K′ is the last kv-store in η. The predicate TCoherence (η′, cl, T) state that any transactions from
cl, that updates K to K′, must has a view u containing all the versions written by {t | t ∈ K′},
that is, GetView (K, T) v u. To handle this problem, this lock library must be executed in a
stronger model than UA, any model that requires the view to be closed under SO, for example
PSI:

(1) UA guarantees the atomicity of the critical section as shown in Theorem 7.11, which means,
for example, a possible trace for Pexample is

Γ0

tLcl1
:(cl1,u1,Flock)

−−−−−−−−−−→ET Γ1
t1:(cl1,u2,F1)−−−−−−−→ET Γ2

t2:(cl1,u3,F2)−−−−−−−→ET Γ3

tUcl1
:(cl1,u4,Funlock)

−−−−−−−−−−−→ET

Γ4

tLcl2
:(cl2,u′

1,Flock)
−−−−−−−−−−→ET Γ5

t3:(cl2,u′
2,F3)

−−−−−−−−→ET Γ6

t4:(cl2,u′
3,F4)

−−−−−−−−→ET Γ7

tUcl2
:(cl2,u′

4,Funlock)
−−−−−−−−−−−→ET Γ8

where for brevity, we label the step with transaction identifiers, and L and U stand for
lock and unlock transactions.

(2) The closure under SO, that is, PreClosed (SO) as required by PSI, guarantees a critical
section observes the effects of previous critical sections, because, for example, in the trace
above, we know

tLcl1
SO−→ t1

SO−→ t2
SO−→ tUcl1

and (i) by Theorem 7.11, when the cl2 acquires the lock, it must include the effect of
tUcl1 in the view, (ii) by the closure of SO, the view must include the effect of t1 and t2

in its view; and (iii) by MR, the view of cl2 must always include the effect of t1 and t2.
Therefore, transactions t3 and txid4 will observe t1 and t2.

hence we prove this lock library is correct with respect to PSI, although it is not robust.

Theorem 7.12 (Value coherence of of the lock library under PSI). Recall the lock library in
Theorem 7.11,

PLock
def
= λcl ∈ CL. (lock (k) ; C; unlock (k))∗

168

Chapter 7. Applications: Invariants of Client Programs

where k /∈ fv (C). Given a trace of PLock under PSI, it must satisfy CSec (η), defined by:

CSec ((K0,U0, E0) , PLock)
def⇔ true

CSec
(
η

ι−→ET (K,U , E) , P
)

def⇔ CSec (η) ∧ ∃cl, u,F .

(ι = (cl, u,F) ⇒ F 6= {(R, k, 0) , (W, k, CIDcl)})

CSec
(
η

ι−→ET η′
ι′−→ET (K,U , E) , P

)
def⇔ CSec (η) ∧ ∃cl, u, u′. ι = (cl, u, {(R, k, 0) , (W, k, CIDcl)})

∧ ι′ = (cl, u′, {(W, k, 0)}) ∧ NoInterfere (η′, cl)

NoInterfere ((K,U , E) , P, cl) def⇔ true

NoInterfere
(
η

ι−→ET (K,U , E) , P, cl
)

def⇔ ∃cl′, u,F . ι = (cl′, u,F) ∧ cl 6= cl′

⇒ F 6= {(R, k, 0) , (W, k, CIDcl′)} ∧ F 6= {(W, k, 0)}

and must satisfy Coherence (η), defined by:

Coherence ((K0,U0, E0) , PLock)
def⇔ true

Coherence
(
η

ι−→ET (K,U , E) , P
)

def⇔ Coherence (η) ∧ ∃cl, u,F .

(ι = (cl, u,F) ⇒ F 6= {(R, k, 0) , (W, k, CIDcl)})

Coherence
(
η

ι−→ET η′
ι′−→ET (K,U , E) , P

)
def⇔ Coherence (η) ∧ ∃K′, cl, u, u′.

ι = (cl, u, {(R, k, 0) , (W, k, CIDcl)})
∧ ι′ = (cl, u′, {(W, k, 0)})
∧ (K′,_,_,_) = Last (η)

∧ TCoherence (η′, cl, {t | t ∈ K′})

TCoherence (((K,U , E) , P) , cl, T) def⇔ true

TCoherence
((

η
ι−→ET (K,U , E) , P

)
, cl, T

)
def⇔ ∃K′, u,F . (K,_,_,_) = Last (η)

∧ ι = (cl, u,F) ⇒ GetView (K, T) v u

Proof sketch. The first property, CSec, can be directly derived from Theorem 7.11. We prove
the second property, Coherence, by induction on the trace.

(1) [Base Case: (K0,U0, E0) , PLock] It trivially holds in this case.

(2) [Inductive Case: η
ι−→ET (K,U , E) , P with ι = (cl, u,F) ⇒ F 6= {(R, k, 0) , (W, k, CIDcl)}]

We directly apply inductive hypothesis.

(3) Inductive Case: [η
ι−→ET η′

ι′−→ET (K,U , E) , P with ι = (cl, u, {(R, k, 0) , (W, k, CIDcl)})
and ι′ = (cl, u′, {(W, k, 0)})] Let K′ be the final kv-store of η, and T = {t | t ∈ K′} be
the set of all transactions in K′. Let tLcl be the transaction identifier corresponding to the
lock step ι. We immediately know that, by UA,

{t | ∃i. t = WriterOf (K′(k, i))} ⊆ VisTrans (u,K′)

169

Chapter 7. Applications: Invariants of Client Programs

and then by Theorem 7.11 and CSec,

∀t ∈ T. ∃t′ ∈ {t′′ | ∃i. t′′ = WriterOf (K′(k, i))} . t SO−→ t′

which means any transaction t committed in K′ must be before a transaction t′ that write
a version, specifically value zero, to the lock k. Last, by the closure on SO required by
RPSI,

T ⊆ (RPSI
∗)−1 (VisTrans (u,K′)) ,

hence GetView (K, T) v u. We now prove TCoherence by induction on η′.

(i) [Base Case: (K′′,U ′′, E ′′) , P′′] It trivially holds for this case.

(ii) [Base Case: η′′
ι′′−→ET (K′′,U ′′, E ′′) , P′′ with ι = (cl, u′′,F ′′)] Because of MR PSI, we

know GetView (K, T) v u v u′′. �

In this chapter, we use our operation semantics to prove the invariant properties of client
libraries:

(1) robustness of single-counter library under PSI, and multi-counter and bank libraries under
SI;

(2) mutual exclusion and value coherence of lock library under PSI.

In comparison with client reasoning in declarative semantics, which works on the entire history
of programs, for example [Nagar and Jagannathan, 2018; Cerone and Gotsman, 2016; Cerone
et al., 2015a], our approach proves invariant properties on the states of kv-stores. More im-
portantly, client reasoning techniques based on declarative semantics, dependency graphs and
abstract executions as presented in Chapter 5, often focuses on the shape of the graphs, but
not the states, while it is easier to use our approach to prove specific invariant on the states,
for example the mutual exclusion of a lock library Section 7.3.

However, in this chapter, we only show small examples, which can be verified by hand-writing
proofs. In the future, we aim to explore other invariant properties such as transaction chopping,
and develop a tool, for example, a model checking tool, which allows up to reason larger
examples such as TPC-C [TPCC, 1992] and RUBiS [RUBIS, 2008].

170

Chapter 8

Conclusion and Future Work

We have introduced a simple interleaving semantics for atomic transactions, based on a global,
centralised kv-stores and partial client views in Chapter 4. Our operational semantics is
parametrised by execution tests, which give rise to many consistency models, summarised in
Fig. 4.6a. Our kv-stores track partial, yet the most important, histories of a database, which
contain enough information to express all the well-known consistency models, for example,
snapshot isolation, parallel snapshot isolation and causal consistency. Our kv-stores contain
similar information as dependency graphs, as shown in Chapter 5. In contrast to declarative
semantics where consistency models are defined by constraining the shape of the graphs, hence
ruling out invalid graphs in Chapter 5, our novel client partial views on the kv-stores provide
the ability to express consistency in an operational way. our execution tests constrain indi-
vidual transitions in that only good transitions are allowed, more specifically, the views must
satisfy CanCommit and ViewShift predicates, discussed in Section 4.2.4:

(1) CanCommit states that the client partial view, when the client commits a new transaction,
must be closed with respect to a relation specified by the chosen consistency model; and

(2) after the update, ViewShift states that the view must be updated to a new view that
must include certain versions.

Using our execution tests, we are able to capture the anomalous behaviour of many weak con-
sistency models used in distributed key-value stores, however, bearing in mind the constraints
that our transactions satisfy snapshot property and the last-write-wins policy, which are hard-
wired in that: (1) a client partial view must include all or none of the versions written by
another transaction, defined in the well-formedness of views Def. 4.6; (2) the snapshot induced
by a view, only contains the latest version in the view of each key, defined in Def. 4.8; and
(3) a transaction only commits its first read operation and last write operation per key to the
kv-store, defined in the CAtomicTrans rule in Fig. 4.2.

171

Chapter 8. Conclusion and Future Work

W
ell-know

n
declarative

se-
m

antics
on

ab-
stract

executions
using

visibility
axiom

A
M

O
perationalse-

m
antics

on
ab-

stract
executions

using
visibility

axiom
A

M
pre-

sented
in

Sec-
tion

5.2

O
perationalse-

m
antics

on
ab-

stract
executions

using
the

top
visibility

axiom
A

⊤
=

∅

V
isibility

axiom
A

M

O
perationalse-

m
antics

on
kv-

stores
using

the
top

execution
test

ET
⊤

Execution
test

ET
M

O
perationalse-

m
antics

on
kv-

stores
using

the
top

execution
test

ET
M

T
heorem

5.14:
equal

expressibil-
ity

D
efs.5.18

and
5.20

in
Sec-

tion
5.3:

sound-
ness

and
com

-
pleteness

con-
structors

respec-
tively

D
efs.5.23

and
5.25

in
Sec-

tion
5.4:

con-
structors

between
traces

respec-
tively

T
heorem

s
5.24

and
5.26:

equal
expressibility

Section
5.5:

proofs
for

con-
sistency

m
od-

els
M

show
n

in
Fig.4.6a

Figure 8.1: Summary of correctness proofs for definitions of consistency models M using
execution tests in Fig. 4.6a

In Chapter 5, we have shown that our definitions using execution tests ET are equivalent to the
well-known declarative definitions, using the visibility axioms A on abstract executions, where
the latter is the de facto standard. This is a series of highly non-trivial proofs, summarised in

172

Chapter 8. Conclusion and Future Work

Fig. 8.1, because the declarative definitions rule out invalid states on the entire history of a
program, but our operational definitions build up valid states step by step. The key step is the
novel soundness and completeness constructors, which lift the equivalent conditions between
ET and A to the equivalence between traces of kv-stores and abstract executions, and then, the
equivalence between reachable kv-stores and abstract executions.

Many semantics [Adya, 1999; Burckhardt et al., 2012; Cerone et al., 2015a; Kaki et al., 2017;
Crooks et al., 2017; Doherty et al., 2019; Nagar and Jagannathan, 2018; Koskinen et al., 2010;
Koskinen and Parkinson, 2015] focus on one of the two challenges: verifying implementation
protocols and reasoning about client programs. Our operational semantics, we believe, is the
first general semantics that is suitable for both challenges. In Chapter 6, We have verified two
protocols, COPS [Lloyd et al., 2011], a full replicated database that satisfies causal consistency,
and Clock-SI [Du et al., 2013], a full partitioned database that satisfies snapshot isolation. We
have verified these two protocols via trace refinement:

(1) we first provide a specific, formal semantics of these two protocols, because the authors
[Lloyd et al., 2011; Du et al., 2013] only provided pseudo-codes;

(2) we refine the fine-grained traces of these specific, formal semantics to equivalent nor-
malised traces, where transactions are not interleaved by other transactions;

(3) we encode the traces to our kv-store traces; and

(4) we then show that each step in the kv-store traces satisfies the desired consistency models.

Although every step is a non-trivial proof, but it is very standard trace refinement. More im-
portantly, even though, we believe, abstract executions and the trace-based semantics proposed
by Crooks et al. [2017] are suitable for verifying implementation, we did not find any works
that show how to use them to verify implementation protocols.

In Chapter 7, we show how to use our semantics to reason about client programs. In contrast
to [Nagar and Jagannathan, 2018; Cerone and Gotsman, 2016; Cerone et al., 2015a] that focus
on analysing the shape of the final states in abstract executions or dependency graphs, We
prove the invariant properties of client programs: (1) the robustness of a single-counter library
against PSI; (2) the robustness of a multi-counter library and a banking library against SI via
proving general conditions which guarantee the robustness of WSI, a new model that is slightly
weaker than SI; and (3) the mutual exclusion of a lock library against PSI, although that this
lock library is not robust against PSI. The last one shows the full strength of our semantics in a
sense that we can prove specific invariant property on the states, which, we believe, is difficult
to achieve using declarative semantics.

In future, we aim to extend our framework to handle other weak consistency models. First,
we plan to weaken our assumption of last-write-wins; this can be done by parametrised the

173

Chapter 8. Conclusion and Future Work

Snapshot function (Def. 4.8). One possibility is to return all versions in the view, instead of the
latest one per key, and a transaction is free to read one of them. Another possibility is to choose
versions from certain clients cl over others, which can be used to express that these clients cl

always have higher priority. However, the question remains if there is other sensible, practical
resolution policy than last-write-wins, since almost all commercial distributed key-value stores
adopt last-write-wins, where the difference is the definition of relative time.

Second, we plan to weaken the snapshot property, and capture consistency models like read
committed. For the read committed specifically, we can capture it by introducing promises in
the style of [Kang et al., 2017], in a sense that, a transaction t may read a version that will
be committed by the transaction t′ appearing later in the trace. This means that t commits
a promised version in the kv-store, and the transaction t′ fulfils the promise later. Note that,
by doing this, we still ensure that a transaction executes in one reduction step, which has been
shown useful in our two applications.

Third, Doherty et al. [2019] proposed an operational semantics on dependency graphs for
C11 release and acquire fragment. This fragment is a variant of causal consistency. Thus
we believe we can also model this fragment. Furthermore, our semantics may be helpful in
term of modelling transactional memory. Separately, in contrast to low level key-value stores,
[Burckhardt et al., 2014; Shapiro et al., 2011] on conflict-free data types (CRDTs) focus on
abstract data structures, for example, queue. This will be a challenge for us, because we
focus on the states, while CRDTs focus on the property of operations. We want to extend
our operational semantics to cover these high-level data structures; we can record the abstract
states in versions, for example, the states of a queue.

Fourth, our model does not support the allocation and deallocation of keys. This can be
achieved by introducing special versions, that identify the aliveness information of keys. For
example in Fig. 8.2a, we use † for allocation and ‡ for deallocation, which cuts this list of versions
into segments. This affects our views. Once a client view observes † or ‡, it is disallowed to
exclude these versions. For example, in the view presented in Fig. 8.2b the † version written by
t3cl must be included for future transactions. Recall that if a consistency model does not satisfy
MR (in Fig. 4.6a), a client can exclude version after committing a transaction. These special
versions also affect the closure check in the execution test, in a sense that a view only needs
to be closed with respect to the latest, observable segment. Assume that we want to check if
the view presented in Fig. 8.2b is closed with respect to RCC = WR ∪ SO relation. This view
is clearly not closed by our current PreClosed (K, u, RCC) definition, because the view include
the dagger version written by t3cl, but not any previous versions written by the same client cl.
However, since dagger means allocation, any previous versions before dagger are considered as
if on a different key, and therefore this view is closed with respect to RCC = WR ∪ SO relation.

We plan to validate further the usefulness of our framework, by building verification tools.
As the first, we plan to build lightweight tools, for example, implementing our semantics to

174

Chapter 8. Conclusion and Future Work

k 7→ †
t0

1
t1cl

∅
‡
t2cl

∅
†
t3cl

2
t1
cl′{
t2
cl′

} 3
t2
cl′{
t3
cl′

} 4
t3
cl′

∅
(a) Key-value stores with two aliveness segments

k 7→ †
t0

1
t1cl

∅
‡
t2cl

∅
†
t3cl

2
t1
cl′{
t2
cl′

} 3
t2
cl′{
t3
cl′

} 4
t3
cl′

∅
(b) An example view on Fig. 8.2a

Figure 8.2: Allocation and deallcation on key-value stores

generate litmus tests for implementations, and do bounded model checking on client programs.
In Chapter 6, we provide a full formal verification on implementation protocols. However,
the real distributed key-value store implementations are extremely complicated, for example,
Eiger [Lloyd et al., 2013], Wren [Spirovska et al., 2018] and Red-Blue [Li et al., 2012], and
the codebases of commercial key-value stores, such as Dynamo DB in Amazon Web Service,
are often private. Therefore it is impossible to do heavyweight verification on these databases.
By contrast, we can generate litmus tests and use them to check if these databases violate the
desired consistency model. Once we have an implementation of our semantics, we can use this
implementation as an engine to searching traces that distinguish two consistency models. With
these traces, we can then construct the programs and the expected result of these programs,
as the litmus tests.

In Chapter 7, we manually verify the correctness of small programs. However, we want to ex-
plore robustness results for bigger programs such as TPC-C [TPCC, 1992] and RUBiS [RUBIS,
2008], which is not feasible for hand-writing proofs. We plan to build a bounded model check-
ing tool. In contrast to [Gotsman et al., 2016; Zeller, 2017] that builds model checking tools
based on declarative semantics, our tool should have better performance, because we check the
invariant step by step. We should be able to use this tool to check other general property such
as transaction chopping [Shasha et al., 1995; Cerone et al., 2015b], or specific properties, such
as that the overall balance remains positive in the bank example discussed in Chapter 7.

Last, we think it will be useful to mechanise our semantics, for example in coq. This will
provide high assurance of our semantics, and can be used to generate a verified implementation
of our semantics.

175

Bibliography

Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions. Ph.D. Dissertation. Massachusetts Institute of Technology,
iambridge, MA, USA.

Jade Alglave. 2010. A shared Memory Poetics. Ph.D. Dissertation. l’Université Paris 7 –Denis
Diderot.

M. Alomari, M. Cahill, A. Fekete, and U. Rohm. 2008. The Cost of Serializability on Plat-
forms That Use Snapshot Isolation. In 2008 IEEE 24th International Conference on Data
Engineering. 576–585. https://doi.org/10.1109/ICDE.2008.4497466

Amazon. 2019. Amazon Web Service Documentation. https://aws.amazon.com/documenta
tion/

M. Ardekani, P. Sutra, and M. Shapiro. 2013. Non-monotonic Snapshot Isolation: Scalable
and Strong Consistency for Geo-replicated Transactional Systems. In Proceedings of the 32nd

Leibniz International Proceedings in Informatics (LIPIcs). 163–172.

Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2014. G-DUR: A Middleware for
Assembling, Analyzing, and Improving Transactional Protocols. In Proceedings of the 15th

International Middleware Conference (Middleware’14). ACM, New York, NY, USA, 13–24.
https://doi.org/10.1145/2663165.2663336

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Scalable
Atomic Visibility with RAMP Transactions. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data. 27–38.

Mark Batty. 2014. The C11 and C++11 Concurrency Model. Ph.D. Dissertation. University
of Cambridge.

Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC Atomics in
C11 and OpenCL. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 634–648.
https://doi.org/10.1145/2837614.2837637

176

https://doi.org/10.1109/ICDE.2008.4497466
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://doi.org/10.1145/2663165.2663336
https://doi.org/10.1145/2837614.2837637

BIBLIOGRAPHY

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing
C++ Concurrency. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA, 55–66.
https://doi.org/10.1145/1926385.1926394

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019. Checking Robustness
Against Snapshot Isolation. CoRR abs/1905.08406 (2019). arXiv:1905.08406 http://arxi
v.org/abs/1905.08406

Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yala-
gandula, and Jiandan Zheng. 2006. PRACTI Replication. In Proceedings of the 3rd Con-
ference on Networked Systems Design & Implementation - Volume 3 (NSDI’06). USENIX
Association, Berkeley, CA, USA, 5–5. http://dl.acm.org/citation.cfm?id=1267680.
1267685

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.
1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data (SIGMOD’95). ACM, 1–10. https:
//doi.org/10.1145/223784.223785

Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against Consistency Models with
Atomic Visibility. In Proceedings of the 27th International Conference on Concurrency The-
ory. 7:1–7:15. https://doi.org/10.4230/LIPIcs.CONCUR.2016.7

Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1986. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang Lee, and
Norman May. 2014. Distributed Snapshot Isolation: Global Transactions Pay Globally,
Local Transactions Pay Locally. The VLDB Journal 23, 6 (December 2014), 987–1011.
https://doi.org/10.1007/s00778-014-0359-9

Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found. Trends Program. Lang.
1, 1-2 (October 2014), 1–150. https://doi.org/10.1561/2500000011

Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Mooly Sagiv. 2012. Eventually
Consistent Transactions. In Proceedings of the 21nd European Symposium on Programming.
Springer.

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated
Data Types: Specification, Verification, Optimality. In Proceedings of the 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’14). ACM,
271–284.

177

https://doi.org/10.1145/1926385.1926394
http://arxiv.org/abs/1905.08406
http://arxiv.org/abs/1905.08406
http://dl.acm.org/citation.cfm?id=1267680.1267685
http://dl.acm.org/citation.cfm?id=1267680.1267685
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1007/s00778-014-0359-9
https://doi.org/10.1561/2500000011

BIBLIOGRAPHY

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. 2015. Global
Sequence Protocol: A Robust Abstraction for Replicated Shared State. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic. 568–590. https://doi.org/10.4230/LIPIcs.ECOOP.2015.568

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015a. A Framework for Trans-
actional Consistency Models with Atomic Visibility. In Proceedings of the 26th Interna-
tional Conference on Concurrency Theory (Leibniz International Proceedings in Informatics
(LIPIcs)), Luca Aceto and David de Frutos-Escrig (Eds.), Vol. 42. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 58–71. https://doi.org/10.4230/LIPIcs
.CONCUR.2015.58

Andrea Cerone and Alexey Gotsman. 2016. Analysing Snapshot Isolation. In Proceedings
of the 2016 ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC’16). ACM, 55–64. https://doi.org/10.1145/2933057.2933096

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2015b. Transaction Chopping for Par-
allel Snapshot Isolation. In Proceedings of the 29th International Symposium on Distributed
Computing. 388–404.

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2017. Algebraic Laws for Weak Consis-
tency. In Proceedings of the 27th International Conference on Concurrency Theory (Leibniz
International Proceedings in Informatics (LIPIcs)), Roland Meyer and Uwe Nestmann (Eds.),
Vol. 85. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 26:1–26:18.
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26

Nathan Chong, Tyler Sorensen, and John Wickerson. 2018. The Semantics of Transactions and
Weak Memory in x86, Power, ARM, and C++. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2018). ACM, New
York, NY, USA, 211–225. https://doi.org/10.1145/3192366.3192373

Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is Believing: A
Client-Centric Specification of Database Isolation. In Proceedings of the 2017 ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC’17). ACM, New York,
NY, USA, 73–82. https://doi.org/10.1145/3087801.3087802

Khuzaima Daudjee and Kenneth Salem. 2006. Lazy Database Replication with Snapshot Isola-
tion. In Proceedings of the 32Nd International Conference on Very Large Data Bases (VLDB
’06). VLDB Endowment, 715–726. http://dl.acm.org/citation.cfm?id=1182635.
1164189

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lak-
shman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.

178

https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/2933057.2933096
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1145/3087801.3087802
http://dl.acm.org/citation.cfm?id=1182635.1164189
http://dl.acm.org/citation.cfm?id=1182635.1164189

BIBLIOGRAPHY

2007. Dynamo: Amazon’s Highly Available Key-value Store. SIGOPS Oper. Syst. Rev. 41,
6 (October 2007), 205–220.

Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2019. Verifying C11
Programs Operationally. In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming (PPoPP ’19). ACM, New York, NY, USA, 355–365. https:
//doi.org/10.1145/3293883.3295702

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2013. Towards formally
specifying and verifying transactional memory. Formal Asp. Comput. 25, 5 (2013), 769–799.
https://doi.org/10.1007/s00165-012-0225-8

Brijesh Dongol, Radha Jagadeesan, and James Riely. 2018. Transactions in relaxed memory
architectures. Proc. ACM Program. Lang. 2, POPL (2018), 18:1–18:29. https://doi.org/
10.1145/3158106

Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. 2013. Clock-SI: Snapshot Isolation for
Partitioned Data Stores Using Loosely Synchronized Clocks. In Proceedings of the 32nd Leib-
niz International Proceedings in Informatics (LIPIcs) (SRDS’13). IEEE Computer Society,
Washington, DC, USA, 173–184. https://doi.org/10.1109/SRDS.2013.26

Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. 2005. Database Replication Using
Generalized Snapshot Isolation. In Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems (SRDS ’05). IEEE Computer Society, Washington, DC, USA, 73–84.
https://doi.org/10.1109/RELDIS.2005.14

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of Consistency and
Predicate Locks in a Database System. Commun. ACM 19, 11 (November 1976), 624–633.
https://doi.org/10.1145/360363.360369

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. 2005.
Making Snapshot Isolation Serializable. ACM Transactions on Database Systems 30, 2 (June
2005), 492–528. https://doi.org/10.1145/1071610.1071615

C. J. Fidge. 1988. Timestamps in message-passing systems that preserve the partial ordering.
Proceedings of the 11th Australian Computer Science Conference 10, 1 (1988), 56–66. http:
//sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. SIGACT News 33, 2 (June 2002), 51–59. https:
//doi.org/10.1145/564585.564601

Google. 2019. Google Cloud Platform Documentation. https://cloud.google.com/docs/

179

https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1007/s00165-012-0225-8
https://doi.org/10.1145/3158106
https://doi.org/10.1145/3158106
https://doi.org/10.1109/SRDS.2013.26
https://doi.org/10.1109/RELDIS.2005.14
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/1071610.1071615
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://cloud.google.com/docs/

BIBLIOGRAPHY

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016.
’Cause I’m Strong Enough: Reasoning about Consistency Choices in Distributed Systems.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 371–384.

J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. 1988. Readings in Database Systems.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, Chapter Granularity of Locks
and Degrees of Consistency in a Shared Data Base, 94–121. http://dl.acm.org/citatio
n.cfm?id=48751.48758

Rachid Guerraoui and Michal Kapalka. 2008. On the Correctness of Transactional Memory. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’08). ACM, New York, NY, USA, 175–184. https://doi.org/10.
1145/1345206.1345233

Theo Haerder and Andreas Reuter. 1983. Principles of Transaction-oriented Database Recovery.
Comput. Surveys 15, 4 (December 1983), 287–317. https://doi.org/10.1145/289.291

P. W. Hutto and M. Ahamad. 1990. Slow memory: weakening consistency to enhance concur-
rency in distributed shared memories. In Proceedings of 10th International Conference on
Distributed Computing Systems. 302–309. https://doi.org/10.1109/ICDCS.1990.89297

Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. 2017. Alone
Together: Compositional Reasoning and Inference for Weak Isolation. Proceedings of the
ACM on Programming Languages 2, POPL, Article 27 (December 2017), 34 pages. https:
//doi.org/10.1145/3158115

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promis-
ing Semantics for Relaxed-memory Concurrency. In Proceedings of the 44th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’17). ACM,
New York, NY, USA, 175–189. https://doi.org/10.1145/3009837.3009850

Eric Koskinen and Matthew Parkinson. 2015. The Push/Pull Model of Transactions. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15). ACM, 186–195.

Eric Koskinen, Matthew Parkinson, and Maurice Herlihy. 2010. Coarse-grained Transactions.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’10). ACM, New York, NY, USA, 19–30. https://doi.
org/10.1145/1706299.1706304

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-acquire Consistency.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’16). ACM, New York, NY, USA, 649–662. https://do
i.org/10.1145/2837614.2837643

180

http://dl.acm.org/citation.cfm?id=48751.48758
http://dl.acm.org/citation.cfm?id=48751.48758
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/289.291
https://doi.org/10.1109/ICDCS.1990.89297
https://doi.org/10.1145/3158115
https://doi.org/10.1145/3158115
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/1706299.1706304
https://doi.org/10.1145/1706299.1706304
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643

BIBLIOGRAPHY

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing
Sequential Consistency in C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY,
USA, 618–632. https://doi.org/10.1145/3062341.3062352

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21, 7 (July 1978), 558–565.

Mohsen Lesani. 2014. On the Correctness of Transactional Memory Algorithms. Ph.D. Disser-
tation. University of California, Los Angeles.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Ro-
drigues. 2012. Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary.
In Proceedings of the 10th Symposium on Operating Systems Design and Implementation.
265–278.

Si Liu, Peter Csaba Ölveczky, Keshav Santhanam, Qi Wang, Indranil Gupta, and José
Meseguer. 2018. ROLA: A New Distributed Transaction Protocol and Its Formal Analy-
sis. In Fundamental Approaches to Software Engineering, Alessandra Russo and Andy Schürr
(Eds.). Springer, Cham, 77–93.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-area Storage with COPS. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM,
401–416.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger
Semantics for Low-Latency Geo-Replicated Storage. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation. USENIX, Lombard, IL, 313–
328. https://www.usenix.org/conference/nsdi13/technical-sessions/presentati
on/lloyd

Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems. In Pro-
ceedings of Workshop on Parallel and Distributed Algorithms. North-Holland, 215–226.

Kartik Nagar and Suresh Jagannathan. 2018. Automated Detection of Serializability Violations
Under Weak Consistency. In Proceedings of the 29th International Conference on Concurrency
Theory. 41:1–41:18. https://doi.org/10.4230/LIPIcs.CONCUR.2018.41

Christos Papadimitriou. 1986. The Theory of Database Concurrency Control. Computer Science
Press, Inc., New York, NY, USA.

Christos H. Papadimitriou. 1979. The Serializability of Concurrent Database Updates. J. ACM
26, 4 (October 1979), 631–653. https://doi.org/10.1145/322154.322158

181

https://doi.org/10.1145/3062341.3062352
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1145/322154.322158

BIBLIOGRAPHY

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J. Demers.
1997. Flexible Update Propagation for Weakly Consistent Replication. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP ’97). ACM, New York,
NY, USA, 288–301. https://doi.org/10.1145/268998.266711

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On Parallel Snapshot Isolation and Re-
lease/Acquire Consistency. In Proceedings of the 27th European Symposium on Programming,
Amal Ahmed (Ed.). Lecture Notes in Computer Science, Cham, 940–967.

RUBIS 2008. The RUBiS benchmark. https://rubis.ow2.org/index.html.

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-free Repli-
cated Data Types. In Proceedings of the 13th International Conference on Stabilization,
Safety, and Security of Distributed Systems (SSS’11). Springer-Verlag, 386–400.

Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Transaction Chop-
ping: Algorithms and Performance Studies. ACM Transactions on Database Systems 20, 3
(September 1995), 325–363. https://doi.org/10.1145/211414.211427

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional Storage
for Geo-replicated Systems. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP’11). ACM, New York, NY, USA, 385–400. https://doi.org/10.1145/
2043556.2043592

Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2018. Wren: Nonblocking Reads in a
Partitioned Transactional Causally Consistent Data Store. In Proceedings of the 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18). 1–12.
https://doi.org/10.1109/DSN.2018.00014

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and
Brent W. Welch. 1994. Session Guarantees for Weakly Consistent Replicated Data. In
Proceedings of the Third International Conference on Parallel and Distributed Information
Systems (PDIS ’94). IEEE Computer Society, Washington, DC, USA, 140–149. http:
//dl.acm.org/citation.cfm?id=645792.668302

TPCC 1992. The TPC-C benchmark. http://www.tpc.org/tpcc/.

Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (January 2009), 40–44.

Peter Zeller. 2017. Testing Properties of Weakly Consistent Programs with Repliss. In Pro-
ceedings of the 3rd International Workshop on Principles and Practice of Consistency for
Distributed Data (PaPoC’17). ACM, New York, NY, USA, Article 3, 5 pages. https:
//doi.org/10.1145/3064889.3064893

182

https://doi.org/10.1145/268998.266711
https://rubis.ow2.org/index.html
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1109/DSN.2018.00014
http://dl.acm.org/citation.cfm?id=645792.668302
http://dl.acm.org/citation.cfm?id=645792.668302
http://www.tpc.org/tpcc/
https://doi.org/10.1145/3064889.3064893
https://doi.org/10.1145/3064889.3064893

Appendix A

Auxiliary Proofs

A.1 Proofs for Section 4.2 (Operational Semantics)

Proposition A.1 (Well-defined fingerprint combination operation). Given a well-formed fin-
gerprint F and an operation o ∈ Op, the new fingerprint F <C o is a well-formed fingerprint.

Proof. The operation o may be a read or a write.

(1) [Case: o = (R, k, v)] If there is a entry for the key k, that is, (l, k, v′) ∈ F for some
l ∈ {R, W} and value v′, then the new fingerprint F <C o = F is trivially well-formed.
Otherwise, there is no entry for k and the new fingerprint F <C o = F] (R, k, v) is also
well-formed.

(2) [Case: o = (W, k, v)] Let F ′ = (F \ {(W, k, v′) | v′ ∈ Value}). By the definition of <C, we
have F <C o = F ′] {(W, k, v)}. Since fingerprint F ′ contains no write operation for key
k, (W, k, v′) /∈ F ′ for all values v′, the new fingerprint F ′] {(W, k, v)} is a well-formed
fingerprint. �

Theorem 4.21 (Well-defined UpdateKV). Given a well-formed kv-store K ∈ KVS, a view
on the kv-store u ∈ ViewOn (K), a well-formed fingerprint F ∈ Fp and a fresh transaction
identifier t ∈ NextTxID (K, cl) for a client cl, the new kv-store K′ = UpdateKV (K, u,F , t) is a
uniquely defined and well-formed kv-store.

Proof. It is easy to see that UpdateKV (K, u,F , t) is always defined as F contains finite number
of operations. To prove the uniqueness of K′, it suffices to prove that the order in which the
effect of operations is propagated to K is irrelevant, that is, two operations can swap. Suppose
F = (F ′] {o})] {o′} for a fingerprint F ′ and two operations o, o′. We prove the following
result

UpdateKV (K, u, (F ′] {o})] {o′} , t) = UpdateKV (K, u, (F ′] {o′})] {o} , t) (A.1)

183

Chapter A. Auxiliary Proofs

(1) [Case: o = (R, k, v) and o′ = (R, k′, v′)] Because F contains at most one read per key,
then k 6= k′. Let indexes i = Max< (u (k)) and i′ = Max< (u (k′)), versions (v, t′, T) =

K (k, i) and (v′, t′′, T ′) = K (k′, i′). Let the new version lists V = K (k) [i 7→ (v, t′, T ∪ {t})]
and V ′ = K (k′) [i 7→ (v′, t′′, T ′ ∪ {t})]. Because k 6= k′ and t /∈ K, it is easy to see
K [k 7→ V] [k′ 7→ V ′] = K [k′ 7→ V ′] [k 7→ V], which implies Eq. (A.1).

(2) [Case: o = (W, k, v) and o′ = (W, k′, v′)] Because F contains at most one write per key,
then k 6= k′. The proof for Eq. (A.1) is similar to step (1).

(3) [Case: o = (R, k, v) and o′ = (W, k′, v′)] Noting k and k′ may be the same key. If k 6= k′,
the proof for Eq. (A.1) is similar to step (1). Consider k = k′. Let index i = Max< (u (k)),
version list V = K (k) and version (v, t′, T) = V(i). Since u ∈ ViewOn (K), the index idx

must be in bound, that is, 0 ≤ i < |K (k)|, therefore (V [i 7→ (v, t′, T ∪ {t})]) :: [(v′, t, ∅)] =
(V :: [(v′, t, ∅)]) [i 7→ (v, t′, T ∪ {t})], which implies Eq. (A.1).

(4) [Case: o = (W, k, v) and o′ = (R, k′, v′)] It is similar to step (3).

We now prove the kv-store K′ = UpdateKV (K, u,F , t) is well-formed by showing the following
result,

WfKvs (K) ∧ ∀t′ ∈ K. (t, t′) /∈ SO ∧ ∀k ∈ Key.∀v ∈ Value.∀cl ∈ CID.

((R, k, v) ∈ F ⇒ ∀i′. t /∈ ReadersOf (K (k, i′)))

∧ ((W, k, v) ∈ F ⇒ ∀i′. t 6= WriterOf (K (k, i′)))

∧ ∀i ∈ u (k) . t 6= WriterOf (K (k, i)) ⇒ WfKvs (K′) (A.2)

Note that for any fresh transaction identifier t picked by t ∈ NextTxID (K, cl), it implies the
hypothesis of Eq. (A.2). We prove Eq. (A.2) by induction on the size of F .

(1) [Base Case: |F| = 0] In this case, we know K′ = UpdateKV (K, u, ∅, t) = K, therefore
WfKvs (K′).

(2) [Inductive Case: |F| > 0] The next operation may be a read or a write operation.

(i) [Case: F = F ′] (R, k, v)] Let index i = Max< (u (k)), old version (v, t′, T) = K (k, i),
and new version list V = K (k) [i 7→ (v, t′, T] {t})]. The intermediate kv-store K∗

is defined by K∗ = K [k 7→ V]. Since the original kv-store K satisfies Eq. (A.2),
the fresh transaction identifier t 6∈ ReadersOf (K (k, i′)) for all i′ such that 0 ≤ i′ <

|K (k)|, and therefore K∗ satisfies the well-formed condition Eq. (4.1) in Def. 4.5;
because (t, t′) 6∈ SO for any t′ ∈ K, (It is only possible (t′, t) ∈ SO for some t′ =

K (k, i′) where i′ ∈ u (k)), and t 6= WriterOf (K (k′′, i′′)) for k′′, i′′ such that i′′ ∈ u (k′′),
therefore K∗ satisfies Eq. (4.3). Eqs. (4.2) and (4.4) are trivially true for K∗. We
proved the intermediate kv-store K∗ is well-formed, WfKvs (K∗). As F is well-formed,

184

Chapter A. Auxiliary Proofs

it follows that (R, k, v′) 6∈ F ′, which means that K∗,F ′, u, t satisfy the invariant
Eq. (A.2). By inductive hypothesis the final kv-store K′ = UpdateKV (K∗, u,F ′, t)

is a well-formed kv-store.

(ii) [Case: F = F ′] (W, k, v)] Let new version list V = K (k)::[(v, t, ∅)]. The intermediate
kv-store K∗ is defined by K∗ = K [k 7→ V]. Since the original kv-store K satisfies
Eq. (A.2), the fresh identifier t 6= WriterOf (K (k, i′)) for all i′ such that 0 ≤ i′ <

|K (k)|, therefore K∗ satisfies Eq. (4.1); because (t, t′) 6∈ SO for any t′ ∈ K (It is
only possible (t′, t) ∈ SO for some t′ in K (k)), and t wrote the last version for
k in K∗, therefore K∗ satisfies Eq. (4.4) Eqs. (4.2) and (4.3) are trivially true for
K∗. We proved the intermediate kv-store is well-fumed, WfKvs (K∗). As F is well-
formed, it follows (W, k, v′) 6∈ F ′, which means that K∗,F ′, u, t satisfy the invariant
Eq. (A.2). By inductive hypothesis the final kv-store K′ = UpdateKV (K∗, u,F ′, t)

is a well-formed kv-store. �

Theorem 4.30 (Equivalent normal ET-traces). For any τ ∈ ETTraces, there exists an equiv-
alent normalised trace τ ∗, that is, τ ' τ ∗ and NormalisedTrace (τ ∗).

Proof. Let initially τ ∗ = τ ; we alters the trace until τ ∗ is a normal trace.

