
Computational Techniques: 233 – 2

Peter Harrison

Department of Computing, Imperial College London

March 7, 2011

Peter Harrison Computational Techniques: 233 – 2

Contents of part 2 of Course 233

The following topics will be covered:

Conditioning

Convergence and fixed point problems

Iterative solution of linear equations

Laplace transforms

Functions of several variables

Introduction to continuous optimisation

Note that Sparse Matrix Techniques will not be covered:
they are discussed in the “Background Notes” however.

Peter Harrison Computational Techniques: 233 – 2

A polynomial equation

Consider the polynomial equation

(x − 1)4 = 0

Four coincident roots, x = 1

Peter Harrison Computational Techniques: 233 – 2

A polynomial equation

Consider the polynomial equation

(x − 1)4 = 0

Four coincident roots, x = 1

Now try (x − 1)4 = 10−8

Peter Harrison Computational Techniques: 233 – 2

A polynomial equation

Consider the polynomial equation

(x − 1)4 = 0

Four coincident roots, x = 1

Now try (x − 1)4 = 10−8

One exact root is now 1.01

Peter Harrison Computational Techniques: 233 – 2

A polynomial equation

Consider the polynomial equation

(x − 1)4 = 0

Four coincident roots, x = 1

Now try (x − 1)4 = 10−8

One exact root is now 1.01

The change of 10−8 in a ‘parameter’ has caused a change of
10−2 in the solution: a ratio of 1000000 !

Peter Harrison Computational Techniques: 233 – 2

Linear equations

Now consider the equations

x + y = 1

x + αy = 0

Peter Harrison Computational Techniques: 233 – 2

Linear equations

Now consider the equations

x + y = 1

x + αy = 0

The solution is x = 1 − 1/(1 − α), y = 1/(1 − α)

Peter Harrison Computational Techniques: 233 – 2

Linear equations

Now consider the equations

x + y = 1

x + αy = 0

The solution is x = 1 − 1/(1 − α), y = 1/(1 − α)

A small change in a coefficient (α) leads to a large change in the
solution when α ∼ 1

Peter Harrison Computational Techniques: 233 – 2

Linear equations

Now consider the equations

x + y = 1

x + αy = 0

The solution is x = 1 − 1/(1 − α), y = 1/(1 − α)

A small change in a coefficient (α) leads to a large change in the
solution when α ∼ 1

If α increases from 0.999 to 0.9999, the solution changes from
(−999, 1000) to (−9999, 10000) : an increase by a factor of 10
from a change of about 0.1% in the parameter α.

Peter Harrison Computational Techniques: 233 – 2

Mathematical conditioning

The condition number, or just condition, of a problem P is the
maximum size-ratio:

κ(P) = max
d1,d2

||s(d1) − s(d2)||
||d1 − d2||

where d1, d2 are alternate inputs to P and s(d1), s(d2) are the
corresponding solutions (outputs)

Peter Harrison Computational Techniques: 233 – 2

Mathematical conditioning

The condition number, or just condition, of a problem P is the
maximum size-ratio:

κ(P) = max
d1,d2

||s(d1) − s(d2)||
||d1 − d2||

where d1, d2 are alternate inputs to P and s(d1), s(d2) are the
corresponding solutions (outputs)

In the above examples, the ratios were big: 106 and 104 ... and
these are not worst cases!

Peter Harrison Computational Techniques: 233 – 2

Mathematical conditioning

The condition number, or just condition, of a problem P is the
maximum size-ratio:

κ(P) = max
d1,d2

||s(d1) − s(d2)||
||d1 − d2||

where d1, d2 are alternate inputs to P and s(d1), s(d2) are the
corresponding solutions (outputs)

In the above examples, the ratios were big: 106 and 104 ... and
these are not worst cases!

A relatively small number (near to 1) implies that even in the
worst case, the solution will not be too sensitive to small changes
in the input ... will not “blow up”.

Key point is that we’re looking at the worst case.

Peter Harrison Computational Techniques: 233 – 2

Matrix norm

Define, for each vector norm (1, 2,∞), the subordinate matrix
norm:

||A|| = max
x "=0

||Ax ||
||x || = max

||u||=1
||Au||

Peter Harrison Computational Techniques: 233 – 2

Matrix norm

Define, for each vector norm (1, 2,∞), the subordinate matrix
norm:

||A|| = max
x "=0

||Ax ||
||x || = max

||u||=1
||Au||

A lower bound on the norm is:

||A|| ≥ ||Ax ||
||x ||

for any specific non-zero vector x .

