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BASICS OF POWER SERIES

° Represent a function f(x) by:

f(x) = Z a; "
i=0

for coefficients a¢; e IR,: = 1,2, ....
> Called a power series because of the
series of powers of the argument «
> For example, f(z) = (1 +2)* =1+ 2z + 2°
hasay=1,a; =2,a0 =1,a;, = 0for: > 2
° But in general the series may be infinite
provided it converges




What are the coefficients?

f(x) = ap + a1 + asx”® + azz® + . . .

o Suppose the value of the function f is known
at x = 0. Then we have straightaway,
substituting z = 0

ag = f(O)

> Now differentiate f(x) to get rid of the
constant term:

f/(x) = a1 + 2.a9x + 3.a3x2 -+ 4.a4x3 - ...




What are the coefficients? (2)

o Suppose the derivatives of the function f are
known at z = 0 and set x = 0:

a1 — f/(O)

o Differentiate again to get rid of the constant
term:

(x) = ) () = 2.1.as+3.2.a30+4.3.a42°+. . .
o Set x = 0 and repeat the process:

az = f2(0)/2!,...,a, = f'(0)/n!

for n > 0. More formally, we have .....




Maclaurin series

© Suppose f(x) is differentiable infinitely many
times and that it has a power series
representation (series expansion) of the form

f(z) =>" a;x*, as above.
i=0

o Differentiating n times gives

®.0

f ) =) ai(i—1)...(i —n+1a""

1=n

> Setting = = 0, we have f(0) = nla, because
all terms but the first have = as a factor.




Maclaurin series (2)

> Hence we obtain Maclaurin’s series:
@)= 3 100
7!
1=0

2 |tis important to check the domain of
convergence (set of valid values for x)

2 This rather sloppy argument will be tightened
up later.




> f(0)=1s0ay=1

> f'(x)=3(1+z)*so f'(0) =3 and
a1 = 3/1' =3

> f"(x)=3.2(1+x)so f’(0) =6 and
a9 — 6/2' =3

> f"(z)=3.21s0 f"(0) =6and a3 =6/3! =1

2 Higher derivatives are all 0 and so (as we
Know)

(1+2)° =1+ 3z + 32"+ 2°




2> We probably know what the power series is
for this function — namely the geometric
series in z, iIn which all a; = 1.

> f(0) =1, so far so good!

> fllz)=—-(1—-2)(-1)=1-2)"
2 s0 f'(0) =1




Example 2 (2)

o Differentiating repeatedly,

() = (=1)(=2)... (=n)(1 —z)~ "I (=1)"
= nl(1— aj)_(”H)
2 50 a, = f™M(0)/n! =n!(1)=*) /pnl =1
> Thus

®.0

(1—2)"t = Z 1.2°

1=0
provided this converges.




Example 3: f(x) = log.(1 + x)

® a9 = f(0) =0 because log, 1 = 0s0 no
constant term

> fl(z)=(1+x)""s0a =1
> fM(@) = (1)} (n — (1 + )" s0
a, = (—1)""'/n

> Therefore

X
10g6(1+x):I 5 | 3 "4 -

provided this converges.




A look at convergence

2 What about log, 27
> |s It true that

O

log,2 =Y (=1)""'/n ?

n=1
> je.islog,2=1-24+1—-14...2

o |t depends how you ‘add up the terms’, i.e. In
what sequence

° conditionally convergent series

> Tryit. .. how accurate is your result after
100,000 terms?




A look at convergence (2)

2 What about when x = —1 giving log_ 07
> |s

oie. —(1+5+3+1+...)7?

2> Well, we know that log, 0 = —o0, SO expect
this series to diverge; very slowly, because
log x diverges very slowly as x — oo or 0.

> What do think 3" 1 /n is?

n=1

> More about this later




Taylor series

2 A more general result is:
fla+h)= fla)+

h hn—l R

(1) | (n—1) (n)

1! (@)t (n — 1)!f (a)+n! flatOh)
where 6 € (0,1)

> Also called the nth Mean Value Theorem

2 |t is a nice result since it puts a bound on the
error arising from using a truncated series




Power series solution of ODEs

o Consider the differential equation

dy
dr

for constant £, given that y = 1 when x = 0.

ky

2 Try the series solution

0.9
Y = E a;x’
i=0

2 Find the coefficients a; by differentiating term
by term, to obtain the identity, for : > 0:




Matching coefficients

©.0

.9
E a;ix'™! = E ka;x' = E ka; 1z}
i=0 ‘

1=1

> Comparing coefficients of 2! for ¢ > 1
a; = ka;_q hence

k ko k k'

a; — —Aj—1 — — = CL@—QZ---:.—'QO
1 11— 1 A

2 When x =0,y = ay SO ag = 1 by the boundary
condition. Thus

, 7!
1=0




1000000
Y 1/n=14.3927
n=1
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COMPLEX NUMBERS

A short history number systems:
2 IN: for counting, not closed under subtraction;

° . IN with 0 and negative numbers, not
closed under division;

> (): fractions, closed under arithmetic
operations but can’t represent the solution of
non-linear equations, e.g. v/2;

° IR: can do this for quadratic equations with

real roots and some higher-order equations
— but not all.