(1) Consider the last step ι for each client cl such that

τ ∗ = τ ′
ι−→ET τ ′′ ∧ ι = (cl, α) ∧ ∀cl′. τ ′′ = · · · (cl′,_)−−−→ET · · · ⇒ cl 6= cl′

for two trace segments τ ′, τ ′′. Let view u = Last (τ ′)|2 (cl). If ι is a view shift step,
i.e. α = u′ for some view u′ such that u v u′, we delete this step and re-assign the
configurations in τ ′′ resulting a new segment τ † such that

∀i ∈ N.∀K ∈ KVS.∀U ∈ ViewEnvOn (K) . τ ′′|i = (K,U) ⇔ τ †|i = (K,U [cl 7→ u]).

We rename the new trace as τ ∗ and go back step (1). Because trace τ ∗ has finite steps,
step (1) must terminate with trace τ ∗ that satisfies:

∀ι ∈ Labels.∀cl, cl′ ∈ CID.∀α. ∀τ ′, τ ′′.(
τ ∗ = τ ′

ι−→ET τ ′′ ∧ ι = (cl, α) ∧ τ ′′ = · · · (cl′,_)−−−→ET · · · ⇒ cl 6= cl′
)

⇒ α ∈ Fp. (A.3)

(2) Given a trace τ ∗ satisfying Eq. (A.3), consider the first view-shift step ι for a client cl

that is not followed by a step for the same client cl: τ ∗ = τ ′
ι−→ET Γ

ι′−→ET τ ′′ such that
ι = (cl, u) and ι′ = (cl′, α) for some α, view u and some clients cl, cl′ with cl 6= cl′. By
Lemma A.2 we can move step ι to the right resulting τ ′

ι′−→ET Γ∗ ι−→ET τ ′′ for some Γ∗, until
the immediate next step is for the same client cl. Note that there must be a step for the

185

Chapter A. Auxiliary Proofs

same client cl in τ ′′ by Eq. (A.3). We rename the new trace as τ ∗ and go back to step (2).
Because there are only finite steps and the number of out-of-order view-shifts decreases
after each iteration, step (2) must terminate with trace τ ∗ such that

∀ι, ι′ ∈ Labels.∀cl ∈ CID. ∀u ∈ View.∀τ ′, τ ′′.

τ ∗ = τ ′
ι−→ET Γ

ι′−→ET τ ′′ ∧ ι = (cl, u) ⇒ ι′ = (cl,_) . (A.4)

(3) Given a trace τ ∗ satisfying Eqs. (A.3) and (A.4), consider the two adjacent view-shifts
steps ι, ι′ such that τ ∗ = τ ′

ι−→ET Γ
ι′−→ET τ ′′ where ι = (cl, u) and ι′ = (cl, u′) for two views

u, u′. By Lemma A.3, we can merge these two steps resulting τ ′
ι′−→ET τ ′′ and go back to

step (3). Because there are only finite steps and the number of two adjacent view-shifts
decreases after each iteration, step (3) must terminate with trace τ ∗ such that

∀ι, ι′ ∈ Labels.∀cl ∈ CID. ∀u ∈ View.∀τ ′, τ ′′.

τ ∗ = τ ′
ι−→ET Γ

ι′−→ET τ ′′ ∧ ι = (cl, u) ⇒ ∃F ∈ Fp. ι′ = (cl,F) . (A.5)

(4) Last, given a trace τ ∗ satisfying Eqs. (A.3) to (A.5), consider an update step ι′ without
a view-shift predecessor, that is, τ ∗ = τ ′

ι−→ET Γ
ι′−→ET τ ′′ such that ι = (cl,F) and ι′ =

(cl′,F ′) for some fingerprints F ,F ′ and clients cl, cl′ with cl 6= cl′. We inject an identity

view shift in between resulting τ ′
ι−→ET Γ

(cl,Γ|2 (cl))−−−−−−→ET Γ
ι′−→ET τ ′′. Rename the new trace as

τ ∗ and go back to step (4). Because there are only finite steps, step (4) must terminate
with trace τ ∗ satisfying

∀ι, ι′ ∈ Labels. ∀cl ∈ CID.∀F ∈ Fp.∀τ ′, τ ′′.

τ ∗ = τ ′
ι−→ET Γ

ι′−→ET τ ′′ ∧ ι′ = (cl,F) ⇒ ∃u ∈ View. ι′ = (cl, u) . (A.6)

Now we have an equivalent trace τ ∗ such that τ ' τ ∗ and Eqs. (A.5) and (A.6) imply
NormalisedTrace (τ ∗). �

Lemma A.2 (View-shift right move). Given a trace τ ∈ ETTraces (ET) for some ET, and a
view-shift step (cl, u) for a client cl in the trace τ , if the view-shift is not followed by a step for
the same client cl, this view-shift can be moved right without changing the final configuration.

∀cl′ ∈ CID. ∀ι, ι′ ∈ Labels.∀α, τ ′, τ ′′.

τ = τ ′
ι−→ET Γ

(cl,u)−−−→ET Γ′ (cl′,α)−−−→ET Γ′′ ι′−→ET τ ′′ ∧ cl 6= cl′

⇒ ∃Γ∗ ∈ Conf. τ ′ ι−→ET Γ
(cl′,α)−−−→ET Γ∗ (cl,u)−−−→ET Γ′′ ι′−→ET τ ′′. (A.7)

Proof. Let configuration (K,U) = Γ; we preform case analysis on α.

(1) [Case: α = u′] Given the two view-shifts for clients cl and cl′ respectively, we know the

186

Chapter A. Auxiliary Proofs

configuration Γ′′ is given by Γ′′ = (K,U [cl 7→ u] [cl′ 7→ u′]). Since two clients are distinct
cl 6= cl′, then we have Γ′′ = (K,U [cl′ 7→ u′] [cl 7→ u]); therefore we prove Eq. (A.7) by
picking Γ∗ = (K,U [cl′ 7→ u′]).

(2) [Case: α = F] We know Γ′ = (K,U [cl 7→ u]) and Γ′′ = (K′,U [cl 7→ u] [cl′ 7→ u′]) for some
view u′, kv-store K′ = UpdateKV (K,U (cl′) ,F , t) with a fresh transition identifier t, and
(K,U (cl′))

F−→ET (K′, u′). Let Γ∗ = (K′,U [cl′ 7→ u′]) which gives us Eq. (A.7). �

Lemma A.3 (View-shift absorption). Given a trace τ ∈ ETTraces (ET) under ET, two adjacent
view-shifts (cl, u) , (cl, u′) for a client cl in the trace can be merged,

∀τ ′, τ ′′. ∀ι, ι′ ∈ Labels.

τ = τ ′
ι−→ET Γ

(cl,u)−−−→ET Γ′ (cl,u′)−−−→ET Γ′′ ι′−→ET τ ′′ ⇒ τ ′
ι−→ET Γ

(cl,u′)−−−→ET Γ′′ ι′−→ET τ ′′. (A.8)

Proof. Let configuration (K,U) = Γ; it is easy to see Γ = (K,U [cl 7→ u]), Γ = (K,U [cl 7→ u′])

and U (cl) v u v u′, which implies Eq. (A.8). �

Theorem 4.31 (Equivalent expressibility). For any ET ∈ ExecutionTest, ConsisModel (ET) =⋃
P∈ProgsJPKET, where ConsisModel is defined in Def. 4.27 and JPKET is defined in Def. 4.24.

Proof. We prove ConsisModel (ET) ⊇
⋃

P∈ProgsJPKET and ConsisModel (ET) ⊆
⋃

P∈ProgsJPKET

respectively.

(1) [Case:
⋃

P∈ProgsJPKET ⊆ ConsisModel (ET)] By definition of
⋃

P∈ProgsJPKET It is sufficient
to prove that for any trace η, initial configuration (K0,U0, E0) and final configuration
(K,U , E) with program P′,

Dom (P) ⊆ Dom (E) ∧ η = (K0,U0, E0) , P
_−→∗

ET (K,U , E) , P′

⇒ (K0,U0)
_−→∗

ET (K′,U ′). (A.9)

We prove Eq. (A.9) by induction on the length of the trace η.

(i) [Base Case: η = (K0,U0, E0) , P] Eq. (A.9) trivially holds.

(ii) [Inductive Case: η = (K0,U0, E0) , P
_−→n

ET (K′,U ′, E ′) , P′′ ι−→ET (K,U , E) , P′] By induc-
tive hypothesis, there must exist a ET-trace τ such that τ = (K0,U0)

_−→∗
ET (K′,U ′).

We append steps to ET-trace τ depending on the step ι. (a) [Case: ι = (cl, •)] This
means K′ = K′′ and U ′ = U ′′, and we immediately have the proof for Eq. (A.9)
with ET-trace τ . (b) [Case: ι = (cl, u,F)] This means K′ = UpdateKV (K′′, u,F , t)

and U ′ = U ′′ [cl 7→ u′] for a fresh t and a view u′ such that (K′′, u)
F−→ET (K′, u′).

Let the new ET-trace τ ′ be τ ′ = τ
(cl,u)−−−→ET (K′′,U ′′ [cl 7→ u])

(cl,F)−−−→ET (K′,U ′) which
implies Eq. (A.9).

187

Chapter A. Auxiliary Proofs

(2) [Case: ConsisModel (ET) ⊆
⋃

P∈ProgsJPKET] Since there exist equivalent normalised traces
for all traces in ConsisModel (ET) by Theorem 4.30, it is sufficient to prove that for any
trace τ ∈ ConsisModel (ET), initial configuration (K0,U0) and final configuration (K,U),

NormalisedTrace (τ) ∧ τ = (K0,U0)
_−→∗

ET (K,U) ⇒
∃E0, E ∈ ClientEnvs.∃P, P′ ∈ Progs.

Dom (P) = Dom (E0) ∧ (K0,U0, E0) , P
_−→∗

ET (K,U , E) , P′

∧ ∀cl ∈ Dom (P′) . P′(cl) = skip. (A.10)

We prove Eq. (A.10) by induction on the length of the trace τ . Note that the number of
steps in trace τ must be an even number.

(i) [Base Case: τ = (K0,U0)] We pick P = U0 = ∅ and η = (K0,U0,U0) , P that implies
Eq. (A.10).

(ii) [Inductive Case: τ = (K0,U0)
_−→n

ET (K′,U ′)
(cl,u)−−−→ET (K′,U ′ [cl 7→ u])

(cl,F)−−−→ET (K,U)]
By inductive hypothesis, there must be a program trace η such that

η = (K0,U0, E0) , P
_−→∗

ET (K′,U ′, E ′) , P′ ∧ ∀cl ∈ Dom (P′) . P′(cl) = skip.

for client environment E0, E ′ and program P′. We now construct a new initial by
extending a new transaction for client cl; this transaction has the fingerprint F .
Recall that a well-formed fingerprint contains at most one read and one write for each
key. We define the transactional command for fingerprint F , written TransFp (F)

as the following:

TransFp (∅) def
= skip,

TransFp (F] (R, k, v)) def
= x := rd (k) ; TransFp (F) ,

TransFp (F] (W, k, v)) def
= wt (k, v) ; TransFp (F)

where ∀k′ ∈ Key.∀v′ ∈ Value. (R, k′, v′) /∈ F .

We then define a function that extends the command for a client:

ExtendProgram (P, cl, C) def
=

 P [cl 7→ (C′ ; C)] if P (cl) = C′

P] {cl 7→ C} otherwise

Let T = TransFp (F) be transactional command ExtendProgram (P′, cl, [T]) be the
new initial program, and P′′ = ExtendProgram (P′, cl, [T]) be the new final program,
and consequently apply ExtendProgram to all intermediate programs. This means,

188

Chapter A. Auxiliary Proofs

we have a new trace η′ such that

η′ = (K0,U0, E0) ,ExtendProgram (P, cl, [T])
_−→∗

ET (K′,U ′, E ′) , P′′

∧ ∀cl′ ∈ Dom (P′′) . (cl = cl′ ⇒ P′′(cl′) = [T]) ∧ (cl 6= cl′ ⇒ P′′(cl′) = skip) .

The only next step for η′ is to execute the [T] for cl. Recall that

(K′,U ′ [cl 7→ u])
(cl,F)−−−→ET (K,U).

Given CAtomicTrans shown in Fig. 4.2, the client local stack is s = E ′(cl) and
the initial snapshot σ for T is σ = Snapshot (K′, u). By the hypothesis, we know that
(K′, u)

F−→ET (K′,U (cl)) and by well-formed condition for ET, we know

∀k ∈ Key.∀v ∈ Value. (R, k, v) ∈ F ⇒ σ (k) = v,

which implies (s, σ, ∅) , T ∗ (s′, σ′,F) , skip for some stack s′ and snapshot σ.
By (K′, u)

F−→ET (K′,U (cl)), CanCommit (K, u,F) and ViewShift (K, u,K′,U (cl))

must hold. Thus we have a trace such that

η′
(cl,u,F)−−−−→ET (K,U , E ′ [cl 7→ s′]) , P∗ ∧ ∀cl ∈ Dom (P∗) . P∗(cl) = skip

for some program P∗, which implies Eq. (A.10). �

A.2 Proofs for Section 5.1 (Correspondence to Depen-
dency Graph)

Proposition A.4 (Well-defined KToD). Given a kv-store K ∈ KVS, the dependency graph
induced by the kv-store KToD (K) is well-formed, that is, KToD (K) ∈ DGraphs.

Proof. First we prove the dependency graph KToT (K) match the type constraint of the nodes.
Consider a transaction t ∈ K.

(1) [Case: t = t0] By the definition of versions Version, t0 cannot in any reader set; By well-
formedness of K, the initial transaction wrote the first version for each key (Eq. (4.2)); and
it only wrote those versions (snapshot property in Eq. (4.1)). Therefore KToT (K) (t0) =

{(W, k, v0) | k ∈ Key ∧ v0 ∈ InitialValue (k)}.

(2) [Case: t 6= t0] By snapshot property of K (Eq. (4.1)), it is easy to see that KToT (K) (t) ∈
Fp.

Let WR = WRK,WW = WWK,RW = RWK. Now we prove that the relations are well-formed.

189

Chapter A. Auxiliary Proofs

(1) [Case: write-read dependency WR]

(i) Suppose a transaction t such that (R, k,_) ∈ KToT (K) (t). There exists a version
K (k, i) for a key k and an index i, such that t ∈ ReadersOf (K (k, i)). We have
(WriterOf (K (k, i)) , t) ∈ WR which implies Eq. (5.3).

(ii) Suppose transactions t, t′ such that (t, t′) ∈ WR. By definition of WR, there exists
a version K (k, i) for a key k and an index i, such that t = WriterOf (K (k, i)) and
t′ ∈ ReadersOf (K (k, i)), which immediately implies Eq. (5.2).

(iii) Suppose transactions t, t′ such that (t, t′) ∈ WR. By definition of WR, there exists
a version K (k, i) for a key k and an index i, such that t = WriterOf (K (k, i)) and
t′ ∈ ReadersOf (K (k, i)). Because K is well-formed (Eq. (4.3)), it must be the case
that (t, t′) /∈ SO, which implies Eq. (5.4).

(iv) Suppose transactions t, t′, t′′ such that (t′, t), (t′′, t) ∈ WR. There exist two versions
K (k, i) ,K (k, i′) for a key k and indices i, i′, such that t ∈ ReadersOf (K (k, i)) and
t ∈ ReadersOf (K (k, i′)). Because K is well-formed (Eq. (4.1)), it must be the case
that i = i′ which means that t′ = t′′ = WriterOf (K (k, i)) and thus Eq. (5.5).

(2) [Case: write-write dependency WW]

(i) Suppose transactions t, t′ such that

(W, k,_) ∈ KToT (K) (t) and (W, k,_) ∈ KToT (K) (t′).

There exist two versions K (k, i) ,K (k, i′) for a key k and indices i, i′, such that
t = WriterOf (K (k, i)) and t′ = WriterOf (K (k, i′)). If i = i′ then t = t′; if i < i′ or
i > i′, then (t, t′) ∈ WW or (t′, t) ∈ WW respectively. Thus we prove Eq. (total-
WW).

(ii) Suppose transactions t, t′ such that (t, t′) ∈ WW. There exist two versions K (k, i) ,

K (k, i′) for a key k and indices i, i′ t = WriterOf (K (k, i)) and t′ = WriterOf (K (k, i′)),
which immediately implies Eq. (5.7).

(iii) Suppose transactions t, t′ such that (t, t′) ∈ WW. We prove t′ 6= t0 by contradiction.
Assume t′ = t0. There exist a version K (k, i) for a key k and an index i > 0, such
that t0 = WriterOf (K (k, i)). However, t0 = WriterOf (K (k, 0)) by well-formedness;
there are two versions for k written by t0 which contradicts Eq. (4.1). Therefore
Eq. (5.8) holds.

(iv) Suppose transactions t, t′ such that (t, t′) ∈ WW. There exist two versions K (k, i) ,

K (k, i′) for a key k and indices i, i′, such that i < i′, t = WriterOf (K (k, i)) and
t′ = WriterOf (K (k, i′)). Because K is well-formed (Eq. (4.4)), it must be the case
that (t′, t) /∈ SO, which implies Eq. (5.9).

(v) Suppose transactions t, t′ such that (t, t′) ∈ WW. We prove t 6= t′ by contradiction.
Assume t = t′. There exist two versions K (k, i) ,K (k, i′) for a key k and indices i, i′,

190

Chapter A. Auxiliary Proofs

such that t = WriterOf (K (k, i)) = WriterOf (K (k, i′)); this contradicts Eq. (4.1).
Similarly, we prove (t′, t) /∈ WW by contradiction. Assume (t′, t) ∈ WW, it means
t = WriterOf (K (k, i)), t′ = WriterOf (K (k, i′)) and i > i′. However, we also have
(t, t′) ∈ WW and i < i′, which leads to a contradiction. Thus Eq. (irref-asym-WW)
holds.

(vi) Suppose transactions t, t′, t′′ such that (t, t′), (t′, t′′) ∈ WW. There exist versions
K (k, i) ,K (k, i′) ,K (k, i′′) for a key k and indices i, i′, such that i < i′ < i′′,
t = WriterOf (K (k, i)), t′ = WriterOf (K (k, i′)), and t′′ = WriterOf (K (k, i′′)). By def-
inition of WW, it must be the case that (t, t′′) ∈ WW, which implies Eq. (transitive-
WW).

(3) [Case: read-write anti-dependency RW] Suppose transactions t, t′ such that

t 6= t′ ∧ (t, t′) ∈ RW. (A.11)

Eq. (A.11) holds iff there a transaction t′′ and two versions K (k, i) ,K (k, i′) such that
i < i′, t ∈ ReadersOf (K (k, i)) and t′ = WriterOf (K (k, i′)); this means that

(WriterOf (K (k, i)) , t) ∈ WR ∧ (WriterOf (K (k, i)) , t′) ∈ WW ∧ t 6= t′. (A.12)

Since Eq. (A.11) implies Eq. (A.12) and vice versa, we have the proof for Eq. (5.11). �

Proposition A.5 (Well-defined DToK). Given a dependency graph G ∈ DGraphs, the kv-store
induced by dependency graph, DToK (G), is well-formed, that is, DToK (G) ∈ KVS.

Proof. Let K = DToK (G). Given a key k, by the well-formedness definition for kv-store, it is
sufficient to prove the following cases.

(1) Suppose two indices i, i′ such that ReadersOf (K (k, i))∪ReadersOf (K (k, i′)) 6= ∅. Assume
t ∈ ReadersOf (K (k, i)) ∪ ReadersOf (K (k, i)). There must exist edges

(WriterOf (K (k, i)) , t), (WriterOf (K (k, i′)) , t) ∈ WRG.

Because G is well-formed (Eq. (5.5)), WriterOf (K (k, i)) = WriterOf (K (k, i′)) thus i = i′.