Peter Harrison Computational Techniques: 233 – 2

Subordinate norms

Proposition: The subordinate matrix norms are those defined
previously for the corresponding vector norms.

Peter Harrison Computational Techniques: 233 – 2

Subordinate norms

Proposition: The subordinate matrix norms are those defined
previously for the corresponding vector norms.

We’ll prove for 1-norms.

Peter Harrison Computational Techniques: 233 – 2

Subordinate norms

Proposition: The subordinate matrix norms are those defined
previously for the corresponding vector norms.

We’ll prove for 1-norms.

||Ax ||1 = ||(. . . ,
∑

j

aijxj , . . .)||1

≤
∑

i ,j

|aijxj |

=
∑

i ,j

|aij ||xj |

=
∑

j

||aj ||1|xj |

≤ max
j

||aj ||1||x ||1

= ||x ||1||A||1
with equality for some vector x .

Peter Harrison Computational Techniques: 233 – 2

Perturbation

Consider the linear equations Ax = b

Peter Harrison Computational Techniques: 233 – 2

Perturbation

Consider the linear equations Ax = b

Let the perturbed equation, with b changed to b + δb, have
solution x + δxb, so

A(x + δxb) = b + δb

Peter Harrison Computational Techniques: 233 – 2

Perturbation

Consider the linear equations Ax = b

Let the perturbed equation, with b changed to b + δb, have
solution x + δxb, so

A(x + δxb) = b + δb

Hence Aδxb = δb and so δxb = A−1δb

Peter Harrison Computational Techniques: 233 – 2

Perturbation

Consider the linear equations Ax = b

Let the perturbed equation, with b changed to b + δb, have
solution x + δxb, so

A(x + δxb) = b + δb

Hence Aδxb = δb and so δxb = A−1δb

Therefore ||δxb|| ≤ ||A−1||||δb|| and equality can be attained.

Peter Harrison Computational Techniques: 233 – 2

Perturbation

Consider the linear equations Ax = b

Let the perturbed equation, with b changed to b + δb, have
solution x + δxb, so

A(x + δxb) = b + δb

Hence Aδxb = δb and so δxb = A−1δb

Therefore ||δxb|| ≤ ||A−1||||δb|| and equality can be attained.

Relative perturbation is

||δxb||
||x || ≤ ||A−1||||A|| ||δb||||b||

Peter Harrison Computational Techniques: 233 – 2

Condition number

Similarly we can perturb the elements of the matrix A.

Peter Harrison Computational Techniques: 233 – 2

Condition number

Similarly we can perturb the elements of the matrix A.

(A + δA)(x + δxA) = b

Peter Harrison Computational Techniques: 233 – 2

Condition number

Similarly we can perturb the elements of the matrix A.

(A + δA)(x + δxA) = b

Ignoring second-order quantities and recalling Ax = b we get (not
quite the same as the notes)

Peter Harrison Computational Techniques: 233 – 2

Condition number

Similarly we can perturb the elements of the matrix A.

(A + δA)(x + δxA) = b

Ignoring second-order quantities and recalling Ax = b we get (not
quite the same as the notes)

||δxA||
||x ||

≤ ||A−1||||A|| ||δA||
||A||

Peter Harrison Computational Techniques: 233 – 2

Condition number

Similarly we can perturb the elements of the matrix A.

(A + δA)(x + δxA) = b

Ignoring second-order quantities and recalling Ax = b we get (not
quite the same as the notes)

||δxA||
||x ||

≤ ||A−1||||A|| ||δA||
||A||

Therefore define:
cond(A) = ||A−1||||A||

Peter Harrison Computational Techniques: 233 – 2

Condition number

Similarly we can perturb the elements of the matrix A.

(A + δA)(x + δxA) = b

Ignoring second-order quantities and recalling Ax = b we get (not
quite the same as the notes)

||δxA||
||x ||

≤ ||A−1||||A|| ||δA||
||A||

Therefore define:
cond(A) = ||A−1||||A||

Then

cond(A) ≥ max

{
||δxb||/||x ||
||δb||/||b|| ,

||δxA||/||x ||
||δA||/||A||

}

Peter Harrison Computational Techniques: 233 – 2

Does a big norm mean a matrix is ill-conditioned?

