
Context Logic and

Tree Update

Uri Zarfaty

Abstract

This thesis introduces Context Logic, a novel spatial logic which was developed to

allow local Hoare-style reasoning about tree update, but which also permits reasoning

about more general data update. Spatial logics have previously been used to describe

properties of tree-like structures (as in Ambient Logic) and to reason locally about

dynamic updates of heaps (as in Separation Logic). However, simple adaptations of

the Ambient Logic are not expressive enough to capture dynamic updates of trees.

Instead, one must reason explicitly about tree contexts in order to capture updates

throughout the tree. For example, a typical update removes a portion of data and

replaces it by inserting new data in the same place. Context Logic allows us to reason

about both the data and the place of insertion.

The thesis describes the general theory of Context Logic, presents a number

of extensions and applications, and shows that Context Logic is a generalisation of

the Logic of Bunched Implication, the underlying theory of Separation Logic. The

thesis then uses Context Logic to reason locally about tree, heap and term update

languages, adapting the local reasoning framework of Separation Logic and providing

a generalisation of its Frame Rule. Completeness results for these program logics

are provided by deriving the weakest preconditions of the update commands from

the command axioms. Finally, the thesis introduces an extended imperative update

language for manipulating trees with pointers, which incorporates path queries and

atomic commands that act at multiple locations. Reasoning about this raises an

important point regarding the link between local reasoning and local specifications.

Contents

List of Figures iv

1 Prologue 1

1.1 Motivation and Objectives . 1

1.2 Contributions . 2

1.3 Statement of Originality . 3

1.4 Publications . 3

2 Introduction 4

2.1 Spatial Logics . 4

2.2 Data Update and Local Reasoning . 10

2.3 Introduction to Context Logic . 16

2.4 Thesis Summary . 20

A Context Logic 21

3 A Basic Theory of Context Logic 22

3.1 Basic Context Logic . 22

3.2 Examples . 26

3.3 Basic Properties and Definitions . 27

3.4 Formula Classes . 31

3.4.1 Pure Formulæ . 32

3.4.2 Exact Formulæ . 34

3.4.3 Precise Formulæ . 36

3.4.4 Ubiquitous Formulæ . 39

CONTENTS ii

4 Extended Theories of Context Logic 41

4.1 Context Composition . 41

4.2 Context Logic with Zero . 46

4.3 Derived Connective on Data . 48

4.4 Embeddings and Projections . 53

5 Structured Data Models 62

5.1 Sequences . 62

5.2 Multisets . 67

5.3 Linear Sequences and Sets . 69

5.4 Heaps . 70

5.5 Trees . 75

5.6 Terms . 81

B Tree Update 85

6 Basic Tree Update 86

6.1 Basic Update Language . 86

6.2 Local Hoare Reasoning . 93

6.3 Frame Rule and Locality . 95

6.4 Small Axiomatisation . 96

6.5 Weakest Preconditions . 98

6.6 Examples . 101

6.7 Node Renaming . 102

7 Heap Update and Term Rewriting 109

7.1 Heap Update . 109

7.2 Term Rewriting . 114

8 Extended Tree Update 120

8.1 Motivation and Outline . 120

8.2 Extended Tree Model . 121

8.3 Local Query Languages . 124

8.4 Extended Update Language . 127

8.5 Context Logic Adaptation . 132

CONTENTS iii

8.6 Inductive Predicates . 136

8.7 Program Logic . 138

8.8 Weakest Preconditions . 144

8.9 Reasoning Example . 147

8.10 Assessment . 149

9 Conclusion 154

9.1 Achievements . 154

9.2 Future Work . 155

Notation Index 160

Bibliography 161

List of Figures

3.1 CL Proof Theory . 24

4.1 CLp and CL∅,◦ Proof Theory Derivations 59

6.1 BTU Operational Semantics . 90

6.2 BTU Update Examples . 91

6.3 BTU Inference Rules . 94

6.4 BTU Small Axioms . 97

6.5 BTU Weakest Preconditions . 99

6.6 BTU Forward Reasoning Example . 103

6.7 Derivations of the BTU Weakest Preconditions 106

7.1 HUL Operational Semantics . 110

7.2 HUL Small Axioms . 111

7.3 HUL Weakest Preconditions . 112

7.4 Derivations of the HUL Weakest Preconditions 113

7.5 TRL Operational Semantics . 116

8.1 PQL Query Semantics . 126

8.2 XTU Update Commands . 128

8.3 XTU Operational Semantics . 130

8.4 CLxtree Semantics . 134

8.5 XTU Inference Rules . 139

8.6 XTU Command Axioms . 142

8.7 XTU Weakest Preconditions . 145

8.8 XTU Program Reasoning Example . 148

8.9 Derivations of the XTU Weakest Preconditions 151

Acknowledgements

• to my supervisor, Philippa Gardner, for her guidance, encourage-

ment and inspiration;

• to my parents, and , for their love and support, and my sister

, for being the best;

• to Cristiano, for his patience and help;

• to , , , marcvs and the other Imperialists, for

bringing me to life and suffering me gladly;

• and finally, to future readers, who by reading this will have made it

worth writing.

Chapter 1

Prologue

This chapter contains a brief outline of the motivation and objectives of the work

in this thesis, as well as its key contributions and the publications wherein they ap-

peared. A fuller introductory account is given in the next chapter, which also contains

important background information.

1.1 Motivation and Objectives

The original motivation for the work in this thesis came from three overlapping

areas of current research: tree update, spatial logics and local reasoning. The online

presence of huge amounts of semistructured data, usually represented as trees using

XML, has made research on in-place tree update an interesting and active field. In

particular, very little work has yet been done on formal reasoning about tree update,

making this an obvious challenge. At around the same time, a number of logics

collectively known as ‘spatial logics’ appeared for describing spatial properties of

structured data, typically using (de-)composition operators that split terms into parts

and reason about them separately. The archetypal examples of these are Ambient

Logic, which describes tree-like hierarchies, and the assertion language of Separation

Logic, which describes memory heaps. Separation Logic also introduced a third

area of research, comprising a Hoare reasoning framework for heap update based on

local reasoning principles. These principles assert that program reasoning should be

confined to the memory cells that a program actually accesses, which Separation Logic

achieves by using its spatial assertion language to split heaps into the appropriate

subheaps. Since its introduction, Separation Logic has been successfully applied to

1.2. CONTRIBUTIONS 2

a number of problems, and has helped make widespread program verification a more

plausible goal.

Like pieces in a puzzle, these three areas of work combined to form a simple

objective, which was to attempt to reason about simple tree update by applying

Separation Logic-style local reasoning based on some spatial logic. To do this, it

was natural to try to adapt a pre-existing spatial logic for trees such as the Ambient

Logic. It turned out, however, that the Ambient Logic was not expressive enough to

capture dynamic updates of trees; instead, a real change in approach was required,

resulting in the introduction of Context Logic and this work. As the work developed

and Context Logic proved to be increasingly successful, the objectives were extended

further to exploring the logical foundations of Context Logic, and attempting to use

it to reason about other forms of data update, including more realistic tree update

languages.

1.2 Contributions

The key contributions of the work in this thesis can be summarised as follows:

• Context Logic — the thesis introduces a novel spatial logic in the style of

Separation Logic and the Ambient Logic, based on the simple idea of context

application, but general enough to describe a wide range of inductive data

structures.

• Local reasoning using Context Logic — the thesis introduces a framework for

local Hoare reasoning about data update using Context Logic, extending previ-

ous work of Separation Logic and successfully applying it to new domains such

as tree update and term rewriting.

• Tree update reasoning — the thesis successfully applies local reasoning to an

extended tree update language containing pointers, queries and atomic updates

at multiple locations. This serves as a step towards reasoning about updates to

semistructured data, and raises an interesting point concerning the link between

local reasoning and local specifications.

1.3. STATEMENT OF ORIGINALITY 3

1.3 Statement of Originality

I declare that this thesis was composed by myself, and that the work that it presents

is my own, except where otherwise stated.

1.4 Publications

While some of the work in this thesis is still unpublished, other parts have previously

appeared in the following publications:

• C. Calcagno, P. Gardner and U. Zarfaty. Context Logic and Tree Update. 33rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL), 2005 [CGZ05].

This paper introduced Context Logic and applied it to reasoning about tree

update, heap update and term rewriting. A preliminary version of this paper

appeared in the Workshop on Logics for Resources, Processes, and Programs

(LRPP), 2004 [CGZ04].

• U. Zarfaty and P. Gardner. Local Reasoning about Tree Update. 22nd Con-

ference on the Mathematical Foundations of Programming Semantics (MFPS),

2006 [ZG06].

This paper used Context Logic to reason about a more realistic tree update

language including pointers, path queries and atomic updates at multiple loca-

tions.

• C. Calcagno, P. Gardner and U. Zarfaty. Local Reasoning about Data Update.

Gordon Plotkin’s Festschrift, 2007 [CGZ07b].

This paper provided an overview of Context Logic and its application to rea-

soning about data update.

Furthermore, some of the work in this thesis was also mentioned in a lecture course

by Philippa Gardner for the APPSEM summer school [Gar05]. Related work that

is not included in the thesis includes a paper on the expressivity of Context Logic

published in POPL 2007 [CGZ07a].

Chapter 2

Introduction

This chapter provides a general introduction to the work in the thesis, describing its

background and introducing some of its basic ideas. The chapter contains a review of

the key preceding work, briefly introduces Context Logic, and summarises the overall

structure of the thesis.

As stated in the previous chapter, this thesis presents a novel spatial logic called

Context Logic, and uses it reason locally about updates to tree structures. The work

can be neatly split into two parts: the first concerns the logical foundation of Context

Logic, and builds on related work on spatial logics; the second concerns the update

reasoning framework, and follows recent work on tree update and local reasoning.

This chapter begins with a background review of these two areas, before giving a

brief introduction to Context Logic and a summary of the contents of the thesis.

2.1 Spatial Logics

Spatial logics are logics that contain operators which inspect the spatial structure

of the model, as opposed to its temporal behaviour. This is usually achieved using

a separation/composition operator that splits terms into parts, and reasons about

them separately. While the idea of spatial logics is relatively recent, spatial logics

have already been used to describe data structures from a wide variety of areas,

including: memory heaps [ORY01, Rey02], stack variables [BCY06], trees [Car01,

CGG03b], graphs [CGG02], bigraphs [CMS05b], permissions [BCOP05], concurrent

objects [CM98] and distributed systems [CG00a, CC02].

2.1. SPATIAL LOGICS 5

Research on spatial logics has historically consisted of two main independent

threads. The first uses spatial logics as part of a Hoare-style reasoning frame-

work for describing and verifying properties of programs that manipulate structured

data. The archetypal example of this is Separation Logic by O’Hearn, Reynolds

et al. [Rey00, IO01, ORY01], which employs a spatial logic based on O’Hearn and

Pym’s Bunched Logic [OP99, POY04] to reason about heap update. The second

thread uses spatial logics for model-checking processes in a way that takes into ac-

count the underlying structure of the model. This is typified by the Ambient Logic of

Cardelli and Gordon [CG00a, CG07], a logic for describing structural and computa-

tional properties of distributed and mobile computation. Since computations evolve

over time, Ambient Logic also includes temporal connectives. However, a static sub-

fragment of the logic, comprising a ‘pure spatial’ logic, has been widely used to model

types and query languages for semistructured data [Car01, CG04].

Context Logic combines ideas from both these threads of research, and in par-

ticular from their two representative logics, the heap logic of Separation Logic and

Ambient Logic. These logics are discussed individually below.

Heap Logic

Separation Logic [ORY01, Rey02] is a framework for reasoning about heap update

based on a spatial logic for describing heap resources. This heap logic combines the

standard connectives of classical logic with spatial assertions describing the shape of

heaps, including two key spatial connectives: a separating conjunction P1 ∗ P2 and a

separating implication P1 −∗ P2.

The idea of the separating conjunction is implicit in early work by Burstall [Bur72],

but was first explicitly described by Reynolds in lectures in 1999. An intuitionistic

logic based on this idea was presented independently by Reynolds [Rey00] and by

Ishtiaq and O’Hearn [IO01], with the latter also introducing the concept of the sep-

arating implication. Ishtiaq and O’Hearn also devised a classical version of the logic

that is more expressive than the intuitionistic one. The separating conjunction and

implication of Separation Logic are both multiplicative operators, in the sense of

linear logic [Gir87]: they can be interpreted in terms of resource accumulation and

consumption, meaning for example that P ∗ P 6≡ P . The integration of additive and

multiplicative connectives in a single categorical structure was studied by O’Hearn

2.1. SPATIAL LOGICS 6

and Pym in the Logic of Bunched Implications [OP99, POY04, BBTS05]. This pro-

vides an analysis of the basic notion of resource, and forms the logical basis of the

heap logic of Separation Logic.

Separation Logic is used to reason about updates to memory heaps. Heaps are

viewed as finite collections of identified locations with values. The locations corre-

spond to dynamically-allocated ‘active’ memory addresses, which can be acquired

and released; the values consist of either static data or pointers, allowing heaps to

represent recursive and cyclic data structures. The model permits ‘dangling pointers’,

which point out of the heap, though dereferencing these is always assumed to result

in an error. A key observation of Separation Logic is that it is possible to construct

heaps by combining two smaller heaps with disjoint address domains. This partial

operation on heaps forms the basis of the separating conjunction. Hence, P1 ∗ P2 is

satisfied by a heap h if h can be split into two disjoint subheaps, h1 and h2, such

that P1 holds for h1 and P2 holds for h2. This connective is spatial over the heap, in

the sense that its semantics depends on the spatial structure of the heap on which it

is interpreted. Combining the separating conjunction with basic assertions describing

singleton and empty heaps, it is possible to express all the formulæ that describe the

content of the heap exactly. For example, the formula (1 7→ 2 ∗ 2 7→ 1) describes

a two-cell heap containing a circular list at locations 1 and 2. In contrast, the for-

mula (1 7→ 2 ∗ 1 7→ 2) is not satisfied by any heap, since the domains of the heaps

described by the two subformulæ are not disjoint. The inclusion of classical logic

connectives in the heap logic also makes it possible to express non-exact predicates,

such as (true∗1 7→ 2), which describes all heaps that contain a pointer from location 1

to 2, and which can therefore be split into the single-cell heap satisfying 1 7→ 2 and

some arbitrary disjoint remainder satisfying true.

In addition to the separating conjunction, the logic also includes a separating

implication P1 −∗ P2 (usually referred to as the ‘magic wand’), where P −∗ [−] is the

right adjoint of P ∗ [−]. Hence P1 −∗ P2 is satisfied by a heap h if whenever h is

composed with a heap h1 satisfying P1, the resulting heap satisfies P2. For example,

the formula (1 7→ 2 −∗ P) ∗ (1 7→ 1) describes a heap that contains a pointer from

location 1 to itself but which also satisfies some formula P if that pointer is removed

and replaced instead with a pointer from location 1 to location 2. Note that since

composition is only possible for disjoint heaps, the separating implication says nothing

2.1. SPATIAL LOGICS 7

about heaps with overlapping domains. For example, the formula (1 7→ 2) −∗ false

describes heaps that contain the address 1, as it is not possible to compose with them

the single-cell heap satisfying 1 7→ 2.

The standard formulation of Separation Logic also contains quantification over

names. For example, the formula (∃x. 1 7→ x) describes a single-cell heap at location 1

with an arbitrary value. Similarly, (∃x. 1 7→ x ∗ x 7→ 2) describes a two-cell linked

list starting at location 1 and ending with a pointer to location 2. For reasoning

about inductive structures such as lists, Separation Logic makes use of inductive heap

predicates [Rey02, BCO04b]. For example, the predicate list(n, i, j) below describes

a list of length n starting at location i and ending with a pointer to location j:

list(0, i, j) , emp ∧ (i = j)

list(n + 1, i, j) , ∃k. i 7→ k ∗ list(n, k, j)

The inductive case describes a pointer from i to some location k, together with a

disjoint list starting at k. The base case, meanwhile, states that the heap is empty,

and ‘ties up’ the two variable values.

Much of the utility of the heap logic comes from its ability to easily express sep-

aration properties using the separating conjunction and implication, which can then

be used in Separation Logic to reason locally about heap update. Counterintuitively,

it was shown by Lozes that the separating implication can in fact be eliminated from

a quantifier-free version of the heap logic and replaced with a formula that states that

a given address is allocated (just like (1 7→ 2)−∗ false did above), without losing any

expressivity [Loz04b, Loz05]. Furthermore, Lozes also showed that the separating

conjunction can also be removed, and replaced by a size modality. However, while

these results are theoretically significant, they are less important in practice: it has

since been shown that though the separating connectives can be eliminated, they

are still essential for reasoning parametrically, such as when giving general weakest

preconditions of update commands, or specifying behaviour using abstract predi-

cates [CGZ07a]. In this sense, star and magic wand are indeed fundamental.

Finally, the decidability properties of the heap logic, which are important for

implementing automatic reasoning tools which use it, have also been investigated.

While it has been shown that the heap logic is in general undecidable, useful decidable

fragments have been presented and studied [CYO01, BCO04a, CGH05].

2.1. SPATIAL LOGICS 8

Ambient Logic

Ambient Logic [CG00a, CG07] is an example of a dynamic spatial logic: it models

temporal as well as spatial properties. Such logics first appeared in the context of

process calculi, and accompanied a shift of focus from monolithic concurrent systems

towards distributed systems. By incorporating both spatial and temporal connec-

tives, dynamic spatial logics can distinguish between systems that differ on their

distributed (spatial) structure but not necessarily on their behaviour— unlike previ-

ous systems, which typically equated logical equivalence with process bisimulation.

A number of interesting properties of distributed systems are inherently spatial, in-

cluding connectivity, resource availability, local channel bounds, and security.

Ambient Logic was proposed by Cardelli and Gordon to express properties of

processes in the Ambient Calculus [CG00b, CGG00, CG03]. This process calculus

was introduced to model distributed concurrent systems that include mobility, where

mobility refers both to computations carried out on mobile devices (networks with a

dynamic topology) and mobile code (executable code that is able to move around the

network). The basic unit of the calculus is the ‘ambient’, which refers to a bounded

place where a computation can occur. Ambients are hierarchically structured as

unordered (unranked) trees, while processes, which act as mobility agents for the

ambients, are located inside them. Examples of ambients include administrative

domains bounded by firewalls, directories and files in a file system, and laptops or

web pages in a network. As a result of the widespread interest generated by the

Ambient Calculus, a number of alternative calculi exist, each describing different

ambient movement capabilities [PV02, LS03, BCC04, TZH04].

The purpose of Ambient Logic is to succinctly describe the structural and be-

havioural properties of these ambient hierarchies and processes. While the full logic

also includes temporal elements, a static fragment describing just structural prop-

erties is widely used. In contrast to Separation Logic, which describes flat heap

structures, this consists of a spatial logic for analysing unordered labelled trees.

Tree-shaped ambient hierarchies are freely generated from the parallel composition

of ambients A1 | A2 and from locations containing ambients l[A]. Hence, for exam-

ple, (l[0]|m[0]) describes two empty ambients in parallel, while l[m[0]] describes one

ambient inside another. Mirroring this structure, the Ambient Logic contains, in

addition to the standard propositional connectives, a parallel (de-)composition con-

2.1. SPATIAL LOGICS 9

nective P1|P2, which states that an ambient hierarchy can be expressed as the parallel

composition of two hierarchies satisfying P1 and P2, and the location connective l[P],

which describes an ambient l with a subhierarchy satisfying P . Combined with a

formula 0 representing the empty ambient, these spatial connectives can describe all

exact ambient hierarchies, as in heap logic. The inclusion of classical connectives

also allows formulæ such as (true | l[true]), which describes an arbitrary hierarchy

containing the ambient l at the top level.

Like Separation Logic, Ambient Logic also includes the adjuncts of the spatial

connectives. This includes the location adjunct P @l, which describes a hierarchy that

satisfies P if placed inside an ambient l. Thus, m[P @l] describes an ambient m which

satisfies P if the m is replaced by an l, while (m[true]@ l) is satisfied by any ambient

as long as m equals l. The other adjoint is the composition adjunct P1 � P2, which

describes a hierarchy that satisfies P2 whenever a hierarchy satisfying P1 is composed

in parallel. Thus, (l[true] � P) describes an ambient hierarchy that satisfies P in the

presence of an additional ambient l, while P � false is satisfied by any hierarchy as

long as P is unsatisfiable.

In addition to these core connectives, static Ambient Logic also includes three

other operators: quantification over names, like in heap logic; a somewhere modal-

ity ◊P stating that a property P holds at some arbitrary sublocation within the

hierarchy; and (sometimes) revelation and hiding operators for describing restricted

names, which represent hidden ambients [CG01]. Extensions to the logic have also

introduced a form of recursion based on the µ-calculus [Koz82], using a µ operator

to describe the minimal set of trees satisfying a recursively defined property [Dal01].

Thus, for example, ◊P can be expressed as µX.(P ∨ ∃x.(x[X] | true)). Finally, a

horizontal iteration operator P ∗ based on the Kleene star has been introduced to de-

scribe a hierarchy made up of parallel hierarchies satisfying P [DLM04]. Expressible

as µX.(0∨P |X), this was used together with a quantifier-free fragment of the logic

to present a regular expression language for trees.

Like for heap logic, the expressivity of the Ambient Logic has been investi-

gated, with both adjunct elimination results [Loz04a, DGG04] and parametric ex-

pressivity and inexpressivity results [CGZ07a] given. Decidability has also been

studied [CCG03, HLS02].

2.2. DATA UPDATE AND LOCAL REASONING 10

Other Spatial Logics

Following the work on Separation Logic and Ambient Logic, a number of other spatial

logics have also been suggested. These include direct extensions of Separation Logic

for modelling read and write permissions [BCOP05] and stack variables [BCY06],

as well as ones introducing higher-order constructs [BBTS05] and abstract predi-

cates [PB05], both of which help in modelling abstraction. Work on the Ambient

Logic, meanwhile, has directly lead to spatial logics for trees with dangling point-

ers [CGG03b] and graphs [CGG02, DGG07], while the process calculus work has lead

to the application of spatial logic ideas to the asynchronous π-calculus [CC02, CC03].

A slightly different type of tree logic was given by Biri and Galmiche [BG03,

Bir05] for reasoning about ‘resource trees’, which are node-labelled trees where the

nodes contain composable resources. The logic extends Bunched Logic with a location

modality [l]P , and is unusual in that parallel composition merges nodes with identical

labels: [l]P1|[l]P2 is equivalent to [l](P1|P2).

Finally, an interesting thread of current work involves BiLog, a spatial logic for

bigraphs. Bigraphs [Mil01, JM03] were introduced by Milner as a basis for a central

theory of mobile interaction. They have been shown to model π-calculus and am-

bients [JM04], as well as Petri nets [Mil04] and CCS [Mil06]. Bigraphs contain two

independent structures: a topograph, which consists of nested nodes representing

locality; and a monograph, which consists of edges representing connectivity. The

dynamic behaviour, meanwhile, comes from equipping bigraphs with reaction rules,

forming bigraphical reactive systems (BRSs) in which bigraphs can reconfigure them-

selves. Recently, Conforti, Macedonio and Sassone showed how to capture bigraphs in

a spatial logic called BiLog [CMS05b, Con05]. Partly inspired by Context Logic, this

logic has been used to model semistructured data [CMS05a], as well as to describe

other spatial logics.

2.2 Data Update and Local Reasoning

Data update is a pervasive part of computing: examples include memory updates

in system software, document updates in web services, row updates in relational

databases, and term and graph rewriting. At its most general, update refers to any

change of state in data. In practice, however, one typically distinguishes between

2.2. DATA UPDATE AND LOCAL REASONING 11

in-place updates of mutable data structures and ‘queries’, which generate new data

to represent the new state. The former are usually specified in an imperative pro-

gramming style, using commands with ‘side-effects’ in programming languages such

as C or Java. These describe computation directly in terms of a change in program

state and provide a relatively low-level abstraction of the real update in the computer.

Queries, in contrast, correspond more closely to a functional style of programming,

where computation is viewed as the evaluation of a mathematical function result-

ing in a value. The primary focus of the work in this thesis is on the first type

of update. These updates can be applied to a wide range of data types, from the

highly-structured data in databases, to the more loosely-structured data found in

web pages. The work here concentrates mainly on tree update, though two other

forms of update, heap update and term rewriting, are also considered.

Formal reasoning about data update has been studied for over 35 years: Hoare

Logic [Hoa69, Hoa71], a formal system for reasoning about imperative programs, was

introduced by Hoare in 1969 under the influence of previous work by Floyd [Flo67].

Since then, research into update reasoning has encompassed both work on program

verification, which concerns proof methods for showing correctness, safety, termi-

nation and other interesting properties of programs, and program analysis, which

concentrates on techniques for automatic reasoning. Despite this long history, formal

verification of update has not historically been used much in practice. However, recent

research, together with technological improvements, has made widespread program

verification a more plausible goal [JOW06]. In particular, work on local reasoning

using Separation Logic [ORY01, YO02] has proved very successful, and has already

lead to a number of practical applications.

Historically, formal update reasoning has mainly concentrated on low-level mem-

ory structures. In contrast, the work in this thesis focuses on tree update, and the

application of Separation Logic-style local reasoning techniques to it. These two areas

are discussed next.

Semistructured Data and Tree Update

Semistructured data [Bun97] refers to data with no rigidly predefined structure. It

is typically ‘self-describing’, meaning that the structural information normally asso-

ciated with a schema is contained within the data, and data is accessed by referring

2.2. DATA UPDATE AND LOCAL REASONING 12

to this structure, as opposed to, for example, giving its position in a file. External

schemas may exist, but usually place only loose constraints on the data. Research

into semistructured data has been strongly motivated by two factors: first, the huge

amount of loosely structured data readily available from sources such as the World

Wide Web [WWW07] and scientific databases such as ACeDB [ACe07]; and sec-

ondly, the desire for a flexible format for integrating heterogeneous data sources and

exchanging information between globally distributed applications. Additionally, it

is sometimes even advantageous to view structured data as semistructured, as this

permits data to be browsed without full knowledge of its schema. The standard data

model for semistructured data consists of labelled directed graphs. Nodes are viewed

as objects containing either atomic data values or labelled links to other nodes. A

number of variants of the semistructured data model exist, but with only minor

differences [CGMH+94, Bun97, ABS99].

While the idea of semistructured data originated in the database community,

the most commonly used representation of it comes from work in describing docu-

ments. XML [XML06] (eXtended Markup Language) originated as a simplified sub-

set of SGML [GR91] (Standard Generalized Markup Language), a metalanguage for

defining markup languages for documents, enabling the sharing of machine-readable

documents in large projects. An XML document consists of text interspersed with

markup, which separates the information into a hierarchy of character data, nested

container-like elements, and element attributes. Thus the small XML fragment

〈a href="/"〉Some 〈b〉XML〈/b〉〈/a〉

describes a top-level element a with the attribute href="/" and two subelements:

a string element "Some " followed by a b element with a string subelement "XML".

This structure corresponds to an ordered node-labelled tree, with data at the leaves.

Additionally, XML provides referencing mechanisms (such as ID and IDREFS at-

tributes) that allows the simulation of arbitrary graphs. Thus, except for being

ordered, XML documents correspond closely to the standard semistructured data

model. Indeed, XML has become the most common way of representing semistruc-

tured data: XML-based data standards include XHTML for web pages [XHT02],

SVG for vector graphics [SVG03], MathML for mathematical formulæ [Mat03] and

OOXML for office documents [OOX07]. Moreover, XML is used as an intermediate

format in data transfer between applications, and in ‘native XML databases’ [CRZ03],

2.2. DATA UPDATE AND LOCAL REASONING 13

which resemble relational databases, except that they use XML as the fundamental

unit of logical storage, as opposed to rows in a table.

Right now, the most common way of manipulating semistructured data is with

queries. Most often, ‘XML transformation languages’ are used to write programs

that generate new XML or data based on the contents of an XML document. The

two best-known transformation languages are XSLT [XSL99] and XQuery [XQu07].

XSLT consists of a ‘template processor’, and uses an XML-based stylesheet to specify

a functional transformation of an XML document based on text-based pattern match-

ing. It is primarily used to convert data between different XML Schemas [XML01]

or into HTML documents for output as web pages. XQuery, meanwhile, resembles

a database query language in the style of SQL. It is used both to transform and

construct XML documents, as well as for more general information retrieval. Other

interesting query languages for semistructured data include: XDuce [HP02, HP03], a

statically typed pattern-matching language; CDuce [BCF03], an extension of XDuce

to a general-purpose functional programming language; and logic-based query lan-

guages such as TQL [CG04] and the pattern-matching language in [CGG03a].

While queries are relatively well understood and easy to use, they are not always

appropriate when manipulating semistructured data. For example, generating (or at

least specifying) new data each time can be inappropriate for systems with a large

amount of data or high storage costs, or for systems with an intrinsic sense of state,

such as native XML databases or concurrent web-service applications. For these, it

is often more natural to use an update language that updates the data in place.

At the moment, most in-place updates of semistructured data are specified using

implementations of DOM [DOM04] (Document Object Model), a W3C specification

for a programming interface (API) that allows programs to update XML pages. This

interface presents documents as hierarchical node trees, and handles the navigation

and modification of this object model. Though easy to learn and widely implemented,

DOM’s low-level approach nevertheless adds an extra layer of complication to pro-

gramming and reasoning about updates. In contrast, high-level tree update languages

aim to provide special-purpose tools for updating trees in a way that treats trees as

trees, rather than as node collections. Until recently there had been very little work

on such languages (to the point that most native XML databases use transformations

rather than updates to update entries). However, this is beginning to change. There

2.2. DATA UPDATE AND LOCAL REASONING 14

is ongoing work to add update capabilities to XQuery [XQu06], while an XSLT-style

language called XUpdate is also being developed [XUp00]. Other exploratory work

has mostly followed the approach of XQuery, though little consensus on the details

exists yet. Early research includes [Leh01, Rys02, TIHW01], while more recent work

includes [SHS04, BBFV05a, GRS06].

Just like heap update, tree update raises many natural verification problems to

do with safety, security, termination and preservation of types or schemas. Given the

relative recency of high-level tree update, it is perhaps not surprising that there has

been very little work on formal reasoning on such update so far. Scarce examples in-

clude work on verification [BBFV05b] and static analysis of optimisation [BBFV05a].

The aim in this work was to consider Hoare-style reasoning about tree update, a

natural approach given the continually changing structure of semi-structured data.

A few simple examples of this have been performed at the low-level in Separation

Logic [ORY01], but otherwise this had not been previously attempted.

Separation Logic

Despite over 35 years of research, complexity and efficiency issues have frequently

meant that Hoare reasoning was not used much in practice. However, recent work

by O’Hearn, Reynolds, Yang et al. [ORY01, YO02, Yan01b] adapting Hoare logic

to a local reasoning framework called Separation Logic has resulted in a prolifera-

tion of applications, and has helped make widespread program verification a more

plausible goal [JOW06]. Separation Logic has been used to reason about a vari-

ety of data update algorithms, ranging from graph algorithms [Yan01a, BCO04b]

to garbage collectors [BTSR04]. It has also been successfully applied to reasoning

about concurrent heap update [O’H04, Bro04], and combined with the rely/guarantee

method of shared variables to reason about interference [VP06, FFS07]. Most im-

pressively, it has bred a multitude of automated tools, for tasks such as assertion

checking [BCDO05, BCO06, GBC06], shape analysis [DOY06, CDOY06] and termi-

nation proving [TER07, CPR06, BCDO06].

The key to Separation Logic is its local reasoning approach, which is conceptually

different from that of traditional Hoare Logic. This approach has been concisely

summarised by the following statement:

“To understand how a program works, it should be possible for reasoning

2.2. DATA UPDATE AND LOCAL REASONING 15

and specification to be confined to the cells that the program actually

accesses. The value of any other cell will remain unchanged.” [ORY01]

This assertion is not automatically true. For the statement to hold, every command

must have a well-specified part of heap that it accesses (a ‘footprint’), and commands

must behave in such a way that reasoning and specification can be confined to just

that footprint. Such ‘local’ commands are natural in the context of memory update:

due to the modular view of heap memory management, update commands for heaps

typically consist of small data surgeries that do not depend on the entire memory

of a system. Non-local updates, such as a command that frees every single memory

cell, only occur when this view of memory breaks down, such as in embedded systems

with limited resources.

One consequence of command locality is the existence of local specifications,

or ‘Small Axioms’, which describe only the resources that a command or program

accesses. The locality of the commands means that such specifications completely

determine the commands’ behaviour on all other heaps. To derive this global be-

haviour from the local specifications, Separation Logic introduces a simple rule that

allows the inference of the invariant properties implied by locality. The rule is called

the Frame Rule, since it avoids the need for Frame Axioms [MH69], which are used

to explicitly describe invariants. To formulate the Frame Rule, Separation Logic uses

the spatial heap logic described in the previous section. The separating conjunction ∗

expresses the separation of heaps, and hence the necessary disjointness condition on

the invariants. The Frame Rule states:

{P} C {Q}

{R ∗ P} C {R ∗Q}
mod(C) ∩ free(R) = ∅

This lets us take any specification {P} C {Q}, which says that a terminating exe-

cution of C on a heap satisfying P always results in a heap satisfying Q and never

faults, and add any invariant ‘frame’ given by an arbitrary formula R, where the non-

modification of the frame is guaranteed by the locality of the commands. The side-

condition of the rule, meanwhile, ensures the non-interference of variables, though this

has recently been successfully removed by modelling variables as resources [BCY06].

The simplicity of this approach is best illustrated using an example. Consider

the heap update command [n] := v, which replaces the value at a heap address n

with a new value v. This command can be given a local specification, describing the

2.3. INTRODUCTION TO CONTEXT LOGIC 16

update on just the single heap cell with address n:

{n 7→ −} [n] := v {n 7→ v}

The precondition describes a single-cell heap with address n and unspecified value,

while the postcondition states that the cell now has value v. Using the Frame Rule,

it is possible to extend this local specification to descriptions of behaviour on larger

heaps, by adding a heap frame satisfying some formula R (for any R satisfying the

Frame Rule side-condition above):

{R ∗ (n 7→ −)} [n] := v {R ∗ (n 7→ v)}

One example use of the Frame Rule is to derive the weakest precondition axiom of

the update command. Here, we can use the ‘magic wand’ formula of the heap logic to

specify the frame (n 7→ v)−∗ P , which describes any heap that satisfies P when it is

extended by a cell with address n and value v. Adding this to the update specification

using the Frame Rule results in a postcondition satisfying P and the following triple:

{((n 7→ v)−∗ P) ∗ (n 7→ −)} [n] := v {P}

The precondition describes a heap containing a cell at address n which satisfies P

whenever the value at this cell is set to v. This is exactly the weakest precondition

of the update command.

2.3 Introduction to Context Logic

The original goal of this thesis was to try to adapt Separation Logic’s local reasoning

about heap update to reason about high-level tree updates. It quickly became ap-

parent that such an adaptation was by no means trivial. An initial idea was to use

Ambient Logic to express properties of static trees, in a similar fashion to the heap

logic of Separation Logic. However, it turned out that this was not possible, since

Ambient Logic could not express some of the complex properties associated with tree

updates, including the weakest preconditions of even simple update commands. In-

stead, a new spatial logic had to be developed, requiring a real change in approach.

This logic, called Context Logic [CGZ05, CGZ07b], forms the basis of this thesis.

With hindsight, it is perhaps not surprising that reasoning about tree update

is not possible in Ambient Logic. A typical update of structured data proceeds by

2.3. INTRODUCTION TO CONTEXT LOGIC 17

identifying a portion of data to be replaced, deleting it, and inserting new data in the

same place. This place of insertion therefore plays a crucial role in reasoning about

the update. By reasoning about contexts, Context Logic can describe these update

locations directly, and is therefore well equipped for such reasoning. Ambient Logic,

which reasons just about trees, is not.

This can be best illustrated with a simple tree update example. The trees used

are simple unranked trees, similar to the ambient structures described by Ambient

Logic but with the additional restriction that the nodes names are all unique; this

allows us to refer to individual nodes and specify update locations directly (just like

with heap addresses and heaps). Consider a simple tree update command [n] := t

that replaces the subtree below a location n with some new subtree given by t (turning

the tree m1[n[m2[0] |m3[0]] |m4[0]] into m1[n[t] |m4[0]], for example). Following the

local reasoning approach of Separation Logic, one could try to specify the behaviour

of this command locally, mentioning just the part of the tree that it affects, which in

this case is the subtree at n. This can be easily expressed in Ambient Logic by the

following Hoare Triple:

{n[true]} [n] := t {n[t]}

The precondition describes a tree with root node n and an arbitrary subtree, while

the postcondition describes the tree with the updated subtree t. However, specify-

ing and inferring more global descriptions of the command behaviour in Ambient

Logic is less straightforward. For example, consider the weakest precondition of the

command with respect to some postcondition P . Intuitively, this describes any tree

that satisfies P when the subtree at n is removed and a new tree t is inserted in the

same location. Unlike the local specification, this turns out not to be expressible in

Ambient Logic; it can, however, be expressed in Context Logic.

The basic idea of Context Logic is simple: to reason about both data and con-

texts, linking the two using context application. Consequently, the logic contains two

types of formulæ, one for contexts and one for data. Context application is expressed

using a spatial connective K ·P , which describes the result of inserting data satisfying

a data formula P into contexts satisfying a context formula K. For example, if the

context formula n[−] describes a node n with a hole underneath, then n[−] · true

describes an arbitrary tree with root node n, while True · (n[−] · true) describes a

tree containing a subtree with root node n inside some arbitrary context. Like Sep-

2.3. INTRODUCTION TO CONTEXT LOGIC 18

aration Logic and Ambient Logic, Context Logic also includes the right adjoints of

its spatial connective. Unlike the ∗ connective of Separation Logic, however, context

application is not commutative, which means that there are two distinct adjoints.

The first, written K �P , describes data that satisfies P when placed inside a context

satisfying K (hence K � [−] is the right adjoint of K · [−]). For example, n[−] � P

describes a tree that satisfies P when placed underneath a node n, corresponding

precisely to the P @n adjoint of Ambient Logic. The second adjoint, written P1 �P2,

describes contexts that satisfy P2 whenever data satisfying P1 is placed inside them

(hence P1 � [−] is the right adjoint of [−] · P1). For example, the formula (0 � P)

is satisfied by any context that satisfies P when its hole is removed by placing the

empty tree 0 inside it; in other words, it describes the result of adding a hole to a tree

satisfying P . Returning to the update command [n] := t, it is now possible to express

its weakest precondition by the Context Logic formula (n[t] � P) · n[true]. Just as

required, this describes a tree that satisfies P when its subtree at n is removed and

a new tree t is inserted in the same place.

Having introduced Context Logic, the next step is to incorporate it into a local

reasoning framework in the style of Separation Logic. Like in Separation Logic,

we would like to extend local specifications (such as the update specification given

before) to specifications on larger trees (such as the weakest precondition above).

This is done by defining a new Frame Rule for Context Logic that, instead of adding

∗-separated ‘heap frames’ as for Separation Logic, adds ‘context frames’ given by

context formulæ K, using the context application connective:

{P} C {Q}

{K · P} C {K ·Q}
mod(C) ∩ free(K) = ∅

Like in Separation Logic, this lets us take any specification {P} C {Q}, which states

that a terminating execution of C on a tree satisfying P always results in a tree

satisfying Q and never faults, and add an invariant frame given by an arbitrary

context formula K, where the non-modification of the frame is guaranteed by a

locality property of the commands. As before, the side-condition of the rule ensures

the non-interference of variables. For example, we can extend the local specification

of [n] := t given before to descriptions of its behaviour on larger trees by adding a

context frame satisfying some formula K:

{K · n[true]} [n] := t {K · n[t]}

2.3. INTRODUCTION TO CONTEXT LOGIC 19

As in Separation Logic, we can use this approach to derive the weakest precondition

axiom of the command. In this case, we simply select the context frame (n[t] � P),

and simplify the postcondition using the standard Hoare rule of consequence:

{n[true]} [n] := t {n[t]}
Frame Rule

{(n[t] � P) · n[true]} [n] := t {(n[t] � P) · n[t]}
Rule of Consequence

{(n[t] � P) · n[true]} [n] := t {P}

Note the use of the second context application adjoint, �, in the weakest pre-

condition axiom above. It is this adjoint that provides the extra expressivity not

found in Ambient Logic, and allows Context Logic to express the weakest precondi-

tion above. The formal proof of this difference in expressivity, which is outside the

scope of this thesis, was given in [CGZ07a] using bisimulation techniques from modal

logic. Specifically, the paper showed that (quantifier-free) Context Logic is strictly

more expressive than (quantifier-free) Ambient Logic in the presence of propositional

variables. Hence, parametric formulæ in Context Logic, such as the command weak-

est preconditions, cannot necessarily be expressed parametrically in Ambient Logic.