(2) Suppose two indices i, i′ such that WriterOf (K (k, i)) = WriterOf (K (k, i′)). We prove
i = i′ by contradiction. Assume i 6= i′. Without losing generality, this means that
(WriterOf (K (k, i)) ,WriterOf (K (k, i′))) ∈ WWG; By well-formedness of G (Eq. (irref-
asym-WW)), it cannot be true. Thus we have i = i′. Combine step (1), we prove
Eq. (4.1).

(3) Given Eq. (5.8) we know that (t0, t) ∈ WWG for all t ∈ G ∧ t 6= t0; and (W, k, v0) ∈ G(t0).
By the definition of VerListOf, K (k, 0) = (v0, t0,_), which implies Eq. (4.2).

191

Chapter A. Auxiliary Proofs

(4) Suppose an index t, t′ such that such that t = WriterOf (K (k, i)) and t′ ∈ ReadersOf (K (k, i))

for some index i. This means (t, t′) ∈ WRG. By Eq. (5.4), it follows (t, t′) /∈ SO? which
implies Eq. (4.3).

(5) Suppose an index t, t′ such that such that t = WriterOf (K (k, i)) and t′ = WriterOf (K (k, i′))

for some indices i, i′ with i < i′. This means (t, t′) ∈ WWG. By Eq. (5.9), it follows
(t, t′) /∈ SO which implies Eq. (4.4). �

A.3 Proofs for Section 5.2 (Operational Semantics on
Abstract Execution)

Proposition A.6 (Well-defined last-write-win resolution policy). Given a well-formed abstract
execution X and a set of transactions T that includes the initialisation transaction t0, the
function AExecSnapshot (X , T) is defined.

Proof. It is straightforward since transaction t0 initialise all the keys in a well-formed abstract
execution. �

Proposition 5.11 (Well-defined UpdateAExec function). Given an abstract execution X ∈
AExects, a set of transactions T ⊆ X with t0 ∈ T , a fresh transaction identifier t ∈
NextAExecTxID (K, cl) for some client cl, and a fingerprint F ∈ Fp such that

∀k ∈ Key. ∀v ∈ Value. (R, k, v) ∈ F ⇒ MaxVisTrans (X , T, k) , (A.18)

the new abstract execution UpdateAExec (X , T,F , t) is a well-formed abstract execution.

Proof. Let new abstract execution X ′ = UpdateAExec (X , T,F , t).

(1) [Case: well-formed arbitration order ARX ′] It suffices to only consider the edges re-
lated to the new transaction t. Since the new arbitration order is defined by

ARX ′ = ARX ∪ {(t′, t) | t′ ∈ X ′}

and t0 ∈ X , it is straightforward for Eqs. (5.12) and (total-AR). Because t is a fresh
transaction such that t /∈ X , therefore Eq. (irreflexive-AR) holds. By the definition of
ARX ′ that contains edges from any transaction t′ from the old abstract execution X to the
new transaction t, it follows Eq. (transitive-AR). Last, by definition of NextAExecTxID,
the fresh transaction t = tncl should be annotated with a bigger number n than transactions
for the same client cl in X , that is, ∀m ∈ N.∀tmcl ∈ X . n > m; this means that SO ⊆ ARX ′

which implies Eq. (5.13).

192

Chapter A. Auxiliary Proofs

(2) [Case: well-formed visibility relation VISX ′] It suffices to only consider the edges re-
lated to the new transaction t. By the definition of VISX ′ = VISX ∪ {(t′, t) | t′ ∈ T} that
contains edges from any transaction t′ from T to the new transaction t and t0 ∈ T , it
follows Eq. (5.16). The Eq. (5.18) immediately implies Eq. (5.17). Since the fresh transac-
tion identifier are pick by t ∈ NextAExecTxID (X , cl), it is straightforward for Eq. (5.14).
Last, by T ⊆ X , it follows Eq. (5.15). �

Theorem 5.14 (Equal expressibility between declarative and operational semantics on abstract
executions). For any A ⊆ VisAxioms, the operational semantics capture the same set of abstract
executions as direct axiomatic definitions on abstract definitions, that is,

⋃
P∈ProgsJPKA =

ConsisModelAxioms (A).

Proof. This prove is similar to the one in Theorem 4.31. We prove the set closure for both sides
respectively.

(1) [Case:
⋃

P∈ProgsJPKA ⊆ ConsisModelAxioms (A)] By the definition of
⋃

P∈ProgsJPKA , It
suffices to prove that for every trace π, initial state (X0, E0) with program P and final
state (X , E) with program P′,

Dom (P) ⊆ Dom (E0) ∧ π = (X0, E0) , P
ι−→

∗
A (X , E) , P′

X ∈ ConsisModelAxioms (A) . (A.13)

We prove Eq. (A.13) by induction on the length of π.

(i) [Base Case: π = (X0, E0) , P] It is trivial that AExecSat (X0,A). Hence it is easy to
see X0 ∈ ConsisModelAxioms (A).

(ii) [Inductive Case: π = π′ ι−→A (X , E) , P′] Let Last (π) = (X ′, E ′), P′′. If ι = (cl, •),
then X = X ′; therefore by inductive hypothesis, Eq. (A.13) holds. Consider ι =

(cl, T,F). By the AAtomicTrans rule, X = UpdateAExec (X ′, T,F , t) for some
t ∈ NextAExecTxID (X , cl). Note that the new abstract execution X contains all
transactions and edges in X ′, and thus X 'X ′

|0
X ′. This means that first by the in-

ductive hypothesis, AExecSat (X ′,A), and by the definition of well-formed visibility
axioms that every axiom must be local, we only need to consider the new visibility
edges. By the last premise of the AAtomicTrans rule, for any A ∈ A, it must be
the case that A−1(X ′)(t) ⊆ T , and thus X ∈ ConsisModelAxioms (A).

(2) [Case:
⋃

P∈ProgsJPKA ⊇ ConsisModelAxioms (A)] Assume an abstract execution X such
that X ∈ ConsisModelAxioms (A). Let (T,VIS,AR) = X . We prove a stronger result that
there is an abstract execution trace π corresponding to the cut of abstract execution, that

193

Chapter A. Auxiliary Proofs

is, for any number i and cut of abstract execution X ′

X ′ = AExectCut (X , i) ⇒ ∃π. ∃P ∈ Progs.∃E ∈ ClientEnvs.

Last (π) = (X ′, E), P ∧ P = λcl ∈ Dom (P) . skip (A.14)

We prove by induction on the number of transactions. The key here is to construct a
program P and this is done in similar way as in Theorem 4.31.

(i) [Base Case: AExectCut (X , 0)] We know X0 = AExectCut (X , 0) by the definition
of X0. Let the client set C = {cl | ∃n ∈ N. tncl ∈ X}. We pick a program P =

λcl ∈ C. skip a client environment E0 = λcl ∈ C. s for some stack s, and therefore
π = (X0, E0) , P which implies Eq. (A.14).

(ii) [Base Case: AExectCut (X , i)] Let X ′ and X ′′ be the (i − 1)th and ith cuts, defined
by X ′ = AExectCut (X , i− 1) and X ′′ = AExectCut (X , i). Suppose that there is a
trace π′ for AExectCut (X , i− 1), such that

π′ = (X0, E0) , P
_−→∗

A (X ′, E ′) , P′

∧ P′ = λcl ∈ Dom (P′) . skip.

Let the transaction t = X ′′\X ′, fingerprint F = TX (t), transaction set T = VIS−1 (t).
By Prop. A.7, it follows that X ′′ = UpdateAExec (X ′, T,F , t). Let the transactional
command T = TransFp (F) (TransFp is defined in Theorem 4.31) and the new initial
program P′′ = ExtendProgram (P, cl, [T]). It is easy to see there exists a new trace
π such that

π = (X0, E0) , P′′ _−→∗
A (X ′, E ′) , P′ [cl 7→ [T]]

stub−−→A (X ′′, E ′′) , P∗,

for some client environment E ′′ and finial program P∗ with P∗ = λcl ∈ Dom (P∗) . skip.
�

Proposition A.7 (Abstract execution cut to update). Given an abstract execution X and
the cut X ′ = AExectCut (X , n), assume that the transaction t is the next transaction in the
arbitration order, that is, MaxARX (X ′)

ARX−−→ t, assume there exists no transaction t′ such that
MaxARX (X ′)

ARX−−→ t′
ARX−−→ t, and then

AExectCut (X , n+ 1) = UpdateAExec
(
X ′,VIS−1

X (t) , t, TX (t)
)
.

Proof. It is trivial by the definitions of AExectCut and UpdateAExec. �

194

Chapter A. Auxiliary Proofs

A.4 Proofs for Section 5.3 (Correspondence to Kv-store
Semantics)

Proposition A.8 (Well-defined XToD). Given an abstract execution X ∈ AExects, the de-
pendency graph XToD (X) is well-formed.

Proof. Given the definition of XToD, if the dependency graph G = XToD (X) for some abstract
execution X , then WRG = WRX , WWG = WWX and RWG = RWX . Consider all the well-formed
conditions for relations WR,WW,RW defined in Def. 5.1.

(1) [Case: write-read dependency WR] By the definition of WRX , it is trivial for Eqs. (5.2)
and (5.3). Because visibility relation cannot violate session order by Eq. (5.14), it follows
Eq. (5.4). Since MaxVisTrans in the definition of WRX returns a unique transaction, it
means that Eq. (5.5) holds.

(2) [Case: write-write dependency WW] By the definition of WWX , it is trivial for Eqs. (5.7)
and (total-WW). Because the initialisation transaction t0 is ARX -before any other trans-
actions by Eq. (5.12), this implies Eq. (5.8). Since ARX is a total order and SO ⊆ ARX ,
by the definition of WWX , the write-write dependency cannot violate the SO and thus
Eqs. (5.9) and (irref-asym-WW) hold. Last write-write dependency must be transitive,
because ARX is transitive and t

WWX (k)−−−−−→ t′
WWX (k)−−−−−→ t′′ implies t

ARX−−→ t′
ARX−−→ t′′ and

therefore t
WWX (k)−−−−−→ t′′; this implies Eq. (transitive-WW).

(3) [Case: read-write anti-dependency RW] Consider two transactions t and t′ such that
(t, t′) ∈ RWX (k) for some key k. By definition of RWX , (R, k, v) ∈ TX (t) for some value v.
There exists a transition t′′ such that t′′ = MaxVisTrans

(
X ,VIS−1

X (t) , k
)
, and therefore

(t′′, t) ∈ WRX (k). Again by definition of RWX , it is must the case that (t′′, t′) ∈ ARX and
therefore (t′′, t′) ∈ WWX (k).

Now consider three transactions t, t′, t′′ such that (t′′, t) ∈ WRX (k) and (t′′, t′) ∈ WWX (k)

for some key k. First, (t′′, t) ∈ WRX (k) implies t′′ = MaxVisTrans
(
X ,VIS−1

X (t) , k
)

and
(t′′, t) ∈ ARX ; then because (t′′, t′) ∈ WWX (k), it means (t′′, t′) ∈ ARX (k) and thus we
have (t, t′) ∈ RWX by the definition of RWX . �

Theorem 5.17 (Compatibility of X and XToK (X)). For any abstract execution X , X ∼
XToK (X).

Proof. Let kv-store K = XToK (X).

195

Chapter A. Auxiliary Proofs

[Case: AExecSnapshot (X , T) = Snapshot (K,GetView (X , T)) for all T ⊆ X such that t0 ∈ T]

By the Prop. A.9, the view u = GetView (X , T) is a valid view on K, that is, u ∈ ViewOn (K).
Given that u is a valid view, it is sufficient to prove that for all keys k,

AExecSnapshot (X , T) (k) = Snapshot (K,GetView (X , T)) (k).

Let transaction t = MaxVisTrans (X , T, k). Therefore operation (W, k, v) ∈ TX (t) for some
v ∈ Value. By definition of AExecSnapshot, it follows that AExecSnapshot (X , T) (k). By
definition of MaxVisTrans, any other transaction t′ ∈ T \ {t} that also wrote the key k with
(W, k,_) ∈ TX (t′), must be ARX -before t, that is (t′, t) ∈ ARX ; this means that (t′, t) ∈ WWG for
G = XToD (X). Since transactions t, t′ both wrote key k, there must exists two indices i, i′ such
that t = WriterOf (K (k, i)), t′ = WriterOf (K (k, i′)). Because K = DToK (G) and (t′, t) ∈ WWG,
then i > i′; therefore by definition of Snapshot, the value matches as Snapshot (K, u) (k) = v.

[Case: Snapshot (K, u) = AExecSnapshot (X ,VisTrans (K, u)) for all u ⊆ ViewOn (K)] Let trans-
action sets T = VisTrans (K, u). It is sufficient to prove that for all keys k,

Snapshot (K, u) (k) = AExecSnapshot (X ,VisTrans (K, u)) (k).

Let v = Snapshot (K, u) (k) By definition of VisTrans, for versions included in vi for key k, their
writer must be included in T , that is

∀i ∈ u (k) .WriterOf (K (k, i)) ∈ T.

Let t be the transaction that wrote the newest version for key k in u as:

t = WriterOf (K (k,Max< (u (k)))) ∧ ∀i ∈ u (k) .WriterOf (K (k, i))
WWK

−1

−−−−−→ t.

By definition of Snapshot, the snapshot must include t

ValueOf (K (k,Max< (u (k)))) = v,

which means v = AExecSnapshot (X ,VisTrans (K, u)) (k) by definition of AExecSnapshot. Note
that the initial version is always included in the view 0 ∈ u (k), therefore t0 ∈ T and the
function AExecSnapshot (X ,VisTrans (K, u)) must be defined by Prop. A.6. �

Proposition A.9 (Well-formed views of GetView). For any abstract execution X , and T ⊆ X ,
GetView (X , T) ∈ ViewOn (XToK (X)).

Proof. Let u = GetView (X , T) and K = XToK (X). By the definition of GetView, the initial
version must be included in the view 0 ∈ u (k) for any key k (Eq. (4.5)). For any index i included
in the view for key k such that i ∈ u (k), it must be the case that 0 ≤ i < |K (k)| (Eq. (4.6)).

196

Chapter A. Auxiliary Proofs

Now consider two versions K (k, i) and K (k′, i′) such that i ∈ u (k) and WriterOf (K (k, i)) =

WriterOf (K (k′, i′)), it must the case that WriterOf (K (k, i)) ∈ T thus i′ ∈ u (k′) (Eq. (4.7)). �

Theorem 5.19 (Well-formed abstract executions of XToTrace). Given an ET⊤-trace τ , an
abstract execution X such that X ∈ TraceToX (τ), is a well-formed abstract execution and
Last (τ)|0 = XToK (X).

Proof. We prove by induction on the length of the trace τ .

(1) [Base Case: τ = (K0,U0)] By definition of TraceToX, the only abstract execution {X} =

TraceToX (τ) is defined by X = ({t0 7→ {(k, v0) | k ∈ Key ∧ v0 ∈ InitialValue (k)}} , ∅, ∅);
it is trivially a well-formed abstract execution and K0 = XToK (X).

(2) [Inductive Case: τ = τ ′
ι−→⊤ (K,U)] Consider the label ι.

(i) [Case: ι = (cl, u)] By definition of TraceToX, TraceToX (τ) = TraceToX (τ ′); by in-
ductive hypothesis, every abstract execution in TraceToX (τ) is well-formed.

(ii) [Case: ι = (cl,F)] Let configuration (K′,U ′) = Last (τ ′) and view u = U ′(cl). By
inductive hypothesis, suppose a well-formed abstract execution (T ′,VIS′,AR′) ∈
TraceToX (τ ′). Let a set of read only transactions Trd such that

Trd ⊆ {t′ | ∀l. ∀k ∈ Key. ∀v ∈ Value. (l, k, v) ∈ T ′(t′) ⇒ l = R} .

Let the set of visible transactions T = GetView (K′, u′)∪Trd. Assume new transaction
t′ = K\K′. By definitions of TraceToX and UpdateAExec, the new abstract execution
is defined by

X =
(
T ∪ {t′ 7→ F} ,VIS′ ∪ {(t′, t) | t′ ∈ T} ,AR′ ∪ {(t′, t) | t′ ∈ X}

)
.

Let VIS = VIS′ ∪ {(t′, t) | t′ ∈ T} and AR = AR′ ∪ {(t′, t) | t′ ∈ X}. By inductive
hypothesis, we only need to consider the arbitration and visibility edges related
to the new transaction t. It is trivial that the new arbitrary relation AR satisfies
Eqs. (5.12) and (total-AR) to (transitive-AR); because the new transition is picked
by t ∈ NextTxID (K′, cl), Eq. (5.13) holds. Consider the new visibility relation
VIS′ ∪ {(t′, t) | t′ ∈ T}. By the definition of GetView, the initialisation transaction
t0 ∈ T , and thus (t0, t) ∈ VIS which implies Eq. (5.16). Consider a read operation
(R, k, v) ∈ F for some key k and v. By the ET⊤-trace and UpdateKV function,
it is known that K′(k,Max< (K, u)) = v; therefore by the definition of GetView,
the writer WriterOf (K′(k,Max< (K, u))) = MaxVisTrans

(
(T ′,VIS′,AR′), T, k

)
, which

implies Eq. (5.17). Because the new transition is picked by t ∈ NextTxID (K′, cl),
Eq. (5.14) holds. Last, it is trivial that VIS ⊆ AR.

197

Chapter A. Auxiliary Proofs

Now we prove K = XToK (X) for the new abstract execution X . Note that X =

UpdateAExec (X , T,F , t) for a fresh transaction identifier tinNextAExecTxID (X , cl),
and K = UpdateKV (K, u,F , t) for the view u = GetView (T,K). By Prop. A.10,
K = XToK (X). �

Proposition A.10 (Update of abstract execution matching update of kv-store). Assume a
kv-store K and an abstract execution X such that K = XToK (X). Let u = GetView (K, T)

for some view u and transaction set T ⊆ X with t0 ∈ T . Given the new abstract ex-
ecution X ′ = UpdateAExec (X , T,F , t) for some fingerprint F and fresh transaction t ∈
NextAExecTxID (X , cl), then UpdateKV (K, u,F , t) = XToK (X ′).

Proof. Let K′ = UpdateKV (K, u,F , t). Note that the fresh transaction t ∈ NextAExecTxID (X , cl)

then t ∈ NextTxID (K, cl). By Theorem 5.4 and Def. 5.15, it suffice to prove that KToD (K′) =

XToD (X ′). By the definition of KToD and XToD in Defs. 5.2 and 5.15 respectively, it is
sufficient to prove that:

KToD (K) = XToD (X) ⇒ KToD (K′)|0 = KToD (K)|0 {t 7→ F} = XToD (X ′)|0

∧ WRK′ = WRX ′ ∧ WWK′ = WWX ′ . (A.15)

Recall that in dependency graphs, RW can be derived from WW and WW. Consider the three
conjunctions.

(1) [Case: new transaction t and its fingerprint F] By definition of UpdateAExec, it is
known that, for any operation o ∈ F key k and value v,

(o = (R, k, v) ⇔ (R, k, v) ∈ X ′(t)) ∧ (o = (W, k, v) ⇔ (W, k, v) ∈ X ′(t)).

then by definition of XToD, we know that

XToD (X)|0 {t 7→ F} = XToD (X ′)|0 .

Now consider the another side. By the definition of UpdateKV, for any operation o ∈ F ,
we have the following result for some key k and v:

(o = (R, k, v) ⇔ ∃i. t ∈ ReadersOf (K′(k, i)))

∧ (o = (W, k, v) ⇔ t = WriterOf (K′(k, |K′(k)| − 1))).

Therefore by definition of KToD,

(∃i. t ∈ ReadersOf (K′(k, i)) ⇔ (R, k, v) ∈ KToD (K′))

∧ (t = WriterOf (K′(k, |K′(k)| − 1)) ⇔ (W, k, v) ∈ KToD (K′)),

198

Chapter A. Auxiliary Proofs

which means that KToD (K′)|0 = KToD (K)|0 {t 7→ F}. Recall that KToD (K) = XToD (X);
this means KToD (K′) = XToD (X ′).