Consider

A =

[
108 0
0 108

]

Peter Harrison Computational Techniques: 233 – 2

Does a big norm mean a matrix is ill-conditioned?

Consider

A =

[
108 0
0 108

]

has norm 108, but not ill-conditioned (why?).
Gives same (big) result ||Ax ||/||x || for all vectors x

Peter Harrison Computational Techniques: 233 – 2

Does a big norm mean a matrix is ill-conditioned?

Consider

A =

[
108 0
0 108

]

has norm 108, but not ill-conditioned (why?).
Gives same (big) result ||Ax ||/||x || for all vectors x

In contrast consider:

A =

[
104 0
0 10−4

]
x =

[
1
0

]
x ′ =

[
0
1

]

Peter Harrison Computational Techniques: 233 – 2

Does a big norm mean a matrix is ill-conditioned?

Consider

A =

[
108 0
0 108

]

has norm 108, but not ill-conditioned (why?).
Gives same (big) result ||Ax ||/||x || for all vectors x

In contrast consider:

A =

[
104 0
0 10−4

]
x =

[
1
0

]
x ′ =

[
0
1

]

Then ||Ax ||/||x || = 104 but ||Ax ′||/||x ′|| = 10−4

Peter Harrison Computational Techniques: 233 – 2

Does a big norm mean a matrix is ill-conditioned?

Consider

A =

[
108 0
0 108

]

has norm 108, but not ill-conditioned (why?).
Gives same (big) result ||Ax ||/||x || for all vectors x

In contrast consider:

A =

[
104 0
0 10−4

]
x =

[
1
0

]
x ′ =

[
0
1

]

Then ||Ax ||/||x || = 104 but ||Ax ′||/||x ′|| = 10−4

||A|| = ||A−1|| = 104 so Condition of A is 108

Peter Harrison Computational Techniques: 233 – 2

Application to Least Squares

In least squares problems there are m equations in n variables,
where m > n

Gives a non-square (m × n) matrix A, for which the condition
can be calculated (see below)

Peter Harrison Computational Techniques: 233 – 2

Application to Least Squares

In least squares problems there are m equations in n variables,
where m > n

Gives a non-square (m × n) matrix A, for which the condition
can be calculated (see below)

Condition of ATA is the square of the condition of A, for
$2-norm

So unfortunately 4 norms get multiplied together, often giving
a very big condition number

Peter Harrison Computational Techniques: 233 – 2

Application to Least Squares

In least squares problems there are m equations in n variables,
where m > n

Gives a non-square (m × n) matrix A, for which the condition
can be calculated (see below)

Condition of ATA is the square of the condition of A, for
$2-norm

So unfortunately 4 norms get multiplied together, often giving
a very big condition number

For the normal equation, we calculate the condition of ATA
directly:

cond(ATA) = ||A−1(AT)−1||||ATA||

Peter Harrison Computational Techniques: 233 – 2

Example

Consider:

A =




1 1
1 1
0 10−4





Normal equation matrix is

ATA =

[
2 2
2 2 + 10−8

]

with inverse

(ATA)−1 = 0.5 × 108 ×
[

2 + 10−8 −2
−2 2

]

Peter Harrison Computational Techniques: 233 – 2

Example

Consider:

A =




1 1
1 1
0 10−4





Normal equation matrix is

ATA =

[
2 2
2 2 + 10−8

]

with inverse

(ATA)−1 = 0.5 × 108 ×
[

2 + 10−8 −2
−2 2

]

So

cond(ATA) = (4 + 10−8)(4 + 10−8) × 0.5 × 108 ' 8 × 108

Peter Harrison Computational Techniques: 233 – 2

Why are the notes different?

Notes say cond(AT A) = 7.8 × 108

They also say “condition of ATA is the square of the condition
of A” but this is not true for $1- and $∞-norms (try it!)

So a big difference is using the $2-norm.

Peter Harrison Computational Techniques: 233 – 2

Why are the notes different?

Notes say cond(AT A) = 7.8 × 108

They also say “condition of ATA is the square of the condition
of A” but this is not true for $1- and $∞-norms (try it!)

So a big difference is using the $2-norm.

Singular value decomposition gives σ1(A) = σ1(AT) = 2.0
and σ1(A−1) = 14142.1

Thus, using these $2-norms,

cond2(A) = 28284.3

This agrees with the notes’ 2.8 × 104 to 2 s.f. ... see page 78

Peter Harrison Computational Techniques: 233 – 2

Why are the notes different?

