
University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, Heraklion, GR-70013, Greece

A Distributed Key-Value Store based on

Replicated LSM-Trees

Panagiotis Garefalakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

Thesis Advisor: Prof. Angelos Bilas

July 2014

This work has been performed at Computer Architecture and VLSI laboratory, Insti-
tute of Computer Science (ICS), Foundation for Research and Technology – Hellas
(FORTH), and is partially supported by the CoherentPaaS (FP7-611068) and PaaSage (FP7-
317715) EU projects.

University of Crete
Computer Science Department

A Distributed Key-Value Store based on Replicated LSM-Trees

Thesis submitted by
Panagiotis Garefalakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Panagiotis Garefalakis

Committee approvals:
Angelos Bilas
Professor, Thesis Advisor

Kostas Magoutis
Assistant Professor, Thesis Supervisor

Dimitris Plexousakis
Professor, Committee Member

Departmental approval:
Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, July 2014

Abstract

Distributed highly-available key-value stores have emerged as important build-
ing blocks for data-intensive applications. Eventually-consistent versions of such
stores have become popular due to their high availability (”always writeable”)
features; they are however unsuitable for many applications that require strong
consistency. In this thesis we describe the design and implementation of ACaZoo,
a key-value store that combines strong consistency with high performance and
high availability. ACaZoo supports the popular column-oriented data model of
Apache Cassandra and HBase. It implements strongly-consistent data replication
using primary-backup atomic broadcast of a write-ahead log, recording data muta-
tions to a Log-structured Merge Tree (LSM-Tree). ACaZoo scales by horizontally
partitioning the key space via consistent primary-key hashing over replica groups
(RGs).

LSM-Tree compactions can hamper performance, especially when they take
place at RG primaries. ACaZoo addresses this problem by changing RG leadership
prior to heavy compactions, a method that can improve throughput by up to
60% in write-intensive workloads. To further improve response time ACaZoo uses
client-side routing of requests, which is known to complicate the propagation of
configuration changes to a large and dynamic client population. We address this
problem by proposing an optimized version of ZooKeeper that can load-balance
issuing of change notifications across its servers. We evaluate ACaZoo using the
Yahoo Cloud Serving Benchmark (YCSB) and compare it to Oracle’s NoSQL
Database and to Cassandra providing serial consistency via an extension of the
Paxos algorithm. We further evaluate application performance using CassMail, a
scalable e-mail service, over both ACaZoo and Cassandra.

Περίληψη

Τα τελευταία χρόνια, τα κατανεμημένα συστήματα αποθήκευσης τα οποία προ-

σφέρουν υψηλή διαθεσιμότητα αποτελούν αναπόσπαστο κομμάτι εφαρμογών που επε-

ξεργάζονται μεγάλο όγκο δεδομένων. Εκδόσεις των εν λόγω συστημάτων αποθήκευ-

σης που προσφέρουν χαλαρή συνέπεια δεδομένων έχουν γίνει δημοφιλείς λόγω της

υψηλής διαθεσιμότητας τους, είναι όμως ακατάλληλες για εφαρμογές που απαιτούν

ισχυρή συνέπεια. Στην εργασία αυτή περιγράφουμε το σχεδιασμό και την υλοποίηση

του ACaZoo, ενός συστήματος αποθήκευσης δεδομένων που συνδυάζει ισχυρή συ-
νέπεια με υψηλή απόδοση και διαθεσιμότητα. Το ACaZoo υποστηρίζει το δημοφιλές
μοντέλο δεδομένων των Apache Casasandra και HBase και υλοποιεί συνεπή ομοιο-
τυπία δεδομένων (data replication) χρησιμοποιώντας πρωτόκολλα της οικογένειας
Paxos καταγράφοντας τις αλλαγές δεδομένων που γίνονται σε ένα LSM-Tree. Το
ACaZoo κλιμακώνεται χρησιμοποιώντας όλες τις διαθέσιμες ομάδες αντιγράφων (Ο-
Α) και κατανέμει τα δεδομένα στις ΟΑ με βάση το πρωτεύων κλειδί.

Η συγχώνευση δεδομένων στα LSM-Trees μπορεί να μειώσει δραστικά την α-
πόδοση του συστήματος όταν λαμβάνει χώρα στον αρχηγό μιας ΟΑ. Το ACaZoo
αντιμετωπίζει αυτό το πρόβλημα εκλέγοντας νέο αρχηγό πριν από κάθε τέτοια λει-

τουργία, μια μέθοδος που μπορεί να βελτιώσει την απόδοση έως και 60%. Για την

περαιτέρω βελτίωση του χρόνου απόκρισης το ACaZoo δρομολογεί τις αιτήσεις από
την πλευρά του πελάτη, μια διαδικασία η οποία μπορεί να καθυστερήσει την διάδοση

των αλλαγών σε ένα μεγάλο και δυναμικό πληθυσμό πελατών. Αντιμετωπίσαμε αυτό

το πρόβλημα προτείνοντας μια βελτιστοποιημένη έκδοση του συστήματος Zookeeper
που κατανέμει ισότιμα τους πελάτες στους διακομιστές του. Για την πειραματική μας

μελέτη χρησιμοποιήσαμε το Yahoo Cloud Serving Benchmark (YCSB) και συγκρίνα-
με την απόδοση του συστήματος μας με τα συστήματα NoSQL Oracle Database και
Apache Cassandra. Τέλος μελετήσαμε την απόδοση του CassMail, ενός κλιμακώσι-
μου e-mail service, χρησιμοποιώντας το Casssandra και το ACaZoo.

Acknowledgements

I would like to thank all the people that influenced me during this wonderful
journey.

First of all my supervisor Prof. Kostas Magoutis, for his continuous support
in my work and studies, for giving me the chances he did, and most importantly
for showing me the right path through critical thinking and hard work. Also the
remaining members of my committee, Angelos Bilas and Dimitris Plexousakis for
the valuable comments and questions during my defence.

Next I would like to thank Institute of Computer Science (ICS), Foundation
of Research and Technology – Hellas (FORTH) and more specifically Computer
Architecture and VLSI (CARV) laboratory for the support during both my un-
dergraduate and graduate studies.

My best thanks to my friends and colleagues Antonis Papadogiannakis, Giorgos
Vasiliadis, Antonis Krithinakis, Lazaros Koromilas, Thanasis Petsas, Damianos
Metalidis, Christos Papoulas, Laertis Loutsis and Evangelos Ladakis for making
the lab a fun and interesting place.

I would like to express my appreciation to Panagiotis Papadopoulos for his
team spirit and his excellent cooperation in DAIS’13 and SRDS’14 papers.

Last but not least I am more than grateful to my parents Georgia and Giannis
and my sister Eirini for their endless love, support and encouragement through my
studies and my life in general. I wouldn’t have made it this far without you..

This work has been performed at Computer Architecture and VLSI labora-
tory, Institute of Computer Science (ICS), Foundation for Research and
Technology – Hellas (FORTH), and is partially supported by the Coherent-
PaaS (FP7-611068) and PaaSage (FP7-317715) EU projects.

An early report of this work appeared in the proceedings of the 13th International
IFIP Conference on Distributed Applications and Interoperable Systems (DAIS
2013), June 2013 [1] and a later report will appear in the proceedings of the 33rd
IEEE Symposium on Reliable Distributed Systems (SRDS 2014), October 2014 [2].

Contents

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Thesis Organization . 3

2 Background 5

2.1 Replication . 5

2.2 A primary-backup replication system 7

2.3 NoSQL Systems . 8

2.4 LSM Trees . 11

2.4.1 Write Requests . 11

2.4.2 Read Requests . 12

2.4.3 Compactions . 13

2.5 Consistency . 13

3 Related Work 17

4 System Design 19

4.1 ACaZoo architecture . 19

4.2 ACaZoo replication . 20

4.3 RG leadership change . 21

4.4 Load balancing client notifications 21

5 Implementation 23

5.1 ACaZoo . 23

5.2 Client-coordinated I/O and configuration management 26

5.3 Dynamic load balancing requests 27

5.4 ZooKeeper data path and optimizations 28

6 Evaluation 31

6.1 Performance impact of LSM-tree compactions 32

6.2 Performance of a 3 node replication group 34

6.3 Performance of a 5 node replication group 35

6.4 Timing of compactions across replicas 37

6.5 Timing of garbage collections across replicas 38

I

6.6 Availability of RG under leader failure 38
6.7 Load balancing notifications . 40
6.8 Application performance . 42
6.9 Impact of client-coordinated I/O 44

7 Future Work 45

8 Conclusions 47

II

List of Figures

2.1 Replication strategies . 6
2.2 ZooKeeper . 7
2.3 Partitioning and replication of keys in Dynamo and Cassandra [3] . 10
2.4 Column data model used in systems such as BigtTable, Cassandra

and ACaZoo . 11
2.5 Schematic picture of an LSM-tree of two components [4] 12
2.6 Schematic picture of an LSM-tree compaction [4] 13
2.7 Paxos Basic [5] . 15
2.8 Paxos with commit and current value read [5] 16

4.1 The ACaZoo architecture . 19
4.2 ZAB-based replication of Cassandra’s write-ahead log 20

5.1 System components and their interactions 24
5.2 ACaZoo storage server . 25
5.3 ZooKeeper data path . 28

6.1 Cassandra schema designed for CassMail [6] 32
6.2 CassMail system design [6] . 33
6.3 . 34
6.4 Openstack - 3 nodes Replication Group 35
6.5 Openstack - 5 nodes Replication Group 37
6.6 ACaZoo compaction behaviour under different replication groups

(RG) (a) 3 nodes RG (b) 5 nodes RG (c) 7 nodes RG 39
6.7 ACaZoo garbage collection behaviour under different replication

groups (RG) (a) 3 nodes RG (b) 5 nodes RG (c) 7 nodes RG . . . 40
6.8 YCSB throughput of ACaZoo under leader failure 41
6.9 YCSB throughput of Oracle NoSQL under leader failure 41
6.10 Client notification latency from ZooKeeper 42
6.11 CassMail: 3 Node Replication Group 43
6.12 CassMail: 5 Node Replication Group 43

III

IV

Chapter 1

Introduction

The ability to perform large-scale data analytics over large data sets has in the
past decade proved to be a competitive advantage in a wide range of industries
(retail, telecom, defence, etc.). In response to this trend, the research community
and the IT industry have proposed a number of platforms to facilitate large-scale
data analytics. Such platforms include a new class of databases, often referred to
as NoSQL data stores, which trade the expressive power and strong semantics of
long established SQL databases for the specialization, scalability, high availability,
and often relaxed consistency of their simpler designs.

Companies such as Amazon [3] and Google [7] and open-source communities
such as Apache [8] have adopted and advanced this trend. Many of these sys-
tems achieve availability and fault-tolerance through data replication. Google’s
BigTable [7] is an early approach that helped define the space of NoSQL key-value
data stores. Amazon’s Dynamo [3] is another approach that offers an eventu-
ally consistent replication mechanism with tunable consistency levels. Dynamo’s
open-source variants Cassandra [8] and Voldemort [9] combine Dynamo’s consis-
tency mechanisms with a BigTable-like data schema. These systems use consistent
hashing to ensure a good distribution of key ranges (data partitions, or shards) to
storage nodes. The applications of key-value stores include email systems [6], file
systems [10] and data analysis [11].

Eventual consistency works well for applications that have relaxed semantics
(such as maintaining customer carts in online stores [3]) but is not an option for a
broad spectrum of applications that require strong consistency. When embarking
on the ACaZoo project we decided to target strongly-consistent sharded data-
intensive applications, a large and growing class of applications. One of our design
goals for ACaZoo was to use a standard data model and cross-platform API. We
thus opted for the Apache Cassandra/HBase column-oriented data model and
the Cassandra Thrift-based API. Another design goal was to use a consistent-
hashing based scheme for shard partitioning due to its simple implementation and
lack of a centralized metadata service. Finally, we wanted to leverage a Log-
structured Merge (LSM)-Tree [4] based storage backend due to its benefits over

1

2 CHAPTER 1. INTRODUCTION

B+-tree organized schemes in organizing local storage, combined with a consistent
replication scheme.

