
Mathematical Methods: Tutorial sheet 5

Peter Harrison

7 November 2007

Assessed question is number 3. Due Monday 19/11/2007.

Maclaurin’s series

1. You all know (or can look up) the binomial theorem, which gives a finite
expansion in powers of x for (1 + x)n when n is a positive integer. Derive
it by using Maclaurin’s theorem. What is the result when n is not an
integer?

Solution: When n is a positive integer, the rth derivative of (1 + x)n is

n(n− 1) . . . (n− r + 1)(1 + x)n−r =
n!

(n− r)!
when x = 0,

for 0 ≤ r ≤ n, and is 0 for r > n. Hence the coefficient

ar =
n!

(n− r)!r!

for 0 ≤ r ≤ n, noting that this gives 1 for a0, and ar = 0 for r > n. Thus

(1 + x)n =
n∑

r=0

(
n
r

)
xr

When n is not an integer – call it α instead – the same method applies
but the number of non-zero derivatives is infinite (because you never get
to a constant derivative). Thus the series is infinite and only valid if it
converges:

(1 + x)α =
∞∑

r=0

α(α− 1) . . . (α− r + 1)
r!

xr

2. Calculate to 4 decimal places sinπ/2, sinπ/3, sinπ/4, sinπ/5, sinπ/6 and
sinπ/7 by using (in each case) any of:

(a) a suitable geometric argument;

(b) a protractor, ruler and very large piece of paper;
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(c) Maclaurin’s series.

N.B. I expect you to use method (a) for at least sinπ/2!

Calculate a bound on the error term (i.e. a number that the error is
not greater than) in each case that you use Maclaurin’s series, such that
accuracy to 4 decimal places is assured.

Solution:

(a) sinπ/2 = 1 by considering a right-angled triangle where one acute
angle approaches 0 and the other approaches π/1. Then the length
of the side opposite the larger acute angle approaches the length of
the hypotenuse.

(b) Drop a perpendicular (bisector) from a vertex of an equilateral trian-
gle of side-length 2 to the opposite side. This creates two right-angled
triangles with sides 2 (hypotenuse), 1 and

√
3 (by Pythagorus), and

angles opposite these sides π/2, π/6 (because the angle at the vertex
was bisected) and π/3. Thus sinπ/3 =

√
3/2.

(c) Consider a right-angled triangle with side-lengths 1, 1,
√

2. Its angles
are sinπ/4, sinπ/4, sinπ/2. Thus sinπ/4 = 1/

√
2.

(d) Use Maclaurin’s series to up to the term x7/7!, giving sinπ/5 =
0.5878. Since the 8th derivative of sinx is sinx which has absolute
value less than 1 (except when x = π/2), an error bound is 1/7! =
0.0000248016 since x < 1. Actually, terms up to x5/5! suffice here.

(e) As in part (b), sin π/6 = 1/2.
(f) Using Maclaurin’s series as in part (d), sinπ/7 = 0.4339, using terms

up to x7/7! Again, terms up to x5/5! suffice, and just two non-zero
terms give a correct result to 3 d.p.

3. (a) Derive Maclaurin’s series, i.e. power series expansions in xi (i =
1, 2, . . .), for the functions ex, sinx, cos x.

(b) The differential equation:

d2y

dx2
+ ω2y = 0

describes vibrations of various kinds, where y usually represents a
distance and x is time. To solve it, suppose that a power series
solution is postulated:

y =
∞∑

i=0

aix
i

i. By substituting into the given differential equation and compar-
ing coefficients of xi for i ≥ 0, show that if the power series
solution is valid, then

ai+2 = − ω2ai

(i + 1)(i + 2)
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ii. Deduce that, for n ∈ IN,

a2n = (−1)na0
ω2n

(2n)!

a2n+1 = (−1)na1
ω2n

(2n + 1)!

iii. Hence show that, if y = 1 and dy

dx
= 1 at x = 0, the solution of

the differential equation is y = ω−1 sinωx + cos ωx.

Solution:

(a) Let D denote differentiation wrt x. Dnex = ex = 1 at x = 0. Thus,
Maclaurin’s series gives

ex =
∞∑

i=0

xi

i!

D2n sinx = (−1)n sinx = 0 at x = 0, D2n+1 sinx = (−1)n cos x =
(−1)n at x = 0. Thus, Maclaurin’s series gives

sinx =
∞∑

i=0

(−1)i x2i+1

(2i + 1)!

D2n cos x = (−1)n cos x = (−1)n at x = 0, D2n+1 cos x = −(−1)n sinx =
0 at x = 0. Thus, Maclaurin’s series gives

cos x =
∞∑

i=0

(−1)i x2i

(2i)!

i. Let y =
∑∞

i=0 aix
i. Substituting in the differential equation, we

get:
∞∑

i=2

aii(i− 1)xi−2 +
∞∑

i=0

aiω
2xi = 0

Changing the summation variable in the left hand sum to i + 2,

∞∑
i=0

[ai+2(i + 2)(i + 1) + aiω
2]xi = 0

Comparing coefficients the result follows.
ii. The recurrence ‘goes up in 2s’ and even and odd terms depend

respectively on a0 and a1. Thus,

a2n = − ω2a2n−2

2n(2n− 1)
= . . . = (−1)na0

ω2n

(2n)!

a2n+1 follows similarly.
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iii. Substituting into the power series, the solution is

y = a0

∞∑
i=0

(−1)i ω
2ix2i

(2i)!
+ a1

∞∑
i=0

(−1)i ω
2ix2i+1

(2i + 1)!

= a0

∞∑
i=0

(−1)i (ωx)2i

(2i)!
+ a1/ω

∞∑
i=0

(−1)i (ωx)2i+1

(2i + 1)!

= a0 cos ωx + (a1/ω) sinωx

Since y = 1 at x = 0, a0 = 1. Since Dy = −a0ω sinωx +
a1 cos ωx = a1 at x = 0, the result follows.

4. (Exam question Q6C1452005)

Calculate the first three non-zero terms of the Maclaurin series for the
function tan x.

Solution: The first six derivatives (starting at 0th) of tanx are:

tanx

sec2 x

2 sec2 x tanx

6 sec4 x− 4 sec2 x

(24 sec4 x− 8 sec2 x) tan x

(. . .)′ tanx + (24 sec4 x− 8 sec2 x) sec2 x

which evaluate at x = 0 to: 0, 1, 0, 2, 0, 16

Maclaurin’s series therefore starts:

tanx = x + 2x3/3! + 16x5/5! + . . . = x + x3/3 + 2x5/15 + . . .

5. Verify numerically using Maclaurin’s series that sinπ/4 = sin 9π/4 to four
decimal places. How many terms did you need, and why is this more than
you needed in question 2?

Solution: This time you need 13 terms, up to x25/25!, when x = 9π/4.
The error term is bounded above by x26/26! = 0.0000299932, so guar-
anteed correct to 4 d.p. Leaving out the 13th term, we are not ac-
curate to 4 d.p. (we get 0.7070), and the error is only bounded by
x24/24! = 0.000390186 which is insufficient.
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