Notes say cond(AT A) = 7.8 × 108

They also say “condition of ATA is the square of the condition
of A” but this is not true for $1- and $∞-norms (try it!)

So a big difference is using the $2-norm.

Singular value decomposition gives σ1(A) = σ1(AT) = 2.0
and σ1(A−1) = 14142.1

Thus, using these $2-norms,

cond2(A) = 28284.3

This agrees with the notes’ 2.8 × 104 to 2 s.f. ... see page 78

Squaring 2.8 × 104 does indeed give 7.8 × 108 to 2 s.f.

However, squaring cond2(A) gives 8 × 108 !!

Peter Harrison Computational Techniques: 233 – 2

Metric Spaces

Definition: A metric space is a non-empty set S of points (or
objects) together with a function d : S × S → IR (the metric of
the space) satisfying:

1 d(x , x) = 0;

2 d(x , y) > 0 if x)= y ;

3 d(x , y) = d(y , x)

4 d(x , y) ≤ d(x , z) + d(z , y)

for all points x , y , z ∈ S .

Peter Harrison Computational Techniques: 233 – 2

Metric Spaces

Definition: A metric space is a non-empty set S of points (or
objects) together with a function d : S × S → IR (the metric of
the space) satisfying:

1 d(x , x) = 0;

2 d(x , y) > 0 if x)= y ;

3 d(x , y) = d(y , x)

4 d(x , y) ≤ d(x , z) + d(z , y)

for all points x , y , z ∈ S .

Obviously true for distances in real spaces such as IR, IR2, IR3;

Actually all we need to define notions of limits and
convergence.

Peter Harrison Computational Techniques: 233 – 2

Convergence - revision

Definition: A sequence a1, a2, . . . converges to a limit $ ∈ IR,
written an → $ as n → ∞ or limn→∞ an = $, iff

∀ε > 0,∃N ∈ IN such that ∀n > N, |an − $| < ε

equivalently, $ − ε < an < $ + ε

‘tramlines’ ε away from the limit value $

Peter Harrison Computational Techniques: 233 – 2

Illustration of convergence

•

•
•

•

•

•

•

•

•

•

•

•

•
•
•

•
•

•
• • • • • • • • • • • • •

n

an

1 10 15 20 25 305

limit a

a + !'

a + !

a - !'

a - !

N(!)=10 N(!')=18

Need a bigger N as ε decreases

Peter Harrison Computational Techniques: 233 – 2

Cauchy test in IR

Theorem (Cauchy): The sequence a1, a2, . . . is convergent if
and only if ∀ε > 0,∃N such that |an − am| < ε for all n,m > N.

Peter Harrison Computational Techniques: 233 – 2

Cauchy test in IR

Theorem (Cauchy): The sequence a1, a2, . . . is convergent if
and only if ∀ε > 0,∃N such that |an − am| < ε for all n,m > N.

Useful because you don’t need to know what the limit is
(when it exists), e.g. when an is defined by a recurrence
relation or a recursive function

Also a test for divergence

Peter Harrison Computational Techniques: 233 – 2

Example

an =
n∑

i=1

1

i(i + 1)

Peter Harrison Computational Techniques: 233 – 2

Example

an =
n∑

i=1

1

i(i + 1)

an − am =
1

(m + 1)(m + 2)
+ . . . +

1

n(n + 1)

Peter Harrison Computational Techniques: 233 – 2

Example

an =
n∑

i=1

1

i(i + 1)

an − am =
1

(m + 1)(m + 2)
+ . . . +

1

n(n + 1)

=

(
1

m + 1
− 1

m + 2

)
+

(
1

m + 2
− 1

m + 3

)
+

. . . +

(
1

n
− 1

n + 1

)

=
1

m + 1
− 1

n + 1
→ 0 as n > m → ∞

Peter Harrison Computational Techniques: 233 – 2

Cauchy sequence

End of revision! More generally, in metric spaces ...

Peter Harrison Computational Techniques: 233 – 2

Cauchy sequence

End of revision! More generally, in metric spaces ...

Definition: A sequence x1, x2, . . . in a metric space S converges
to a limit $ ∈ S iff ∀ε > 0,∃N ∈ IN such that ∀n > N, d(xn, $) < ε.