(2) [Case: write-read dependency WR] Because KToD (K) = XToD (X), we only need
to consider WR-edges related to the new transaction t. Consider any key k such that
(R, k, v) ∈ F for some value v. By definition of UpdateAExec, transaction t must read
from a transaction t′ ∈ T who wrote the key k and is the latest transaction visible by t,
and therefore by definition of XToD,

t′ = MaxVisTrans (X , T, k) ⇔ (t′, t) ∈ WRX ′ .

By definition of the view u = GetView (X , T), the latest version of k must be written by
t, that is,

t′ = WriterOf (K (k,Max< (u (k)))) .

By the definition of UpdateKV, the transaction t must read the version K (k,Max< (u (k))),
and then by definition of KToD,

(t′ = WriterOf (K′(k,Max< (u (k))))∧t ∈ ReadersOf (K′(k,Max< (u (k))))) ⇔ (t′, t) ∈ WRK′ .

Given above, we know
(t′, t) ∈ WRX ′ ⇔ (t′, t) ∈ WRK′

which means that for any new write-read dependency WRX ′ , the same edge exists in WRK′

and vice versa. Since WRX = WRK, we know WRX ′ = WRK′ .

(3) [Case: write-write dependency WW] Because KToD (K) = XToD (X), we only need
to consider WW-edges related to the new transaction t. Consider any key k such that
(W, k, v) ∈ F for some value v. By the definition of UpdateAExec, the new transaction
wrote the key k, and then by definition of XToD,

(W, k, v) ∈ X ′(t) ⇔ ∀t′ ∈ X .∀v′ ∈ Value. ((W, k, v′) ∈ TX (t′) ⇒ (t′, t) ∈ ARX ′).

Since K = XToK (X), if a transaction wrote the key k in X , it must wrote a version of
the key k in K, that is,

∀t′ ∈ X .∀v′ ∈ Value. (W, k, v′) ∈ TX (t′) ⇔ ∃i ∈ N. t′ = WriterOf (K (k, i)) .

By the definition of UpdateKV, the transaction t wrote the latest version of k in the new
kv-store K, and by the definition of KToD,

t = WriterOf (K′(k, |K′(k)| − 1)) ⇔

∀i ∈ N. (0 ≤ i < |K′(k)| − 1 ⇒ WriterOf (K′(k, i))
WWK−−−→ t).

199

Chapter A. Auxiliary Proofs

Note that |K′(k)| − 1 = |K (k)|. Therefore for any new write-write dependency WWX ′ ,
the same edge exists in WWK′ and vice versa. Since WWX = WWK, we know WWX ′ =

WWK′ . �

Proposition A.11 (Well-defined ApproxView). Given an abstract execution X , let X ′ =

AExectCut (X , i) and u = ApproxView (X , i, t) for some number i and transaction t. If t

is the last transaction with respect to arbitration order, t = MaxARX′ (X ′), then the view
u ∈ ViewOn (XToK (X ′)).

Proof. It is trivial from the definition of ApproxView. �

Theorem 5.21 (Abstract executions to well-formed ET⊤-traces). Given an abstract execution
X , any trace τ ∈ XToTrace (X) is a valid ET⊤-trace and the final kv-store K such that (K,_) =

Last (τ) satisfies that K = XToK (X).

Proof. Given the definition of XToTrace, we prove a stronger result that, for any number i,
kv-store K, view environment U and trace τ ,

τ = XToTraceN (X , i) ∧ (K,U) = Last (τ) ∧ K = XToK (AExectCut (X , i)) (A.16)

We prove by induction on the number i.

(1) [Base Case: i = 0] Any trace τ ∈ XToTraceN (X , 0) is of the form (K0,U0). By definition
of AExectCut, it follows K0 = XToK (AExectCut (X , 0)).

(2) [Base Case: i > 0] Suppose that Eq. (A.16) holds for i − 1 and consider i. Let X ′ =

AExectCut (X , i− 1) and X ′′ = AExectCut (X , i). Assume the new transaction tncl =

X ′′ \ X ′ and its fingerprint F = TX (tncl). By inductive hypothesis, assume a valid ET⊤-
trace τ ∈ XToTraceN (X , i) and its last configuration (K,U) = Last (τ). Let the view
u = GetView

(
X ,VIS−1 (tncl)

)
, the new kv-store K′ = UpdateKV (K, u,F , tncl), and the new

view u′ = ApproxView (X , i, tncl). Therefore the new trace τ ′ is of the form

τ ′ = τ
(cl,u)−−−→ET (K,U [cl 7→ u])

(cl,F)−−−→ET (K′,U [cl 7→ u′])

We now prove the two new steps, (cl, u) and (cl,F), satisfy the definition of ET⊤-trace in
Def. 4.26.

(i) [Case: (cl, u)] By the definition of XToTraceN, there must exist a transaction tlcl for
the client cl such that

τ = · · · _−→ET (K∗,U∗)

(cl,F∗)−−−−→ET
(
UpdateKV

(
K∗,U∗(cl),F∗, tlcl

)
,U∗ [cl 7→ u∗]

) _−→ET τ ∗∗

∧ ∀j. 0 ≤ j < |τ ∗∗| ∧ (τ ′|j)|1 (cl) = u∗,

200

Chapter A. Auxiliary Proofs

which means that tmcl is the last transaction for cl in the trace τ . Again, by the defini-
tions of XToTraceN and ApproxView, for the view u, there exists a set of transactions
T such that,

u∗ = GetView (X , T) ∧ T ⊆ VIS−1
X (tncl) ∩ (AR−1

X)
?
(tjcl).

Note that u∗ must be a valid view because of Prop. A.11. Last, by definition of
GetView,

u∗ = GetView (X , T) ⊆ GetView
(
X ,VIS−1

X (tncl)
)
= u

(ii) [Case: (cl,F) and K = XToK (AExectCut (X , i))] We prove that the new kv-store
K′ is well-formed, K = XToK (X ′′) and (K, u)

F−→⊤ (K′, u′). The first and third
sub-goals imply that (cl,F) is a valid ET⊤ step.

(a) [Case: Well-formed K′] Consider view u defined by u = GetView
(
X ,VIS−1

X (tncl)
)
.

Since tncl = MaxARX′′ (X ′′) and X ′′ is well-formed, then VIS−1
X (tncl) ⊆ X ′, which

means that all visible transactions must exist in X ′ = AExectCut (X , i− 1). By
inductive hypothesis, K = XToK (X ′) and therefore u ∈ ViewOn (u). It is easy
to see that tncl /∈ K and F ∈ Fp; thus by Theorem 4.21, the new kv-store K′ is
well-formed.

(b) [Case: K′ = XToK (X ′′)] Let T = VIS−1
X (tncl). Previously, we known that u =

GetView (X , T) and T ⊆ X ′; therefore u = GetView (X ′, T). By Prop. A.7,
X ′′ = UpdateAExec (X ′, T,F , tncl). By inductive hypothesis, K = XToK (X ′).
Then by Prop. A.10, K′ = XToK (X ′′).

(c) [Case: (K, u)
F−→⊤ (K′, u′)] Previously, we proved u ∈ ViewOn (K) and K′ =

XToK (X ′′). Then by Prop. A.11, we know that u′ ∈ ViewOn (K′). Because
CanCommit⊤ and ViewShift⊤ are simply true, it remains to prove that every
read operation (R, k, v) agrees with the view u. Note that by Prop. A.7, X ′′ =

UpdateAExec
(
X ′,VIS−1

X (tncl) ,F , tncl
)
. Given the definition of UpdateAExec,

(R, k, v) ∈ X ′′(tncl) ⇔
∃t ∈ X ′. t = MaxVisTrans

(
X ′,VIS−1

X (tncl) , k
)
∧ (W, k, v) ∈ X ′(t).

Because u = GetView
(
X ,VIS−1

X (tncl)
)
, then

(R, k, v) ∈ X ′′(tncl) ⇔ ValueOf (K (k,Max< (u (k)))) = v.

Given above we proved (K, u)
F−→⊤ (K′, u′). �

201

Chapter A. Auxiliary Proofs

A.5 Proofs for Section 5.4 (Soundness and Completeness
Constructors)

Theorem 5.24 (Soundness of execution tests). Given an execution test ET is sound with respect
to a set of visibility axioms A, then⋃

P∈Progs
JPKET ⊆ {XToK (X) | X ∈ ConsisModelAxioms (A)} .

Proof. By Theorem 4.31 stating that
⋃

P∈Progs = ConsisModel (ET), it suffices to prove the
following result:

ConsisModel (ET) ⊆ {XToK (X) | X ∈ ConsisModelAxioms (A)} .

Let I be the invariant that gives rise of soundness constructor. We prove a stronger result that:
for any ET-trace τ , there exists an abstract execution X that satisfies A and preserves I, that
is,

τ = (K0,U0)
_−→∗

ET (K,U) ∧ K = XToK (X) ∧ X ∈ ConsisModelAxioms (A)

∧ ∀cl ∈ Dom (U) . I (X , cl) ⊆ VisTrans (K,U (cl)) (A.17)

First, the trace τ must be a ET⊤-trace, and by Theorem 5.19 for any X ′ ∈ TraceToX (τ). Hence,
the final kv-store K satisfies that K = XToK (X ′). We now show that we can always find an
abstract execution X ∈ TraceToX (τ) such that AExecSat (X ,A) and I (X , cl) ⊆ Tcl for any
client cl and set of transactions Tcl = VisTrans (K,U (cl)) ∪ Trd and read-only transactions Trd

in X . We prove it by induction on the length of τ . Note that by Theorem 4.30, it is safe to
assume that τ is a normal trace, that is, NormalisedTrace (τ).

(1) [Base Case: τ = (K0,U0)] By definition of TraceToX, the initial abstract execution X0

satisfies that K0 = XToK (X0) and X0 ∈ ConsisModelAxioms (A). For any client cl, by the
definition U0, we know that VisTrans (K,U (cl)) = {t | t ∈ K0}, and by the well-formed
condition of I, therefore I (X , cl) ⊆ VisTrans (K,U (cl)).

(2) [Inductive Case: τ = τ ′
(cl,u)−−−→ET (K,U) (cl,F)−−−→ET (K′′,U ′′)] Let (K′,U ′) be the last config-

uration, defined by (K′,U ′) = Last (τ ′). By inductive hypothesis, there exists X ′ ∈
ConsisModelAxioms (A) such that K′ ∈ XToK (X ′) and I (X , cl′) ⊆ VisTrans (K′,U (cl′))∪
Trd for any client cl′ ∈ Dom (U) and some read only transaction set Trd. Now consider
the next two steps, (cl, u) and (cl,F), for respectively.

(i) [Case: (cl, u)] By the definition of view-shift, K = K′ and thus K = XToK (X).
Again, by the definition of view-shift U = U ′ [cl 7→ u] and U (cl) v u. Since

202

Chapter A. Auxiliary Proofs

I (X , cl) ⊆ VisTrans (K,U (cl)) ∪ Trd for some read-only transaction set Trd, then
I (X , cl) ⊆ VisTrans (K, u) ∪ Trd. Last, the invariant for client cl′ other than cl is
trivially preserved.

(ii) [Case: (cl,F)] Let u′′ = U ′′(cl) be the new view and T be a set of transactions
defined by T = VisTrans (K, u). By the definition of (cl,F), the new kv-store K′′ =

UpdateKV (K, u,F , t) for some t ∈ NextTxID (K, cl), and this update satisfies ET,
that is, (K, u)

F−→ET (K′′, u′′). Since ET is sound with respect to A, by Def. 5.23,
there must exists a set of read-only transactions Trd and a new abstract execution
X ′ = UpdateAExec (X , T ∪ Trd,F , t) such that Eqs. (5.24) and (5.25) hold. Note
that τ is also a ET⊤-trace and X ′inTraceToX (τ); then by Theorem 5.19, we know
that X ′ is a well-formed abstract execution and K′′ = XToK (X ′).
Now we prove that X ′ ∈ ConsisModelAxioms (A). Fix a visibility axiom A ∈ A.
Assume two transactions t′, t′′ such that (t′, t′′) ∈ A(X ′). Note that t′ 6= t since
VISX ′ ⊆ ARX ′ . (a) [Case: t′′ 6= t] For this case, we know t′, t′′ ∈ X . By inductive
hypothesis that X ∈ ConsisModelAxioms (A) and the well-formed condition for A,
it follows that (t′, t′′) ∈ VISX ′ . (b) [Case: t′′ = t] By Eq. (5.24) and definition of
UpdateAExec, then (t′, t′′) ∈ VISX ′ .
Last, we prove that I (X ′, cl′) ⊆ VisTrans (K′′,U ′′(cl′)) for any client cl′ ∈ Dom (U ′′).
If cl′ 6= cl, by inductive hypothesis, the invariant holds. Otherwise, cl′ = cl and by
Eq. (5.25) the invariant holds. �

Theorem 5.26 (Completeness of execution tests). Given an execution test ET that is complete
with respect to a set of visibility axioms A, then {XToK (X) | X ∈ ConsisModelAxioms (A)} ⊆⋃

P∈ProgsJPKA.

Proof. By Theorem 4.31 stating that
⋃

P∈ProgsJPKA = ConsisModel (ET), it suffices to prove
the following result

{XToK (X) | X ∈ ConsisModelAxioms (A)} ⊆ ConsisModel (ET) . (A.18)

For Eq. (A.18), it is sufficient to prove that, for any abstract execution X that satisfies A,
that is X ∈ ConsisModelAxioms (A), there exists an ET-trace τ such that Last (τ)|0 = XToK (X)

. We prove a stronger result (an invariant) as the following: for any cut of X , namely X ′ =

AExectCut (X , i), there exists an ET-trace τ such that, for any kv-store K, view environment U
and a set of clients CL,

CL = {cl | ∃tncl. tncl ∈ X} ∧ (K,U) = Last (τ) ⇒ K = XToK (X ′) ∧∀cl ∈ CL.∀t ∈ X ′. t = MaxARX ({t′ | t ∈ X ′ ∧ t′ = t_cl}) ⇒ ∃T ′ ⊆ (AR−1
X)

?
(t).(

∃t′′. t′′ = MinSO ({t′ | t′ ∈ X ∧ (t, t′) ∈ SO}) ⇒ T ′ ⊆ VIS−1
X (t′′)

)
∧ U (cl) = GetView (X , T ′)

 . (A.19)

203

Chapter A. Auxiliary Proofs

Since X ∈ ConsisModelAxioms (A), then X ∈ ConsisModelAxioms (A⊤). By Def. 5.20 and The-
orem 5.21, any trace included in XToTrace (X) must be a valid ET⊤-trace and compatible with
X . We now prove that τ is a ET-trace and preserves the invariant in Eq. (A.19) by induction
one the cut i.

(1) [Base Case: X ′ = AExectCut (X , 0)] By definition of AExectCut, we know that X ′ = X0.
We construct an ET-trace τ such that τ = (K0,U0) and U0 (cl) = u0 for any cl ∈ CL; this
trace τ trivially satisfies Eq. (A.19).

(2) [Inductive Case: X ′ = AExectCut (X , i) for i > 0] Suppose that X ′′ = AExectCut (X , i− 1)

and there exists an ET-trace τ ′ that satisfies Eq. (A.19). Let the set of client CL =

{cl | ∃tncl. tncl ∈ X} the new transaction t = X ′ \ X ′′, the set of visible transactions T =

VIS−1
X (t) and the fingerprint F = TX (t). We know that X ′ = UpdateAExec (X ′′, T,F , t).

Note that by Def. 5.20 and Theorem 5.21, τ ′ ∈ XToTrace (X ′′). Let configuration
(K′′,U ′′) = Last (τ ′). Assume the new transaction t is from client cl, that is, t = t_cl.
Again by Def. 5.20 and Theorem 5.21, for any ET⊤-trace τ ∈ XToTrace (X ′),

τ = τ ′
(cl,u)−−−→ET⊤ (K′′,U ′′ [cl 7→ u])

(cl,F)−−−→ET⊤ (K′,U ′′ [cl 7→ u′])

for K′ = UpdateKV (K′′, u,F , t) and two views u, u′. The two views are defined by u =

GetView (X , T ∪ Trd) for a set of read-only transactions Trd, and u′ = GetView (X , T ′) such
that

T ′ ⊆ (AR−1
X)

?
(t) ∧

(
∃t′′. t′′ = MinSO ({t′ | t′ ∈ X ∧ (t, t′) ∈ SO}) ⇒ T ′ ⊆ VIS−1

X (t′′)
)
.

We need to prove that there exists an ET⊤-trace τ ∈ XToTrace (X ′) that is ET-trace. It
is sufficient to find two views u, u′ that satisfy U ′′(cl) v u and (K′′, u)

F−→ET (K′, u′). By
the inductive hypothesis, U ′′(cl) ⊆ VIS−1

X (t) and thus U ′′(cl) v u. Since ET is complete
with A, by Theorem 5.26, there exists two views u, u′ that (K′′, u)

F−→ET (K′, u′). Last,
by Theorem 5.26, the invariant Eq. (A.19) is preserved for the new trace τ with respect
to X ′. �

A.6 Proofs for Section 6.1 (Verification of COPS Proto-
col)

Proposition A.12 (Well-defined COPSInsert). Given a COPS store K̂ ∈ COPSKVS, a key
k ∈ Key and a version ν̂ ∈ COPSVer such that IdOf (ν̂) /∈ K̂, then the new COPS store
COPSInsert

(
K̂, k, ν̂

)
is well-formed, where the conditions are defined in Def. 6.3.

Proof. Let K′ = COPSInsert
(
K̂, k, ν̂

)
be the new store. We prove Eqs. (6.1) to (6.3) separately.

204

Chapter A. Auxiliary Proofs

(1) [Case: Eq. (6.1)] Because (r0, 0)idid for all id, and K is well-formed, then K′ satisfies
Eq. (6.1).

(2) [Case: Eq. (6.2)] Because IdOf (ν̂) /∈ K̂, hence K′ trivially satisfies Eq. (6.2).

(3) [Case: Eq. (6.3)] We only need to consider versions associated with k. The version list
before update, [ν̂0, · · · , ν̂i, ν̂i+1, · · · , ν̂n] satisfies Eq. (6.3). The new version ν̂ is inserted in
a way preserved the order: that is, [ν̂0, · · · , ν̂i, ν̂, ν̂i+1, · · · , ν̂n] where IdOf (ν̂i) v IdOf (ν̂) v
IdOf (ν̂i+1). Hence the new store K′ satisfies Eq. (6.3).

�

Theorem A.13 (Right mover: re-fetch operations). Assume a COPS trace ζ ∈ COPSTrace
that contains a re-fetch operation, (cl, r, (R, k, v) , id, û, Ref), that is interleaved by other opera-
tion, ι:

ζ = ζ ′
_−→
(
R, Û

)
, I (cl,r,(R,k,v),id,û,Ref)−−−−−−−−−−−→

(
R′, Û ′

)
, I′ ι−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′,

and
ι 6= (cl, r, (R, k′, v′) , id′, û′, Ref) ∧ ι 6= (cl, r, û, E)

where all other free variables are universally quantified. Then the re-fetch operation can be
moved to the right, that is,(

ζ ′
_−→
(
R, Û

)
, I ι−→ _ (cl,r,(R,k,v),id,û,Ref)−−−−−−−−−−−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′

)
' ζ. (A.20)

Proof. By COPSRefetch in Fig. 6.3b, any read from the second phase does not change the
store nor the context, thus

ζ = ζ ′
_−→
(
R, Û

)
, I (cl,r,(R,k,v),id,û,Ref)−−−−−−−−−−−→

(
R, Û ′

)
, I′ ι−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′.

We perform case analysis on the label ι.

