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All questions are unassessed, but very useful!.

Fixpoints and continuity

1. Consider the quadratic equation

x2 − 2x− 1 = 0

which has roots 1 ±
√

2. [Usually in ‘real’ problems we don’t know the
answer, but will know a valid range of values, e.g. in the interval [2,3].] The
aim of this exercise is to compute

√
2 iteratively. Define the recurrence:

an+1 =
√

2an + 1, a1 = 1

(a) Show that, if the recurrence converges, its limit is one of the roots of
the quadratic equation above;

(b) Prove by induction (if you know how) that 0 < an < 3 for all n ∈ IN
[if you don’t know induction, just show that 0 < an < 3 ⇒ 0 <
an+1 < 3];

(c) Hence show that if the iteration converges, its limit is the positive
root, l = 1 +

√
2;

(d) Calculate a2
n+1 − l2 = (an+1 + l)(an+1 − l) and show that

an+1 − l =
2(an − l)
an+1 + l

(e) Hence show that an → l as n →∞;

(f) Compute {an − 1 | 1 ≤ n ≤ 6} and compare with
√

2.

Solutions:

(a) If it converges, then in the limit we can set an = an+1 = l (no need
for an ε-argument here, although to be strictly rigorous it can be
done easily). Thus l =

√
2l + 1 and squaring gives l2 = 2l + 1 which

is the given quadratic.
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(b) a1 = 1 and so 0 < a1 < 3 is true. Suppose 0 < an < 3 holds for
n ≥ 1. Then

√
2× 0 + 1 ≤ an+1 ≤

√
2× 3 + 1 =

√
7

Thus certainly 0 ≤ an+1 ≤ 3. Actually, we have all an > 1.

(c) If the iteration converges, its limit must be ≥ 0 because every an ≥ 0.
(Again, from first principles, you would say every large enough n is
maximum ε away from the limit, so the limit can’t be less than 0 ......
but you don’t need to say this unless it’s specfically asked for.) This
excludes the negative root 1−

√
2.

(d) By definition of the recurrence and because l2 = 2l + 1,

a2
n+1 − l2 = (

√
2an + 1)2 − 2l − 1 = 2(an − l)

Hence,
(an+1 + l)(an+1 − l) = 2(an − l)

(e) Since an+1 > 0 and the positive root l > 2.4 (because
√

2 > 1.4),

an+1 − l <
2

2.4
(an − l)

and so an+1 − l converges to 0 by the ratio test. Thus an → l as
n →∞.

(f) a1 = 1, a2 =
√

2 + 1 =
√

3 = 1.732051, a3 =
√

2
√

3 + 1 = 2.11284, a4 =√
2× 2.11284 + 1 = 2.28598, a5 = 2.36050, a6 = 2.39186 so the set is

{0, 1.732051, 1.11284, 1.28598, 1.36050, 1..39186}

and the next 5 elements are:

{1.40494, 1.41037, 1.41262, 1.41355, 1.41394}

2. Given real functions g, f which are continuous on (a, b) and on the image of
g, {z = g(x) | x ∈ (a, b)}, respectively, prove rigorously that the function
h defined by h(x) = f(g(x)) is continuous on (a, b).

Hint: You have to prove that, given a point x0 ∈ (a, b), ∀ε > 0,∃δ > 0
s.t. |x− x0| < δ ⇒ |h(x)− h(x0)| < ε and find δ as a function of ε, using
corresponding quantities δf , δg relating to the continuity of f, g.

Solutions: For h to be continuous, as x get very close to x0, then h(x)
must get very close to h(x0) – this is what the hint says in a rigorous way.

Given a point x0 ∈ (a, b) and a real number ε > 0,∃δf > 0 s.t.

|g(x)− g(x0)| < δf ⇒ |f(g(x))− f(g(x0))| < ε

since f is continuous at g(x0).
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But ∃δg > 0 s.t. |x− x0| < δg ⇒ |g(x)− g(x0)| < δf since g is continuous
at x0. So if we choose δ ≤ δg, we have

|x− x0| < δ ⇒ |g(x)− g(x0)| < δf ⇒ |h(x)− h(x0)| < ε

as required.

3. Refer to question 3 on Logic Exercises 7 (no. 6 on cate).
Let L be the signature consisting of constant-symbols written as the un-
derlined decimal numbers (hence including the positive integer-symbols
1, 2, 3, . . .), binary relation symbols <,>,≤,≥ and binary function sym-
bols +,×. Let N be the structure whose domain consists of the real
numbers IR, with the symbols of L interpreted in the natural way. The
formula ∃v(x = v × v) expresses that x is non-negative, for example.

(a) In the same kind of way, write down a first-order L-formula express-
ing that the sequence of real numbers a1, a2, . . . converges to a real
number as n tends to infinity.

(b) Try to express the same statement in the same signature in a different
way.

(c) Using the rules for negating quantified expressions in predicate logic,
define the condition for a sequence a1, a2, . . . not to converge – i.e.
find the negation of the usual definition of convergence. What does
this condition mean in terms of the existence (or otherwise) of ‘tram-
lines’?

Solutions:

(a) ∃l(∀ε(∃N(∀n(n > N → (an − l)× (an − l) < ε× ε)))).

(b) Is there a different way?

(c) ∀l(∃ε(∀N(∃n(¬(n > N → (an − l)× (an − l) < ε× ε))))) =
∀l(∃ε(∀N(∃n(n > N ∧ ¬((an − l)× (an − l) < ε× ε)))))
So for every real number l, there is a number ε for which there are
infinitely many an lying outside the tramlines at l ± ε — there is no
‘last’ such an.
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