Mathematical Methods for Computer Science (Part 2)

Peter Harrison

Email: pgh@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and ${ }^{L A} T_{E} X$

BASICS OF POWER SERIES

- Represent a function $f(x)$ by:

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

for coefficients $a_{i} \in \mathbb{R}, i=1,2, \ldots$.

- Called a power series because of the series of powers of the argument x
- For example, $f(x)=(1+x)^{2}=1+2 x+x^{2}$ has $a_{0}=1, a_{1}=2, a_{2}=1, a_{i}=0$ for $i>2$
- But in general the series may be infinite provided it converges

What are the coefficients?

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

- Suppose the value of the function f is known at $x=0$. Then we have straightaway, substituting $x=0$

$$
a_{0}=f(0)
$$

- Now differentiate $f(x)$ to get rid of the constant term:

$$
f^{\prime}(x)=a_{1}+2 \cdot a_{2} x+3 \cdot a_{3} x^{2}+4 \cdot a_{4} x^{3}+\ldots
$$

What are the coefficients? (2)

- Suppose the derivatives of the function f are known at $x=0$ and set $x=0$:

$$
a_{1}=f^{\prime}(0)
$$

- Differentiate again to get rid of the constant term:

$$
f^{\prime \prime}(x) \equiv f^{(2)}(x)=\text { 2.1. } a_{2}+3.2 \cdot a_{3} x+4.3 \cdot a_{4} x^{2}+\ldots
$$

- Set $x=0$ and repeat the process:

$$
a_{2}=f^{(2)}(0) / 2!, \ldots, a_{n}=f^{(n)}(0) / n!
$$

for $n \geq 0$. More formally, we have

Maclaurin series

- Suppose $f(x)$ is differentiable infinitely many times and that it has a power series representation (series expansion) of the form $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$, as above.
- Differentiating n times gives

$$
f^{(n)}(x)=\sum_{i=n}^{\infty} a_{i} i(i-1) \ldots(i-n+1) x^{i-n}
$$

- Setting $x=0$, we have $f^{(n)}(0)=n!a_{n}$ because all terms but the first have x as a factor.

Maclaurin series (2)

- Hence we obtain Maclaurin's series:

$$
f(x)=\sum_{i=0}^{\infty} f^{(i)}(0) \frac{x^{i}}{i!}
$$

- It is important to check the domain of convergence (set of valid values for x)
- This rather sloppy argument will be tightened up later.

Example 1: $f(x)=(1+x)^{3}$

- $f(0)=1$ so $a_{0}=1$
- $f^{\prime}(x)=3(1+x)^{2}$ so $f^{\prime}(0)=3$ and

$$
a_{1}=3 / 1!=3
$$

- $f^{\prime \prime}(x)=3.2(1+x)$ so $f^{\prime \prime}(0)=6$ and

$$
a_{2}=6 / 2!=3
$$

- $f^{\prime \prime \prime}(x)=3.2 .1$ so $f^{\prime \prime \prime}(0)=6$ and $a_{3}=6 / 3!=1$
- Higher derivatives are all 0 and so (as we know)

$$
(1+x)^{3}=1+3 x+3 x^{2}+x^{3}
$$

- We probably know what the power series is for this function - namely the geometric series in x, in which all $a_{i}=1$.
- $f(0)=1$, so far so good!
- $f^{\prime}(x)=-(1-x)^{-2}(-1)=(1-x)^{-2}$
- so $f^{\prime}(0)=1$

Example 2 (2)

- Differentiating repeatedly,

$$
\begin{aligned}
f^{(n)}(x) & =(-1)(-2) \ldots(-n)(1-x)^{-(n+1)}(-1)^{n} \\
& =n!(1-x)^{-(n+1)}
\end{aligned}
$$

๑ so $a_{n}=f^{(n)}(0) / n!=n!(1)^{-(n+1)} / n!=1$

- Thus

$$
(1-x)^{-1}=\sum_{i=0}^{\infty} 1 \cdot x^{i}
$$

provided this converges.

Example 3: $f(x)=\log _{e}(1+x)$

จ $a_{0}=f(0)=0$ because $\log _{e} 1=0$ so no constant term

- $f^{\prime}(x)=(1+x)^{-1}$ so $a_{1}=1$
- $f^{(n)}(x)=(-1)^{n-1}(n-1)!(1+x)^{-n}$ so

$$
a_{n}=(-1)^{n-1} / n
$$

- Therefore

$$
\log _{e}(1+x)=\frac{x}{1}-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
$$

provided this converges.

A look at convergence

- What about $\log _{e} 2$?
- Is it true that

$$
\log _{e} 2=\sum_{n=1}^{\infty}(-1)^{n-1} / n ?
$$

- i.e. is $\log _{e} 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$?
- It depends how you 'add up the terms', i.e. in what sequence
- conditionally convergent series
- Try it . . . how accurate is your result after 100,000 terms?

A look at convergence (2)

- What about when $x=-1$ giving $\log _{e} 0$?
- Is

$$
\log _{e} 0=-\sum_{n=1}^{\infty} 1 / n ?
$$

$$
\text { 。i.e. }-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots\right) \text { ? }
$$

- Well, we know that $\log _{e} 0=-\infty$, so expect this series to diverge; very slowly, because $\log x$ diverges very slowly as $x \rightarrow \infty$ or 0 .
- What do think $\sum_{n=1}^{1000000} 1 / n$ is?
- More about this later

Taylor series

- A more general result is:

$$
\begin{gathered}
f(a+h)=f(a)+ \\
\frac{h}{1!} f^{(1)}(a)+\ldots+\frac{h^{n-1}}{(n-1)!} f^{(n-1)}(a)+\frac{h^{n}}{n!} f^{(n)}(a+\theta h)
\end{gathered}
$$

where $\theta \in(0,1)$

- Also called the nth Mean Value Theorem
- It is a nice result since it puts a bound on the error arising from using a truncated series

Power series solution of ODEs

- Consider the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=k y
$$

for constant k, given that $y=1$ when $x=0$.