(1) [Case: (cl′, r′, (W, k′, v′) , id′, û′)] We immediately know cl 6= cl′. If r 6= r′, Eq. (A.20)
trivially holds. Consider r = r′. Let K̂ = R (r) and K̂′′ = R′′(r). It is easy to see that
K̂ v K̂′′, thus by Lemma A.16, we have

ζ ′
_−→
(
R, Û

)
, I ι−→

(
R′′, Û ′′

)
, I∗ (cl,r,(R,k,v),id,û,Ref)−−−−−−−−−−−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′.

for some program I∗; this implies Eq. (A.20).

(2) [Cases: (cl′, r′, S) , (cl′, r′, P) , (cl′, r′, (R, k′, v′) , id′, û′, Opt) , (cl′, r′, (R, k′, v′) , id′, û′, Opt),
and (cl′, r′, (R, k′, v′) , id′, û′, Ref)]. First it is easy to see that cl 6= cl′; and these steps do
not change the states of the database nor the contexts. Therefore Eq. (A.20) holds for
these steps.

205

Chapter A. Auxiliary Proofs

(3) [Case: (cl′, r′, û, E)] By COPSFinish in Fig. 6.3b, it is easy to see that cl 6= cl′; and this
step does not change the states of the database. Because cl 6= cl′ the new context for cl′

will not affect the cl, thus

ζ ′
_−→
(
R, Û

)
, I ι−→

(
R, Û ′′

)
, I∗ (cl′,r′,û,E)−−−−−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′,

which implies Eq. (A.20).

(4) [Case: (r′, id)] Let K̂ = R (r) and K̂′′ = R′′(r). By COPSSync in Fig. 6.4b, It is easy
to see that K̂ v K̂′′, Û ′ = Û ′′ and I′ = I′′; thus by Lemma A.16 and the fact that
COPSSync does not rely on any context nor program, we have

ζ ′
_−→
(
R, Û

)
, I ι−→

(
R′′, Û

)
, I (cl,r,(R,k,v),id,û,Ref)−−−−−−−−−−−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′,

which implies Eq. (A.20). �

Proposition A.14 (Monotonicity of COPS replica and client). For any COPS databases R,R′,
client context environments Û , Û ′, programs I, I′ and label ι,(

R, Û
)
, I _−→∗

(
R′, Û ′

)
, I′

⇒ ∀r ∈ Dom (R) .∀K̂, K̂′ ∈ COPSKVS.∀n, n′ ∈ N.(
R (r) = (K̂, n) ∧R′(r) = (K̂′, n′) ⇒ K̂ v K̂′ ∧ n ≤ n′

)
∧ ∀cl ∈ Dom

(
Û
)
.∀û, û′ ∈ COPSCtx.(

Û (cl) = (û,_) ∧ Û ′(cl) = (û′,_) ⇒ û ⊆ û′
)
. (A.21)

Proof. We prove by induction on the length of the trace n.

[Base Case: n = 0] Eq. (A.21) is trivially true as R = R′ and Û = Û ′.

[Base Case: n > 0] Assume
(
R, Û

)
, I _−→(n−1)

(
R′′, Û ′′

)
, I′′ ι−→

(
R′, Û ′

)
, I′. By inductive hy-

pothesis, we know R (r)|0 v R′(r)|0 and R (r)|1 ≤ R′(r)|1 for r ∈ Dom (R). Consider the label
ι. If ι = (cl, r, (W, k, v) , id, û), by COPSWrite, we have R′ = R′′

[
r 7→

(
K̂∗,R′′(r)|1 + 1

)]
,

for K̂∗ = COPSInsert
(
R′′(r)|0 , k, ν̂

)
for a version ν̂ and, thus Eq. (A.21). If ι = (r, id),

by COPSSync we have R′ = R′′
[
r 7→

(
K̂∗,m

)]
such that m = Max

(
R′′(r)|1 ,m

∗) where
id = id[cl∗][r∗](m∗), and K̂′ = COPSInsert

(
R′′(r)|0 , k, ν̂

)
for a version ν̂, and, thus Eq. (A.21).

For the rest cases, they do not change any COPS store and local time; by inductive hypothesis,
Eq. (A.21) holds. �
Theorem A.15 (Left mover: out-of-order write). Assume a COPS trace ζ ∈ COPSTrace
such that

ζ = ζ ′
_−→
(
R, Û

)
, I ι−→

(
R′, Û ′

)
, I′ (cl,r,(W,k,v),id,û)−−−−−−−−−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′

206

Chapter A. Auxiliary Proofs

for a write operation (W, k, v) from a client cl with context û and a replica r. If the step, ι, from
a different client cl′ before the write operation satisfies:

(ι = (cl′, r′, (W, k′, v′) , id′, û′) ∧ (r 6= r′))

∨ (ι = (cl′, r′, (R, k′, v′) , id′, û′, Opt) ∧ (r = r′ ∧ k′ = k ⇒ id v id′))

∨ ι = (cl′, r′, (R, k′, v′) , id′, û′, Ref) ∨ ι = (cl′, r′, S)
∨ ι = (cl′, r′, P) ∨ ι = (cl′, r′, û′, E) ∨ ι = (r′, id′) ,

(A.22)

then the write operation can be moved left, that is,(
ζ ′

_−→
(
R, Û

)
, I (cl,r,(W,k,v),id,û)−−−−−−−−−→ _ ι−→

(
R′′, Û ′′

)
, I′′ ι′−→ ζ ′′

)
' ζ. (A.23)

Proof. Note that ι are all annotated with replica r′. If r 6= r′ by COPSClient in Fig. 6.4b
Eq. (A.23) trivially holds. Now consider r = r′. We prove Eq. (A.23) by case analysis on label
ι.

(1) [Case: (cl′, r, (R, k′, v′) , id′, û′, Opt)] For this case, cl and cl′ must be two distinct clients.
If k 6= k′, Eq. (A.23) trivially holds. Consider k = k′ and id v id′ Let ν̂ = (v, id, û)

and ν̂ ′ = (v′, id′, û′). Let K̂ = R (r) and K̂′′ = R′′(r). By COPSOpt in Fig. 6.3b,
K̂ = R (r) = R′(r), and ν̂ ′ = K̂

(
k,
∣∣∣K̂ (k)

∣∣∣− 1
)

. By COPSWrite in Fig. 6.2b, we know

K̂′′ = COPSInsert
(
K̂, k, ν̂ ′

)
; since id v id′, the version ν̂ is inserted in the middle of K̂ (k).

Therefore we know that the last version of K̂′′(k) is still ν̂ ′, that is, ν̂ ′ = K̂′′(k,
∣∣∣K̂′′(k)

∣∣∣−1).
This means that the write operation does not interfere with the previous optimistic read,
thus Eq. (A.23) holds.

(2) [Case: (cl′, r, (R, k′, v′) , id′, û′, Opt)] For this case, cl and cl′ must be two distinct clients.
Let ν̂ = (v, id, û) and ν̂ ′ = (v′, id′, û′). Let K̂ = R (r) and K̂′′ = R′′(r). By COP-
SRefetch in Fig. 6.3b, K̂ = R (r) = R′(r); and by COPSWrite in Fig. 6.2b,
K̂′′ = COPSInsert

(
K̂, k′, ν̂ ′

)
. It is easy to see that K̂ v K̂′′ defined in Lemma A.16.

By Lemma A.16 we know that Eq. (A.23) holds.

(3) [Cases: (cl′, r, S), (cl′, r, P) and (cl′, r, û′, E)] Given the rules presented in Fig. 6.3b, these
steps are local to the client cl′ without any interaction to the key-value store; thus
Eq. (A.23) holds.

(4) [Case: (r, id′)] A new version ν̂ ′ indexed by id′ arrives to the replica r. Let ν̂ = (v, id, û).
Let K̂ = R (r), K̂′ = R′(r) and K̂′′ = R′′(r). By COPSSync in Fig. 6.4b, we know
K̂′ = COPSInsert

(
K̂, k′, ν̂ ′

)
, K̂′′ = COPSInsert

(
K̂′, k, ν̂

)
and id 6= id′. By the definition

of COPSInsert, there exists K̂∗ such that

K̂∗ = COPSInsert
(
K̂, k, ν̂

)
∧ K̂′′ = COPSInsert

(
K̂∗, k, ν̂ ′

)
,

207

Chapter A. Auxiliary Proofs

and therefore, a new cops database R∗ such that

R∗ = R
[
r 7→ K̂∗

]
∧R′′ = R∗

[
r 7→ K̂′′

]
.

The rule COPSSync does not depend nor change the context environment, thus we have
the proof for Eq. (A.23). �

Lemma A.16 (Re-fetching version on a larger COPS store). Given two COPS stores K̂, K̂′

such K̂ v K̂′, then(
K̂, û, n

)
, read (K) : (V̂ , D, V̂ ′)

(cl,r,(R,ki,vi),idi,di,Ref)−−−−−−−−−−−−−→
(
K̂, û, n

)
, read (K) : (V̂ , D, V̂ ′′)

⇒
(
K̂′, û, n

)
, read (K) : (V̂ , D, V̂ ′)

(cl,r,(R,ki,vi),idi,di,Ref)−−−−−−−−−−−−−→
(
K̂′, û, n

)
, read (K) : (V̂ , D, V̂ ′′)

Proof. Depending on V̂|i , we have two possible cases.

(1) [Case: IdOf
(
V̂|i

)
v idi] For this case, there exists an version K̂ (ki,m) = (vi, idi, di) for

some index m. Given a new store K̂′ such that K̂ v K̂′, this version must be also included
in K̂′, thus K̂′(ki,m

′) = (vi, idi, di) for some m′; therefore we have the proof.

(2) [Case: IdOf
(
V̂|i

)
= idi] For this case, the state of K̂ is irrelevant. �

Proposition A.17 (Fresh multiple-read transaction identifiers). Given an annotated nor-
malised COPS trace ζ ∈ ANCOPSTrace, the annotated multiple-read transaction identifiers
must be fresh with respect the key being read, that is,

ζ = ζ ′
_−→
(
R, Û

)
, I

(cl,r,(R,k,v),t̂,d,Ref),t̂′
−−−−−−−−−−−−→ ζ ′′

∧ ∀r∗ ∈ COPSRep.∀cl∗ ∈ CID.∀v∗ ∈ Value.∀d∗ ∈ COPSDep.

ζ ′′ = · · ·
(cl∗,r∗,(R,k,v∗),t̂∗,d∗,Ref),t̂′′
−−−−−−−−−−−−−−−−→ · · · ⇒ t̂′ 6= t̂′′

Proof. Suppose a replica r∗, a client cl∗, a value v∗ and dependency set d∗ such that

ζ ′′ = · · ·
(cl∗,r∗,(R,k,v∗),t̂∗,d∗,Ref),t̂′′
−−−−−−−−−−−−−−−−→ · · ·.

If r 6= r∗ or cl 6= cl∗, by the definition of ANCOPSTrace (especially COPSToExt), it is trivial
that t̂ 6= t̂′′. Consider r = r∗ or cl = cl∗. Because a client must provide a unique set of key K

when calling read by the rules in Fig. 6.3b, it means that

ζ ′′ = · · · (cl,r,d′,Ref),t̂′−−−−−−−→ · · ·
(cl∗,r∗,(R,k,v∗),t̂∗,d∗,Ref),t̂′′
−−−−−−−−−−−−−−−−→ · · ·.

For this case, by the definition of ANCOPSTrace (especially COPSToExt), it must be the case
that t̂ 6= t̂′′. �

208

Chapter A. Auxiliary Proofs

Proposition A.18 (Appending write operations). Given an annotated normalised COPS trace
ζ, for every write operation, ι =

(
cl, r, (W, k, v) , t̂, d

)
, the version identifier, t̂, is strictly greater

than all version identifiers included in all replicas: that is,

ζ = ζ ′
_−→
(
R, Û

)
, I

(cl,r,(W,k,v),t̂,d)
−−−−−−−−−→

(
R′, Û ′

)
, I′ _−→ · · ·

∧ ∀r′ ∈ COPSRep.∀K̂′ ∈ COPSKVS.∀k′ ∈ Key.∀i′ ∈ N.

R (r′) = (K̂′,_) ∧ 0 ≤ i < K̂ (k′) ⇒ WriterOf
(
K̂′(k′, i′)

)
@ t̂

Proof. Suppose a replica r′ with key-value store K̂′ (R (r′) = (K̂′,_)), a key k′ and an index i′

such that 0 ≤ i < K̂ (k′). Let the t̂′ = WriterOf
(
K̂ (k′, i′)

)
. There must exist a step with label

ι′ with some client cl′ in the trace ζ ′ that committed this version:

ζ ′ = · · · ι′−→ · · · ∧ ι′ =
(
cl, r, (W, k′, v′) , t̂′, d

)
for some value v′ and dependent set d. Since an annotated normalised trace ζ is also in its
normalised form, that is, NCOPSTrace (ζ), and the new kv-store R′(r′)|0 must be a well-formed
COPS key-value store, therefore t̂′ @ t̂. �

Proposition A.19 (Well-defined COPSToKVS). Given an annotated normalised COPS trace
ζ, the kv-store K = COPSToKVS (ζ) is well-formed, that is, WfKvs (K). The kv-store contains
and only contains versions in the last configuration ((R, Û), I) = Last (ζ): that is,

∀k ∈ Key.∀i ∈ N.∀v ∈ Value.∀t̂ ∈ COPSTxID.K (k, i) = (v, t̂,_)

⇒ ∃r ∈ COPSRep.∃i′ ∈ N.∃r, n. t̂ = t̂(n,r,_)
_ R (r) (k, i′) = (v, (n, r),_), (A.24)

∀k ∈ Key.∀i ∈ N.∀v ∈ Value.∀r, n.
R (r) (k, i) = (v, (n, r),_) ⇒ ∃i′ ∈ N.∃cl.K (k, i′) = (v, t̂

(n,r,0)
cl ,_). (A.25)

Proof. We prove this by induction on the length of trace ζ.

(1) [Cases: ζ = Θ0] By the definition of COPSToKVS, the kv-store K0 = COPSToKVS (Θ0)

is trivially well-formed. By the definition of Θ0, Eqs. (A.24) and (A.25) hold.

(2) [Cases: ζ = ζ ′
ι−→
(
R, Û

)
, I] Let K′ = COPSToKVS (ζ ′); by inductive hypothesis, the

kv-store K′ is a well-formed kv-store and satisfies Eqs. (A.24) and (A.25). Consider label
ι.

(i) [Cases: ι = (cl, r, (W, k, v) , (n, r), û) , t̂(n,r,0)cl] By the definition of COPSToKVS, the
new kv-store K = COPSToKVS (ζ) is given by K = K′

[
k 7→ K′(k) ::

[
(v, t̂

(n,r,0)
cl , ∅)

]]
.

By COPSWrite, the transaction identifier for the new version must be fresh, that
is, t̂ /∈ K, which implies WfKvs (K). Let (R, Û) = Last (ζ) and (K̂,_) = R (r);

209

Chapter A. Auxiliary Proofs

The new version must be included in K̂: K̂
(
k,
∣∣∣K̂ (k)

∣∣∣− 1
)
= (v, (n, r), d) for some

dependent set d, which means Eqs. (A.24) and (A.25).

(ii) [Cases: ι =
((

cl, r, (R, k, v) , t̂, û,_
)
, t̂

(n,r,m)
cl

)
] By the definition of COPSToKVS, the

new kv-store K = COPSToKVS (ζ) is given by:

K = K′
[
k 7→ K′(k)

[
i 7→

(
v, t̂, T ∪ t̂

(n,r,m)
cl

)]]
and K′(k)|i = (v, t̂, T) for some i, v, T . By Prop. A.17, the transaction identifier
t̂
(n,r,m)
cl must be fresh with respect to the key k, that is t̂(n,r,m)

cl /∈ K′(k, i′) for all index
i′ in range. This implies WfKvs (K). There is no new version. Therefore the new
kv-store K satisfies Eqs. (A.24) and (A.25).

(iii) [Cases: other ι] By the definition of COPSToKVS, the new kv-store is given by:

K = COPSToKVS (ζ)

and by inductive hypothesis it is a well-formed kv-store and satisfies Eqs. (A.24)
and (A.25). �

Proof sketch. It is easy to prove WfKvs (K) and Eqs. (A.24) and (A.25) by induction on the
trace ζ. Note that both single-write and multiple-read transaction identifiers are unique,
(Prop. A.17), which is the key to prove WfKvs (K). Eqs. (A.24) and (A.25) can be proven
by the definition of COPSToKVS, since the function only replays all transactions in the COPS
trace. The full detail is given in appendix A.6 on page 209. �

Proposition A.20 (Well-defined COPSViews). Assume an annotated normalised COPS trace
ζ and the last configuration ((R, Û),_) = Last (ζ). Let K = COPSToKVS (ζ) and U =

COPSViews
(
R, Û

)
. Then every view in U is a well-formed view on K: that is, U (cl) ∈

ViewOn (K) for all clients cl ∈ Dom (U).

Proof. Assume a client cl and the view u = U (cl) for the client cl. By the definition of
COPSViews, Eqs. (4.5) and (4.6) are trivially true. Consider keys k, k′ and indices i, i′ such
that i ∈ u (k) and WriterOf (K (k, i)) = WriterOf (K (k′, i′)). By Eq. (6.2) k = k′ and i = i′

therefore Eq. (4.7) holds. �

Theorem 6.19 (COPS causal consistency). Given an annotated normalised COPS trace ζ ∈
ANCOPSTrace, the kv-store traces, η = COPSToKVTrace (ζ), can be obtained under ETCC.

210

Chapter A. Auxiliary Proofs

Proof. Recall the definition of CC that for kv-stores K,K′, views u, u′ and fingerprint F ,

u v u′ (A.26)

∀t ∈ K′ \ K.∀k ∈ Key.∀i ∈ N.WriterOf (K′(k, i))
SO?

−−→ t ⇒ i ∈ u′(k) (A.27)
PreClosed (K, u,WRK ∪ SO) (A.28)

We first show that every step in the trace η satisfies Eq. (A.26); then we show that every step
preserves Eqs. (A.27) and (A.28) for all views included in the view environment. We now prove
by induction on the length of the trace η.

(1) [Base Case: η = (K0,U0, E) , P] By the definition of K0 and U0, It is trivial that Eqs. (A.27)
and (A.28) hold.

(2) [Inductive Case: η = η′
ι−→⊤ (K,U , E) , P] Assume that η = COPSToKVTrace (ζ) and CC-

trace η′ = COPSToKVTrace (ζ ′). Consider the label ι.

(i) [Case: ι = (cl, u, {(W, k, v)})] By the definition of COPSToKVTrace, traces ζ, ζ ′ sat-
isfy the following property

u = COPSViews (ζ ′) (cl) ∧ ζ = ζ ′
(cl,r,(W,k,v),(n,r),d),t̂(n,r,0)

cl−−−−−−−−−−−−−−−→
(
R, Û

)
, I

∧ Last (ζ ′) = (R′, Û ′)

∧ Û ′ = Û
[
cl 7→

(
Û (cl)|0 ∪

{(
k, t̂

(n,r,0)
cl

)}
, r
)]

(A.29)

Let u′ = COPSViews (ζ) (cl) = U (cl) be the view after update. By Eq. (A.29) and
the definition of COPSViews, the view must increase as u v u′ and thus Eq. (A.26);
also the new view u′ must contains the new version written by t̂

(n,r,0)
cl and thus

Eq. (A.27). By the definition of COPSViews and Prop. 6.20, it follows Eq. (A.28).

