Mathematical Methods: Tutorial sheet 5

Peter Harrison

7 November 2007

Assessed question is number 3. Due Monday 19/11/2007.

Maclaurin’s series

1. You all know (or can look up) the binomial theorem, which gives a finite
expansion in powers of x for (14 x)™ when n is a positive integer. Derive
it by using Maclaurin’s theorem. What is the result when n is not an
integer?

Solution: When n is a positive integer, the rth derivative of (1 + z)" is

nn—1)...(n—r+ D1 +z)" "= : when z = 0,

for 0 < r <n, and is 0 for r > n. Hence the coefficient

n!
= (n—r)lr!

for 0 < r < n, noting that this gives 1 for ag, and a, = 0 for r > n. Thus

(1+z)"zn:<z>xr

r=0

When n is not an integer — call it « instead — the same method applies
but the number of non-zero derivatives is infinite (because you never get
to a constant derivative). Thus the series is infinite and only valid if it
converges:

(1+x)a:Za(a—l)...(a—r—l—l)xT

r!

2. Calculate to 4 decimal places sin7/2,sinn/3,sinn/4,sin7/5,sin7/6 and
sin /7 by using (in each case) any of:

(a) a suitable geometric argument;

(b) a protractor, ruler and very large piece of paper;



()

Maclaurin’s series.

N.B. I expect you to use method (a) for at least sin /2!

Calculate a bound on the error term (i.e. a number that the error is
not greater than) in each case that you use Maclaurin’s series, such that
accuracy to 4 decimal places is assured.

Solution:

(a)

sinm/2 = 1 by considering a right-angled triangle where one acute
angle approaches 0 and the other approaches 7/1. Then the length
of the side opposite the larger acute angle approaches the length of
the hypotenuse.

Drop a perpendicular (bisector) from a vertex of an equilateral trian-
gle of side-length 2 to the opposite side. This creates two right-angled
triangles with sides 2 (hypotenuse), 1 and v/3 (by Pythagorus), and
angles opposite these sides 7/2, /6 (because the angle at the vertex
was bisected) and 7/3. Thus sin7/3 = v/3/2.

Consider a right-angled triangle with side-lengths 1,1, /2. Its angles
are sin /4, sin7/4,sin7/2. Thus sin7/4 = 1/v/2.

Use Maclaurin’s series to up to the term z7/7!, giving sint/5 =
0.5878. Since the 8" derivative of sinx is sinz which has absolute
value less than 1 (except when x = 7/2), an error bound is 1/7! =
0.0000248016 since x < 1. Actually, terms up to x°/5! suffice here.

As in part (b), sinw/6 = 1/2.
Using Maclaurin’s series as in part (d), sinw/7 = 0.4339, using terms

up to z7/7! Again, terms up to x°/5! suffice, and just two non-zero
terms give a correct result to 3 d.p.

Derive Maclaurin’s series, i.e. power series expansions in z’ (i =
1,2,...), for the functions e®, sin x, cos z.

The differential equation:

d2y 2
— 4 wy=0
dx? 4
describes vibrations of various kinds, where y usually represents a

distance and x is time. To solve it, suppose that a power series
solution is postulated:

o0

i=0

i. By substituting into the given differential equation and compar-
ing coefficients of z* for ¢ > 0, show that if the power series
solution is valid, then

2
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ii. Deduce that, for n € IN,

w2n
no = (—1)'aos—
@2 ( )a0(2n)!
2n
n w

A2p+1 = (—1) alm

iii. Hence show that, if y = 1 and % =1 at = = 0, the solution of

1

the differential equation is y = w™ ' sinwx + coswz.

Solution:

(a) Let D denote differentiation wrt . D"e” = e® =1 at = 0. Thus,
Maclaurin’s series gives
x
f—
€= Z il
=0

D*sing = (—1)"sinz = 0 at * = 0, D*"Tlsinz = (—1)"cosz =
(—1)™ at = = 0. Thus, Maclaurin’s series gives

oo 2t
o _ S e
sin x ;( ) i)
D*cosz = (—1)"cosz = (—1)"at z = 0, D*"*lcosx = —(—1)"sinz =

0 at x = 0. Thus, Maclaurin’s series gives

cosx = ;(—l)i @]

L Lety=3Y:2, a;z'. Substituting in the differential equation, we

get:
o0 o0
> (i — Da 2 4+ aw?at =0
1=2 1=0

Changing the summation variable in the left hand sum to i + 2,

D laiali+2)(i +1) + aw?le’ =0
i=0
Comparing coefficients the result follows.

ii. The recurrence ‘goes up in 2s’ and even and odd terms depend
respectively on ag and a;. Thus,

w2a2n_2 w
=———=...=(-1)"
2n 2n(2n — 1) (=1)"ao

a2n+1 follows similarly.



iii. Substituting into the power series, the solution is

22 21+1

(A) CL’
vo= aoz (21)' Z R
)22 >

(wzx (wx)2itt
= 1 LA S,
aoz +a1/wzo( G
= aocoswar(al/w) sinwz
Since y = 1 at x = 0, ag = 1. Since Dy = —aowsinwz +

ay coswx = a; at x = 0, the result follows.

4. (Exam question Q6C1452005)

Calculate the first three non-zero terms of the Maclaurin series for the
function tan z.

Solution: The first six derivatives (starting at Oth) of tanz are:

tanx
2

sec” x
2sec? z tan x

6sect v — 4sec? x

(24sect z — 8sec? ) tan x

(...) tanz + (24sec* x — 8sec? ¥) sec’ x

which evaluate at x =0 to: 0,1,0,2,0,16

Maclaurin’s series therefore starts:

tanz = x + 22° /31 + 162° /5! + ... =z + 23 /3 + 225 /15 + ...

5. Verify numerically using Maclaurin’s series that sin /4 = sin 97 /4 to four
decimal places. How many terms did you need, and why is this more than
you needed in question 27

Solution: This time you need 13 terms, up to x2°/25!, when x = 97 /4.
The error term is bounded above by 226/26! = 0.0000299932, so guar-
anteed correct to 4 d.p. Leaving out the 13th term, we are not ac-
curate to 4 d.p. (we get 0.7070), and the error is only bounded by
224 /24! = 0.000390186 which is insufficient.