- Try the series solution

$$
y=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

- Find the coefficients a_{i} by differentiating term by term, to obtain the identity, for $i \geq 0$:

Matching coefficients

$$
\sum_{i=1}^{\infty} a_{i} i x^{i-1} \equiv \sum_{i=0}^{\infty} k a_{i} x^{i} \equiv \sum_{i=1}^{\infty} k a_{i-1} x^{i-1}
$$

- Comparing coefficients of x^{i-1} for $i \geq 1$

$$
\begin{gathered}
i a_{i}=k a_{i-1} \quad \text { hence } \\
a_{i}=\frac{k}{i} a_{i-1}=\frac{k}{i} \cdot \frac{k}{i-1} a_{i-2}=\ldots=\frac{k^{i}}{i!} a_{0}
\end{gathered}
$$

- When $x=0, y=a_{0}$ so $a_{0}=1$ by the boundary condition. Thus

$$
y=\sum_{i=0}^{\infty} \frac{(k x)^{i}}{i!}=e^{k x}
$$

Answer ...

$$
\sum_{n=1}^{1000000} 1 / n=14.3927
$$

COMPLEX NUMBERS

A short history number systems:

- \mathbb{N} : for counting, not closed under subtraction;
- $\mathbb{Z}: \mathbb{I N}$ with 0 and negative numbers, not closed under division;
- Q: fractions, closed under arithmetic operations but can't represent the solution of non-linear equations, e.g. $\sqrt{2}$;
- \mathbb{R} : can do this for quadratic equations with real roots and some higher-order equations
- but not all.
- More on the reals when we consider limits

Missing numbers

- The first entity we cannot describe is the solution to the equation

$$
x^{2}+1=0
$$

i.e. $\sqrt{-1}$ which we will call $i \equiv \sqrt{-1}$

- There is no way of squeezing this into \mathbb{R} - it cannot be compared with a real number (contrast $\sqrt{2}$ or π which we can compare with rationals and get arbitrarily accurate approximations)
- So we treat i as an imaginary number, 'orthogonal' to the reals, and consider $\mathbb{R} \cup\{i\}$

Useful facts

From the definition of i we have

- $i^{2}=-1 ; \quad i^{3}=i^{2} i=-i ; \quad i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1$
- more generally, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
& \quad i^{2 n}=\left(i^{2}\right)^{n}=(-1)^{n} ; \quad i^{2 n+1}=i^{2 n} i=(-1)^{n} i \\
& \text { ○ } i^{-1}=\frac{1}{i}=\frac{i}{i^{2}}=-i \\
& i^{-2 n}=\frac{1}{i^{2 n}}=\frac{1}{(-1)^{n}}=(-1)^{n} ; \\
& \\
& i^{-(2 n+1)}=i^{-2 n} i^{-1}=(-1)^{n+1} i \text { for all } n \in \mathbb{N} \\
& \text { ○ } i^{0}=1
\end{aligned}
$$

Closure under arithmetic operator

- Closing $\mathbb{R} \cup\{i\}$ under the 'arithmetic operators' gives the complex numbers \mathbb{C}.
- If $z_{1}, z_{2} \in \mathbb{C}$, then $z_{1}+z_{2} \in \mathbb{C}$, $z_{1}-z_{2} \in \mathbb{C}$, $z_{1} \times z_{2} \in \mathbb{C}$ and $z_{1} / z_{2} \in \mathbb{C}$.
- Any complex number can be written in the form $z=x+i y$ for $x, y \in \mathbb{R}$. We write:
- $\Re(z)=x$, the real part of z
- $\Im(z)=y$, the imaginary part of z

Arithmetic operators

- Arithmetic operations on \mathbb{C} are defined symbolically
。 as if i were just a variable name
- but replacing i^{2} by -1
- Hence any operation results in a real constant (real part) added to a real constant (imaginary part) multiplied by i
- The precise definitions defined next must (and do) reduce to the well known operations on \mathbb{R} when the imaginary parts of their operands are zero.

Addition

Definition: If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are complex numbers, then

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)
$$

and

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)
$$

- same as 'adding brackets and collecting terms'
- addition is associative and commutative, because it is on real numbers (exercise)

Multiplication

Definition: If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are complex numbers, then

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right)
$$

- same as 'multiplying brackets and collecting terms' but also using the fact that $i^{2}=-1$
- multiplication is associative and commutative, because it is on real numbers (slightly harder exercise)

Complex conjugate

Definition: The Complex conjugate of a

 complex number $z=x+i y$ is $\bar{z}=x-i y$.- $\Re \bar{z}=\Re z$
- $\Im \bar{z}=-\Im z$
- $z+\bar{z}=2 x=2 \Re z \in \mathbb{R}$
- $z-\bar{z}=2 i y=2 i \Im z$ which is purely imaginary
- $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$

Conjugate of a product

The conjugate of a product is the product of the conjugates:

$$
\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}
$$

。 either by noting that the conjugate operation simply changes every occurrence of i to $-i$;

- or since

$$
\begin{aligned}
& \left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
& \left(x_{1}-i y_{1}\right)\left(x_{2}-i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)-i\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

which are conjugates

Modulus

Definition: The modulus or absolute value of z is $|z|=\sqrt{z \bar{z}}$.

- $z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2} \quad \in \mathbb{R}$
- Notice that the term 'absolute value' is the same as defined for real numbers when $\Im z=0$, viz. $\quad|x|$.
- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \quad$ because

$$
\left|z_{1} z_{2}\right|^{2}=z_{1} z_{2} \overline{z_{1} z_{2}}=z_{1} z_{2} \overline{z_{1}} \overline{z_{2}}=z_{1} \overline{z_{1}} z_{2} \overline{z_{2}}=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}
$$

Reciprocal and division

- If $z=x+i y$, its reciprocal is

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}}
$$

- This can be written $z^{-1}=|z|^{-2} \bar{z}$, using only the complex operators multiply and add (but also real division which we already know).
- Complex division is now defined by

$$
z_{1} / z_{2}=z_{1} \times z_{2}^{-1}
$$

Example

Calculate as a complex number

$$
\frac{3+2 i}{7-3 i}
$$

- Solution:

$$
\begin{aligned}
\frac{3+2 i}{7-3 i} & =\frac{(3+2 i)(7+3 i)}{(7-3 i)(7+3 i)} \\
& =\frac{15+23 i}{49+9} \\
& =\frac{15}{58}+\frac{23}{58} i
\end{aligned}
$$

Uses

- This defines the complex numbers rigorously, consistent with the reals. But why bother?
- Lots of reasons!
- The theory of complex numbers, complex variables and functions of a complex variable is very deep, with far-reaching results.
- Often a 'real' problem can be solved by mapping it into complex space, deriving a solution, and mapping back again: a direct solution may not be possible.

Fundamental theorem of Algebra

- It can be shown that any polynomial equation of the form

$$
1+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}=0
$$

has n complex solutions (some of which might be coincident, e.g. for $z^{2}=0$).

- So we know that if we need a solution to such an equation, it is worth looking!
- Contrast in real space where we might try to locate a root of an equation with no real solutions.

Geometrical interpretation

- A complex number $z=x+i y$ is equivalent to the pair of real values (x, y), i.e. there is a 1-1 correspondence (bijective mapping) between \mathbb{C} and $\mathbb{R} \times \mathbb{R}$
- Thus each complex number is uniquely represented by a point in two dimensional space, i.e. has coordinates with respect to two axes.
- The distance between two points z_{1}, z_{2} is the modulus $\left|z_{1}-z_{2}\right|$
- This two-dimensional space is called the Argand diagram.