(ii) [Case: ι = (cl, u, {(R, k0, v0) , · · · , (R, kn, vn)})] By the definition of COPSToKVTrace,
traces ζ, ζ ′ satisfy the following property

u = U (cl)

∧ ζ = ζ ′
(cl,r,(R,k0,v0),id0,(n0,r0),Ref),t̂−−−−−−−−−−−−−−−−−→ · · · (cl,r,(R,km,vm),(nm,rm),ûn,Ref),t̂−−−−−−−−−−−−−−−−−−−→

ζ = · · · (cl,r,û′,E),t̂−−−−−−→
(
R, Û

)
, I

∧ Last (ζ ′) = (R′, Û ′) ∧ Û ′ = Û
[
cl 7→

(
Û (cl)|0 ∪ û′, r

)]
(A.30)

By Eq. (A.30) and the definition of COPSViews, the view before and after read
are the same view u and thus Eq. (A.26); since there is no new version and view
cannot lost any version, thus Eq. (A.27) holds. By rule COPSFinish, it follows
that (ki, (ni, ri)) ∈ û′ for index i such that 0 ≤ i ≤ m. Then by Prop. 6.20, for any

211

Chapter A. Auxiliary Proofs

k, j,

WriterOf (K (k, j))
(WRK∪SO)+−−−−−−−→ t̂

(ni,ri,0)
cli

⇒ j ∈ u (k) , (A.31)

Given above, Eq. (A.31), the closure property Eq. (A.28) holds. �

A.7 Proofs for Section 6.2 (Verification of Clock-SI Pro-
tocol)

Proposition 6.35 (Right mover: Clock-SI internal read and write steps). Assume a Clock-SI
trace ϕ ∈ AClockTrace, and two adjacent transitions with labels ι, ι′ such that

ϕ = ϕ′ ι′′−→
(
R, Ũ , E

)
, I ι−→

(
R′, Ũ ′, E ′

)
, I′ ι′−→ ϕ′′

∧ (ι = (cl, r, (W, k, v) , n, n′′) ∨ ι = (cl, r, (R, k, v) , n, n′′))

∧ ∀l, k′, v′, n′, n′′′. ι′ 6= (cl, r, (l, k′, v′), n′, n′′′) ∧ ι′ 6= (cl, r, n′′′, E)

where the rest free variables are universally quantified. The transition labelled by ι can be moved
to the right, that is, there exists a new equivalent trace ϕ1 such that

ϕ1 = ϕ′ ι′′−→ _ ι′−→ _ ι−→ ϕ′′ ∧ ϕ ' ϕ1.

Proof. Assume a trace ϕ such that ϕ = ϕ′ ι′′−→
(
R, Ũ , E

)
, I ι−→

(
R′, Ũ ′, E ′

)
, I′ ι′−→ ϕ′′ and assume

ι such that ι = (cl, r, (W, k, v) , n) ∨ ι = (cl, r, (R, k, v) , n) where all other free variables are
universal quantified. By the CSIWrite, CSIReadL and CSIReadS rules, thus there exists
a stack s and a Clock-SI runtime command R,

R = R′ ∧ Ũ = Ũ ′ ∧ E ′ = E [cl 7→ s] ∧ P′ = P [cl 7→ R] .

This means that ϕ = ϕ′ ι′′−→
(
R, Ũ , E

)
, I ι−→

(
R, Ũ , E [cl 7→ s]

)
, I [cl 7→ R] ι′−→ ϕ′′. We perform

case analysis on ι′.

(1) [Case: ι′ = (r′, cl′, n′, S)] We immediately have cl 6= cl′. By CSISnapshot rule, there
exists a Clock-SI runtime command R′ such that(

R, Ũ , E [cl 7→ s]
)
, I [cl 7→ R] (r′,cl′,n′,S)−−−−−−→

(
R, Ũ , E [cl 7→ s]

)
, I [cl 7→ R] [cl′ 7→ R′].

Note that I [cl 7→ R] [cl′ 7→ R′] = I [cl′ 7→ R′] [cl 7→ R]. This means that

ϕ '
(
ϕ′ ι′′−→

(
R, Ũ , E

)
, I ι′−→

(
R, Ũ , E

)
, I [cl′ 7→ R′]

ι−→ ϕ′′
)
.

212

Chapter A. Auxiliary Proofs

(2) [Case: ι′ = (r′, cl′, (l′, k′, v′), n′)] We immediately have cl 6= cl′ and l ∈ {W, R, P}. By
CSIWrite (for W), CSIReadL, CSIReadS (for R) and CSIPrepare (for P) rules,
there exists a stack s′ and a Clock-SI runtime command R′ such that(

R, Ũ , E [cl 7→ s]
)
, I [cl 7→ R] (r′,cl′,(l′,k′,v′),n′)−−−−−−−−−−→(

R, Ũ , E [cl 7→ s] [cl′ 7→ s′]
)
, I [cl 7→ R] [cl′ 7→ R′].

Note that

E [cl 7→ s] [cl′ 7→ s′] = E [cl′ 7→ s′] [cl 7→ s] ∧ I [cl 7→ R] [cl′ 7→ R′] = I [cl′ 7→ R′] [cl 7→ R] .

This means that

ϕ '
(
ϕ′ ι′′−→

(
R, Ũ , E

)
, I ι′−→

(
R, Ũ , E [cl′ 7→ s′]

)
, I [cl′ 7→ R′]

ι−→ ϕ′′
)
.

(3) [Case: ι′ = (r′, cl′, n′, E)] We immediately have cl 6= cl′. By CSICommit rule there exists
a new Clock-SI database R′, and a Clock-SI runtime command R′ such that

(
R, Ũ , E [cl 7→ s]

)
, I [cl 7→ R] (r′,cl′,(l′,k′,v′),n′)−−−−−−−−−−→(

R′, Ũ [cl′ 7→ n′] , E [cl 7→ s]
)
, I [cl 7→ R] [cl′ 7→ R′] ∧R v R′.

Note that I [cl 7→ R] [cl′ 7→ R′] = I [cl′ 7→ R′] [cl 7→ R]. Then by R v R′ and Prop. A.21,
the transition labelled by ι can be proceeded on R. This means that

ϕ '
(
ϕ′ ι′′−→

(
R, Ũ , E

)
, I ι′−→

(
R′, Ũ [cl′ 7→ n′] , E

)
, I [cl′ 7→ R′]

ι−→ ϕ′′
)
. �

Proposition A.21 (Read and write steps on a larger Clock-SI database). Assume a read or
write transition

(R, n, s) , R ι−→ (R, n′, s′) , R′ ∧ (ι = (cl, r, (W, k, v) , n′′) ∨ ι = (cl, r, (R, k, v) , n′′)) .

Given a Clock-SI database R′ such that R v R′, the same transition can be proceeded on R′,
that is,

(R, n, s) , R ι−→ (R, n′, s′) , R′

Proof. We consider rules CSIWrite, CSIReadL and CSIReadS separately.

(1) [Cases: CSIWrite and CSIReadL] Given the premise of CSIWrite and CSIReadL,
these two transitions do not depend on the state of R.

(2) [Case: CSIReadS] We have ι = (cl, r, (R, k, v) , n) for some r, cl, k, v, n. Let r′ be the
shard defined by r′ = ShardOfR (k) and (K̃, n1) = R (r′). By the premise of CSIReadS,

213

Chapter A. Auxiliary Proofs

the shard local time must be greater than the snapshot time, that is n1 > n′′. Let Ṽ ={
ν̃
∣∣∣ ∃i. K̃ (k, i) = ν̃ ∧ TimeOf (ν̃) ≤ n′′

}
be the set of versions of k that have time-stamp

smaller than the snapshot time n′′. By the premise of CSIReadS, (kv,_) = Max
(
Ṽ
)

.
Because the hypothesis that R v R′. Let TupleK̃′, n2 = R′(r′). We have K̃ v K̃′ and
n1 ≤ n2. Therefore n2 > n′′ and Ṽ =

{
ν̃
∣∣∣ ∃i. K̃′(k, i) = ν̃ ∧ TimeOf (ν̃) ≤ n

}
, which

means the same transition can be proceeded on R′. In other words,

(R, n, s) , R ι−→ (R, n′, s′) , R′ �

Proposition 6.36 (Left mover: Clock-SI preparation and commit steps). Assume a Clock-SI
trace ϕ ∈ AClockTrace, two transitions with labels ι, ι′, and a time-tick trace segment ϕ1 such
that

ϕ = ϕ′ ι′′−→
(
R, Ũ , E

)
, I ι−→ ϕ2

ι′−→ ϕ′′

∧ TickAndSnapshot (ϕ1, r) ∧ (ι′ = (cl, r, (P, k, v) , n′′, n) ∨ ι′ = (cl, r, n, E))

∧ ∃cl′, r′, r′′, l′, k′, v′, n′, n1. cl 6= cl′ ∧ r 6= r′′ ∧ n1 ≥ n

∧ (ι = (cl′, r′, (l′, k′, v′), n′, n1) ∨ ι = (cl′, r′′, n′, S) ∨ ι = (cl′, r′, n′, E) ∨ ι = (r′′, n′))

where the rest free variables are universally quantified. The transition labelled by ι, together
with the time-tick trace segment ϕ1, can be moved to the left, that is, there exists a new time-tick
trace segment ϕ2, a new label ι1 and a new equivalent trace such that

TickAndSnapshot (ϕ2, r) ∧
(
ϕ′ ι′′−→ ϕ2

ι′−→ _ ι1−→ ϕ′′
)
' ϕ. (A.12)

Proof. Assume a trace ϕ = ϕ′ ι′′−→
(
R, Ũ , E

)
, I ι−→ ϕ∗ ι′−→ ϕ′′. Assume ι′ = (cl, r, (P, k, v) , n′′, n)

or ι′ = (cl, r, n, E). Let
((

R′, Ũ ′
)
, E ′
)
= ϕ′′

|0 be the first state of the trace segment ϕ′′. Let

(K̃, n∗∗) = R (r) and
(
K̃′, n∗∗∗

)
= R (r′). By CSIPrepare and CSICommit,

K̃ v K̃′ ∧ n∗∗ < n∗∗∗ ∧R′ = R
[
r 7→ (K̃′, n∗∗∗)

]
∧ Ũ v Ũ ′ (A.32)

We perform case analysis on the label ι.

(1) [Case: ι = (cl′, r′, n′, S)] We immediately have r 6= r′ and cl 6= cl′. By CSISnapshot,
the transition labelled by ι only depends on the state of r, that is, R (r′) = (_, n′). This
transition also does not change the state of the local time. By Eq. (A.32), the state of r
remain unchanged in R′, that is, R (r′) = R′(r′). Therefore, there exists a new time-tick
trace segment ϕ∗∗ and a runtime program I′′ such that(

ϕ′ ι′′−→ ϕ∗∗ ι′−→
(
R′, Ũ ′, E ′

)
, I′′ ι−→ ϕ′′

)
' ϕ

214

Chapter A. Auxiliary Proofs

where ϕ∗∗ a trace contains the same steps as ϕ∗.

(2) [Case: ι = (cl′, r′, (R, k′, v′) , n′) or ι = (cl′, r′, (W, k′, v′) , n′)] We immediately have cl 6=
cl′. Note that any start label in the trace segment ϕ∗ cannot come from the client
cl′, because the transaction corresponds to the label ι have not finish. Therefore, by
Prop. A.21, we move ι to the right until we have the proof.

(3) [Case: ι = (cl′, r′, (P, k′, v′) , n′, n∗)] We immediately have cl 6= cl′ and n∗ ≥ n. There are
two cases: r = r′ or r 6= r′.

(i) [Case: r = r′] There are two cases: ι′ = (cl, r, (P, k, v) , n′′, n) or ι′ = (cl, r, n, E).

(a) [Case: ι′ = (cl, r, (P, k, v) , n′′, n)] Note that because both ι and ι′ operate on the
same shard r, and by CSIPrepare that there must be no concurrent writes on
the keys k and k′ until the preparation time n′′ and n′ respectively (modelled by
the premise ∀i. 0 ≤ i < n ⇒ TimeOf

(
Ṽ(i)

)
< n′ in CSICommit), then k 6= k′.

These two preparation steps, ι and ι′, also stop the preparation step from other
transactions that want to write to keys k and k′ in between n′′ and n, and
between n′ and n∗ respectively. Now consider the first preparation step ι. It is
safe to advanced the preparation time of this transition up to the actual commit
time n∗. Recall that: A. by the hypothesis, we have n ≤ n∗; B. any preparation
steps must happen before the actual commit, that is, n′′ ≤ n and n′ ≤ n∗

respectively; C. for the same shard, the time must monotonically increase, thus
n′ ≤ n′′. Therefore, for the two preparation steps in the original trace, we have

n′ ≤ n′′ ≤ n ≤ n∗.

This means it is allowed to delay the preparation step ι after ι′, even thought the
step ι might be assigned a larger time as n′′. Let ι∗ = (cl′, r′, (P, k′, v′) , n′′, n∗)

Therefore, there exists a new trace segment ϕ∗∗ such that:(
ϕ′ ι′′−→ ϕ∗∗ ι′−→

(
R′, Ũ ′, E ′

)
, I′′ ι∗−→ ϕ′′

)
' ϕ.

(b) [Case: ι′ = (cl, r, n, E)] Follow a similar argument as the previous case, we have

n′ ≤ n ≤ n∗.

Let ι∗ = (cl′, r′, (P, k′, v′) , n′′, n∗) Therefore, there exists a new trace segment
ϕ∗∗ such that: (

ϕ′ ι′′−→ ϕ∗∗ ι′−→
(
R′, Ũ ′, E ′

)
, I′′ ι∗−→ ϕ′′

)
' ϕ.

(ii) [Case: r 6= r′] Since steps from ϕ∗ and ι operates on different shard, it is trivial to
see that there exists a new time-tick trace segment ϕ∗∗ and a runtime program I′′

215

Chapter A. Auxiliary Proofs

such that (
ϕ′ ι′′−→ ϕ∗∗ ι′−→

(
R′, Ũ ′, E ′

)
, I′′ ι−→ ϕ′′

)
' ϕ. �

Proposition A.22 (Clock-SI unique transactional identifiers). Assume an annotated nor-
malised Clock-SI trace ϕ, and the kv-store trace induced by the Clock-SI trace η, defined by
η = ClockToKVTrace (ϕ). Let (R, Ũ , E , I) = Last (ϕ) and (K,U , E , P) = Last (η). The transac-
tion identifiers in K are unique in that:

∧ ∀ϕ′ ∈ ϕ.∀cl, r.
(

CLOCKAtomic (ϕ′, cl, r, n) ⇒ t̃
(n,_)
cl ∈ K

)
(A.33)

∧ ∀t̃(n,m)
cl ∈ K. ∃ϕ′ ∈ ϕ. ∃cl, r.

(CLOCKAtomic (ϕ′, cl, r, n) ∧ ∀ϕ′′ ∈ ϕ. (CLOCKAtomic (ϕ′′, cl, r, n) ⇒ ϕ′ = ϕ′′)) . (A.34)

Proof. By the definition of ClockToKVTrace, it is easy to see that Eq. (A.33) and

∀t̃(n,m)
cl ∈ K.∃ϕ′ ∈ ϕ.∃cl, r. CLOCKAtomic (ϕ′, cl, r, n) .

We now prove that

∀t̃(n,m)
cl ∈ K.∀ϕ′, ϕ′′ ∈ ϕ.∀cl, r. CLOCKAtomic (ϕ′, cl, r, n) ∧ CLOCKAtomic (ϕ′′, cl, r, n) ⇒ ϕ′ = ϕ′′.

The above can be derived from the follows,

∀ϕ′, ϕ′′ ∈ ϕ.∀cl ∈ CID. ∀r, r′ ∈ ClockShard. ∀n, n′ ∈ N.
CLOCKAtomic (ϕ′, cl, r, n) ∧ CLOCKAtomic (ϕ′′, cl, r′, n′)

ϕ = · · · _−→ ϕ′ _−→ · · · _−→ ϕ′ _−→ · · · ⇒ n < n′.

The above can be directly derived by Lemma A.23: the snapshot time must be strictly greater
then the client local time, and the commit time must be greater or equal to the snapshot time.
Therefore, Eq. (A.34) holds. �

Lemma A.23 (Monotonic Clock-SI client local times). Client local times monotonically in-
creases: given Clock-SI databases R,R′, local time environments Ũ , Ũ ′, local stack environments
E , E ′, runtime programs I, I′, and label ι,(

R, Ũ , E
)
, I ι−→

(
R′, Ũ ′, E ′

)
, I′ ∧ ∀cl ∈ Dom

(
Ũ
)
.∀r ∈ Dom (R) .∀n. Ũ (cl) ≤ Ũ ′(cl)

∧
(
ι = (cl, r, n, S) ⇒ Ũ (cl) < Ũ ′(cl).

)
Proof. We perform case analysis on the label ι.

216

Chapter A. Auxiliary Proofs

(1) [Case: ι = (cl, r, n, S)] By the premise of CSISnapshot, we have Ũ (cl) < Ũ ′(cl). Other
clients cl′ such that cl′ 6= cl, remains unchanged, therefore Ũ (cl′) = Ũ ′(cl′).

(2) [Case: ι = (cl, r, (l, k, v), n) with l ∈ {W, R, P}] By CSIWrite, CSIReadL, CSIReadS
and CSIPrepare, the client local environment remains unchanged, therefore Ũ (cl) =

Ũ ′(cl) for all clients cl.

(3) [Case: ι = (cl, r, n, E) or ι = (r, n)] By CSICommit and CSITick, the client local envi-
ronment remains unchanged, therefore Ũ (cl) = Ũ ′(cl) for all clients cl. �

Proposition A.24 (Well-formed Clock-SI views). Assume an annotated normalised Clock-SI
trace ϕ, and the kv-store trace induced by the Clock-SI trace η = ClockToKVTrace (ϕ). Let
(R, Ũ , E , I) = Last (ϕ) and (K,U , E , P) = Last (η). The views in U are well-formed:

∀cl ∈ Dom (U) . WfView (K,U (cl)) .

Proof. By the definition of ClockTrace, all keys in all shards are initialised at time ZERO,
which implies Eq. (4.5) in Def. 4.6. Assume a client cl and its view u = U (cl). By the definition
of ClockView that u contains transactions committed before the client local time Ũ (cl), it is
easy to see that the view is in range, defined in Eq. (4.6) in Def. 4.6. Because new versions of
a transaction must commit at the same time. This view includes all or none of the effect of
transactions defined in Eq. (4.7) in Def. 4.6. �

Proposition A.25 (Well-formed Clock-SI fingerprints). Assume an atomic trace segment ϕ

such that: for some R, Ũ , E , I, T,B, n, r, C,

CLOCKAtomic (ϕ, cl, r) ∧ (R, Ũ , E , I) = ϕ|0 ∧ I(cl) = [T]∅,Bn,r ; C. (A.35)

Then, the fingerprint F = ClockFp (∅, ϕ) satisfies the follows: for some R′, Ũ ′, E ′, I′, T′,B′, n, r, C,

(R′, Ũ ′, E ′, I′) = Last (ϕ) ∧ I(cl) = [T′]
F ,B′

n,r ; C. (A.36)

Proof. Fix the initial fingerprint F , we prove by induction on the length of trace ϕ.

(1) [Base Case: ϕ = ∅] By the definition, we have ClockStaticProg (∅, ϕ) = ∅. It is trivial that
∅ is a well-formed fingerprint and Eq. (A.36) holds.

(2) [Inductive Case: ϕ = ϕ′ ι−→
(
R′, Ũ ′, E ′

)
, I′] Given the client cl, assume the fingerprint F ′

such that
(R, Ũ , E , I) = Last (ϕ′) ∧ I(cl) = [T]F

′,B
n,r ; C.

and assume fingerprint F ′′ such that

I′(cl) = [T′]
F ′′,B′

n,r ; C

217

Chapter A. Auxiliary Proofs

where the free variables are existentially quantified. By the inductive hypothesis, we
immediately have ClockStaticProg (F , ϕ′) = F ′. We perform case analysis on the label ι.

(i) [Case: ι = (cl, r, (W, k, v) , n, n′)] By the rule CSIWrite, we have F ′′ = F ′<C(W, k, v).
By the definition of ClockStaticProg, we have

ClockStaticProg (F , ϕ) = ClockStaticProg (F , ϕ′)<C (W, k, v) = F ′ <C (W, k, v) = F ′′

which implies Eq. (A.36).

(ii) [Case: ι = (cl, r, (R, k, v) , n, n′)] Consider if F ′ contains an entry for the key k, which
corresponds to the two rules CSIReadL and CSIReadS.