LSM-Trees is a particularly attractive indexing scheme used in a variety of sys-
tems (Bigtable [7], HBase [12], Cassandra [8], Hyperdex [13], PNUTS [14], etc.).
In ACaZoo we decided to combine LSM-Trees with a strongly-consistent primary-
backup (PB) scheme (ZAB [15], also found at the core of Apache ZooKeeper). A
well known limitation of primary-backup schemes however is the requirement to
go through a single master of the replica group (RG) for both read and write oper-
ations. Besides being a scalability limitation (which can be addressed by sharding
over several RGs), performance can be hampered at times by periodic background
activity at the master. Implementations of LSM-Trees are prone to such a chal-
lenge, especially under write-intensive workloads, as compaction operations aiming
to merge data files into a smaller set drain server CPU and I/O resources.

In this thesis we propose a solution to this problem that leverages the fact that
compaction schedules of the nodes in a RG usually have little overlap (we exper-
imentally validated this claim but could also enforce it if needed). Our solution
ensures that the RG master is never a node that undergoes significant compaction
activity. We achieve this by forcing a reconfiguration of an RG when the master
is about to start a heavy compaction. Finally our solution ensures that the im-
pact of reconfigurations on overall performance is low. This is achieved by rapidly
propagating the change to clients, piggybacked as responses to standard RPCs.
Our experiments show that compaction activity at the master hurts performance
and that compaction-aware RG reconfiguration policies can lead to a significant
performance improvement.

In ACaZoo we also apply an orthogonal optimization, client-coordination of
I/O requests, as a means of reducing response time and relieving servers from
forwarding I/O traffic. This method has been investigated and has been shown to
provide benefits in previous systems (Amazon Dynamo [3] and Petal [16] are but a
few of them). The drawback of this scheme is the need to rapidly update a large and
potentially dynamic client population. Configuration services such as ZooKeeper
and Chubby can fill this need, operating in either pull (clients call into the service)
or push (service notifies clients) mode. The push mode is expected to result in lower
response time, however the service should be able to efficiently handle the load of
notifying a large client base. While solutions such as a DNS frontend can load
balance notification requests (also termed watch events), client churn may result
into an unbalanced system (where some servers have many more notifications to
perform compared to others). In this thesis we experimentally demonstrate that a
well balanced ZooKeeper cell can result in 42% better notification response time
compared to an unbalanced system and sketch an algorithm with which ZooKeeper
can internally load balance client requests (obviating the need for a DNS frontend).

1.1. THESIS CONTRIBUTIONS 3

1.1 Thesis Contributions

In this thesis, we make the following main contributions:

• A high-performance data replication primitive combining the ZAB [17] pro-
tocol with a single-node implementation of LSM-Trees [4]; while in principle
similar to previous data replication approaches such as SMARTER [18] and
BookKeeper [19], ACaZoo combines log replication with checkpointing using
LSM-Trees [4] and addresses the associated challenges.

• A novel technique that addresses the impact of LSM-Tree compactions on
write performance by forcing reconfigurations of RGs, changing leadership
prior to heavy compactions at the master. Our experiments show that this
technique can improve throughput by up to 60% in write-intensive workloads.

• A dynamic load balancing technique for client notification across ZooKeeper
replicas. This technique is shown to be an effective solution improving re-
sponse time up to 42% in large populations of clients and also scalable with
larger ZooKeeper replica groups.

1.2 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2 and we provide back-
ground and in Chapter 3 we relate ACaZoo to other work in the field. In Chapter 4
we describe the overall design and in Chapter 5 we provide details of our imple-
mentation. In Chapter 6 we present the results of our system evaluation. and in
Chapter 7 directions of ongoing and future work. Finally in Chapter 8 we conclude.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Replication

Large-scale distributed storage systems usually built over failure-prone commodity
components. Failures are quite common in those systems, and replication is often
the solution to data reliability and high availability. The main approaches for im-
plementing replication are: state machine replication [20], primary backup [21],
process-pairs [22] and quorum systems [23]. A variety of configuration man-
agement systems based on the replicated state machine approach have recently
emerged. These systems use distributed consensus algorithms such as Paxos at
the core [24, 25]. Systems such as Petal [16] and Niobe [26] also use Paxos im-
plementations for maintaining configuration information while other systems such
as Chubby [27] Oracle NoSQL [28] and Apache Cassandra [8] use Paxos as an
underlying technology mainly used for locks, leases and leader elections. Apache
ZooKeeper [19] is another practical example of a system built on a Paxos-like dis-
tributed protocol. Like Chubby, ZooKeeper exposes a file-system like API and
is frequently used for leader election, locks, cluster membership services, service
discovery and assigning ownership to partitions in distributed systems.

State machine replication, Figure 2.1(a), also known as active replication, is a
general protocol for replication management that has no centralized control. Active
Replication was first introduced by Leslie Lamport [25]. State machine replication
requires that the process hosted by the servers is deterministic. Deterministic
means that, given the same initial state and a request sequence, all processes will
produce the same response sequence and end up in the same final state. In order to
make all the servers receive the same sequence of operations, an atomic broadcast
protocol must be used. An atomic broadcast protocol guarantees that either all
the servers receive a message or none, plus that they all receive messages in the
same order. From the client point of view, all correct replicas should appear having
the same state.

Another approach is the primary-backup approach, Figure 2.1(b), also known
as passive replication. In this approach one server is designated as the primary (or

5

6 CHAPTER 2. BACKGROUND

Client

process

state

Server

process

state

Server

process

state

Server

Active Replication

(a) Active Replication

Client

process

Server

process

state

Server

process

state

Server

Passive Replication

state

(b) Passive Replication

Figure 2.1: Replication strategies

leader), while all the others are backups (or followers). After processing a request,
the primary server updates the state on the other (backup) servers and sends back
the response to the client. If the primary server fails, one of the backup servers
takes its place (also termed fail-over). This scheme ensures linearizability due to
the order in which the primary receives invocations defines the order for all servers.
The acknowledgement sent by the backups and awaited by the primary ensures
request atomicity. Unlike state machine replication, primary-backup replication
does not waste extra resources through redundant processing, and permits non-
deterministic operations. However, responses will be delayed by the failure of the
primary. Furthermore, primary-backup replication requires additional application
support for the primary to update the state of the other copies.

Another important method for achieving replication is process pairs. One of the
systems first used this method is Tandem [22] which could tolerate partial failures
with the advantage of hiding any failure events from the clients. Process pairs
in general consist of two identical processes that run independently and maintain
identical state. When one of these processes fail the other one continues processing
requests providing the illusion that the service never fails.

Finally quorum systems offer another alternative of replicating data, ensuring
consistency under network partitions. They were firstly introduced by Gifford [23]
who demonstrated an algorithm for storing data in multiple hosts using votes.
Each copy of a replicated data item is assigned a vote. Each operation then has
to obtain a read quorum R or a write quorum W to read or write a data item. If
a given data item has a total of V votes, the quorums have to follow the rules:

R + W > V (2.1)

2.2. A PRIMARY-BACKUP REPLICATION SYSTEM 7

W > V/2 (2.2)

Rule 2.1 ensures that a data item is not read and written by two transactions
concurrently. Rule 2.2 ensures that two write operations on the same data item
from two transactions cannot occur concurrently.

2.2 A primary-backup replication system

In this section we will describe an instance of a primary-backup implementation we
used in this thesis, Zookeeper [19]. Zookeeper implements a hierarchical namespace
of fixed-size objects (referred to as znodes) accessed via a filesystem-like API.
The Zookeeper namespace is organized as a hash-table memory structure kept
consistent across a set of servers called Quorum Peers (QPs). The set of QPs
is referred to as a cell. A cell is organized as a single leader and number of
followers as shown in Figure 2.2. Each request (otherwise known as a proposal)
towards a znode corresponds to a transaction with a specific ID (referred to as a
zxid) eventually committed into a Commit Log. Consistency is achieved via the
ZAB atomic-broadcast protocol [17] a variation of Paxos algorithm. Similar to
Paxos, ZAB consists of two parts; the broadcast protocol executed by the leader
guaranteeing sequential consistency semantics and an atomicity protocol ensuring
that there is only one message per proposal number simplifying message recovery.
The fundamental difference between Paxos and ZAB is that the former is designed
for state machine replication while the latter for primary-backup systems. In state-
machine replication, replicas must agree on the execution order of client requests,

Figure 2.2: ZooKeeper

8 CHAPTER 2. BACKGROUND

even if these requests are submitted concurrently by clients and received in different
orders by the replicas, for example request A must always be applied before B.
This is achieved by Paxos. On the other hand with ZAB replicas can concurrently
agree on the order of multiple state updates without harming correctness, for
example request C can be applied before B. This is achieved by adding one more
synchronization phase during recovery compared to Paxos, and by using a different
numbering of instances based on zxids as described by F. Zunqueira et al [17].
Znodes do not map to persistent locations on disk. Instead, the entire namespace
is periodically serialized and snapshotted to disk. Zookeeper can thus recover
znode state by loading the most recent snapshot and running its commit log, up
to the most recent committed transaction. The total amount of data Zookeeper
can store is bounded by the physical memory of the least-provisioned node in the
system.

The leader is connected to each follower through direct FIFO channels (imple-
mented as TCP streams) in a tree pattern. TCP connections between QPs in the
chain are persistent across proposals. Each leader receives proposals from clients,
moves them out of sockets, forwards them to all followers and then writes them
to disk. Upon receiving a proposal, a follower writes it to disk and then acknowl-
edges with the leader. The leader commits a proposal and responds successfully
to clients only after it has received ACKs from a majority of followers. To avoid
overload the leader uses an application-level flow control protocol (i.e., stop re-
ceiving data from TCP sockets) to throttle clients when the queue of outstanding
(not yet committed) proposals exceeds a configurable threshold. A group commit
protocol comes into action to avoid the cost of flushing dirty buffers to disk at
each operation.

2.3 NoSQL Systems

The development of the Internet and cloud computing made access to data easier
than ever. Services access and capture data through third parties such as Face-
book, Google and others. Such services need to process that large amount of
data effectively creating a new need which SQL databases were never designed for.
NoSQL is increasingly considered a viable alternative to relational databases when
there is the need for big data and real-time web applications. A NoSQL or Not
Only SQL database provides a mechanism for storage and retrieval of data that is
modelled differently than the tabular relations used in relational databases. Moti-
vations for this approach include simplicity of design, horizontal scaling and finer
control over availability. By design, NoSQL databases and management systems
are schema-less. They are not based on a single model, like a relational model,
and each database, depending on their target-functionality, adopts a different one.
There is a variety of operational models for NoSQL databases. Nevertheless a
basic classification based on the data model is listed below with the most popular
examples in each category:

2.3. NOSQL SYSTEMS 9

• Key/Value: In key-value-store category of NoSQL database, a user can store
data in schema-less way. A key may be strings, hashes, lists, sets, sorted
sets and values are stored against these keys. Popular systems: Dynamo [3],
Redis [29]

• Column: A column is a key value pair, where the key is an identifier and
the value contains values related to the key (identifier). Popular systems:
Cassandra [8], HBase [12]

• Document : Data is stored as documents which can be variable in terms
of structure (JSON, XML and others). Popular systems: MongoDB [30],
Couchbase [31]

• Graph: Data is stored as a collection of nodes, where nodes are analogous
to objects in a programming language. Nodes are connected using edges.
Popular systems: OrientDb [32], Neo4j [33]

Column based data stores are extremely powerful and they can be reliably
used to keep important data of very large sizes. We chose to implement our work
in Apache Cassandra, which is a Dynamo-based distributed data store replicating
data using a combination of the approaches described in 2.1. Cassandra uses the
peer to peer distribution model ensuring that there is no single point of failure and
every node’s functionality in the cluster is identical. Concerning the distribution
model, inherited from Amazon’s Dynamo [3], nodes in the cluster can be consid-
ered to be located in a ring. Nodes partition the data based on the row key. Each
Cassandra node is assigned a unique token that determines what keys it is respon-
sible for. Based on the replication factor one or more nodes can be responsible for
each token and we can find them by walking the ring clockwise. For example in
Figure 2.3, node B replicates the key K at nodes C and D in addition to storing it
locally (replication factor = 3). Node C will store the keys that fall in the ranges
(G, A], (A, B], and (B, C], and node D will store the keys that fall in the ranges
(A, B], (B, C], and (C, D].