> More on the reals when we consider limits
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Missing numbers

2 The first entity we cannot describe is the
solution to the equation

> +1=0

l.e. v—1 whichwewillcall : = /-1

° There is no way of squeezing this into IR — it
cannot be compared with a real number

(contrast /2 or m which we can compare with
rationals and get arbitrarily accurate
approximations)

° So we treat : as an imaginary number,
‘orthogonal’ to the reals, and consider IR U {i}

e | Methods—2008 — p.18/131




From the definition of : we have
o0 ?=—-1; P =dti=—i i*=(*)*=(-1)7=1

2 more generally, for all n € IN,

Z'Qn _ (22)7?, _ (_1)71’ 7:27?,—|—1 _ ZQ??,Z _ (_1)7@2
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Closure under arithmetic operators

© Closing IR U {i} under the ‘arithmetic
operators’ gives the complex numbers C.

2 |f21,22€@, then z; + 20 € C, 21 — 20 € C,
21 X z9 € Cand z/2z € C.

2 Any complex number can be written in the
form z = x + 1wy for z,y € IR. We write:
> R(2) = z, the real part of 2
> §(2) = y, the imaginary part of 2




Arithmetic operators

2 Arithmetic operations on C are defined
symbolically

> as If + were just a variable name
> but replacing i* by —1

° Hence any operation results in a real constant
(real part) added to a real constant
(imaginary part) multiplied by

2 The precise definitions defined next must
(and do) reduce to the well known operations
on IR when the imaginary parts of their
operands are zero.




Definition: If z; = 1 + iy; and 2y = 29 + 1Yy are
complex numbers, then

2+ 20 = (w1 + x2) + (Y1 + yo2)
and

21— Ry = (371 — 332) - Z'(yl — 92)

© same as ‘adding brackets and collecting
terms’

> addition is associative and commutative,
because it is on real numbers (exercise)
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Multiplication

Definition: If z; = 1 + iy; and 2y = 29 + 1Yy are
complex numbers, then

2120 = (1129 — Y1Y2) + i(21Yy2 + Y179)

2 same as ‘multiplying brackets and collecting
terms’ but also using the fact that > = —1

2 multiplication is associative and commutative,
because it is on real numbers (slightly harder
exercise)
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Complex conjugate

Definition: The Complex conjugate of a
complex number z = x + 1wy ISz = x — 1.

> Rz =Rz

> {7 = -z

O z+4+7z=2x=2Rz € R

° z — 7z = 2wy = 215z which is purely imaginary

R B s B e )
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Conjugate of a product

The conjugate of a product is the product of the
conjugates:
Z1%3 = 21 %2

o either by noting that the conjugate operation
simply changes every occurrence of : to —1;

2 Or since

(5131 -+ iyl)(lbg + iyg) = (lelx‘g — ylyg) + i(xlyg -

- y1$2)

(1 —iy1) (w2 —iy2) = (2122 — Y1y2) — W(T1Y2 -

which are conjugates

- y1$2)



Definition: The modulus or absolute value of 2
IS |z| = V/2Z.
° zz=(zx+w)(r—1y)=2*+1y* €R

> Notice that the term ‘absolute value’ is the
same as defined for real numbers when
Sz =0, viz. |z

o |z129| = |71| |22| because

N2|® = 2200717 = 212097 T = NPT = |Z1|2|Z2|2
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Reciprocal and division

o |f z = x + 1wy, its reciprocal is

1 Z Z T — 1y

2z 22 2242

> This can be written 2z~ = |2|7?z, using only
the complex operators multiply and add (but
also real division which we already know).

° Complex division is now defined by

21 /29 = 21 X z;l




Calculate as a complex number

3+ 2
7 — 3

> Solution:

342 (34 2i)(7+ 3i)
7—3  (7—=3i)(7+3)
15 + 23

49 +9
1o 23

— | 7}

58 o8




2 This defines the complex numbers rigorously,
consistent with the reals. But why bother?

2> Lots of reasons!

> The theory of complex numbers, complex
variables and functions of a complex
variable is very deep, with far-reaching
results.

> Often a ‘real’ problem can be solved by
mapping it into complex space, deriving a
solution, and mapping back again: a direct
solution may not be possible.

Methods—2008 — p.29/131




Fundamental theorem of Algebra

2 |t can be shown that any polynomial equation
of the form

l+az4+az’+...+a,2" =0
has n complex solutions (some of which
might be coincident, e.g. for 2% = 0).

> So we know that if we need a solution to such
an equation, it is worth looking!

2 Contrast in real space where we might try to
locate a root of an equation with no real
solutions.




Geometrical interpretation

2> A complex number z = x + iy IS equivalent to
the pair of real values (z,y), i.e. there is a 1-1
correspondence (bijective mapping) between
Cand R x IR

> Thus each complex number is uniquely
represented by a point in two dimensional
space, I.e. has coordinates with respect to
two axes.

2 The distance between two points 21, 2, Is the
modulus |z; — 2o

2 This two-dimensional space is called the
Argand diagram.




Argand diagram

A point z can be represented
2 In Cartesian coordinates by z = x + 1y

© or in polar coordinates by z = r(cos 8 + ¢ sin 0)
where |z]? = r?(sin? 0 + cos?0) = r2, s0 |2z| = .

o Clearly x = rcosfl and y = rsinf
> We write Arg z = 6§ — the argument of >

° Draw this for yourselves and update the
diagram as we go .....




Representation as vectors

° The addition rule is exactly the same as you
had for vectors.