Peter Harrison Computational Techniques: 233 – 2

Cauchy sequence

End of revision! More generally, in metric spaces ...

Definition: A sequence x1, x2, . . . in a metric space S converges
to a limit $ ∈ S iff ∀ε > 0,∃N ∈ IN such that ∀n > N, d(xn, $) < ε.

Definition: A sequence {xn} in a metric space S is called a
Cauchy sequence if for all ε > 0 there exists an integer N such that
for all n,m ≥ N, d(xn, xm) < ε.

Peter Harrison Computational Techniques: 233 – 2

Cauchy sequence

End of revision! More generally, in metric spaces ...

Definition: A sequence x1, x2, . . . in a metric space S converges
to a limit $ ∈ S iff ∀ε > 0,∃N ∈ IN such that ∀n > N, d(xn, $) < ε.

Definition: A sequence {xn} in a metric space S is called a
Cauchy sequence if for all ε > 0 there exists an integer N such that
for all n,m ≥ N, d(xn, xm) < ε.

Definition: A metric space S in which every Cauchy sequence
has a limit in S is called complete.

Peter Harrison Computational Techniques: 233 – 2

Cauchy sequence

End of revision! More generally, in metric spaces ...

Definition: A sequence x1, x2, . . . in a metric space S converges
to a limit $ ∈ S iff ∀ε > 0,∃N ∈ IN such that ∀n > N, d(xn, $) < ε.

Definition: A sequence {xn} in a metric space S is called a
Cauchy sequence if for all ε > 0 there exists an integer N such that
for all n,m ≥ N, d(xn, xm) < ε.

Definition: A metric space S in which every Cauchy sequence
has a limit in S is called complete.

Theorem: Suppose a sequence {xn} converges in a metric space
S . Then {xn} is Cauchy.

Peter Harrison Computational Techniques: 233 – 2

Application and examples

These theorems mean that in any complete metric space a
sequence is convergent if and only if it is Cauchy, which is
relatively easy to test.

It can be shown that IRk is complete for all k ≥ 1.

Peter Harrison Computational Techniques: 233 – 2

Application and examples

These theorems mean that in any complete metric space a
sequence is convergent if and only if it is Cauchy, which is
relatively easy to test.

It can be shown that IRk is complete for all k ≥ 1.
Proof hint:

A cauchy sequence is bounded and so has a convergent
sub-sequence (Fundamental axiom / Bolzano-Weierstrass
theorem).
It therefore has the same limit as the subsequence

Peter Harrison Computational Techniques: 233 – 2

Application and examples

These theorems mean that in any complete metric space a
sequence is convergent if and only if it is Cauchy, which is
relatively easy to test.

It can be shown that IRk is complete for all k ≥ 1.
Proof hint:

A cauchy sequence is bounded and so has a convergent
sub-sequence (Fundamental axiom / Bolzano-Weierstrass
theorem).
It therefore has the same limit as the subsequence

This is very useful computationally, for example in numerical
iterations.

Examples in IR given in the background notes.

Used to prove convergence of certain fixed point iterations
later.

Peter Harrison Computational Techniques: 233 – 2

Uniqueness of limits

Theorem: A convergent sequence {xn} in IRk has a unique limit

Peter Harrison Computational Techniques: 233 – 2

Uniqueness of limits

Theorem: A convergent sequence {xn} in IRk has a unique limit

Proof: Suppose xn → $1 and xn → $2 as n → ∞. Then

d($1, $2) ≤ d($1, xn) + d(xn, $2)

for all n. But given any ε > 0, for sufficiently large n, both terms
on the RHS are less than ε/2 so

d($1, $2) < ε

Hence d($1, $2) = 0 since ε was arbitrary and so $1 = $2 by the
definition of a metric.

Peter Harrison Computational Techniques: 233 – 2

Fixed point equations

Definition: Let f : S → S be a function from a metric space S to
itself. A point p is S is called a fixed point (sometimes fixpoint) of
f if f (p) = p. The function f is a contraction of S if there exists a
real number α, 0 < α < 1, called a contraction constant, such that

d(f (x), f (y)) ≤ αd(x , y) ∀x , y ∈ S

Peter Harrison Computational Techniques: 233 – 2

Fixed point equations

Definition: Let f : S → S be a function from a metric space S to
itself. A point p is S is called a fixed point (sometimes fixpoint) of
f if f (p) = p. The function f is a contraction of S if there exists a
real number α, 0 < α < 1, called a contraction constant, such that

d(f (x), f (y)) ≤ αd(x , y) ∀x , y ∈ S

Theorem (Fixed point theorem): A continuous contraction f
of a complete metric space S has a unique fixed point.