10 CHAPTER 2. BACKGROUND

Figure 2.3: Partitioning and replication of keys in Dynamo and Cassandra [3]

Inspired by BigTable [7] Cassandra’s data model is a schema-optional, column-
oriented data model. This means that, unlike a relational database, you do not
need to model all of the columns required by an application up front, as each
row is not required to have the same set of columns. Columns can be added
by an application at runtime. In Cassandra, the keyspace is the container for
application’s data, similar to a database or schema in a relational database. Inside
the keyspace there are one or more column family objects, which are analogous to
tables. Column families contain columns and a set of related columns is identified
by a row key. In each row data are stored in the basic storage unit which is a cell.
Cassandra similar to Bigtable allows multiple timestamp versions of data within a
cell. A cell can be addressed by its’ row-key, column familyname, Column qualifier
and the version as shown in Figure 2.4. At the physical level, data are stored per
column family contiguously on disk sorted by row-key, column name and version
(column oriented data model).

2.4. LSM TREES 11

A18-v1

XYZ18-v2

cf2:col2-XYZ

B18-v3 foobar18-v1

 row-6

cf1:col-B cf2:foobar

row-5

Foo18-v1

cf2:col-Foo

row-2

row-7

row-1

cf1:col-A

 row-10

row-18 A18 - v1

Column Family 1 Column Family 2

Coordinates for a Cell: Row Key Column Family Name Column Qualifier Version

B18 - v3

Peter - v2

Bob - v1

Foo18 - v1

XYZ18 - v2

Mary - v1

foobar18 - v1

CF Prefix

Figure 2.4: Column data model used in systems such as BigtTable, Cassandra and
ACaZoo

2.4 LSM Trees

Cassandra uses the LSM-tree data structure as its storage back-end. LSM-tree
offers faster insertion performance than B+-tree variants and it is also the choice
of other systems such as HBase [12], BigTable [7] and Hypertable [34]. LSM-
tree is actually a collection of two or more tree-like components but it is being
treated as a single key-value store. In a two component LSM-tree as shown in
Figure 2.5, a smaller component will be entirely memory resident, the C0 tree, and
a larger component will reside on disk, the C1 tree. Despite being disk resident,
frequently referenced pages from C1 will remain in cache and as a result they can
be considered in memory. When a new row is inserted, a log record to recover this
insert is first written to the sequential log file (CommitLog). Then an index entry
for that row is inserted into C0 tree, in memory, after which it will eventually
migrate to C1 tree, on disk. Inserting data is done sequentially in the append only
LSM-tree and this is the main reason writes are performing that fast.

2.4.1 Write Requests

When a record is being inserted into the LSM-tree, it will first enter the C0 in-
memory tree, then with the merge process will eventually be shifted to Ck as
depicted in Figure 2.6. In Cassandra more specifically, writes are first written to
the CommitLog structure which is append only, then they are batched in memory,

12 CHAPTER 2. BACKGROUND

Figure 2.5: Schematic picture of an LSM-tree of two components [4]

to a structure called Memtable, and they are periodically written to disk to a per-
sistent table structure called SSTable (Sorted String Table), an implementation of
LSM-trees. Memtables and SSTables are maintained per column family. Memta-
bles are organized in sorted order by row key and flushed to SSTables sequentially,
resulting to sequential seeking while relational databases perform random seeking.
SSTables are immutable meaning that they can not be modified after they have
been flushed. This means that a row is typically stored across multiple SSTable
files.

Cassandra allows configuring CommitLog to be synchronized periodically, by
default every 10 seconds, with the potential cost of losing some data in case of a
crash. Alternatively the batch mode, which is fully durable, can be selected. In this
mode Cassandra guarantees that it synchronizes CommitLog before acknowledging
writes by fsyncing it to disk. In batch mode the system waits for other writes for
a period based on the configuration before performing the sync. Batch mode
durability comes with additional I/O overhead causing noticeable performance
drop. As a result in batch mode it is recommended to store CommitLog in a
separate device to reduce the I/O cost.

2.4.2 Read Requests

Whenever a read request is received, the system will first search the Memtable by
its row key to see if it contains the data. If not, it will look at the on-disk SSTable
to see if the row-key is there. This technique is called ”merged read” as the system
needs to look at multiple places for the data. To optimize this process, Cassandra
uses an in-memory structure called a bloom filter. Each SSTable has a bloom filter
associated with it. The bloom filter is used to check if a requested row key exists
in the SSTable before performing any disk seeks.

2.5. CONSISTENCY 13

Figure 2.6: Schematic picture of an LSM-tree compaction [4]

2.4.3 Compactions

To improve read performance and save disk space, Cassandra periodically merges
SSTables into larger SSTables using a background process called compaction. Com-
paction merges same rows together. Since the SSTables are sorted by row key, this
merge does not require random disk I/O but it is still a time and resource con-
suming operation. There are two types of compactions, minor and major which do
not differ in functionality, but rather in purpose. A minor compaction is when the
merging occurs to bound the number or size of SSTables on storage. A major com-
paction operates similarly to a minor compaction except that it is scheduled to run
periodically and is intended to ensure that all SSTables are eventually compacted
within a set time-period.

2.5 Consistency

Inherited by distributed systems, NoSQL systems follow the same basic principles
with the most fundamental defined by the CAP theorem. The CAP theorem,
or Brewer’s theorem [35] states that out of consistency, availability and partition
tolerance, it is possible for a system to simultaneously provide only two of these
three guarantees. Cassandra is designed for availability, partition tolerance there-
fore is offering weaker consistency, also termed as eventual consistency. Eventual
consistency guarantees that if no further updates occur, eventually the system will
become consistent. While many applications can tolerate a small delay in which a
newly updated value may be inconsistent, eventual consistency does not provide
any bound on this delay.

Similar to Dynamo, in Cassandra each key is randomly assigned to N repli-
cas depending on the replication factor. Every write to the key is sent to all N
replicas. When the coordinator issuing the write receives acknowledgements from
W replicas, it sends an acknowledgement to the client application. The rest of the
N replicas receive the write asynchronously in the background. We consider a
read to be consistent only when it returns the latest value for which W acknowl-
edgements have been received. Cassandra offers a number of different consistency
levels with ANY being the lowest consistency with the highest availability, and

14 CHAPTER 2. BACKGROUND

ALL being the highest consistency but with the cost of the lowest availability.
QUORUM is an other alternative ensuring consistency, but still tolerating some
level of failure. A quorum is calculated as: (replication factor / 2) + 1 , rounded
to a whole number. Consistency levels in Cassandra can be selected per query
basis.

Sometimes though, even the highest consistency defined in Cassandra is not
enough for some applications. These applications require one request to be per-
formed at a time and make sure when we run concurrent queries that we will get the
same results as if they were really processed independently. This property is called
linearizable consistency. This feature was recently introduced in Cassandra version
2.0 under the name Lightweight Transactions, also termed Serial Consistency, and
it was implemented using an extension of Paxos algorithm. First I will explain the
basic Paxos algorithm and then I will introduce Lightweight Transactions through
an extension of the basic algorithm.

The protocol depicted in Figure 2.7 is the core algorithm of Paxos. Each in-
stance of the basic Paxos protocol decides on a single value. The protocol proceeds
over several rounds. A successful round has two phases.

In phase one a Leader, also termed as Proposer, creates a proposal identified
with a ballot number B. This number must be greater than any previous proposal
number used by this Leader. Then, the Leader sends a Prepare message containing
this proposal to a quorum of Replicas (also knows as Acceptors). If the proposal’s
number B is higher than any previous proposal number received, they return a
promise to ignore all future proposals having a number less than B.

In the second phase, if a quorum of Replicas promise to accept the leader’s
proposal, the Leader may proceed to the actual proposal of a specific value. If a
Replica receives an accept request message for a proposal B, it must accept it only
if and only if it has not already promised to consider proposals having an identifier
greater than B. In this case, it should store the corresponding value and send back
an accept message to the Leader.

In distributed systems one way to achieve linearizable consistency using Paxos
is by routing all requests through a single master (Leader), similar to primary-
backup systems. Although in a fully distributed master-less system like Cassandra,
it is less obvious.

Paxos gives us the ability to agree on exactly one proposal. After one has been
accepted, it will be returned to future leaders in the promise, and the new Leader
will have to re-propose it again. In the extension of the Paxos algorithm depicted
in Figure 2.8 there is a proposed a way to “reset” the Paxos state for the future
proposals (one Leader per proposal). In order to achieve that and finally move
the accepted values into Cassandra storage, a third phase of commit/acknowledges
was added to the algorithm. As this functionality was exposed as a compare-
and-set operation, there was a forth phase added to the algorithm reading the
current value of the row from all Replicas checking if it matches the expected one
read/results. This is how linearizability consistency was implemented in Cassandra
2.0 also paying the hight price of four round trips per (linearizable) operation.

2.5. CONSISTENCY 15

Figure 2.7: Paxos Basic [5]

The problem of providing strong consistency without sacrificing availability and
partitioning tolerance is orthogonal and open to different solutions. For example
the solution Cassandra adopted comes with the high price of four round trips per
write operation which means higher response time to the clients. The approach
we adopted in ACaZoo has the benefit that it extends an already popular and
widely used system, Cassandra and provides a simple solution using a very well
known primary backup system, Zookeeper [17]. Existing implementations of LSM-
Trees such as Cassandra are prone to compaction operations, which drain server
CPU and I/O resources. In our system we propose a solution to this problem
that leverages the primary backup replication scheme and ensures that the RG
master is never a node that undergoes significant compaction activity. Finally
in ACaZoo we apply another optimization by client-coordinating I/O requests,
reducing response time and relieving configuration servers from forwarding I/O
traffic. We also demonstrate the benefit of a load balanced configuration service
resulting to better response time compared to an unbalanced one.

16 CHAPTER 2. BACKGROUND

Figure 2.8: Paxos with commit and current value read [5]

Chapter 3

Related Work

Our system is related to several existing distributed NoSQL key-vale stores [3,
7, 8] implementing a wide range of semantics, some of them using the Paxos
algorithm [36] as a building block [27, 16, 26]. Most NoSQL systems rely on some
form of relaxed consistency to maintain data replicas and reserve Paxos to the
implementation of a global state module [16, 26] for storing infrequently updated
configuration metadata or to provide a distributed lock service [27]. Exposing
storage metadata information to clients has been proposed in the past [3, 16, 28],
although the scalability of updates to that state has been a challenge.

There have recently been several approaches to high performance replication
within a local area network environment (a datacenter). SMARTER [18] imple-
ments a highly-available data store using an optimized Paxos-based replicated state
machine and has demonstrated performance close to the hardware limits and 12%-
69% better than primary-backup versions. SMARTER replicates a periodically-
checkpointed stream store whereas ACaZoo’s storage backend and checkpointing
mechanism is based on Cassandra’s implementation of LSM Trees [4]. Cassan-
dra recently (as of version 2.0) implemented a linearizable consistency mode using
an extension of the Paxos protocol to reach consensus at each insert or update
request [5]. As is validated by our experiments, this implementation (termed Cas-
sandra Serial) incurs a significant performance penalty over competing systems in
write-intensive workloads.

A recent work that proposes explicit replication of LSM-Trees is Rose (Sears et
al. [37]). Rose shares our goal of leveraging LSM-Trees’ superior write performance
in a replication context; they however focus more on the benefits of data compres-
sion and less on the performance impacts of compaction. Google’s BigTable can be
credited with bringing LSM-Trees to the forefront since their inception in 1996 [4]
and Apache HBase for contributing an open source implementation, in both cases
over a distributed replicated file system. While similar in principle, ACaZoo dif-
fers from these two systems in its explicit management of replication as opposed to
implementing a serial LSM-Tree and relying on an underlying layer for replication.