Argand diagram

A point z can be represented

- in Cartesian coordinates by $z=x+i y$
- or in polar coordinates by $z=r(\cos \theta+i \sin \theta)$ where $|z|^{2}=r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=r^{2}$, so $|z|=r$.
- Clearly $x=r \cos \theta$ and $y=r \sin \theta$
- We write $\operatorname{Arg} z=\theta$ - the argument of z
- Draw this for yourselves and update the diagram as we go

Representation as vectors

- The addition rule is exactly the same as you had for vectors.
- Add the corresponding components:

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)
$$

- Similarly with multiplication by a real / scalar as complex numbers we get:

$$
\lambda(x+i y)=\lambda x+i \lambda y \sim(\lambda x, \lambda y)
$$

- Many two dimensional vector problems are solved using a complex number representation.

Products in the Argand diagram

- Geometrically, the definition of a product doesn't mean very much!
- But if we work in polar form we will see that if $z=z_{1} z_{2}$, then
- The modulus of z is the product of the moduli of z_{1} and $z_{2}-$ as we would expect;
- The argument of z is the sum of the arguments of z_{1} and z_{2}.

DeMoivre's theorem

If $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and
$z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, then

$$
z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)
$$

- The proof is very easy. By definition of multiplication,

$$
z_{1} z_{2}=r_{1} r_{2} \times
$$

$\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right)$

- the result now follows by standard trigonometrical identities.

Back to the Argand diagram

So the product of the complex numbers z_{1} and z_{2} is identified graphically as that point z having:

- $\operatorname{Arg} z=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}$, i.e. the first point's polar angle rotates by an amount equal to the polar angle of he second point - this gives the direction of the result;
- $|z|=\left|z_{1}\right|\left|z_{2}\right|$, i.e. the modulus of z, or distance along the now-known direction, is the product of the moduli of the two points.

Example

Multiply $3+3 i$ by $(1+i)^{3}$

- Could expand $(1+i)^{3}$ and multiply by $3+3 i$
- Alternatively, in polar form (using degrees),

$$
\begin{aligned}
(1+i)^{3} & =\left[2^{1 / 2}(\cos 45+i \sin 45)\right]^{3} \\
& =2^{3 / 2}(\cos 135+i \sin 135)
\end{aligned}
$$

by DeMoivre's theorem.

- $3+3 i=18^{1 / 2}(\cos 45+i \sin 45)$ and so the result is

$$
18^{1 / 2} 2^{3 / 2}(\cos 180+i \sin 180)=-12
$$

Example(2)

- Geometrically, we just observe that the Arg of the second number is 3 times that of $1+i$, i.e. $3 \times \pi / 4$ (or 3×45 in degrees). The first number has the same Arg, so the Arg of the result is π or 180 degrees.
- The moduli of the numbers multiplied are $\sqrt{18}$ and $\sqrt{2^{3}}$, so the product has modulus 12 .
- The result is therefore -12 .

Triangle inequality

$$
\forall z_{1}, z_{2} \in \mathbb{C}, \quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

An alternative form, with $w_{1}=z_{1}$ and $w_{2}=z_{1}+z_{2}$ is $\left|w_{2}\right|-\left|w_{1}\right| \leq\left|w_{2}-w_{1}\right|$ and, switching w_{1}, w_{2}, $\left|w_{1}\right|-\left|w_{2}\right| \leq\left|w_{2}-w_{1}\right|$. Thus, relabelling back to z_{1}, z_{2} :

$$
\forall z_{1}, z_{2} \in \mathbb{C}, \quad| | z_{1}\left|-\left|z_{2}\right|\right| \leq\left|z_{2}-z_{1}\right|
$$

- In the Argand diagram, this just says that: "In the triangle with vertices at O, Z_{1}, Z_{2}, the length of side $Z_{1} Z_{2}$ is not less than the difference between the lengths of the other two sides"

Proof

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Then

- The square of the left hand side is:

$$
\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left(x_{1} x_{2}+y_{1} y_{2}\right)
$$

- The square of the right hand side is:

$$
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right|
$$

- So it is required to prove $x_{1} x_{2}+y_{1} y_{2} \leq\left|z_{1}\right|\left|z_{2}\right|$.

Proof (2)

- You know this is true, since in vector notation $\vec{v}_{1} \cdot \vec{v}_{2} \leq\left|\vec{v}_{1}\right|\left|\vec{v}_{2}\right|$.
- Otherwise, square and multiply out to require:

$$
\begin{aligned}
x_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} & \leq x_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}+x_{1}^{2} y_{2}^{2}+y_{1}^{2} x_{2}^{2} \\
\text { i.e. } & 0\left(x_{1} y_{2}-y_{1} x_{2}\right)^{2}
\end{aligned}
$$

as required.

- The Argand diagram geometrical argument is usually considered an acceptable proof of the triangle inequality.

Complex power series

$$
\begin{aligned}
e^{z} & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots \\
\sin z & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots \\
\cos z & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\ldots
\end{aligned}
$$

- Same expansions hold in \mathbb{C}, e.g. because these functions are differentiable in \mathbb{C} and Maclaurin's series applies.

Euler's formula

Put $z=i \theta$ in the exponential series, for $\theta \in \mathbb{R}$:

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+i^{2} \frac{\theta^{2}}{2!}+i^{3} \frac{\theta^{3}}{3!}+i^{\frac{\theta}{}} \frac{\theta^{4}}{4!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}+\ldots \\
& =\cos \theta+i \sin \theta
\end{aligned}
$$

- The polar form of a complex number may be written

$$
z=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

and DeMoivre's theorem follows immediately.

More general form

- A more general form of Euler's formula is

$$
z=r e^{i(\theta+2 n \pi)} \quad \text { for any } n \in \mathbb{Z}
$$

since $e^{i 2 n \pi}=\cos 2 n \pi+i \sin 2 n \pi=1$

- In terms of the Argand diagram, the points $e^{i(\theta+2 n \pi)}, i=1,2, \ldots$ lie on top of each other, each corresponding to one more revolution (through 2π).
- The complex conjugate of $e^{i \theta}$ is
$e^{-i \theta}=\cos \theta-i \sin \theta$ and so
$\cos \theta=\left(e^{i \theta}+e^{-i \theta}\right) / 2, \quad \sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i$

nth roots of unity

Consider the equation $z^{n}=1$ for $n \in \mathbb{N}$

- One root is $z=1$, but by the Fundamental Theorem of Algebra, there are n altogether.
- Write this equation as

$$
z^{n}=e^{2 k \pi i}
$$

for $k=0,1, \ldots$

- Then the solutions are $z=e^{2 k \pi i / n}$ for $k=0,1,2, \ldots, n-1$
- Note that the solutions repeat when $k=n, n+1, \ldots$

Example: cube roots of unity

- The 3rd roots of 1 are $z=e^{2 k \pi i / 3}$ for $k=0,1,2$, i.e. $1, e^{2 \pi i / 3}, e^{4 \pi i / 3}$.
- These simplify to

$$
\begin{aligned}
\cos 2 \pi / 3+i \sin 2 \pi / 3 & =(-1+\sqrt{3} i) / 2 \\
\cos 4 \pi / 3+i \sin 4 \pi / 3 & =(-1-\sqrt{3} i) / 2
\end{aligned}
$$

- Try cubing each solution directly ... and then do the 8th roots similarly!

