
Mathematical Methods: Tutorial sheet 7

Peter Harrison

29 November 2007

Assessed questions: 1, 4(a) and 5(a,b,f). Due: Monday 10 December
2007.

More on convergence

1. (Exam question Q5C1452005) Use the ε-N method to prove rigorously
that xn → 0 as n →∞ if |x| < 1. That is, given ε > 0 find a number N(ε)
(which depends on ε) for which m > N(ε) ⇒ |xm| < ε.

Solution: xn is decreasing and |xN | = |x|N = ε when N = log|x| ε. So
N(ε) = log|x| ε – or anything bigger – does the job.

2. Prove from first principles (i.e. use the ε-N method) that

lim
n→∞

cos2(1/n) = 1

by first:

• using a geometrical argument to show that sin θ < θ for 0 < θ < π/2
(θ measured in radians).

• deducing that cos2θ > 1− θ2 for 0 < θ < π/2

Solution:

• Draw a sector of a circle with radius 1 and angle θ at the centre. The
length of the arc is θ. Drop a perpendicular from one radius to the
other; its length is sin θ which is less than the arc length.

• cos2 θ = 1− sin2 θ and so cos2 θ > 1− θ2

Thus, remembering that | cos θ| ≤ 1, | cos2 θ − 1| < |θ2|. (Actually easier,
just use | cos2 θ−1| = | sin2 θ| < |θ2|.) Now proceed as in part a of question
2 on exercise sheet 5, with α = 2.

You can also use the fact that 1 − cos θ = 2 sin2(θ/2) < θ2/2 to show
similarly that

lim
n→∞

cos(1/n) = 1
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3. The ‘limit superior’ of a sequence a1, a2, . . . is written lim sup
n→∞

an and de-

fined as follows:

• let un = sup
n≤k<∞

ak

• then lim sup
n→∞

an = lim
n→∞

un

Similarly, the ‘limit inferior’ lim inf
n→∞

an = lim
n→∞

inf
n≤k<∞

ak.

(a) Show that the sequence u1, u2, . . . is non-increasing, i.e. u1 ≥ u2 ≥
u3 . . ..

(b) Prove that a bounded sequence has a lim sup and a lim inf which are
both finite.

(c) If a sequence is unbounded but neither diverges to +∞ or −∞, does
it have a lim sup or a lim inf?

(d) If a sequence a1, a2, . . . has

lim inf
n→∞

an = lim sup
n→∞

an = x

does lim
n→∞

an exist and, if so, what is it and why?

Solution:

(a) For all n ∈ IN, un = sup{an, an+1, . . .} = max
(
an, sup{an+1, an+2, . . .}

)
≥

sup{an+1, an+2, . . .} = un+1.

(b) If a1, a2, . . . is bounded, then the non-increasing sequence u1, u2, . . .
is bounded and so converges (to u say) by the Fundamental Axiom.
Hence lim sup an exists and is equal to u. Similarly for lim inf an.

(c) To prove {un, un+1, . . .} is bounded below for all n ∈ IN it is sufficient
to find any constant L s.t. ak > L for infinitely many k. In other
words, we only need a real number L which is less than infinitely
many sequence elements – i.e. there are always some bigger than
L no matter how far along the sequence we go. A lower bound on
the whole sequence is not necessary since the suprema un will clearly
be bigger than L, being bigger than the particular ak chosen by
definition.
For example, the sequence defined by an = 1 + 1/n if n is odd and
−n if n is even has no lower bound but has lim sup equal to 1, the
limit of the sequence of upper bounds un = 2, 4/3, 4/3, 6/5, 6/5, . . ..
So the answer is ‘yes’ !

(d) Let ln = inf
n≤k<∞

ak. Then, ∀n ∈ IN, ln ≤ an ≤ un. Therefore

a1, a2, . . . converges and lim
n→∞

an = x by the sandwich theorem.

2



4. Given that the sequences a1, a2, . . . and b1, b2, . . . converge to limits a and
b respectively, show that:

(a) The sequence cn = an + bn converges to a + b;

(b) If a > 0, the sequence dn = 1/an converges to 1/a.

Solution:

(a) Given ε > 0,∃N1, N2 s.t. ∀n > N1, |an−a| < ε and ∀n > N2, |bn−b| <
ε/2. Thus, for n > max(N1, N2),

|an + bn − a− b| ≤ |an − a|+ |bn − b| < ε

(b) Given ε > 0,∃N1 s.t. ∀n > N1, |an − a| < ε.
Also, ∃N2 s.t. |an − a| < |a|/2 for n > N2.
Thus |1/an − 1/a| = |an − a|/|ana| < 2|an − a|/|a2| < 2ε/|a2| for
n > max(N1, N2).

5. Investigate the convergence properties (either converges or diverges for
different values of the parameter x, if present) of each of the following

series
∞∑

n=1
an, where

(a) an = 1
3n+2

(b) an = 1
1+n2

(c) an = n!xn

(d) an =
(

x
n

)n

(e) an = sin π
n

(f) an = sin nx
n2

Note: 2x/π < sinx < x (0 < x < π/2)

Solution: Let the partial sum Sn =
∑n

i=1 ai

(a) ai > 1/4i for i > 2 and so Sn > a1 + a2 + 0.25
∑n

i=3 1/i which
diverges. So series diverges by comparison test.

(b) ai < 1/i2 so Sn <
∑n

i=1 1/i2 which converges. Hence series con-
verges.

(c) an+1/an = (n + 1)x > 1 for n ≥ 1/x. So series diverges for all x > 0
by D’Alembert’s ratio test. Similarly for x < 0, when series oscillates.

(d) |x|
n+1

(
n

n+1

)n

< |x|
n+1 < 1 for n > |x|. So series converges absolutely,

and hence converges, for all x.