2 Add the corresponding components:
(z1,91) + (22,92) = (@1 + 22,91 + ¥2)

o Similarly with multiplication by a real / scalar —
as complex numbers we get:

AMax +1y) = dx + 1 y ~ (A\z, \y)

2 Many two dimensional vector problems are
solved using a complex number
representation.




Products in the Argand diagram

2 Geometrically, the definition of a product
doesn’t mean very much!

> But if we work in polar form we will see that if
2z = 2129, then
> The modulus of z is the product of the
moduli of z; and z, — as we would expect;

> The argument of z is the sum of the
arguments of z; and z».




DeMoivre’s theorem

If 21 = r1(cos6; + isinf;) and
29 = To(cos By + 28in by), then

2129 = r1ra(cos(fy + 03) + isin(f; + 65))

2 The proof is very easy. By definition of
multiplication,

2129 = I'1ro X

(cos 67 cos By—sin 0 sin Oy+1(sin 61 cos By4-cos 0 sin by))

2 the result now follows by standard
trigonometrical identities.




Back to the Argand diagram

So the product of the complex numbers z; and 2
IS identified graphically as that point z having:

o Arg z = Argz1+Argzs, I.e. the first point’s polar
angle rotates by an amount equal to the polar
angle of he second point — this gives the
direction of the result;

o |z| = |#1]|22], i.e. the modulus of z, or distance
along the now-known direction, is the product
of the moduli of the two points.




Multiply 3 + 3: by (1 +7)?
> Could expand (1 + 4)° and multiply by 3 + 3:
o Alternatively, in polar form (using degrees),
(1+14)° = [21/2(608 45 + isin 45)]°
= 23/%(cos 135 + i sin 135)
by DeMoivre’s theorem.

° 3+ 3i = 18"/2(cos 45 + isin 45) and so the
result is

181/223/%(cos 180 + i sin 180) = —12

| M




Example(2)

o Geometrically, we just observe that the Arg of
the second number is 3 times that of 1 + 4, i.e.
3 x /4 (or 3 x 45 in degrees). The first
number has the same Arg, so the Arg of the
result is = or 180 degrees.

> The moduli of the numbers multiplied are /18
and /23, so the product has modulus 12.

> The result is therefore —12.




Triangle inequality

V21,20 € C, |21 + 22| < |21] + |29

An alternative form, with w; = z; and wy = z{ + 29
1S ‘w2’ — ]wl\ < |w2 — ”LUl‘ and, SWitChing w1, W,
lwq| — |we| < |wy — wy]. Thus, relabelling back to
215 %9.

Vzi,20 € C, | 2] = [22] | < |22 — 2]

2 |n the Argand diagram, this just says that:
“In the triangle with vertices at O, 7, 2, the
length of side 7,27 is not less than the
difference between the lengths of the other
two sides”

Methods—2008 — p.39/131




et 21 = 1+ iyl and 29 = T9 + iyg. Then
> The square of the left hand side is:

(x1+x2)2+(y1+y2)2 = 121\2+\z2\2+2(x1x2+y1y2)
° The square of the right hand side is:
21]° + |22]” + 2]21] | 22]

© So it is required to prove xi1xs + y1y2 < |21]|22]-
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Proof (2)

> You know this is true, since in vector notation
U1.U9 < |U7||Va].

o QOtherwise, square and multiply out to require:

T1T5 + iy + T1Ys + Ui

(51?1292 — y1x2)2

x%x% T y%yg + 22122Y1Y2
.e. 0

VAN VA

as required.

2 The Argand diagram geometrical argument is
usually considered an acceptable proof of the
triangle inequality.
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Complex power series

s = " 2 20
e = ;Ezl_I_ZI o | 3 |
. 0 . ~2n+1 ~3 pos
e T nz%(_l) 2n+1) 317 B
0 . ~2n 2 ~4
Re T 2(—1) oo T o T

> Same expansions hold in C, e.g. because
these functions are differentiable in C and
Maclaurin’s series applies.
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Euler’s formula

Put z = 70 Iin the exponential series, for 6 € IR

- 0?2 03 04
0 : 2V 3 Y ,
e = 1+10+1 2!+23! .24! -
0?2 63 6 0°
= 1-+160 ) 23! | 1 Iz5! -

= cosf +1sinf

° The polar form of a complex number may be
written

2 =r(cosf 4 isinf) = re”

and DeMoivre’s theorem follows immediately.

| M




More general form

2 A more general form of Euler’s formula is

i(0+2n)

Z=re forany n € ZZ

since e“?"™ = cos 2nmw + isin 2nmT = 1

2 |n terms of the Argand diagram, the points

el0+2nm) i — 1 2 ... lie on top of each other,
each corresponding to one more revolution
(through 27).

© The complex conjugate of ¢ is
e W = cosf —isin ) and sO | |
cosf = (e +e7) /2, sinf = (e — e ) /24
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nth roots of unity

Consider the equation z" =1 forn € IN

2 One root is z = 1, but by the Fundamental
Theorem of Algebra, there are n altogether.

2> Write this equation as

Zn _ €2km

fork=0,1,...

o Then the solutions are z = 2™/ for
E=0.1.2,....n—1

2 Note that the solutions repeat when
k=nn+1,...




Example: cube roots of unity

° The 3rd roots of 1 are =~ = 52"””'/ 3 for
k=0,1,2, ie. 1, e?m/3 4mi/3,

2 These simplify to
1
cos2m/3 +isin2n/3 = (—=1++/3i)/2
cosdr /3 +isindr/3 = (=1 —3i)/2

2 Try cubing each solution directly ... and then
do the 8th roots similarly!




Solution of 2" = a + b

° These equations are solved (almost) the
same way:

> Let a + ib = re’ in polar form. Then, for
k=20,1,...,n—1,

Jo - (CL Z-b)€27rki _ Te(qb—l—%rk)i
1 (p+27k)
andso z = rrne n» !