For example, it can be shown that this is indeed the case for the Context Logic for-

mula (0 � P) · n[true] (parametric in P), which represents the weakest precondition

of the command dispose n, which deletes the subtree at a location n. This can be

illustrated informally. Expressing the weakest precondition of this command for even

a simple postcondition typically requires a case by case analysis using the Ambient

Logic. For example, for the postcondition m1[m2[0]], the weakest precondition can

be expressed most concisely by the axiom:

{m1[m2[P] | P] | P ∧ ◊n[true]} dispose n {m1[m2[0]]}

where P , n[true]∨ 0, and the result follows from the uniqueness of node identifiers.

Meanwhile, the weakest precondition axiom for the postcondition ◊m2[true] can be

expressed as:

{ ◊n[¬ ◊m2[true]] ∧ ◊m2[true]} dispose n { ◊m2[true]}

Clearly, the two preconditions are not parametric in the postcondition. Furthermore,

we know that the first precondition must imply the second, since weakest precondi-

tions are monotonic in the postcondition and m1[m2[0]] implies ◊m2[true]. Proving

this implication, however, requires effort. In contrast, proving the corresponding

2.4. THESIS SUMMARY 20

implication for the weakest preconditions in Context Logic is trivial:

(0 � m1[m2[0]]) · n[true] ⇒ (0 � True ·m2[true]) · n[true]

Thus, Context Logic can be easily applied to reasoning about high-level tree

update. In fact, Context Logic turned out to be much more far-reaching than this.

It can be adapted to a wide range of other data types and forms of update, including

heap update and term rewriting. Moreover, it contains an underlying logical structure

that is interesting of itself: the idea of context application leads to an abstract notion

of hierarchical resource splitting that generalises the flat resource model of Bunched

Logic. These applications and properties are discussed in detail in the thesis.

2.4 Thesis Summary

The structure of the thesis is relatively straightforward. Following this introduction,

the thesis is split into two parts: Part A (Chapters 3, 4 and 5) describes the logical

foundation of Context Logic, while Part B (Chapters 6, 7 and 8) describes Context

Logic-based reasoning about tree, and other data update. The thesis concludes with

a discussion of its main achievements and some possible future work.

The content of the individual chapters is as follows:

Chapter 3 describes the basic theory of Context Logic, laying the groundwork and

mentioning some interesting properties of the logic.

Chapter 4 describes extended theories of Context Logic, introducing additional

structures such as context composition and empty data elements.

Chapter 5 contains adaptations of Context Logic to a number of structured data

models, including sequences, heaps, trees and terms.

Chapter 6 describes Context Logic-based local reasoning about a basic tree update

language, presenting the reasoning framework and proving its completeness.

Chapter 7 applies the same approach to two other forms of data update, namely

heap update and term rewriting.

Chapter 8 considers an extended tree update language with path queries and atomic

commands that act at multiple locations in the tree. This raises an interesting

point concerning the link between local reasoning and local specifications.

Part A

Context Logic

Chapter 3

A Basic Theory of Context Logic

This chapter introduces the basic theory of Context Logic, a spatial logic for reasoning

about data update. This includes giving its proof theory, models, semantics, and

sketches of completeness and soundness results. The chapter also describes a number

of useful derived properties and interesting formula classes.

3.1 Basic Context Logic

Context Logic is a spatial logic which analyses both data and contexts using the

simple idea of ‘context application’. It views data and contexts as two separate

classes of objects, and treats the insertion of data into a context as a simple functional

operation. The approach is abstract and general, just like in Bunched Logic, and its

expressivity goes beyond the standard structured view of data and contexts. The

application of Context Logic to structured data models is considered in Chapter 5,

and throughout Part B.

Context Logic is based on two sorts of formulæ: one for reasoning about data and

another for contexts. Both sorts contain the standard boolean connectives, while an

application connective and its corresponding adjoints are used to join the two levels.

Extensions to this simple representation are considered in Chapter 4.

Definition 3.1 (CL formulæ). The formulæ of Context Logic (CL) consist of a set

of data formulæ P ∈ P and context formulæ K ∈ K, constructed from two infinite

sets of propositional variables VP = {p, . . . } and VK = {k, . . . } and described by the

3.1. BASIC CONTEXT LOGIC 23

grammars:

P ::= p propositional variables

| K · P | K � P structural formulæ

| P ∧ P | P ⇒ P | false logical formulæ

K ::= k propositional variables

| P � P | I structural formulæ

| K ∧K | K ⇒ K | False logical formulæ

Binding precedence, from tightest to loosest, is ·, ∧, �/� and ⇒.

The nub of Context Logic lies in its four structural formulæ, which describe

context application, its two adjoints, and the identity context. The context applica-

tion formula K · P represents the result of inserting data satisfying P into contexts

satisfying K. Its two right adjoints, meanwhile, express the corresponding adjunct

implications, which possess implicit universal quantifications over contexts and data.

Thus, the left-triangle formula K � P is satisfied by some data if, whenever any

context satisfying K is applied to it, the resulting data satisfies P . Similarly, the

right-triangle formula P1 � P2 describes contexts that, when applied to any subdata

satisfying P1, result in data satisfying P2. Finally, the identity context formula I de-

scribes a context or set of contexts that does not affect data, acting as a left-identity

for context application.

Both sorts of formulæ also include classical first-order logic. While it would be

interesting to study intuitionistic Context Logic, this is unnecessary for reasoning

about structured data update models, which satisfy all the laws of classical logic.

The ∧ connective is included explicitly despite being expressible using ⇒ and false,

as it simplifies the presentation of the proof rules and, together with ⇒, provides a

logical symmetry with the structural formulæ.

Definition 3.2 (CL proof theory). The Hilbert-style proof theory of CL is given in

Figure 3.1. This is separated into rules for propositional logic for both contexts and

data, and rules for the structural formulæ.

The proof theory presentation is very similar to the Hilbert-style presentation

given in [POY04] for Bunched Logic. The structural rules simply state the left-

identity property of I and the adjunction properties of � and �. By analogy, ⇒

and ∧ are presented in the same adjunctive style.

3.1. BASIC CONTEXT LOGIC 24

Identity

P `D P

Falsity

false `D P

Double Neg. Elim.

(P ⇒ false)⇒ false `D P

Contraction

P `D P ∧ P

Weakening

P1 ∧ P2 `D Pi

Exchange

P1 ∧ P2 `D P2 ∧ P1

P1 ∧ P2 `D P3

P1 `D P2 ⇒ P3

∧,⇒
P1 `D P2 P2 `D P3

P1 `D P3

Cut

Identity

K `C K

Falsity

False `C K

Double Neg. Elim.

(K ⇒ False)⇒ False `C K

Contraction

K `C K ∧K

Weakening

K1 ∧K2 `C Ki

Exchange

K1 ∧K2 `C K2 ∧K1

K1 ∧K2 `C K3

K1 `C K2 ⇒ K3

∧,⇒
K1 `C K2 K2 `C K3

K1 `C K3

Cut

· identity

P a`D I · P

K · P1 `D P2

K `C P1 � P2

·,�
K · P1 `D P2

P1 `D K � P2

·,�

Figure 3.1: CL Proof Theory

3.1. BASIC CONTEXT LOGIC 25

CL formulæ are interpreted using a forcing semantics. Models consist of a set of

contexts, a set of data, an application function, and a subset of the contexts acting

as the ‘identity contexts’. Data formulæ are interpreted on members of the data set,

and context formulæ on members of the context set.

Definition 3.3 (CL models). A CL model M = (C,D, ap, I) consists of a set C of

contexts, a set D of data, a partial application function ap : C ×D⇀ D and a subset

I ⊆ C that acts as a left-identity for ap:

∀d ∈ D. (∃i ∈ I. ap(i, d) = d) ∧ (∀i ∈ I. ap(i, d)↓ ⇒ ap(i, d) = d)

where ap(c, d)↓ signifies that ap(c, d) is defined.

Definition 3.4 (CL forcing semantics). Given a CL modelM and an interpretation

function σ : (VP → P(D)) × (VK → P(C)) mapping propositional variables to sets

of data and contexts, the forcing semantics is given by two satisfaction relations

σ,M, d �D P and σ,M, c �C K defined inductively on the structure of data and

context formulæ:

σ,M, d �D p ⇔ d ∈ σ(p)

σ,M, d �D K · P ⇔ ∃c ∈ C, d′ ∈ D.(d = ap(c, d′) ∧ σ,M, c �C K ∧ σ,M, d′ �D P)

σ,M, d �D K � P ⇔ ∀c ∈ C.((ap(c, d)↓ ∧ σ,M, c �C K)⇒ σ,M, ap(c, d) �D P)

σ,M, d �D P1 ∧ P2 ⇔ σ,M, d �D P1 ∧ σ,M, d �D P2

σ,M, d �D P1 ⇒ P2 ⇔ σ,M, d �D P1 ⇒ σ,M, d �D P2

σ,M, d �D false never

σ,M, c �C k ⇔ c ∈ σ(k)

σ,M, c �C P1 � P2 ⇔ ∀d ∈ D.((ap(c, d)↓ ∧ σ,M, d �D P1)⇒ σ,M, ap(c, d) �D P2)

σ,M, c �C I ⇔ c ∈ I

σ,M, c �C K1 ∧K2 ⇔ σ,M, c �C K1 ∧ σ,M, c �C K2

σ,M, c �C K1 ⇒ K2 ⇔ σ,M, c �C K1 ⇒ σ,M, c �C K2

σ,M, c �C False never

Using techniques from modal logic, it is possible to derive a soundness and com-

pleteness result for CL, as outlined below.

Definition 3.5 (Formula validity). A formula P or K is valid for a given modelM

and interpretation function σ, written σ,M �D P or σ,M �C K, if it is satisfied by

3.2. EXAMPLES 26

all data or contexts:

σ,M �D P , ∀d ∈ D. σ,M, d �D P

σ,M �C K , ∀c ∈ C. σ,M, c �C K

Theorem 3.6 (CL soundness and completeness). The proof theory of CL is sound

and complete with respect to the CL forcing relation:

true `D P ⇔ ∀σ,M.(σ,M �D P)

True `C K ⇔ ∀σ,M.(σ,M �C K)

Proof. Soundness follows by simple induction on the derivations true `D P and

True `C K. The soundness of the · identity axiom follows from the left-identity

property of I, while that of the adjunction rules follows directly from the semantics.

The soundness of the classical axioms and inference rules is standard.

Showing completeness is more difficult and only a rudimentary sketch is given

here. Completeness for Context Logic with relational models was proved in [CGZ07a].

This involves a reformulation of the logic as a modal logic, and an axiomatisation

which uses a class of well-behaved formulæ due to Sahlqvist. Completeness then

follows from a general theorem of modal logic [BdV01]. Completeness for functional

models, meanwhile, is obtained by a construction which, for each relational model,

gives a functional model which is bisimilar. Since bisimilar models satisfy the same

formulæ, this transfers the completeness result from relational models to functional

ones.

3.2 Examples

Detailed examples of applications of Context Logic to structured data models are

given in Chapter 5. The following are some simple examples of CL models for use in

this chapter.

Example 3.7 (CL models). The following are all models of CL:

(a) Emp = (∅, ∅, ∅ : ∅ → ∅, ∅), the empty model.

(b) FunD = (D → D,D, ap, {i}), the function model, where D is an arbitrary

set, contexts are total functions on D, ap is function application, and i is the

identity function on D. Also,

3.3. BASIC PROPERTIES AND DEFINITIONS 27

PartFunD,I = (D ⇀ D,D, ap, I), the partial function model, where D is an

arbitrary set, contexts are partial functions on D, ap is function application,

and I is a set of partial identity functions, the union of whose domains is the

whole of D. Note that different choices of I result in different models.

(c) Step = ({0, 1}, N,+, {0}), the step-by-step model, where data corresponds to

natural numbers and contexts correspond either to the identity or to the suc-

cessor function. This somewhat contrived model is used to illustrate some of

the quirks of Context Logic.

(d) MonD,◦,0 = (D,D, ◦, {0}), the monoid model, where D is a monoid with monoi-

dal operator ◦ and identity 0. Also,

PartMonD,◦,0 = (D,D, ◦, {0}), the partial monoid model, where D is a partial

monoid with monoidal operator ◦ and identity 0.

Example 3.8 (CL constructions). Given two CL models,M1 = (C1,D1, ap1, I1) and

M2 = (C2,D2, ap2, I2), it is possible to construct the following derived models, for

arbitrary ci ∈ Ci, di ∈ Di:

(a) M1 +M2 = (C1 ∪ C2,D1 ∪ D2, ap, I1 ∪ I2), the union model, where ap(ci, dj) =

api(ci, dj) if i = j and is undefined otherwise;

(b) M1 ×M2 = (C1 × C2,D1 ×D2, ap, I1 × I2), the product model, where

ap((c1, c2), (d1, d2)) = (ap1(c1, d1), ap2(c2, d2)) if both applications are defined,

and is undefined otherwise;

(c) MA
1 = (A×C1,A×D1, ap,A×I1), the set-indexed model, whereA is an arbitrary

index set, and ap((a1, c1), (a2, d1)) = (a1, ap1(c1, d1)) if a1 = a2 and is undefined

otherwise, for arbitrary a1, a2 ∈ A.

Note that the set-indexed model MA
1 corresponds to MA × M1, where MA ,

(A,A, ap,A) and ap(a1, a2) = a1 if a1 = a2 and is undefined otherwise.

3.3 Basic Properties and Definitions

This section presents some basic properties of CL, as well as some useful derived

definitions. The first definitions are of the standard classical connectives.

3.3. BASIC PROPERTIES AND DEFINITIONS 28

Definition 3.9 (Classical connectives). The standard classical connectives are de-

fined for both data and contexts.

¬P , P ⇒ false ¬K , K ⇒ False

P1 ∨ P2 , ¬P1 ⇒ P2 K1 ∨K2 , ¬K1 ⇒ K2

true , ¬false True , ¬False

Binding precedence, from tightest to loosest, is now ¬, ·, ∧, ∨, �/� and ⇒.

Note that the remaining work will take for granted the standard classical tau-

tologies, as well as the standard derivable classical proof rules. Furthermore, it is

also helpful to observe the following basic properties of the structural formulæ.

Lemma 3.10 (Basic properties).

(a) variance rules:

K1 `C K2 P1 `D P2

K1 · P1 `D K2 · P2

P3 `D P1 P2 `D P4

P1 � P2 `C P3 � P4

K2 `C K1 P1 `D P2

K1 � P1 `D K2 � P2

(b) ∨-distributivity:

(K1 ∨K2) · P a`D K1 · P ∨K2 · P

K · (P1 ∨ P2) a`D K · P1 ∨K · P2

(c) ∧-semidistributivity:

(K1 ∧K2) · P `D K1 · P ∧K2 · P

K · (P1 ∧ P2) `D K · P1 ∧K · P2

Proof. The proofs all follow immediately from the presence of right adjoints.

(a) the derivation for · is shown below; the other derivations are similar.

K1 `C K2

P1 `D P2

K2 · P2 `D K2 · P2

P2 `D K2 � (K2 · P2)

P1 `D K2 � (K2 · P2)

K2 · P1 `D K2 · P2

K2 `C P1 � (K2 · P2)

K1 `C P1 � (K2 · P2)

K1 · P1 `D K2 · P2

3.3. BASIC PROPERTIES AND DEFINITIONS 29

(b) the derivation for contexts is shown below; the data derivation is similar.

K1 · P `D K1 · P ∨K2 · P

K1 `C P � (K1 · P ∨K2 · P)

K2 · P `D K1 · P ∨K2 · P

K2 `C P � (K1 · P ∨K2 · P)

K1 ∨K2 `C P � (K1 · P ∨K2 · P)

(K1 ∨K2) · P `D K1 · P ∨K2 · P

K1 `C K1 ∨K2

K1 · P `D (K1 ∨K2) · P

K2 `C K1 ∨K2

K2 · P `D (K1 ∨K2) · P

K1 · P ∨K2 · P `D (K1 ∨K2) · P

(c) the derivation for contexts is shown below; the data derivation is similar.

K1 ∧K2 `C K1 P `D P

(K1 ∧K2) · P `D K1 · P

K1 ∧K2 `C K2 P `D P

(K1 ∧K2) · P `D K2 · P

(K1 ∧K2) · P `D (K1 · P) ∧ (K2 · P)

It is also useful to define two pairs of derived formulæ: the existential duals

of the context application adjoints, and formulæ corresponding to somewhere and

everywhere modalities.

Definition 3.11 (Existential adjoint duals). The existential duals of the structural

adjoints are defined as follows:

P1 I P2 , ¬(P1 � ¬P2) K J P , ¬(K � ¬P)

and have the following derived semantics:

σ,M, d �D K J P ⇔ ∃c ∈ C.(σ,M, c �C K ∧ ap(c, d)↓ ∧ σ,M, ap(c, d) �D P)

σ,M, c �C P1 I P2 ⇔ ∃d ∈ D.(σ,M, d �D P1 ∧ ap(c, d)↓ ∧ σ,M, ap(c, d) �D P2)

As can be seen from their semantics, these structural duals describe existential,

as opposed to universal, properties. Thus K J P is satisfied by some data if it is

possible to apply a context satisfying K to that data and obtain data satisfying P .

Similarly, P1 I P2 is satisfied by a context if it is possible to insert in that context

data satisfying P1 and obtain data satisfying P2.

Definition 3.12 (Somewhere modality). The somewhere and everywhere modalities

are defined as follows:

3P , True · P 2P , ¬(3¬P)

3.3. BASIC PROPERTIES AND DEFINITIONS 30

and have the following derived semantics:

σ,M, d �D 3P ⇔ ∃c ∈ C, d′ ∈ D.(d = ap(c, d′) ∧ σ,M, d′ �D P)

σ,M, d �D 2P ⇔ ∀c ∈ C, d′ ∈ D.(d = ap(c, d′)⇒ σ,M, d′ �D P)

Both the modalities concern context splitting. The somewhere modality, 3P ,

states that it is possible to split data into a context and some subdata satisfying P .

The everywhere modality, 2P , states that however one splits some data into a context

and subdata, the subdata must satisfy P .

These derived definitions lead to two more useful properties: a modus-ponens

style result for both the universal and existential adjoints, and a simple modality

result for somewhere and everywhere.

Theorem 3.13 (Modus ponens). The following modus-ponens style results hold:

(P � P ′) · P `D P ′ ∧ True · P P ′ ∧ True · P `D (P I P ′) · P

K · (K � P) `D P ∧K · true P ∧K · true `D K · (K J P)

Proof. The derivations for the top line are given below (using results in Lemma 3.10);

the other derivations are similar.

P � P ′ `C P � P ′

(P � P ′) · P `D P ′

P � P ′ `C True

(P � P ′) · P `D True · P

(P � P ′) · P `D P ′ ∧ True · P

True `C (P I P ′) ∨ (P � ¬P ′)

True · P `D ((P I P ′) ∨ (P � ¬P ′)) · P

True · P `D ((P I P ′) · P) ∨ ((P � ¬P ′) · P)

P ′ ∧ True · P `D (P ′ ∧ (P I P ′) · P ′) ∨ (P ′ ∧ (P � ¬P ′) · P)

P ′ ∧ True · P `D P ′ ∧ (P I P ′) · P
?

P ′ ∧ True · P `D (P I P ′) · P

where the step marked ? depends on the simple result P ′ ∧ (P � ¬P ′) · P ⇒ false.

Lemma 3.14 (Somewhere modality). Somewhere and everywhere for data satisfy

the following result, corresponding to the T -axiom of modal logic:

P ⇒ 3P 2P ⇒ P

3.4. FORMULA CLASSES 31

Proof.

P `D I · P

I `C True P `D P

I · P `D True · P

P `D True · P , 3P

¬P `D 3¬P

2P , ¬(3¬P) `D P

Note that the 4-axiom of modal logic, which states that 33P ⇒ 3P , does not

hold in general. For example, in the Step model in Example 3.7, the number 2 satisfies

330 but not 30. Chapter 4 discusses models with context composition, where the

4-axiom does always hold, and where somewhere corresponds slightly more closely to

the spatial intuition of location.

Finally, given that formula validity with respect to the heap is expressible in

Separation Logic, it is interesting to consider the expressibility of validity in Context

Logic. In fact, it is easy to show that general validity is not expressible in Context

Logic. This follows from a simple reachability argument based on the potential

partiality of context application. However, it is possible to define a formula expressing

a limited form of validity for elements related by a member of the identity set I: that

is, a formula validi(P) that holds for a given data element d if the assertion P is

satisfied by every element d′ that can be placed in some identity context i ∈ I that d

can. This definition turns out to be very useful (see Chapter 5) and, in the case of

heaps with variables stores, coincides with the validity formula of Separation Logic.

Definition 3.15 (Partial validity). Partial validity using the identity set I is defined

as follows:

validi(P) , (I ∧ (true � P)) · true

and has the following derived semantics

σ,M, d �D validi(P)⇔ ∃i ∈ I. ap(i, d)↓ ∧ ∀d′ ∈ D. (ap(i, d′)↓ ⇒ σ,M, d′ �D P)

3.4 Formula Classes

The final step in this basic introduction to Context Logic is the description of a

number of classes of formulæ with interesting logical properties. These correspond

to, and extend, similar definitions given by Reynolds et al. for Separation Logic

formulæ and heaps in [Rey03, Rey05]. There, Reynolds demonstrated that certain

3.4. FORMULA CLASSES 32

semantically-defined classes of formulæ possess interesting properties that are useful

for reasoning about heap update, memory leaks and shared-resource concurrency.

Furthermore, these classes often contain easily defined syntactic subclasses, making

them useful in automatic program reasoning.

The four classes of formulæ considered here are ‘pureness’, ‘exactness’, ‘precise-

ness’ and ‘ubiquity’. The first three of these correspond to the homonymous classes

given by Reynolds, though the adaptation to contexts involves some non-trivial ex-

tensions. The ubiquity class is new.

Unlike in [Rey03], the classes are defined logically, by declaring the validity of

specific formulæ with respect to specific models and interpretation functions. This

makes it easy to incorporate the derived properties into the proof theory, when adding

extra structure into Context Logic, as in Chapter 4. However, the definitions are also

reduced to direct semantic properties, which are general instances of the ones given by

Reynolds. In Chapter 5, the formula classes are discussed in more depth for specific

structured data models.

3.4.1 Pure Formulæ

Pureness in [Rey03] concerns the independence of formulæ from the heap, though

not necessarily from the variable store. Here, pureness is presented instead as an

insensitivity to context application. This can be split into two properties. The first,

upward-closure, describes closure under context application: if d satisfies an upward-

closed formula, then so must any ap(c, d). The second, downward-closure, describes

the reverse closure under the subdata relation: if ap(c, d) satisfies a downward-closed

formula, then so must d. Pure formulæ are then defined as being both upward- and

downward-closed. The connection between this definition and the pureness property

in [Rey03] will become clear later on.

The closure properties of pureness are expressed logically using the somewhere

and everywhere modalities of Defn. 3.12. These definitions, which take the reverse

form of the T -axiom of Lemma 3.14, are equivalent to a direct semantic expression

of the closure properties. A logical expression of context insensitivity follows as a

derived property.

Definition 3.16 (Pureness classes). Given a model M and an interpretation func-

tion σ, a data formula P is:

3.4. FORMULA CLASSES 33

(a) upward-closed iff σ,M �D 3P ⇒ P ;

(b) downward-closed iff σ,M �D P ⇒ 2P ; and

(c) pure iff it is both upward- and downward-closed.

Lemma 3.17 (Pureness semantics). A data formula P is

(a) upward-closed iff ∀c, d. ap(c, d)↓ ⇒ (σ,M, d �D P ⇒ σ,M, ap(c, d) �D P)

(b) downward-closed iff ∀c, d. ap(c, d)↓ ⇒ (σ,M, ap(c, d) �D P ⇒ σ,M, d �D P)

(c) pure iff ∀c, d. ap(c, d)↓ ⇒ (σ,M, d �D P ⇔ σ,M, ap(c, d) �D P)

Proof.

(a) To show that the lemma property implies upward-closure, it is sufficient to

assume that σ,M, d′ �D 3P for some arbitrary d′ and show that σ,M, d′ �D P .

By the forcing semantics, d′ = ap(c, d) for some c, d, where σ,M, d �D P .

Therefore, by the lemma property, σ,M, d′ �D P .

To show that upward-closure implies the lemma property, it is sufficient to

assume that σ,M, d �D P and ap(c, d)↓ for arbitrary c, d and show that

σ,M, ap(c, d) �D P . This follows immediately from ap(c, d) �D 3P and the

upward closure property.

(b) Follows directly from (a) and Lemma 3.18a below.

(c) Follows from (a) and (b).

Lemma 3.18 (Pureness properties).

(a) P is upward-closed iff ¬P is downward-closed.

(b) if P is upward-closed then σ,M �D K · (P ∧ P ′)⇒ P ∧K · P ′.

(c) if P is downward-closed then σ,M �D P ∧K · P ′ ⇒ K · (P ∧ P ′).

Proof.

(a) By contraposition, 3¬P ⇒ ¬P iff P ⇒ ¬(3¬P) , 2P .

(b) K · (P ∧ P ′)⇒ K · P ∧K · P ′ ⇒ 3P ∧K · P ′ P upward-closed
==========⇒ P ∧K · P ′

(c) P ∧K · P ′ P downward-closed
============⇒ 2P ∧K · P ′ ⇒ K · (P ∧ P ′)

3.4. FORMULA CLASSES 34

Corollary 3.19. A pure formula P is insensitive to context application:

σ,M �D K · (P ∧ P ′)⇔ P ∧K · P ′

Examples of pure formulæ include true and false, which are pure for all models

and interpretation functions, since both are trivially closed under context application

and the subdata relation. For specific models, it can be useful to view the pureness

closure properties as dividing the data into equivalence classes linked by context

application: that is, if d is in an equivalence class then so is ap(c, d), and vice versa.

Thus, a pure formula is one which does not distinguish between two elements of the

same class. For models that contain at least one context that can be applied to any

data (which includes all the models in Example 3.7), there is just one equivalence

class, and hence there are no non-trivial pure formulæ.

For a union model M1 +M2, however, the equivalence classes comprise the

disjoint union of the equivalence classes in M1 and M2. Hence, for example, a

formula satisfied by all the data elements in M1 would be pure. Similarly, in a set-

indexed model MA, data elements with different indices belong to different equiva-

lence classes. Hence, formulæ that depend on the index, but are otherwise indepen-

dent of the data value in M, are also pure. This is exactly the case for the pure

heap formulæ described by Reynolds: the base model (on which the formulæ can-

not depend) is heaps, while the index (on which they can) is the variable store (see

Chapter 5 for fuller details).

Examples of formulæ that are upward-closed but not pure include the formula

that describes all the numbers greater than 73 in the monoidal model MonN,+,0

(which is expressible as 74+, where 0+ , true and (n + 1)+ , ¬I · n+). Similarly,

the formula describing all numbers less than 73 (expressible as ¬73+) is downward-

closed. In models where the 4-axiom of modal logic holds for the somewhere modality

(that is, where 33P ⇒ 3P) it is also easy to show that both 3P and True � P are

upward-closed for arbitrary P , while 2P and True J P are downward-closed. This

includes all models containing context composition (see Chapter 4).

3.4.2 Exact Formulæ

Exactness (or strict exactness) in [Rey03] concerns the satisfaction of formulæ by

at most one heap for any given store. Here, exactness is defined for both data and

contexts. For the former, it corresponds to formulæ that describe data elements which

3.4. FORMULA CLASSES 35

cannot be distinguished from each other using context application; for the latter, it

corresponds to formulæ that describe contexts which cannot be distinguished from

each other using subdata insertion. As in the case of preciseness, the data exactness

definition collapses to Reynolds’ notion of exactness for the appropriate heap model.

Exactness is expressed logically using implications from the existential adjoints

to their universal duals. This implies that if two elements satisfying an exact formula

can be placed in the same context or applied to the same data, then the results must

be logically equivalent. An interesting derived property of exactness is a reverse form

of the modus ponens results given in Thm. 3.13.

Definition 3.20 (Exactness classes). Given a modelM and interpretation σ,

(a) a data formula P is exact iff σ,M �C (P I P ′)⇒ (P � P ′) for all P ′;

(b) a context formula K is exact iff σ,M �D (K J P ′)⇒ (K � P ′) for all P ′.

Definition 3.21 (Logical equivalence). Given a modelM and interpretation function

σ, two items of data are said to be logically equivalent, written d ∼ d′, if there is no

formula P that differentiates them: that is, there is no P where σ,M, d �D P but

σ,M, d′ 2D P .

Lemma 3.22 (Exactness semantics). A formula P or K is exact iff:

(a) ∀c, d1, d2.
(

∧2
i=1 ap(c, di)↓ ∧ σ,M, di �D P

)

⇒ (ap(c, d1) ∼ ap(c, d2))

(b) ∀d, c1, c2.
(

∧2
i=1 ap(ci, d)↓ ∧ σ,M, ci �C K

)

⇒ (ap(c1, d) ∼ ap(c2, d))

Proof.

(a) To show that the lemma property implies exactness, it is sufficient to assume

that σ,M, c �C (P I P ′) for some P ′ and show that σ,M �C (P � P ′). The

assumption implies that there is some d such that σ,M, d �D P and ap(c, d)

is defined and satisfies P ′. By the lemma property, if there is a d′ such that

σ,M, d′ �D P and ap(c, d′)↓, then ap(c, d′) is logically equivalent to ap(c, d),

and must therefore satisfy P ′. Thus, σ,M �C (P � P ′).

To show that exactness implies the lemma property, it is sufficient to assume

that ap(c, di)↓ and σ,M, di �D P for some arbitrary context c and data elements

d1, d2 and show that ap(c, d1) ∼ ap(c, d2). For a proof by contradiction, assume

there exists a P ′ such that σ,M, ap(c, d1) �D P but σ,M, ap(c, d2) 2D P . Then

σ,M, c �C (P I P ′) but σ,M, c 2C (P � P ′), contradicting exactness.

3.4. FORMULA CLASSES 36

(b) Similar to (a).

Lemma 3.23 (Exactness properties). For P or K exact, the modus-ponens style

implications in Thm. 3.13 hold in reverse: that is, for all P ′

(a) σ,M �D (P I P ′) · P ⇒ P ′ ∧True · P σ,M �D P ′ ∧True · P ⇒ (P � P ′) · P

(b) σ,M �D K · (K J P ′)⇒ P ′ ∧K · true σ,M �D P ′ ∧K · true⇒ K · (K � P ′)

Proof. Follows immediately from Thm. 3.13 and the functoriality of application.

(a) (P I P ′) · P ⇒ (P � P ′) · P ⇒ P ′ ∧True · P ⇒ (P I P ′) · P ⇒ (P � P ′) · P

(b) K · (K J P ′)⇒ K · (K �P ′)⇒ P ′∧K · true⇒ K · (K J P ′)⇒ K · (K �P ′)

Despite the symmetry of the definitions, exact data formulæ turn out to be much

more useful in modelling data update than exact context formulæ, and are explored in

more detail. This is mainly due to the emphasis on data in reasoning about update.

In models with a singleton identity context that can be applied to everything,

exact data formulæ are only satisfied by data elements that are logically equiva-

lent (by Lemma 3.22). In the case when logical equivalence corresponds to equality,

exactness corresponds to satisfaction by at most one element: for example in the

model MonN,+,0 considered above. In the cases where logical equivalence isn’t equal-

ity, the exactness condition can sometimes be stronger than just logical equivalence.

Consider, for example, the model Fun{1,2,3,4} with propositional variables p, q, and

an interpretation σ(p) = {3}, σ(q) = {4}. Then P , ¬(p ∨ q) is satisfied by ele-

ments 1 and 2, which are logically equivalent. However, P is not exact as the context

{1 7→ 3, 2 7→ 4, 3 7→ 3, 4 7→ 4} satisfies P I p but not P � p.

In general, two data elements that satisfy an exact data formula are not neces-

sarily logically equivalent if they cannot be put in the same member of the identity

context. For example, in a set-indexed modelMA, a formula describing at most one

data element in M per index is exact, since context application is only defined for

pairs with identical indices. This is precisely the situation for the exact heap formulæ

described by Reynolds, which are satisfied by at most one heap for any given store.

3.4.3 Precise Formulæ

Preciseness in [Rey05] concerns the satisfaction of a formula by at most one subheap

for any given heap, and is a useful concept in modelling update, and reasoning about

3.4. FORMULA CLASSES 37

memory leaks and concurrency. Here, preciseness is extended to a property called

‘pair-preciseness’. This is defined for a pair of formulæ, a context formula K and

data formula P , and holds if there is at most one way, up to logical equivalence,

to split any given data into a context satisfying K and subdata satisfying P . This

modelling of unique splittings closely resembles the specification of unique locations in

data update, and is therefore particularly interesting for structured data models (see

Chapter 5). It is possible to define data preciseness and context preciseness in terms

of pair-preciseness, by removing the restriction on contexts (for data preciseness) or

data (for context preciseness). Data preciseness corresponds to the view of preciseness

given by Reynolds.

Pair-preciseness is expressed logically using an ∧-distributivity rule for context

application. This specifies that any two splittings into contexts satisfying K and

subdata satisfying P imply a single splitting that is logically equivalent. In the case

of data and context preciseness, the rule collapses to smaller ∧-distributivity rules.

An interesting derived property of data and context preciseness is an elimination

property given below.

Definition 3.24 (Preciseness classes). Given a model M and interpretation σ,

(a) a pair of context-data formulæ (K,P) is pair-precise iff for all Pi, Ki

σ,M �D(K ∧K1) · (P ∧ P1) ∧ (K ∧K2) · (P ∧ P2)

⇒ (K ∧K1 ∧K2) · (P ∧ P1 ∧ P2)

(b) a data formula P is precise iff (True, P) is pair-precise;

(c) a context formula K is precise iff (K, true) is pair-precise.

Corollary 3.25. For K or P precise, the ∧-semidistributivity implications in Lemma 3.10

hold in reverse:

σ,M �D K1 · P ∧K2 · P ⇒ (K1 ∧K2) · P

σ,M �D K · P1 ∧K · P2 ⇒ K · (P1 ∧ P2)

Lemma 3.26 (Preciseness semantics). (K,P) is pair-precise iff:

∀c1, c2, d1, d2.
(

∧2
i=1 ap(ci, di)↓ ∧ σ,M, di �D P ∧ σ,M, ci `C K

)

∧ (ap(c1, d1) = ap(c2, d2))⇒ (c1 ∼ c2) ∧ (d1 ∼ d2)

where ∼ is a logical equivalence, defined in the previous subsection.

3.4. FORMULA CLASSES 38

Proof. To show that the lemma condition above implies pair-preciseness, assume that

σ,M, ci �C K∧Ki, σ,M, di �D P ∧Pi, ap(ci, di)↓ and ap(c1, d2) = ap(c2, d2) for some

arbitrary c1, c2, d1, d2 and show that σ,M, ap(c1, d1) �D (K∧K1∧K2) ·(P ∧P1∧P2).

By the lemma property, c1 ∼ c2 and d1 ∼ d2. Hence σ,M, c1 �C K2 and σ,M, d1 �D

P2 since σ,M, c2 �C K2 and σ,M, d2 �D P2. Therefore, σ,M, ap(c1, d1) �D (K ∧

K1 ∧K2) · (P ∧ P1 ∧ P2).

To show that pair-preciseness implies the lemma condition, assume that ci �C K,

di �D P , ap(ci, di)↓ and ap(c1, d1) = ap(c2, d2) and show that c1 ∼ c2 and d1 ∼ d2.

For a proof by contradiction, assume first that c1 �C K ′ but c2 2C K ′ for some K ′.

Then ap(c1, d1) �D (K ∧K ′) · (P ∧ P) and ap(c2, d2) �D (K ∧ ¬K ′) · (P ∧ P). But

since ap(c1, d1) = ap(c2, d2), pair-preciseness implies ap(c1, d1) �D (K ∧K ′ ∧ ¬K ′) ·

(P ∧ P ∧ P), a contradiction. Hence c1 ∼ c2. The case for d1 ∼ d2 is similar.

Lemma 3.27 (Preciseness properties). If P or K are precise, then the following

elimination properties hold for all K ′ and P ′:

σ,M �C P I (K ′ · P)⇒ K ′ σ,M �D K J (K · P ′)⇒ P ′

Proof. The proof for P is as follows; the proof for K is similar. The premise of the

proof is an immediate corollary of the definition of preciseness.

((¬K ′) · P) ∧ (K ′ · P) `D false

(¬K ′) · P `D ¬(K ′ · P)

¬K ′ `C P � ¬(K ′ · P)

P I (K ′ · P) `C K ′

Note that in general, the pair-preciseness of a pair of formulæ does not imply

the preciseness of either formula. For example, in the monoidal model MonN,+,0

containing propositional variables k, p, and an interpretation σ(k) = {0, 1}, σ(p) =

{n ∈ N | n is even}, the formula pair (k, p) is pair-precise: there is only one way of

expressing an arbitrary natural number as the sum of an even number and a one or

zero. However, clearly neither k nor p are precise by themselves. Further examples

of pair-precise pairs are given in Chapter 5.

In [Rey03], exactness implied preciseness, but this is also not true in general.

For example, the formula p expressing any d ∈ D in the function model FunD is

3.4. FORMULA CLASSES 39

exact but not precise: there are many ways of splitting a given value into d and a

function that maps d to that value. Conversely, there are precise formulæ that are

not exact. For example, the data formula p in the Step model with an interpretation

σ(p) = {n ∈ N | n is even} is not exact but is precise, for the same reasons as in the

MonN,+,0 example above.

3.4.4 Ubiquitous Formulæ

The final formula class, ubiquity, was not considered in [Rey03], but is used in Chap-

ter 4 to help characterise empty data elements. Like pureness, ubiquity is made up of

two subproperties. The first is omnipresence, which describes data and contexts that

can be found in at least one splitting of any data element. The second is omniplace-

ability, which describes data and contexts that can be combined with any context or

data. Both properties entail additional derived properties: omnipresence implies a

weaker form of the existential modus ponens rule, while omniplaceability implies an

implication from the universal adjoints to the existential ones.

Definition 3.28 (Ubiquity classes). Given a modelM and an interpretation function

σ, a formula P or K is:

(a) omnipresent iff σ,M �D True · P or σ,M �C K · true;

(b) omniplaceable iff σ,M �C P I true or σ,M �D K J true;

(c) ubiquitous iff it is omnipresent and omniplaceable.

Lemma 3.29 (Ubiquity semantics).

(a) P is omnipresent iff ∀d.∃c, d′. (d = ap(c, d′) ∧ σ,M, d′ �D P)

K is omnipresent iff ∀d.∃c, d′. (d = ap(c, d′) ∧ σ,M, c �C K)

(b) P is omniplaceable iff ∀c.∃d. (ap(c, d)↓ ∧ σ,M, d �D P)

K is omniplaceable iff ∀d.∃c. (ap(c, d)↓ ∧ σ,M, c �C K)

Proof. Follows directly from the definition of the forcing semantics.

Lemma 3.30 (Ubiquity properties). Omnipresence implies a weaker existential mo-

dus ponens result, while omniplaceability implies the reverse implication of the exact-

ness conditions:

3.4. FORMULA CLASSES 40

(a) for P omnipresent: σ,M �D P ′ ⇒ (P I P ′) · P for all P ′

for K omnipresent: σ,M �D P ′ ⇒ K · (K J P ′) for all P ′

(b) for P omniplaceable: σ,M �C P � P ′ ⇒ P I P ′ for all P ′

for K omniplaceable: σ,M �C K � P ⇒ K J P for all P ′

Proof.

(a) Follows directly from Thm. 3.13 and the definition of omnipresence.

(b) For P omniplaceable, P I true implies P I (P ′ ∨ ¬P ′), which in turn implies

(P I P ′) ∨ (P I ¬P ′). From this it is possible to derive P � P ′ ⇒ P I P ′ by

elimination, since (P � P ′) ∧ (P I ¬P ′)⇒ false. The proof for K is similar.

Examples of ubiquitous formulæ include I, which is trivially ubiquitous in all

models. Furthermore, if P ⇒ Q and P are both ubiquitous then Q is ubiquitous.

Hence, the context formula True is always ubiquitous, since I ⇒ True. In contrast,

Lemma 3.29 shows that the data formula true is ubiquitous only when context appli-

cation is total (implying omniplaceability) and surjective (implying omnipresence).

Examples of omnipresent formulæ that are not omniplaceable can be found in

the partial function models PartFunD,I in Example 3.7. All non-false data formulæ

are omnipresent but none are omniplaceable, due to the presence of the everywhere-

undefined context. Similarly, examples of omniplaceable formulæ that are not om-

nipresent can be found in the Step model, where all formulæ denoting singleton data

sets are omniplaceable but none are omnipresent.