Several systems have experimented with sharding and replication over open-

17

18 CHAPTER 3. RELATED WORK

source storage engines such as MySQL, including Google’s F1 [38], LinkedIn’s
Espresso [39], and Facebook’s TAO [40], with varying results. F1 faced a prob-
lem with rebalancing data partitions under expanded capacity (and eventually
opted to use Spanner [41]), whereas Espresso attempted to address these problems
by avoiding partition splits (by overpartitioning), mapping several partitions to
a single MySQL instances, and modifying MySQL to be aware of partition iden-
tities on log updates. Espresso uses timeline consistency (asynchronous or semi-
synchronous replication) whereas F1 is a strongly-consistent system (synchronous
replication).

Perhaps the closest approaches to ours are Scatter [42], ID-Replication [43],
and Oracle’s NoSQL database [28]. All these systems use consistent hashing and
self-managing replication groups. Scatter and ID-Replication target planetary-
scale rather than enterprise data services and thus focus more on system behavior
under high churn than speed at which clients are notified of configuration changes.
Oracle NoSQL leverages the Oracle Berkeley DB (BDB) JE HA storage engine
and maintains information about data partitions and replica groups across all
clients. A key difference with our system is that whereas Oracle NoSQL piggybacks
state updates in response to data operations, our clients have direct access to ring
state in the CM, receive immediate notification after failures, and can request
reconfiguration actions if they suspect a partial failure. We are aware of an HA
monitor component that helps Oracle NoSQL clients locate RG masters after a
failure, but were unable to find detailed information on how it operates.

Load balancing a dynamic population of clients in a coordination service such
as Zookeeper [17] and Chubby [27] while maintaining data consistency and system
availability has proved to be a challenging problem. Usually that kind of services
use an external name-service such as DNS to balance client connections across
servers. However as servers join or leave the service, already connected clients cre-
ate an unbalanced load leading to sever overloading, performance degradation and
high latency. A recent work by researchers at Yahoo extends Zookeeper’s function-
ality offering dynamic reconfiguration capabilities and client load balancing [44].
They propose a probabilistic client-driven load balancing scheme where clients de-
tect changes in the service and they decide by a policy whether to connect to an
other server or not. In that approach an external DNS service is also required. In
ACaZoo we experimentally demonstrate that a well balanced coordination service
can result in 42% better notification response time compared to an unbalanced
system and we introduce an algorithm with which ZooKeeper can internally load
balance client requests. Unlike existing approaches our solution obviates the need
for a DNS front-end, requires minor changes to the client implementation and does
not introduce extra overhead to the clients since it is server-driven.

Chapter 4

System Design

Notification

Notification
Replica

Replica

Replica

Configuration manager
(membership, ring

state, etc.)

WAL replica
LSM-Trees

WAL replica
LSM-Trees

WAL replica
LSM-Trees

Replication group

Client

WAL replica
LSM-Trees

WAL replica
LSM-Trees

WAL replica
LSM-Trees

Replication group

Ring
Master

Master

New
Master

Client
Requests

key
data

key
data key

data

Follower

Client

Client

ZAB

ZAB

ZAB

ZooKeeper

Ring state

Ring state

Ring state

Notification

Figure 4.1: The ACaZoo architecture

4.1 ACaZoo architecture

The ACaZoo system architecture is depicted in Figure 4.1. The data model it
supports, which derives from that of Apache Cassandra, HBase, and BigTable has
the general structure shown in Figure 2.4. A unit of data (or cell) has the following

19

20 CHAPTER 4. SYSTEM DESIGN

coordinates: (row key, column family name, column qualifier, version). We use a
consistent hashing mechanism [3] to map each row key to a replica group (RG)
via the circular ring shown in Figure 4.1. Each RG is associated with a unique
identifier that hashes to a point on the ring. Similarly each row key hashes to
some point on the ring. A row key is assigned to the RG that maps nearest to it
(clockwise) on the ring.

4.2 ACaZoo replication

The state being replicated is a write-ahead log (WAL) recording mutations to a
set of LSM-Trees as shown in Figure 4.2. The replication algorithm being used is a
primary-backed atomic broadcast found at the core of Zookeeper [45] (ZooKeeper
Atomic Broadcast or ZAB [17]), a distributed coordination service. All accesses go
through the master, ensuring order. In terms of durability, ACaZoo supports two
modes of operation 1: (1) writes considered durable when on disk and acknowl-
edged by a quorum of replicas; or (2) writes considered durable when in memory
and acknowledged by a quorum of replicas (while replicas periodically flush their
memory buffers to disk). The second mode offers a strong level of consistency with
a slightly weaker (but sufficient for practical purposes) notion of durability [46].

SSTables

SSTables
SSTables

put

memtable

memtable
memtable

PREPARE

COMMIT
COMMIT

PREPARE, COMMIT
PREPARE, COMMIT

COMMIT

Zookeeper

PREPARE

ACK ACK

PREPARE

Cassandra

Figure 4.2: ZAB-based replication of Cassandra’s write-ahead log

1Corresponding to the batch and periodic modes described in Section 5.1

4.3. RG LEADERSHIP CHANGE 21

4.3 RG leadership change

A key feature of ACaZoo is its ability to monitor periodic activities at the master
node of any RG and to effect a change in leadership when a heavy compaction or
other resource-intensive activity is expected to hamper performance of the master
(and therefore of the entire RG). The current master of an RG is responsible
for the monitoring and management of this process. Section 5.1 provides more
information on the policies and implementation details of RG leader switch.

4.4 Load balancing client notifications

The ring state is stored on a Configuration Manager (or CM). The CM com-
bines a partitioner (a module that chooses unique identifiers for new RGs on the
ring) with a distributed coordination service (we use ZooKeeper/ZAB again here).
Partitioner subdivides the ring to a fixed number of key ranges and assigns RG
identifiers to key-range boundaries. This method has previously been shown to
exhibit advantages over alternative approaches [3]. Each key-range in our system
corresponds to a different RG. The CM contains information about all RGs, such
as addresses and status of nodes (master or follower), and corresponding identi-
fiers. Any change in the status of RGs (new RG inserted in the ring or existing
RG changes master) is reported to the CM via RPC. The clients can query the
CM to identify the current master of an RG (pull changes) or ask to be notified of
any changes (push changes).

The CM re-balancing methodology we introduce identifies imbalances in no-
tification load between ZooKeeper servers and decides which sessions should be
exchanged between servers with the goal of assigning the same number of watch
notifications to all servers. More specifically, every quorum maintains an internal
znode in which each server owns a child node storing the up-to-date state. Periodi-
cally every quorum peer compares the number of current open watch sessions with
the watch session of the rest of the peers by accessing the internal znode-state.
To avoid frequent and unnecessary client redirections we set a common threshold
among quorum that defines the upper limit of watches a server can handle without
the need for re-balance. Periodically a server checks if re-balance is needed in a
quorum of N nodes, by evaluating the expression below:

|myWatchers− watcherOfSrv[x]| > quorumThreshold, ∀x ∈ N

If the above expression is true, the server chooses the client who was most
recently connected as well as the server with the less open sessions among the
quorum’s servers. Afterwards the server sends a notification, including the new
server’s address, to the client and notify him that server switch is needed. As
soon as the client receives the redirection message, he tries to establish a new
session with the target server without closing the previous session. This way, we
ensure that not even a single watch notification will get lost during the new session

22 CHAPTER 4. SYSTEM DESIGN

establishing procedure, since the client closes the original session only by the time
he has finished the transition and has successfully registered a watch at the new
server. At this point we have to mention that it is crucial for the ZooKeeper servers
to update their internal state not only after every new session they establish but
also as soon as they detect a closed or expired session. Thus, every node in the
quorum will be up-to-date and can take the right decision when it needs to redirect
a client.

Chapter 5

Implementation

The ACaZoo implementation uses the Apache Cassandra NoSQL system as a base-
line. It preserves the Thrift-based Cassandra client API for compatibility with
existing Cassandra applications. ACaZoo extends Cassandra in several impor-
tant ways: First, it replaces its eventually-consistent replication mechanism with
a strongly consistent implementation (based on ZAB [17]) that replicates a write-
ahead log used for recovery of the Cassandra server state. Section 5.1 describes
the internals of the ACaZoo replication and storage back-end and Section 5.4 the
internals of ZooKeeper and its implementation of ZAB, as well as optimizations
we have applied to it. Second, ACaZoo uses client-coordinated I/O in conjunction
with a ZooKeeper-based configuration management service. Section 5.2 describes
implementation details and a method to load balance bursts of notifications across
ZooKeeper servers. A general overview of ACaZoo components and interactions is
shown in Figure 5.1.

5.1 ACaZoo

The ACaZoo storage backend (with the ACaZoo modifications over the base Cas-
sandra implementation highlighted in bold) is depicted in Figure 5.2. More infor-
mation on the original Cassandra implementation can be found in Lakshman et
al. [8].

Replication

An ACaZoo storage server comprises two integrated software modules: A Cas-
sandra storage server together with a Zookeeper server (Figure 5.2). The two mod-
ules interface at three crossing points: Cassandra invokes ZooKeeper’s PrepRe-
questProcessor stage (described in Section 5.4), ZooKeeper calls Cassandra’s WAL
insert interface, and ZooKeeper notifies Cassandra of a leader election outcome, all
internal server-side interfaces. Both modules are run as a single process (daemon)
that starts and manages the ACaZoo storage server.

An ACaZoo replication group (RG) comprises a (configurable) number of stor-
age nodes. At startup of each RG, elections are being held by ZooKeeper to elect

23

24 CHAPTER 5. IMPLEMENTATION

Get ring

Modified Cassandra

WAL replication

Stream data Partitioner (seed)

ZooKeeper

Configuration ManagerStorage Node

ZAB ZAB

Client to RG
master

Register RG
New RG master

Figure 5.1: System components and their interactions

the master server. The Cassandra code at the master is notified of the result so
that it assumes the handling of read/write requests.

Writes in ACaZoo (and Cassandra) must first be recorded as mutations to the
WAL, and then written to an ordered per-Column Family memory structure called
a Memtable. When Memtable is full, it is flushed to disk as an SSTable. Mutations
represent changes to one or more tables (all belonging to the same keyspace) and
all changes refer to the same partition key. Since these mutations represent only
the changes made (they are deltas rather than full representations of a cell) they
are an efficient way to transfer them over a communication link.

The master of a RG is responsible for invoking the ZAB agreement protocol on
each write. Internally, ZooKeeper takes the contents of a put operation (the muta-
tion) and replicates it as the contents of a persistent znode treated by ZooKeeper
as sequential (associated with a global sequence number appended to its name).
As soon as the proposal is committed, the mutation is inserted into the ACaZoo
WAL on any node that learns of the commitment and then applied to the local
LSM-Trees. The znode and associated commit log entry can be erased as soon as
the ACaZoo WAL acknowledges it. Minimizing ZooKeeper state has the benefit
that periodic snapshot operations are inexpensive. ZooKeeper currently requires
manual deletion of old snapshots and commit logs by an operator; this is something
we intend to automate in ACaZoo.

Gets are handled by the master, first looking up its cache and then (in case of
a miss) its local LSM-Tree. Just as in Cassandra, ACaZoo uses SSTable indexes
and Bloom Filters to reduce I/O overhead in case of a read miss. In a RG re-
configuration, a new master is expected to have a cold cache and therefore clients
will experience the related warm-up phase. Note that this issue is intrinsic to any
replication system where a single master handles all read activity.

During early testing of our prototype we noticed that applying mutations in
each replica’s LSM-Tree was not sufficient to make the new state visible to clients.
The reason was that metadata for these mutations were not being updated in the
process. We solved the problem by forcing a reload of the local database schema
on each put so that the schema gets rebuilt according to the current state. This

5.1. ACAZOO 25

Figure 5.2: ACaZoo storage server

was a lightweight fix that does not impact performance.

In terms of durability, ACaZoo (inheriting from Cassandra) can be configured
for either periodic or batch writes to its commit WAL. Periodic (the default mode)
initiates write I/Os as soon as they appear in the execution queue and acknowl-
edges them immediately with clients. Another thread periodically (as specified in
commitlog sync period in ms) enqueues a sync-to-disk operation on the execution
queue. The batch mode offers stricter durability by grouping multiple mutations
over a time window (defined by commitlog sync batch window in ms) and executes
them in a batch. After each batch, it performs a sync of the commit WAL and
then acknowledges the writes with clients.