> E.g. cuberootsof 1 —i (r = v/2,¢ = —7/4)
are: 2 (cosm/12 —isinm/12), 26(cos7r/12 +
¢sin 77 /12) and
25 (cos 5 /4 + isin 5w /4) = —2713(1 + 4).
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Multiple angle formulas

How can we calculate cos n0 in terms of cos# and
sin 67

> Use DeMoivre’s theorem to expand ¢’ and
equate real and imaginary parts: e.g. for n=5,
by the binomial theorem,

(cos @ + isin #)”
— cos’ 0 4+ i5cos*Osinf — 10 cos® O sin’ 6
310 cos? 0sin® 0 4 5 cos O sin* 0 - isin° 0




Multiple angle formulas (2)

°> Comparing real and imaginary parts now
gives:

cos 50 = cos® 0 — 10 cos® @ sin® 0 + 5 cos O sin* 0
and

sin 50 = 5cos*Osin@ — 10 cos® O sin® 6 + sin®° 0




Conversely ....

How can we calculate cos™ 6 in terms of cos mé
and sin m@ for m € IN?

o Lletz=¢Ysothatz+2!'=2+%=2cosb

o Similarly, z™ + z7™ = 2 cos m# by DeMoivre’s
theorem.

2 Hence by the binomial theorem, e.g. for
n = o,

(z+271)° = (2°+2°)+5(:+27)+10(z + 2z 1)
2°cos” ) = 2(cos 50 + 5cos 36 + 10 cos §)

> Similarly, z — z=! = 2isin 0 gives sin" 0




What happens when n is even?

2 You get an extra term in the binomial
expansion, which is constant.

°> E.g. forn = 6:

(z+21" = (P42 +6("+21)+15(z"+277)
2°cos’§ = 2(cos 66 + 6 cos 46 + 15 cos 20 + 10)
and so

1
cos’ ) = ﬁ(cos 660 + 6 cos 46 + 15 cos 260 + 10)




Summation of series

Some series with sines and cosines can be
summed similarly, e.g.

C:zn:akcost

k=0

> Let S = Y a"sinkf. Then,
k=1

1 — (aew)nﬂ

1 — ae'

C+15 = Zakeiw =

k=0




Summation of series (2)

2 Hence

(1 _ (aeie)nﬂ)(l _ ae_w)
(1 —ae?)(1 —ae ")
1 — ge 0 — gntleilnt+1)0 4 n+2gind

1 — 2acos @ + a?

C+iS =




Summation of series (3)

° Equating real and imaginary parts, the cosine
series Is:

1 —acosf — a1 cos(n + 1)0 + a2 cosnb

( =
1 — 2a cos @ + a?

2 and the sine series is:

asinf — a"sin(n + 1)0 + a4 sinnd
1 — 2a cos 0 + a?

S:




How about
= [ e* cos bOdb, = [ e sinbhdf ?

> Could do with reduction formulae if a or b is
an integer, but .....

C+iS = / elatib)d gg
0

e(a—l—ib)a: 1 B (eaxeibaﬁ . 1)(& o Zb)
N a+ib a? + b?
(e cosbxr — 1 4+ 1e* sinbx)(a — ib)

a? + b?




Integrals (2)

> Result is therefore C' + 1S =

e (a cosbxr + bsinbxr) — a + 1(e™(asinbxr — bcosbx) + b)

a’ + b?
2 and so we get:

e (a cos br + bsinbzr — a)
a’ + b?

e (asinbr — bcosbr) + b
a® + b?

C:

g —




REAL NUMBERS

> Why do we need ‘real numbers’?
> What’s wrong with just the rationals?

> Aren’t fractions accurate enough — they
have arbitrary precision?

> Proposition: /2 is not a rational number
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Proof that /2 is not rational

Suppose Jp, ¢ € IN st. v/2 = p/q and choose p, ¢
st. they have no common factor.

Then p? = 2¢* and so p? is even.

Therefore p is even (odd x odd is odd) and so p?
IS a multiple of 4.

Therefore ¢* = p*/2 is even and hence so is ¢. But
SO IS p, a contradiction.




Useful numbers

2> So there are ‘useful’ numbers that are not
rational.

> We call the ‘useful’ numbers the real numbers
or just the reals, and denote them by IR.

o Clearly NC Z CcQ CIR

2 How many reals do you think there are,
relative to the rationals?
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How many real numbers?

o |f risirrational, then sois r + g forany ¢ € @©.

(fr+q=pe@Q,thenr=p—qe@®,a
contradiction.)

> s0 just /2 generates at least as many
iIrrationals as there are rationals, and we
haven’t even considered the other arithmetic
operations!

2 in fact there are HUGELY many ‘more’
irrationals than rationals
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Gaps in the real line

> Consider the real numbers in the closed
interval 2 |0,1] ={x|0< 2 <1}

> Number the rational numbers in [0,1] as
™,7T2,T3,...