Chapter 4

Extended Theories of Context

Logic

This chapter presents extended theories of Context Logic, which model additional

structures such as context composition and empty data elements. It defines a spa-

tial connective on data and data formulæ that can be used to embed Bunched Logic

into Context Logic. Finally, it gives an alternative presentation of Context Logic,

using only a projection/embedding relation between contexts and data and context

composition.

4.1 Context Composition

Given the functional nature of context application used in Context Logic, it is natural

to consider the composition of contexts. While not all CL models can be extended to

include context composition, the interesting structural ones can: in trees, for example,

context composition corresponds to placing one tree context inside another. For some

of these models it is already possible to express context composition using CL, but

it is not possible to do this in general. This section describes the result of adding

context composition, together with its two right adjoints, directly to the logic.

Definition 4.1 (CL◦ formulæ). The formulæ of Context Logic with Composition

(CL◦) consist of the same data and context assertions as CL (Defn. 3.1), with addi-

4.1. CONTEXT COMPOSITION 42

tional assertions for context composition and its right adjoints.

P ::= p propositional variables

| K · P | K � P structural formulæ

| P ∧ P | P ⇒ P | false logical formulæ

K ::= k propositional variables

| I | P � P |K ◦ K |K −◦ K |K ◦− K structural formulæ

| K ∧K | K ⇒ K | False logical formulæ

The additional formulæ describe context composition and its right adjoints. The

context composition formula K1◦K2 describes the contexts obtained from functionally

composing a context satisfying K1 with one satisfying K2. Like for context appli-

cation, the logic also includes the two right adjoints of composition, K1 −◦K2 and

K1◦−K2: the former is satisfied by a context if whenever one composes a context sat-

isfying K1 on the right then the result satisfies K2; the latter is satisfied if whenever

one composes a context satisfying K1 on the left then the result satisfies K2.

Definition 4.2 (CL◦ proof theory). The proof theory of CL◦ is the same as that of

CL (Defn. 3.2), extended by the following rules for composition:

◦ associativity

(K1 ◦K2) ◦K3 a`C K1 ◦ (K2 ◦K2)

◦ identity

K ◦ I a`C K a`C I ◦K

K1 ◦K2 `C K3

K1 `C K2 −◦K3

◦,−◦
K1 ◦K2 `C K3

K2 `C K1 ◦−K3

◦, ◦−

composition

(K1 ◦K2) · P a`D K1 · (K2 · P)

The additional rules simply state the associativity and identity properties of com-

position, the adjunction properties of −◦ and ◦−, and the basic composition property

that links context composition to context application. The expanded adjunctive

structure can be illustrated by the following diagram:

K
[−]·P ((`

P�[−]
hh P P

K·[−]vv `

K�[−]
66K

K
◦
[−

]

��

`K
−◦

[−
]

UUK

K

K
◦−

[−
]

uu

`
[−

] ◦
K

55

K

4.1. CONTEXT COMPOSITION 43

Models for CL◦ consist of CL models with the addition of a possibly partial

composition operator on contexts.

Definition 4.3 (CL◦ models). A model M = (C,D, cp, ap, I) of CL◦ is a model of

CL (Defn. 3.3) with the addition of a partial composition function cp : C × C ⇀ C,

which is associative with an identity set I:

∀c1, c2, c3 ∈ C. cp(c1, cp(c2, c3)) = cp(cp(c1, c2), c3)

∀c ∈ C. (∃i ∈ I. cp(i, c) = c) ∧ (∀i ∈ I. cp(i, c)↓ ⇒ cp(i, c) = c)

∀c ∈ C. (∃i ∈ I. cp(c, i) = c) ∧ (∀i ∈ I. cp(c, i)↓ ⇒ cp(c, i) = c)

and which satisfies the standard function composition property:

∀c1, c2 ∈ C, d ∈ D.(ap(cp(c1, c2), d) = ap(c1, ap(c2, d)))

Definition 4.4 (CL◦ forcing semantics). Given a modelM of CL◦ and an interpre-

tation function σ : (VD → P(D)) × (VC → P(C)) mapping propositional variables

to data and context sets, the forcing semantics is given by two satisfaction relations

σ,M, d �D P and σ,M, c �C K defined as in Defn. 3.4 and extended as follows:

σ,M, c �C K1 ◦K2 ⇔ ∃c1, c2 ∈ C.(c = c1 ◦ c2 ∧ σ,M, c1 �C K1 ∧ σ,M, c2 �C K2)

σ,M, c �C K1 −◦K2 ⇔ ∀c1 ∈ C.((c ◦ c1↓ ∧ σ,M, c1 �C K1)⇒ σ,M, c ◦ c1 �D K2)

σ,M, c �C K1 ◦−K2 ⇔ ∀c1 ∈ C.((c1 ◦ c↓ ∧ σ,M, c1 �C K1)⇒ σ,M, c1 ◦ c �D K2)

As mentioned before, not all models of CL allow context composition. For ex-

ample, the model Step in Example 3.7 does not: there is no context 1 ◦ 1 satisfying

(1◦1)+n = 1+(1+n). Below are examples of some CL models that do allow context

composition.

Example 4.5 (CL◦ models). The following extensions to CL models from Exam-

ple 3.7 are all models of CL◦:

(a) Emp = (∅, ∅, ∅ : ∅ → ∅, ∅ : ∅ → ∅, ∅), the empty model, where the composition

function is ∅.

(b) FunD = (D → D,D, cp, ap, {i}), the function model, where cp is functional

composition; also

PartFunD,I = (D ⇀ D,D, cp, ap, I), the partial function model, where cp is

partial composition, with the additional restriction that I must contain the

total identity function. This is necessary to ensure that I is an identity for

context composition, as well as for application.

4.1. CONTEXT COMPOSITION 44

(d) MonD,◦,0 = (D,D, ◦, ◦, {0}), the monoid model, where the composition function

and the application function are the same;

PartMonD,◦,0 = (D,D, ◦, ◦, {0}), the partial monoid model.

Example 4.6 (CL◦ constructions). Given two CL◦ models,M1 = (C1,D1, cp1, ap1, I1)

and M2 = (C2,D2, cp2, ap2, I2), it is possible to extend all the constructions given in

Example 3.8 as follows: for arbitrary ci, c
′
i ∈ Ci,

(a) M1+M2 = (C1∪C2,D1∪D2, cp, ap, I1∪ I2), the union model, where cp(ci, c
′
j) =

cpi(ci, c
′
j) if i = j and is undefined otherwise;

(b) M1 ×M2 = (C1 × C2,D1 ×D2, cp, ap, I1 × I2), the product model, where

cp((c1, c2), (c
′
1, c

′
2)) = (cp1(c1, c

′
1), cp2(c2, c

′
2)) if both compositions are defined,

and is undefined otherwise;

(c) MA
1 = (A× C1,A×D1, cp, ap,A× I1), the set-indexed model, where

cp((a1, c1), (a2, c
′
1)) = (a1, cp1(c1, c

′
1)) if a1 = a2 and is undefined otherwise, for

arbitrary a1, a2 ∈ A.

As for CL, it is possible to derive additional properties for CL◦, such as the dis-

tributivity rules for composition. The only property considered here is an interesting

result for the somewhere modality.

Lemma 4.7 (Somewhere modality). In the presence of composition, the somewhere

and everywhere modalities (Defn. 3.12) satisfy the 4-axiom of modal logic:

33P ⇒ 3P 2P ⇒ 22P

Proof. By the composition rule, True · (True · P) ⇒ (True ◦ True) · P ⇒ True · P .

Conversely, by contraposition, 2P = ¬3¬P ⇒ ¬33¬P = ¬3¬(¬3¬P) = 22P .

As noted before, it is sometimes possible to express composition parametrically

in the logic, using only application and its adjoints. However, this is not always the

case. Consider, for example, the functional model FunN together with a propositional

context variable k and an interpretation σ(k) = λn. n + 1. Using a transitivity

argument, it is easy to show that the only data formulæ expressible are true and

false, and that therefore it is not possible to express k◦k = λn. n+2. In the presence

of a precise, omniplaceable formula, however, composition can be expressed. The

4.1. CONTEXT COMPOSITION 45

two requirements are quite strong, though Chapter 5 demonstrates how they can be

weakened in the presence of quantification. Note also that the reverse implication,

whereby composition implies the existence of a precise omniplaceable formula, clearly

does not hold: for example, there are no omniplaceable formulæ in PartFunD,I.

Lemma 4.8 (Expressibility of composition). If there exists a data formula P that is

both precise (Defn. 3.24) and omniplaceable (Defn. 3.28), then context composition

and its adjoints can be expressed parametrically as follows:

K1 ◦K2 a`C P � (K1 · (K2 · P))

K1 −◦K2 a`C (K1 · P) � (K2 · P)

K1 ◦−K2 a`C P � (K1 � (K2 · P))

Proof.

(a) The left-to-right implications always hold, and follow immediately from the

following entailments by applying the adjunction rules for � and �.

(K1 ◦K2) · P `D K1 · (K2 · P)

(K1 −◦K2) · (K1 · P) `D ((K1 −◦K2) ◦K1) · P `D K2 · P

K1 · ((K1 ◦−K2) · P) `D (K1 ◦ (K1 ◦−K2)) · P `D K2 · P

(b) The right-to-left implications depend on the preciseness and omniplaceability

of P . By Lemmas 3.30 and 3.27, P � (K · P) `C P I (K · P) `C K for

arbitrary K. The proofs follow, making use of the results in part (a):

P � (K1 · (K2 · P)) `D P � ((K1 ◦K2) · P) `D K1 ◦K2

((K1 · P) � (K2 · P)) ◦K1 `C P � (((K1 · P) � (K2 · P)) · (K1 · P))

`C P � (K2 · P) `C K2

K1 ◦ (P � (K1 � (K2 · P))) `C P � (K1 · ((P � (K1 � (K2 · P))) · P))

`C P � (K1 · (K1 � (K2 · P)))

`C P � (K2 · P) `C K2

4.2. CONTEXT LOGIC WITH ZERO 46

4.2 Context Logic with Zero

In addition to context composition, many structured data models have an element, or

set of elements, that correspond to empty data. For example, heap models have the

empty heap, while tree models have the empty tree. This section describes adding

a formula representing zero to the logic, and shows that this gives rise to interesting

logical structure.

Definition 4.9 (CL∅ formulæ). The formulæ of Context Logic with Zero (CL∅)

consist of the same data and context assertions as CL (Defn. 3.1), with an additional

assertion for zero.

P ::= p propositional variables

| K · P | K � P | 0 structural formulæ

| P ∧ P | P ⇒ P | false logical formulæ

K ::= k propositional variables

| I | P � P structural formulæ

| K ∧K | K ⇒ K | False logical formulæ

Zero elements in structural data typically satisfy a number of common properties.

Two such properties are used here to model zero. The first is ubiquity (Defn. 3.28):

a zero element can always be placed in a context, and a data element can always

be split into a context and a zero. The second is exactness (Defn. 3.20): placing

a zero in a context can only ever give one result. Other properties may also hold

(though most are not universal), but ubiquity and exactness are enough to provide

some interesting derived properties and models.

Definition 4.10 (CL∅ proof theory). The proof theory of CL◦ is the same as that of

CL (Defn. 3.2), extended by the following rules specifying the ubiquity and exactness

of zero (Defns. 3.28 and 3.20):

0 omnipresence

true `D True · 0

0 omniplaceability

True `C (0 I true)

0 exactness

0 I P `C 0 � P

Models for CL∅ extend CL models by adding a set of data elements correspond-

ing to zero, together with an additional condition corresponding to exactness and

ubiquity, which states that collectively applying the zero set to individual contexts

defines a total surjective function from contexts to data. In general, applying a set of

4.2. CONTEXT LOGIC WITH ZERO 47

data elements to a context defines a relation between the context and the results. Ex-

actness, however, implies that the zero elements cannot be distinguished by applying

a context, and that the relation must therefore be a partial function, relating each

context to at most one data element. Similarly, omniplaceability implies totality, as

at least one zero element can be applied to any context, while omnipresence implies

surjectivity, as any data element can be split into a context and a member of zero.

Definition 4.11 (CL∅ models). A CL∅ model M = (C,D, ap, I, 0) is a CL model

(Defn. 3.3) with the addition of a zero set 0 ⊆ D for which the relation p ⊆ C × D

defined by (c, d) ∈ p⇔ ∃o ∈ 0. ap(c, o) = d is a total, surjective function.

Definition 4.12 (CL∅ semantics). Given a CL∅ model M and an interpretation

function σ : (VD → P(D))×(VC → P(C)) mapping propositional variables to data and

context sets, the forcing semantics is given by two satisfaction relations σ,M, d �D P

and σ,M, c �C K defined as in Defn. 3.4 and extended as follows:

σ,M, d �D 0⇔ d ∈ 0

The soundness of CL∅ follows by simple induction, using the semantic properties

in Lemmas 3.22 and 3.29.

Like context composition, not all CL models have a zero. For example, the

model Step in Example 3.7 clearly has no zero: there are no surjective functions

from contexts (0 and 1) to data (N). Similarly, the model PartFunD,I has no zero

since there is no set of data elements that is omniplaceable: nothing can be placed in

the everywhere undefined context. In Chapter 5 it will be shown that term models

also do not have a zero. Below are examples of some CL models that do admit zeros.

Example 4.13 (CL∅ models). The following extensions to CL models from Exam-

ple 3.7 are all models of CL∅:

(a) Emp = (∅, ∅, ∅ : ∅ → ∅, ∅, ∅), the empty model.

(b) FunD = (D → D,D, ap, {i}, {d}), the function model, where the zero set con-

tains an arbitrary data element d ∈ D.

(c) MonD,◦,0 = (D,D, ◦, {0}, {0}), the monoid model ;

PartMonD,◦,0 = (D,D, ◦, {0}, {0}), the partial monoid model.

4.3. DERIVED CONNECTIVE ON DATA 48

Example 4.14 (CL∅ constructions). Given two CL∅ models,M1 = (C1,D1, ap1, I1, 01)

and M2 = (C2,D2, ap2, I2, 02), it is possible to extend all the constructions given in

Example 3.8 as follows:

(a) M1 +M2 = (C1 ∪ C2,D1 ∪ D2, ap, I1 ∪ I2, 01 ∪ 02), the union model ;

(b) M1 ×M2 = (C1 × C2,D1 ×D2, ap, I1 × I2, 01 × 02), the product model ;

(c) MA
1 = (A× C1,A×D1, ap,A× I1,A× 01), the set-indexed model.

Like context composition, zero is not generally expressible in CL. In the model

FunD, for example, any singleton data element can function as a zero, yet it is not

possible to differentiate between individual data elements in the absence of an appro-

priate interpretation of propositional variables. However, for some structured data

models, such as heaps and trees, zero can be expressed as the set of undecompos-

able elements: that is, those elements that can only be split into an identity context

and themselves, which is expressible as ¬(¬I · true). This property can be used in

modelling zero, but the more general model considered here already displays some

important properties.

4.3 Derived Connective on Data

Since the application of zero is a total surjective function, it can be regarded as a

projection from contexts to data. Furthermore, it is also possible to use zero to embed

data back into contexts, mapping a data element to all the contexts that project to

it. This projection/embedding pair can be used to derive a useful connective on

data and data formulæ, with interesting properties and an intuitive interpretation on

structured data. The connective is called ∗, as for models that derive from Bunched

Logic (BI) it coincides with the ∗ of BI.

A logical treatment of ∗ is considered first, followed by an interpretation of it as

a connective on data. Projection and embedding with zero can easily be expressed

logically: K ·0 describes the projection of contexts satisfying K, while 0�P describes

the embedding into contexts of data satisfying P . Using this, it is possible to define

a connective on data formulæ P1 and P2, which embeds the data satisfying P1 into

contexts, and applies to these contexts the data satisfying P2: namely, P1 ∗P2 , (0�

P1)·P2. It is also possible to derive the two right adjoints of this connective, ∗− and −∗.

4.3. DERIVED CONNECTIVE ON DATA 49

The result is a BI-type structural connective on data formulæ. However, unlike in BI,

this connective is neither necessarily commutative, nor associative. Furthermore,

while 0 is a right identity for ∗, it is not necessarily a left-identity.

Definition 4.15 (Star connective). The logical data connective ∗ and its two right

adjoints ∗− and −∗ are defined as follows:

P1 ∗ P2 , (0 � P1) · P2

P1 ∗− P , (0 � P1) � P

P2 −∗ P , ¬(¬(P2 � P) · 0)

Lemma 4.16 (Star properties).

(a) −∗ and ∗− are right adjoints of ∗: that is,

P1 ∗ P2 `D P3

P1 `D P2 −∗ P3

P1 ∗ P2 `D P3

P2 `D P1 ∗− P3

(b) 0 is a right-identity for ∗, though not necessarily a left-identity. In the case

where 0 � 0 `C I, 0 is also a left-identity.

Proof.

(a) The adjunction properties follow from the derivations:

(0 � P1) · P2 `D P3

P2 `D (0 � P1) � P3

(0 � P1) · P2 `D P

0 � P1 `D P2 � P
?

0 I P1 `D P2 � P

¬(P2 � P) `D 0 � ¬P1

¬(P2 � P) · 0 `D ¬P1

P1 `D ¬(¬(P2 � P) · 0)

where the step marked ? follows from the exactness (Defn. 3.20) and omniplace-

ability properties (Lemma 3.30) of 0.

(b) The right identity property P ∗0 = (0�P) ·0 a`D 0 follows from the omnipres-

ence (Defn. 3.28a) and exactness (Defn. 3.20) of 0. In cases where 0 � 0 `C I,

then 0 � 0 a`C I follows by applying the � adjunction rule to the · identity

axiom, implying the left-identity property 0 ∗ P = (0 � 0) · P a`D P . For an

4.3. DERIVED CONNECTIVE ON DATA 50

example where zero is not a left-identity, consider the functional model FunD

with 0 satisfied by {d} (Example 4.13), and a propositional variable p with

interpretation {d′} for d 6= d′. Then 0�0 is satisfied by any function that maps

d to itself, and 0 ∗ p = (0 � 0) · p is therefore logically equivalent to true.

In addition to the logical construction, there is also a counterpart to star defined

as a connective on data in the underlying models. This is similar to the ∗ operator

on heaps used in Separation Logic. The essence of the definition is the same as for

the logical connective: d1 ∗ d2 involves embedding d1 and applying d2. Whereas ∗ in

Separation Logic is a partial function on heaps, here ∗ generally defines a relation on

data, since the projection from contexts to data is not necessarily a bijection, and a

data element can embed to many contexts.

Definition 4.17 (Star on data). The relation ∗ ⊆ (D×D)×D is defined as follows,

writing for convenience d1 ∗ d2 for {d | ((d1, d2), d) ∈ ∗}.

d1 ∗ d2 = {d | ∃c ∈ C, o ∈ 0. d1 = ap(c, o) ∧ d = ap(c, d2)}

Lemma 4.18 (Star semantics). The semantics of the logical connectives ∗, −∗ and ∗−

can be expressed in terms of the data connective ∗ as follows:

σ,M, d �D P1 ∗ P2 ⇔ ∃d1, d2 ∈ D. (d ∈ d1 ∗ d2 ∧ σ,M, d1 �D P1 ∧ σ,M, d2 �D P2)

σ,M, d �D P1 ∗− P2 ⇔ ∀d1, d2 ∈ D. (d2 ∈ d ∗ d1 ∧ σ,M, d1 �D P1 ⇒ σ,M, d2 �D P2)

σ,M, d �D P1 −∗ P2 ⇔ ∀d1, d2 ∈ D. (d2 ∈ d1 ∗ d ∧ σ,M, d1 �D P1 ⇒ σ,M, d2 �D P2)

Proof. Follows directly from the definitions and derived semantics.

The following are examples of the star connective for the CL∅ models given in

Example 4.13. More interesting examples are considered for the sequence and tree

models in Chapter 5.

Example 4.19 (Star connective). Star has the following behaviour on the example

models from Example 4.13:

(a) for Emp, the empty model, ∗ is the empty relation (unsurprisingly);

(b) for FunD, the function model with zero {d0}, d1 ∗d2 equals {d1} if d2 = d0 and

all of D otherwise;

(c) for MonD,◦,0 and PartMonD,◦,0, the monoid and partial monoid models, d1 ∗

d2 = d1 ◦ d2.

4.3. DERIVED CONNECTIVE ON DATA 51

The monoid examples above shows that star is not necessarily commutative,

while the tree model example in Chapter 5 will demonstrate that it is not even

necessarily associative.

As mentioned before, the star connective here coincides with the ∗ connective

of BI for appropriate models. As described in [POY04], boolean BI models can be

expressed as partial commutative monoids (D, ∗, 0), which can be modelled in CL∅

by PartMonD,∗,0 = (D,D, ∗, {0}, {0}). For these models, CL∅ turns out to be just

as expressive as BI, with the derived star coinciding with BI’s ∗ connective. This is

demonstrated below, by showing a mutual embedding between models in CL∅ and

models in an appropriately-presented version of BI.

Definition 4.20 (BI formulæ). The formulæ of Bunched Logic (BI) consist of a set

of formulæ P ∈ PBI constructed from a set of propositional variables VBI = {p, . . . }

and described by the grammar:

P ::= p propositional variables

| P ∗ P | P −∗ P | 0 structural formulæ

| P ∧ P | P ⇒ P | false logical formulæ

Definition 4.21 (BI models and forcing semantics). A BI model M = (D, ∗, 0)

consists of a partial commutative monoid D with monoidal operator ∗ and identity 0.

Given a BI model M and an interpretation function σ : (VBI → P(D)) mapping

propositional variables to sets of data, the forcing semantics is given by a satisfaction

relation σ,M, d �BI P defined inductively on the structure of data formulæ:

σ,M, d �BI p ⇔ d ∈ σ(p)

σ,M, d �BI P1 ∗ P2 ⇔ ∃d1, d2 ∈ D.(d = d1 ∗ d2 ∧ σ,M, d1 �BI P1 ∧ σ,M, d2 �BI P2)

σ,M, d �BI P1 −∗ P2 ⇔ ∀d
′ ∈ D.((d′ ∗ d↓ ∧ σ,M, d′ �BI P1)⇒ σ,M, ap(c, d) �BI P2)

σ,M, d �BI 0 ⇔ d = 0

σ,M, d �BI P1 ∧ P2 ⇔ σ,M, d �BI P1 ∧ σ,M, d �BI P2

σ,M, d �BI P1 ⇒ P2 ⇔ σ,M, d �BI P1 ⇒ σ,M, d �BI P2

σ,M, d �BI false never

4.3. DERIVED CONNECTIVE ON DATA 52

Theorem 4.22 (BI Embedding Result). There exists a translation J−KCL∅
of BI

formulæ into CL∅ data formulæ, and of BI interpretation functions into CL∅ inter-

pretation functions, such that any formula P on a BI model MBI = (D, ∗, 0) agrees

with the formula JP KCL∅
on the corresponding CL∅ modelMCL∅

= (D,D, ∗, {0}, {0}):

∀σ, d. (σ, d,MBI �BI P ⇔ JσKCL∅
, d,MCL∅

�D JP KCL∅
)

Conversely, there exists a reverse translation J−KBI of CL∅ context and data formulæ

into BI formulæ, and of CL∅ interpretation functions into BI interpretation functions,

such that any formula P or K on a CL∅ model MCL∅
= PartMonD,∗,0, where ∗ is

commutative, agrees with the formula JP KBI on the corresponding BI model MBI =

(D, ∗, 0):

∀σ, d. (σ, d,MCL∅
�D P ⇔ JσKBI, d,MBI `BI JP KBI)

∀σ, d. (σ, d,MCL∅
�C K ⇔ JσKBI, d,MBI `BI JKKBI)

Proof. Let πCL∅
: VBI → VP be a bijective function from propositional variables in

BI to propositional data variables in CL∅, and let πBI : (VP] VK)→ VBI be a bijec-

tive function from propositional context and data variables in CL∅ to propositional

variables in BI. Then the translations of the interpretation functions are given by:

JσKCL∅
(p) = σ(πCL∅

−1(p))

JσKCL∅
(k) = ∅

JσKBI(p) = σ(πBI
−1(p))

The formula translations, meanwhile, map the classical connectives to their direct

correspondents, while the structural formulæ and propositional variables are trans-

lated as follows, with the J−KCL∅
translation using the derived star connectives from

Defn. 4.15:

JpKCL∅
, πCL∅

(p) JP ∗ P ′KCL∅
, JP KCL∅

∗ JP ′KCL∅

J0KCL∅
, 0 JP −∗ P ′KCL∅

, JP KCL∅
−∗ JP ′KCL∅

JpKBI , πBI(p) JK · P KBI , JKKBI ∗ JP KBI

JkKBI , πBI(k) JK � P KBI , JKKBI −∗ JP KBI

JIKBI , 0 JP � P ′KBI , JP KBI −∗ JP ′KBI

J0KBI , 0

The derived semantics, given in Defns. 3.4 and 4.21 and Lemma 4.18, all match up

as required.

4.4. EMBEDDINGS AND PROJECTIONS 53

4.4 Embeddings and Projections

Apart from helping define a connective on data, the projection and embedding pro-

vided by zero also suggest an alternate way to represent Context Logic, which is

explored in this section. The idea is to replace context application and its adjoints

with this projection/embedding pair, and express the interaction between contexts

and data using only this and context composition. The result is a seemingly simpler

logic, which contains just a monoidal context structure based around composition,

and a simple mapping from contexts to data. In fact, Thms. 4.34 and 4.36 show that

the resulting logic is equivalent to standard Context Logic with zero and composi-

tion.

Definition 4.23 (CLp formulæ). The formulæ of Projective Context Logic (CLp)

consist of data and context assertions from CL◦ (Defn. 4.1), but with a projection

operator on contexts Kp and an embedding operator on data P e instead of context

application and its adjoints:

P ::= p propositional variables

|Kp structural formulæ

| P ∧ P | P ⇒ P | false logical formulæ

K ::= k propositional variables

| I | P e | K ◦K | K −◦K | K ◦−K structural formulæ

| K ∧K | K ⇒ K | False logical formulæ

The two additional formulæ, which replace context application application and

its adjoints, represent projection and embedding. The projection formula Kp projects

contexts satisfying K to data, and can be viewed as a simple case of application where

a zero element is placed in the context hole. Similarly, the adjoint embedding P e

embeds data satisfying P back to contexts, and can be viewed as (0 � P), a simple

case of the adjunct of application. The adjunctive structure of CLp can therefore be

illustrated by the following diagram:

K
[−]p ((`

[−]e
hh PK

K
◦
[−

]

��

`K
−◦

[−
]

UUK

K

K
◦−

[−
]

uu

`
[−

] ◦
K

55

K

4.4. EMBEDDINGS AND PROJECTIONS 54

Definition 4.24 (CLp proof theory). The proof theory for CLp consists of the propo-

sitional logic proof rules in Defn. 3.2, the composition axioms in Defn. 4.2 (with the

exception of the composition axiom, which linked composition to context applica-

tion), and:

Kp `D P

K `C P e

p, e
functionality

(¬P)e `C ¬(P e)

surjectivity

P `D P ep

composition

(K1 ◦K2)
p a`D (K1 ◦K2

pe)p

The additional rules define the behaviour of [−]p and [−]e as a projection/embed-

ding pair. The first rule describes the adjunction between the projection and the

embedding, allowing us to view [−]p as a relation that is total on its first argument and

[−]e as its inverse. The second rule specifies that [−]p is a function, since its preimages

on disjoint sets must be disjoint. The third rule specifies that it is surjective, since

any data element satisfying P must be in the range of [−]p. Finally, the last rule

relates projection to composition, and is based on the intuition that projection only

affects the deep part of a context, corresponding to its hole.

As in CL◦, the models of CLp consist of a context set, a data set and a par-

tial composition operator, with the addition of a total surjective projection function

satisfying an appropriate composition condition.

Definition 4.25 (CLp models). A model M = (C,D, cp, I,proj) of CLp consists of

a context set C, a data set D, a partial composition operator cp : C × C ⇀ C that

forms a partial monoid on context sets with identity I ⊆ C (as in Defn. 4.3), and a

total surjective projection function proj : C → D satisfying the following composition

condition, which states that projection only affects the ‘inner’ part of a context:

∀c, c1, c2 ∈ C.

(cp(c, c1)↓ ∧ proj(c1) = proj(c2))

⇒ (cp(c, c2)↓ ∧ proj(cp(c, c1)) = proj(cp(c, c2))

Definition 4.26 (CLp forcing semantics). Given a model M of CLp and an inter-

pretation function σ : (VD → P(D)) × (VC → P(C)) mapping propositional variables

to data and context sets, the forcing semantics is given by two satisfaction relations

σ,M, d �D P and σ,M, c �C K defined as in Defn. 4.4 where relevant and extended

as follows:

σ,M, d �D Kp ⇔ ∃c ∈ C.(d = proj(c) ∧ σ,M, c �C K)

σ,M, c �C P e ⇔ ∃d ∈ D.(d = proj(c) ∧ σ,M, d �D P)

4.4. EMBEDDINGS AND PROJECTIONS 55

Example 4.27 (CLp models). The following are all models of CLp:

(a) IdentityD,◦,0 = (D,D, ◦, {0}, i), the identity model, where (D, ◦, 0) is an arbi-

trary partial monoid, and projection is the identity function.

(b) Parity = (Z, {0, 1},+, {0},pty), the parity model, where projection returns 0

for even contexts and 1 for odd contexts, and the composition condition holds

since pty(z1) = pty(z2)⇒ pty(z + z1) = pty(z + z2).

(c) Length = (Σ∗, N, ·, ε, len), the length model, where the context monoid consists

of sequences under concatenation, projection is the length function, and the

composition condition holds since len(s1) = len(s2)⇒ len(s · s1) = len(s · s2).

(d) Elements = (Σ∗,P(Σ), ·, ε, elm), the elements model, where projection maps

sequences to their underlying element sets. A variant model uses linear se-

quences, where sequences have unique elements and concatenation is partial.

At the end of this section, CLp is shown to be exactly equivalent to Context Logic

with zero and composition. First, however, we consider some useful basic properties

of CLp, including a self-duality property for embedding, and define the dual operator

of projection, which forms a right adjoint to embedding.

Lemma 4.28 (Basic properties). The following basic properties hold:

(a) functoriality of [−]e and [−]p:

P1 `D P2

P1
e `C P2

e

K1 `C K2

K1
p `D K2

p

(b) ∨-distributivity and ∧-semidistributivity for [−]e:

(P1 ∨ P2)
e a`C P1

e ∨ P2
e

(P1 ∧ P2)
e `C P1

e ∧ P2
e

Proof. Both results follow directly from the adjunction, just as in Lemma 3.10.

Lemma 4.29 (Self-duality of embedding). The embedding [−]e exhibits the following

self-duality property:

P e a`C ¬((¬P)e)

4.4. EMBEDDINGS AND PROJECTIONS 56

Proof. P e `C ¬((¬P)e) follows directly from the functionality axiom, while the

reverse implication is proved by

Truep `D true

True `C truee

True `C (P ∨ ¬P)e (P ∨ ¬P)e `C P e ∨ (¬P)e

True `C P e ∨ (¬P)e

¬((¬P)e) `C P e

Definition 4.30 (Projection dual). The projection dual K f is defined by

K f , ¬((¬K)p)

and has the following derived semantics:

σ,M, d �D K f ⇔ ∀c ∈ C.(d = proj(c)⇒ σ,M, c �C K)

The projection dual [−]f can be viewed as a type of filtering operation (hence the

notation): while [−]p is satisfied by any data that comes from projecting a context

satisfying K, [−]f is satisfied by data that can only come from projecting contexts

satisfying K. For example, in the Parity model in Example 4.27, a formula K f is

satisfied by 0 only if K is satisfied by all the even numbers, and by 1 only if K is

satisfied by all the odd numbers. This filter operation is in fact the right adjoint of

embedding.

Lemma 4.31 (Filter/embedding adjunction). The projection dual is the right adjoint

of embedding:

P e `C K

P `D K f

Proof.

P e `C K

¬K `C ¬(P e)

¬K `C (¬P)e

(¬K)p `D ¬P

P `D ¬((¬P)p)

4.4. EMBEDDINGS AND PROJECTIONS 57

The presence of this right adjoint of embedding leaves us with the following

adjunctive diagram:

K

[−]p`

[−]eoo

[−]f

` >>P

It is now possible to prove an exact equivalence between CLp and Context Logic

with both zero and context composition (CL∅,◦). This is done by giving translations

between CL∅,◦ and CLp formulæ and models, and showing that the proof theories

and satisfaction relations are equivalent.

Definition 4.32 (CL∅,◦). Context Logic with Zero and Composition (CL∅,◦) is made

up of the combined assertions and proof rules of CL◦ (Defns. 4.1 and 4.2) and CL∅

(Defns. 4.9 and 4.10). Models consist of a combined model (C,D, cp, ap, I, 0), where

(C,D, cp, ap, I) is a model of CL◦ and (C,D, ap, I, 0) is a model of CL∅. The forcing

semantics is given by Defns. 4.4 and 4.12.

Definition 4.33 (CL∅,◦/CLp formula translation). The translation J−Kp of CL∅,◦

formulæ into CLp formulæ, and the reverse translation J−K∅,◦ of CLp formulæ into

CL∅,◦ formulæ, are defined by induction on the structure of formulæ, mapping the

shared connectives of CL∅,◦ and CLp to themselves and the other connectives as

follows:

J0Kp , Ip

JK · P Kp , (JKKp ◦ JP Kp
e)p

JK � P Kp , (JKKp ◦− JP Kp
e)f

JP1 � P2Kp , JP1Kp
e −◦ JP2Kp

e

JKpK∅,◦ , JKK∅,◦ · 0

JP eK∅,◦ , 0 � JP K∅,◦

The formula translations translate formulæ in one logic to equivalent formulæ in

the other logic. The translation J−K∅,◦ from CLp to CL∅,◦ formalises the intuition that

projection corresponds to the application of zero and embedding corresponds to its

adjoint. The reverse translation J−Kp, meanwhile, defines zero, context application

and its adjoints using projection and embedding. The zero formula is defined as

the projection of I, while context application K · P corresponds to composing K

with the context embedding of P , and projecting the result back to data. Thus the

projection/embedding pair is used to transform an interaction between contexts and

data into one involving just contexts and expressible using context composition. The

translations of the two adjoints are similar to that of application. P1�P2 is expressed

using −◦ by embedding both P1 and P2 into contexts. The translation of K �P using

4.4. EMBEDDINGS AND PROJECTIONS 58

◦− is more subtle: in mapping the interaction back to data, it is necessary to use the

filter operation [−]f rather than [−]p, since the adjoint statement on contexts should

be satisfied by all possible embeddings of the data statement, not just some.

Theorem 4.34 (CL∅,◦/CLp proof theory equivalence). A formula is derivable in

CL∅,◦ or CLp if and only if the translated formula given by Defn. 4.33 is also derivable:

that is,

True `C K ⇔ True `C JKKp

true `D P ⇔ true `D JP Kp

True `C K ′ ⇔ True `C JK ′K∅,◦

true `D P ′ ⇔ true `D JP ′K∅,◦

where K and P are arbitrary formulæ in CL∅,◦, and K ′ and P ′ are arbitrary formulæ

in CLp.

Proof. For the left-to-right implications, it is sufficient to show how to derive the

missing proof rules in CL∅,◦ and CLp, using the appropriate formula translations

from Defn. 4.33 in place of the missing connectives. These derivations are given in

Figure 4.1, with the proofs for CL∅,◦ relying extensively on the properties of zero

described in Chapter 3.

For the right-to-left implication, it is enough to show the following weak bijec-

tionality result for the formula translations, since the implication then follows by the

left-to-right implication proven above.

JJKKpK∅,◦ `C K JJK ′K∅,◦Kp
`C K ′

JJP KpK∅,◦ `D P JJP ′K∅,◦Kp
`D P ′

Writing J−K for JJ−KpK∅,◦, the left-hand results follow from:

J0K = I · 0 `D 0

JK · P K = (JKK ◦ (0 � JP K)) · 0 `D JKK · ((0 � JP K) · 0) `D JKK · JP K

JK � P K = ¬(¬(JKK ◦− (0 � JP K)) · 0) `D (JKK ◦− (0 � JP K)) · 0 `D JKK � JP K

JP1 � P2K = (0 � JP1K)−◦ (0 � JP2K) `D JP1K � JP2K

where the three entailments in the last two derivations follow from the derived prop-

4.4. EMBEDDINGS AND PROJECTIONS 59

· identity

P a`D P ep a`D (I ◦ P e)p , I · P

composition

(K1 ◦K2) · P , ((K1 ◦K2) ◦ P e)p

a`D (K1 ◦ (K2 ◦ P e))p

a`D (K1 ◦ (K2 ◦ P e)pe)p

, (K1 ◦ (K2 · P)e)p

, K1 · (K2 · P)

K · P1 `D P2

(K ◦ P1
e)p `D P2

K ◦ P1
e `C P2

e

K `C P1
e −◦ P2

e

K `C P1 � P2

·/�

K · P1 `D P2

(K ◦ P1
e)p `D P2

K ◦ P1
e `C P2

e

P1
e `C K ◦− P2

e

P1 `D (K ◦− P2
e)f

P1 `D K � P2

·/�

Kp , K · 0 `D P p, e

K `C (0 � P) , P e

functionality

(¬P)e , 0 � ¬P

`D 0 I ¬P

, ¬(0 � P)

, ¬(P e)

surjectivity

P `D (0 I P) · 0

`D (0 � P) · 0

, P ep

composition

(K1 ◦K2)
p , (K1 ◦K2) · 0

a`D K1 · (K2 · 0)

a`D K1 · ((0 � (K2 · 0)) · 0)

a`D (K1 ◦ (0 � (K2 · 0))) · 0

, (K1 ◦K2
pe)p

Figure 4.1: Proof theory derivations in CLp (top) and CL∅,◦ (bottom).

4.4. EMBEDDINGS AND PROJECTIONS 60

erty ¬((¬K ′) · 0) `D K ′ · 0, which holds for arbitrary K ′, as well as:

K · ((K ◦− (0 � P)) · 0) `D (K ◦ (K ◦− (0 � P))) · 0

`D (0 � P) · 0

`D P

((0 � JP1K)−◦ (0 � JP2K)) · P1 `D ((0 � JP1K)−◦ (0 � JP2K)) · ((0 � P1) · 0)

`D (((0 � JP1K)−◦ (0 � JP2K)) ◦ (0 � P1)) · 0

`D (0 � JP2K) · 0

`D JP2K

Similarly, writing J−K′ for JJ−K∅,◦Kp
, the right-hand results follow from:

JKpK′ = (JKK′ ◦ Ipe)p `D JKK′p

JP eK′ = Ipe −◦ JP K′e `D I −◦ JP K′e `D JP K′e

where the final entailment follows from I `D Ipe and the covariance of −◦.

In addition to the formula translations, it is also possible to give translations

between CL∅,◦ and CLp models, and show that the satisfaction relations for these are

the equivalent.

Definition 4.35 (CL∅,◦/CLp model translation). The translation J−Kp of CL∅,◦ mod-

els into CLp models, and the reverse translation J−K∅,◦ of CLp models into CL∅,◦

models, are defined as follows.

• J(C,D, cp, ap, I, 0)Kp = (C,D, cp, I,proj), where proj(c) = {ap(c, o) | o ∈ 0},

which is a well-defined partial function by Defn. 4.11, and satisfies the compo-

sition condition by Defn. 4.3.

• J(C,D, cp, I,proj)K∅,◦ = (C,D, cp, ap, I, 0), where 0 = {proj(i) | i ∈ I} and

ap(c, d) = {proj(cp(c, c′)) | proj(c′) = d}, which is a well-defined partial func-

tion satisfying the composition condition by Defn. 4.25.

The model translations use a similar approach to the formula translations. The

translation J−Kp from CL∅,◦ to CLp defines a projection function using the application

of zero, while the reverse translation J−K∅,◦ reconstructs a zero set and an application

function from the projection function.