Solution of $z^{n}=a+i b$

- These equations are solved (almost) the same way:
- Let $a+i b=r e^{i \phi}$ in polar form. Then, for $k=0,1, \ldots, n-1$,

$$
z^{n}=(a+i b) e^{2 \pi k i}=r e^{(\phi+2 \pi k) i}
$$

and so $z=r^{\frac{1}{n}} e^{\frac{(\phi+2 \pi k)}{n} i}$

- E.g. cube roots of $1-i(r=\sqrt{2}, \phi=-\pi / 4)$ are: $2^{\frac{1}{6}}(\cos \pi / 12-i \sin \pi / 12), \quad 2^{\frac{1}{6}}(\cos 7 \pi / 12+$ $i \sin 7 \pi / 12)$ and
$2^{\frac{1}{6}}(\cos 5 \pi / 4+i \sin 5 \pi / 4)=-2^{-1 / 3}(1+i)$.

Multiple angle formulas

How can we calculate $\cos n \theta$ in terms of $\cos \theta$ and $\sin \theta$?

- Use DeMoivre's theorem to expand $e^{i n \theta}$ and equate real and imaginary parts: e.g. for $n=5$, by the binomial theorem,

$$
\begin{aligned}
& (\cos \theta+i \sin \theta)^{5} \\
& =\quad \cos ^{5} \theta+i 5 \cos ^{4} \theta \sin \theta-10 \cos ^{3} \theta \sin ^{2} \theta \\
& \quad-i 10 \cos ^{2} \theta \sin ^{3} \theta+5 \cos \theta \sin ^{4} \theta+i \sin ^{5} \theta
\end{aligned}
$$

Multiple angle formulas (2)

- Comparing real and imaginary parts now gives:

$$
\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta
$$

and

$$
\sin 5 \theta=5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta
$$

Conversely

How can we calculate $\cos ^{n} \theta$ in terms of $\cos m \theta$ and $\sin m \theta$ for $m \in \mathbb{N}$?

- Let $z=e^{i \theta}$ so that $z+z^{-1}=z+\bar{z}=2 \cos \theta$
- Similarly, $z^{m}+z^{-m}=2 \cos m \theta$ by DeMoivre's theorem.
- Hence by the binomial theorem, e.g. for $n=5$,

$$
\begin{aligned}
\left(z+z^{-1}\right)^{5} & =\left(z^{5}+z^{-5}\right)+5\left(z^{3}+z^{-3}\right)+10\left(z+z^{-1}\right) \\
2^{5} \cos ^{5} \theta & =2(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)
\end{aligned}
$$

- Similarly, $z-z^{-1}=2 i \sin \theta$ gives $\sin ^{n} \theta$

What happens when n is even?

- You get an extra term in the binomial expansion, which is constant.
- E.g. for $n=6$:

$$
\begin{aligned}
&\left(z+z^{-1}\right)^{6}=\left(z^{6}+z^{-6}\right)+6\left(z^{4}+z^{-4}\right)+15\left(z^{2}+z^{-2}\right) \\
& 2^{6} \cos ^{6} \theta=2(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10) \\
& \text { and so }
\end{aligned}
$$

$$
\cos ^{6} \theta=\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)
$$

Summation of series

Some series with sines and cosines can be summed similarly, e.g.

$$
C=\sum_{k=0}^{n} a^{k} \cos k \theta
$$

- Let $S=\sum_{k=1}^{n} a^{k} \sin k \theta$. Then,

$$
C+i S=\sum_{k=0}^{n} a^{k} e^{i k \theta}=\frac{1-\left(a e^{i \theta}\right)^{n+1}}{1-a e^{i \theta}}
$$

Summation of series (2)

- Hence

$$
\begin{aligned}
C+i S & =\frac{\left(1-\left(a e^{i \theta}\right)^{n+1}\right)\left(1-a e^{-i \theta}\right)}{\left(1-a e^{i \theta}\right)\left(1-a e^{-i \theta}\right)} \\
& =\frac{1-a e^{-i \theta}-a^{n+1} e^{i(n+1) \theta}+a^{n+2} e^{i n \theta}}{1-2 a \cos \theta+a^{2}}
\end{aligned}
$$

Summation of series (3)

- Equating real and imaginary parts, the cosine series is:

$$
C=\frac{1-a \cos \theta-a^{n+1} \cos (n+1) \theta+a^{n+2} \cos n \theta}{1-2 a \cos \theta+a^{2}}
$$

- and the sine series is:

$$
S=\frac{a \sin \theta-a^{n+1} \sin (n+1) \theta+a^{n+2} \sin n \theta}{1-2 a \cos \theta+a^{2}}
$$

Integrals

How about
$C=\int_{0}^{x} e^{a \theta} \cos b \theta d \theta, \quad S=\int_{0}^{x} e^{a \theta} \sin b \theta d \theta$?

- Could do with reduction formulae if a or b is an integer, but

$$
\begin{aligned}
C+i S & =\int_{0}^{x} e^{(a+i b) \theta} d \theta \\
& =\frac{e^{(a+i b) x}-1}{a+i b}=\frac{\left(e^{a x} e^{i b x}-1\right)(a-i b)}{a^{2}+b^{2}} \\
& =\frac{\left(e^{a x} \cos b x-1+i e^{a x} \sin b x\right)(a-i b)}{a^{2}+b^{2}}
\end{aligned}
$$

Integrals (2)

- Result is therefore $C+i S=$

$$
\frac{e^{a x}(a \cos b x+b \sin b x)-a+i\left(e^{a x}(a \sin b x-b \cos b x)+b\right)}{a^{2}+b^{2}}
$$

- and so we get:

$$
\begin{aligned}
& C=\frac{e^{a x}(a \cos b x+b \sin b x-a)}{a^{2}+b^{2}} \\
& S=\frac{e^{a x}(a \sin b x-b \cos b x)+b}{a^{2}+b^{2}}
\end{aligned}
$$

REAL NUMBERS

- Why do we need 'real numbers'?
- What's wrong with just the rationals?
- Aren't fractions accurate enough - they have arbitrary precision?
- Proposition: $\sqrt{2}$ is not a rational number

Proof that $\sqrt{2}$ is not rational

Suppose $\exists p, q \in \mathbb{N}$ st. $\sqrt{2}=p / q$ and choose p, q st. they have no common factor.
Then $p^{2}=2 q^{2}$ and so p^{2} is even.
Therefore p is even (odd \times odd is odd) and so p^{2} is a multiple of 4.

Therefore $q^{2}=p^{2} / 2$ is even and hence so is q. But so is p, a contradiction.