> We can do this since the rationals are
countable. Note that the ordering is not
numerical, it can be anything.

2Similarly, an open interval has round brackets: (0,1) = {z |0 < x < 1}

and there are ‘mixed’ intervals, open at one end, closed at the other, e.g. (0, 1].
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The rationals’ space

2 @Given any small value o € Q, put the closed
interval

I, =1|rn—0/2" r, +06/2"]

around the nth rational

2 lL.e. r, Is in the middle of an interval of length
5/2n—1




The rationals’ space (2)

° The sum of the lengths of the intervals I,, is

i 6/2" 1 =26
n=1

2 This Iis because the sum is a geometric
progression of the form

O

» 2t =1/(1-x)

1=0

for |z| < 1; 2 =1/2in our case.




Continuum of numbers

°> Some of the intervals overlap, but it doesn’t
matter, their combined length is less than 2/
for any value of ¢, however small

° Their combined length is therefore 0 (why?)
and so the rationals take up ‘zero space’

© The rest of |0, 1] is taken up with real,
irrational numbers.

> We want the reals to form a ‘continuum’ so we
can move smoothly along the real line without
falling into gaps, e.g. to gradually approach
the solution of an equation by iteration.




Digression on bounds

2 The number U € IR is an upper bound of the
set of real numbers X it r < U forall r € X.
Similarly for a lower bound.

> A set of reals is bounded above if it has an

upper bound, and bounded below if it has a
lower bound.

> A set which is bounded above and below is
just called bounded




Digression on bounds (2)

2> The smallest element (if it exists) of a set of
upper bounds is called the least upper bound
or the supremum of a set X, abbreviated to

sup(X)

° The largest element (if it exists) of a set of
lower bounds is called the greatest lower
bound or the infimum of a set X, abbreviated
to inf(X)

© What are the sup and inf of (0,1)?




Fundamental Axiom

2 To get a continuum of reals, we make an
assumption: the Fundamental Axiom:
An increasing seguence rq, 9, ... of real
numbers that is bounded above converges to
a limit which is itself a real number

> Compare the definition of a Complete
Partial Ordering (CPO) used in semantics
of programming languages (maybe next
year or in ‘domain theory’)

> ‘complete’ means ‘closed w.r.t. limits’.
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Alternative definition

2 An equivalent form of the Fundamental Axiom
IS:
The set of upper bounds of any set of real
numbers has a least member (assuming it is
non-empty, of course)

° The proof of equivalence is non-trivial (but not
too hard either): uses the ‘Chinese box
theorem’

o Similarly for lower bounds




Decimal numbers

> What we know about is fractions and
decimals!

> Fractions are just rationals, so are also
reals because ) C IR

> Decimals, finite and infinite, define all
rationals also and all of the irrationals in
every day use, like square roots, w, e etc.

> Can decimals characterise all the reals?
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Real Numbers as decimals

> We write a decimal in [0,1) In the form:
0.dydy... =) d;107
1=1

where d;, € {0,1,2,3,4,5,6,7,8,9} Vie N
2 For a finite decimal of lengthn, d; =0 Vi > n




Real Numbers as decimals (2)

> |t can be shown that the decimals provide a
complete characterisation of the reals

> every decimal denotes a real number

> every real number can be written as a
decimal, e.g. .....




Real Numbers as decimals (3)

2> the natural number n Is written n.0

> 3/4 =0.75
> 1/3 = 0.3= 0.333333... (recurring infinite
decimal)

o 1 = 3.141592653589793238462 . . .
(non-recurring infinite decimal)

° The fundamental axiom is crucial in the proof.

2 This is a nice result as it means our intuitive
view of real numbers (as decimals) is
sufficient ..... but no coincidence, of course!




SEQUENCES AND CONVERGENCE

°> A sequence is a countable, ordered set of
real numbers {a; € R | : € IN}, usually written

a1,d2,...,Up, ...
or simply
ai,ad, ...

> Alternatively it is function, a : IN — IR with the
obvious definition

2> examples
> 1,4,9,....,n2%, ...
> 1,-0.25,0.1,...,(=1)"t/n2, ...




Convergence

Definition: A sequence a4, a-, ... converges to a
imit [ € IR, written a,, — [ as n — oo or
lim,, oo @, = [, Iff

Ve >0,dN e Nst. Vn > N, |a, — ]| < ¢

o equivalently, | —e < a, <l +e¢
2 ‘tramlines’ e away from the limit value |
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lllustration of bounds, Sup and Inf

Notice how the supremum decreases and the in-
fimum increases for the subsets {a,,a,.1,...} as
n INncreases.
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lllustration of convergence

%
A

limit a

10 15 20
N(e)=10 N(e')=18

Need a bigger N as ¢ decreases




Convergence (2)

2 |Important in any numerical algorithms &
programs that use iteration

> |.e. quite a lot! — graphics, performance
analysis, engineering applications like CFD
and FEM .....