4.4. EMBEDDINGS AND PROJECTIONS 61

Theorem 4.36 (CL∅,◦/CLp model equivalence). The model translations in Defn. 4.35

form a bijection: that is, JJM∅,◦Kp
K
∅,◦

= M∅,◦ and JJMpK∅,◦Kp
= Mp for arbitrary

models M∅,◦ in CL∅,◦ and Mp in CLp. Combined with the formula translations in

Defn. 4.33, this results in equivalent satisfaction relations for CL∅,◦ and CLp: that is

σ, c,M∅,◦ �C K ⇔ σ, c, JM∅,◦Kp
�C JKKp

σ, d,M∅,◦ �D P ⇔ σ, d, JM∅,◦Kp
�D JP Kp

σ, c,Mp �C K ′ ⇔ σ, c, JMpK∅,◦ �C JK ′K∅,◦

σ, d,Mp �D P ′ ⇔ σ, d, JMpK∅,◦ �D JP ′K∅,◦

for all modelsM∅,◦ andMp, interpretations σ, contexts c ∈ C and data elements d ∈

D, where K and P are arbitrary formulæ in CL∅,◦, and K ′ and P ′ arbitrary formulæ

in CLp.

Proof. The bijectionality of the model translations follows directly from the transla-

tion semantics:

• JJ(C,D, cp, I,proj)K∅,◦Kp
= (C,D, cp, I,proj′) where

proj′(c) = {proj(cp(c, c′)) | proj(c′) ∈ {proj(i) | i ∈ I}}

= {proj(cp(c, i)) | i ∈ I} (by the composition condition) = proj(c).

• JJ(C,D, cp, ap, I, 0)KpK∅,◦ = (C,D, cp, ap′, I, 0′) where

ap′(c, d) = {ap(cp(c, c′), o) | o ∈ 0, {ap(c′, o)|o ∈ 0} = d}

= {ap(c, ap(c′, o)) | o ∈ 0, {ap(c′, o)|o ∈ 0} = d} = ap(c, d), and

0′ = {{ap(i, o) | o ∈ 0} | i ∈ I} = 0.

Similarly, the left-to-right implications in the satisfaction relation equivalence fol-

low immediately from the derived semantics of the model and formula translations.

The right-to-left implications, meanwhile, follow from the bijectionality of the model

translations shown above and the weak bijectionality of the formula translations given

in the proof of Thm. 4.34.

Corollary 4.37 (CL∅,◦/CLp soundness and completeness). Using Thms. 4.34 and 4.36,

it follows that the soundness and completeness of CL∅,◦ implies the soundness and

completeness of CLp.

Chapter 5

Structured Data Models

This chapter adapts Context Logic to a number of structured data models, thereby

illustrating many of the points from the previous chapters. The data structures con-

sidered here include sequences, multisets, sets, heaps, trees and terms.

5.1 Sequences

Sequences provide a simple but useful example of structured data. The sequences in

this section are generated from an alphabet A, with a concatenation operation : and

an empty sequence 0. A natural interpretation of sequence contexts is as sequences

with a hole in the middle, while context application corresponds to inserting sequences

into the hole.

Definition 5.1 (Sequences). Given an infinite setA = {a, . . . } of elements, sequences

s ∈ S and sequence contexts c ∈ C are defined by the grammars:

s ::= 0 | a | s : s

c ::= − | c : s | s : c

with the following structural congruence ≡ specifying that the concatenation opera-

tion : is associative with identity 0:

0 : s ≡ s ≡ s : 0 0 : c ≡ c ≡ c : 0

s1 : (s2 : s3) ≡ (s1 : s2) : s3 s1 : (c : s2) ≡ (s1 : c) : s2

c : (s1 : s2) ≡ (c : s1) : s2 s1 : (s2 : c) ≡ (s1 : s2) : c

The insertion of sequences into sequence contexts is given by a total application

5.1. SEQUENCES 63

function (which is well-defined up to equivalence):

ap(−, s) = s

ap(c : s′, s) = ap(c, s) : s′

ap(s′ : c, s) = s′ : ap(c, s)

It is easy to show that Seq = (S, C, ap,−, 0) is a model of Context Logic with

Zero. In fact, this can be extended to a model that includes context composition,

by defining composition on sequence contexts. However, this is avoided for the sake

of simplicity, especially since composition was found to be unnecessary for reasoning

about tree update in Chapters 6 and 8. We therefore use CL∅ formulæ for the

model Seq. These formulæ, however, are not enough to allow useful reasoning about

sequences: for example, there is nothing in the logic to allow us to differentiate

between unequal elements. We therefore add sequence-specific formulæ to the logic

for analysing the sequence structure, just as Separation Logic added heap-specific

formulæ to BI in order to analyse heaps.

The added structural formulæ are chosen to correspond directly to the data

structure definitions in Defn. 5.1. There are already formulæ corresponding to the

empty sequence 0 and the empty context −, which means we only need to add formulæ

for singleton sequences a and the concatenation operation : .

Definition 5.2 (CLseq formulæ). The formulæ of Context Logic for Sequences (CLseq)

consist of the same context and data assertions as CL∅, with the addition of special

assertions for singleton sequences and context concatenation:

P ::= p propositional variables

| a special formulæ

| 0 | K · P | K � P structural formulæ

| P ⇒ P | false logical formulæ

K ::= k propositional variables

| P : K |K : P special formulæ

| I | P � P structural formulæ

| K ⇒ K | False logical formulæ

The interpretation of the new formulæ is straightforward: the data formula a is

satisfied by the singleton sequence a; the context formula P :K is satisfied by the result

of concatenating a context satisfying K to a sequence satisfying P ; and the context

5.1. SEQUENCES 64

formula K : P is satisfied by the result of concatenating in the opposite direction.

Thus, for example, both (a : I) · b and (I : b) · a describe the two-element sequence

a : b. Note that this illustrates that it is not necessary to include a formula P1 : P2 to

express the concatenation of two sequences, since this is derivable using the context

concatenation connectives: P1:P2 can be expressed either as (P1:I)·P2 or as (I :P2)·P1.

While the connective can therefore be omitted from the logic, its simpler notation is

still used for shorthand.

Definition 5.3 (CLseq forcing semantics). The semantics of CLseq is an extension of

the semantics of CL∅ for the model Seq. Given an interpretation function σ : (VD →

P(S)) × (VC → P(C)) mapping propositional variables to sequence and context sets,

the forcing semantics is given by two satisfaction relations σ, s �S P and σ, c �C K for

sequences and sequence contexts, defined as in Defn. 4.12 and extended as follows:

σ, s �S a ⇔ s ≡ a

σ, c �C P : K ⇔ ∃s ∈ S, c′ ∈ C. (σ, s �S P ∧ σ, c′ �C K ∧ c ≡ s : c′)

σ, c �C K : P ⇔ ∃s ∈ S, c′ ∈ C. (σ, s �S P ∧ σ, c′ �C K ∧ c ≡ c′ : s)

As described in Chapters 3 and 4, it is possible to define a number of derived

operators in CL∅. These include a somewhere modality 3 (Defn. 3.12), the ex-

istential adjoints I and J (Defn. 3.11), and the ∗ connective on data (Defn. 4.15).

These derived operations have intuitive interpretations on sequences. The somewhere

modality describes arbitrary subsequences: 3P holds for a sequence if it contains a

subsequence satisfying P . The star connective, meanwhile, describes the insertion

of one sequence into another: P1 ∗ P2 holds for a sequence if it is possible to re-

move a subsequence satisfying P2 and obtain a sequence satisfying P1. In addition

to these derived connectives, it is also useful to define the adjoints of the concatena-

tion connective, which describe adding sequences to either side of a sequence. Thus,

the adjoint P1 −: P2 holds if whenever a sequence satisfying P1 is concatenated on

the right, the result satisfies P2; the other adjoint P1 :− P2 is similar, but involves

concatenating on the left.

Definition 5.4 (Concatenation adjoints). The adjoints of the concatenation opera-

tion : are defined as follows:

P1 −: P2 , (I : P1) � P2 P1 :− P2 , (P1 : I) � P2

5.1. SEQUENCES 65

and have the following derived semantics:

σ, s �S P1 −: P2 ⇔ ∀s
′ ∈ S. (σ, s′ �S P1 ⇒ σ, s : s′ �S P2)

σ, s �S P1 :− P2 ⇔ ∀s
′ ∈ S. (σ, s′ �S P1 ⇒ σ, s′ : s �S P2)

Below are some examples of Context Logic formulæ on sequences.

Example 5.5 (CLseq formulæ). The following are examples of formulæ in CLseq,

together with their interpretation on sequences:

(a) a : b : a or (a : I) · ((b : I) · a) or (a : I) · ((I : a) · b)

the sequence containing a then b then a.

(b) a : true or (a : I) · true or (I : true) · a

any sequence beginning with an a.

(c) a ∗ true or (0 � a) · true or (true : a) ∨ (a : true)

a sequence that either begins or ends with an a.

(d) 3a or True · a or true ∗ a or true : a : true

any sequence that contains an a.

(e) (a−: P) : b or ((a : I) � P) : b

a sequence ending in b that would satisfy P were the b replaced by an a.

(f) (a−∗ P) ∗ b or (0 � ((a � P) · 0)) · b

a sequence containing a b that would satisfy P were the b removed and an a

added anywhere in the sequence.

(g) (a � P) · b

a sequence containing a b that would satisfy P were the b removed and an a

added in the same place.

(h) 0+ , true, (n + 1)+ , ¬I · n+ and n , n+ ∧ ¬(n + 1)+ for all n ∈ N

any sequence with at least n elements (for n+) or precisely n (for n).

(i) 2(1⇒ a) or ¬3(1 ∧ ¬a)

any sequence containing just a’s

The various formula classes defined in Section 3.4 can be considered specifically

for CLseq. The pureness (Defn. 3.16), exactness (Defn. 3.20) and ubiquity (Defn. 3.28)

5.1. SEQUENCES 66

classes all correspond to simple properties of sequences. The only pure formulæ are

true and false, since the only sequence sets that are closed under both context applica-

tion and subsequencing are S and ∅. However, there do exist upward-closed formulæ

(such as Example 5.5d) and downward-closed formulæ (such as Example 5.5i). The

exact formulæ, meanwhile, are those that are satisfied by at most one sequence or

context. Finally, while every satisfiable formula for the sequence model is omniplace-

able (since context application is total), the only omnipresent (and consequently

ubiquitous) formulæ are those that are satisfied by the empty context − or empty

sequence 0, since only these can be removed from every sequence.

The preciseness class (Defn. 3.24) is more interesting. Preciseness corresponds

to the unique splitting of data into contexts and subdata. Thus, the only precise

data formula for the sequence model is false, as any subsequence can occur multiple

times within a sequence, allowing multiple splittings. For example, if P were a

non-false precise formula, then P : a : P would describe a sequence containing at

least two subsequences matching P , allowing two distinct splittings (P : a : I) · P

and (I : a : P) · P , and therefore breaking the preciseness condition: P : a : P =

(P :a:I)·P ∧(I :a:P)·P 6⇒ ((P :a:I)∧(I :a:P))·P = false. In contrast, precise context

formulæ do exist, and include any formula that describes only pairwise-incompatible

contexts, where c1 and c2 are incompatible if there are no sequences s1 and s2 such

that ap(c1, s1) = ap(c2, s2). This can be expressed concretely: contexts c1 = s1l :− : s1r

and c2 = s2l : − : s2r are incompatible if either s1l and s2l are incompatible on the left,

meaning one is not an initial subsequence of the other, or s1r and s2r are incompatible

on the right, meaning one is not a final subsequence of the other. Thus precise

context formulæ include those that describe a specific context shape (for example,

‘a context containing two elements, a hole, and an element’), incompatible starting

sequences (‘a context containing the sequence 020- or 0161-, followed by a hole’), and

so on. Pair-precise pairs of formulæ, meanwhile, describe similar splitting properties,

though neither formula has to be precise by itself: for example the context formula

(true:I) and the singleton sequence formula 1 from Example 5.5h form a precise pair.

There is a close correspondence between preciseness and the specification of

data update, in that precise formulæ allow us to uniquely specify subsequences, and

hence the location at which updates on subsequences, such as deletion, should take

place. Thus, the three examples considered at the end of the last paragraph could

5.2. MULTISETS 67

respectively be used to specify updates of: the subsequence consisting of all but the

first two and last one elements; the subsequence following the prefix 020 or 0161; and

the final element in a sequence.

5.2 Multisets

Multisets are the simplest interesting example where Context Logic collapses to

Bunched Logic. The multisets in this section are constructed from an alphabet A, a

union operation : and an empty multiset 0, just like the sequences in Section 5.1, only

with the additional condition that : is commutative. Multiset contexts, meanwhile,

correspond to multisets with a hole that, due to the lack of ordering, is not ‘located’

anywhere.

Definition 5.6 (Multisets). Multisets m ∈M and multiset contexts c ∈ C are defined

as sequences and sequence contexts (Defn. 5.1), with the additional congruence rules

stating that the concatenation (union) operation is commutative:

m1 : m2 ≡ m2 : m1 m : c ≡ c : m

Context application is also as defined in Defn. 5.1.

As in the previous section, it is easy to show that Mult = (M, C, ap, {−}, {0})

is a model of Context Logic with Zero. Since the hole in multiset contexts has

no location, however, there is no real structural difference between contexts and

multisets, and it is possible to view contexts as equal to their underlying multisets

and context application as multiset union. Thus the above model corresponds to the

monoidal model (M,M, :, {0}, {0}). By Thm. 4.22, the CL∅ satisfaction relation for

this model is just as expressive as the Bunched Logic satisfaction relation for the

model (M, :, 0).

Again, we extend the logic with formulæ specific to the data model in order

to increase expressivity. In this case, however, we only need to add formulæ for

singleton multisets. It is unnecessary to add any formulæ for the union operation, as

this is already expressible using context application: applying a context to a multiset

corresponds to taking the union of their underlying elements, while multisets can

be turned into contexts using the adjoint � and 0. Thus, it is possible to express

K : P ≡ P : K as K · P and P1 : P2 as (0 � P1) · P2.

5.2. MULTISETS 68

Definition 5.7 (CLmult formulæ). The formulæ of Context Logic for Multisets

(CLmult) consist of the same context and data assertions as CL∅, with the addition

of special assertions for singleton multisets:

P ::= p propositional variables

| a special formulæ

| 0 | K · P | K � P structural formulæ

| P ⇒ P | false logical formulæ

K ::= k propositional variables

| special formulæ

| I | P � P structural formulæ

| K ⇒ K | False logical formulæ

Definition 5.8 (CLmult forcing semantics). The semantics of CLmult is an extension

of the semantics of CL∅ for the model Mult. Given an interpretation function σ :

(VD → P(M)) × (VC → P(C)) mapping propositional variables to multiset and

context sets, the forcing semantics is given by two satisfaction relations σ,m �M P

and σ, c �C K for multisets and multiset contexts, defined as in Defn. 4.12 and

extended as follows:

σ,m �M a⇔ m ≡ a

The same derived formulæ can be defined for multisets as were defined for se-

quences. Due to the monoidal nature of the model, the derived ∗ connective coincides

with : on data (see Section 4.3). Likewise, the respective adjoints, −: and :−, coincide

with −∗ and ∗−; in fact, due to commutativity, all four adjoint connectives are the

same. Finally, context composition is now also expressible in the logic (which was

not the case for sequences), since the data formula 0 is now both precise and omni-

placeable: by Lemma 4.8, K1 ◦K2 can be expressed as 0 � (K1 · (K2 · 0)). Below are

a few examples of Context Logic formulæ for multisets.

Example 5.9 (CLmult formulæ). The following are examples of formulæ in CLmult,

together with their interpretation on multisets:

(a) a ∗ a ∗ b or (0 � a) · ((0 � a) · b) or (0 � ((0 � a) · a)) · b

the multiset containing two a’s and a b.

(b) 3a or True · a or true ∗ a or a ∗ true

any multiset containing an a.

5.3. LINEAR SEQUENCES AND SETS 69

(c) (a−∗ P) ∗ b or (a � P) · b

a multiset containing a b that would satisfy P were the b removed and replaced

by an a.

The commutativity of the union connective also changes the formula classes.

Pureness, exactness and ubiquity still describe the same properties: only true and

false are pure, formulæ describing unique multisets and contexts are exact, and any-

thing satisfied by − or 0 is ubiquitous. The concept of preciseness changes, however:

the lack of ordered structure means that any exact data formula is now precise (since

multiset subtraction, unlike sequence subtraction, is defined uniquely), while only

exact context formulæ are precise (it is no longer possible to use the ordering of ele-

ments to differentiate contexts). A pair-precise formula comprises one precise formula

(either context or data) and one arbitrary formula. In other words, a multiset can

be located either by giving its exact elements, or the exact elements of its context.

5.3 Linear Sequences and Sets

A common feature of data models that allow data update, and in particular local up-

date, is the presence of unique location identifiers for specifying the update location.

Examples include heap structures with unique cell addresses, and a variety of tree

structures containing unique node identifiers. Modelling data structures with unique

identifiers in Context Logic is easy: the same formulæ can be defined as when mod-

elling data structures without uniqueness, and then interpreted on data and contexts

with uniqueness. The one novel feature of these models is that context application

becomes a partial operation.

In this section we consider linear sequences and sets, by restricting the definitions

of sequences and multisets given in Sections 5.1 and 5.2 to unique elements.

Definition 5.10 (Linear sequences and sets). Linear sequences and sets are those

sequences and multisets defined in Defns. 5.1 and 5.6 that possess unique elements:

that is, those d where d = d1 : d2 implies that the label sets locs(d1) and locs(d2) are

disjoint. Similarly, linear sequence and set contexts are those contexts that possess

unique labels: that is, those c where c = c′ : d or c = d : c′ implies that the label

sets locs(c′) and locs(d) are disjoint. The context application function is defined as

in Defn. 5.1 whenever the result has unique labels, and is undefined otherwise.

5.4. HEAPS 70

The introduction of unique identifiers has no effect on the logic: it is possible to

define CLseq and CLmult as before, but to interpret them on the new data models with

unique elements. Thus, the formula a : a becomes unsatisfiable for both sequences

and multisets, as there is no sequence or multiset with two a’s, while the formula

a : b is satisfied by the same sequence and multiset as before. This change in inter-

pretation affects the interpretations of the formula classes described in the previous

sections. The interpretations of pureness and exactness remain the same, as does that

of omnipresence. However, the uniqueness restriction means that a formula which

is satisfied solely by data containing some specific element a, such as the formulæ a

or true : a, cannot be omniplaceable. Similarly, the concept of preciseness does not

change for sets, since locating a set still corresponds to specifying all its elements.

However, preciseness for linear sequences is affected by the presence of unique identi-

fiers. As noted before, precise formulæ describe only pairwise-incompatible sequences

or contexts, where two things are incompatible if it is not possible to apply contexts

or subsequences to them and obtain the same result. Adding unique identifiers to se-

quences only restricts context application and therefore results in more incompatible

pairs, and hence more precise formulæ. For linear sequences, two sequences s and s′

are only compatible if they can be split into pairs of subsequences s1 : s2 and s2 : s3,

such that s1 and s3 have no shared elements. Hence, the data formula a : true : b,

describing sequences starting with a and ending with b, is precise, since any two such

sequences are incompatible. Similar reasoning can be applied for context and pair

preciseness.

5.4 Heaps

Heaps are a classic example of structured data, and the primary reasoning target of

Separation Logic. A heap is typically viewed as a set of locations, with values at each

location. For simplicity, the heaps considered here contain only pointer values, which

can be either location addresses or the null value ‘nil’. To allow the modelling of

pointer arithmetic, location addresses are represented by the positive integers, while

nil is represented by zero. As for multisets and sets, heap contexts consist of a heap

and an unlocated hole.

In addition to heaps, Separation Logic also models a variable store, which maps

variables to values. This corresponds to the more typical Hoare logic view of state,

5.4. HEAPS 71

and allows reasoning about variable-based heap update languages. For simplicity,

the store considered here is a total function from variables to values. This allows

us to assume that variable lookup is always defined, though uninitialised variables

will have undetermined values. This idealisation is acceptable in practice, since any

reasoning example will only depend on finitely many variables.

Definition 5.11 (Preheaps). A preheap h ∈ Hpre is defined by the grammar:

h ::= emp | n 7→ v | h ∗ h

where n ∈ N+ and v ∈ N. The set of locations locs(h) in a preheap is given by:

locs(emp) = ∅ locs(n 7→ v) = {n} locs(h1 ∗ h2) = locs(h1) ∪ locs(h2)

A structural congruence ≡ between preheaps specifies that the separation connec-

tive ∗ is commutative, associative, and has identity emp. This is well-defined with

respect to locs, corresponding to a multiset interpretation, and is the smallest con-

gruence satisfying:

emp ∗ h ≡ h ∗ emp ≡ h h1 ∗ (h2 ∗ h3) ≡ (h1 ∗ h2) ∗ h3 h1 ∗ h2 ≡ h2 ∗ h1

Definition 5.12 (Heaps). A heap h ∈ H is a preheap with unique locations: that

is, where h = h1 ∗ h2 implies locs(h1) ∩ locs(h2) = ∅. The structural congruence ≡ is

well-defined on heaps, with the separating connective h1 ∗ h2 now a partial operation

defined only when locs(h1) ∩ locs(h2) = ∅.

Definition 5.13 (Heap contexts). A heap context c ∈ C is defined as a heap with

a hole, written h ∗ −. Context application is given by ap(h ∗ −, h′) , h ∗ h′, and is

partial due to the uniqueness of identifiers.

Definition 5.14 (Stores). Given an infinite set Var = {x, y, . . . } of variables, a store

s ∈ S is a total function s : Var → N, returning the value of each variable.

In addition to heaps and stores, it is also useful to define arithmetic expressions,

which can be used for specifying pointer arithmetic.

Definition 5.15 (Expressions). An expression E is given by the following grammar:

E ::= nil | n | x | E + E | E − E

5.4. HEAPS 72

where n ∈ N. The valuation of E on a store s is written JEKs and given by

JnilKs = 0 JnKs = n JxKs = s(x)
JE + FKs = JEKs + JFKs

JE − FKs = JEKs− JFKs

Like for multisets, it is easy to show that Heap = (H, C, ap, {emp}, {emp}) is a

model of Context Logic with Zero. A more interesting question is how to incorporate

variables into the model. In fact, this is easily done using the set-indexing construc-

tion defined in Example 3.8: HeapS describes a heap-store model where every heap

and heap context is indexed by a store s ∈ S and context application is only defined

for states with matching stores.

As for multisets and sets, there is no real distinction between heaps and heap

contexts, and heap composition can be expressed using context application and 0.

Thus the only structural heap formula that has to be added to the logic is one

corresponding to singleton heaps. This is written E 7→ F, and uses expressions to

refer to both the heap location and its value. Note that the presence of variables in

the expression language means that this formula can depend on the store part of the

state, as well as the heap. Boolean formulæ for expression equality and inequality are

also included in the logic, though these will later be shown to be derivable. Finally,

the presence of variables in the logic results in the inclusion of variable quantification.

Definition 5.16 (CLheap formulæ). The formulæ of Context Logic for Heaps (CLheap)

consist of the same context and data assertions as CL∅ with the addition of a points-to

operator, expression equality and inequality, and quantification over variables:

P ::= p propositional variables

| E 7→ F | E = F | E < F special formulæ

| 0 | K · P | K � P structural formulæ

| P ⇒ P | false | ∃x.P logical formulæ

K ::= k propositional variables

| special formulæ

| I | P � P structural formulæ

| K ⇒ K | False | ∃x.K logical formulæ

Definition 5.17 (CLheap forcing semantics). The semantics of CLheap is an extension

of the semantics of CL∅ for the model HeapS . Given an interpretation function

5.4. HEAPS 73

σ : (VD → P(S × H)) × (VC → P(S × C)) mapping propositional variables to store-

indexed heap and context sets, the forcing semantics is given by two satisfaction

relations σ, s, h �H P and σ, s, c �C K for heaps and heap contexts with variable

stores, defined as in Defn. 4.12 and extended by:

σ, s, h �H E 7→ F ⇔ ∃m ∈ N+, v ∈ N.(JEKs = m ∧ JFKs = v ∧ h ≡ m 7→ v)

σ, s, h �H E = F ⇔ JEKs = JFKs

σ, s, h �H E < F ⇔ JEKs < JFKs

σ, s, h �H ∃x.P ⇔ ∃v ∈ N. σ, [s|x← v], h �H P

σ, s, c �C ∃x.K ⇔ ∃v ∈ N. σ, [s|x← v], c �C K

where [s|x← v] refers to the function s overwritten with s(x) = v.

The same derived formulæ can be defined for heaps as for sequences and sets.

For heaps with identical stores, the derived ∗ connective coincides with the heap

composition ∗. Furthermore, the store-indexed model means that the partial validity

formula defined in Defn. 3.15 describes the validity of a formula across all heaps,

but only with respect to the current store. This in turn means that the formula

for expression equality is derivable: it can be expressed as a validity statement on

singleton heap formulæ, as shown below. Expression inequality, meanwhile, can be

expressed using equality and quantification.

Lemma 5.18 (Boolean formulæ). Expression equality and inequality are derivable

using the validity connective validi defined in Defn. 3.15:

(E = F) , validi(E 7→ E ⇔ F 7→ F)

(E < F) , ∃x. (E + x = F) ∧ ¬(x = 0)

Proof. Results follow directly from the forcing semantics.

Below are some examples of CLheap formulæ. These are all written using the

derived ∗ and −∗ connectives, and can therefore be read as either Context Logic or

Separation Logic formulæ.

Definition 5.19 (Shorthand notation). The following shorthand formulæ are defined

as in Separation Logic:

E 7→ − , ∃x.E 7→ x

E 7→ F1 , F2 , (E 7→ F1) ∗ (E + 1 7→ F2)

E ↪→ F , true ∗ (E 7→ F)

P1 −∗∃ P2 , ¬(P1 −∗ ¬P2)

5.4. HEAPS 74

These, in turn, describe: a single heap cell at E with an arbitrary value; two adjacent

cells at E and E + 1 with values F1 and F2 ; an arbitrary heap containing the cell

E 7→ F; and a heap to which it is possible to compose a subheap satisfying P1 and

obtain a heap satisfying P2.

Example 5.20 (CLheap formulæ). The following are examples of formulæ in CLheap,

together with their interpretation on heaps:

(a) 1 7→ 2 ∗ 2 7→ nil

the 2-cell heap representing a null-terminated list with locations 1 and 2.

(b) x 7→ y ∗ y 7→ x

a 2-cell heap representing a circular list from (the value of) x to (the value of)

y and back. Note that x cannot equal y.

(c) x 7→ y ∧ y 7→ x or x 7→ x ∧ x = y

a 1-cell heap representing a circular list at x, which must equal y.

(d) (true ∗ x 7→ y) ∧ (true ∗ y 7→ x)

an arbitrary heap either containing a circular list at x, if x = y, or one from x

to y and back, if x 6= y.

(e) [Estart : Elen] , ∀x.3(x 7→ −)⇔ (Estart ≤ x ∧ x < Estart + Elen)

a heap block with Elen consecutive cells, starting at address Estart .

x ∈ [Estart : Elen] , (Estart ≤ x ∧ x < Estart + Elen)

a pure formula stating that x is in the block [Estart :Elen].

(f) unique-ptrs , ¬∃x, y, z.3(x 7→ z ∗ y 7→ z)

a heap with unique pointer targets.

(g) size(E) , ∃x. ([x : E] ∧ unique-ptrs)−∗∃

∀y, z. (y ∈ [x : E] ∧3(y 7→ z))⇒ (z /∈ [x : E] ∧3(z 7→ −)) ∧

∀z. (z /∈ [x :E] ∧3(z 7→ −))⇒ ∃y. (y ∈ [x : E] ∧3(y 7→ z))

a heap with precisely E cells. This works by adding a block of cells of length E

to the heap and forming a one-to-one correspondence between the block pointers

and the original cells in the heap. This is made possible by ensuring that the

pointers within the block are unique.

5.5. TREES 75

As already mentioned in Section 3.4, the formula classes in CLheap agree with

the homonymous formula classes in Separation Logic. Pure formulæ describe inde-

pendence from the heap: for example, the formula E = F is pure as its satisfaction

depends only on the store valuations of E and F. Syntactically, any assertion that

does not contain 0 or 7→ is pure. Upward closed formulæ correspond to the ‘intuition-

istic’ formulæ of Separation Logic [Rey02]: for example, the formula E ↪→ F, defined

above, is upward closed. Exact formulæ describe satisfaction by at most one heap

or context for any given store: for example, the formula x 7→ nil, which describes

different heaps for different values of x, is exact. Syntactically, any assertions built

using just 7→ and ∗ are exact. As for multisets, any formula satisfied by (0 ∗ −) or 0

is ubiquitous.

Once again, the preciseness class is the most interesting. A heap assertion P

is precise if for any store and heap there is at most one subheap satisfying P . The

presence of unique identifiers and pointers makes preciseness richer than simple ex-

actness. For example, the formula E 7→ −, describing a heap cell at E with arbitrary

value, is precise but not exact. Perhaps a more surprising example is the formula

describing all heaps that represent a linked list structure starting at a location E and

ending with a pointer to F, such as the heap satisfying E 7→ F, or the different heaps

satisfying ∃x.E 7→ x ∗ x 7→ F. Despite describing heaps of arbitrary size, this too

determines a unique subheap and is therefore precise.

5.5 Trees

Context-Logic based Hoare reasoning about tree update forms the bulk of the sec-

ond part of this thesis. Here we consider Context Logic reasoning about trees. The

trees considered in this section consist of a simple forest structure with unique node

identifiers ranging over an alphabet N , and are constructed using a branching oper-

ation n[−] and a commutative composition operation |. The choices are all practical:

viewing trees as node-labelled forests is equivalent to viewing them as edge-labelled

trees, but corresponds more closely to standard representations of semistructured

data such as XML; the presence of unique node identifiers is necessary to allow local

update, which is a key part of the reasoning framework considered in Part B; and the

commutativity of composition makes the model simpler, while also corresponding to

a view of trees as databases, describing hierarchies (as in Ambient Logic) rather than

5.5. TREES 76

documents (as in HTML). Later work will present a more complicated tree structure,

incorporating node labels and pointers. However, this simple structure is sufficient

for now.

In addition to trees, we also consider tree contexts, which simply consist of trees

with a hole inside. Like for heaps, the model also includes a variable store. This

time the store contains two types of variables: name variables and tree variables,

which take names and trees as values. These are used in the tree update language

considered in Chapter 6.

Definition 5.21 (Pretrees). Given an infinite set N = {m, n, . . . } of location names,

pretrees t ∈ Tpre and pretree contexts c ∈ Cpre are defined by the grammars:

t ::= 0 | n[t] | (t | t)

c ::= − | n[c] | (c | t) | (t | c)

where n ∈ N . The sets of locations locs(t) and locs(c) in pretrees and pretree contexts

are given by:

locs(0) = ∅ locs(n[t′]) = {n} ∪ locs(t′) locs(t1 | t2) = locs(t1) ∪ locs(t2)

locs(−) = ∅ locs(n[c′]) = {n} ∪ locs(c′)
locs(c′ | t)

locs(t | c′)

= locs(c′) ∪ locs(t)

The structural congruence ≡ between pretrees and between pretree contexts specifies

that | is commutative, associative, and has identity 0. This is well-defined with

respect to locs and is the smallest congruence satisfying:

0 | t ≡ t | 0 ≡ t t1 | (t2 | t3) ≡ (t1 | t2) | t3 t1 | t2 ≡ t2 | t1

0 | c ≡ c | 0 ≡ c c | (t1 | t2) ≡ (c | t1) | t2 c | t ≡ t | c

The insertion of a pretree t into a pretree context c is given by a total application

function ap : Cpre × Tpre → Tpre, defined inductively by:

ap(−, t) = t

ap(n[c], t) = n[ap(c, t)]

ap(c | t′, t) = ap(c, t) | t′

ap(t′ | c, t) = t′ | ap(c, t)

Definition 5.22 (Trees and contexts). A tree t ∈ T is a pretree with unique

locations: that is, where t = n[t′] implies n /∈ locs(t′) and t = t1 | t2 implies

locs(t1) ∩ locs(t2) = ∅ (also written t1 # t2). Similarly, a tree context c ∈ C is a

5.5. TREES 77

pretree context with unique locations: that is, where c = n[c′] implies n /∈ locs(c′)

and c = c′ | t or c = t | c′ implies locs(c′)∩ locs(t) = ∅. The structural congruence ≡ is

well-defined on both trees and tree contexts, with n[−] and | now partial operations.

The insertion of a tree t into a tree context c is given by the appropriate restriction

of ap, which is well-defined.

Definition 5.23 (Stores). Given infinite sets VarN = {m,n, . . . } of name variables

and VarT = {x, y, . . . } of tree variables, a store s ∈ S is a pair of total functions

s : VarN → N ×VarT → T , returning the values of name and tree variables.

It is easy to show that Tree = (T , C, ap, {−}, {0}) is a model of Context Logic

with Zero. As before, we incorporate the variable store by defining the model TreeS ,

which indexes the tree and tree context structure with specific stores using the set-

indexing construction in Example 3.8. Similarly, we introduce new formulæ to the

logic that correspond to the tree and context data structure definitions. Since zero

is already defined, this can be done at just the context level, with the remaining

data connectives derivable using context application. Thus, we introduce a context

composition formula P | K, describing the composition of a tree satisfying P and

a context satisfying K, and use it to define tree composition P | P ′ as (P | I) · P ′.

Likewise, we define a context branching formula n[K], describing a tree with a root

node n and a subcontext satisfying K, and use it to derive tree branching n[P] as

n[I] · P . The use of a variable n, rather than a constant n, to specify the root

node of a branch is motivated by a view of node identifiers as dynamically generated

addresses, rather than user-provided values, discussed further in Chapter 6. It also

provides a way to reason about name variables. Tree variable reasoning is added

more directly by introducing a formula x, which is satisfied only by the value of x.

Finally, quantification over both types of variables is also included.

Definition 5.24 (CLtree formulæ). The formulæ of Context Logic for Trees (CLtree)

consist of the same context and data assertions as CL∅ with the addition of formulæ

representing tree variables, branching contexts, parallel composition contexts and

5.5. TREES 78

quantification:

P ::= p propositional variables

| x special formulæ

| 0 | K · P | K � P structural formulæ

| P ⇒ P | false | ∃n.P | ∃x.P logical formulæ

K ::= k propositional variables

| n[K] | (P | K) special formulæ

| I | P � P structural formulæ

| K ⇒ K | False | ∃n.K | ∃x.K logical formulæ

Definition 5.25 (CLtree forcing semantics). The semantics of CLtree is an extension

of the semantics of CL∅ for the model TreeS . Given an interpretation function

σ : (VD → P(S × T)) × (VC → P(S × C)) mapping propositional variables to store-

indexed tree and context sets, the forcing semantics is given by two satisfaction

relations σ, s, t �T P and σ, s, c �C K for tree and tree contexts with variable stores,

defined as in Defn. 4.12 and extended as follows:

σ, s, t �T x ⇔ t ≡ s(x)

σ, s, t �T ∃n.P ⇔ ∃n ∈ N . σ, [s|n← n], t �T P

σ, s, t �T ∃x.P ⇔ ∃t′ ∈ T . σ, [s|x← t′], t �T P

σ, s, c �C n[K] ⇔ ∃n ∈ N , c′ ∈ C. (n = s(n) ∧ σ, s, c′ �C K ∧ c ≡ n[c′])

σ, s, c �C P |K ⇔ ∃t ∈ T , c′ ∈ C. (σ, s, t �T P ∧ σ, s, c′ �C K ∧ c ≡ t | c′)

σ, s, c �C ∃n.K ⇔ ∃n ∈ N . σ, [s|n← n], c �C K

σ, s, c �C ∃x.K ⇔ ∃t′ ∈ T . σ, [s|x← t′], c �C K

As before, we define the derived formulæ 3 and ∗. The somewhere modality 3

allows us to reason about properties satisfied by subtrees arbitrarily deep inside a

tree: 3P holds for any tree with a subtree satisfying P . The star connective ∗,

meanwhile, describes an interesting way of combining two trees: while the projection

K · 0 describes placing an empty tree in the hole of a context satisfying K, the

reverse embedding (0 � P) describes adding a hole at some arbitrary location in a

tree satisfying P ; thus P1 ∗P2, which is defined as (0�P1) ·P2, describes the insertion

of a tree satisfying P2 into an arbitrary location inside a tree satisfying P1. Note that

this operation is neither commutative nor associative.

5.5. TREES 79

We also derive the adjoints of both composition and branching, like we did for

sequence concatenation. Finally, as for heaps, the validity formula in Defn. 3.15

describes validity for all trees with respect to a specific store. This can be used to

express equality for both tree and node variables.

Definition 5.26 (Spatial adjoints). The adjoints of composition and branching are

defined as follows:

P1 −| P2 , (P1 | I) � P2 P @ n , n[I] � P

and have the following derived semantics:

σ, s, t � P1 −| P2 ⇔ ∀t
′ ∈ T .(σ, s, t′ � P1 ∧ (t′ | t)↓ ⇒ σ, s, t | t′ � P2)

σ, s, t � P @ n ⇔ ∀n ∈ N .(n = s(n) ∧ n /∈ locs(t)⇒ σ, s, n[t] � P)

Definition 5.27 (Variable equality). Tree and name variable equality are defined as

follows, using the validity connective from Defn. 3.15:

(x1 = x2) , validi(x1 ⇔ x2)

(n1 = n2) , validi(n1[0]⇔ n2[0])

and have the following derived semantics:

σ, s, t �T x1 = x2 ⇔ s(x1) ≡ s(x2)

σ, s, t �T n1 = n2 ⇔ s(n1) ≡ s(n2)

Below are some examples of CLtree formulæ. Additional examples will be con-

sidered when reasoning about tree update in Chapter 6.

Example 5.28 (CLtree formulæ). The following are examples of formulæ in CLtree,

together with their interpretation on trees. It is assumed throughout that n is the

current store value of n and m is the current store value of m.

(a) n[0]

the tree n[0].

(b) n[true]

a tree with root node n.

(c) 3n[true] or True · n[true] or true ∗ n[true]

a tree containing a node n.

5.5. TREES 80

(d) n[0] ∗ true or (0 � n[0]) · true or n[true] ∨ (n[0] | true)

a tree with root node n and either a subforest or siblings.

(e) (n[true] I P) · 0

a tree into which it is possible to add a subtree with root node n to obtain a

tree satisfying P ; in other words, the result of deleting the subtree at n from a

tree satisfying P .

(f) (0 � P) · n[true] or P ∗ n[true]

a tree containing n that would satisfy P were the subtree at n replaced by a 0;

in other words, the result of ‘restoring’ the subtree at n to a tree satisfying P .

(g) ∃x, y. (n[x |m[y]] � P) · (n[x] ∗m[y])

a tree that contains the distinct locations n and m, where m is not a direct

ancestor of n, and which satisfies P whenever the subtree at m is moved to be

underneath n; this corresponds to the weakest precondition of the command

that moves the subtree at m to n, as described in Chapter 8.

Like for the previous logics, we consider the interpretation of the formula classes

in CLtree. The pure, exact and ubiquitous classes express the same properties as for

heaps, signifying respectively independence from the tree value, satisfaction by at

most one tree or context, and satisfaction by − or 0. The interpretation of precise-

ness, however, changes again. Unlike in the heap model, there are no pointers and

composition is not ordered. However, the presence of nesting together with unique

identifiers provides other ways of uniquely splitting trees into contexts and subtrees.

This can be illustrated with three examples, all using a node identifier n to determine

a splitting. The precise tree formula n[true] splits off the subtree with root node n.

The precise context formula True ◦ n[I] (expressed here using context composition

but see next paragraph) uses a context with a hole at n to split off the subforest

beneath n. Finally, the precise formula pair (True ◦ n[true | I], 0) splits off an empty

tree directly underneath n. All three examples can be used to specify tree update

commands, replacing the specified subtrees by another. For example, the first two

examples can be used in tree disposal, replacing the subtree at or beneath n by 0.

Similarly, the last example can be used to specify a location for adding new tree

nodes, replacing the selected empty tree by m[0] for some fresh label m.

Finally, we consider the expressibility of context composition and its adjoints in

5.6. TERMS 81

CLtree. Interestingly, these are now derivable due to presence of quantification over

variables, which allows reasoning about all possible behaviours of context application.

Thus K1 ◦K2 can be expressed as ∀x. x�(K1 ·(K2 ·x)) or ∀n. n[0]�(K1 ·(K2 ·n[0]))).

Note the similarity to the derivations in Lemma 4.8: universal quantification is used

here to emulate the omniplaceability condition in the Lemma for the precise formulæ

n[0] and x (or, more accurately, (x ∧ ¬0) since x by itself is not precise). Similarly,

K1 −◦K2 can be expressed as ∀n. (K1 · n[0]) � (K2 · n[0]) and K1 ◦−K1 as ∀n. n[0] �

(K1 � (K2 · n[0])), likewise corresponding to the definitions in Lemma 4.8.

5.6 Terms

The final example in this chapter consists of simple terms. These are constructed

from a set of function symbols F with fixed arities. The model also includes a

variable store, where variables take terms as values. This, together with an expression

language consisting of terms that can contain variables to represent subterms, serves

as an important step towards specifying term rewrites. In Chapter 7, a slightly more

complicated term model will be considered, and used for reasoning about a local term

rewriting language.

