
Mathematical Methods: Tutorial sheet 6

Peter Harrison

21 November 2007

Assessed questions: 3, 4 and 5. Due: Monday 3 December 2007.

Complex numbers

1. Find the complex numbers z that satisfy the following equations:

(a) 3z + (2− 2i) = 1 + i

(b) (1 + 3i)z − 3(1− 2i) = 3 + 2i− 2(4− i)z

Solution:

(a) 3z + (2− 2i) = 1 + i, so 3z = −1 + 3i, z = − 1
3 + i

(b) (1 + 3i + 8− 2i)z = 3(1− 2i) + 3 + 2i = 6− 4i, so

z =
6− 4i

9 + i
=

(6− 4i)(9− i)
82

=
50− 42i

82
=

25
41

− 21
41

i

2. Write the complex number i4000021 in the form a + ib.

Solution: i4000021 = i4(1000005)+1 = (i4)1000005i = i

3. (a) Let X be the set of complex numbers z of the form 3eiθ, where
−π/2 ≤ θ ≤ π/2. Plot X on the Argand diagram.

(b) Let Y be the set of complex numbers z such that |z − (1 + i)| = 1.
Plot Y on the Argand diagram.

Solution:

(a) Every z ∈ X has modulus 3. The Arg ranges from −π/2 (negative
imaginary axis) to π/2 (positive imaginary axis). So X is the right
half circle, radius 3, centre O.

(b) |z − (1 + i)| is the distance from z to the point representing 1 + i.
Hence Y is the circle with centre 1 + i and radius 1.

4. Let z = eiθ. By expressing sin θ in terms of z and 1/z, expand (sin θ)4 to
show that

cos 4θ = 8(sin θ)4 + 4 cos 2θ − 3
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Solution: sin θ = (z − 1/z)/2i so

(sin θ)4 = ((z − 1/z)/2i)4

=
1
16

[(z4 + z−4)− 4(z2 + z−2) + 6z2z−2]

=
1
8
[cos 4θ − 4 cos 2θ + 3]

5. (a) Find the square roots of −2
√

2− 2
√

2i and plot them on the Argand
diagram.

(b) Find all solutions z ∈ C to the equation z5 = −16
√

2(1 + i) and plot
them on the Argand diagram.

Solution:

(a) −2
√

2 − 2
√

2i = eiπ23/2(1 + i) = eiπ23/221/2ei(2kπ+π/4) for k =
0, 1, . . .. So the square root is

2[ei(2kπ+5π/4)]1/2 = 2ei(kπ+5π/8)

= 2e5πi/8, 2e13πi/8

Roots are symmetrical in the origin (Args differ by π).
(b) z5 = 25ei(π+π/4+2kπ) = 25ei(5π/4+2kπ) and so

z = 2ei(π/4+2kπ/5)

for k = 0, 1, 2, 3, 4. That is:

z = 2eπi/4 =
√

2(1 + i), 2e13πi/20, 2e21πi/20, 2e29πi/20, 2e37πi/20

Roots lie on the circle, centre O, radius 2, separated by an angle
2π/5, starting at Arg π/4.

6. (Exam question Q6C1452005)

(a) Express the complex number
√

3 + i in polar form, i.e. in the form
reiθ for certain positive real numbers r and θ.
Solution: Modulus is r =

√
3 + 1 = 2. Argument is θ = arctan 1/

√
3[ =

π/6
(b) Using the fact that sin(A + B) = sin A cos B + cos A sinB and a

corresponding result for cos(A + B), which you should state, prove
that:

r1(cos θ1+i sin θ1)r2(cos θ2+i sin θ2) = r1r2(cos(θ1+θ2)+i sin(θ1+θ2))

Solution:

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) =

r1r2[(cos θ1 cos θ2−sin θ1 sin θ2)+i(sin θ1 cos θ2+cos θ1 sin θ2)] = r1r2e
i(θ1+θ2)
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(c) Show that

i. cos 3θ = 4 cos3 θ − 3 cos θ
Solution:

cos 3θ + i sin 3θ = (cos θ + i sin θ)3

by de Moivre’s Theorem. Equating the real parts,

cos 3θ = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ

ii. 8 cos4 θ = cos 4θ + 4 cos 2θ + 3
Note: You may wish to use the fact that 2 cos θ = eiθ + e−iθ.
Solution:

16 cos4 θ = ei4θ + 4ei3θe−iθ + 6ei2θe−i2θ + 4eiθe−i3θ + e−i4θ =

2[cos 4θ + 4 cos 2θ + 3]

(d) Find all the roots (for z) of the equation z4 = 8(
√

3 + i), and write
them in Cartesian form, i.e. in the form a + ib for real numbers a
and b.
Solution: In polar form, z4 = 16eiπ/6 = 16eiπ(2n+1/6) for n =
0, 1, 2, . . .. Thus, z = 2eiπ(n/2+1/24) are distinct roots for n = 0, 1, 2, 3.
This gives:

z1 = 2 cos π/24 + i2 sinπ/24
z2 = 2 cos 13π/24 + i2 sin 13π/24 = −2 cos 11π/24 + i2 sin 11π/24
z3 = 2 cos 25π/24 + i2 sin 25π/24 = −2 cos π/24− i2 sinπ/24
z4 = 2 cos 37π/24 + i2 sin 37π/24 = 2 cos 11π/24− i2 sin 11π/24

Alternatively: any root multiplied by 1,−1, i,−i is OK.

7. (Exam question Q6C1452006)

(a) Express the complex number 12 + 5i in polar form, i.e. in the form
reiθ for certain positive real numbers r and θ.
Solution: Modulus is r =

√
144 + 25 = 13. Argument is arctan 5/12 =

φ, say. Number is then 13eiφ

(b) The cube roots of unity, i.e. complex numbers which give result 1
when cubed, are 1, ω and ω′.

i. Obtain representations of these three roots in both Cartesian and
polar form.
Solution: Roots are e2πki/3 for k = 0, 1, 2, corresponding to
1, ω, ω′. 1 is already in both Cartesian and polar form. ω =
cos 2πi/3+i sin 2πi/3 = −1/2+

√
3i/2, ω′ = cos 4πi/3+i sin 4πi/3 =

−1/2−
√

3i/2.
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ii. Verify that the roots not equal to 1 are the squares of each other.
Solution: The square of the second root (k = 1) is (e2πi/3)2 =
e4πi/3, i.e. the third root. The square of the third root (k = 2)
is (e4πi/3)2 = e8πi/3 = e2πi/3, i.e. the second root.

iii. Verify that the roots not equal to 1 add up to −1.
Solution: Either note that ω, ω′ are complex conjugates with
real part −1/2 so sum to -1, or observe that the sum of all 3
roots is the coefficient of z2 in the equation z3 − 1 = 0, i.e. 0.

(c) Assuming that eiθ = cos θ + i sin θ for real number θ, prove that

i.
(cos θ + i sin θ)n = cos nθ + i sinnθ

for all real n.
Solution: cos nθ + i sinnθ = einθ =

(
eiθ

)n = (cos θ + i sin θ)n

ii. Show that sin 4θ = 4 cos θ sin θ − 8 cos θ sin3 θ
Solution:

cos 4θ + i sin 4θ = (cos θ + i sin θ)4

Equating the imaginary parts,

sin 4θ = 4 cos3 θ sin θ−4 cos θ sin3 θ = 4 cos θ sin θ(1−sin2 θ)−4 cos θ sin3 θ

so the result follows.

(d) A rock star is worried about the quality of the output signal from
one of his amplifiers. Therefore he monitors the signal to look for
spurious noise using Fourier analysis. In the course of estimating
certain coefficients, he needs to evaluate the integral

I =
∫ π

0

e−θ cos 2nθdθ

for integer values n. Using the fact that cos 2nθ is the real part of
e2inθ, or otherwise, show that I = 1−e−π

1+4n2 .

Solution: I = Re
(∫ π

0
e(2in−1)θdθ

)
= Re

[
− e(2in−1)θ

1−2in)

]π

0
= Re

(
(1+2in)(1−e(2in−1)π)

1+4n2

)
so result follows.