> Iteration no use unless it converges

> if it does, how fast? Can we calculate the
result directly?
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Convergence and boundedness

° For a bounded increasing sequence of

positive values pq, ps, ... the limit p Is equal to
the supremum s = sup p,

> Limit p exists by Fundamental Axiom

> Ve > 0 the ‘upper tramline’ is an upper
bound

> similarly, every upper bound is above the
lower tramline

> thereforep —e<s<p+eandsos=p




Convergence and boundedness (2

2> A convergent sequence Is bounded
> Letay,as, ... have limit [.
> ThendNst.l—-1<a,<l+1Vn>N
> So, for all 7 € IN,

min(l—1,aq,...,ay) < a; < max({+1,aq,...,anN)




Proof that s = p by the «-N method

1. Suppose p,, > p for some m.
Pick ¢ = (p,, — p)/2 so that Vn > m,
Pn—P 2 Pm— P =2€>¢e Hence py,ps, ...
does not converge, a contradiction. Thus p is
an upper bound, so p > s.

2. Now suppose that « is an upper bound.
Since p1, po, . .. converges,
Ve > 0,dN s.t. py >p—¢€. Hence p — e < u
and so p < u since € can be arbitrarily small.
In particular, p < s.

p>sandp <s=p=s.
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Example: a, = 1/n

o [ntuitively, 1/n decreases, getting closer and
closer to zero, as n increases.
2 This (correct) intuition is made rigorous as

follows:
Givenany e > 0, ay < e€if N > 1/e. Choose

N = [1/e]. Then
Vn > N, |a,| < ¢

since a,, Is decreasing. Thus, a,, — 0 as
n — OQ.

© Similarly for a,, = 1/n® for any a > 0
(exercise).
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Trapping

Theorem: Given convergent sequences by, bo, . ..
and ¢y, ¢, . . ., each with limit [, suppose the
sequence ay, as, . .. satisfies

bnéan<cn

Vn > N forsome N € IN. Thena, — [ asn — oo.

2 [ntuitively, the sequence a,, becomes ‘trapped’
between b,, and ¢,,.

> Commonly called the sandwich theorem.
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Proof of sandwich theorem

2 Pick e > 0

° Since the sequences b,, and ¢,, converge,
E|N1, Ns s.t. Vn > maX(Nl,Ng), [—e< b, <
[+eand ! —e<c, <l+ele.

[—e<b, <a,<c, <l+e¢€

2 Hence,
AN( = max(Ny, Ny)) st.Vn > N, |a, — 1| < ¢

> Soa, —lasn — oo




Special cases

°> It b, =1[forall n > 0, the greatest lower bound
(infimum) on «,, iIs the constant |

2 An upper bound is ¢, and the supremum is |

> E.g. the sequence 1/n” is trapped between 0
and 1/n, which we just showed has limit 0

o Similarly, if ¢, = [ for all n > 0, the supremum
on a,, IS the constant [ and a lower bound is b,,
with infimum |/




1 | 1 | | 1
vVn2+1 | vn2+2 ' 0 U Vn24n
1

2y > H— =
vnidn o J141/n

vr2+l o f141/n2

2 Hence a, Is trapped between two sequences
thattendto1asn — oo0,s0a, — 1

o Suppose a,, =
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Ratio convergence test

Theorem: If |a,, 1 /a,| < c < 1forsomec e R
and for all sufficiently large n (i.e. Vn > N for
some integer N), then a,, — 0 as n — oc.

2 A convergent sequence with limit O is called a
null sequence.

° The proof is that, forn > N,
la,| < clan_1| < ... <" N ay| = k"

where £k is the constant |ay|/c"

> But ¢ — 0 as n — oo and so the theorem is
proved by the sandwich theorem




Ratio divergence test

Theorem: If |a,, 1 /a,| > ¢ > 1forsome c € R
and for all sufficiently large n, then the sequence
a, diverges.

° The analogous proof is that, for n > NN,
an| > clan_1| > ... > " Nan| = k"

° But ¢" has no upper bound, and hence
neither does |a,,|




Alternative form of ratio tests

Simpler forms of the ratio tests use the limit of
the ratio |a,,1/a,|, when this exists — call it r:

> Then if r < 1 the sequence converges and if
r > 1, it diverges.

° The proof is simple: e.g. if r < 1, then JN s.t.
Vn > N, |a,+1/a,] < (r+1)/2 <1 and we can
pickc= (r+1)/2




Combinations of sequences

Theorem: Given convergent sequences a,, and
b, with limits a and b respectively, then
° lim (a, +b,) =a+b

n—oo

° lim (a, —b,) =a—>

o lim (apb,) = ab

° lim (a,/b,) = a/b provided that b £ 0

n—oo




Sample proof: product

la, (b, — b) + bla, — a)
an||0n — b| + |b]|an — a)

la,b, — ab|

IA

> Let A be any upper bound of {|a,|}

° Givene >0, AN s.t. |a, —a| < ¢/(A+ |b]) for
all n > Ny and dN, s.t. |b, — b| < ¢/(A+ |b)
forall n > N,

° Hence |a,b, — ab| < e for all n > max(Ny, Ns)




3n° +n
a, =
n?+3n+1
> Divide numerator and denominator by n?:
3+ 1/n

in = 1+ 3/n+1/n?

® 1/n — 0, s0 1/n* — 0 (product of sequences
or trapping)
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Example (2)

° numerator and denominator converge to 3
and 1 respectively (sum of sequences, 3
times)

2 S0 a, — 3 by the division rule (denominator
non-zero)

2 rigorous justification of ‘domination of largest
term’ rule
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General convergence theorem

NB: This is not examinable
Theorem (Cauchy): The sequence a;,as, ... IS

convergent if and only if
Ve > 0,IN s.t. |a, — a,,| < eforalln,m > N.

o This theorem is useful because you don't
need to know what the limit is (when it exists),

e.g.