Useful numbers

- So there are 'useful' numbers that are not rational.
- We call the 'useful' numbers the real numbers or just the reals, and denote them by \mathbb{R}.
- Clearly, $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
- How many reals do you think there are, relative to the rationals?

How many real numbers?

- If r is irrational, then so is $r+q$ for any $q \in \mathbb{Q}$. (If $r+q=p \in \mathbb{Q}$, then $r=p-q \in \mathbb{Q}$, \mathbf{a} contradiction.)
- so just $\sqrt{2}$ generates at least as many irrationals as there are rationals, and we haven't even considered the other arithmetic operations!
- in fact there are HUGELY many 'more' irrationals than rationals

Gaps in the real line

- Consider the real numbers in the closed interval ${ }^{a}[0,1]=\{x \mid 0 \leq x \leq 1\}$
- Number the rational numbers in $[0,1]$ as

$$
r_{1}, r_{2}, r_{3}, \ldots
$$

- We can do this since the rationals are countable. Note that the ordering is not numerical, it can be anything.

[^0]
The rationals’ space

- Given any small value $\delta \in \mathbb{Q}$, put the closed interval

$$
I_{n}=\left[r_{n}-\delta / 2^{n}, r_{n}+\delta / 2^{n}\right]
$$

around the nth rational
จ i.e. r_{n} is in the middle of an interval of length $\delta / 2^{n-1}$

The rationals' space (2)

- The sum of the lengths of the intervals I_{n} is

$$
\sum_{n=1}^{\infty} \delta / 2^{n-1}=2 \delta
$$

- This is because the sum is a geometric progression of the form

$$
\sum_{i=0}^{\infty} x^{i}=1 /(1-x)
$$

for $|x|<1 ; x=1 / 2$ in our case.

Continuum of numbers

- Some of the intervals overlap, but it doesn't matter, their combined length is less than 2δ for any value of δ, however small
- Their combined length is therefore 0 (why?) and so the rationals take up 'zero space'
- The rest of $[0,1]$ is taken up with real, irrational numbers.
- We want the reals to form a 'continuum' so we can move smoothly along the real line without falling into gaps, e.g. to gradually approach the solution of an equation by iteration.

Digression on bounds

- The number $U \in \mathbb{R}$ is an upper bound of the set of real numbers X if $r \leq U$ for all $r \in X$. Similarly for a lower bound.
- A set of reals is bounded above if it has an upper bound, and bounded below if it has a lower bound.
- A set which is bounded above and below is just called bounded

Digression on bounds (2)

- The smallest element (if it exists) of a set of upper bounds is called the least upper bound or the supremum of a set X, abbreviated to $\sup (X)$
- The largest element (if it exists) of a set of lower bounds is called the greatest lower bound or the infimum of a set X, abbreviated to $\inf (X)$
- What are the sup and inf of $(0,1)$?

Fundamental Axiom

- To get a continuum of reals, we make an assumption: the Fundamental Axiom:
An increasing sequence r_{1}, r_{2}, \ldots of real numbers that is bounded above converges to a limit which is itself a real number
- Compare the definition of a Complete Partial Ordering (CPO) used in semantics of programming languages (maybe next year or in 'domain theory')
- 'complete' means 'closed w.r.t. limits'.

Alternative definition

- An equivalent form of the Fundamental Axiom is:
The set of upper bounds of any set of real numbers has a least member (assuming it is non-empty, of course)
- The proof of equivalence is non-trivial (but not too hard either): uses the 'Chinese box theorem'
- Similarly for lower bounds

Decimal numbers

- What we know about is fractions and decimals!
- Fractions are just rationals, so are also reals because $\mathbb{Q} \subset \mathbb{R}$
- Decimals, finite and infinite, define all rationals also and all of the irrationals in every day use, like square roots, π, e etc.
- Can decimals characterise all the reals?

Real Numbers as decimals

- We write a decimal in $[0,1)$ in the form:

$$
0 . d_{1} d_{2} \ldots=\sum_{i=1}^{\infty} d_{i} 10^{-i}
$$

where $d_{i} \in\{0,1,2,3,4,5,6,7,8,9\} \quad \forall i \in \mathbb{N}$

- For a finite decimal of length $n, d_{i}=0 \quad \forall i>n$

Real Numbers as decimals (2)

- It can be shown that the decimals provide a complete characterisation of the reals
- every decimal denotes a real number
- every real number can be written as a decimal, e.g.

Real Numbers as decimals (3)

ง the natural number n is written $n .0$

- $3 / 4=0.75$
- $1 / 3=0 . \dot{3}=0.333333 \ldots$ (recurring infinite decimal)
- $\pi=3.141592653589793238462 \ldots$
(non-recurring infinite decimal)
- The fundamental axiom is crucial in the proof.
- This is a nice result as it means our intuitive view of real numbers (as decimals) is sufficient but no coincidence, of course!

SEQUENCES AND CONVERGENC

- A sequence is a countable, ordered set of real numbers $\left\{a_{i} \in \mathbb{R} \mid i \in \mathbb{N}\right\}$, usually written

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

or simply

$$
a_{1}, a_{2}, \ldots
$$

- Alternatively it is function, $a: \mathbb{N} \rightarrow \mathbb{R}$ with the obvious definition
- examples

。 $1,4,9, \ldots, n^{2}, \ldots$

- $1,-0.25,0 . \dot{1}, \ldots,(-1)^{n+1} / n^{2}, \ldots$

Convergence

Definition: A sequence a_{1}, a_{2}, \ldots converges to a limit $l \in \mathbb{R}$, written $a_{n} \rightarrow l$ as $n \rightarrow \infty$ or
$\lim _{n \rightarrow \infty} a_{n}=l$, iff

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. } \forall n>N,\left|a_{n}-l\right|<\epsilon
$$

- equivalently, $l-\epsilon<a_{n}<l+\epsilon$
- 'tramlines' ϵ away from the limit value l

Ill|ustration of bounds, Sup and Int

Notice how the supremum decreases and the infimum increases for the subsets $\left\{a_{n}, a_{n+1}, \ldots\right\}$ as n increases.

Illustration of convergence

Need a bigger N as ϵ decreases

Convergence (2)

- Important in any numerical algorithms \& programs that use iteration
- i.e. quite a lot! - graphics, performance analysis, engineering applications like CFD and FEM
- iteration no use unless it converges
- if it does, how fast? Can we calculate the result directly?