Terms are an interesting example of structured data since they do not generally

contain a zero element, in the sense of Section 4.2. The fixed arities of function

symbols mean that there can be no ‘invisible’ empty term as for heaps and trees,

although there are constant terms of zero arity. Assuming there is more than one such

constant, then no set of terms can be both omnipresent and exact. An omnipresent

set must contain all the zero arity constants; an exact set, meanwhile, must be a

singleton. In the case where there is just one constant, then that constant does

function as a zero.

Definition 5.29 (Terms). Given a set F = {f, . . . } of function symbols and a sig-

nature Σ : F → N mapping function symbols to arities (where at least one function

symbol has arity zero), terms t ∈ T and term contexts c ∈ C are defined by the

following grammars:

t ::= f(t1, . . . , tk) k = Σ(f)

c ::= − | f(t1, . . . ti−1, c, ti+1, . . . , tk) k = Σ(f) ≥ i ≥ 1

The insertion of terms into term contexts is given by the following total application

5.6. TERMS 82

function:

ap(−, t) = t

ap(f(t1, . . . , c, . . . , tk), t) = f(t1, . . . , ap(c, t), . . . , tk)

Definition 5.30 (Variable store). Given an infinite set VarT = {x, . . . } of term

variables, a store s ∈ S is a total function s : VarT → T, returning the values of those

term variables.

Definition 5.31 (Expressions). An expression E is a term that can also contain

term variables, and is defined by the following grammar:

E ::= x | f(E1, . . . Ek) k = Σ(f)

The valuation of an expression in a store, written JEKs, is given by:

JxKs = s(x)

Jf(E1, . . . Ek)Ks = f(JE1Ks, . . . JEkKs)

It is easy to show that Term = (T, C, ap, {−}) forms a model of CL (without

a zero). Like in the heap and tree cases, the variable store can be included in the

model using the indexing construction of Example 3.8. The logic is extended with

special formulæ corresponding to the data structure definitions. Similarly to before,

adding a context connective f(P1, . . . ,K, . . . , Pk) allows us to define a term connective

f(P1, P2, . . . , Pk) as f(I, P2, . . . , Pk) · P1, while zero-arity terms must be expressed

directly. Term variables are incorporated in the logic by adding expressions E. Since

these form a superset of terms, they can also be used to express the zero-arity terms.

Finally, quantification is also included.

Definition 5.32 (CLterm formulæ). The formulæ of Context Logic for Terms (CLterm)

consist of the same context and data assertions as CL with the addition of term con-

texts, expressions and quantification over variables:

P ::= p propositional variables

| E special formulæ

| K · P | K � P structural formulæ

| P ⇒ P | false | ∃x.P logical formulæ

K ::= k propositional variables

| f(P1, . . . , Pi−1, K, Pi+1, . . . , Pk) special formulæ

| I | P � P structural formulæ

| K ⇒ K | False | ∃x.K logical formulæ

5.6. TERMS 83

where k = Σ(f) ≥ i ≥ 1.

Definition 5.33 (CLterm forcing semantics). The semantics of CLterm is an extension

of the semantics of CL for the model TermS . Given an interpretation function

σ : (VD → P(S × T)) × (VC → P(S × C)) mapping propositional variables to store-

indexed term and context sets, the forcing semantics is given by two satisfaction

relations σ, s, t �T P and σ, s, c �C K for term and term contexts with variable stores,

defined as in Defn. 3.4 and extended as follows:

σ, s, t �T E ⇔ t = JEKs

σ, s, t �T ∃x.P ⇔ ∃t′ ∈ T. σ, [s|x← t′], t �T P

σ, s, c �C f(P1, . . . , Pi−1,K, Pi+1, . . . , Pk)

⇔ ∃
1≤j≤k

j 6=i

tj ∈ T, c ∈ C. (t = f(t1, . . . , c, . . . , tk) ∧ σ, s, c �C K ∧
∧

1≤j≤k

j 6=i

σ, s, tj �T Pj)

σ, s, c �C ∃x.K ⇔ ∃t ∈ T. σ, [s|x← t], c �C K

where k = Σ(f) ≥ i ≥ 1.

The same derived formulæ can be defined for CLterm as for sequences and trees,

with the exception of the ∗ connective, which depends on the presence of zero. This

illustrates the fact that, unlike for sequences or trees, there is no general way of

combining two terms without adding or removing function symbols. Below are some

examples of CLterm formulæ.

Example 5.34 (CLterm formulæ). Consider a function symbol set F = N∪{ ,+,×},

where the naturals N are constants of arity zero, represents the unary minus and has

arity one, and + and × have arity two. Then the following are examples of CLterm

formulæ, together with their interpretations on terms.

(a) ×(2,+(1, 3)) or ×(I,+(1, 3)) · 2 or ×(2, I) ·+(1, 3)

the multiplication term ×(2,+(1, 3)).

(b) +(true, true)

any addition term.

(c) 3 ((true))

a term that contains a double negation.

(d) nat , ¬((¬I) · true)

any zero-arity term: that is, a natural number.

5.6. TERMS 84

(e) 2(+(true, true) ∨ ((I) ∨ I)·nat)

a sum of positive or negative integers.

(f) ∃x. (×(2, x) � P) ·+(x, x)

a term that contains an addition +(x, x), for some x, and which would satis-

fy P were the addition replaced by the multiplication ×(2, x); in other words,

this describes the result of performing a single rewrite on a term satisfying P ,

turning one multiplication by 2 into an addition.

Finally, we consider the formula classes for CLterm. As for trees, pureness spec-

ifies that the formula depends only on the variable store, while exactness specifies

satisfaction by at most one term or context for any given store. Ubiquitous data for-

mulæ are the ones satisfied by all the zero-arity terms. Finally, preciseness is similar

to the sequence case. The lack of unique identifiers means that there are no pre-

cise term formulæ apart from false, as any subterm can occur multiple times inside

a term, and hence does not uniquely specify a splitting. Precise context formulæ,

meanwhile, correspond to satisfaction by incompatible contexts, where two contexts

are incompatible if there are no two subterms that can be placed in them obtain the

same result. Thus, for example, the formula +(true, I) is precise.

Part B

Tree Update

Chapter 6

Basic Tree Update

This chapter introduces Context Logic-based local reasoning about a basic tree update

language. It presents the language, the local reasoning framework, and an axiomatisa-

tion made up of ‘Small Axioms’. It also proves the completeness of the program logic

by deriving the weakest preconditions of the commands, and discusses an interesting

update issue specific to tree update.

6.1 Basic Update Language

This section presents a basic high-level language for manipulating tree structures.

Both the trees and the language considered here are intentionally simple: the trees

have node identifiers but no additional data; the language manipulates whole trees

using these identifiers, but contains no advanced control structures or queries. The

resulting framework is easy to present, while still being complex enough to demon-

strate the key points concerning the use of Context Logic for reasoning locally about

tree update. A later chapter will extend both the tree data model, incorporating

node labels and pointers, and the update language, adding various features including

path queries and more control structures.

The trees considered in this chapter are the simple trees defined in Chapter 5.

These consist of a forest structure with unique node identifiers ranging over an al-

phabet N , which is constructed using a branching operator n[−] for n ∈ N and a

commutative composition operator |. We also consider tree contexts, which are trees

with a hole inside, and a variable store containing both name variables and tree vari-

ables, which take names and trees as values. The presence of tree variables allows

6.1. BASIC UPDATE LANGUAGE 87

the manipulation of whole trees in the language.

Definition 6.1 (Trees). Trees t ∈ T , tree contexts c ∈ C and variable stores s ∈ S

are defined as in Defns. 5.22 and 5.23.

The update language considered in this chapter is a simple variable-based lan-

guage with memory faults, and is based closely on standard low-level heap update

languages, such as the one in [ORY01]. The language is also local, in that the effect of

a command on a tree does not depend on the tree’s context. This locality condition

is quite subtle and is explained thoroughly in the following section. The language

consists of three basic types of command: variable assignment, tree updates, and com-

mand sequencing. Sequencing is standard. Variable assignment consists of assigning

values to name and tree variables. For simplicity, the right-hand-side expressions

representing these values are restricted to variables, rather than literal constants or

more complex expressions. This corresponds to the view that the precise values of

node identifiers are an issue of internal representation and should not be visible to the

user; it is the high-level tree structure that is important. Consequently, the ultimate

origin of variable values is always indirect, coming either from a tree lookup or an

execution of the new command, which creates nodes with fresh identifiers.

The third type of command, the tree update commands, describes updates that

act at a specific location in the tree, which is specified using a name variable. The

types of tree updates correspond to the standard types of heap updates, namely

disposal, update, lookup and new; the difference is that the tree updates act at the

tree level rather than at the node level. Thus, for example, the tree dispose command

removes an entire subtree at a given location, as opposed to a single node in the heap.

Similarly, tree lookup obtains the value of a subtree at a location, rather than the

value of a pointer target. The tree command corresponding to heap update adds a

new subtree at a location, instead of updating the pointer. Here we have a choice:

we can either replace the subtree already at the location, or we can append to it.

We choose the latter option, since replacement is expressible as a disposal followed

by an append. Finally, the new command is similar to its heap equivalent, in that

it generates a single node in the tree. Unlike the heap case, however, the location of

the new node has to be given. The reason for generating a single node, rather than a

more complex subtree structure, is merely to keep the language simple; complicated

structures can always be generated by repeated calls.

6.1. BASIC UPDATE LANGUAGE 88

One consequence of the nested nature of the tree data structure is an ambiguity

when specifying the location for an update. An update at a given node can reasonably

take place at one of two locations: at the level of the node itself or at the level of its

subforest. Hence, the dispose command can remove the entire tree at a given node,

or just its subtree. Similarly, the append command can add a tree as a sibling to a

given node, or as a sibling to its subforest. Since neither of these options is derivable

from the other, both are given in the language, by subscripting update commands

with either a t (tree) or sf (subforest) marker.

Definition 6.2 (BTU commands). The commands of the Basic Tree Update Lan-

guage (BTU) are defined formally by the following grammar:

C ::= n := n′ | x := x′ variable assignment

Cup(n) update at location n

C ; C sequencing

The tree updates Cup(n), which act at a location n, are defined as follows, with each

update having two variants, corresponding to an action at the root of a tree and an

action at its subforest:

Cup(n) ::= [n]t := 0 [n]sf := 0 dispose

[n]t ∗= x [n]sf ∗= x append

x := [n]t x := [n]sf lookup

n′ := new [n]t n′ := new [n]sf new

Before giving the formal semantics of the update language, it is necessary to

briefly remention the issue of locality. As previously stated, the program logic con-

sidered in this work is based on the concept of local reasoning. This approach, which

is discussed formally in the following sections, can be best summarised by the follow-

ing statement:

“To understand how a program works, it should be possible for reasoning

and specification to be confined to the [parts of the data structure] that

the program actually accesses. The value of any other [parts] will remain

unchanged.” [ORY01]

One underlying assumption of local reasoning is that this assertion holds: namely,

that there exists a well-specified part of the data structure that a program accesses (a

6.1. BASIC UPDATE LANGUAGE 89

‘footprint’), and that commands behave in such a way that reasoning and specification

can be confined to just that part, with the remaining data structure unchanging.

This assumption gives a behavioural restriction on permissible commands, defined

formally in Defn. 6.10. For now, it is enough to use the intuition given above: a

local command is one whose behaviour is completely determined by its action on its

footprint; in other words, its local behaviour determines its global behaviour.

One consequence of restricting reasoning to local commands is the obligatory

use of memory faults for commands that try to access data that is not there. The

dispose command, for example, must fault when asked to dispose of a location n that

is not in the current tree, as opposed to (for instance) doing nothing. Otherwise, the

assumption that global behaviour is completely determined by local action would be

false: the behaviour in a small environment (without node n, where nothing happens)

would not determine the execution in a larger one (with n, where the subtree at n is

deleted). A similar argument holds for the other update commands.

Another, less natural consequence of the locality restriction involves the be-

haviour of the append command. The presence of unique node identifiers means that

appending is in general a partial operation: if two trees share any identifiers then it

is not possible to append one inside the other. Moreover, whether or not an append

operation is possible is not determined by a local memory footprint at the target

location, but by the nodes of the entire tree. Thus an append operation may be

possible in one environment but not in a larger one, implying non-locality. This can

be superficially fixed by having an undefined append diverge rather than fault, since

the reasoning framework here is based on partial correctness. However, the problem

actually demonstrates that the current append command is somewhat unnatural, as

it forces the programmer to consider all the possible node values in the tree, includ-

ing those generated non-deterministically using the new command. A more natural

approach is to rename the node identifiers of an appended tree; after all, it is the

high-level tree structure that matters, not the precise node names. This solution is

considered at the end of this chapter. However, the simpler, potentially divergent

behaviour is sufficient for the current exposition.

Definition 6.3 (BTU operational semantics). The operational semantics of BTU

is given in Figure 6.1 using an evaluation relation ; relating configuration triples

C, s, t, terminal states s, t and faults ‘fault’.

6.1. BASIC UPDATE LANGUAGE 90

s(n′) ≡ n′

n := n′, s, t ; [s|n← n′], t

s(x′) ≡ t′

x := x′, s, t ; [s|x← t′], t

s(n) = n t ≡ ap(c, n[t′])

[n]t := 0, s, t ; s, ap(c, 0)

s(n) = n t ≡ ap(c, n[t′])

[n]sf := 0, s, t ; s, ap(c, n[0])

s(n) = n t ≡ ap(c, n[t′]) s(x) ≡ t′′ t′′ # t

[n]t ∗= x, s, t ; s, ap(c, n[t′] | t′′)

s(n) = n t ≡ ap(c, n[t′]) s(x) ≡ t′′ t′′ # t

[n]sf ∗= x, s, t ; s, ap(c, n[t′ | t′′])

s(n) = n t ≡ ap(c, n[t′])

x := [n]t, s, t ; [s|x← n[t′]], t

s(n) = n t ≡ ap(c, n[t′])

x := [n]sf, s, t ; [s|x← t′], t

s(n) = n t ≡ ap(c, n[t′]) n′ /∈ locs(t)

n′ := new [n]t, s, t ; [s|n′ ← n′], ap(c, n[t′] | n′[0])

s(n) = n t ≡ ap(c, n[t′]) n′ /∈ locs(t)

n′ := new [n]sf, s, t ; [s|n′ ← n′], ap(c, n[t′ | n′[0]])

s(n) = n t 6≡ ap(c, n[t′])

Cup(n), s, t ; fault

C1, s, t ; fault

(C1 ; C2), s, t ; fault

C1, s, t ; C′, s′, t′

(C1 ; C2), s, t ; (C′ ; C2), s
′, t′

C1, s, t ; s′, t′

(C1 ; C2), s, t ; C2, s
′, t′

Figure 6.1: BTU Operational Semantics

6.1. BASIC UPDATE LANGUAGE 91

assuming n is the store value of n

Figure 6.2: BTU Update Examples

This definition is a straightforward formalisation of the descriptions above, sim-

ilar in style to the operational semantics given in [YO02]. There are, however, a few

points worth noting. The first is the use of contexts to describe the semantics of

located updates: in general, an update at a location n is described as turning a tree

of the form ap(c, n[t]) into one of the form ap(c, t′), where t′ depends on the precise

command. Meanwhile, if the location n is not in the tree then the update faults. As

explained above, append is defined as a partial operation, diverging if the locations in

the tree being appended are not disjoint from the ones in the target tree. Finally, the

new command is defined non-deterministically, generating an arbitrary fresh location

in the tree and storing it in some name variable.

Example 6.4 (BTU commands). The behaviour of the BTU update commands on

a simple tree of the form n[T] is illustrated in Figure 6.2.

6.1. BASIC UPDATE LANGUAGE 92

Example 6.5 (Move). The following BTU program moves a subtree at a location n,

placing it underneath location n′. The command faults if either of the locations is

not in the tree, or if n′ is underneath location n, but is total otherwise.

move(n, n′) , x := [n]t ; store subtree at n

[n]t := 0 ; dispose it

[n′]sf ∗= x append it at n′

Finally, it is also useful to consider two behavioural properties of the commands

in the language: the set of variables that are modified by a given command, and the

set of variables which can interfere in the execution of the command. The sets are

defined semantically, but can usually be calculated, or closely approximated, using

a simple syntactic check, and will be used in specifying and reasoning about the

commands in the program logic.

Definition 6.6 (BTU modified variables). The set of modified variables mod(C) of

a command C is defined by:

x ∈ mod(C)⇔ ∃s, t, s′, t′. (C, s, t ; s′, t′) ∧ s(x) 6= s′(x)

n ∈ mod(C)⇔ ∃s, t, s′, t′. (C, s, t ; s′, t′) ∧ s(n) 6= s′(n)

For BTU, a close syntactic over-approximation of mod(C) is {x} for tree assignment

and lookup, {n} for location assignment and new, ∅ for the other located update

commands, and mod(C1) ∪ mod(C2) for C1 ; C2. The reason that this is an over-

approximation is that modification is an extensional property: thus x := x actually

has no modified variables, while x := y ; y := x only modifies x. However, the

approximation is good enough to be used in the program logic.

Definition 6.7 (BTU dependent variables). The set of dependent variables dep(C)

of a command C is defined by:

x ∈ dep(C)⇔ ∃s, t, s′, t′. (C, s, t ; s′, t′) ∧ ∃t′′. (C, [s|x← t′′], t 6; [s|x← t′′], t′)

∨ ∃s, t. (C, s, t ; fault) ∧ ∃t′′. (C, [s|x← t′′], t 6; fault)

n ∈ dep(C)⇔ ∃s, t, s′, t′. (C, s, t ; s′, t′) ∧ ∃n. (C, [s|n← n], t 6; [s|n← n], t′)

∨ ∃s, t. (C, s, t ; fault) ∧ ∃n. (C, [s|n← n], t 6; fault)

For BTU, a close syntactic over-approximation of dep(C) consists of all the free

variables in the command. Again, this slight over-approximation is sufficient.

6.2. LOCAL HOARE REASONING 93

6.2 Local Hoare Reasoning

The local reasoning framework presented in this work is an extension of Hoare

logic [Flo67, Hoa69] for reasoning about mutable data structures. Based closely

on the approach of Separation Logic [IO01, ORY01, Rey02], this framework provides

a natural way of inferring invariant properties implied by the locality of commands.

The approach is resource-oriented [POY04] and based on the idea of partial state:

the target of the reasoning is treated as a resource that can be split up and handled

in bits, be it heap memory [ORY01], variables [BCY06], write and read permis-

sions [BCOP05], or in this case tree structures. Considering the memory footprint

of a program gives a concrete handle on the resources that a specification of the

program needs to describe.

There are two key components to the local reasoning approach [YO02]. The

first is the tight interpretation of specifications: a Hoare triple should mention all

the resources relevant to the working of a program, so that other resources are au-

tomatically unaffected. The second is the presence of a ‘Frame Rule’ in the Hoare

Logic that allows the inference of the invariant properties implied by this tightness.

The suitability of spatial logics for describing the separation of resources mean that

they make ideal assertion languages for the Hoare Logic, allowing a simple formu-

lation of the Frame Rule. Thus, Separation Logic uses an assertion language based

on Bunched Logic to express the separation of heaps into partial subheaps (where

partiality is clearly expressed by the presence of dangling pointers). Here, the idea is

to use the CLtree logic of Defn. 5.24 to express the separation of trees into contexts

and subtrees, which can then be reasoned about separately.

The interpretation of Hoare triples in this framework is the standard one for

partial correctness, with the addition of a crucial safety requirement necessary for

local reasoning. The tightness condition above states that a Hoare triple should

include all the resources necessary for executing a command. Since attempting to

access resources that are not present results in a run-time memory fault, this is

enforced by using a fault-avoiding interpretation of triples: a triple {P} C {Q} is

valid only if executing C from a state satisfying P never faults.

Definition 6.8 (Interpretation of Hoare triples). Given a BTU command C and two

tree formulæ P , Q in CLtree (Defn. 5.24), a Hoare triple {P}C {Q} is said to hold iff

whenever σ, s, t �T P then:

6.2. LOCAL HOARE REASONING 94

Consequence:
P ′ ⇒ P {P} C {Q} Q⇒ Q′

{P ′} C {Q′}

Auxiliary Variable

Elimination
:

{P} C {Q}

{∃x. P} C {∃x.Q}
x /∈ dep(C)

{P} C {Q}

{∃n. P} C {∃n.Q}
n /∈ dep(C)

Auxiliary Variable

Renaming
:

{P} C {Q}

{P [x′/x]} C {Q[x′/x]}
x, x′ /∈ dep(C) ∧ x′ /∈ free(P,Q)

{P} C {Q}

{P [n′/n]} C {Q[n′/n]}
n, n′ /∈ dep(C) ∧ n′ /∈ free(P,Q)

Frame Rule:
{P} C {Q}

{K · P} C {K ·Q}
mod(C) ∩ free(K) = ∅

Figure 6.3: BTU Inference Rules

(a) C, s, t ; s′, t′ ⇒ σ, s′, t′ �T Q (partial correctness)

(b) C, s, t 6; fault (fault avoiding interpretation)

Just as in [ORY01], there are four basic inference rules used in the local rea-

soning framework. The first three are standard Hoare Logic rules: the Rule of Con-

sequence allows the strengthening of preconditions or weakening of postconditions;

Auxiliary Variable Elimination allows the elimination of auxiliary variables, where

non-interference is guaranteed by the side-condition; and Auxiliary Variable Renam-

ing allows variable renaming, with a similar non-interference condition. The final

rule is the Frame Rule, which generalises the Frame Rule in [ORY01] and allows the

inference of invariant properties.

Definition 6.9 (Inference Rules). The inference rules for the Context Logic-based

local reasoning framework are given in Figure 6.3.

6.3. FRAME RULE AND LOCALITY 95

Soundness for the first three rules is standard, following directly from the partial

correctness interpretation of Hoare triples and the standard properties of existentials

and variables. The soundness of the Frame Rule is shown in the next section.

6.3 Frame Rule and Locality

The purpose of the Frame Rule is to provide a simple way of inferring invariant prop-

erties in the program logic by exploiting the tightness of specifications. In Separation

Logic, invariant ‘frames’ were added by the Frame Rule using the heap separation

operation ∗. The rule here is a generalisation of that: instead of ∗, it uses the context

application operator · (which is a generalisation of ∗ in the sense of Thm. 4.22). Thus,

the rule states:

{P} C {Q}

{K · P} C {K ·Q}
mod(C) ∩ free(K) = ∅

In other words, given a specification {P} C {Q}, it is possible to apply to both sides

a context frame given by an arbitrary context formula K, as long as K does not

mention any modified store variables. The rule thus allows the inference of global

specifications from local ones.

The soundness of the Frame Rule relies on the update language behaving locally.

A local command satisfies two properties: the frame property, which states that if a

command executes safely (does not fault) in a given state, then any result of executing

it in a larger state can be tracked back to some execution on the smaller state; and

the safety monotonicity property, which states that if a command is safe in a given

state, then it is safe in any larger state.

Definition 6.10 (Locality). A command C is local if it satisfies the following two

properties:

(a) safety monotonicity : C, s, t 6; fault ∧ ap(c, t)↓ ⇒ C, s, ap(c, t) 6; fault;

(b) frame property : C, s, t 6; fault ∧ ap(c, t)↓ ∧ C, s, ap(c, t) ; s′, t′ then ∃t′′ such

that C, s, t ; s′, t′′ ∧ t′ ≡ ap(c, t′′).

Theorem 6.11 (Soundness of Frame Rule). If a command C is local, then the Frame

Rule holds for that command.

6.4. SMALL AXIOMATISATION 96

Proof. The aim is to prove that the premises of the Frame Rule, {P} C {Q} and

mod(C) ∩ free(K) = ∅, imply its conclusion, {K · P} C {K · Q}. This consists of

showing partial correctness and fault-avoidance for {K ·P} C {K ·Q}, as per Defn. 6.8.

Let σ, s and t be an arbitrary interpretation function, store and tree satisfying

σ, s, t �T K · P . Then t ≡ ap(c, t0) where σ, s, t0 �T P and σ, s, c �C K. The fault-

avoidance condition for the premise of the Frame Rule states that C, s, t0 6; fault.

This leads directly to the fault-avoidance condition for the conclusion, C, s, t 6; fault,

by safety monotonicity. For partial correctness, it is enough to assume that C, s, t ;

s′, t′ and show that σ, s′, t′ �T K · Q. By the frame property, there exists t′0 such

that C, s, t0 ; s′, t′0 and t′ ≡ ap(c, t′0). By the partial correctness of the premise,

σ, s′, t′0 �T Q. Hence σ, s′, t′ �T K ·Q as required.

Using the definitions above, it is possible to show that all the commands in BTU

are local, and that consequently the Frame Rule is sound for BTU.

Lemma 6.12 (Locality of BTU). All the commands in BTU are local.

Proof. Variable assignment is trivially local as it depends only on the variable store

and not the tree. Consider next an arbitrary tree update at location n. This only

faults if n is not in the tree; hence applying a context to a safe state will keep it

safe, giving safety monotonicity. Meanwhile, the update semantics describes the

transformation of a tree t0 ≡ ap(c, n[t′]) to a tree t1 ≡ ap(c, t′′) for varying values

of t′′. Successfully executing the update on a larger state ap(c′, t0) ≡ ap(c′ ◦ c, n[t′])

therefore gives a transformation to ap(c′ ◦ c, t′′) ≡ ap(c′, t1), as required by frame

property (where ◦ is the composition of tree contexts, discussed in Section 5.5). Note

that for the divergent instance of append, there is nothing to prove. Finally, the

case for C1 ; C2 follows by induction on the structure of commands, with the atomic

commands above serving as the base cases. Assuming C1 and C2 to be local, safety

monotonicity and the frame property follow directly from the sequence semantics.

Corollary 6.13. The Frame Rule is sound for BTU.

6.4 Small Axiomatisation

The remaining step in specifying the program logic is the axiomatisation of the com-

mands. One of the observations in [ORY01] is that it is possible to axiomatise heap

6.4. SMALL AXIOMATISATION 97

{0} n := n′ {0 ∧ (n = n′)}

{0} x := x′ {0 ∧ (x = x′)}

{n[true]} [n]t := 0 {0}

{n[true]} [n]sf := 0 {n[0]}

{n[y]} [n]t ∗= x {n[y] | x}

{n[y]} [n]sf ∗= x {n[y | x]}

{y ∧ n[true]} x := [n]t {y ∧ (x = y)}

{n[y]} x := [n]sf {n[y] ∧ (x = y)}

{n[y]} n′ := new [n]t {n[y] | n′[0]}

{n[y]} n′ := new [n]sf {n[y | n′[0]]}

where n′, x′, y /∈ dep(C)

Figure 6.4: BTU Small Axioms

update commands using precise specifications that refer only to their memory foot-

prints. The locality restrictions on the commands mean that these ‘Small Axioms’

determine the behaviour of the commands on arbitrary states. Furthermore, the ex-

pressibility of enough frames, which can be added using the Frame Rule, means that

the Small Axioms can be used to derive any other valid specification.

This section gives Small Axiom specifications for the tree update commands in

BTU. Update commands that act at a location n can all be specified on just the

singleton tree with root node n. Hence, for example, the axiom for the dispose-tree

command describes disposing a tree n[true], leaving 0. Auxiliary variables are used to

refer to constant values in the specifications: thus, the specification for appending a

tree x describes turning a tree n[y] into a tree n[y] | x, where the auxiliary variable y

can later be renamed or eliminated if necessary. For consistency, the axiom for

assignment is also given locally, and is consequently defined on just the empty tree,

the tree footprint of assignment being empty.

Definition 6.14 (BTU Axioms). The Small Axioms for the atomic update com-

mands are given in Figure 6.4. The inference rule for sequencing is the standard

6.5. WEAKEST PRECONDITIONS 98

Hoare rule:

{P} C1 {Q} {Q} C2 {R}

{P} C1 ; C2 {R}

The simplicity of the Small Axioms means that their soundness is trivial to verify

from the formula and command semantics.

6.5 Weakest Preconditions

Having presented the Small Axioms, this section shows how to express in CLtree the

weakest preconditions of the update commands, and derive the weakest precondition

axioms. This provides a straightforward completeness result for straightline code, as

demonstrated below. Furthermore, it can also be used in constructing a verification

tool: a standard method is to use a verification generator on code annotated with

pre- and postconditions to derive the weakest preconditions of the given postcondi-

tions, and then verify using a theorem prover (or an automatic decision procedure

if possible) that the corresponding given preconditions imply the weakest ones, thus

turning a verification problem into one of validity testing.

Definition 6.15 (Weakest Preconditions). The weakest precondition states of a com-

mand C with respect to a formula P and interpretation function σ is a set of states

wpstates(C, P, σ) where

(s, t) ∈ wpstates(C, P, σ)⇔ C, s, t 6; fault ∧ ∀s′, t′. C, s, t ; s′, t′ ⇒ σ, s′, t′ �T P

The weakest precondition formula of C with respect to P is any formula wp(C, P)

that agrees with wpstates(C, P, σ) for all interpretation functions σ:

∀σ, s, t. σ, s, t �T wp(C, P)⇔ (s, t) ∈ wpstates(C, P, σ)

Lemma 6.16 (Weakest Precondition axioms). The weakest precondition axiom

{wp(C, P)} C {P} is a valid Hoare triple for all commands C and formulæ P , and

whenever {P ′} C {P} holds then P ′ ⇒ wp(C, P).

Proof. Validity follows directly from the left-to-right implication in the definition of

weakest precondition states, while P ′ ⇒ wp(C, P) follows from the reverse implica-

tion.

6.5. WEAKEST PRECONDITIONS 99

{P [n′/n]} n := n′ {P}

{P [x′/x]} x := x′ {P}

{(0 � P) · n[true]} [n]t := 0 {P}

{(n[0] � P) · n[true]} [n]sf := 0 {P}

{∃y. ((n[y] | x) � P) · n[y]} [n]t ∗= x {P}

{∃y. (n[y | x] � P) · n[y]} [n]sf ∗= x {P}

{∃y.3(y ∧ n[true]) ∧ P [y/x]} x := [n]t {P}

{∃y.3n[y] ∧ P [y/x]} x := [n]sf {P}

{∃y.∀n′. ((n[y] | n′[0]) � P) · n[y]} n′ := new [n]t {P}

{∃y.∀n′. (n[y | n′[0]] � P) · n[y]} n′ := new [n]sf {P}

where y /∈ dep(C) ∪ free(P)

Figure 6.5: BTU Weakest Preconditions

Theorem 6.17 (BTU Weakest Preconditions). The weakest precondition axioms for

the atomic update commands are given in Figure 6.5. The weakest precondition of

the sequence C1 ; C2 is given inductively by wp(C1,wp(C2, P)).

Proof. For each axiom {Pwp} C {P} in Figure 6.5, the weakest precondition Pwp

corresponds directly to a reverse statement of the operational semantics of C. Taking

the commands one by one, we have:

(a) Assign: Pwp is satisfied by any tree that satisfies P after replacing the not-yet-

assigned variable (x or n) by its value-to-be (x′ or n′). This is the standard

Hoare axiom.

(b) Dispose: Pwp is satisfied by any tree that contains a subnode n and satisfies P

when the subtree at or below n is removed.

(c) Append: Pwp is satisfied by any tree that contains a subnode n and satisfies P

when the tree x is successfully appended as a sibling or subforest of n.

(d) Lookup: Pwp is satisfied by any tree that contains a subnode n and satisfies P

after replacing the not-yet-assigned variable x by its value-to-be, the subtree at

or below n.

6.5. WEAKEST PRECONDITIONS 100

(e) New: Pwp is satisfied by any tree that contains a subnode n and satisfies P

when a node n′[0] is successfully appended as a sibling or a subforest of n.

Note that this must hold for all possible values of n′, since new assigns a value

non-deterministically and a specification must be true for every execution. Fur-

thermore, the quantification over n′ captures any occurrences of the not-yet-

assigned variable n′ in P .

The precondition for sequences is standard, and follows directly from the semantics.

Note that the weakest preconditions for dispose, append and new all make use

of the � adjoint of context application. Indeed, the expressibility of this adjoint in

Context Logic is a major component of its expressivity (distinguishing it for example

from the Ambient Logic) and helps provide the necessary context frames for com-

pleteness. In fact, this should not be surprising, since � here plays the same role

in backward-reasoning as −∗ does in Separation Logic. Indeed, there exists a consis-

tent way of deriving the weakest preconditions above from the specifications of the

commands: wp(C, P ′) can be derived from any specification {P} C {Q} by applying

the context frame (Q � P ′), leaving the triple {(Q � P ′) · P} C {P ′} by the modus

ponens result in Thm. 3.13. Further simplification, using the Rule of Consequence

and Auxiliary Variable Elimination, results in the weakest precondition axioms.

Lemma 6.18 (Derivability of Weakest Preconditions). The weakest preconditions in

Figure 6.5 are derivable from the small axioms in Figure 6.4 using the proof rules in

Figure 6.3. Similarly, the weakest precondition for sequencing is derivable from the

sequencing inference rule.

Proof. The derivations for the atomic commands are given in Figure 6.7 at the end of

the chapter. Note that the frame contexts introduced by the Frame Rule are marked

in bold, while some uses of the Rule of Consequence reference the theoretical results

on which they depend. Additionally, there is an implicit use of Auxiliary Variable

Renaming in the derivations to ensure that the auxiliary variables in the Small Ax-

ioms are distinct from the free variables in the postcondition P . The derivation for

sequencing is the standard Hoare Logic one:

{wp(C1,wp(C2, P))} C1 {wp(C2, P)} {wp(C2, P)} C2 {P}

{wp(C1,wp(C2, P))} C1 ; C2 {P}

6.6. EXAMPLES 101

The derivability of the weakest preconditions gives a simple completeness result

for BTU (a more complicated completeness result based on the consistent shape of

the derivations, as in [Yan01b], is not considered here).

Theorem 6.19 (Completeness). The program logic defined in this section is complete

with respect to the interpretation of Hoare triples. In other words, every valid triple

{P} C {Q} is derivable.

Proof. Any valid triple {P} C {Q} is derivable by deriving {wp(C, Q)} C {Q} and

applying the Rule of Consequence, since P ⇒ wp(C, Q).

6.6 Examples

This section considers two simple examples of local program reasoning using Context

Logic. Both examples are based on the move program of Example 6.5. The first uses

simple backward-reasoning to derive a safety precondition for the move program; the

second uses forward-reasoning and the Frame Rule to derive a partial specification.

Example 6.20 (Backward reasoning). Calculating the weakest precondition of a

program starting with the postcondition ‘true’ provides the necessary and sufficient

safety condition for non-faulting execution. This is illustrated below for the move

program in Example 6.5, applying the weakest preconditions axioms sequentially,

starting at the end of the program, and simplifying where appropriate using the Rule

of Consequence:

{true}

[n′]sf ∗= x

{∃y. ((n′[y | x] � true) · n′[y])} ⇔ {3n′[true]}

[n]t := 0 ;

{(0 � 3n′[true]) · n[true]}

x := [n]t ;

{∃y.3(y ∧ n[true]) ∧ ((0 � 3n′[true]) · n[true])} ⇔ {(0 � 3n′[true]) · n[true]}

Thus, the formula ((0 � 3n′[true]) · n[true]) expresses the safety precondition of the

move command. This states concisely just what one expects: that both the source

6.7. NODE RENAMING 102

location n and target location n′ must be in the tree, and that n′ must not be a direct

ancestor of n.

Example 6.21 (Forward reasoning). It is not difficult to extend the safety precon-

dition above to a partial specification of move. The derivation, given in Figure 6.6,

employs auxiliary tree variables as placeholders for both the tree that is moved and

the subforest at the target, and reasons forward using the Frame Rule. The resulting

Hoare triple is surprisingly concise:

{(0 � 3n′[y]) · (n[true] ∧ z)} move(n, n′) {3n′[y | z]}

Note, however, that this is not a complete specification for move since it does not

specify that the part of the tree outside n and n′ is preserved. It is also far from

being a local specification, since the precondition does not specify the minimal tree

containing n and n′. The problem of providing complete, local specifications for

programs such as move is discussed in Chapter 8.

6.7 Node Renaming

As mentioned previously, the append command given in Section 6.1 is necessarily

partial for reasons of locality. This choice is problematic: repeatedly appending a

tree is bound to diverge, for example, while in general predicting divergence in the

presence of the non-deterministic new command is impossible. However, what this

actually illustrates is that direct appending in an environment with unique identifiers

is a somewhat artificial operation. In reality, the focus of tree reasoning is the tree

structure, not the explicit identifier names, whose purpose is merely to allow location

references (and possibly pointers). Hence, a more natural approach to appending

would be to allow a renaming of the nodes in the added tree. This makes append a

total operation, and allows repeat appending. The solution is not perfect, though:

by renaming identifiers, append no longer preserves external references. This new

issue is discussed further at the end of this chapter and in Chapter 8.

Definition 6.22 (Tree equivalence). Two trees are equivalent modulo renaming, writ-

ten t1 ' t2, if each can be mapped onto the other by renaming its respective nodes.

6
.7

.
N

O
D

E
R

E
N

A
M

IN
G

1
0
3

{n[true] ∧ z} x := [n]t {z ∧ x = z}
Frame

{(z � (z ∧ n[true])) · (n[true] ∧ z)} x := [n]t {(z � (z ∧ n[true])) · (z ∧ x = z)}
Cons

{n[true] ∧ z} x := [n]t {n[true] ∧ x = z}

{n[true]} [n]t := 0 {0}
Frame

{(0 � (0 ∧ x = z)) · n[true]} [n]t := 0 {(0 � (0 ∧ x = z)) · 0}
Cons

{n[true] ∧ x = z} [n]t := 0 {0 ∧ x = z}

{n[true] ∧ z} x := [n]t ; [n]t := 0 {0 ∧ x = z}
Frame

{(0 � 3n′[y]) · (n[true] ∧ z)} x := [n]t ; [n]t := 0 {(0 � 3n′[y]) · (0 ∧ x = z)}
Cons

{(0 � 3n′[y]) · (n[true] ∧ z)} x := [n]t ; [n]t := 0 {3n′[y] ∧ x = z}

{n′[y]} [n′]sf ∗= x {n′[y | x]}
Frame

{(true � (x = z)) · n′[y]} [n′]sf ∗= x {(true � (x = z)) · n′[y | x]}
Cons

{3n′[y] ∧ x = z} [n′]sf ∗= x {3n′[y | z]}

Sequence

{(0 � 3n′[y]) · (n[true] ∧ z)} move(n, n′) {3n′[y | z]}

Sequence

Figure 6.6: BTU Forward Reasoning Example

6.7. NODE RENAMING 104

Definition 6.23 (Append with renaming). The append-with-renaming commands

have the following (non-deterministic) operational semantics.

s(n) = n t ≡ ap(c, n[t′]) s(x) ' t′′ t′′ # t

[x]t ∗= n, s, t ; s, ap(c, n[t′] | t′′)

s(n) = n t ≡ ap(c, n[t′]) s(x) ' t′′ t′′ # t

[x]sf ∗= n, s, t ; s, ap(c, n[t′ | t′′])

Expressing node renaming in the logic can be achieved most cleanly by introduc-

ing a renaming modality, J−K, where JP K is satisfied by any tree that is equivalent

modulo renaming to a tree that satisfies P . The Small Axioms and weakest pre-

conditions of appending can then be restated exactly as before, with the addition of

renaming.

Definition 6.24 (Renaming modality). The renaming modality J−K has the follow-

ing semantics:

σ, s, t �T JP K⇔ ∃t′. t ' t′ ∧ σ, s, t′ �T P

Definition 6.25 (Small axioms). The Small Axioms of the append-with-renaming

commands are given below.

{n[y]} [n]t ∗= x {n[y] | JxK}

{n[y]} [n]sf ∗= x {n[y | JxK]}

Soundness follows easily from the formula semantics.

Lemma 6.26 (Weakest preconditions). The weakest preconditions of the append-

with-renaming commands are:

{∃y. ((n[y] | JxK) � P) · n[y]} [n]t ∗= x {P}

{∃y. (n[y | JxK] � P) · n[y]} [n]sf ∗= x {P}

Proof. This follows directly from the operational semantics: the weakest precondi-

tions are satisfied by any tree that contains a subnode n and satisfies P when some

renaming of the tree x is successfully appended as a sibling or a subforest of n.

Lemma 6.27 (Derivability of Weakest Preconditions). The weakest preconditions of

the append-with-renaming commands are derivable from the Small Axioms.

Proof. The derivations are identical to those of append-without-renaming (see Fig-

ure 6.7), only with the renaming modality around x throughout.