(a) [Case: CSIReadL] In this case, we have (l, k, v) ∈ F ′ for some l ∈ {W, R} and
value v. By the premise of CSIReadL, we have F ′ = F ′′. By the definition of
ClockStaticProg, we have

ClockStaticProg (F , ϕ) = ClockStaticProg (F , ϕ′)<C(R, k, v) = F ′<C(R, k, v) = F ′′

which implies Eq. (A.36).
(b) [Case: CSIReadS] In this case, we have (l, k, v) /∈ F ′ for all l ∈ {W, R} and

value v. By the premise of CSIReadL, we have F ′′ = F ′ <C (R, k, v). By the
definition of ClockStaticProg, we have

ClockStaticProg (F , ϕ) = ClockStaticProg (F , ϕ′)<C(R, k, v) = F ′<C(R, k, v) = F ′′

which implies Eq. (A.36). �

Theorem 6.39 (Well-formed Clock-SI centralised kv-store). Assume an annotate normalised
Clock-SI trace ϕ and the kv-store trace induced by the Clock-SI trace η = ClockToKVTrace (ϕ).
Let (K,U , E , P) = Last (η) and (R, Ũ , E , I) = Last (ϕ). The final kv-store K is well-formed, and
K only contains versions that exist in R, and vice versa, that is,

∀k, i, v, cl, n,m, T.K (k, i) = (v, t̃
(n,m)
cl , T) ⇒ ∃r, K̃, i′.

r = ShardOfR (k) ∧ (K̃,_) = R (r) ∧ K̃ (k, i′) = (v, n,_), (A.13)

∀k, r, K̃, i, v, n. r = ShardOfR (k) ∧ (K̃,_) = R (r) ∧ K̃ (k, i) = (v, n,_) ⇒
∃i′, cl,m, T.K (k, i) = (v, t̃

(n,m)
cl , T). (A.14)

Proof. We prove by induction on Clock-SI trace ϕ.

(1) [Base Case: ϕ =
(
R0, Ẽ0, E0

)
, P0] By the definition of ClockToKVTrace, we know that

η = (K0,U0, E0) , P0. It is trivial that the initial kv-store K0 is well-formed, and R0 and
K0 satisfy Eqs. (6.13) and (6.14).

218

Chapter A. Auxiliary Proofs

(2) [Inductive Case: ϕ = ϕ′ ι−→ ϕ′′ ι′−→
(
R′′, Ũ ′′, E ′′

)
, I′′] Let (R′, Ũ ′, E ′, I) = Last (ϕ′) and

η′ = ClockToKVTrace (ϕ′). By inductive hypothesis, the final kv-store K′ such that
(K′,U ′,_,_) = Last (η′), is well-formed, and R′ and K′ satisfy Eqs. (6.13) and (6.14).
Now let consider the next step: there are two possible cases for ϕ′′.

(i) [Cases: ι = (cl, r, n, S) or ι = (r, n), and both with ϕ′′ = ∅] By the definition of
ClockToKVTrace, ClockToKVTrace (ϕ) = ClockToKVTrace (ϕ′), and by inductive hy-
pothesis, we have the proof.

(ii) [Cases: ι = (cl, r, (l, k, v), n, n)] Let ϕ∗ = Last (ϕ) ι−→ ϕ′ ι′−→
(
R′′, Ũ ′′, E ′′

)
, I′′. In this

case, we have CLOCKAtomic (ϕ∗, cl, r, n). Let u = ClockView (K′, n) be the view and
F = ClockFp (∅, ϕ∗) be the fingerprint. By the definition of η = ClockToKVTrace (ϕ),
we have

η = η′
(cl,u,F)−−−−→ET (K′′,U ′ [cl 7→ u′] , E ′′) ,ClockStaticProg (I)

where K′′ = UpdateKV
(
K, u,F , t̃

(n,m)
cl

)
and u = ClockView (K′′, n). Note that we

have the following results:

(a) by inductive hypothesis, the kv-store K′′ is well-formed;
(b) by Prop. A.24, the pre-view u is well-formed on K′′;
(c) by Prop. A.25, the fingerprint F is well-formed fingerprint; and
(d) by Prop. A.22, the transaction identifier t̃

(n,m)
cl must be a unique transaction

identifier and by Lemma A.23, t̃(n,m)
cl ∈ NextTxID (K, cl).

Given above, by Theorem 4.21, we have that K′′ = UpdateKV
(
K, u,F , t̃

(n,m)
cl

)
is

well-formed.
Now we prove Eqs. (6.13) and (6.14). Note that K′ and R′ satisfy Eqs. (6.13)
and (6.14), Consider the new versions in K′′. Take a write operation such that
(W, k, v) ∈ F . This means that, if and only if, K′′(k, |K′′(k)| − 1) = (v, t̃

(n,m)
cl , ∅).

By definition of F = ClockFp (∅, ϕ∗), if and only if, there exists two transitions,
(cl, r, (W, k, v) , n, n) and (cl, r, (W, k, v) , n′, n) for some preparation time n′ such n′ >

n, in the trace ϕ∗. By the definition of CSIPrepare and CSICommit, if and only
if, we have K̃′′(k,

∣∣∣K̃′′(k)
∣∣∣− 1) = (v, n, committed) for (K̃′′,_) = R′′(ShardOfR (k)).

Thus, Eqs. (6.13) and (6.14) hold. �

Theorem 6.40 (Clock-SI traces satisfying snapshot isolation). Given an annotated normalise
Clock-SI trace ϕ, the kv-store trace induced by the Clock-SI trace η = ClockToKVTrace (ϕ) is a
trace that can be obtained with the execution test for SI.

Proof. Given a normalised Clock-SI trace ϕ, by Theorem 6.39, the induced kv-store trace
η = ClockToKVTrace (ϕ) is a trace that can be obtained under ET⊤. We prove that every
transition in the trace η satisfies the constrains of ETPSI by induction on ϕ.

219

Chapter A. Auxiliary Proofs

(1) [Base Case: ϕ =
(
R0, Ẽ0, E0

)
, P0] By the definition of ClockToKVTrace, we know that

η = (K0,U0, E0) , P0, and there is nothing to prove since no transition has been made.

(2) [Inductive Case: ϕ = ϕ′ ι−→ ϕ′′ ι′−→
(
R′′, Ũ ′′, E ′′

)
, I′′] If ι = (r, n) or ι = (cl, r, n, S), by

the definition of ClockToKVTrace, we have ClockToKVTrace (ϕ) = ClockToKVTrace (ϕ′),
and thus by inductive hypothesis, we have the proof. Now consider

ϕ = ϕ′ ι−→ ϕ′′ ι′−→
(
R′′, Ũ ′′, E ′′

)
, I′′

∧ ι = (cl, r, (l, k, v),m, n) ∧ l ∈ {R, W} ∧ ι′ = (cl, r, n, E)

Let ϕ∗ = Last (ϕ) ι−→ ϕ′ ι′−→
(
R′′, Ũ ′′, E ′′

)
, I′′. Let η′ = ClockToKVTrace (ϕ′) and (K′,U ′,

,) = Last (η′). By the definition of ClockToKVTrace, we have

ClockToKVTrace (ϕ) = η′
(cl,u,F)−−−−→⊤ (K′′,U ′ [cl 7→ u′] , E ′′) , P′′,

where

F = ClockFp (∅, ϕ∗) ∧ u = ClockView (K′, n)

∧ K′′ = UpdateKV
(
K′, u,F , t̃

(n,m)
cl

)
∧ u′ = ClockView (K′′, n) ∧ P′ = ClockStaticProg (I) .

Note that in the proof we call n as the snapshot time and n as the commit time. By the
definition of PSI, we need to prove the following results:

u v u′ (A.37)

∀t ∈ K′′ \ K′.∀k ∈ Key.∀i ∈ N.WriterOf (K′′(k, i))
SO?

−−→ t ⇒ i ∈ u′(k) (A.38)

PreClosed
(
K′, u,

(
(WRK′ ∪ SO ∪ WWK′)+;RWK′

?
)∗) (A.39)

PreClosed

K, u,
⋃

(W,k,_)∈F

WW−1
K′ (k)

 (A.40)

We prove Eqs. (A.37) to (A.40) separately.

(i) [Case: Eq. (A.37)] By Lemma A.23, we have the commit time n is greater or equal
to the snapshot time m. This means that m ≤ n and thus u = ClockView (K′,m) v
ClockView (K′′, n) = u′.

(ii) [Case: Eq. (A.38)] Consider any write operation (W, k, v) ∈ F . By CSIPrepare,
CSICommit and the definition of annotated Clock-SI traces, AClockTrace, there
must exist a write step of the form (cl, r, (W, k, v) ,m, n) in the Clock-SI trace segment
ϕ′ such that m ≤ n. Recall that K′′ = UpdateKV (K′, u,F , tn,mcl), thus we know that

K′′(k, |K′(k)| − 1) = (v, tn,mcl , ∅).

220

Chapter A. Auxiliary Proofs

By the definition of u′ = ClockView (K′′, n), we have (|K′′(k)| − 1) ∈ u′(k).

(iii) [Case: Eq. (A.39)] We prove the correspondence between the four relations, WR,
WW,RW and SO, with respect to the snapshot and commit times. Let consider two
transactions tn

′,m′

cl′
, tn

′′,m′′

cl′′
that accessed key key in K′. Note that tn

′,m′

cl′
, tn

′′,m′′

cl′′
might

be the writers or the readers of some versions. By Theorem 6.39, there must exist
read or write steps that corresponds to tn

′,m′

cl′
, tn

′′,m′′

cl′′
in the trace ϕ′. Without losing

generality, we assume the steps for tn
′,m′

cl′
appear before the steps for tn

′′,m′′

cl′′
:

ϕ′ = · · · (cl,r,(l′,k,v′),m′,n′)−−−−−−−−−−−→ · · · (cl,r,(l′′,k,v′′),m′′,n′′)−−−−−−−−−−−−→ · · · ∧ l′, l′′ ∈ {W, R}

Given that the snapshot time m of the new transaction tn,mcl , assume that n′′ < m.
This means that tn,mcl observes tn

′′,m′′

cl′′
. Now we prove that tn,mcl also observes tn

′,m′

cl′

for the following cases.

(a) [Case: (tn
′,m′

cl′
, tn

′′,m′′

cl′′
) ∈ WRK′ (k)] This means cl′′ read a version written by cl′:

there exists an index i such that

tn
′,m′

cl′
= WriterOf (K′(k, i)) ∧ tn

′′,m′′

cl′′
∈ ReadersOf (K′(k, i)) .

We then have l′ = W and ′′ = R. By Lemma A.26 cl′′ must have a snapshot time
m′′ greater or equal to the commit time n′, and then by Lemma A.23, we have
n′ < n′′. In other words,

(tn
′,m′

cl′
, tn

′′,m′′

cl′′
) ∈ WRK′ ⇒ n′ < m′′ ≤ n′′. (A.41)

(b) [Case: (tn
′,m′

cl′
, tn

′′,m′′

cl′′
) ∈ WWK′ (k)] This means cl′′ write a new version for k after

the version written by cl′:

tn
′,m′

cl′
= WriterOf (K′(k, i)) ∧ tn

′′,m′′

cl′′
∈ WriterOf (K′(k, i′)) i < i′

The transaction tn
′′,m′′

cl′′
commits after tn

′,m′

cl′
in the kv-store trace η′, thus in the

Clock-SI trace ϕ′. By CSIPrepare rule, when cl′′ prepares the new version,
there must be no version that commit after the snapshot time of cl′′, which
means

(tn
′,m′

cl′
, tn

′′,m′′

cl′′
) ∈ WWK ⇒ n′ < m′′ ≤ n′′. (A.42)

(c) [Case: (tn
′,m′

cl′
, tn

′′,m′′

cl′
) ∈ SO] Because the local times for Clock-SI clients mono-

tonically increase, we know that

(tn
′,m′

cl′
, tn

′′,m′′

cl′
) ∈ SO ⇒ n′ < m′′ ≤ n′′. (A.43)

221

Chapter A. Auxiliary Proofs

(d) [Case: tn
′,m′

cl′
R−→ tn

∗,m∗

cl∗
RWK′ (k)−−−−−→ tn

′′,m′′

cl′′
with R ∈ {WRK′ ,WWK′ , SO}]

This means there exist two indices i, i′ such that

i < i′ ∧ ∃T.K (k, i) = (_,_, T) ∧ tn
∗

cl∗ ∈ T ∧ K (k, i′) = (_, tn
′′,m′′

cl′′
,_)

Consider the transaction tn
∗,m∗

cl∗ in the Clock-SI trace. By Lemma A.26, The
snapshot time m∗ must be strictly smaller than than n′′ (otherwise it con-
tradict to Lemma A.26), that is, m∗ < n′′. By tn

′,m′

cl′
R−→ tn

∗,m∗

cl∗ for R ∈
{WRK′ ,WWK′ , SO} and Eqs. (A.41) to (A.43), we then have n′ < m∗ < n∗, that
is,

tn
′,m′

cl′
R−→ tn

∗,m∗

cl∗
RWK′ (k)−−−−−→ tn

′′,m′′

cl′′
⇒ n′ < n′′ (A.44)

Combine Eqs. (A.41) to (A.44), we have

(tn
′,m′

cl′
, tn

′′,m′′

cl′′
) ∈

(
(WRK ∪ SO ∪ WWK)

+; (RW?
K′)
)∗ ⇒ n′ < n′′. (A.45)

This means, by the definition of u = ClockView (K, n), if the view u includes version
written by tn

′′,m′′

cl′′
, then the view also includes version written by tn

′,m′

cl′
, thus we prove

Eq. (A.39).

(iv) [Case: Eq. (A.40)] Recall that the new transaction tn,mcl . Consider any write op-
eration (W, k, v) ∈ F . Let r = ShardOfR (k) be the shard that contains k, and
(K̃,_) = R (r) be the local key-value store. By CSIPrepare, there must be no
version for the key k with the committed or preparation time greater than m, that
is,

∀i, n′. K̃ (k, i) = (_, n′,_) ⇒ n′ < m.

By the definition of u = ClockView (K, n), we prove Eq. (A.40). �

Lemma A.26 (Clock-SI WR). Assume an annotated normalised Clock-SI trace ϕ, and the
kv-store trace induced by the Clock-SI trace η = ClockToKVTrace (ϕ). Given final kv-store K
in η, that is, (K,_,_,_) = Last (η), and a write-read edge,

(
t̃
(n,m)
cl , t̃

(n′,m′)

cl′

)
∈ WRK (k), then

t̃
(n,m)
cl is the latest transaction that write to key k and commits before tn

′,m′

cl′
starts, that is,

n = Max
({

n′′
∣∣∣ ∃i, cl′′,m′′. t̃

(n′′,m′′)

cl′′
= WriterOf (K (k, i))

})
∧ n < m′.

Proof. By the definition of ClockToKVTrace and
(
t̃
(n,m)
cl , t̃

(n′,m′)

cl′

)
∈ WRK (k), the transaction

t̃
(n′,m′)

cl′
commits after the commit of t̃

(n,m)
cl , that is, m < m′. This means that there exists a

prefix of ϕ and a corresponding prefix of η, in which the last transaction is t̃(n
′,m′)

cl′
. Let ϕ′ denote

the prefix of ϕ, and η′ denote the prefix of η. We have η′ = ClockToKVTrace (ϕ′). Since ϕ′ is a

222

Chapter A. Auxiliary Proofs

normalised trace, then

ϕ′ = ϕ′′ ι−→ ϕ∗ ∧ CLOCKAtomic (ϕ∗, cl′, r, n′) .

Let (R, Ũ , E , I) = ϕ∗
|0 . Let η′′ = ClockToKVTrace

(
ϕ′′ ι−→

(
R, Ũ , E

)
, I
)

and (K′′,U ′′, E ′′, P′′) =

Last (η′′). By the definition of ClockToKVTrace, we have

η′ = η′′
(cl,u,F)−−−−→ET (K∗,U ′′ [cl′ 7→ u′] , E∗) , P∗

where

u = ClockView (K′′,m′) ∧ F = ClockFp (∅, ϕ∗)

∧ K∗ = UpdateKV
(
K′′, u,F , t̃

(n′,m′)

cl′

)
∧ u′ = ClockView (K∗,m′)

Because t̃(n
′,m′)

cl′
read the key k in K∗, then (R, k, v) ∈ F . By the definition of F = ClockFp (∅, ϕ∗)

and Prop. A.25, there exists a read step that read from the shard r in ϕ∗:

ϕ∗ = · · · _−→ (R,_,_) , I
[
cl′ 7→ [x := rd (E) ; T]F

′,∅
m′,r

]
(cl′,r,(R,k,v),m′,n′)−−−−−−−−−−→

(R,_,_) , I
[
cl′ 7→ [T]

F ′<C(R,k,v),∅
m′,r

]
_−→ · · ·

where the free variables are existentially quantified. By the CSIReadS rule, we know that
step (cl′, r, (R, k, v) ,m′, n′) read the version of k with time n such that

∃K̃. (K̃,_) = R (r) ∧ n = Max
({

n′
∣∣∣ ∃i. K̃ (k, i) = (_, n′) ∧ n′ < m′

})
. (A.46)

Note that the state of R has not changed until the read step, since CLOCKAtomic (ϕ∗, cl′, r, n′).
Thus, by the definition of η′′ = ClockToKVTrace

(
ϕ′′ ι−→

(
R, Ũ , E

)
, I
)

and (K′′,U ′′, E ′′, P′′) =

Last (η′′), we have K′′(k, i) = (v, t̃
(n,m)
cl ,_) for some i, By the definition of u = ClockView (K′′,m′),

we have i ∈ u (k). Then by Eq. (A.46), and the definition of K∗ = UpdateKV
(
K′′, u,F , t̃

(n′,m′)

cl′

)
,

we have the proof. �

223

	Introduction
	Contributions
	Thesis Outline

	Background
	Consistency Models
	Declarative Semantics: Dependency Graphs
	Declarative Semantics: Abstract Executions
	Operational Semantics

	Overview
	Centralised Key-value Stores and Views
	Application: Verification of Implementations
	Application: Invariants of Client Programs

	Operational Semantics
	Abstract States: Global Stores and Client Views
	Operational Semantics
	Programming Language
	Transaction Semantics
	Command Semantics and Program Semantics
	Execution test and ET-traces

	Consistency Models on Key-value Stores

	Correctness of Execution Tests
	Correspondence to Dependency Graph
	Operational Semantics on Abstract Execution
	Declarative Model: Abstract Executions
	Operational Semantics on Abstract Execution

	Correspondence to Kv-store Semantics
	Soundness and Completeness Constructors
	Soundness and Completeness of Execution Tests

	Applications: Verification of Implementation Protocols
	Verification of COPS Protocol
	Machine States
	Reference Implementation and Reference Semantics
	Verification: Annotated Normalised Traces
	Verification: Trace Refinement

	Verification of Clock-SI Protocol
	Clock-SI protocol
	Machine States
	Reference Implementation and Reference Semantics
	Verification: Annotated Normalised Traces
	Verification: Trace Refinement

	Applications: Invariants of Client Programs
	Robustness: A Single Counter Library against PSI
	Robustness for SI
	WSI Safe
	Robustness: A Multiple Counters Library against WSI
	Robustness: A Banking Library Against WSI

	Correctness: A Lock Pattern against PSI

	Conclusion and Future Work
	Bibliography
	Auxiliary Proofs
	Proofs for Section 4.2 (Operational Semantics)
	Proofs for Section 5.1 (Correspondence to Dependency Graph)
	Proofs for Section 5.2 (Operational Semantics on Abstract Execution)
	Proofs for Section 5.3 (Correspondence to Kv-store Semantics)
	Proofs for Section 5.4 (Soundness and Completeness Constructors)
	Proofs for Section 6.1 (Verification of COPS Protocol)
	Proofs for Section 6.2 (Verification of Clock-SI Protocol)