> when q,, iIs defined by a recurrence relation;

> when q,, IS defined by a recursive Haskell
function

2 |tis also a test for divergence




a/n_

>0 asn >m — o0

m+1 n-+1
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Iteration and fixpoints

Consider the simple iteration:

2+ a,

Ap+1 —

3+ a,
with initial value a; = 1.
> |f this converges, its limit is [ given by
F+20—-2=0

sothat! = -1+ \/g

> So will it converge, and to which root, [ = [
or[—?




Convergence

o Clearly, every a,, > 0 (rigorous proof by
iInduction), so can’t converge to [ .

° Letx, =a,— (" forn > 1and try to prove
x, — 0

2 Aiming to use the ratio test for sequences:

24+a, 24+1T T

el T, 340 (3tay)(3+ 1)

° Thus |z,.1| < |z,|/9 since a, and [T > 0

> So the iteration does converge to [T = /3 — 1




Graphically ....

The iteration follows the red path, starting at the
initial point (1,0) and repeating:

2 vertical segment up to the blue line y = «

> horizontal to the curve y = 22
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Smaller plot range and zoom 10 x

1y 0.76
0.9 0.75 —
0.8 0.74
0.7 0.73
0.6 0.72
0.72 0.73 0.74 0.75 0.76

| M




Zoom 100 x and 1000 x

0.735;
0.734 0.7322

0.733!
0.7321}

I I

0.732!
0.732

0.731!
0.7319!

0.73

0.731 0.733 0.735 0.732 0.7322
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Starting at + = —2.7 near negative ropt




Smaller plot range and zoom 10 x

4 1.1
3 1
2 0.9
1 0.8
0 0.7— |
1 0.6
2 0.5
o 21 o 1 5 3 4 0.5 0.6 0.7 0.8 0.9 1 1.1
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Zoom 100 x and 1000 x

0.77; 0.735,
0.76!

0.734
0.75!

0.733
0.74!

0.732

0.731!
0.72}
0.73
0.71!
0.7 ‘ ‘ ‘ 0.731 0.733 0.735
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Starting at + = —2.8 (other side)

4 L
\\\\\ Il / Il Il Il ‘ Il Il Il ‘ Il Il
6 4 -2 7 2 4
-2
-4 -




Smaller plot range and zoom 10 x

4 1.1
3 1
2 0.9
1 0.8
-
Or 0.7
-1t 0.6
-2 0.5¢

0.5 0.6 0.7 0.8 0.9 1 1.1
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0.72}

Zoom 100 x and 1000 x

0.736;

0.735;

0.734;

0.733;

0.732;

0.731;

0.731

0.733

0.735
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INFINITE SERIES

An infinite series is a summation of the form

0.0

S =) a,; for a real sequence aq,ao, ...
1=1

° E.g. the decimal numbers
o Finteif AN e Nst.a, =0 Vn > N

® nth partial sum S, = ) a;
1=1

o Partial sums 51,9, ... form a sequence:

> A series converges or diverges iff its
sequence of partial sums does

> Often the best means of analysis
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Geometric series

> A ubiquitous example is G = > z* — the
1=1
geometric progression

> Provided G exists,
G=x+)> 2=z+z> 2=+ 2G SO:
. e

1=2 1=

G — X

11—z

> When does G exist? When the series (or
sequence of partial sums) is convergent!




Convergence of the geometric serigs

o Similarly, nth partial sum

n o n—1
Gpo=z+)) 2'=x+z) ' =x+2(G,—z"),
=2 =1
SO. Z Z
x—ajn+1

G, =

1 —2x

> For|z| <1, G, —» /(1 —x) asn — oo by
rules for sequences.

> Similarly, for |x| > 1, G,, diverges as
n — Q.

> Forx =1, GG,, = n which also diverges.




o If x| < 1,ie. -1 <x <1,

G:ixizlfx
i=1

o If|z| > 1, G =) z' = o0, i.e. the series
1=1
diverges.
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Another example

° Consider the convergence properties of the

series
= 1
S = —
ZZ; i(i 4 1)
° Using partial fractions, we can write the nth
partial sum

" /1 1 1
Sn: . R :1
Z(z z+1> n + 1

1=1

2 S0 §,, converges, therefore so does the series
and S =1




Sum of inverse squares

> What about the series S = ) 5?
1=1

1 1 1 - '
> <7 <D for ¢ > 2. S0, summing from

» = 2 ton and adding 1:

n n—1
1 1
1/2 <S5, <1
/2+ Z@:l i+ 1) * Zi:l i+ 1)




Sum of inverse squares (2)

° Thus, from the previous slide,
3/2—1/(n+1)< S, <2—1/n

2 Since S, is increasing, the series converges
(by the fundamental axiom, 2 is an upper
bound) to a value in (1.5,2).




Dodgy series

Consider the series

- . 1 1 1
S=) (=) i=1—=+=—-+...
; 2 3 4
S = (1= )+ (= Dot (5 - 5) > 03
and increasing
> S =1-(-H - (-9 ..

(32— 1) — <1




Dodgy series (2)

2 Thus S5, Is increasing and bounded, hence
convergent.

® Sont1 = Son + 57 and so all partial sums

converge to the same limit, [ say. Hence S
converges to /.