6.7. NODE RENAMING 105

As noted before, the only problem with the append-with-renaming command

is that it does not necessarily preserve external references. While this is usually

acceptable, and is in some cases necessary (such as when repeatedly appending the

same tree), there are some circumstances where one would expect references to be

preserved, and where renaming is not necessary or appropriate. The most obvious

such example is for a program that moves a subtree from one location to another,

such as the example in Example 6.5. Here, there is no need to rename any nodes,

since moving is always a total operation. One solution, considered in Chapter 8, is to

introduce move as a core command in addition to append-with-renaming. The issue

of specifying such a command locally is interesting, since the definition of a memory

footprint is less obvious for commands that act at two locations in a tree (the target

and destination), particularly since these locations may be either in disjoint parts of

the tree or nested. This is discussed further in Chapter 8.

6
.7

.
N

O
D

E
R

E
N

A
M

IN
G

1
0
6

Dispose

{n[true]} [n]t := 0 {0}
Frame

{(0 � P) · n[true]} [n]t := 0 {(0 � P) · 0}
Cons

{(0 � P) · n[true]} [n]t := 0 {P}

{n[true]} [n]sf := 0 {n[0]}
Frame

{(n[0] � P) · n[true]} [n]sf := 0 {(n[0] � P) · n[0]}
Cons

{(n[0] � P) · n[true]} [n]sf := 0 {P}

Append

{n[y]} [n]t ∗= x {n[y] | x}
Frame

{((n[y] | x) � P) · n[y]} [n]t ∗= x {((n[y] | x) � P) · (n[y] | x)}
Cons

{((n[y] | x) � P) · n[y]} [n]t ∗= x {P}
Elim

{∃y. ((n[y] | x) � P) · n[y]} [n]t ∗= x {P}

{n[y]} [n]sf ∗= x {n[y | x]}
Frame

{(n[y | x] � P) · n[y]} [n]sf ∗= x {(n[y | x] � P) · n[y | x]}
Cons

{(n[y | x] � P) · n[y]} [n]sf ∗= x {P}
Elim

{∃y. (n[y | x] � P) · n[y]} [n]sf ∗= x {P}

Figure 6.7: Derivations of the Weakest Preconditions (1/3)

6
.7

.
N

O
D

E
R

E
N

A
M

IN
G

1
0
7

Lookup

{y ∧ n[true]} x := [n]t {y ∧ n[true] ∧ (x = y)}
Frame

{((y ∧ n[true]) � P [y/x]) · (y ∧ n[true])} x := [n]t {((y ∧ n[true]) � P [y/x]) · (y ∧ n[true] ∧ (x = y))}
Cons : C3.19

{((y ∧ n[true]) � P [y/x]) · (y ∧ n[true])} x := [n]t {((y ∧ n[true]) � P [y/x]) · (y ∧ n[true]) ∧ (x = y)}
Cons : T3.23

{3(y ∧ n[true]) ∧ P [y/x]} x := [n]t {P [y/x] ∧ (x = y)}
Cons/Elim

{∃y. 3(y ∧ n[true]) ∧ P [y/x]} x := [n]t {P}

{n[y]} x := [n]sf {n[y] ∧ (x = y)}
Frame

{(n[y] � P [y/x]) · n[y]} x := [n]sf {(n[y] � P [y/x]) · (n[y] ∧ (x = y))}
Cons : C3.19

{(n[y] � P [y/x]) · n[y]} x := [n]sf {((n[y] � P [y/x]) · n[y]) ∧ (x = y)}
Cons : L3.23

{3n[y] ∧ P [y/x]} x := [n]sf {(x = y) ∧ P [y/x]}
Cons/Elim

{∃y. 3n[y] ∧ P [y/x]} x := [n]sf {P}

New

{n[y]} n′ := new [n]t {n[y] | n′[0]}
Frame

{(∀n′. (n[y] | n′[0]) � P) · n[y]} n′ := new [n]t {(∀n′. (n[y] | n′[0]) � P) · (n[y] | n′[0])}
Cons/Elim

{∃y.∀n′.((n[y] | n′[0]) � P) · n[y]} n′ := new [n]t {P}

{n[y]} n′ := new [n]sf {n[y | n′[0]]}
Frame

{(∀n′. n[y | n′[0]] � P) · n[y]} n′ := new [n]sf {(∀n′. n[y | n′[0]] � P) · (n[y | n′[0]])}
Cons/Elim

{∃y.∀n′.(n[y | n′[0]] � P) · n[y]} n′ := new [n]sf {P}

Figure 6.7: Derivations of the Weakest Preconditions (2/3)

6
.7

.
N

O
D

E
R

E
N

A
M

IN
G

1
0
8

Variable Assignment

{0} n := n′ {0 ∧ (n = n′)}
Frame

{(0 � P [n′/n]) · 0} n := n′ {(0 � P [n′/n]) · (0 ∧ (n = n′))}
Cons : C3.19

{(0 � P [n′/n]) · 0} n := n′ {(n = n′) ∧ (0 � P [n′/n]) · 0}
Cons : L4.16

{P [n′/n])} n := n′ {(n = n′) ∧ P [n′/n]}
Cons

{P [n′/n]} n := n′ {P}

{0} x := x′ {0 ∧ (x = x′)}
Frame

{(0 � P [x′/x]) · 0} x := x′ {(0 � P [x′/x]) · (0 ∧ (x = x′))}
Cons : C3.19

{(0 � P [x′/x]) · 0} x := x′ {(x = x′) ∧ (0 � P [x′/x]) · 0}
Cons : L4.16

{P [x′/x])} x := x′ {(x = x′) ∧ P [x′/x]}
Cons/Elim

{P [x′/x]} x := x′ {P}

Figure 6.7: Derivations of the Weakest Preconditions (3/3)

Chapter 7

Heap Update and Term

Rewriting

This short chapter illustrates the robustness of the local reasoning framework intro-

duced in the previous chapter by applying it to other forms of data update. Two

adaptations are considered: heap update and term rewriting.

7.1 Heap Update

The first adaptation of Context Logic-based local reasoning is to heap update. This

adaptation is particularly straightforward, due to the collapse of Context Logic to

Separation Logic for the monoidal heap structure (Thm. 4.22). Thus, the presentation

given here corresponds almost exactly to the Separation Logic presentation of heap

update given in [ORY01]. However, the strong similarities between heap and tree

update, both in reasoning and specification, make this exposition instructive.

The heap structure, variable store and expression language used in this section

were all previously defined in Chapter 5. The update language, meanwhile, is identi-

cal to that presented in [ORY01], with the exception of a slightly simplified allocation

command. Thus, it comprises a simple local update language with commands for vari-

able assignment, disposal, mutation, lookup and allocation. As noted in Chapter 6,

these heap updates correspond closely to the basic tree update commands in BTU.

Definition 7.1 (Heaps, stores and expressions). Heaps h ∈ H, heap contexts c ∈ C

and variable stores s ∈ S are defined as in Defns. 5.12, 5.13 and 5.14. Expressions E

are defined as in Defn. 5.15.

7.1. HEAP UPDATE 110

JEKs = n

x := E, s, h ; [s|x← n], h

n /∈ locs(h)

x := new(), s, t ; [s|x← n], h ∗ n 7→ nil

JEKs = n h ≡ h′ ∗ n 7→ v

dispose E, s, h ; s, h′

JEKs = n h ≡ h′ ∗ n 7→ v JFKs = v′

[E] := F, s, h ; s, h′ ∗ n 7→ v′

JEKs = n h ≡ h′ ∗ n 7→ v

x := [E], s, h ; [s|x← v], h

C1, s, h ; C′, s′, h′

(C1 ; C2), s, h ; (C′ ; C2), s
′, h′

C1, s, h ; s′, h′

(C1 ; C2), s, h ; C2, s
′, h′

C1, s, h ; fault

(C1 ; C2), s, h ; fault

JEKs = n h 6≡ h′ ∗ n 7→ v

Cup(E), s, t ; fault

Figure 7.1: HUL Operational Semantics

Definition 7.2 (HUL commands). The commands of the Heap Update Language

(HUL) are given by the following grammar:

C ::= x := E variable assignment

x := new() allocation

Cup(E) update at location E

C ; C sequencing

The heap update commands Cup(E) acting at a location given by an expression E

are defined as follows:

Cup(E) ::= dispose E dispose

[E] := F mutation

x := [E] lookup

Note that the flatness of the heap means that, unlike in BTU, the allocation

command does not require a target location, and is therefore grouped separately

from the other update commands. Similarly, there is only one version of each of the

update commands, as opposed to two, while the mutation command replaces a value,

7.1. HEAP UPDATE 111

{0 ∧ (x′ = E)} x := E {0 ∧ (x = x′)}

{0} x := new() {x 7→ nil}

{E 7→ −} dispose E {0}

{E 7→ −} [E] := F {E 7→ F}

{(x′ 7→ y) ∧ (x′ = E)} x := [E] {(x′ 7→ y) ∧ (x = y)}

where x′, y /∈ mod(C)

Figure 7.2: HUL Small Axioms

rather than appending to it. Finally, there is only one type of variables, for names,

since the language manipulates only values, not entire heaps.

Definition 7.3 (HUL operational semantics). The operational semantics of HUL is

given in Figure 7.1, using an evaluation relation ; defined on configuration triples

C, s, h, terminal states s, h and memory faults. The set of modified variables mod(C),

defined as in Defn. 6.6, is approximated by {x} for assignment, lookup and new, ∅

for dispose and mutation, and mod(C1)∪mod(C2) for C1 ; C2. The set of dependent

variables dep(C), defined as in Defn. 6.7, is approximated by the syntactically free

variables in C.

Observation 7.4. All the commands in HUL are local, as per Defn. 6.10.

To reason about HUL, we use the CLheap logic from Defn. 5.16. With this as

the underlying assertion language, one can then apply exactly the same local Hoare-

style reasoning as in Chapter 6. The interpretation of Hoare Triples (Defn. 6.8), the

Frame Rule, and the other standard Hoare inference rules (Defn. 6.9) are all adapted

to heaps in the obvious way. As before, the soundness of the Frame Rule follows from

the locality of the commands.

As for trees, it is possible to give Small Axioms for each of the commands.

Unsurprisingly, these resemble the Small Axioms of the corresponding basic tree

updates. It is also possible to state and derive the weakest precondition axioms for

the commands, which gives a basic completeness result for straightline code. Again,

these derivations correspond closely to those in BTU.

Definition 7.5 (HUL Small Axioms). The Small Axioms for the atomic HUL com-

mands are given in Figure 7.2.

7.1. HEAP UPDATE 112

{P [E/x]} x := E {P}

{∀x. (x 7→ nil)−∗ P} x := new() {P}

{P ∗ (E 7→ −)} dispose E {P}

{((E 7→ F)−∗ P) ∗ (E 7→ −)} [E] := F {P}

{∃y. (3E 7→ y) ∧ P [y/x]} x := [E] {P}

where y /∈ free(C) ∪ free(P)

Figure 7.3: HUL Weakest Preconditions

As for tree update, the Small Axioms describe the behaviour of the commands

only on their memory footprint; global behaviour can be inferred using the Frame

Rule. For example, the specification for dispose describes removing a single cell

(E 7→ −) and being left with the empty heap. This is analogous to the specifica-

tion given for tree disposal in BTU (Figure 6.4), which described removing a sub-

tree n[true] and being left with the empty tree.

Lemma 7.6 (HUL Weakest Preconditions). The weakest precondition axioms of the

basic update commands are the ones given in Figure 7.3. Furthermore, these are

derivable from the Small Axioms in Figure 7.2.

Proof. As in BTU, the weakest preconditions correspond to reverse statements of the

operational semantics of the commands. For assignment, this is the standard Hoare

assignment axiom. For new, it states that the postcondition P must hold whenever

a fresh location x is added to the heap. For dispose, it states that it is possible to

remove location E from the heap and have P hold afterwards. For mutation, it states

that the update location E is present in the heap, and that updating it with the new

value F makes P hold. Finally, for lookup it states that the same P holds as after the

execution, except that the value-to-be y at location E must be used for the not-yet

assigned variable x.

The derivations of the weakest preconditions from the Small Axioms are shown

in Figure 7.4. These all consist of applying the Frame Rule, followed by Consequence

and Variable Elimination. Notice the similarity of the derivations to those of the

weakest preconditions of BTU.

7
.1

.
H

E
A

P
U

P
D

A
T

E
1
1
3

{0 ∧ (x′ = E)} x := E {0 ∧ (x = x′)}
Frame

{P [x′/x] ∗ (0 ∧ (x′ = E))} x := E {P [x′/x] ∗ (0 ∧ (x = x′))}
Cons/Elim

{P [E/x]} x := E {P}

{0} x := new() {x 7→ nil}
Frame

{(∀x. (x 7→ nil)−∗ P) ∗ 0} x := new() {(∀x. (x 7→ nil)−∗ P) ∗ (x 7→ nil)}
Cons

{∀x. (x 7→ nil)−∗ P} x := new() {P}

{E 7→ −} dispose E {0}
Frame

{P ∗ E 7→ −} dispose E {P ∗ 0}
Cons

{P ∗ E 7→ −} dispose E {P}

{E 7→ −} [E] := F {E 7→ F}
Frame

{((E 7→ F)−∗ P) ∗ (E 7→ −)} [E] := F {((E 7→ F)−∗ P) ∗ (E 7→ F)}
Cons

{((E 7→ F)−∗ P) ∗ (E 7→ −)} [E] := F {P}

{(x′ 7→ y) ∧ (x′ = E)} x := [E] {(x′ 7→ y) ∧ (x = y)}
Frame

{((x′ 7→ y)−∗ P [y/x]) ∗ (x′ 7→ y) ∧ (x′ = E)} x := [E] {((x′ 7→ y)−∗ P [y/x]) ∗ (x′ 7→ y) ∧ (x = y)}
Cons

{(3x′ 7→ y) ∧ P [y/x] ∧ (x′ = E)} x := [E] {P [y/x] ∧ (x = y)}
Cons/Elim

{∃y. (3E 7→ y) ∧ P [y/x]} x := [E] {P}

Figure 7.4: Derivations of the HUL Weakest Preconditions

7.2. TERM REWRITING 114

7.2 Term Rewriting

The second adaptation of Context Logic-based local reasoning is to term rewriting.

In many ways, this is a more interesting adaptation than the one for heaps, since an

update language consisting of atomic rewrite commands is markedly different from

the tree and heap update languages considered so far. Furthermore, terms themselves,

like trees but unlike heaps, do not have a natural model in Separation Logic.

Applying local reasoning to term rewriting is non-trivial, since term rewriting is

not generally local: a rewrite can typically be applied to multiple redexes, dependent

on the context. However, once a specific redex is identified, the behaviour of that

rewrite is local, as only the corresponding subterm is affected. One natural way of

formalising this locality is to consider terms with unique location identifiers at the

function symbols and, by analogy to tree update, restrict our reasoning to rewrites

that act at given locations.

In order to specify term rewrites, it is also necessary to introduce variables. Two

types of variable are considered. The first, name variables, are used by the rewrite

commands to refer to existing location identifiers and store freshly-generated ones;

these variables are part of the execution state and are kept in a variable store. The

second, term variables, are used to specify subterm binding in the rewrites; these

are reasoned about in the logic but are not part of the state, and are thus kept in

a separate environment. Finally, we introduce an expression language consisting of

terms combined with name and term variables to explicitly specify rewrites.

Definition 7.7 (Located preterms). Given a set N = {n, . . . } of location names, a

set F = {f, . . . } of function symbols, and a signature Σ : F → N mapping function

symbols to arities, located preterms t ∈ Tlocpre and located preterm contexts c ∈

Clocpre are defined by the following grammars:

t ::= fn(t1, . . . tk) k = Σ(f)

c ::= − | fn(t1, . . . ti−1, c, ti+1, . . . tk) k = Σ(f) ≥ i ≥ 1

The set of locations in a located preterm or preterm context is given by:

locs(fn(t1, . . . tk) = {n} ∪
k
⋃

j=1
locs(tj)

locs(−) = ∅

locs(fn(t1, . . . ti−1, c, ti+1, . . . tk)) = {n} ∪ locs(c) ∪
k
⋃

j=1
j 6=i locs(tj)

7.2. TERM REWRITING 115

The insertion of a located preterm into a located preterm context is given by:

ap(−, t) = t

ap(fn(t1, . . . c, . . . tk), t) = fn(t1, . . . ap(c, t), . . . tk)

Definition 7.8 (Located terms). A located term t ∈ Tloc is a located preterm with

unique locations: that is, where t = fn(t1, . . . tk) implies {n} and locs(ti) are all

disjoint. A located term context c ∈ Cloc is a located preterm context with unique

locations: that is, where c = fn(t1, . . . c, . . . tk) implies {n}, locs(c) and locs(ti) are all

disjoint. The insertion of a located term t into a located term context c is given by

the appropriate restriction of ap, which is well-defined.

Definition 7.9 (Store and environment). Given an infinite set VarN = {n, . . . } of

name variables, a store s ∈ S is a total function s : VarN → N returning the value

of each name variable. Given an infinite set VarT = {x, . . . } of term variables, an

environment e ∈ E is a total function e : VarT → Tloc returning the value of each

term variable.

Definition 7.10 (Expressions). An expression E consists of a term with variables,

defined by the following grammar:

E,F ::= x | fn(E1, . . . Ek) k = Σ(f)

The free name and term variables in an expression E are expressed by freen(E) and

freet(E) respectively. The valuation of an expression in an environment and store,

written JEKes, is either a term or an error, and is given by:

JxKes = e(x)

Jfn(E1, . . . Ek)Kes =

fs(n)(JE1Kes, . . . JEkKes) if a well-defined located term

error otherwise

Using these definitions, it is straightforward to define a local term update lan-

guage based on sequences of atomic rewrite commands. Reductions simply consist of

replacing a subterm matching one expression by a subterm matching another, where

name variables are used to specify the location of the redex, and term variables to

bind the subterms. Any name variables used in the target expression but not in the

source are assigned fresh locations. For all this to work, however, it is necessary to

place some natural constraints on the expressions used in the rewrite rules. These

7.2. TERM REWRITING 116

t = ap(c, JEKes) s′ = [s|(freen(F) \ freen(E))← ~n] t′ = JFKes′ ap(c, t′)↓

E → F, s, t ; s′, ap(c, t′)

C1, s, h ; C′, s′, h′

(C1 ; C2), s, h ; (C′ ; C2), s
′, h′

C1, s, h ; s′, h′

(C1 ; C2), s, h ; C2, s
′, h′

C1, s, h ; fault

(C1 ; C2), s, h ; fault

t 6≡ ap(c, JEKes)

E → F, s, t ; fault

Figure 7.5: TRL Operational Semantics

consist of: a well-formedness condition on the variable bindings; a locatedness con-

dition on the source expression, to ensure locality; and a linearity constraint on the

term variables, due to the uniqueness of location names.

Definition 7.11 (TRL commands). The commands of the Term-Rewriting Language

(TRL) are given by the following grammar:

C ::= E → F | C ; C

where the atomic rewrite commands E → F satisfy the following restrictions:

(a) well-formedness: freet(F) ⊆ freet(E);

(b) locatedness: E is not simply a term variable x;

(c) linearity: term variables in E and F occur at most once in each.

Definition 7.12 (TRL operational semantics). The operational semantics of TRL

is given in Figure 7.5, using an evaluation relation ; defined on configuration triples

C, s, t, terminal states s, t and memory faults.

Note that the premise of the rewrite semantics in Figure 7.5 refers to an arbitrary

environment e (which is used for variable binding but is not part of the state) and

an arbitrary set of fresh node values ~n. The set of modified variables mod(E → F)

of a rewrite is taken to be freen(F) \ freen(E), while the set of dependent variables

dep(E → F) is taken to be freen(E) ∪ freen(F). Since term variables are only used

internally for pattern matching, they are never modified or dependent.

7.2. TERM REWRITING 117

Example 7.13 (Term Rewrite). The execution of the rewrite command

fn(x, y)→ gn(x, hm(y))

on the working term hn1
(fn2

(cn3
, cn4

)) in a store s where JnKs = n2 results in the term

hn1
(gn2

(cn3
, hn5

(cn4
))) where n5 is a fresh node value assigned to m in the store. Notice

that n5 must be fresh for the resulting term to be well-formed.

Observation 7.14. The commands in TRL are local, as per Defn. 6.10.

Like for normal terms, it is easy to see that LocTerm = (Tloc, Cloc, ap, {−})

forms a model of basic Context Logic with no zero. As before, we use the indexing

construction of Example 3.8 to include both the store variables and environment

variables in the model. The added formulæ, meanwhile, include expressions, term

contexts (this time with location variables) and quantification over both name and

term variables.

Definition 7.15 (CLlocterm formulæ). The formulæ of Context Logic for Located

Terms (CLlocterm) consist of the same context and data assertions as CL with the

addition of formulæ representing term contexts, expressions and quantification:

P ::= E special formulæ

| K · P | K � P structural formulæ

| P ⇒ P | false | ∃n.P | ∃x.P logical formulæ

K ::= fn(P1, . . . , Pi−1, K, Pi+1, . . . , Pk) special formulæ

| − | P � P structural formulæ

| K ⇒ K | False | ∃n.K | ∃x.K logical formulæ

where k = Σ(f) ≥ i ≥ 1.

Definition 7.16 (CLlocterm forcing semantics). The semantics of CLlocterm is an ex-

tension of the semantics of CL for the model LocTermE×S . Given an interpretation

function σ : (VD → P(E × S × Tloc)) × (VC → P(E × S × C)) mapping proposi-

tional variables to sets of located terms and contexts indexed by environments and

stores, the forcing semantics is given by two satisfaction relations σ, e, s, t �T P and

7.2. TERM REWRITING 118

σ, e, s, c �C K for terms and contexts, defined as in Defn. 3.4 and extended as follows:

σ, e, s, t �T E ⇔ t ≡ JEKes

σ, e, s, t �T ∃n.P ⇔ ∃n ∈ N . σ, e, [s|n← n], t �T P

σ, e, s, t �T ∃x.P ⇔ ∃t′ ∈ T. σ, [e|x← t′], s, t �T P

σ, e, s, c �C fn(P1, . . . , Pi−1,K, Pi+1, . . . , Pk)

⇔∃
1≤j≤k

j 6=i

tj ∈ Tloc, c ∈ C. (t ≡ fJnKs(t1, . . . , c, . . . , tk) ∧ σ, e, s, c �C K ∧
∧

1≤j≤k

j 6=i

σ, s, tj �T Pj)

σ, e, s, c �C ∃n.K ⇔ ∃n ∈ N . σ, e, [s|n← n], c �C K

σ, e, s, c �C ∃x.K ⇔ ∃t ∈ T. σ, [e|x← t], s, c �C K

Using this logic as the underlying assertion language, it is possible to apply

exactly the same local Hoare reasoning framework as in Chapter 6 and the first

section of this chapter. The interpretation of Hoare Triples (Defn. 6.8), the Frame

Rule, and the other standard Hoare inference rules (Defn. 6.9) are all adapted in

the obvious way, with the auxiliary variable rules applying to both name and term

variables. The only remaining task is to give a local specification of the rewrite

command E → F. This turns out to be trivial: the appropriate Small Axiom simply

has the rewrite premise E as its precondition and the target F as its postcondition. As

before, it is possible to derive the weakest precondition axiom from this specification

using the Frame Rule.

Definition 7.17 (TRL Small Axioms). The Small Axiom for the term rewrite com-

mand is given by:

{E} E → F {F}

Lemma 7.18 (Weakest Precondition). The weakest precondition axiom of the term

rewrite command is given by:

{∃~x0. (∀~n.(F[~x0/~x] � P)) · E[~x0/~x]} E → F {P}

where ~x = freet(E), ~n = freen(F) \ freen(E) and ~x0 are fresh term variables not free

in P . Furthermore, this is derivable from the Small Axiom above.

Proof. The weakest precondition simply states that a redex satisfying E exists some-

where (for some bindings ~x0) and that whenever this redex is replaced by F (using

the same bindings) then the result satisfies P . Furthermore, this must hold for all

possible assignments to the free location variables ~n which are in F but not in E.

7.2. TERM REWRITING 119

The derivation of the weakest precondition follows by a simple application of

Variable Renaming, the Frame Rule, Consequence and Variable Elimination:

{E} E → F {F}
Rename

{E[~x0/~x]} E → F {F[~x0/~x]}
Frame

{(∀~n.(F[~x0/~x] � P))·E[~x0/~x]} E → F {(∀~n.(F[~x0/~x] � P))·F[~x0/~x]}
Cons/Elim

{∃~x0. (∀~n.(F[~x0/~x] � P))·E[~x0/~x]} E → F {P}

Finally, we consider two simple reasoning examples, as in Chapter 6.

Example 7.19 (Weakest Precondition). For the term rewrite command fn(x, y) →

gn(x, hm(y)) considered in Example 7.13, the weakest precondition is:

∃x0, y0.(∀m.(gn(x0, hm(y0)) � P)) · fn(x0, y0)

where x0, y0 /∈ free(P). In the case when P is true, this gives the safety precondition

of the command, namely 3fn(true, true), which asserts the presence of the function

symbol f at location n.

Example 7.20 (Global Specification). It is easy to use the safety precondition

derived in Example 7.19 to obtain a global specification of the rewrite command

C = fn(x, y) → gn(x, hm(y)). Employing an auxiliary term variable z to represent

the arbitrary term in the precondition, we can derive:

{fn(x, y)} C {gn(x, hm(y))}
Frame

{(fn(x, y) I z) · fn(x, y)} C {(fn(x, y) I z) · gn(x, hm(y))}
Cons (Thm. 3.13)

{z ∧3fn(x, y)} C {(fn(x, y) I z) · gn(x, hm(y))}
Cons/Elim

{z ∧3fn(true, true)} C {∃x, y.(fn(x, y) I z) · gn(x, hm(y))}

The precondition describes an arbitrary term z satisfying the safety condition, while

the postcondition states that after execution, it is possible to ‘undo’ the rewrite and

recover z.

Chapter 8

Extended Tree Update

This chapter describes local reasoning about a more realistic tree update language

than the one considered in Chapter 6. The extended tree structure includes pointers

and labels, while the update language includes queries and commands that act at

multiple locations. The work shows the feasibility of reasoning about real update to

semistructured data, and raises an interesting point concerning local specifications.

8.1 Motivation and Outline

This final chapter describes a first step towards specifying and reasoning about a more

realistic tree update language, applicable to XML and other semistructured data.

The work, which pushes the boundaries of Context Logic reasoning, is of a more

exploratory nature than the previous chapters, and raises a number of interesting

directions for future research.

The key technical jump exhibited here over previous work involves the presence

of update commands that act at multiple locations. This allows us to incorporate into

the update language both node queries, which are a staple part of XML manipulation,

and a move-tree command, whose importance for maintaining external references was

previously discussed in Section 6.7. Additionally, we introduce a more complicated

tree structure, containing labels and pointers, which corresponds better to XML.

We continue from here, applying the principles of local Context Logic reasoning,

and encountering a number of interesting observations along the way. For example, in

modelling queries, we discover that, in light of our local reasoning approach, we must

also introduce the notion of query locality. This concept, which is not present in the

8.2. EXTENDED TREE MODEL 121

standard literature, turns out to be a natural constraint (especially in a distributed or

concurrent setting). Similarly, specifying the tree update language involves a choice

on how best to handle simple updates at multiple locations. The declarative approach

used here considers single actions at an unordered set of locations; other approaches

are possible, such as the one, preferred by the DOM interface, of traversing sequences

of locations and manipulating them one at a time. The extension of Context Logic to

the new tree data structure is straightforward, as one would expect from Chapter 5.

However, we find that, in order to reason about the sort of actions considered above,

we must employ inductive predicates that recurse over the set of update locations.

This, more than anything, adds a level of complexity to the reasoning not previously

seen for Context Logic. Finally, extending the Hoare Reasoning framework is a simple

adaptation. Nevertheless, it raises an important point concerning the rôle of local

specifications in local reasoning.

On the whole, this chapter has a slightly less rigid flavour than the previous

ones. Most importantly, it demonstrates that Context Logic can be used to reason

about a complicated tree update language. Additionally, however, it opens up ques-

tions regarding the various choices made and the complexity of the various solutions

presented, and suggests many directions for future work.

8.2 Extended Tree Model

The first stage in extending the reasoning framework involves expanding the tree data

model to include both labels and sets of pointers at every node. These choices are

both practically-oriented: labels allow the traversal of trees using path expressions,

while pointers allow the modelling of arbitrary graph structures using references

between different parts of the tree. Furthermore, the resulting data structure can be

easily be described in XML using ID and IDREFS type arguments. Unlike XML, the

model considered will remain unordered, both for reasons of simplicity and in order

to conform with the ‘trees-as-database’ approach [ABS99], where the purpose of the

tree structure is to describe data hierarchy, as opposed to the ‘trees-as-document’

approach, where sibling ordering matters. Adapting Context Logic to an ordered

environment is simple, as shown in Chapter 5.

8.2. EXTENDED TREE MODEL 122

Definition 8.1 (Trees and contexts). Trees t ∈ T and contexts c ∈ C are defined

as in Defn. 5.22, but with an associated label and pointer set at every node. Hence,

given an infinite set N = {m, n, . . . } of location names, an infinite set A = {a, b, . . . }

of labels with some default label ?, and defining pointer sets p ∈ Pfin(N) to be finite

sets of locations, the pretrees and precontexts are given by the grammar:

t ::= 0 | na:p[t
′] | (t1 | t2)

c ::= − | na:p[c
′] | (c′ | t) | (t | c′)

where na:p corresponds to a node at location n, with label a and pointer set p. The

set of locations in a tree or context is defined as before:

locs(0) = ∅ locs(na:p[t
′]) = {n} ∪ locs(t′) locs(t1 | t2) = locs(t1) ∪ locs(t2)

locs(−) = ∅ locs(na:p[c
′]) = {n} ∪ locs(c′)

locs(c′ | t)

locs(t | c′)

= locs(t) ∪ locs(c′)

as is the structural congruence between trees and contexts:

0 | t ≡ t | 0 ≡ 0 t1 | (t2 | t3) ≡ (t1 | t2) | t3 t1 | t2 ≡ t2 | t1

− | t ≡ t | − ≡ − c | (t1 | t2) ≡ (c | t1) | t2 c | t ≡ t | c

Trees and contexts are defined as pretrees and precontexts with unique locations.

Definition 8.2 (Tree equivalence). Two trees are equivalent modulo renaming, writ-

ten t1 ' t2, if each can be mapped onto the other by renaming their respective nodes

as well as any internal pointers to those nodes. Hence, for example na:{n,m}[0] '

n′a:{n′,m}[0].

Definition 8.3 (XML translation). There is a natural translation from the tree struc-

ture above to a simple fragment of XML, translating labels to tag names, nodes to ID

attributes and pointers to IDREFS attributes. Since the tree structure, unlike XML,

is unordered, the translation picks an arbitrary ordering for parallel composition.

J0K =

Jna:p[t]K = 〈a ID="n" IDREFS="p"〉JtK〈/a〉

Jt1 | t2K = Jt1KJt2K

8.2. EXTENDED TREE MODEL 123

Example 8.4 (Tree). Below is a simple example of a tree with pointers, together

with a possible XML representation:

n1country:{n2,n3}[T1] | n2city:{n1}[T2] | n3city:{n1}[T3]

〈country ID="n1" IDREFS="n2 n3"〉 T1 〈/country〉

〈city ID="n2" IDREFS="n1"〉 T2 〈/city〉

〈city ID="n3" IDREFS="n1"〉 T3 〈/city〉

Extending the tree model makes it necessary to extend the storage model as well:

to allow the manipulation of labels and pointer sets, the store must be expanded to

include label and pointer set variables in addition to the ones for trees. The presence

of pointer set variables, however, means that it is no longer necessary to include

variables for single node identifiers, particularly since the update language considered

deals only with updates at sets of locations.

Definition 8.5 (Stores). Given infinite sets VarT = {x, . . . } of tree variables, VarA =

{a, . . . } of label variables and VarP = {p, . . . } of pointer variables, a store s ∈ S is a

triple of total functions s : VarT → T ×VarA → A×VarP → Pfin(N), returning the

values of the variables.

Additionally, it is useful to introduce expressions to represent the permitted

right-hand values of tree, label and pointer set assignment. As before, these typically

consist of variables, while the use of explicit node identifiers in expressions is still

forbidden to avoid dealing with ill-formed trees. However, other literals, such as

labels, the empty tree and the empty set of pointers are permitted, and expressions

are handled abstractly in the logic, with a view to extending them at some point to

include more complicated structures.

Definition 8.6 (Value Expressions). Tree expressions ET , label expressions EA and

pointer expressions EP consist of either variables or simple literals:

ET ::= x | 0 EA ::= a | a ∈ A EP ::= p | ∅

8.3. LOCAL QUERY LANGUAGES 124

The valuation of a value expression on a store s is written JEKs and given by:

JxKs = s(x)

J0Ks = 0

JaKs = s(a)

JaKs = a

JpKs = s(p)

J∅Ks = ∅

Finally, to allow conditional control structures it is also necessary to introduce

some sort of boolean expressions. The ones considered here include equality tests for

value expressions together with the standard classical logic connectives.

Definition 8.7 (Boolean Expressions). Boolean expressions B consist of a logical

combination of equality tests:

B ::= false | B ⇒ B | ET = ET | EA = EA | EP = EP

The valuation of a boolean expression on a store s is written JBKs and given by:

JfalseKs = false

JB1 ⇒ B2Ks = JB1Ks⇒ JB2Ks

JET = FT Ks = JET Ks ≡ JFT Ks

JEA = FAKs = JEAKs = JFAKs

JEP = FPKs = JEPKs = JFPKs

8.3 Local Query Languages

The key language extension presented in this chapter is the introduction of commands

that act at multiple locations. This is primarily achieved by incorporating node

queries into the language. Node queries can be viewed abstractly as functions of

state that select and return a set of locations from that state. A typical example of

node queries is path expressions, which select nodes by analysing label values.

Just as for update commands, the focus on local reasoning makes it necessary

to place a locality restriction on queries. This non-standard restriction corresponds

closely to the one on commands, and turns out to be quite natural, giving a sense

of local behaviour that is particularly useful in a distributed or concurrent context.

The restriction states that any successful execution of a query must be unaffected by

the (non-local) context of execution. Thus, for example, a query ∗ that returns all

the nodes in a tree is not local, since its result would increase by placing the tree in

a larger context; in contrast, the query n/∗, which returns all the nodes underneath

some location n, is local. One consequence of the locality condition is the need for

query errors, corresponding to memory faults, to describe the result of a query that

depends on a missing part of the tree: for example, the query n/∗ when n is not in

8.3. LOCAL QUERY LANGUAGES 125

the tree, or a query which tries to follow a dangling pointer. Note that this is quite

distinct from queries that return no nodes, but stay within the bounds of the current

tree, such as the case for n/∗ when n has no nodes underneath it.

Definition 8.8 (Local query). A query q is a function q : S×T → Pfin(N)∪{error},

where q(s, t) ∈ Pfin(N) implies q(s, t) ⊆ locs(t). A query q is local iff ∀s ∈ S, t ∈ T , c ∈

C. q(s, t) ∈ Pfin(N) ∧ ap(c, t)↓ implies q(s, ap(c, t)) = q(s, t).

The technical results that follow all work using this abstract definition of queries.

However, it is interesting to consider a concrete local query language, both to help

with examples and demonstrate that little expressive power has been lost by moving

to local queries. The language, motivated by XPATH [XPA99], is based on the idea

of ‘rooted’ path expressions, where expressions all start from a given set of nodes.

Definition 8.9 (Path Query Language). The Path Query Language (PQL) is defined

as follows:

q ::= p/π | q ∪ q | q ∩ q | q − q query

π ::= πa :: πf | π/π | π ∪ π | π ∩ π | π − π path

πa ::= self | child | desc. | parent | link path axis

πf ::= EA | ∗ label filter

The evaluation of a query on a given store and tree is given by:

(p/π)(s, t) = JπKs,t(s(p)) if s(p) ⊆ locs(t), error otherwise

(q1 ∪ q2)(s, t) =

(q1 ∩ q2)(s, t) =

(q1 − q2)(s, t) =

q1(s, t) ∪ q2(s, t)

q1(s, t) ∩ q2(s, t)

q1(s, t) \ q2(s, t)

if q1(s, t) 6= error ∧ q1(s, t) 6= error,

error otherwise

where JπKs,t is the state-dependent function defined in Figure 8.1.

A basic PQL query p/π is ‘rooted’ at an initial set of nodes given by a variable p,

and consists of a combination of path steps πa :: πf . Each step consists of a path

axis πa, which describes the next ‘movement’ direction, and a path filter πf , which

provides a label condition for the movements. The path axes are standard XPATH

axes (self, child, descendant and parent), with the addition of a link axis, which

follows all the pointers from the current nodes. Unlike in XPATH, an ancestor axis

is not included as it would break the locality condition.

8.3. LOCAL QUERY LANGUAGES 126

Jπa :: πf K
s,t

(p) = Jπf K
s,t

(JπaKs,t(p))

Jπ1/π2Ks,t(p) = Jπ2Ks,t(Jπ1Ks,t(p))

Jπ1 ∪ π2Ks,t(p) = Jπ1Ks,t(p) ∪ Jπ2Ks,t(p)

Jπ1 ∩ π2Ks,t(p) = Jπ1Ks,t(p) ∩ Jπ2Ks,t(p)

Jπ1 − π2Ks,t(p) = Jπ1Ks,t(p) \ Jπ2Ks,t(p)

JselfKs,t(p) = p

JchildKs,t(p) = {n2 | ∃n1 ∈ p. t ≡ ap(c, n1a1:p1
[n2a2:p2

[t2] | t1])}

Jdesc.Ks,t(p) = {n2 | ∃n1 ∈ p. t ≡ ap(c1, n1a1:p1
[ap(c2, n2a2:p2

[t2])])}

JparentKs,t(p) = error if ∃n2 ∈ p. t ≡ n2a2:p2
[t2] | t1

else {n1 | ∃n2 ∈ p. t ≡ ap(c, n1a1:p1
[n2a2:p2

[t2] | t1])}

JlinkKs,t(p) = error if ∃n1∈p, p1∈Pfin(N). t≡ap(c,n1a1:p1
[t1])∧∃n2∈p1.n2/∈locs(t)

else {n2 | ∃n1 ∈ p, p1 ∈ Pfin(N). t ≡ ap(c, n1a1:p1
[t1]) ∧ n2 ∈ p1}

JEAKs,t(p) = {n ∈ p | t ≡ ap(c, nJEAKs:p[t
′])}

J∗Ks,t(p) = p

JπKs,t(error) = JπaKs,t(error) = Jπf K
s,t

(error) = error

Figure 8.1: PQL Query Semantics

As noted before, trying to access a missing part of the tree always results in an

error. Hence, all the initial nodes in p must be present in the tree. Similarly, it is not

possible to move up the parent axis of a top-level node, or follow a dangling pointer.

Example 8.10 (Queries). Below are some simple examples of PQL queries. These

make use of some standard notational shorthand: they assume the child axis where

no axis is given (taking πf to mean (child ::πf)), and use ‘..’ and ‘.’ as syntactic sugar

for (parent :: ∗) and (self :: ∗) respectively.

(a) p/city — all ‘city’-labelled child nodes of p.

(b) p/(city ∪ link :: city) — all ‘city’-labelled child nodes or pointer targets of p.

(c) p/(city ∪ link :: city)/capital — all ‘capital’-labelled child nodes of (b).

8.4. EXTENDED UPDATE LANGUAGE 127

(d) p/(../∗−.) — all the siblings of p. Note that, as a result of the locality condition,

this returns an error for top-level nodes. This is unsurprising, since the siblings

of such nodes clearly depend on the context.

8.4 Extended Update Language

This section presents a high-level update language for manipulating trees with point-

ers. The language has the same overall structure as the basic language BTU con-

sidered in Chapter 6, and satisfies the same locality condition (Defn. 6.10). The key

differences are the presence of commands that act at multiple locations, commands

that manipulate labels and pointers, and choice and loop control structures. The

basic command types include assignment, lookup, update and new (just as in BTU),

as well extra commands for moving trees. Of these, assignment, lookup and update

have different forms for manipulating trees, labels and pointers, while new and move

only act on trees. As in BTU, updates to trees can take place at either the tree

level or the subforest level; in the case of the move command, this results in four

possible behaviours (two at the source and two at the destination). To allow action

at multiple locations, the target of an update is given by a pointer set, rather than a

single node as for BTU.