We have two optimizations in mind to further improve the I/O performance
of our prototype. One optimization has to do with avoiding a redundant commit
step in ZK and the Cassandra WAL. Another has to do with further integrating
the prepare disk write with the WAL (so that the data is not written twice to
disk). Based on our performance results we believe that these optimizations are
not critical and defer their implementation to a future edition of our prototype.

Masking the impact of periodic compactions

In ACaZoo, LSM-Tree compaction activities that are expected to impact a RG
master (and thus the entire RG) are detected and acted upon: prior to compaction,
a RG master triggers a leader election and freezes the compaction process until
demoted to a follower. ACaZoo monitors periodic storage-node activities (primar-
ily SSTable compactions but other activities as well, such as Memtable flushes
and Java garbage collections). Our implementation disables the AutoCompaction
feature of base Cassandra. It maintains an estimate of the amount of compaction

26 CHAPTER 5. IMPLEMENTATION

work that accumulates over time and can hold or trigger compaction at specific
time points.

We have modified the ZooKeeper leader election process to implement suitable
election policies. We currently support the election of a random node excluding
the current master (RANDOM policy), or the election of the next node in some
sequence (round robin, RR policy). When the leader is nearing the point of having
to perform a compaction, it sends a new leader-election event (a NEW LEADER
proposal in ZooKeeper terminology, see Section 5.4) towards the followers. A
new leader is elected as soon as a quorum of servers commit to following him.
Normally during leader election, ZooKeeper nodes broadcast their votes containing
their current epoch, last transaction seen, and preferred master. By default the
preferred master in that vote is themselves; nodes that are up to date have more
chances to win. In ACaZoo, the node triggering the leader election is voting for
someone else according to the policy (RANDOM or RR). ACaZoo followers that
have a low anticipated compaction load respond positively to the leader election
according to the policy.

During the election, which lasts typically between 200-500 ms the outgoing
leader keeps accepting requests. When a new leader is elected, the previous leader
returns a custom exception with the identity of the new leader in RPCs. Thus
the identity of the new leader is rapidly propagated to the requesting clients. The
alternative path of clients learning of leadership changes through watch event noti-
fications via ZooKeeper is still possible (its performance is studied in Section 6.6).

A caveat here is that frequent leadership changes can hurt performance. To
avoid this situation, we estimate the compaction load of a server at all times (taking
into account the amount of data that need to be compacted) and decide to trigger
a leader election only when that load exceeds a configurable threshold (and thus
expected to be a hard hit on performance).

5.2 Client-coordinated I/O and configuration manage-
ment

ACaZoo clients are allowed to maintain ring state and thus be able to route oper-
ations appropriately rather than through a (possibly random) server. They obtain
that state by connecting to the Configuration Manager (CM), the integration of
a ZooKeeper cell and a Cassandra partitioner that jointly maintain RG identities
and tokens, master and follower IPs, and the key ranges on the ring. We decided to
use actual IP addresses rather than elastic ones due to the long reassignment delays
we observed with the latter on certain Cloud environments. Each RG stores its
identifier and token in a special Zookeeper znode directory so that a newly elected
RG master can retrieve it and identify itself to the CM.

In more detail, CM creates a ZooKeeper directory named system state and
a znode in it for each token range in the system. A new master, aware of the
token range it represents modifies the state of the corresponding znode to store

5.3. DYNAMIC LOAD BALANCING REQUESTS 27

information about its RG. We additionally store in system state information about
the RG followers and other system state to empower clients with the ability to take
action as soon as possible when a failure occurs. The CM exports two RPC APIs
to storage nodes: register/deregister RG, new master for RG; and a get ring info
API to both storage nodes and clients.

ACaZoo clients have the option to either use the exposed CM API or request
notifications of any changes by setting watches1 on the ZooKeeper system state

znode. The CM is responsible for maintaining this znode up to date by monitoring
the ring state using a JMX API. The CM thus learns of a new RG joining the ring
or a new master election in an existing RG and triggers watch notifications.

5.3 Dynamic load balancing requests

During testing of our early prototype we noticed that ZooKeeper does not dynam-
ically redistribute watch requests across its servers, relying instead on an external
directory service (such as a DNS balancer) to achieve static load balancing at ses-
sion establishment. Although there is already a reconfiguration solution proposed
by Shraer et al. in [44], client departures can result in an imbalanced system. Our
evaluation shows that this leads to higher notification latencies than feasible with
a well balanced system. We thus designed an internal rebalancing methodology
that dynamically redirects ZooKeeper client session to different servers based on
dynamic load information.

Our re-balancing methodology identifies imbalances in notification load be-
tween ZooKeeper servers and decides which sessions should be moved between
servers (from the source to a target server) to spread out the work evenly (with
the goal of assiging the same number of watch notifications to all servers). For
each session movement, the source server piggybacks a Change Server event (to
target server) command to the next session heartbeat from/to the client. As soon
as the client receives the event, it tries to establish a new session with the target
server without closing the previous session. When the new session is established,
the client closes the original session. The method ensures that a watch notification
during the transition is received exactly once by the client: The source server first
tries to deliver a watch notification directly to the client; if successful (that is,
before the client closes the session), it takes no further action. If it fails (the client
has closed the session), it then relays the notification to the target server who
will deliver it to the client. A handover protocol between servers ensures orderly
transfer of control to the target server.

1A watch is a request by a client to receive a notification by a ZooKeeper server should there
be any modification to the referenced znode.

28 CHAPTER 5. IMPLEMENTATION

5.4 ZooKeeper data path and optimizations

This section provides insight to the internals of the ZooKeeper server system ar-
chitecture. While important for understanding the operation of the ZAB protocol,
its efficiency, and the integration of ZooKeeper into ACaZoo (Section 5.1), this is
not prerequisite reading and the reader can skip to Section 6. ZooKeeper has a
staged event-driven architecture (Figure 5.3). Each QP is structured as a sequence
of Request Processors that operate in a pipelined fashion. Each RP is associated
with a thread that performs operations on its input passing over the result to the
next RP via a shared FIFO queue. The requests are passed by reference through
the queues.

Leader

SyncRP FFQSender

NI
O

Se
rv

er
Cn

xn

Pr
op

os
al

RP

Co
m

m
itR

P

Fi
na

lR
P

Clients

Write, Sync
FollowerHandler FollowerHandler

FFQConsumer

Write, Sync

Commit Log Commit Log

FIFO channel (TCP)

Follower

Pr
ep

Re
qu

es
tP

ro
ce

ss
or

CreateTxn

FFQRouter

Figure 5.3: ZooKeeper data path

The lifecycle of a proposal comprises the following steps: The client sends a
request to the leader by invoking the CreateTxn API. A thread (NIOServerC-
nxn) allocates a new buffer in which it copies the proposal’s data payload. The
leader may decide to throttle clients if it is running low on the number of avail-
able pre-allocated buffers. The leader queues the request into the FIFO queue
of the PrepRequestProcessor stage. The PrepareRequestProcessor encapsulates
the client request into a Quorum Packet and queues it into the queue of Pro-
posalRP which run in the same context. ProposalRP will broadcast the quorum
packet using another thread (FFQSender), which handles message transmission to
all peers. The proposal is then passed to SyncRP, which appends it to the Com-
mit Log. SyncRP periodically flushes written proposals to the disk using group
commits. SyncRP passes the proposal on to CommitRP, which is responsible for
counting ACK messages sent by QPs for this proposal. QPs may ACK a proposal
only after they ensure that it has been successfully flushed to disk. When the
leader receives a majority of ACKs it sends a COMMIT message to all QPs over
the chain and the proposal is applied on the receiving of the COMMIT message.
When a proposal is committed, the FinalRP stage sends a reply back to the client.

Followers have a simple structure in which a FFQRouter thread performs equiv-

5.4. ZOOKEEPER DATA PATH AND OPTIMIZATIONS 29

alent tasks to the leader’s FFQSender. FFQRouter is spawned when the follower
receives a NEW LEADER message and is responsible for listening for new incom-
ing TCP connections. It passes its output to the FFQConsumer thread, which
decides if this message should be consumed or not based on its FollowerEpoch
field. If the message is from a previous epoch (i.e., stale), it rejects it, otherwise
it consumes it. If the message is a PROPOSAL it appends it to the Commit
Log and then sends an ACK message to the leader. If the message belongs to
any other category it appends it to the commit log and performs the appropriate
proposal-specific action to it.
Optimizations

Writes to the ZK commit log use a group-commit mechanism. To achieve
high I/O throughput the system needs to ensure efficient operation all the way to
the disks. In a heavily write-intensive setup the filesystem buffer-cache should be
continuously writing to disks to avoid stalling for too long at the periodic sync
operation. The standard operating system setup (in Linux and other general-
purpose operating systems) is to delay (defer) writes. We had to change the
standard behaviour by tuning the thread responsible for destaging data from the
buffer cache to disk to be invoked whenever there is anything in the buffer cache
to be written. Note that this optimization requires platform-specific knowledge
and is thus testimony to the fact that despite improved support in Java [47] it is
not always possible to achieve fully platform-independent systems software in Java
alone.

30 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

Our evaluation platform is a private Cloud that builds upon OpenStack 1, an
open-source cloud platform for private and public clouds. For the experiments we
used virtual machines (VMs) having 2 CPUs, 2GB memory, and a 20GB remotely-
mounted disk. The Apache Cassandra version used is 2.0.l, Apache Zookeeper is
3.4.5, and the Oracle NoSQL database is 2.1.54.

We chose the Oracle NoSQL commercial database as one point of comparison to
ACaZoo since it closely relates to it in several aspects (key-value store with similar
API and data model, sharding over replica groups, primary-backup replication,
client routing of I/O requests, Java implementation) but differs from it in the use
of a B+-tree storage organization vs. ACaZoo’s LSM-Trees.

Our load generator is the Yahoo Client Serving Benchmark (YCSB) [48] ver-
sion 0.1.4, which can be configured to produce a specific access pattern, I/O size,
and read/write ratio. YCSB performs 1KB accesses (it creates and accesses a sin-
gle table with one column family comprising ten columns of 100-byte cells) with
configurable read/write ratio using Zipf (featuring locality) or uniformly-random
probability distributions.

We further evaluate our system using a real scalable e-mail service application
called CassMail. CassMail is a working implementation of the SMTP and POP3
protocols using Cassandra as a storage engine. Figure 6.1 displays the schema in
which CassMail through Cassandra stores user and mailbox information. There
are two tables, Mailboxes and Users, within a keyspace called Mail. Each row in
Users is used to validate a user while each row in Mailboxes table contains blocks
that hold the actual e-mail messages in a usersś mailbox. The key for that table
is a username concatenated with a mailbox name. The key for each block is a
time-based universally unique identifier (UUID) stamped by the SMTP daemon
when the message arrives and is stored. The value of a block is the e-mail itself.
Since ACaZoo and Cassandra share the same data model we extended CassMail
to support ACaZoo storage system and we compare the results.

To run CassMail we used a number of nodes with the same hardware specifi-

1OpenStack, “http://www.openstack.org,” April 2012

31

32 CHAPTER 6. EVALUATION

"outbox"

"pete:inbox" timeuuid emailmsg0 timeuuid emailmsg1 ...

"pete:outbox" timeuuid emailmsg0 timeuuid emailmsg1 ...

"anne:inbox" timeuuid emailmsg0 timeuuid emailmsg1 ...

"anne:outbox" timeuuid emailmsg0 timeuuid emailmsg1 ...

"anne:project" timeuuid emailmsg0 timeuuid emailmsg1 ...

"pete"

"anne"

"inbox" "outbox"

"inbox"

...

...

...

...

Mail

:Mailboxes

:Users

"project"

Figure 6.1: Cassandra schema designed for CassMail [6]

cation as described above. Each node maps to a specific position on the ring as
shown in Figure 6.2 though a hash function. Each row maps to a position on the
ring by hashing its key using the same hash function. In the example depicted
in 6.2 anne connects through her mail-submission agent to the SMTP server on
node1 to send an email to pete. When pete wants to check his messages, he accesses
for example node n using his mail-retrieval agent. The mail agent first fetches the
number of e-mails which is equal to the number of columns in pete:inbox and then
asks for the message headers.