Convergence and boundedness

- For a bounded increasing sequence of positive values p_{1}, p_{2}, \ldots the limit p is equal to the supremum $s=\sup p_{n}$
- Limit p exists by Fundamental Axiom
- $\forall \epsilon>0$ the 'upper tramline' is an upper bound
- similarly, every upper bound is above the lower tramline
- therefore $p-\epsilon<s<p+\epsilon$ and so $s=p$

Convergence and boundedness (2)

- A convergent sequence is bounded
- Let a_{1}, a_{2}, \ldots have limit l.
- Then $\exists N$ s.t. $l-1<a_{n}<l+1 \forall n>N$
- So, for all $i \in \mathbb{N}$,

$$
\min \left(l-1, a_{1}, \ldots, a_{N}\right) \leq a_{i} \leq \max \left(l+1, a_{1}, \ldots, a_{N}\right)
$$

Proof that $s=p$ by the $\epsilon-N$ method

1. Suppose $p_{m}>p$ for some m. Pick $\epsilon=\left(p_{m}-p\right) / 2$ so that $\forall n>m$, $p_{n}-p \geq p_{m}-p=2 \epsilon>\epsilon$. Hence p_{1}, p_{2}, \ldots. does not converge, a contradiction. Thus p is an upper bound, so $p \geq s$.
2. Now suppose that u is an upper bound. Since p_{1}, p_{2}, \ldots converges, $\forall \epsilon>0, \exists N$ s.t. $p_{N}>p-\epsilon$. Hence $p-\epsilon<u$ and so $p \leq u$ since ϵ can be arbitrarily small. In particular, $p \leq s$.
$p \geq s$ and $p \leq s \Rightarrow p=s$.

Example: $a_{n}=1 / n$

- Intuitively, $1 / n$ decreases, getting closer and closer to zero, as n increases.
- This (correct) intuition is made rigorous as follows:
Given any $\epsilon>0, a_{N} \leq \epsilon$ if $N \geq 1 / \epsilon$. Choose $N=\lceil 1 / \epsilon\rceil$. Then

$$
\forall n>N,\left|a_{n}\right|<\epsilon
$$

since a_{n} is decreasing. Thus, $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

- Similarly for $a_{n}=1 / n^{\alpha}$ for any $\alpha>0$ (exercise).

Trapping

Theorem: Given convergent sequences b_{1}, b_{2}, \ldots and c_{1}, c_{2}, \ldots, each with limit l, suppose the sequence a_{1}, a_{2}, \ldots satisfies

$$
b_{n} \leq a_{n} \leq c_{n}
$$

$\forall n \geq N$ for some $N \in \mathbb{N}$. Then $a_{n} \rightarrow l$ as $n \rightarrow \infty$.

- Intuitively, the sequence a_{n} becomes 'trapped' between b_{n} and c_{n}.
- Commonly called the sandwich theorem.

Proof of sandwich theorem

- Pick $\epsilon>0$

จ Since the sequences b_{n} and c_{n} converge, $\exists N_{1}, N_{2}$ s.t. $\forall n>\max \left(N_{1}, N_{2}\right), l-\epsilon<b_{n}<$ $l+\epsilon$ and $l-\epsilon<c_{n}<l+\epsilon$, i.e.

$$
l-\epsilon<b_{n}<a_{n}<c_{n}<l+\epsilon
$$

- Hence, $\exists N\left(=\max \left(N_{1}, N_{2}\right)\right)$ s.t. $\forall n>N,\left|a_{n}-l\right|<\epsilon$
- So $a_{n} \rightarrow l$ as $n \rightarrow \infty$

Special cases

- If $b_{n}=l$ for all $n>0$, the greatest lower bound (infimum) on a_{n} is the constant l
- An upper bound is c_{n} and the supremum is l
- E.g. the sequence $1 / n^{2}$ is trapped between 0 and $1 / n$, which we just showed has limit 0
- Similarly, if $c_{n}=l$ for all $n>0$, the supremum on a_{n} is the constant l and a lower bound is b_{n} with infimum l

Example

- Suppose $a_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+n}}$
- $a_{n}>\frac{n}{\sqrt{n^{2}+n}}=\frac{1}{\sqrt{1+1 / n}}$
- $a_{n}<\frac{n}{\sqrt{n^{2}+1}}=\frac{1}{\sqrt{1+1 / n^{2}}}$
- Hence a_{n} is trapped between two sequences that tend to 1 as $n \rightarrow \infty$, so $a_{n} \rightarrow 1$

Ratio convergence test

Theorem: If $\left|a_{n+1} / a_{n}\right|<c<1$ for some $c \in \mathbb{R}$ and for all sufficiently large n (i.e. $\forall n \geq N$ for some integer N), then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

- A convergent sequence with limit 0 is called a null sequence.
- The proof is that, for $n \geq N$,

$$
\left|a_{n}\right|<c\left|a_{n-1}\right|<\ldots<c^{n-N}\left|a_{N}\right|=k c^{n}
$$

where k is the constant $\left|a_{N}\right| / c^{N}$

- But $c^{n} \rightarrow 0$ as $n \rightarrow \infty$ and so the theorem is proved by the sandwich theorem

Ratio divergence test

Theorem: If $\left|a_{n+1} / a_{n}\right|>c>1$ for some $c \in \mathbb{R}$ and for all sufficiently large n, then the sequence a_{n} diverges.

- The analogous proof is that, for $n \geq N$,

$$
\left|a_{n}\right|>c\left|a_{n-1}\right|>\ldots>c^{n-N}\left|a_{N}\right|=k c^{n}
$$

- But c^{n} has no upper bound, and hence neither does $\left|a_{n}\right|$

Alternative form of ratio tests

Simpler forms of the ratio tests use the limit of the ratio $\left|a_{n+1} / a_{n}\right|$, when this exists - call it r :

- Then if $r<1$ the sequence converges and if $r>1$, it diverges.
ง The proof is simple: e.g. if $r<1$, then $\exists N$ s.t. $\forall n>N,\left|a_{n+1} / a_{n}\right|<(r+1) / 2<1$ and we can pick $c=(r+1) / 2$

Combinations of sequences

Theorem: Given convergent sequences a_{n} and b_{n} with limits a and b respectively, then

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b$
- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=a-b$
- $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=a b$
- $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=a / b$ provided that $b \neq 0$

Sample proof: product

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|a_{n}\left(b_{n}-b\right)+b\left(a_{n}-a\right)\right| \\
& \leq\left|a_{n}\right|\left|b_{n}-b\right|+|b|\left|a_{n}-a\right|
\end{aligned}
$$

- Let A be any upper bound of $\left\{\left|a_{n}\right|\right\}$
- Given $\epsilon>0, \exists N_{1}$ s.t. $\left|a_{n}-a\right|<\epsilon /(A+|b|)$ for all $n>N_{1}$ and $\exists N_{2}$ s.t. $\left|b_{n}-b\right|<\epsilon /(A+|b|)$ for all $n>N_{2}$
- Hence $\left|a_{n} b_{n}-a b\right|<\epsilon$ for all $n>\max \left(N_{1}, N_{2}\right)$

Example

$$
a_{n}=\frac{3 n^{2}+n}{n^{2}+3 n+1}
$$

- Divide numerator and denominator by n^{2} :

$$
a_{n}=\frac{3+1 / n}{1+3 / n+1 / n^{2}}
$$

- $1 / n \rightarrow 0$, so $1 / n^{2} \rightarrow 0$ (product of sequences or trapping)

Example (2)

- numerator and denominator converge to 3 and 1 respectively (sum of sequences, 3 times)
จ so $a_{n} \rightarrow 3$ by the division rule (denominator non-zero)
- rigorous justification of 'domination of largest term' rule

General convergence theorem

NB: This is not examinable
Theorem (Cauchy): The sequence a_{1}, a_{2}, \ldots is convergent if and only if
$\forall \epsilon>0, \exists \mathrm{~N}$ s.t. $\left|a_{n}-a_{m}\right|<\epsilon$ for all $n, m>N$.