Definition 8.11 (XTU commands). The commands of the Extended Tree Update

Language (XTU) are defined formally by following grammar:

C ::= Cup update commands

C ; C sequencing

if B then C else C if-then-else

while B do C while-do

The update commands Cup are given in Figure 8.2, where they are arranged by the

type of the command and the part of the tree it affects. The boolean expressions B

were defined in Defn. 8.7.

Before giving the operational semantics of the language, it is useful to first present

an informal description of its behaviour. As for BTU, the locality condition means

that update commands that try to access missing parts of the tree must produce a

fault. Beyond that, the behaviour of the different command types is as follows:

8.4. EXTENDED UPDATE LANGUAGE 128

Trees Subforests

Assign: x := ET

Lookup: x := get-trees at p x := get-subforests at p

Update:
dispose-trees at p

append-trees ET at p

dispose-subforests at p

append-subforests ET at p

New: p′ := new-trees at p p′ := new-subforests at p

Move:
move-tree p1 to-tree p2

move-subforest p1 to-tree p2

move-tree p1 to-subforest p2

move-subforest p1 to-subforest p2

Pointers Labels

Assign:
p := EP

p := q
a := EA

Lookup: p′ := get-links at p a := get-labels at p

Update:
dispose-links at p

append-links EP at p
set-labels EA at p

Figure 8.2: XTU Update Commands

Assign: assigns the value of an expression to a variable of the appropriate type.

There is an additional case p := q for queries, which evaluates a query q on the

current tree and assigns the resulting set of nodes to a pointer variable p.

Lookup: obtains tree, label or pointer values from the locations specified by a

pointer set p and assigns them to a variable. Since searching a set of loca-

tions results in a set of values, there is the question of how to combine these

into a single value that can be stored and used. A different solution is employed

for each type: for trees and subforests, lookup concatenates the resulting sub-

trees, renaming nodes if necessary; for pointer sets, it returns the union of the

results; and for labels, it picks a random label from the resulting set, using

the default label ? if the set is empty. These solutions are chosen for their

simplicity. A more abstract approach is also possible.

8.4. EXTENDED UPDATE LANGUAGE 129

Update: updates the tree, label or pointer values at the locations specified by a

pointer set p. For trees and pointers, two types of update are possible: disposing

the values at the locations, or appending to them a new value given by an

expression. In the case of trees, this may involve renaming the nodes and

internal pointers in the appended tree, similarly to Section 6.7. Label update

involves replacing old labels with a new one.

New: creates new nodes at the locations specified by a pointer set p. The nodes

have fresh identifiers, which are stored in a pointer set variable p′, the default

label ?, and no pointers or subtrees.

Move: moves a tree from a single source location to a single destination location,

without renaming any node identifiers. This allows the preservation of external

references and pointers, which cannot be achieved using the node-renaming tree

update commands. The lack of renaming, however, means that both the source

and target locations must consist of just one node, since it is not possible to

make multiple copies of trees with unique identifiers. Furthermore, for the move

to even be possible, the target location must not be a descendant of the source.

Definition 8.12 (XTU operational semantics). The operational semantics of XTU

is given in Figure 8.3. As in Defn. 6.3, this uses an evaluation relation ;, defined

on configuration triples C, s, t, terminal states s, t and memory faults. Additionally,

updates that act at multiple locations use partial computation states C, p, s, t, rep-

resenting states where the command C has yet to act at the locations given by the

pointer set p.

Note that the semantics for the partial computation states C, p, s, t is given in a

non-deterministic fashion that does not specify the order of execution. For example,

the semantics of tree disposal describes the successive removal of subtrees of the

form na:p′ [t
′], where the subtree locations n are picked in an arbitrary order from the

argument p. This is perfectly fine, since for any successful execution, the order in

which the nodes were chosen does not affect the final result. Some executions do

diverge: it is not possible to dispose a location if any of its ancestors have already

been disposed. The semantics, however, is only concerned with the existence of a

terminating order, and since all the nodes in p must be in the tree, there is always

at least one.

8.4. EXTENDED UPDATE LANGUAGE 130

Assign :
JET Ks ≡ t′

x := ET , s, t ; s[x← t′], t

JEAKs = a

a := EA, s, t ; s[a← a], t

JEPKs = p′

p := EP , s, t ; s[p← p′], t

q(s, t) = p′

p := q, s, t ; s[p← p′], t

q(s, t) = error

p := q, s, t ; fault

Lookup

Update

New

:
C below is any lookup, update or new command acting at locations p

the individual semantics for the commands is given on the next page

JpKs * locs(t)

C, s, t ; fault

JpKs = p ⊆ locs(t)

C, s, t ; C, p, s, t
mod(C) = ∅

JpKs = p ⊆ locs(t)

C, s, t ; C, p, s[x← 0], t
x∈mod(C)

JpKs = p ⊆ locs(t)

C, s, t ; C, p, s[p← ∅], t
p∈mod(C)

JpKs = p ⊆ locs(t)

C, s, t ; C, p, s[a← ?], t
a∈mod(C)

C, ∅, s, t ; s, t

Move : for C = move-tree p2 to-subforest p1 ; other moves are similar

s(p1)={n1} s(p2)={n2} t ≡ ap(c2, n2a2:p
′
2
[ap(c1, n1a1:p

′
1
[t1])])

C, s, t ; s, ap(c2, n2a2:p
′
2
[ap(c1, 0) | n1a1:p

′
1
[t1]])

s(p1)={n1} s(p2)={n2} t ≡ ap(c, ap(c1, n1a1:p
′
1
[t1]) | ap(c2, n2a2:p

′
2
[t2]))

C, s, t ; s, ap(c, ap(c2, n2a2:p
′
2
[t2 | n1a1:p

′
1
[t1]] | ap(c1, 0)))

otherwise

C, s, t ; fault

Control :
C1, s, t ; C′, s′, t′

(C1 ; C2), s, t ; (C′ ; C2), s
′, t′

C1, s, t ; s′, t′

(C1 ; C2), s, t ; C2, s
′, t′

C1, s, t ; fault

(C1 ; C2), s, t ; fault

JBKs = true

if B then C1 else C2, s, t ; C1, s, t

JBKs = false

if B then C1 else C2, s, t ; C2, s, t

JBKs = false

while B do C, s, t ; s, t

JBKs = true

while B do C, s, t ; (C ; while B do C), s, t

Figure 8.3: XTU Operational Semantics (1/2)

8.4. EXTENDED UPDATE LANGUAGE 131

dispose-trees at p :
t ≡ ap(c, na:p′ [t′])

C, {n}] p, s, t ; C, p, s, ap(c, 0)

dispose-subforests at p :
t ≡ ap(c, na:p′ [t′])

C, {n}] p, s, t ; C, p, s, ap(c, na:p′ [0])

dispose-links at p :
t ≡ ap(c, na:p′ [t′])

C, {n}] p, s, t ; C, p, s, ap(c, na:∅[t
′])

append-trees ET at p :
t ≡ ap(c, na:p′ [t′]) t′′ ' JET Ks t′′ # t

C, {n}] p, s, t ; C, p, s, ap(c, na:p′ [t′] | t′′)

append-subforests ET at p :
t ≡ ap(c, na:p′ [t′]) t′′ ' JET Ks t′′ # t

C, {n}] p, s, t ; C, p, s, ap(c, na:p′ [t′ | t′′])

append-links EP at p :
t ≡ ap(c, na:p′ [t′])

C, {n}] p, s, t ; C, p, s, ap(c, na:p′∪JEPKs[t
′])

set-labels EA at p :
t ≡ ap(c, na:p′ [t′])

C, {n}] p, s, t ; C, p, s, ap(c, nJEAKs:p′[t′])

x := get-trees at p :
t ≡ ap(c, na:p′ [t′]) t′′ ' na:p′ [t′] t′′ # s(x)

C, {n}] p, s, t ; C, p, s[x← s(x) | t′′], t

x := get-subforests at p :
t ≡ ap(c, na:p′[t′]) t′′ ' t′ t′′ # s(x)

C, {n}] p, s, t ; C, p, s[x← s(x) | t′′], t

p′ := get-links at p :
t ≡ ap(c, na:p′ [t′])

C, {n}] p, s, t ; C, p, s[p← s(p) ∪ p′], t

a := get-labels at p :
t ≡ ap(c, na:p′ [t′])

C, {n}] p, s, t ; C, p, s[a← a], t

p′ := new-trees at p :
t ≡ ap(c, na:p′ [t′]) n′ /∈ locs(t) t′′ ≡ na:p′ [t′] | n′?:∅[0]

C, {n}] p, s, t ; C, p, s[p′ ← s(p′) ∪ n′], ap(c, t′′)

p′ := new-subforests at p :
t ≡ ap(c, na:p′ [t′]) n′ /∈ locs(t) t′′ ≡ na:p′ [t′ | n′?:∅[0]]

C, {n}] p, s, t ; C, p, s[p′ ← s(p′) ∪ n′], ap(c, t′′)

Figure 8.3: XTU Operational Semantics (2/2)

8.5. CONTEXT LOGIC ADAPTATION 132

Observation 8.13. The commands in XTU are all local, as per Defn. 6.10.

Example 8.14 (Collapse links). The following are two simple example programs in

XTU. Both programs collapse the links in a tree by copying the subtrees at the targets

to the subtree of the source, renaming the nodes and any internal pointers. The first

program collapses all the links at a location p; the second only collapses the links

given by a variable p′. The diagram on the right shows the action of ‘collapse-all-links

at n1’ on the tree from Example 8.4.

collapse-all-links at p ,

p′ := p/link :: ∗ ;

x := get-trees at p′ ;

append-subforests x at p ;

dispose-links at p

collapse-links p′ at p ,

p′′ := p/link :: ∗ ∩ p′ ;

x := get-trees at p′′ ;

append-subforests x at p ;

p′′′ := p/link :: ∗ − p′ ;

dispose-links at p ;

append-links p′′′ at p

8.5 Context Logic Adaptation

The next step is the adaptation of Context Logic to the new tree data structure,

incorporating pointers and labels, the different types of variables and expressions,

and queries. This is a relatively straightforward generalisation of the CLtree logic

given in Defn. 5.24 and used in Chapter 6.

Before defining the logic, it is first necessary to extend the framework slightly to

allow reasoning about individual node identifiers. The update language uses variables

denoting sets of nodes, but does not refer directly to individual node identifiers. For

reasoning about update, however, it is necessary to both mention and quantify over

individual nodes. This is achieved by introducing an environment, separate from

the storage model, which contains logical variables denoting locations. To allow

comparisons between pointer sets and identifiers, it is also necessary to extend pointer

set expressions to include these variables, as well as the basic set operations.

8.5. CONTEXT LOGIC ADAPTATION 133

Definition 8.15 (Environment). Given an infinite set VarN = {m,n, . . . } of location

variables, an environment e ∈ E is a total function e : VarN → N returning the value

of the variables.

Definition 8.16 (Extended pointer expressions). Extended pointer expressions ÊP

are given by the following grammar:

ÊP ::= EP | {n} | ÊP ∪ ÊP | ÊP ∩ ÊP

with valuation on an environment e and store s written JÊPKes, and given by:

JEPKes = JEPKs

J{n}Kes = {e(n)}

JÊP ∪ F̂PKes = JÊPKes ∪ JF̂PKes

JÊP ∩ F̂PKes = JÊPKes ∩ JF̂PKes

Just like CLtree, the logic considered here is an extension of Context Logic with

Zero, with additional formulæ introduced for reasoning about trees. The semantics

comes from the new tree data structure, indexed this time by both the environment

and the store.

Definition 8.17 (CLxtree formulæ). The formulæ of Context Logic for Extended

Trees (CLxtree) consists of the same context and data assertions as CL∅ with the

addition of formulæ for expressions, query evaluation, node renaming, branching

contexts, parallel composition contexts, and quantification over variables.

P ::= p propositional variables

| ET | ÊP l q | JP K special formulæ

| 0 | K · P | K � P structural formulæ

| P ⇒ P | false | ∃x.P | ∃p.P | ∃a.P | ∃n.P logical formulæ

K ::= k propositional variables

| n
EA :ÊP

[K] | (P | K) special formulæ

| I | P � P structural formulæ

| K ⇒ K | False | ∃x.K | ∃p.K | ∃a.K | ∃n.K logical formulæ

Definition 8.18 (CLxtree semantics). The semantics of CLxtree is an extension of the

semantics of CL∅ for the model (C,T , ap, {−}, {0})E×S , where trees and tree contexts

are indexed, as in Example 3.8, by both the environment and the store. Given an

8.5. CONTEXT LOGIC ADAPTATION 134

σ, e, s, t �T ET ⇔ t ≡ JET Ks

σ, e, s, t �T ÊP l q ⇔ q(s, t) = JÊPKes

σ, e, s, t �T JP K ⇔ ∃t′ ∈ T . (t ' t′ ∧ σ, e, s, t′ �T P)

σ, e, s, t �T ∃x.P ⇔ ∃t′ ∈ T . σ, e, [s|x 7→ t′], t �T P

σ, e, s, t �T ∃p.P ⇔ ∃p ∈ Pfin(N). σ, e, [s|p 7→ p], t �T P

σ, e, s, t �T ∃a.P ⇔ ∃a ∈ A. σ, e, [s|a 7→ a], t �T P

σ, e, s, t �T ∃n.P ⇔ ∃n ∈ N . σ, [e|n 7→ n], s, t �T P

σ, e, s, c �C n
EA:ÊP

[K]⇔ ∃c′ ∈ C.

c ≡ e(n)JEAKs:JÊP Ks[c
′] ∧

σ, e, s, c′ �C K ∧ e(n) /∈ locs(c′)

σ, e, s, c �C P |K ⇔ ∃t ∈ T , c′ ∈ C.

c ≡ t | c′ ∧ σ, e, s, t �T P

∧ σ, e, s, c′ �C K ∧ t # c′

σ, e, s, c �C ∃x.K ⇔ ∃t ∈ T . σ, e, [s|x 7→ t], c �C K

σ, e, s, c �C ∃p.K ⇔ ∃p ∈ Pfin(N). σ, e, [s|p 7→ p], c �C K

σ, e, s, c �C ∃a.K ⇔ ∃a ∈ A. σ, e, [s|a 7→ a], c �C K

σ, e, s, c �C ∃n.K ⇔ ∃n ∈ N . σ, [e|n 7→ n], s, c �C K

Figure 8.4: CLxtree Semantics

interpretation function σ : (VD → P(E × S × T)) × (VC → P(E × S × C)) mapping

propositional variables to sets of trees and contexts indexed by environments and

stores, the forcing semantics is given by two satisfaction relations σ, e, s, t �T P and

σ, e, s, c �C K for trees and contexts, defined as in Defn. 4.12 and extended as in

Figure 8.4.

Of the new formulæ, all but query evaluation were also present in CLtree in some

form or other: variable quantification and node renaming are essentially unchanged;

tree expression assertions correspond to tree variable assertions; and the context

formulæ denoting the branching structure now also include expressions to represent

node labels and pointers. The one genuinely new primitive is the query evaluation

ÊP l q. This states that the query q returns the pointer set ÊP when evaluated on

the current tree and store.

As in other models of Context Logic, it is possible to define various standard

8.5. CONTEXT LOGIC ADAPTATION 135

derived formulæ, such as the existential adjoint duals I and J (Defn. 3.11) and the

somewhere modality 3 (Defn. 3.12). Additionally, it is useful to define a number of

more specific derived formulæ for reasoning about expressions and variables. These

are presented below in three sets: the first defines equality tests for the different

types of expressions; the second introduces some useful formulæ for reasoning about

variables; and the last presents some formulæ for reasoning about pointer expressions.

The derivations are non-trivial, raising the possibility of adding some of the formulæ

to the logic as basic assertions. Conversely, the derivations serve as a good illustration

of the expressivity of Context Logic.

Definition 8.19 (Derived equality formulæ). Equality for tree expressions, label

expressions and extended pointer expressions can be defined as follows, using the

validity connective from Defn. 3.15 just like in Section 5.5.

(ET = FT) , validi(ET ⇔ FT)

(EA = FA) , validi(∀n. nEA:∅[0]⇔ nFA:∅[0])

(ÊP = F̂P) , validi(∀n. n
?:ÊP

[0]⇔ n
?:F̂P

[0])

These have the following derived semantics:

σ, e, s, t �T ET = FT ⇔ JET Ks ≡ JFT Ks

σ, e, s, t �T EA = FA ⇔ JEAKs = JFAKs

σ, e, s, t �T ÊP = F̂P ⇔ JÊPKes = JF̂PKes

Definition 8.20 (Derived variable formulæ). The following are useful derived for-

mulæ for dealing with variables:

n[K] , ∃a, p. na:p[K]

n ∈ ÊP , (ÊP ∩ {n}) = {n}

n ∈ ET , validi(ET ⇒ 3n[true])

x ∈ P , validi(x⇒ P)

The interpretations of these are straightforward: n[K] describes a node n with arbi-

trary label and pointers; n ∈ ÊP and n ∈ ET state that location n is in the pointer

set ÊP or tree ET ; and x ∈ P states that tree x satisfies proposition P . The derived

semantics is as follows:

σ, e, s, c �C n[K] ⇔ ∃a, p, c′.(c ≡ e(n)a:p[c
′] ∧ σ, e, s, c′ �C K ∧ e(n) /∈ locs(c′))

σ, e, s, t �T n ∈ ÊP ⇔ e(n) ∈ JÊPKes

σ, e, s, t �T n ∈ ET ⇔ e(n) ∈ locs(JET Ks)

σ, e, s, t �T x ∈ P ⇔ σ, e, s, s(x) �T P

8.6. INDUCTIVE PREDICATES 136

Definition 8.21 (Derived expression formulæ). The following are useful derived

formulæ for dealing with extended pointer expressions:

3ÊP , ∀n.n ∈ ÊP ⇒ 3n[true]

ÊP = Ê1
P] Ê2

P , (ÊP = Ê1
P ∪ Ê2

P) ∧ (Ê1
P ∩ Ê2

P = ∅)

|Ê1
P | = |Ê

2
P | , ∃x, y. x ∈ JyK ∧ ∀n.(n ∈ Ê1

P ⇔ n ∈ x ∧ n ∈ Ê2
P ⇔ n ∈ y)

Again, the interpretations are simple: 3ÊP says that all the locations in ÊP are in the

tree, while ÊP = Ê1
P] Ê2

P and |Ê1
P | = |Ê

2
P | should be self-explanatory. The second

of these works by asserting the existence of two trees, x and y, that contain the same

nodes as Ê1
P and Ê2

P respectively, and which are equivalent modulo renaming. The

derived semantics of the formulæ is as follows:

σ, e, s, t �T 3ÊP ⇔ ∀n.n ∈ JÊPKes⇒ n ∈ locs(t)

σ, e, s, t �T ÊP = Ê1
P] Ê2

P ⇔ JÊPKes = JÊ1
PKes] JÊ2

PKes

σ, e, s, t �T |Ê
1
P | = |Ê

2
P | ⇔ |JÊ1

PKes| = |JÊ2
PKes|

Note that all the derived formulæ except n[K] and 3ÊP are pure (Defn. 3.16c):

that is, they do not depend on the value of the current tree. The formula ÊP l q,

meanwhile, is not pure, since it relies on the tree being large enough to execute the

query. However, it is upward-closed (Defn. 3.16a): the locality conditions mean that

querying a larger tree always returns the same result. This property, expressed by the

equation K · (P ∧ (ÊP l q))⇒ (ÊP l q) ∧K · P , is useful for simplifying formulæ.

8.6 Inductive Predicates

The update commands in XTU typically act at an arbitrary set of locations. Context

Logic, however, can only be used to reason about a single location at a time. One way

of addressing this, considered here, is to introduce a limited form of recursion into

the logic, in the shape of inductive fold-like predicates that recurse over node sets.

This turns out to be sufficient, and simpler than incorporating full recursion into the

logic [Hut99]. Other potential solutions, discussed in Chapter 9, include trying to

extend Context Logic to handle contexts with multiple holes, though this does not

immediately solve the problem, since some of the update locations might be nested

underneath others, and hence not be separable from them using contexts.

Definition 8.22 (Fold predicate). The inductive predicate fold is defined below. It

takes three arguments: a function Pf of type N × P → P, a base case assertion P0,

8.6. INDUCTIVE PREDICATES 137

and a pointer expression ÊP denoting the set of locations over which the fold acts.

fold(Pf , P0, ÊP) , ((ÊP = ∅) ∧ P0) ∨

(∃n, p. (ÊP = p] {n}) ∧ Pf (n, fold(Pf , P0, p)))

The fold takes the locations from ÊP , one by one and in any order, and uses them to

expand Pf recursively, with P0 serving as the base case for when ÊP is empty. The

definition is well-founded since the value of ÊP is always finite. When working with

fold, it is often useful to use the following shorthand notation:

foldn,Q(Pf , P0, ÊP) , fold(λn,Q.Pf , P0, ÊP)

where Q is a metavariable denoting a formula.

Example 8.23 (Fold). Below are a few example uses of fold.

(a) foldn,Q(n[Q], 0, p) — describes a tower of nodes n1a1:p1
[n2a2:p2

[. . . [0]]], with the

node identifiers ni taken from p. This can also be expressed without using fold:

∀n. (n ∈ p⇔ 3n[true]) ∧ ¬3(¬0 | ¬0).

(b) foldn,Q(((0 � Q) · n[0]), 0, p) — describes any tree with the same nodes as p.

This too can be written more simply: ∀n. (n ∈ p⇔ 3n[true]).

(c) foldn,Q(((n[true] I Q) · 0), P, p) — satisfied by a tree if it is possible to add to

it subtrees with root nodes n, for each n in p, and obtain a tree satisfying the

base assertion P . In other words, starting from a tree satisfying P , the formula

describes the result of disposing the subtrees at the nodes in p. This concisely

captures the behaviour of the dispose-tree command, and is indeed used as part

of its specification. Unlike the other two examples, this cannot be expressed

without using fold.

To describe the behaviour of other commands such as lookup and new, it is useful

to introduce a more expressive fold predicate that can explicitly compute tree, label

and pointer set values as the recursion unfolds. This second predicate, defined below,

is a bit more subtle than the one above.

Definition 8.24 (Foldval). The inductive predicate foldval, which computes values

of type τ (where τ denotes either trees, labels or pointer sets), takes four arguments—

a function Pf : τ ×N × (τ → P) → P, a base case assertion P0 : τ → P, a starting

8.7. PROGRAM LOGIC 138

value E0 : τ , and a pointer expression ÊP :

foldval(Pf , P0, E0 , ÊP) , ((ÊP = ∅) ∧ P0(E0)) ∨

(∃n, p. (ÊP =p]{n})∧Pf (E0 , n, λx. foldval(Pf , P0, x, p))

Like fold, this uses the locations from ÊP to expand Pf recursively, but additionally

passes values between calls, with a starting value E0 . As for fold, it is useful to define

the following shorthand notation:

foldvalx,n,Q(Pf , P0, E0 , ÊP) , foldval(λx, n,Q.Pf , λx.P0, E0 , ÊP)

where Q is a metavariable denoting a formula, and x is a variable of type τ .

Example 8.25 (Foldval). The following is an example use of foldval :

foldvalp1,n,Q(∃a, p, p0.3na:p[true] ∧ (p1 = p ∪ p0) ∧Q(p0), p1 = ∅, p′, p)

This states that the variable p′ contains the union of all the pointer sets at the

locations in p, with the base value of ∅ for when p is empty. This cleanly captures

the behaviour of the get-links command.

8.7 Program Logic

The Program Logic framework considered in this chapter is a simple adaptation of

the one introduced in Chapter 6. Adapted for the new tree data structure, it uses

CLxtree rather than CLtree as the underlying assertion and specification language. The

interpretation of Hoare Triples (Defn. 6.8), the Frame Rule, and the other standard

Hoare inference rules (Defn. 6.9) are all adapted in the obvious way. The inference

rule adaptation is given in Figure 8.5. In the case of the two auxiliary variable rules,

this involves extending the rules to all types of variable, including the node variables

in the environment. The sets of modified and dependent variables are also treated as

before: again it is possible to use the left-hand side of an assignment as its modified

variable set, and all the free names in a command as its dependent variable set. Note

that the environment variables are never modified nor free in any command.

The one remaining issue, then, involves the axiomatisation of the command lan-

guage. It is here that one encounters a key difference between the current framework

and the previous, simpler one: specifically, in how to provide local specifications for

commands that act at more than one location in the tree.

8.7. PROGRAM LOGIC 139

Consequence:
P ′ ⇒ P {P} C {Q} Q⇒ Q′

{P ′} C {Q′}

Auxiliary Variable

Elimination
:

{P} C {Q}

{∃•. P} C {∃•. Q}
• /∈ dep(C)

Auxiliary Variable

Renaming
:

{P} C {Q}

{P [◦/•]} C {Q[◦/•]}
•, ◦ /∈ dep(C) ∧ ◦ /∈ free(P,Q)

Frame Rule:
{P} C {Q}

{K · P} C {K ·Q}
mod(C) ∩ free(K) = ∅

where • and ◦ are any variables of the same type

Figure 8.5: XTU Inference Rules

The problem is best illustrated using an example. Consider the move-tree p1

to-subforest p2 command. This acts at two subtrees: one at the source location and

one at the destination. These locations can either be separate or nested, though

the destination must not be contained within the source. One approach is to define

the strict footprint of the command to include just these two (possibly overlapping)

trees. Expressing two separate trees, however, is not possible in the current Context

Logic framework, and the possibility of overlap means that it would not be enough

simply to move to multi-holed contexts. An alternative approach is to weaken the

notion of footprint to the smallest tree that contains both the source and destination.

Describing this weaker footprint, however, still requires a case-by-case analysis of the

relative shape of the two subtrees: whether they are nested or disjoint, and which

one is at the top-level. These three possibilities can be expressed by the following

three axioms:

{n1a1:p1
[(0 � x) · n2a2:p2

[y]]} C {n1a1:p1
[x | n2a2:p2

[y]]}

{n1a1:p1
[x] | ((0 � z) · n2a2:p2

[y])} C {n1a1:p1
[x | n2a2:p2

[y]] | z}

{(3n1a1:p1
[x] ∧ z) | n2a2:p2

[y]} C {(n1a1:p1
[x] � z) · n1a1:p1

[x | n2a2:p2
[y]]}

These can then be combined into a single large axiom using a labelled disjunction and

auxiliary variables. This approach, however, is clearly clumsy and cannot necessarily

8.7. PROGRAM LOGIC 140

be applied when trying to describe any of the other update commands, all of which

act at an arbitrary number of locations.

This leads to a third alternative, which is to simply drop the idea of local speci-

fication, and instead specify commands by describing their action on arbitrary trees

satisfying the necessary safety preconditions, giving the strongest possible postcon-

ditions at the end. The important observation here is that abandoning local spec-

ification has no effect on the locality of the commands, or the possibility of local

reasoning: a non-local specification can still be extended using the Frame Rule to

describe a larger tree. This fracture between local reasoning and local specification

is novel. It is not evident in Separation Logic since the flat, set-like nature of the

heap means that multiple locations can always be separated together using the ∗

connective.

Thus, the ‘move-tree p1 to-subforest p2’ command is specified on any tree, rep-

resented by a variable x, that satisfies the appropriate safety preconditions: namely

p1={n1} and p2={n2}, which state that p1 and p2 consist of single locations, and

(0 � 3n2a2:p′2
[true]) · n1a1:p′1

[true], which states that both the source and destination

locations are present and that the latter is not nested inside the former. The postcon-

dition, meanwhile, describes the resulting tree after the move. This clearly includes

the subtree n2a2:p′2
[y |n1a1:p′1

[z]], for appropriate values of y and z. The context of this

subtree, as well as the values of y and z, are described indirectly using the I adjoint:

the required context is the only one to which it is possible to add back the subtrees

n1a1:p′1
[z] and n2a2:p′2

[y] and recover the original tree x. Hence the final specification

states:

{x ∧ (p1={n1}) ∧ (p2={n2}) ∧ (0 � 3n2a2:p′2
[true]) · n1a1:p′1

[true]}

move-tree p1 to-subforest p2

{(n2a2:p′2
[y] I ((n1a1:p′1

[z] I x) · 0)) · n2a2:p′2
[y | n1a1:p′1

[z]]}

In fact, it is possible to restrict this non-local specification to one describing the

smallest subtree containing both the source and destination, by adding the side-

condition ¬(¬I · (3n1 ∧ 3n2)). However, this merely complicates the specification

without introducing any obvious benefits.

The resulting specification, while not local, is succinct and manageable. The

axioms of the other update commands all follow the same principle.

8.7. PROGRAM LOGIC 141

Definition 8.26 (XTU Axioms). The axioms for the atomic update commands are

given in Figure 8.6. The inference rules for the control structures are the standard

Hoare ones below, with booleans B embedded into the logic in the obvious way:

{P} C1 {Q} {Q} C2 {R}

{P} C1 ; C2 {R}

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}

{P} if B then C1 else C2 {Q}

{B ∧ P} C {P}

{P} while B do C {¬B ∧ P}

The axioms in Figure 8.6, while more complicated than those of BTU, still

exhibit a high level of order and inter-similarity. The axioms for normal assignment

are the standard small ones, defined on the empty tree 0. Query evaluation, in

contrast, requires a non-local specification, since its successful execution depends on

the presence of a large enough tree to run the query. As in the move axiom, the

precondition describes an arbitrary tree x together with a safety condition, p′ l q,

guaranteeing that the query executes successfully. The postcondition, meanwhile,

simply updates the value of p, leaving the tree unchanged.

The remaining axioms all use the inductive fold predicates to reason about up-

dates at multiple locations, but otherwise follow the same patterns as move and

query. The preconditions are all identical: a variable x symbolises an arbitrary tree,

while 3p provides the necessary safety condition by stating that all the update lo-

cations are present. The postconditions, meanwhile, describe the effect of executing

the appropriate command on x. In the case of update commands such as append and

dispose, this is done using the fold predicate, which specifies each update as the step-

by-step replacement of subtrees na:p[y] by new trees appropriate to the command. For

example, the axiom for dispose-trees, previously explained in Example 8.23, replaces

these subtrees by 0. For the lookup commands, meanwhile, the original tree x is

unchanged, while the lookup process is described using the foldval predicate, which

specifies the step-by-step construction of a lookup value from the subtrees na:p[y].

Hence, the axiom for get-links, discussed in Example 8.25, describes the unioning of

the pointer values p, with a base case value of ∅. Finally, the axioms for the new

commands, which also use foldval, combine the approaches of update and lookup,

to describe the addition of fresh nodes m?:∅[0] to the tree, while at the same time

collecting the node identifiers m in a variable p′.

8
.7

.
P

R
O

G
R

A
M

L
O

G
IC

1
4
2

Assign

{0 ∧ (x′ = ET)} x := ET {0 ∧ (x = x′)}

{0 ∧ (a′ = EA)} a := EA {0 ∧ (a = a′)}

{0 ∧ (p′ = EP)} p := EP {0 ∧ (p = p′)}

{x ∧ (p′ l q)} p := q {x ∧ (p = p′)}

Update

{x ∧3p} dispose-trees at p {foldn,Q((∃a, p, y. (na:p[y] I Q) · 0), x, p)}

{x ∧3p} dispose-subforests at p {foldn,Q((∃a, p, y. (na:p[y] I Q) · na:p[0]), x, p)}

{x ∧3p} dispose-links at p {foldn,Q((∃a, p, y. (na:p[y] I Q) · na:∅[y]), x, p)}

{x ∧3p} append-trees ET at p {foldn,Q((∃a, p, y. (na:p[y] I Q) · (na:p[y] | JET K)), x, p)}

{x ∧3p} append-subforests ET at p {foldn,Q((∃a, p, y. (na:p[y] I Q) · na:p[y | JET K]), x, p)}

{x ∧3p} append-links EP at p {foldn,Q((∃a, p, y. (na:p[y] I Q) · na:p∪EP
[y]), x, p)}

{x ∧3p} set-labels EA at p {foldn,Q((∃a, p, y. (na:p[y] I Q) · nEA:p[y]), x, p)}

Figure 8.6: XTU Command Axioms (1/2)

8
.7

.
P

R
O

G
R

A
M

L
O

G
IC

1
4
3

Lookup

{x ∧3p} y := get-trees at p {x ∧ foldvaly1,n,Q(∃a, p, y, y0.3na:p[y] ∧ (y1 ∈ Jna:p[y]K | y0) ∧Q(y0), y1 = 0, y, p)}

{x ∧3p} y := get-subforests at p {x ∧ foldvaly1,n,Q(∃a, p, y, y0.3na:p[y] ∧ (y1 ∈ JyK|y0) ∧Q(y0), y1 = 0, y, p)}

{x ∧3p} p′ := get-links at p {x ∧ foldvalp1,n,Q(∃a, p, y, p0.3na:p[y] ∧ (p1 = p ∪ p0) ∧Q(p0), p1 = ∅, p′, p)}

{x ∧3p} a := get-labels at p {x ∧ foldvala1,n,Q(∃a, p, y, a0.3na:p[y] ∧ (a1 = a) ∧Q(a0), a1 = ?, a, p)}

New

{x ∧3p} p′ := new-trees at p {foldvalp1,n,Q(∃a, p, y,m, p0.(p1 =p0]m) ∧ ((na:p[y]IQ(p0))·(na:p[y] |m?:∅[0])), (p1 = ∅) ∧ x, p′, p)}

{x ∧3p} p′ := new-subforests at p {foldvalp1,n,Q(∃a, p, y,m, p0.(p1 =p0]m) ∧ ((na:p[y]IQ(p0))·(na:p[y |m?:∅[0]])), (p1 = ∅) ∧ x, p′, p)}

Move* *only C = move-tree p1 to-subforest p2 shown; other move axioms similar

{x ∧ (p1 ={n1}) ∧ (p2 ={n2}) ∧ ((0 � 3n2a2:p′2
[true]) · n1a1:p′1

[true])} C {(n2a2:p′2
[y] I ((n1a1:p′1

[z] I x) · 0)) · (n2a2:p′2
[y | n1a1:p′1

[z]])}

Figure 8.6: XTU Command Axioms (2/2)

8.8. WEAKEST PRECONDITIONS 144

8.8 Weakest Preconditions

As in Chapter 6, a useful test of the logic involves giving and deriving the weakest

precondition axioms of the various commands.

Lemma 8.27 (XTU Weakest Preconditions). The weakest precondition axioms for

the atomic update commands are given in Figure 8.7. The weakest preconditions for

the control structures are the standard Hoare ones: namely

wp(C1,wp(C2, P)) for C1 ; C2

(B ∧wp(C1, P)) ∨ (¬B ∧ wp(C2, P)) for if B then C1 else C2

and the weakest Pw satisfying (¬B ∧ P) ∨ (B ∧ wp(C, Pw)) for while B do C.

The weakest preconditions of the assignment commands, including query evalu-

ation, are straightforward, corresponding to the standard Hoare assignment axiom.

The weakest preconditions of the other updates, meanwhile, exhibit a strong ‘duality’

with the non-local axioms, often resembling the latter ‘in reverse’. This is not sur-

prising: whereas the specification axioms start with an arbitrary tree x and describe

the strongest postcondition, the weakest precondition axioms start with an arbitrary

postcondition P and describe the most general precondition. Hence, the weakest

preconditions for update commands acting at a location set p, such as append and

dispose, use the fold predicate to specify that whenever it is possible to remove the

subtrees na:p′ [y] from the current tree, for each n ∈ p, and replace them by the ap-

propriate updated subtrees, then the resulting tree must satisfy the postcondition P .

Note how this uses the universal adjoint �, as opposed to the existential adjoint I

used in the specification axioms. This is important for commands such as append-

trees, since the precondition must take into account all the possible node renamings

of the appended tree. Finally, notice how the fold assertions all imply the necessary

safety precondition 3p.

The weakest preconditions for lookup and new are slightly more complicated.

Unlike those for update, these require the explicit safety property 3p. Furthermore,

they must factor in the effect of variable assignment. Hence, the preconditions for

lookup state that the postcondition P must hold for all the possible lookup values y′

that might be assigned to y. This universal quantification is particularly important in

the case of get-trees, since it is necessary to consider all the possible node-renamings of

the resulting tree. Similarly, the preconditions for new state that the postcondition P

8
.8

.
W

E
A

K
E
S
T

P
R

E
C

O
N

D
IT

IO
N

S
1
4
5

Assign

{P [ET /x]} x := ET {P}

{P [EA/a]} a := EA {P}

{P [EP/p]} p := EP {P}

{∃p′.(p′ l q) ∧ P [p′/p]} p := q {P}

Update

{foldn,Q((∃a, p, y. (0 � Q) · na:p[y]), P, p)} dispose-trees at p {P}

{foldn,Q((∃a, p, y. (na:p[0] � Q) · na:p[y]), P, p)} dispose-subforests at p {P}

{foldn,Q((∃a, p, y. (na:∅[y] � Q) · na:p[y]), P, p)} dispose-links at p {P}

{foldn,Q((∃a, p, y. ((na:p[y] | JET K) � Q) · na:p[y]), P, p)} append-trees ET at p {P}

{foldn,Q((∃a, p, y. (na:p[y | JET K] � Q) · na:p[y]), P, p)} append-subforests ET at p {P}

{foldn,Q((∃a, p, y. (na:p∪EP
[y] � Q) · na:p[y]), P, p)} append-links EP at p {P}

{foldn,Q((∃a, p, y. (nEA:p[y] � Q) · na:p[y]), P, p)} set-labels EA at p {P}

Figure 8.7: XTU Weakest Preconditions (1/2)

8
.8

.
W

E
A

K
E
S
T

P
R

E
C

O
N

D
IT

IO
N

S
1
4
6

Lookup

{3p ∧ ∀y′.(foldvaly1,n,Q(∃a, p, y, y0.3na:p[y] ∧ (y1 ∈ Jna:p[y]K|y0) ∧Q(y0), y1 = 0, y′, p)⇒ P [y′/y])} y := get-trees at p {P}

{3p ∧ ∀y′.(foldvaly1,n,Q(∃a, p, y, y0.3na:p[y] ∧ (y1 ∈ JyK|y0) ∧Q(y0), y1 = 0, y′, p)⇒ P [y′/y])} y := get-subforests at p {P}

{3p ∧ ∀p′′.(foldvalp1,n,Q(∃a, p, y, p0.3na:p[y] ∧ (p1 = p ∪ p0) ∧Q(p0), p1 = ∅, p′′, p)⇒ P [p′′/p′])} p′ := get-links at p {P}

{3p ∧ ∀a′.(foldvala1,n,Q(∃a, p, y, a0.3na:p[y] ∧ (a1 = a) ∧Q(a0), a1 = ?, a′, p)⇒ P [a′/a])} a := get-labels at p {P}

New

3p ∧ ∀p′′.

|p′′| = |p| ⇒ foldvalp1,n,Q

∃a, p, y,m, p0.(p1 =p0]m) ∧ ((na:p[y] |m?:∅[0]) �

Q(p0))·na:p[y]), (p1 = ∅) ∧ P [p′′/p′], p′′, p

p′ := new-trees at p {P}

3p ∧ ∀p′′.

|p′′| = |p| ⇒ foldvalp1,n,Q

∃a, p, y,m, p0.(p1 =p0]m) ∧ (na:p[y |m?:∅[0]] �

Q(p0))·na:p[y]), (p1 = ∅) ∧ P [p′′/p′], p′′, p

p′ := new-subforests at p {P}

only C = move-tree p1 to-subforest p2 shown; other move preconditions similar Move

{∃n1, n2.(p1 ={n1}) ∧ (p2 ={n2}) ∧ ∃a1, p
′
1, y, a2, p

′
2, z. (0 � ((n2a2:p′2

[y | n1a1:p′1
[z]] � P) · n2a2:p′2

[y])) · n1a1:p′1
[z]} C {P}

Figure 8.7: XTU Weakest Preconditions (2/2)

8.9. REASONING EXAMPLE 147

must hold for any fresh set of node identifiers of the appropriate size which is chosen

for the variable p′.

Finally, the weakest precondition for move, following the same principle, states

that the source location n1 and destination location n2 are in the tree, with the latter

not contained inside the former, and that whenever the tree at n1 is moved to n2,

the resulting tree satisfies P .

As in Chapter 6, the derivations of the weakest precondition axioms from the

individual command axioms are highly regular, and consist of applying the right con-

text assertion using the Frame Rule, and then simplifying and eliminating auxiliary

variables. For the non-local axioms, the right context assertion is simply the one

which equates the initial tree x with the tree described in the weakest precondition,

without adding any extra tree structure: that is (I∧(x�Pw)), where Pw is the part of

the weakest precondition describing the tree. In each case, the weakest precondition

axiom follows directly by the Rule of Consequence.

Lemma 8.28 (Derivability of Weakest Preconditions). The weakest preconditions in

Figure 8.7 are derivable from the command axioms in Figure 8.6.