The benchmark used in this study was Postal 2, a widely used benchmark for
SMTP servers for measuring write throughput. Postal operates by repeatedly and
randomly selecting and e-mailing a user (USER@example.com) from a population
of users as shown in the system architecture 6.2. We created a realistic population
of users by using the usernames from our department mail server (about 1K users).
The Postal client is a multi-threaded process that connects to a specific SMTP
server.

6.1 Performance impact of LSM-tree compactions

We first quantify the performance impact of LSM-tree compactions on an ACa-
Zoo replication group of three storage nodes with a fixed master (no RG leader
changes). Figure 6.3(a) depicts the throughput of a write-intensive workload

2http://doc.coker.com.au/projects/postal/

6.1. PERFORMANCE IMPACT OF LSM-TREE COMPACTIONS 33

function
hash

cassandra cassandra cassandra

1 2 n

ring

smtpdpop3dsmtpdpop3dsmtpd pop3d

anne

Figure 6.2: CassMail system design [6]

(YCSB with 64 threads performing 100% writes) over time. We observe that
at 45′′, 75′′, and 113′′ performance drops briefly but drastically due to memtable
flushes taking place. From 143′′-165′′ a compaction task is seen to have a signifi-
cant and enduring impact on system performance. This compaction task involves
4 SSTables and takes 22.34 sec to complete for a total of 310MB of data compacted
(an effective throughput of 8.5 MB/s). Besides Memtable flushes and compaction
activities, Java garbage collection is seen to have infrequent but measurable impact
on performance.

Insert operations are indeed resource intensive due to message deserialisation,
Memtable flushes, compactions, and intensive memory use. Through iostat mon-
itoring we observed that our VMs are nearly always CPU-bound, turning I/O-
bound when the amount data processed grows significantly. While we believe that
this picture can be somewhat improved by increasing the allocation of resources to
servers (e.g., assigning an additional disk spindle dedicated to the commit WAL
as well as additional CPU cycles) this increases system cost and may not always
be an option in large-scale deployments.

We next evaluate the performance improvement from RG leader changes. Fig-
ure 6.3(b) depicts YCSB throughput with 64 threads and a 100%-write workload
under the RANDOM leader change policy. We observe the impact of Memtable
flush events at 48′′, 85′′, 121′′, 199′′, and 244′′. There is also a new leader election
at 157′′ just before the leader starts a compaction task. At that point, the client
experiences a short (100ms) interval of unavailability (throughput drops to 0 op-
s/sec) and then continuing with the new leader. This can be contrasted to the long
(about 23 sec) interval of performance degradation due to compaction observed in
Figure 6.3(a). In Section 6.4 we show that when the master is compacting, the
probability that a majority of RG nodes simultaneously compacting is low (and

34 CHAPTER 6. EVALUATION

 0

 500

 1000

 1500

 2000

 2500

 0 25 50 75 100 125 150 175 200

W
rit

e
T

hr
ou

gh
pu

t (
op

s/
10

0m
s)

Time (sec)

Smoothed Average Throughput

(a) ACaZoo without RG leader changes

 0

 500

 1000

 1500

 2000

 2500

 0 25 50 75 100 125 150 175 200

W
rit

e
T

hr
ou

gh
pu

t (
op

s/
10

0m
s)

Time (sec)

Smoothed Average Throughput

(b) ACaZoo with leader changes (RANDOM policy)

Figure 6.3:

decreasing with RG size). Therefore a RG leader change is expected with high
likelihood to produce a configuration that can make progress.

6.2 Performance of a 3 node replication group

We next compare the performance of a single ACaZoo replication group of three
storage nodes to an equivalent setup of Oracle NoSQL, and two Cassandra setups of
three storage nodes in a ring with replication factor 3: a setup with quorum consis-
tency reading/writing 2 out of 3 replicas (termed Cassandra Quorum) and another
similar setup performing linearizable writes [5] (termed Cassandra Serial). Cas-
sandra Quorum -a relaxed consistency system- is configured conservatively so as
to approximate the semantics of the other three systems. We evaluate all systems
under a YCSB workload of 256 concurrent threads with three different operation
mixes (100/0, 50/50, 0/100 reads/writes). We test ACaZoo both with and with-
out RG leader changes using the RANDOM policy, to evaluate the performance
improvement from enabling this feature.

ACaZoo performs reads from the master replica only, just as Oracle NoSQL
does (Oracle calls this absolute consistency). As discussed in Section 5.1, ACaZoo
and Cassandra can be configured for either periodic (relaxed durability) or batch
(strict durability) writes to their commit WAL. Oracle NoSQL is configured to
perform writes in write nosync mode, i.e., it initiates them as soon as they
arrive at replicas but syncs them to disk only when a buffer of configurable size
fills up (similar to the batch mode of ACaZoo and Cassandra).

In Figure 6.4(a) we observe that for 100% reads ACaZoo performs on par with
Oracle NoSQL, while Cassandra trails due to the requirement to read from two
rather than one replica. We omit Cassandra Serial from Figure 6.4(a) since its
performance is identical to Cassandra Quorum (the two systems share their read
path). ACaZoo with RG changes does not lead to a performance improvement
in this case due to the absence of write (and therefore significant compaction)

6.3. PERFORMANCE OF A 5 NODE REPLICATION GROUP 35

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Oracle
NoSQL

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) batch

periodic

(a) YCSB throughput: 100% reads

 0

 2000

 4000

 6000

 8000

 10000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Oracle
NoSQL

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) batch

periodic

(b) YCSB throughput: 50% reads, 50% writes

 0

 1000

 2000

 3000

 4000

 5000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Oracle
NoSQL

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) batch

periodic

(c) YCSB throughput: 100% writes

Figure 6.4: Openstack - 3 nodes Replication Group

activity.

As the share of writes increases into the mix, performance drops for all systems.
We observe in Figures 6.4(b) and 6.4(c) that ACaZoo in batch mode outperforms
Oracle NoSQL (for both the 50%/50% and 100%-write mixes). We attribute the
difference to the better pipelining of I/O operations in ACaZoo compared to Oracle
NoSQL (we have empirically determined that BerkeleyDB JE –the underlying
Oracle NoSQL storage engine– allows only a single outstanding batch write transfer
between replicas at a time). For 50% reads, 50% writes (Figure 6.4(b)) ACaZoo
with RG leader changes outperforms standard ACaZoo by 25% and 20% for batch
and periodic operations. For 100% writes (Figure 6.4(c)) ACaZoo with RG leader
changes outperforms standard ACaZoo by 40% and 33% for batch and periodic
operations respectively. Results with the RR policy are nearly identical to those
with the RANDOM policy leading us to conclude that both are equally effective
in our workloads.

6.3 Performance of a 5 node replication group

Next we evaluate the performance of our system in a bigger RG to measure the
effectiveness of RG leader change approach under different RGs. Similar to the
experiment 6.2 we compare the performance of a single ACaZoo replication group,

36 CHAPTER 6. EVALUATION

Count Longest Average Total

(#) (sec) (sec) (sec)

Compaction (RA) 11 78.44 17.96 197.64
Memtable flush (RA) 53 - - -

Garbage Collection (RA) 197 0.91 0.148 29.33
Compaction (RR) 12 72.65 15.94 191.39

Memtable flush (RR) 52 - - -
Garbage Collection (RR) 192 0.85 0.147 27.84

Table 6.1: Tasks during a 100%-write YCSB workload

of five nodes this time, to an equivalent setup of Oracle NoSQL, and two Cassandra
setups of five storage nodes in a ring with replication factor 5: a setup with
quorum consistency reading/writing 3 out of 5 replicas (Cassandra Quorum) and
another similar setup performing linearizable writes (Cassandra Serial). We use
again YCSB framework as benchmark YCSB with three different operation mixes
(100/0, 50/50, 0/100 reads/writes) and 256 concurrent threads.

In Figure 6.5(a) we observe that for 100% reads Oracle NoSQL performs 12%
better than ACaZoo, while Cassandra trails due to the requirement to read from
three rather than one replica. While this is a rather small improvement we at-
tribute this to the fundamental difference between B+-Trees and LSM-Trees where
for random reads in a B+-Tree the complexity is O(log N) while in a SSTable
index like ACaZoo and Cassandra it is actually O(#sstables * log N). Meaning
that without frequent compactions (SSTable merging), the number of SSTables is
proportional to N. Finally ACaZoo with RG changes again does not lead to any
performance improvement due to the absence of writes.

In Figures 6.5(b) and 6.5(c) we observe that ACaZoo in batch mode out-
performs Oracle NoSQL and Cassandra (for both the 50%/50% and 100%-write
mixes). For 50% reads, 50% writes (Figure 6.5(b)) ACaZoo with RG leader changes
outperforms standard ACaZoo by 38% and 28% for batch and periodic operations.
For 100% writes (Figure 6.5(c)) ACaZoo with RG leader changes outperforms
standard ACaZoo by 60% and 47% for batch and periodic operations respectively.
Results clearly show that the bigger the RG is the more effective the ACaZoo
RG leader change technique is especially in write intensive workloads. We further
discuss the effectiveness of this technique over different RGs in section 6.4.

To get a deeper understanding of the intensity of compactions and other peri-
odic tasks in ACaZoo we logged these activities on the (initial) master node during
a 20-minute 100%-write workload (the results are shown in Table 6.1). Although
the master will change during the course of the run, the events are representative
of the activity taking place at each of the nodes in a RG. The recorded events in
a typical run with the random policy (depicted as RA) included 11 compactions,
53 Memtable flushes, and 197 Java garbage collections. It is interesting to note
that garbage collection events are brief; compactions however are long and very

6.4. TIMING OF COMPACTIONS ACROSS REPLICAS 37

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Oracle
NoSQL

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) batch

periodic

(a) YCSB throughput: 100% reads

 0

 2000

 4000

 6000

 8000

 10000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Oracle
NoSQL

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) batch

periodic

(b) YCSB throughput: 50% reads, 50% writes

 0

 1000

 2000

 3000

 4000

 5000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Oracle
NoSQL

Th
ro

ug
hp

ut
 (o

ps
/s

ec
) batch

periodic

(c) YCSB throughput: 100% writes

Figure 6.5: Openstack - 5 nodes Replication Group

intensive. The longest compaction lasts for more than a minute and merges more
than 700MB of data. Results with the round robin policy (depicted as RR in
Table 6.1) are similar; a slight difference is that RA spends more time on garbage
collection and compaction in this run (the two are related: a larger compaction
(700MB in RA lasting 78′′ vs. 600MB lasting 72′′ in RR) leads to a longer garbage
collection in RA).

6.4 Timing of compactions across replicas

In this experiment we observe compaction events on all replicas of an ACaZoo
RG in configurations of 3, 5, and 7 nodes. Our goal is to determine the degree
of overlap of compaction events over a long (90 minute) workload. We use YCSB
with 256 threads producing a 50% read, 50% write mix for 60 minutes, then switch
to a 100% write mix for 30 minutes in a more write-intensive phase. The ACaZoo
configuration we used has the RG leader-change feature disabled. Our goal in
this experiment is to determine the probability P that when compaction happens
anywhere in the system only a minority of nodes in the RG are simultaneously
involved in it and therefore there is a majority that can make progress. Because of
significant non-determinism in the system we expect that in practice P (expressed
in formula (1)) would be non-zero.

38 CHAPTER 6. EVALUATION

P (Any minority in RG compacting) = 1 −
P (No compactions in RG) −
P (Any majority in RG compacting)

(6.1)

Figures 6.6(a)–6.6(c) depict the time breakdown per 10-minute interval be-
tween the following three states: No compaction anywhere in the RG; some (any)
minority of RG nodes are compacting simultaneously; a quorum of RG nodes are
compacting simultaneously. The fraction of time spent in the second of those
states is a measure of P . Going from 3 to 7 nodes in an RG, P ranges (on av-
erage) from 21% (for 3 nodes) to 32% (5 nodes) to 44.5% (7 nodes), indicating
that the RG leader-change technique is expected to be increasingly effective with
larger RG sizes. The average probability that a quorum of RG nodes compacts
simultaneously (the regime where the RG leader-change technique does not help)
diminishes from 23% (3 nodes) to 13% (5 nodes) to below 12% (7 nodes). We
note that if a higher degree of non-determinism is desirable, it could be achieved
by using different configurations (e.g., min/max compaction thresholds) for each
replica.