- This theorem is useful because you don't need to know what the limit is (when it exists), e.g.
- when a_{n} is defined by a recurrence relation;
- when a_{n} is defined by a recursive Haskell function
- It is also a test for divergence

Example

$$
\begin{gathered}
a_{n}=\sum_{i=1}^{n} \frac{1}{i(i+1)} \\
a_{n}-a_{m}= \\
=\frac{1}{(m+1)(m+2)}+\ldots+\frac{1}{n(n+1)} \\
= \\
\left(\frac{1}{m+1}-\frac{1}{m+2}\right)+\left(\frac{1}{m+2}-\frac{1}{m+3}\right)+ \\
= \\
\\
\left.\quad \frac{1}{m+1}-\frac{1}{n}-\frac{1}{n+1}\right) \\
n+1
\end{gathered} 0 \text { as } n>m \rightarrow \infty
$$

Iteration and fixpoints

Consider the simple iteration:

$$
a_{n+1}=\frac{2+a_{n}}{3+a_{n}}
$$

with initial value $a_{1}=1$.

- If this converges, its limit is l given by

$$
l^{2}+2 l-2=0
$$

so that $l=-1 \pm \sqrt{3}$.

- So will it converge, and to which root, $l=l^{+}$ or l^{-}?

Convergence

- Clearly, every $a_{n}>0$ (rigorous proof by induction), so can't converge to l^{-}.
- Let $x_{n}=a_{n}-l^{+}$for $n \geq 1$ and try to prove $x_{n} \rightarrow 0$
- Aiming to use the ratio test for sequences:

$$
x_{n+1}=\frac{2+a_{n}}{3+a_{n}}-\frac{2+l^{+}}{3+l^{+}}=\frac{x_{n}}{\left(3+a_{n}\right)\left(3+l^{+}\right)}
$$

- Thus $\left|x_{n+1}\right|<\left|x_{n}\right| / 9$ since a_{n} and $l^{+}>0$
- So the iteration does converge to $l^{+}=\sqrt{3}-1$

Graphically

The iteration follows the red path, starting at the initial point $(1,0)$ and repeating:

- vertical segment up to the blue line $y=x$
- horizontal to the curve $y=\frac{2+x}{3+x}$

Smaller plot range and zoom $10 \times$

\square

Zoom $100 \times$ and $1000 \times$

Smaller plot range and zoom $10 \times$

Zoom $100 \times$ and $1000 \times$

Starting at $x=-2.8$ (other side)

Smaller plot range and zoom $10 \times$

Zoom $100 \times$ and $1000 \times$

INFINITE SERIES

An infinite series is a summation of the form
$S=\sum_{i=1}^{\infty} a_{i}$ for a real sequence a_{1}, a_{2}, \ldots

- E.g. the decimal numbers
- Finite if $\exists N \in \mathbb{N}$ s.t. $a_{n}=0 \quad \forall n>N$
- nth partial sum $S_{n}=\sum_{i=1}^{n} a_{i}$
- Partial sums S_{1}, S_{2}, \ldots form a sequence:
- A series converges or diverges iff its sequence of partial sums does
- Often the best means of analysis

Geometric series

- A ubiquitous example is $G=\sum_{i=1}^{\infty} x^{i}$ - the geometric progression
- Provided G exists,

$$
\begin{gathered}
G=x+\sum_{i=2}^{\infty} x^{i}=x+x \sum_{i=1}^{\infty} x^{i}=x+x G \mathbf{s o}: \\
G=\frac{x}{1-x}
\end{gathered}
$$

- When does G exist? When the series (or sequence of partial sums) is convergent!

Convergence of the geometric series

- Similarly, nth partial sum
$G_{n}=x+\sum_{i=2}^{n} x^{i}=x+x \sum_{i=1}^{n-1} x^{i}=x+x\left(G_{n}-x^{n}\right)$, SO:

$$
G_{n}=\frac{x-x^{n+1}}{1-x}
$$

- For $|x|<1, G_{n} \rightarrow x /(1-x)$ as $n \rightarrow \infty$ by rules for sequences.
- Similarly, for $|x|>1, G_{n}$ diverges as $n \rightarrow \infty$.
- For $x=1, G_{n}=n$ which also diverges.

Result

っ If $|x|<1$, i.e. $-1<x<1$,

$$
G=\sum_{i=1}^{\infty} x^{i}=\frac{x}{1-x}
$$

っ If $|x| \geq 1, G=\sum_{i=1}^{\infty} x^{i}=\infty$, i.e. the series diverges.

Another example

- Consider the convergence properties of the series

$$
S=\sum_{i=1}^{\infty} \frac{1}{i(i+1)}
$$

- Using partial fractions, we can write the nth partial sum

$$
S_{n}=\sum_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right)=1-\frac{1}{n+1}
$$

- So S_{n} converges, therefore so does the series and $S=1$

Sum of inverse squares

- What about the series $S=\sum_{i=1}^{\infty} \frac{1}{i^{2}}$?
- $\frac{1}{i(i+1)}<\frac{1}{i^{2}}<\frac{1}{(i-1) i}$ for $i \geq 2$. So, summing from $i=2$ to n and adding 1:

$$
1 / 2+\sum_{i=1}^{n} \frac{1}{i(i+1)}<S_{n}<1+\sum_{i=1}^{n-1} \frac{1}{i(i+1)}
$$

Sum of inverse squares (2)

- Thus, from the previous slide,

$$
3 / 2-1 /(n+1)<S_{n}<2-1 / n
$$

- Since S_{n} is increasing, the series converges (by the fundamental axiom, 2 is an upper bound) to a value in $(1.5,2)$.

Dodgy series

Consider the series

$$
\begin{aligned}
& \quad S=\sum_{i=1}^{\infty}(-1)^{i+1} / i=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \\
& S_{2 n}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{2 n-1}-\frac{1}{2 n}\right)>0.5 \\
& \text { and increasing }
\end{aligned}
$$

$$
\begin{aligned}
& \text { จ } S_{2 n}=1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\ldots- \\
& \quad\left(\frac{1}{2 n-2}-\frac{1}{2 n-1}\right)-\frac{1}{2 n}<1
\end{aligned}
$$

Dodgy series (2)

- Thus $S_{2 n}$ is increasing and bounded, hence convergent.
- $S_{2 n+1}=S_{2 n}+\frac{1}{2 n+1}$ and so all partial sums converge to the same limit, l say. Hence S converges to l.