Bounds and Limits

8. What is the least upper bound (supremum) and greatest lower bound
(infimum) of the following sets of numbers:

(a) {x ∈ IN | 1 ≤ x2 ≤ 29}
(b) {x ∈ Q | 1 ≤ x2 ≤ 29}
(c) {x ∈ IR | 1 ≤ x2 ≤ 29}
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in each case, are the infimum and supremum in the given set?

Solution:

(a) The set is {1, 2, 3, 4, 5} which is finite, so the inf is 1 (minimum ele-
ment), the sup is 5 (maximum element).

(b) The set consists of all rationals in [−
√

29,−1] and [1,
√

29], i.e. it is
Q∩ ([−

√
29,−1]∪ [1,

√
29]). The inf is −

√
29, the sup is

√
29, neither

is in the set since they are not rational.

(c) Same as previous, but both inf and sup are in the set.

9. (a) Prove rigorously that, for α > 0, the sequence an = n−α converges
to zero as n tends to infinity. In other words, use ε and N , an
appropriate value of which should be given as a function of ε.

(b) Hence use the trapping or ‘sandwich’ theorem to show that

n!
nn

→ 0

as n →∞
(c) What happens to

n!
np

as n →∞, where p is a fixed integer?

Solution:

(a) Pick ε > 0. Then we want an N s.t. aN = N−α ≤ ε so that then all
an < ε for n > N since an is decreasing. Thus we want Nα ≥ 1/ε so
any integer greater than ε−1/α will do the job, e.g. choose

N = dε−1/αe

(b)
n!
nn

= 1× (1− 1
n

)× (1− 2
n

)× . . .× 1
n

<
1
n

But 1
n > 0 ∀n > 0 and the given sequence is trapped.

(c) Diverges since, for n > p,

n!
np

> (n− p)!
(n− p + 1)p

np
= (n− p)!

(
1− p− 1

n

)p

> (n− p)!(1/2)p

for n > 2(p− 1).

10. Investigate the convergence properties (either converges or diverges) of
each of the following sequences an, n = 1, 2, . . .

(a) an = 3n2+2n+4
5n2−7n+1
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(b) an = 3n3+2n+4
5n2−7n+1

(c) an = n + (−1)nn2

(d) an = 1
n2 + 1

(n+1)2 + . . . + 1
(2n)2

Solution:

(a) Divide top and bottom by n2 to get: an = 3+2/n+4/n2

5−7/n+1/n2 . As n → ∞,
an → 3/5

(b) Similarly, an = 3n+2/n+4/n2

5−7/n+1/n2 > 3n/5 so diverges.

(c) n2−n ≤ |an| ≤ n2 + n (because ||x| − |y|| ≤ |x± y| ≤ |x|+ |y|) so an

diverges as fast as n2, but alternating sign makes it oscillate.

(d) an < n/n2 = 1/n so an converges by trapping.

11. Consider the decimal D = 0.d1d2d3 . . . ∈ [0, 1), as in lectures, and the
sequence of finite decimals an = 0.d1d2 . . . dn, n = 1, 2, . . .. (D is also
equivalent to a finite decimal if dk = 0 ∀k > K for some integer K > 0.)
Show that:

(a) Each an is rational for n > 0.

(b) The sequence an is increasing and bounded above.

(c) D is a real number.

Conversely, let E be a real number in [0, 1). Then successively choose the
rational decimal numbers bn = 0.e1 . . . en, n = 1, 2, . . . such that bn ≤ E
and bn + 10−n > E – i.e. bn is the biggest such decimal. Prove that

lim
n→∞

bn = E

and hence that E is a decimal.

Solution:

(a) Obvious since an is a finite decimal and so a sum of inverse powers
of 10, each of which is rational.

(b) Obvious since we add a multiple of 10−n to get an from an−1 (n > 1).
(Strictly, we should say ‘non-decreasing’ as the multiple may be zero.)
An upper bound is 1.

(c) D is real by the fundamental axiom.

E is clearly the supremum of the sequence bn (simple proof by contradic-
tion since E − bn ≤ 10−n for arbitrarily large n). bn is increasing and
bounded above and therefore has a limit by the fundamental axiom. That
limit is E because ∀ε > 0,∃N ∈ IN s.t. |bN − E| < ε since E is the
supremum. Hence |bn − E| < ε ∀n ≥ N .
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