6.5 Timing of garbage collections across replicas

In this experiment we observe garbage collection events on all replicas of an ACa-
Zoo RG in configurations of 3, 5, and 7 nodes. Running the same workload as
described in Section 6.4 our goal is to determine the degree of overlap, this time of
garbage collection events, over a long -90 minute- run. Figures 6.7(a)–6.7(c) de-
pict the time breakdown per 10-minute interval between the following three states:
No garbage collection anywhere in the RG; any minority of RG nodes garbage col-
lecting simultaneously; a quorum of RG nodes garbage collecting simultaneously.
We observe that there is no majority of nodes garbage collecting at the same time
regardless RG size (3, 5 or 7 nodes). The reason is that unlike compactions which
last several seconds, garbage collections are quite brief and they last a few ms. Go-
ing from 3 to 7 nodes though affects the minority compaction rates (on average)
which rage from 6% (for 3 nodes) to 5% (for 5 nodes) to 8% (for 7 nodes). These
periodic events can decrease the performance of our system but as we experimen-
tally demonstrate they are non deterministic and less lengthy than compactions.
This is the reason in ACaZoo we implemented the RG leader change technique
to take into account compactions instead of other periodic events. Of course we
could extend our approach to take into account more than one periodic events.

6.6 Availability of RG under leader failure

In this section we compare the availability of a replication group when the leader
fails, comparing ACaZoo to Oracle NoSQL database under a YCSB read-only

6.6. AVAILABILITY OF RG UNDER LEADER FAILURE 39

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 1

0-
m

in
ut

e
in

te
rv

al

Time interval (x10 min)

Quorum of nodes compacting
Any minority compacting

No node compacting

(a) AcaZoo RG of 3 nodes

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 1

0-
m

in
ut

e
in

te
rv

al

Time interval (x10 min)

Quorum of nodes compacting
Any minority compacting

No node compacting

(b) ACaZoo RG of 5 nodes

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 1

0-
m

in
ut

e
in

te
rv

al

Time interval (x10 min)

Quorum of nodes compacting
Any minority compacting

No node compacting

(c) ACaZoo RG of 7 nodes

Figure 6.6: ACaZoo compaction behaviour under different replication groups (RG)
(a) 3 nodes RG (b) 5 nodes RG (c) 7 nodes RG

workload produced by 64 threads. Figure 6.8 shows an outage of about 3.24 sec
from the time that the leader of the RG crashes until service resumes at the
YCSB client. This interval breaks down to the following segments: (a) 1.19 sec
between the time the leader crashes until the client notices; (b) 2 sec until the
client establishes a connection with the new leader and restores service. Interval
(a) further breaks down into: (1) 220 ms for the RG to reconfigure (elect a new
leader); (2) 970 ms to propagate the new-leader information (e.g., its IP address)
to the client through the CM.

We observe that performance initially ramps up from about 1200 ops/100ms
to about 1900 ops/100ms. Since this is a read-intensive experiment, client per-
formance depends on the cache warm up phase in the storage node. After the
failover, we observe the same phenomenon since the new leader also starts from a
cold cache.

Figure 6.9 shows YCSB throughput observed in the same scenario under Oracle
NoSQL. The client-observed outage in this case is about 3.5 sec. We observe that
the Oracle NoSQL system starts from about half the throughput of ACaZoo (600
vs. 1100 ops/100msec) at the beginning of the run and also after a failover. We

40 CHAPTER 6. EVALUATION

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 1

0-
m

in
ut

e
in

te
rv

al

Time interval (x10 min)

Quorum of nodes Garbage Collecting
Any minority Garbage Collecting

No node Garbage Collecting

(a) 3 nodes RG

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 1

0-
m

in
ut

e
in

te
rv

al

Time interval (x10 min)

Quorum of nodes Garbage Collecting
Any minority Garbage Collecting

No node Garbage Collecting

(b) 5 nodes RG

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 1

0-
m

in
ut

e
in

te
rv

al

Time interval (x10 min)

Quorum of nodes Garbage Collecting
Any minority Garbage Collecting

No node Garbage Collecting

(c) 7 nodes RG

Figure 6.7: ACaZoo garbage collection behaviour under different replication groups
(RG) (a) 3 nodes RG (b) 5 nodes RG (c) 7 nodes RG

additionally observe a more noisy behaviour in Oracle NoSQL’s throughput curve
as opposed to ACaZoo. All else being equal, we attribute this difference to the
efficiency of the LSM-tree indexing scheme vs. the B+-tree indexing scheme of
Oracle NoSQL.

6.7 Load balancing notifications

In this experiment we evaluate the effect of load-balanced ZooKeeper notifica-
tions to end-user latency. We setup a client population ranging from 1 to 10,000
threads that (a) registers watch requests with a 1-node ZooKeeper cell; (b) regis-
ters watch requests with a 3-node ZooKeeper cell; (c) registers watch requests in
a load-balanced (LB) manner with all server in the 3-node ZK cell. Client threads
operate in a closed loop in which they establish a watch with the root znode, wait
until receiving a watch notification, and then they repeat the same process. A
dedicated thread touching the znode ensures a constant stream of notifications out
of ZooKeeper and towards the clients. We define as latency the interval of time

6.7. LOAD BALANCING NOTIFICATIONS 41

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52

T
hr

ou
gh

pu
t (

op
s/

10
0m

s)

sec

Figure 6.8: YCSB throughput of ACaZoo under leader failure

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

op
s/

10
0m

s)

sec

Figure 6.9: YCSB throughput of Oracle NoSQL under leader failure

measured by a thread between two successive notifications.

Cases (a) and (b) appear to behave identically, which is due to the fact that
ZooKeeper does not internally load balance watch requests (the use of a front-end
DNS server to spray requests equally across servers would be effective in creating
an initial balance but cannot be used to re-balance an existing set of notification
requests with a highly variable set of clients). Comparing cases (a) and (c) provides
evidence that an internally load-balanced ZooKeeper cell will be beneficial for a
large set of clients by breaking a single-server bottleneck and partitioning work
across ZooKeeper servers. This approach can scale with the number of servers in
the cell.

42 CHAPTER 6. EVALUATION

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000

A
ve

ra
ge

 L
at

en
cy

(m
s)

Threads

1 node
3 nodes

3 nodes balanced

Figure 6.10: Client notification latency from ZooKeeper

6.8 Application performance

In this experiment we compare the performance of CassMail e-mail service using
a single ACaZoo replication group of three and five storage nodes to an equivalent
setup of Cassandra with three and five nodes in a ring with replication factor 3
and 5 respectively. We tried two different Cassandra consistency-levels, QUORUM
and SERIAL as described in 6.2 and as a benchmark we used Postal with message
sizes drawn uniformly at random from a range of sizes. We experimented with two
ranges:

• 200KB-2MB (typical of large attachments)

• 50KB-500KB (typical of small attachments)

These ranges are chosen to reflect the increase in average e-mail size compared to
a related study [49] due to a widespread use of attachments in everyday commu-
nications.

Each experiment consists of an e-mail-sending session blasting the CassMail
service for about ten minutes. Each node ran an instance of the storage service
(ACaZoo or Cassandra) and one node each time ran an instance of the SMTP
server (CassMail - Python code). In the Cassandra cluster experiment that node
was randomly picked each time while in the ACaZoo cluster experiment the SMTP
server was hosted in the same node with the RG leader. In all cases performance
was limited by the servers’ CPUs. We used a dedicated client having 4 CPUs, 4GB

6.8. APPLICATION PERFORMANCE 43

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Th
ro

ug
hp

ut
 (K

B
/s

ec
)

batch
periodic

(a) Thoughput with 50KB-500KB messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Th
ro

ug
hp

ut
 (K

B
/s

ec
)

batch
periodic

(b) Thoughput with 200KB-2MB messages

Figure 6.11: CassMail: 3 Node Replication Group

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Th
ro

ug
hp

ut
 (K

B
/s

ec
)

batch
periodic

(a) Thoughput with 50KB-500KB messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

ACaZoo ACaZoo
RG changes

Cassandra
Quorum

Cassandra
Serial

Th
ro

ug
hp

ut
 (K

B
/s

ec
)

batch
periodic

(b) Thoughput with 200KB-2MB messages

Figure 6.12: CassMail: 5 Node Replication Group

memory and 20GB remotely mounted disk to drive all experiments. We evaluate
all systems under Postal workload of 32 concurrent threads with two different sizes
for messages(200KB-2MB and 50KB-500KB). Our measurements are per-minute
Postal reports of the sum of e-mail data sent during the previous minute. In all of
our graphs we report aggregate average throughput of our measurements.

In Figures 6.11(a) and 6.11(b) we observe that in a replication group of three
nodes ACaZoo with RG changes performs better than all the competitors both
for small size messages(50KB-500KB) and for bigger size messages (200KB-2MB).
In more detail in Figure 6.11(a) ACaZoo with RG changes in periodic mode out-
performs standard by 30%, Cassandra Quorum by 24% and Cassandra Serial by
160%. Results for large attachment messages depicted in Figure 6.11(b) are simi-
lar. ACaZoo RG changes system in periodic mode performs better than basic by
31%, than Cassandra Quorum by 25% and Cassandra Serial by 140%. We also
observe that Cassandra Serial storing larger size messages performs 17% better
than storing smaller ones. We attribute the improvement to the Paxos algorithm
implementation behind Cassandra Serial explained in Section 2.5. For each Se-
rial operation Cassandra is paying the high price of four round trips. When the
penalty being paid comes with larger data stored there is a noteworthy throughput
improvement.

44 CHAPTER 6. EVALUATION

As the RG grows larger the performance drops for all systems. Comparing
Figures 6.11(b) and 6.12(b) we discovered a 10% performance drop for ACaZoo
basic, 8% drop for Cassandra Quorum, 9% drop for Cassandra which is expected
when moving to bigger replication groups. In Figure 6.12(a) we observe that in
a replication group of five nodes ACaZoo with RG in periodic mode outperforms
standard by 32%, Cassandra Quorum by 26% and Cassandra Serial by 164%. In
the same replication group, results for large attachment messages as depicted in
Figure 6.12(b) are similar. ACaZoo RG changes system in periodic mode performs
better than basic by 42%, than Cassandra Quorum by 36% and Cassandra Serial
by 132%. Again we have to note that Cassandra Serial storing larger size messages
performs 14% better than storing smaller ones.

6.9 Impact of client-coordinated I/O

In this final experiment we quantify the performance benefit due to client-coordination
of requests. We run a YCSB read-only workload over a cluster of six RGs and
observe improvement of 26% and 30% in average response time and throughput
respectively, compared to server-coordination of requests (Table 6.2 summarizes
our results).

Throughput Read latency Read latency

(ops/sec) (average, ms) (99%, ms)

Server-coordinated 317 3.1 4

Client-coordinated 412 2.3 3

Table 6.2: YCSB read-only workload

Chapter 7

Future Work

Efficient elasticity and data re-distribution is an important research area that we
plan to focus on next. A brute force approach of streaming a number of key ranges
to a newly joining RG is a starting point but our focus will be on alternatives that
exploit the underlying replication mechanism (as in Lorch et al [50]). The im-
mutability (write-once) characteristics of LSM-Trees lend themselves to efficient
data movement primitives. Furthermore, we plan on further investigating the load
balancing methodology for ZooKeeper watch notifications and demonstrating its
benefits in increasing system availability under large and dynamic client popula-
tions. Another research challenge is in provisioning storage nodes for replication
groups to be added to a growing cluster. Assuming that storage nodes come in the
form of virtual machines (VMs) with local or remote storage on Cloud infrastruc-
ture, we need to ensure that nodes in an RG fail independently (easier to reason
about in a private rather than a public Cloud setting).