Rearrangements

- Now consider the sub-series formed by taking two positive terms and a negative term: $B_{3 n}=\sum_{i=1}^{n} b_{i}$ where $b_{i}=\frac{1}{4 i-3}+\frac{1}{4 i-1}-\frac{1}{2 i}$
- Clearly, as $n \rightarrow \infty, B_{3 n}$ includes all the terms of S : it is a rearrangement of S
- Now,

$$
B_{3 n}=S_{4 n}+\frac{1}{2 n+2}+\frac{1}{2 n+4}+\ldots+\frac{1}{4 n}>S_{4 n}+0.25
$$

- Hence, $B_{3 n}$ converges to a different limit than $S_{4 n}$ (limit l)!

Sums of series

Theorem: Suppose $\sum a_{i}$ and $\sum b_{i}$ are convergent with sums a and b respectively. Then if $c_{i}=a_{i}+b_{i}, \sum c_{i}$ is convergent with sum $a+b$, and $\sum \lambda a_{i}$ is convergent with sum λa.

- Easy to prove by considering the partial sums
- Further expected properties hold for series without negative terms

Series of non-negative terms

- In a series of non-negative terms, the partial sums are increasing and hence either
- converge, if the partial sums are bounded
- diverge, if they are not
- Notation:
${ }^{0} p_{i}$ is a non-negative term in the series $\sum p_{i}$
- $\sum c_{i}$ is a convergent series with sum c
- $\sum d_{i}$ is a divergent series

Comparison test

Theorem: Let $\lambda>0$ and $N \in \mathbb{N}$. Then

1. if $p_{i} \leq \lambda c_{i} \forall i>N$, then $\sum p_{i}$ converges;
2. if $p_{i} \geq \lambda d_{i} \forall i>N$, then $\sum p_{i}$ diverges.

Sometimes the following form is easier:

- if $\lim \frac{p_{i}}{c_{i}}$ exists, then $\sum p_{i}$ converges;
- if $\lim \frac{d_{i}}{p_{i}}$ exists, then $\sum p_{i}$ diverges.

D'Alembert's ratio test

- This is a very useful - and even over-used technique:

Theorem: For $N \in \mathbb{N}$,

1. if $p_{i+1} / p_{i} \geq 1 \forall i>N$, then $\sum p_{i}$ diverges;
2. if $\exists k \in \mathbb{R}$ s.t. $p_{i+1} / p_{i}<k<1 \forall i>N$, then $\sum p_{i}$ converges.

Exercise: Consider the series with $p_{i}=1 / i$

Proof of part 2

- $p_{i+1}<k p_{i}$ for $i>N$. Thus, (formally by induction)

$$
p_{i}<k^{i}\left(p_{N+1} / k^{N+1}\right) \text { if } i>N+1
$$

- Thus $\sum p_{i}$ converges by the comparison test with $c_{i}=k^{i}$ and $\lambda=p_{N+1} / k^{N+1}$ (Note $k>0$.)
- Proof of part 1 is analogous.

Absolute convergence

A series $\sum a_{i}$ is Absolutely Convergent if $\sum\left|a_{i}\right|$ converges, i.e. the sum of the absolute values of its terms is convergent.

- The sum of absolute values is a sum of positive terms
- An absolutely convergent series is convergent (proof by Cauchy's test)
- A series which is convergent but not absolutely convergent is called conditionally convergent
- E.g. the 'dodgy series'

CONTINUITY

- A function $f(x)$ is continuous at $x=a$ if $f(x) \rightarrow f(a)$ as $x \rightarrow a$
- I.e. there is no 'jump' in the graph of $f(x)$ at $x=a$ or 'you can draw the graph without taking your pen off the paper'
- E.g. the step-function $f(x)=\lfloor x\rfloor$ is not continuous.
- $f(x)=(1 / x) \sin x$ is continuous at all x, including $x=0$ if we define $f(0)=1$.
- $f(x)=(1 / x) \sin (1 / x)$ is not continuous at $x=0$
- What does it mean to say 'as $x \rightarrow a$ '?

Graph of $f(x)=(1 / x) \sin x$

Graph of $f(x)=(1 / x) \sin (1 / x)$

Limit of a function

Definition: $f(x) \rightarrow l$ as $x \rightarrow a$ if

$$
\forall \epsilon>0, \exists \delta>0 \text { s.t. }|x-a|<\delta \Rightarrow|f(x)-l|<\epsilon
$$

- The rigorous definition of continuity is therefore $\forall \epsilon>0, \exists \delta>0$ s.t. $|x-a|<\delta \Rightarrow$
$|f(x)-f(a)|<\epsilon$
- In words, as x gets closer and closer to a, $f(x)$ gets closer and closer to $f(a)$.
- I.e. $f(x)$ can't suddenly 'jump' to $f(a)$, skipping over intermediate values, leaving a gap, 'taking the pen off the page'.

A continuous function

$$
\left(10-\delta\left(\varepsilon^{\prime}\right), 10+\delta\left(\varepsilon^{\prime}\right)\right)
$$

A discontinuous function

Comments

- In the continuous function, as x gets closer and closer to $10, f(x)$ gets closer and closer to l.
- If $f(10)$ is defined to be l, f is continuous at $x=10$
- Points in the arbitrary 'green' intervals on the y-axis must be the images of 'red' intervals on the x-axis
- Note the discontinuity at $x=10$ in the discontinuous function:
- Cannot find any 'red' interval when the 'green' interval gets too small.

Simple properties

- Sums and products of (a finite number of) continuous functions are continuous $f(x)+\lambda g(x), f(x) g(x)$ are continuous if f and g are $(\lambda \in \mathbb{R})$.
- Same for quotients $f(x) / g(x)$ where $g(x) \neq 0$.
- A continuous function of a continuous function is continuous - i.e. the composition $f(g(x))$ is continuous.

Differentiability and continuity

- If $f(x)$ is differentiable at $x=a$, it is continuous there. Why?
- Recalling the definition of a derivative,
$\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}<\infty$ and so $f(x+\delta x) \rightarrow f(x)$ as $x+\delta x \rightarrow x$
- But $f(x)=x \sin (1 / x)$ is continuous at $x=0$, where $f(x)=0$, but not differentiable there $\left[f^{\prime}(x)=\sin (1 / x)-(1 / x) \cos (1 / x)\right.$ for $x \neq 0$]

Graph of $f(x)=x \sin (1 / x)$

\square

[^0]: ${ }^{\text {a }}$ Similarly, an open interval has round brackets: $(0,1)=\{x \mid 0<x<1\}$ and there are 'mixed' intervals, open at one end, closed at the other, e.g. $(0,1]$.