Rearrangements

2 Now consider the sub-series formed by taking
two positive terms and a negative term:

n 1 1 1
Bsn = 2_i—1 bi where b; = 3T h

o Clearly, as n — oo, Bjs, includes all the terms
of S: itis a rearrangement of .S

Bsp = Sin+ 55+ 55+...+ 7 > Sin+0.25

° Hence, Bj, converges to a different limit than
Syn (limit [)!

Methods—2008 — p.115/131




Sums of series

Theorem: Suppose > a; and ) b; are
convergent with sums a and b respectively. Then
if c; = a; + b;, Y ¢; is convergent with sum a + b,
and ) _ \a; is convergent with sum \a.

° Easy to prove by considering the partial sums

o Further expected properties hold for series
without negative terms .....




Series of non-negative terms

2 |n a series of non-negative terms, the partial
sums are increasing and hence either

> converge, if the partial sums are bounded
> diverge, Iif they are not

® Notation:
> p; IS @ non-negative term in the series ) _ p;
> Y ¢; is a convergent series with sum c
> > d; is a divergent series
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Comparison test

Theorem: Let A > 0 and NV € IN. Then

1. if p; < A¢; Vi > N, then ) p; converges;
2. if p; > \d; Vi > N, then > p; diverges.
Sometimes the following form is easier:

> if lim £ exists, then ) _ p; converges;

o jf lim ¢ - exists, then »  p; diverges.




D’Alembert’s ratio test

° This is a very useful — and even over-used —
technique:

Theorem: For V € IN,
1. if pju1/p; > 1 Vi > N, then ) p; diverges;

2. ifdk e Rst. p1/pi <k<1Vi> N,then
> p; converges.

Exercise: Consider the series with p; = 1/4




Proof of part 2

O piy1 < kp; fort > N. Thus, (formally by
iInduction)

pi < K (prna1/ENTY if i > N+ 1

® Thus ) p; converges by the comparison test
with ¢; = k' and A = py.1/EV T (Note & > 0.)

° Proof of part 1 is analogous.




Absolute convergence

A series ) a; is Absolutely Convergent if ) |a;]|
converges, i.e. the sum of the absolute values of
its terms is convergent.

> The sum of absolute values is a sum of
positive terms

2 An absolutely convergent series is
convergent (proof by Cauchy’s test)

2 A series which is convergent but not
absolutely convergent is called conditionally
convergent

> E.g. the ‘dodgy series’




CONTINUITY

© A function f(x) is continuous at x = a if
flx) = fla)asz —a
> |.e. there is no ‘jJump’ in the graph of f(z) at
x = a or ‘you can draw the graph without
taking your pen off the paper’
> E.g. the step-function f(z) = |x] is not
continuous.
> f(x) = (1/x)sinz is continuous at all z,
including x = 0 if we define f(0) = 1.
> f(x) = (1/x)sin(1/x) is not continuous at
x =0
° What does it meanto say ‘as ¢ — a’?




Graph of f(x) = (1/x)sinx







Limit of a function

Definition: f(x) — [l asz — a if
Ve>0,30 >0st. [z —a|<d=|f(x)—I]| <e

2 The rigorous definition of continuity is
therefore Ve > 0,346 > 0s.t. |z —a| < =
f(z) = fla)] <e
> |n words, as = gets closer and closer to a,
f(x) gets closer and closer to f(a).

> l.e. f(z) can’t suddenly ‘jump’to f(a),
skipping over intermediate values, leaving
a gap, ‘taking the pen off the page’.




A continuous function

J(x)
f(x) — 1 asx—10

[+¢ \

\

[+¢' \
limit / | I *.
[-¢ |
l-¢
L (10-5(e), 10+3(e) )
| //
/vE.II? 15 20 - 30> x

1 5
( 10-8(e"), 10+5(e") )/
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A discontinuous function

e

f(x)+=1 asx —10

[+¢ \

/
[+¢' \

limit /2 I

[-¢'

l-¢

10_6(8') ? - i /
\\b i

1 5 10 15 20 25 30

10+0(¢)




Comments

2 |n the continuous function, as x gets closer
and closer to 10, f(x) gets closer and closer
to /.

> If f(10) is defined to be [, f is continuous at
r = 10

> Points in the arbitrary ‘green’ intervals on
the y-axis must be the images of ‘red’
intervals on the z-axis

° Note the discontinuity at x = 10 in the
discontinuous function:
> Cannot find any ‘red’ interval when the
‘green’ interval gets too small.
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Simple properties

° Sums and products of (a finite number of)
continuous functions are continuous —
f(x) + Ag(x), f(x)g(x) are continuous if f and
g are (A € IR).

© Same for quotients f(x)/g(x) where g(x) # 0.

2 A continuous function of a continuous
function is continuous — i.e. the composition
f(g(x)) is continuous.




Differentiability and continuity

o If f(x) is differentiable at x = a, it is
continuous there. Why?

°> Recalling the definition of a derivative,

5lim0 f(ﬂ(sg_f(x) < oo and so f(x + dz) — f(x)

as r+0r — x
° But f(x) = xsin(1/x) is continuous at x = 0,
where f(x) = 0, but not differentiable there

[f'(x) =sin(1l/x) — (1/x) cos(1/z) for x # O]




Graph of f(x) = xsin(1/x)