45

46 CHAPTER 7. FUTURE WORK

Chapter 8

Conclusions

In this thesis we described ACaZoo, a NoSQL system offering strong consistency,
high performance, and high availability for sharded data intensive NoSQL appli-
cations. These properties are achieved via the combination of a high performance
replicated data store based on LSM-Trees, client-coordinated I/O, and fast client
notifications of cluster configuration changes. The impact of heavy periodic back-
ground activity at the master (a challenge with frequent compactions in LSM-
Trees) is handled via replica-group leader switches. We examined two policies
for RG leader changes (random and round-robin) and found them both effective
in delivering a performance improvement of up to 60% in write-intensive work-
loads. We note that the RG leader-change technique is generally applicable to any
primary-backup replication system. ACaZoo overall is shown to exhibit excellent
performance and availability compared to a commercial database with comparable
architecture and consistency semantics.

47

48 CHAPTER 8. CONCLUSIONS

Bibliography

[1] P. Garefalakis, P. Papadopoulos, I. Manousakis, and K. Magoutis, “Strength-
ening consistency in the cassandra distributed key-value store,” in Distributed
Applications and Interoperable Systems, pp. 193–198, Springer, 2013.

[2] P. Garefalakis, P. Papadopoulos, and K. Magoutis, “Acazoo: A distributed
key-value store based on replicated lsm-trees,” in Reliable Distributed Systems
(SRDS), 2014 IEEE 33rd International Symposium on, IEEE, 2014.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Ama-
zon’s Highly Available Key-value Store,” ACM SIGOPS Operating Systems
Review, vol. 41, no. 6, pp. 205–220, 2007.

[4] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured merge-
tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385, 1996.

[5] DataStax, Inc., “Cassandra Lightweight Trans-
actions.” http://www.datastax.com/dev/blog/

lightweight-transactions-in-cassandra-2-0, 2013.

[6] L. Koromilas and K. Magoutis, “Cassmail: A scalable, highly-available, and
rapidly-prototyped e-mail service,” in Distributed Applications and Interop-
erable Systems, pp. 278–291, Springer, 2011.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed Stor-
age System for Structured Data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[8] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage
system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, p. 35, 2010.

[9] A. Auradkar, C. Botev, S. Das, et al., “Data Infrastructure at LinkedIn,”
in Proc. of the 28th IEEE International Conference on Data Engineering
(ICDE), (Washington, DC), April 1-5, 2012.

49

http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0

50 BIBLIOGRAPHY

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed
file system,” in Mass Storage Systems and Technologies (MSST), 2010 IEEE
26th Symposium on, pp. 1–10, IEEE, 2010.

[11] X. Li, M. Lillibridge, and M. Uysal, “Reliability analysis of deduplicated
and erasure-coded storage,” ACM SIGMETRICS Performance Evaluation
Review, vol. 38, no. 3, pp. 4–9, 2011.

[12] Apache Inc., “HBase,” 2013.

[13] R. Escriva, B. Wong, and E. Sirer, “HyperDex: A Distributed Searchable
Key-vale Store,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 25–
36, Aug. 2012.

[14] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS: Yahoo!’s Hosted
Data Serving Platform,” in Proc. of the VLDB ‘08, (Auckland, New Zealand),
August 2008.

[15] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-
backup approach,” in Distributed Systems (2Nd Ed.) (S. Mullender, ed.),
pp. 199–216, New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1993.

[16] E. Lee and C. Thekkath, “Petal: Distributed Virtual Disks,” ACM SIGOPS
Operating Systems Review, vol. 30, no. 5, pp. 84–92, 1996.

[17] F. Zunqueira, B. Reed, and M. Serafini, “ZAB: High-performance broadcast
for primary-backup systems,” in Proc. of the 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems and Networks (DSN’11), (Hong
Kong, HK), June 2011.

[18] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li, “Paxos Repli-
cated State Machines as the Basis of a High Performance Data Store,” in
Proc. of the 2011 USENIX Networked Systems Design and Implementation
(NSDI’11), (Boston, MA), March 2011.

[19] Apache Inc., “BookKeeper,” 2013.

[20] F. B. Schneider, “Implementing fault-tolerant services using the state machine
approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22, no. 4,
pp. 299–319, 1990.

[21] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-
backup approach,” Distributed systems, vol. 2, pp. 199–216, 1993.

[22] J. Gray, “Why do computers stop and what can be done about it?,” in Sym-
posium on reliability in distributed software and database systems, pp. 3–12,
Los Angeles, CA, USA, 1986.

BIBLIOGRAPHY 51

[23] D. K. Gifford, “Weighted voting for replicated data,” in Proceedings of the
seventh ACM symposium on Operating systems principles, pp. 150–162, ACM,
1979.

[24] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary copy
method to support highly-available distributed systems,” in Proceedings of
the seventh annual ACM Symposium on Principles of distributed computing,
pp. 8–17, ACM, 1988.

[25] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[26] J. MacCormick et al., “Niobe: A Practical Replication Protocol,” ACM
Transactions on Storage (TOS), vol. 3, no. 4, 2008.

[27] M. Burrows, “The Chubby Lock Service for Loosely-coupled Distributed Sys-
tems,” in Proc. of the 7th Symposium on Operating Systems Design and Im-
plementation (OSDI), (Seattle, WA), 2006.

[28] Oracle, Inc., “Oracle NoSQL Database.” http://www.oracle.com/

technetwork/products/nosqldb/learnmore/nosql-wp-1436762.pdf,
2012.

[29] Redis, “Redis.” http://redis.io/, 2013.

[30] C. Commons, “Mongodb.”

[31] “Couchbase.”

[32] OrientDB, “OrientDB.” http://www.orientechnologies.com/orientdb/,
2013.

[33] Neo4j, “Neo4j.” http://www.neo4j.org/, 2013.

[34] Judd, D., “Hypertable: An open source, high performance, scalable
database.” .http://hypertable.org/index.html, 2007.

[35] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services,” ACM SIGACT News, vol. 33, no. 2,
pp. 51–59, 2002.

[36] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18–25, 2001.

[37] R. Sears, M. Callaghan, and E. Brewer, “Rose: Compressed, log-structured
replication,” in Proc. of PVLDB’08, (Auckland, New Zealand), August 2008.

[38] J. Shute, S. Oancea, B. Ellner, et al., “F1 - The Fault-Tolerant Distributed
RDBMS Supporting Google’s Ad Business,” in Talk given at ACM SIGMOD-
/PODS 2012 (industrial presentations), (New York, NY), June 22-27, 2013.

http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosql-wp-1436762.pdf
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosql-wp-1436762.pdf
http://redis.io/
http://www.orientechnologies.com/orientdb/
http://www.neo4j.org/
. http://hypertable.org/index.html

52 BIBLIOGRAPHY

[39] L. Qiao, K. Surlaker, T. Quiggle, et al., “On Brewing Fresh Espresso:
LinkedIn’s Distributed Data Serving Platform,” in Proc. of ACM SIGMOD-
/PODS 2013 (industrial presentations), (New York, NY), June 22-27, 2013.

[40] N. Bronson, A. Z., G. Cabrera, et al., “TAO: Facebook’s Distributed Data
Store for the Social Graph,” in Proc. of 2013 USENIX Annual Technical
Conference (ATC’13), (San Jose, CA), June 26-28, 2013.

[41] J. C. Corbett, J. Dean, M. Epstein, et al., “Spanner: Google’s globally-
distributed database,” in Proc. of 10th USENIX conference on Operating
Systems Design and Implementation (OSDI’12), (Holywood, CA), October
8-10, 2012.

[42] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Scal-
able Consistency in Scatter,” in Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, (Cascais, Portugal), 2011.

[43] Shafaat, T. and others, “ID-Replication for Structured Peer-to-Peer Systems,”
in Proc. of Euro-Par 2012, (Rhodes, Greece), 2012.

[44] A. Shraer, B. Reed, D. Malkhi, and F. Junqueira, “Dynamic reconfiguration
of primary/backup clusters,” 2012.

[45] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free Co-
ordination for Internet-scale Systems,” in Proc. of the 2010 USENIX Annual
Technical Conference (ATC 2010), (Boston, MA), June 2010.

[46] Birman, K., and others, “Overcoming CAP with Consistent Soft-State Repli-
cation,” IEEE Computer, vol. 45, no. 2, pp. 50–58, 2012.

[47] “Java New I/O API and Direct Buffers,” 2013.

[48] B. F. Cooper et al., “Benchmarking cloud serving systems with YCSB,” in
Proc. of 1st ACM Symposium on Cloud computing (SoCC’10), (Indianapolis,
IN), Jun. 2010.

[49] Y. Saito, B. N. Bershad, and H. M. Levy, “Manageability, availability and
performance in porcupine: a highly scalable, cluster-based mail service,” in
ACM SIGOPS Operating Systems Review, vol. 33, pp. 1–15, ACM, 1999.

[50] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and J. How-
ell, “The SMART Way to Migrate Replicated Stateful Services,” in Proc. of
EuroSys’06, (Leuven, Belgium), 2006.

Glossary

ACaZoo is a system combining the names of the two systems it loosely derives
from: Apache Cassandra and Apache Zookeeper.

Bloom Filter is a space-efficient data structure used as an approximate mem-
bership query, or a negative-cache for lookups.

CAP this theorem states that it is impossible for a distributed computer system
to simultaneously provide all three of the following guarantees: Consistency,
Availability, Partition tolerance.

CassMail a scalable e-mail service application written in Python using Cassan-
dra/ACaZoo as a back-end.

CommitLog a log where all writes are logged to prevent data failure on crashes.

CPU or central processing unit is the hardware within a computer that carries out
the instructions of a computer program by performing the basic arithmetical,
logical, and input/output operation.

I/O is an acronym referring to Input-Output.

Lightweight Transaction termed introduced in Apache Cassandra version 2.0
with the same meaning as transactions linearlizability.

Linearizability is a system property where the result of any execution is the
same as if the operations of all the processes were executed in some sequential
order, and the operations of each individual process appear in this sequence
in the order specified by its program.

LSM-Tree is a acronym referring to a Log-structured Merge-Tree data structure,
it is also the underlying data structure behind SSTable and Memtable.

Memtable is referring to In-memory SSTable and is basically acting as a write-
back cache of data where rows can be looked up by key.

53

54 Glossary

Paxos is a family of protocols for solving consensus in a network of unreliable
processors. Consensus is the process of agreeing on one result among a
group of participants.

POP3 is one of the most widely accepted Internet standard protocols for e-mail
retrieval.

Quorum is the minimum number of votes that a distributed transaction has to
obtain in order to be allowed to perform an operation in a distributed system.

Replication is a general method for implementing a fault-tolerant service by
copying state and data to multiple servers.

Replication Group a group of machines responsible for replication.

RG is a acronym referring to a replication group.

Serial Consistency termed introduced in Apache Cassandra v2.0 with the same
meaning as transactions linearlizability.

SMTP is an acronym referring to Simple Mail Transfer Protocol which is an
Internet standard for electronic mail transmission.

SSTable is a serialized memtable. It is an on-storage list of sorted tuples, along
with a serialized secondary-index, and a serialized Bloom Filter.

VM is a software-based emulation of a computer. Virtual machines operate based
on the computer architecture and functions of a real or hypothetical com-
puter.

	Introduction
	Thesis Contributions
	Thesis Organization

	Background
	Replication
	A primary-backup replication system
	NoSQL Systems
	LSM Trees
	Write Requests
	Read Requests
	Compactions

	Consistency

	Related Work
	System Design
	ACaZoo architecture
	ACaZoo replication
	RG leadership change
	Load balancing client notifications

	Implementation
	ACaZoo
	Client-coordinated I/O and configuration management
	Dynamic load balancing requests
	ZooKeeper data path and optimizations

	Evaluation
	Performance impact of LSM-tree compactions
	Performance of a 3 node replication group
	Performance of a 5 node replication group
	Timing of compactions across replicas
	Timing of garbage collections across replicas
	Availability of RG under leader failure
	Load balancing notifications
	Application performance
	Impact of client-coordinated I/O

	Future Work
	Conclusions