(e) For n > 2, an > 2/n so series diverges by comparison test, as in part
(a).
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(f) For |an| < 1/n2 so series converges absolutely, and hence converges,
by comparison test, as in part (b).

6. Consider the quadratic equation

x2 − 2x− 1 = 0

which has roots 1 ±
√

2. [Usually in ‘real’ problems we don’t know the
answer, but will know a valid range of values, e.g. in the interval [2,3].] The
aim of this exercise is to compute

√
2 iteratively. Define the recurrence:

an+1 =
√

2an + 1, a1 = 1

(a) Show that, if the recurrence converges, its limit is one of the roots of
the quadratic equation above;

(b) Prove by induction (if you know how) that 0 < an < 3 for all n ∈ IN
[if you don’t know induction, just show that 0 < an < 3 ⇒ 0 <
an+1 < 3];

(c) Hence show that if the iteration converges, its limit is the positive
root, l = 1 +

√
2;

(d) Calculate a2
n+1 − l2 = (an+1 + l)(an+1 − l) and show that

an+1 − l =
2(an − l)
an+1 + l

(e) Hence show that an → l as n →∞;

(f) Compute {an − 1 | 1 ≤ n ≤ 6} and compare with
√

2.

Solution:

(a) If it converges, then in the limit we can set an = an+1 = l (no need
for an ε-argument here, although to be strictly rigorous it can be
done easily). Thus l =

√
2l + 1 and squaring gives l2 = 2l + 1 which

is the given quadratic.

(b) a1 = 1 and so 0 < a1 < 3 is true. Suppose 0 < an < 3 holds for
n ≥ 1. Then

√
2× 0 + 1 ≤ an+1 ≤

√
2× 3 + 1 =

√
7

Thus certainly 0 ≤ an+1 ≤ 3. Actually, we have all an > 1.

(c) If the iteration converges, its limit must be ≥ 0 because every an ≥ 0.
(Again, from first principles, you would say every large enough n is
maximum ε away from the limit, so the limit can’t be less than 0 ......
but you don’t need to say this unless it’s specfically asked for.) This
excludes the negative root 1−

√
2.
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(d) By definition of the recurrence and because l2 = 2l + 1,

a2
n+1 − l2 = (

√
2an + 1)2 − 2l − 1 = 2(an − l)

Hence,
(an+1 + l)(an+1 − l) = 2(an − l)

(e) Since an+1 > 0 and the positive root l > 2.4 (because
√

2 > 1.4),

an+1 − l <
2

2.4
(an − l)

and so an+1 − l converges to 0 by the ratio test. Thus an → l as
n →∞.

(f) a1 = 1, a2 =
√

2 + 1 =
√

3 = 1.732051, a3 =
√

2
√

3 + 1 = 2.11284, a4 =√
2× 2.11284 + 1 = 2.28598, a5 = 2.36050, a6 = 2.39186 so the set is

{0, 1.732051, 1.11284, 1.28598, 1.36050, 1..39186}

and the next 5 elements are:

{1.40494, 1.41037, 1.41262, 1.41355, 1.41394}

7. Compare question 2 on Logic Exercises 7.
Let L be the signature consisting of constant-symbols written as the un-
derlined decimal numbers (hence including the positive integer-symbols
1, 2, 3, . . .), binary relation symbols <,>,≤,≥ and binary function sym-
bols +,×. Let N be the structure whose domain consists of the real
numbers IR, with the symbols of L interpreted in the natural way. The
formula ∃v(x = v × v) expresses that x is non-negative, for example.

(a) In the same kind of way, write down a first-order L-formula express-
ing that the sequence of real numbers a1, a2, . . . converges to a real
number as n tends to infinity.

(b) Try to express the same statement in the same signature in a different
way.

(c) Using the rules for negating quantified expressions in predicate logic,
define the condition for a sequence a1, a2, . . . not to converge – i.e.
find the negation of the usual definition of convergence. What does
this condition mean in terms of the existence (or otherwise) of ‘tram-
lines’?

Solution:

(a) ∃l(∀ε(∃N(∀n(n > N → (an − l)× (an − l) < ε× ε)))).

(b) Is there a different way?
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(c) ∀l(∃ε(∀N(∃n(¬(n > N → (an − l)× (an − l) < ε× ε))))) =
∀l(∃ε(∀N(∃n(n > N ∧ ¬((an − l)× (an − l) < ε× ε)))))
So for every real number l, there is a number ε for which there are
infinitely many an lying outside the tramlines at l ± ε — there is no
‘last’ such an.

8. Given real functions g, f which are continuous on (a, b) and on the image of
g, {z = g(x) | x ∈ (a, b)}, respectively, prove rigorously that the function
h defined by h(x) = f(g(x)) is continuous on (a, b).

Hint: You have to prove that, given a point x0 ∈ (a, b), ∀ε > 0,∃δ > 0
s.t. |x− x0| < δ ⇒ |h(x)− h(x0)| < ε and find δ as a function of ε, using
corresponding quantities δf , δg relating to the continuity of f, g.

Solution: For h to be continuous, as x get very close to x0, then h(x)
must get very close to h(x0) – this is what the hint says in a rigorous way.

Given a point x0 ∈ (a, b) and a real number ε > 0,∃δf > 0 s.t.

|g(x)− g(x0)| < δf ⇒ |f(g(x))− f(g(x0))| < ε

since f is continuous at g(x0).

But ∃δg > 0 s.t. |x− x0| < δg ⇒ |g(x)− g(x0)| < δf since g is continuous
at x0. So if we choose δ ≤ δg, we have

|x− x0| < δ ⇒ |g(x)− g(x0)| < δf ⇒ |h(x)− h(x0)| < ε

as required.
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