Proof. A generic derivation is given for each command type in Figure 8.9 at the end

of the chapter. These derivations, written in the same style as the derivations in

Lemma 6.18, use z to represent variables of arbitrary type, and P�, PI, Pf and

P0 as notational shorthand for invariant parts of the appropriate axiom or weakest

precondition. Some uses of the Rule of Consequence, which are outside the scope of

the program logic and are not justified formally here, rely on induction on the fold

structure, as well as some of the general properties of formulæ explored previously in

the thesis.

8.9 Reasoning Example

Like in Chapter 6, this chapter’s exposition concludes with an example of program

reasoning. The following examples both reason about the collapse-all-links program

given in Example 8.14. The first uses backward-reasoning to derive the weakest

precondition of the program, while the second uses forward reasoning to provide a

specification for the program in the style of the command axioms.

8.9. REASONING EXAMPLE 148

Backward Reasoning

{P}

dispose-links at p

{disposel(p � P)}

append-subforests x at p

{appendsf(x, p � disposel(p � P))}

x := get-trees at p′

3p′ ∧ ∀y.(y = lookupt(p
′))⇒

appendsf(y, p � disposel(p � P))

p′ := p/link :: ∗

∃p′′. (p′′ l p/link :: ∗) ∧

3p′′ ∧ ∀y.(y = lookupt(p
′′))⇒

appendsf(y, p � disposel(p � P))

Forward Reasoning

{∃p′′. (p′′ l p/link :: ∗) ∧ z}

p′ := p/link :: ∗

{(p′ l p/link :: ∗) ∧ z}

x := get-trees at p′

(p′ l p/link :: ∗) ∧ (x = lookupt(p
′))

∧ z

append-subforests x at p

(p′ l p/link :: ∗) ∧ (x = lookupt(p
′))

∧ appendsf(x, p I z)

dispose-links at p

(x = lookupt(p
′))

∧ disposel(p I appendsf(x, p I z))

Figure 8.8: XTU Program Reasoning Example

Example 8.29 (Weakest precondition). The calculation of the weakest precondi-

tion of the collapse-all-links program of Example 8.14 is given in the left column of

Figure 8.8. For clarity, the derivation uses the following syntactic sugar for the fold

predicates used in the weakest preconditions of the constituent program commands:

x = lookupt(p) , foldvaly1,n,Q

∃a, p, y, y0.3na:p[y] ∧Q(y0) ∧

(y1 ∈ Jna:p[yy]K | y0), y1 = 0, x, p

appendsf(ET , p � P) , foldn,Q((∃a, p, y. (na:p[y | JET K] � Q) · na:p[y]), P, p)

disposel(p � P) , foldn,Q((∃a, p, y. (na:∅[y] � Q) · na:p[y]), P, p)

The weakest precondition of the program then follows immediately by applying the

weakest precondition axioms of the individual commands sequentially, starting at the

end of the program. The last condition simplifies further to:

∃p′′, y. (p′′ l p/link :: ∗) ∧ (y = lookupt(p
′′)) ∧ appendsf(y, p � disposel(p � P))

since appending trees that are equivalent modulo renaming gives the same results.

This provides a natural statement of the weakest precondition, which in turn includes

8.10. ASSESSMENT 149

the safety precondition ∃p′′.(p′′ l p/link :: ∗) stating that all the nodes in p, as well

as any links from them, must be in the tree.

Example 8.30 (Specification). The derivation of a specification for the collapse-

all-links program is given in the right column of Figure 8.8. Like in Example 8.29,

this uses syntactic sugar to represent the fold predicates in the postconditions of the

specification axioms of the constituent commands:

appendsf(ET , p I P) , foldn,Q((∃a, p, y. (na:p[y] I Q) · na:p[y | JET K]), P, p)

disposel(p I P) , foldn,Q((∃a, p, y. (na:p[y] I Q) · na:∅[y]), P, p)

with x = lookupt(p) defined as in Example 8.29. Figure 8.8 shows the result of

reasoning forwards from the command axioms, applying the Frame Rule to derive

the necessary safety preconditions, and using the Rule of Consequence to simplify the

postconditions at each step. This results in a concise specification of the program, in

exactly the same style as the individual command axioms.

8.10 Assessment

This chapter demonstrates how to reason about a complex update language using

Context Logic. As such, it is an important first step towards reasoning about update

to real semistructured data. Additionally, it raises many interesting observations

along the way, both about language design (local queries, atomic actions at multiple

locations, incorporating pointers) and program reasoning (the use of fold predicates,

non-local specifications). Nevertheless, the solution presented here is not completely

satisfactory: the resulting reasoning is very systematic but still rather complicated. A

long-term assessment of the various choices made, and a look at whether the reasoning

can be further simplified, is therefore necessary. Furthermore, the work raises a deeper

question, regarding the rôle (in particular, the necessity and/or possibility) of local

specifications in a local reasoning framework, that also need to be addressed.

The most obvious thing to do at this point would be to take a few steps back and

return to a simpler setting for a while. One option would be to try first to solve the

problem of locally specifying the move command: this involves update at multiple

locations, but not at arbitrary sets of locations as for queries, and can be expressed in

a simple language (such as the one given in Chapter 6). Another option is to explore

other approaches to complex tree update language design. For example, one could

8.10. ASSESSMENT 150

try to reason about a DOM-like language, which traverses ordered lists of locations

and manipulates them one at a time. These options, as well as other possibilities for

future work, are discussed in the following chapter.

8
.1

0
.

A
S
S
E
S
S
M

E
N

T
1
5
1

Assignments of an expression E to a variable z

{0 ∧ (z′ = E)} z := E {0 ∧ (z = z′)}
Frame

{(0 � P [z′/z]) · (0 ∧ (z′ = E))} z := E {(0 � P [z′/z]) · (0 ∧ (0 ∧ (z = z′))}
Cons

{(z′ = E) ∧ P [z′/z]} z := E {(z = z′) ∧ P [z′/z]}
Cons/Elim

{P [E/z]} z := E {P}

Query evaluation

{x ∧ (p′ l q} p := q {x ∧ (p = p′)}
Frame

{(I ∧ (x � P [p′/p])) · (x ∧ (p′ l q)} p := q {(I ∧ (x � P [p′/p])) · (x ∧ (p = p′))}
Cons

{x ∧ (p′ l q) ∧ P [p′/p]} p := q {(p = p′) ∧ P [p′/p]}
Cons/Elim

{∃p′. (p′ l q) ∧ P [p′/p]} p := q {P}

Updates at locations p

{x ∧3p} C(p) {fold(PI, x, p)}
Frame

{(I ∧ (x � fold(P�, P, p))) · (x ∧3p)} C(p) {(I ∧ (x � fold(P�, P, p))) · (fold(PI, x, p))}
Cons

{x ∧3p ∧ fold(P�, P, p)} C(p) {fold(PI, (fold(P�, P, p)), p)}
Cons/Elim

{fold(P�, P, p)} C(p) {P}

Figure 8.9: Generic Derivations of the Weakest Preconditions (1/3)

8
.1

0
.

A
S
S
E
S
S
M

E
N

T
1
5
2

Lookups assigning to variable z values at locations p

{x ∧3p} z := C(p) {x ∧ foldval(Pf , P0, z, p)}
Frame

(I ∧ (x � ∀y. (foldval(Pf , P0, y, p)⇒ P [y/z])))

· (x ∧3p)

z := C(p)

(I ∧ (x � ∀y. (foldval(Pf , P0, y, p)⇒ P [y/z])))

· (x ∧ foldval(Pf , P0, z, p))

Cons

{x ∧3p ∧ ∀y. (foldval(Pf , P0, y, p)⇒ P [y/z])} z := C(p) {foldval(Pf , P0, z, p) ∧ ∀y. (foldval(Pf , P0, y, p)⇒ P [y/z])}
Cons/Elim

{3p ∧ ∀y. (foldval(Pf , P0, y, p)⇒ P [y/z])} z := C(p) {P}

New commands assigning to variable p′ fresh nodes at locations p

{x ∧3p} p′ := C(p) {foldvalp1
(PI, (p1 =∅) ∧ x, p′, p)}

Frame

(I ∧ (x � (∀p′′.(|p′′|= |p|)⇒ foldvalp1
(P�,

(p1 =∅)∧P [p′′/p′], p′′, p)))

· (x ∧3p))

p′ := C(p)

(I ∧ (x � (∀p′′.(|p′′|= |p|)⇒ foldvalp1
(P�,

(p1 =∅)∧P [p′′/p′], p′′, p))))

· (foldvalp1
(PI, (p1 =∅) ∧ x, p′, p))

Cons

x ∧3p ∧ ∀p′′.(|p′′|= |p|)⇒

foldvalp1
(P�, (p1 =∅)∧P [p′′/p′], p′′, p)

p′ := C(p)

foldvalp1
(PI, (p1 =∅) ∧ ∀p′′.(|p′′|= |p|)⇒

foldvalp1
(P�, (p1 =∅)∧P [p′′/p′], p′′, p), p′, p)

Cons

x ∧3p ∧ ∀p′′.(|p′′|= |p|)⇒

foldvalp1
(P�, (p1 =∅)∧P [p′′/p′], p′′, p)

p′ := C(p)

foldvalp1
(PI, (p1 =∅) ∧

foldvalp1
(P�, (p1 =∅)∧P, p′, p), p′, p)

Cons/Elim

{3p ∧ ∀p′′.(|p′′|= |p|)⇒ foldvalp1
(P�, (p1 =∅)∧P [p′′/p′], p′′, p)} p′ := C(p) {P}

Figure 8.9: Generic Derivations of the Weakest Preconditions (2/3)

8
.1

0
.

A
S
S
E
S
S
M

E
N

T
1
5
3

Move: move-tree p1 to-subforest p2 shown, other move derivations similar

x ∧ (p1={n1}) ∧ (p2={n2}) ∧

((0 � 3n2a2:p
′
2

[true]) · n1a1:p′
1

[true])

C
{

(n2a2:p
′
2
[y] I ((n1a1:p′

1
[z] I x) · 0)) · (n2a2:p′

2
[y | n1a1:p′

1
[z]])

}

Frame

(I ∧ (x � ((0 � ((n2a2:p′
2

[y | n1a1:p
′
1

[z]] � P) · n2a2:p′
2

[y]))

· n1a1:p′
1

[z]))) · (x ∧ (p1={n1}) ∧ (p2={n2}) ∧

((0 � 3n2a2:p
′
2
[true]) · n1a1:p′

1
[true]))

C

(I ∧ (x � ((0 � ((n2a2:p′
2

[y | n1a1:p
′
1

[z]] � P) · n2a2:p
′
2

[y]))

· n1a1:p′
1

[z]))) ·

((n2a2:p
′
2
[y]I((n1a1:p′

1
[z]Ix) · 0)) · (n2a2:p

′
2
[y | n1a1:p

′
1
[z]]))

Cons

x ∧ (p1={n1}) ∧ (p2={n2}) ∧

((0 � 3n2a2:p′
2
[true]) · n1a1:p

′
1
[true]) ∧

(0 � ((n2a2:p
′
2

[y | n1a1:p
′
1

[z]] � P) · n2a2:p
′
2

[y])) · n1a1:p′
1

[z]

C

(n2a2:p
′
2

[y] I ((n1a1:p
′
1

[z] I

((0 � ((n2a2:p′
2
[y | n1a1:p′

1
[z]]�P) · n2a2:p

′
2
[y])) · n1a1:p

′
1
[z]))

· 0)) · (n2a2:p
′
2

[y | n1a1:p′
1

[z]])

Cons

x ∧ (p1={n1}) ∧ (p2={n2}) ∧

(0 � ((n2a2:p
′
2

[y | n1a1:p
′
1

[z]] � P) · n2a2:p
′
2

[y])) · n1a1:p′
1

[z]

C

(n2a2:p
′
2
[y] I ((n2a2:p

′
2
[y | n1a1:p′

1
[z]] � P)

· n2a2:p′
2

[y]) · (n2a2:p
′
2

[y | n1a1:p′
1

[z]]))

Cons/Elim

∃n1, n2.(p1={n1}) ∧ (p2={n2}) ∧ ∃a1, p
′
1
, y, a2, p

′
2
, z.

(0 � ((n2a2:p
′
2
[y | n1a1:p

′
1
[z]] � P) · n2a2:p

′
2
[y])) · n1a1:p′

1
[z]

C {P}

Figure 8.9: Generic Derivations of the Weakest Preconditions (3/3)

Chapter 9

Conclusion

The thesis concludes with a short summary of the main achievements of the work

presented here, followed by a discussion of a number of possible directions for future

work.

9.1 Achievements

The achievements of the thesis can be broadly split into three main points.

The first consists of the development of a novel spatial logic called Context

Logic. The logic is based on the simple idea of context application and hierarchical

(as opposed to flat) resource splitting, but is general enough to naturally describe

a wide range of inductive data structures. As such, it can be used as an expressive

description language for structures such as sequences, trees and terms, in the style

of Separation Logic and the Ambient Logic. In the thesis, the underlying theory

of Context Logic was explored (Chapter 3), various extensions were investigated

(Chapter 4), and a number of example applications were given (Chapter 5).

The second achievement involved presenting a framework for local Hoare rea-

soning about data update using Context Logic. This framework was directly based

on the local reasoning framework of Separation Logic, but extended the key ideas of

locality and the Frame Rule to hierarchical data structures. What really set it apart,

however, was the expressivity of Context Logic, which enabled a form of reasoning

about data update that was not possible using previous spatial logics such as the Am-

bient Logic. The thesis presented three examples of this type of local reasoning: for

tree update (Chapter 6), heap update (Section 7.1) and term rewriting (Section 7.2).

9.2. FUTURE WORK 155

It also raised, in Chapter 8, an interesting point concerning the link between local

specifications and local reasoning.

Finally, the third main achievement involved the successful application in Chap-

ter 8 of program reasoning to a more realistic tree update language. The language

presented there included pointers, path queries and atomic updates at multiple loca-

tions. The work was thus an important first step towards showing the feasibility of

reasoning about update to semistructured data.

9.2 Future Work

While the work presented in this thesis forms a fairly self-contained story, it also

opens up a wide range of possible future research. Below are a number of interesting

avenues that are worth pursuing.

Expressivity and decidability. Two immediate practical questions raised by the

thesis concern the expressivity and decidability properties of Context Logic; the for-

mer are useful for comparing Context Logic to other logics, the latter for assessing the

practicality of automated reasoning tools. Some work has already been done on the

expressivity of Context Logic for sequences and for trees, showing that quantifier-free

Context Logic for these structures is parametrically more expressive than a simple

BI-like logic for sequences, and the Ambient Logic for trees [CGZ07a]. The source

of this expressivity lies in the presence of the � adjoint of context application, and

the result provides a strong justification for using Context Logic to reason about tree

update. More work on expressivity remains to be done, such as looking for adjunct

elimination results for Context Logic of the type that exist for Separation Logic and

Ambient Logic. No work, meanwhile, has yet been done on decidability. Using an

argument similar to [CYO01], it is possible to show that the Context Logic models

for trees and terms with quantification are undecidable. Finding rich decidable frag-

ments and practical decision procedures is vital, however, if one wishes to implement

automatic reasoning techniques based on Context Logic similar to the ones already

present for Separation Logic.

Multi-holed contexts. Another avenue of research involves looking at possible ex-

tensions or restrictions to Context Logic, similar to the ones considered in Chapter 4,

9.2. FUTURE WORK 156

to see how it can better model structured data. While the version of Context Logic

chosen for this thesis was the simplest one necessary to reason about tree update,

observations like the ones raised in Chapter 8 about footprints suggest that different

extensions might be useful for different applications. One obvious extension is to

look for natural models of multi-holed contexts that are easy to apply in practice.

This seems particularly attractive, as it could simplify the task of reasoning about

update at multiple locations, while at the same time reducing the two structures of

Context Logic (contexts and data) to one: data can be viewed simply as zero-holed

contexts. The main difficulty, however, involves formulating context composition in

a clean and usable fashion, since the presence of multiple holes makes it necessary to

both specify the holes in which the composed contexts are placed, and identify the

holes in the resulting contexts.

Footprints. In Chapter 8, we discussed the problem of defining the memory foot-

print of tree update commands, and of providing local specifications for the commands

that only mention this footprint. In fact, giving a formal definition of footprints is

an interesting problem even in the simpler setting of Separation Logic. For example,

consider the following simple heap update program, pointed out by Yang:

C , x := new() ; dispose x ; if x = y then z := 0 else z := 1

This assigns the variable z a value that depends on the non-deterministically assigned

address of the cell x, which is dynamically allocated and then immediately disposed.

The program is local (since all its constituent commands are), and requires no specific

heap resource to execute. Hence, in one sense, its footprint is empty. However, the

behaviour of the program clearly depends on whether a cell at y is already present

in the heap during allocation, since in that case it is known that x cannot equal y

and that consequently z always gets assigned the value 1. Hence, in another sense,

the cell at y is also part of the footprint. Indeed, to locally specify the program, one

must describe its behaviour on both these ‘footprints’:

{emp} C {emp ∧ (z = 0 ∨ z = 1)}

{y 7→ y′} C {y 7→ y′ ∧ (z = 1)}

For Context Logic, the situation is still more complicated, since the hierarchical na-

ture of data also means that multiple footprints cannot be trivially combined into one.

9.2. FUTURE WORK 157

Thus, for example, a tree update command that moves the subtree at a location n1

to a location n2 clearly only affects the subtrees at these locations. To combine

these subtrees into a single footprint, however, involves describing the smallest tree

containing both n1 and n2, which might also contain a significant amount of other

unaffected data. An alternative approach which is worth investigating is to consider

the footprint to be a set containing the two subtrees, thus moving the reasoning

framework from dealing with data to dealing with sets of data. This is made more

challenging by the fact that the two subtrees may overlap.

Integrating high-level and low-level reasoning. Another interesting problem

involves trying to integrate the high-level reasoning in Context Logic with low-level

reasoning about data update in Separation Logic. This raises yet more questions

concerning footprints: for example, consider a command dispose n acting on linear

sequences (see Section 5.3) that removes the subelement n in a sequence if it is present,

and faults otherwise. This command can easily be axiomatised locally in Context

Logic, mentioning just the subelement n:

{n} dispose n {0}

At the low-level, it is possible to naturally represent sequences as doubly-linked lists:

for example, the sequence m ∗ n can be represented by the heap (m 7→ nil, n) ∗ (n 7→

m,nil) containing two cells with backwards and forwards pointers. The dispose n com-

mand, meanwhile, can be represented using the following low-level program, which

updates the pointers at the previous and subsequent cells (if they exist) before dis-

posing of n:

if [n.left] 6= nil then [n.left].right := n.right ;

if [n.right] 6= nil then [n.right].left := n.left ;

dispose n

The footprint of this implementation, however, is clearly more than just the cell at n:

it now also includes the previous and subsequent cells in the sequence. Thus, a local

specification of the command might look something like this:

{(n 1 7→n 2, n) ∗ (n7→n 1, n1) ∗ (n1 7→n, n2)} dispose n {(n 1 7→n 2, n1) ∗ (n1 7→n 1, n2)}

with additional specifications for the cases when either of the pointers is nil. This

low-level/high-level footprint disparity comes from the difference at the low-level

9.2. FUTURE WORK 158

between the representation of full sequences (when the back and forwards pointers

are nil) and subsequences (when they are not), a distinction which does not exist at

the high level.

Tree update. A particularly wide-ranging area of future work concerns tree update

in general. In Chapter 8, we successfully applied Context Logic to a semi-realistic tree

update language with queries and pointers. However, as discussed in the assessment

at the end of that chapter, there still remains much work to be done in this area,

both in terms of high-level tree update language design and in deciding how best to

reason about such languages. Furthermore, it would also be interesting to take a more

in-depth look at low-level tree update languages such as the DOM interface, to see

how Context Logic can help in specifying these formally and reasoning about them.

For example, the DOM interface is currently specified in English, and would benefit

greatly from a concise (and compositional) formal specification. However, adapting

Context Logic to DOM is not trivial, since DOM treats trees in a different way to

what we have seen so far: for one, it makes a firm distinction between trees (which

are referred to by their root node) and forests (which contain a list of such node

identifiers), and furthermore allows a collection of trees and tree fragments to inhabit

the same state space. Extending Context Logic to describe this three-level hierarchy

would be an interesting challenge, and a first step towards a better understanding of

both Context Logic and DOM.

Concurrency and distribution. An important part of future work on tree up-

date involves looking at concurrency and distribution. While a significant amount of

research has already been done on concurrent heap update using Separation Logic,

concurrent in-place update for trees has barely been explored despite its obvious ap-

plicability to web services and native XML databases. Potential work in this area

includes developing and reasoning about high-level concurrent tree update languages,

as well as looking at concurrent extensions to the DOM interface. Similarly, distribu-

tion, a natural property of data on the web, is not explicitly dealt with in the current

framework. Most current research into distribution is based on process calculi and

uses the global notion of bisimulation. It would therefore be particularly interesting

to see how distribution can coexist with local reasoning.

9.2. FUTURE WORK 159

General data update. Finally, the strong similarities observed between the dif-

ferent forms of update reasoning explored in this thesis suggest that a general theory

of local data update is possible. A first step towards this is to adapt Yang’s method

of local Hoare reasoning for arbitrary heap update commands [Yan01b] to our mod-

els of data update. A more ambitious aim is to try to develop a general notion of

local action which is independent of any specific model, and applies to arbitrary data

update, including higher-order imperative update such as in ML.

Unknown unknowns. The paragraphs above describe some of the main ‘known

unknowns’; of course, the are also many ‘unknown unknowns’ [Rum02] which will

surely be encountered along the way.

Notation Index

I identity context formula . 22

K · P context application . 22

P � P context application adjoint . 22

K � P context application adjoint . 22

fn(. . .)↓ function value defined .25

P I P existential context application dual 29

K J P existential context application dual 29

3P somewhere modality . 29

2P everywhere modality . 29

d ∼ d′ logical equivalence . 35

K ◦K context composition . 41

K −◦K context composition adjoint . 41

K ◦−K context composition adjoint . 41

0 zero data formula . 46

P ∗ P star connective .49

P ∗− P star connective adjoint . 49

P ∗− P star connective adjoint . 49

Kp projection connective . 53

P e embedding connective .53

K f projection connective dual . 56

P : K sequence concatenation . 63

E 7→ F heap points-to connective . 72

[s|x← v] overwritten store .73

t # t trees with disjoint locations . 76

n[K] tree location connective . 77

P |K tree composition connective . 77

f(P, . . .) term constructor . 82

Bibliography

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from

relations to semistructured data and XML. Morgan Kaufmann, 1999.

[ACe07] ACeDB database. Online at http://www.acedb.org/, accessed 2007.

[BBFV05a] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Adding updates to

XQuery: Semantics, optimization, and static analysis. In Proceedings

of XIME-P, 2005.

[BBFV05b] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Verification of tree

updates for optimization. In Proceedings of CAV, volume 3576 of LNCS,

pages 379–393. Springer-Verlag, 2005.

[BBTS05] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines and

higher order separation logic. In Proceedings of ESOP, volume 3444 of

LNCS, pages 233–247. Springer-Verlag, 2005.

[BCC04] M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile

agents: the calculus of boxed ambients. ACM Transactions on Pro-

gramming Languages and Systems, 26(1):57–124, 2004.

[BCDO05] J. Berdine, B. Cook, D. Distefano, and P.W. O’Hearn. Symbolic exe-

cution with separation logic. In Proceedings of APLAS, volume 3780 of

LNCS, pages 52–68. Springer-Verlag, 2005.

[BCDO06] J. Berdine, B. Cook, D. Distefano, and P.W. O’Hearn. Automatic ter-

mination proofs for programs with shape-shifting heaps. In Proceedings

of CAV, volume 4144 of LNCS, pages 386–400. Springer-Verlag, 2006.

BIBLIOGRAPHY 162

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric

general-purpose language. In Proceedings of ICFP, pages 51–63. ACM

Press, 2003.

[BCO04a] J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of

separation logic. In Proceedings of FSTTCS, volume 3328 of LNCS,

pages 97–109. Springer-Verlag, 2004.

[BCO04b] R. Bornat, C. Calcagno, and P.W. O’Hearn. Local reasoning, separation

and aliasing. In Proceedings of SPACE, 2004.

[BCO06] J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular auto-

matic assertion checking with separation logic. In Proceedings of FMCO,

volume 4111 of LNCS, pages 115–137. Springer-Verlag, 2006.

[BCOP05] R. Bornat, C. Calcagno, P.W. O’Hearn, and M. Parkinson. Permission

accounting in separation logic. In Proceedings of POPL, pages 259–270.

ACM Press, 2005.

[BCY06] R. Bornat, C. Calcagno, and H. Yang. Variables as resource in sep-

aration logic. In Proceedings of MFPS, volume 155 of ENTCS, pages

247–276. Elsevier, 2006.

[BdV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge

University Press, 2001.

[BG03] N. Biri and D. Galmiche. A separation logic for resource distribution. In

Proceedings of FSTTCS, volume 2914 of LNCS, pages 23–37. Springer-

Verlag, 2003.

[Bir05] N. Biri. Logiques spatiales de ressources, modèles d’arbres et applica-

tions. PhD thesis, Université Henri Poincaré, 2005.

[Bro04] S.D. Brookes. A semantics for concurrent separation logic. In Proceed-

ings of CONCUR, volume 3170 of LNCS, pages 16–34. Springer-Verlag,

2004.

[BTSR04] L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local reasoning about

a copying garbage collector. In Proceedings of POPL, pages 220–231.

ACM Press, 2004.

BIBLIOGRAPHY 163

[Bun97] P. Buneman. Semistructured data. In Proceedings of PODS, pages

117–121. ACM Press, 1997.

[Bur72] R. Burstall. Some techniques for proving correctness of programs which

alter data structures. In Proceedings of MIW, volume 7 of Machine

Intelligence, pages 23–50, 1972.

[Car01] L. Cardelli. Describing semistructured data. SIGMOD Record,

30(4):80–85, December 2001.

[CC02] L. Caires and L. Cardelli. A spatial logic for concurrency (part ii). In

Proceedings of ICCT, volume 2421 of LNCS, pages 209–225. Springer-

Verlag, 2002.

[CC03] L. Caires and L. Cardelli. A spatial logic for concurrency (part i).

Information and Computation, 186(2):194–235, 2003.

[CCG03] C. Calcagno, C. Cardelli, and A. Gordon. Deciding validity in a spatial

logic for trees. In Proceedings of TLDI. ACM Press, 2003.

[CDOY06] C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Beyond reach-

ability: Shape abstraction in the presence of pointer arithmetic. In

Proceedings of SAS, volume 4134 of LNCS, pages 182–203. Springer-

Verlag, 2006.

[CG00a] L. Cardelli and A.D. Gordon. Anytime, anywhere: modal logics for

mobile ambients. In Proceedings of POPL, pages 365–377. ACM Press,

2000.

[CG00b] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer

Science, 240(1):177–213, June 2000.

[CG01] L. Cardelli and A.D. Gordon. Logical properties of name restriction.

In Proceedings of CLTA, volume 2044 of LNCS, pages 46–60. Springer-

Verlag, 2001.

[CG03] L. Cardelli and A.D. Gordon. Equational properties of mobile am-

bients. Mathematical Structures in Computer Science, 13(3):371–408,

June 2003.

BIBLIOGRAPHY 164

[CG04] L. Cardelli and A.D. Gordon. TQL: a query language for semistructured

data based on the ambient logic. Mathematical Structures in Computer

Science, 14(3):285–327, June 2004.

[CG07] L. Cardelli and A.D. Gordon. Ambient logic. To appear in Mathemat-

ical Structures in Computer Science, 2007.

[CGG00] L. Cardelli, G. Ghelli, and A.D. Gordon. Types for the ambient calculus.

Information and Computation, 177(2):160–194, September 200.

[CGG02] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying

graphs. In Proceedings of ICALP, volume 2380 of LNCS, pages 597–

610. Springer-Verlag, 2002.

[CGG03a] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden

labels. In Proceedings of FOSSACS, volume 2620 of LNCS, pages 216–

232. Springer-Verlag, 2003.

[CGG03b] L. Cardelli, P. Gardner, and G. Ghelli. Querying trees with pointers.

Unpublished notes, 2003.

[CGH05] C. Calcagno, P. Gardner, and M. Hague. From separation logic to first-

order logic. In Proceedings of FOSSACS, volume 3441 of LNCS, pages

395–409. Springer-Verlag, 2005.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-

stantinou, J. Ullman, and J. Widom. The TSIMMIS project: Integra-

tion of heterogeneous information sources. In Proceedings of the 100th

Anniversary Meeting, Information Processing Society of Japan, pages

7–18, 1994.

[CGZ04] C. Calcagno, P. Gardner, and U. Zarfaty. A context logic for tree

update. In Proceedings of Workshop on Logics for Resources, Processes

and Programs (LRPP), 2004.

[CGZ05] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic & tree update.

In Proceedings of POPL, pages 271–282. ACM Press, 2005.

BIBLIOGRAPHY 165

[CGZ07a] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal logic:

Completeness and parametric inexpressivity. In Proceedings of POPL.

ACM Press, 2007.

[CGZ07b] C. Calcagno, P. Gardner, and U. Zarfaty. Local reasoning about data

update. To appear in Gordon Plotkin Festschrift, 2007.

[CM98] L. Caires and L. Monteiro. Verifiable and executable logic specifications

of concurrent objects in Lπ. In Proceedings of ESOP, volume 1381 of

LNCS, pages 42–56. Springer-Verlag, 1998.

[CMS05a] G. Conforti, D. Macedonio, and V. Sassone. Bigraphical logics for XML.

In Proceedings of SEBD, pages 392–399, 2005.

[CMS05b] G. Conforti, D. Macedonio, and V. Sassone. Spatial logics for bi-

graphs. In Proceedings of ICALP, volume 3580 of LNCS, pages 766–778.

Springer-Verlag, 2005.

[Con05] G. Conforti. Spatial Logics for Semi-Structured Resources. PhD thesis,

Università degli Studi di Pisa, 2005.

[CPR06] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety.

In Proceedings of CAV, volume 4144 of LNCS, pages 415–418. Springer-

Verlag, 2006.

[CRZ03] A.B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management: Na-

tive XML and XML-enabled Database Systems. Addison-Wesley, 2003.

[CYO01] C. Calcagno, H. Yang, and P. O’Hearn. Computability and complexity

results for a spatial assertion language for data structures. In Pro-

ceedings of FSTTCS, volume 2245 of LNCS, pages 108–119. Springer-

Verlag, 2001.

[Dal01] S. Dal Zilio. Fixed points in the ambient logic. In Proceedings of FICS,

2001.

[DGG04] A. Dawar, P. Gardner, and G. Ghelli. Adjunct elimination through

games in static ambient logic. In Proceedings of FSTTCS, volume 3328

of LNCS, pages 211–223. Springer-Verlag, 2004.

BIBLIOGRAPHY 166

[DGG07] A. Dawar, P. Gardner, and G. Ghelli. Expressiveness and complexity

of graph logic. To appear in Information and Computation, 2007.

[DLM04] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count on.

In Proceedings of POPL, pages 135–146. ACM Press, 2004.

[DOM04] DOM: Document Object Model. W3C recommendation, April 2004.

Available at http://www.w3.org/DOM/DOMTR.

[DOY06] D. Distefano, P.W. O’Hearn, and H. Yang. A local shape analysis based

on separation logic. In Proceedings of TACAS, volume 3920 of LNCS,

pages 287–302. Springer-Verlag, 2006.

[FFS07] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concur-

rent separation logic and assume-guarantee reasoning. In Proceedings

of ESOP, 2007.

[Flo67] R.W. Floyd. Assigning meaning to programs. In Proceedings of Sym-

posia in Applied Mathematics, volume 19, pages 19–32. American Math-

ematical Society, 1967.

[Gar05] P. Gardner. A note on context logic, 2005. Notes accompanying a

lecture course for the APPSEM summer school.

[GBC06] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis

with separated heap abstractions. In Proceedings of SAS, volume 4134

of LNCS, pages 240–260. Springer-Verlag, 2006.

[Gir87] J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,

January 1987.

[GR91] C.F. Goldfarb and Y. Rubinsky. The SGML handbook. OUP, 1991.

[GRS06] G. Ghelli, C. Ré, and J. Siméon. XQuery!: An XML query language

with side effects. In Proceedings of DATAX, volume 4254 of LNCS,

pages 178–191. Springer-Verlag, 2006.

[HLS02] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, expressiveness,

and decidability in the ambient logic. In Proceedings of LICS, pages

423–432. IEEE Computer Society, 2002.

BIBLIOGRAPHY 167

[Hoa69] C.A. Hoare. An axiomatic basis for computer programming. Commu-

nications of the ACM, 12(10):576–580, October 1969.

[Hoa71] C.A. Hoare. Proof of a program: Find. Communications of the ACM,

14(1):39–45, January 1971.

[HP02] H. Hosoya and B.C. Pierce. Regular expression pattern matching for

XML. Journal of Functional Programming, 13(6):961–1004, 2002. Short

version appeared in POPL 2001, pp. 67-80.

[HP03] H. Hosoya and B.C. Pierce. XDuce: A statically typed XML processing

language. ACM Transactions on Internet Technology, 3(2):117–148,

May 2003. Short version appeared in WebDB 2000, pp. 226-244.

[Hut99] G. Hutton. A tutorial on the universality and expressiveness of fold.

Journal of Functional Programming, 9(4):355–372, July 1999.

[IO01] S. Isthiaq and P.W. O’Hearn. BI as an assertion language for mutable

data structures. In Proceedings of POPL, pages 14–26. ACM Press,

2001.

[JM03] O.H. Jensen and R. Milner. Bigraphs and transitions. In Proceedings

of POPL, pages 38–49. ACM Press, 2003.

[JM04] O.H. Jensen and R. Milner. Bigraphs and mobile processes (revised).

Technical report, University of Cambridge, Computer Laboratory, 2004.

[JOW06] C. Jones, P. O’Hearn, and J. Woodcock. Verified software: A grand

challenge. Computer, 39(4):93–95, April 2006.

[Koz82] D. Kozen. Results on the propositional µ-calculus. In Proceedings of

ICALP, volume 140 of LNCS, pages 348–359. Springer-Verlag, 1982.

[Leh01] P. Lehti. Design and implementation of a data manipulation proces-

sor for an xml query processor, 2001. Technical Report, Technische

Universitat Darmstadt. Report KOM-D-149.

[Loz04a] É. Lozes. Adjuncts elimination in the static ambient logic. In Pro-

ceedings of EXPRESS, volume 96 of ENTCS, pages 51–72. Elsevier,

2004.

BIBLIOGRAPHY 168

[Loz04b] É. Lozes. Comparing the expressive power of separation logic and clas-

sical logic. Short Presentation, 2004.

[Loz05] É. Lozes. Elimination of spatial connectives in static spatial logics.

Theoretical Computer Science, 330(3):475–499, February 2005.

[LS03] F. Levi and D. Sangiorgi. Mobile safe ambients. ACM Transactions on

Programming Languages and Systems, 25(1):1–69, 2003.

[Mat03] MathML: Mathematical Markup Language. W3C recommendation,

version 2.0 (second edition), October 2003. Available at http://www.

w3.org/TR/MathML2/.

[MH69] J. McCarthy and P. Hayes. Some philosophical problems from the

standpoint of artificial intelligence. Machine Intelligence, 4:463–502,

1969.

[Mil01] R. Milner. Bigraphical reactive systems. In Proceedings of CONCUR,

volume 2154 of LNCS, pages 16–35. Springer-Verlag, 2001.

[Mil04] R. Milner. Bigraphs for petri nets. Lectures on Concurrency and Petri

Nets: Advances in Petri Nets, 3098:686–701, 2004.

[Mil06] R. Milner. Pure bigraphs: structure and dynamics. Information and

Computation, 204(1):60–122, January 2006.

[O’H04] P.W. O’Hearn. Resources, concurrency and local reasoning. In Proceed-

ings of CONCUR, volume 3170 of LNCS, pages 49–67. Springer-Verlag,

2004.

[OOX07] OpenXML Developer. Online at http://openxmldeveloper.org/, ac-

cessed 2007.

[OP99] P.W. O’Hearn and D. Pym. The logic of bunched implications. Bulletin

of Symbolic Logic, 5(2):215–244, June 1999.

[ORY01] P.W. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about pro-

grams that alter data structures. In Proceedings of CSL, volume 2142

of LNCS, pages 1–19. Springer-Verlag, 2001.

BIBLIOGRAPHY 169

[PB05] M. Parkinson and G. Bierman. Separation logic and abstraction. In

Proceedings of POPL, pages 247–258. ACM Press, 2005.

[POY04] D. Pym, P.W. O’Hearn, and H. Yang. Possible worlds and resources:

the semantics of bi. Theoretical Computer Science, 315(1):257–305, May

2004.

[PV02] I. Phillips and M. Vigliotti. On reduction semantics for the push and

pull ambient calculus. In Proceedings of IFIP, pages 550–562. Kluwer,

2002.

[Rey00] J. Reynolds. Intuitionistic reasoning about shared mutable data struc-

ture. In Proceedings of 1999 Oxford-Microsoft Symposium in Honour

of Sir Tony Hoare, pages 303–321. Palgrave Macmillan, 2000.

[Rey02] J.C. Reynolds. Separation logic: a logic for shared mutable data struc-

tures. In Proceedings of LICS, pages 55–74. IEEE Computer Society,

2002. Invited Paper.

[Rey03] J. Reynolds. A short course in separation logic, Fall 2003. BRICS

minicourse.

[Rey05] J. Reynolds. Precise, intuitionistic, and supported assertions in separa-

tion logic, 2005. Invited talk at MFPS XXI.

[Rum02] D. Rumsfeld. Defense department briefing, February 12, 2002.

[Rys02] M. Rys. Proposal for an XML data modification language (version 3),

May 2002. Microsoft Corporation, Redmond WA.

[SHS04] G. Sur, J. Hammer, and J. Simeon. An XQuery-based language for

processing updates in XML. In Proceedings of PLAN-X, 2004.

[SVG03] SVG: Scalable Vector Graphics. W3C recommendation, version 1.1,

January 2003. Available at http://www.w3.org/TR/SVG/.

[TER07] TERMINATOR: Automatic proof tools for termination & liveness.

Online at http://research.microsoft.com/TERMINATOR/, accessed

2007.

BIBLIOGRAPHY 170

[TIHW01] I. Tatarinov, Z.G. Ives, A.Y. Halevy, and D.S. Weld. Updating XML.

In Proceedings of COMAD, pages 413–424. ACM Press, 2001.

[TZH04] D. Teller, P. Zimmer, and D. Hirschkoff. Using ambients to control

resources. International Journal of Information Security, 2(3):126–144,

August 2004.

[VP06] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and sep-

aration logic. Submitted, 2006.

[WWW07] W3C: the World Wide Web consortium. Online at http://www.w3.

org/, accessed 2007.

[XHT02] XHTML: the eXtensible HyperText Markup Language. W3C recom-

mendation, version 1.0 (second edition), August 2002. Available at

http://www.w3.org/TR/xhtml1/.

[XML01] XML Schema. W3C recommendation, May 2001. Available at http:

//www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

[XML06] XML: eXtensible Markup Language. W3C recommendation, version

1.0 (fourth edition), September 2006. Available at http://www.w3.

org/TR/REC-xml/.

[XPA99] XPATH: XML Path Language. W3C recommendation, version 1.0,

November 1999. Available at http://www.w3.org/TR/xpath/.

[XQu06] XQuery Update Facility. W3C Working Draft 11, July 2006. Available

at http://www.w3.org/TR/xqupdate/.

[XQu07] XQuery: an XML Query language. W3C recommendation, version 1.0,

January 2007. Available at http://www.w3.org/TR/xquery/.

[XSL99] XSLT: XSL Transformations. W3C recommendation, version 1.0,

November 1999. Available at http://www.w3.org/TR/xslt.

[XUp00] XUpdate - XML Update Language. XML:DB initiative, working draft,

September 2000. Available at http://xmldb-org.sourceforge.net/

xupdate/.

BIBLIOGRAPHY 171

[Yan01a] H. Yang. An example of local reasoning in bi pointer logic: the schorr-

waite graph marking algorithm. In Proceedings of SPACE, 2001.

[Yan01b] H. Yang. Local programming for stateful programs. PhD thesis, Univer-

sity of Illinois at Urbana-Champaign, 2001.

[YO02] H. Yang and P.W. O’Hearn. A semantic basis for local reasoning.

In Proceedings of FOSSACS, volume 2303 of LNCS, pages 402–416.

Springer-Verlag, 2002.

[ZG06] U. Zarfaty and P. Gardner. Local reasoning about tree update. In

Proceedings of MFPS, volume 158 of ENTCS, pages 399–424. Elsevier,

2006.