Peter Harrison Computational Techniques: 233 – 2

Proof of fixed point theorem

For any point p ∈ S , define the sequence {pn} by

p0 = x , pn+1 = f (pn), n = 0, 1, 2, . . .

Peter Harrison Computational Techniques: 233 – 2

Proof of fixed point theorem

For any point p ∈ S , define the sequence {pn} by

p0 = x , pn+1 = f (pn), n = 0, 1, 2, . . .

Then

d(pn+1, pn) = d(f (pn), f (pn−1)) ≤ αd(pn, pn−1) ≤ . . . ≤ cαn

where c = d(p1, p0).

Peter Harrison Computational Techniques: 233 – 2

Proof of fixed point theorem

For any point p ∈ S , define the sequence {pn} by

p0 = x , pn+1 = f (pn), n = 0, 1, 2, . . .

Then

d(pn+1, pn) = d(f (pn), f (pn−1)) ≤ αd(pn, pn−1) ≤ . . . ≤ cαn

where c = d(p1, p0).

Hence, for m > n, by the triangle inequality,

d(pm, pn) ≤
m−1∑

k=n

d(pk+1, pk) ≤ c
m−1∑

k=n

αk = c
αn − αm

1 − α
<

cαn

1 − α

Since α < 1, d(pm, pn) → 0 as m, n → ∞, and so {pn} is a
Cauchy sequence.

Peter Harrison Computational Techniques: 233 – 2

Since S is complete, pn → p for some point p ∈ S .

Peter Harrison Computational Techniques: 233 – 2

Since S is complete, pn → p for some point p ∈ S .

By continuity of f ,

f (p) = f
(

lim
n→∞

pn

)
= lim

n→∞
f (pn) = lim

n→∞
pn+1 = p

Peter Harrison Computational Techniques: 233 – 2

Since S is complete, pn → p for some point p ∈ S .

By continuity of f ,

f (p) = f
(

lim
n→∞

pn

)
= lim

n→∞
f (pn) = lim

n→∞
pn+1 = p

Finally, if p and p′ are both fixed points,

d(p, p′) = d(f (p), f (p′)) ≤ αd(p, p′)

where 0 < α < 1, so d(p, p′) = 0 and the fixed points are the
same and hence unique.

Peter Harrison Computational Techniques: 233 – 2

Iterative solutions of linear equations

A splitting of a square matrix A is defined by a nonsingular matrix
M = A − N.

Suppose we are solving the equation Ax = b. Then we may write
Mx = b − Nx so that x = M−1b − M−1Nx .

If G = −M−1N and c = M−1b, we need to solve

x = Gx + c

and we can define the iteration

x(k+1) = Gx(k) + c

together with some starting value x(0)

Peter Harrison Computational Techniques: 233 – 2

Convergence of the iteration

Theorem : For any matrix norm, if ||G || < 1, then
x(k+1) = Gx(k) + c converges for any starting point x(0).

Proof : Given that x is the correct solution, let y (k) = x(k) − x for
k = 0, 1, 2, Then y (k+1) = G (y (k)) and so

||y (k+1)|| ≤ ||G ||||y (k)|| ≤ . . . ≤ ||G ||k+1||y (0)|| → 0

as k → ∞ since ||G || < 1

Peter Harrison Computational Techniques: 233 – 2

Convergence conditions

Proposition : A sufficient condition for convergence is any of:
1 lim

k→∞
G k = 0

2 lim
k→∞

G k'x = '0 ∀'x ∈ IRm

3 ρ(G) < 1

where ρ(G) = maxi |λi | is the largest of the absolute values of the
eigenvalues of G , called the spectral radius of G .

Peter Harrison Computational Techniques: 233 – 2

Convergence conditions

Proposition : A sufficient condition for convergence is any of:
1 lim

k→∞
G k = 0

2 lim
k→∞

G k'x = '0 ∀'x ∈ IRm

3 ρ(G) < 1

where ρ(G) = maxi |λi | is the largest of the absolute values of the
eigenvalues of G , called the spectral radius of G .
Proof : Looking at the proof of the Theorem,

y (k) = G (y (k−1)) = . . . = G ky (0)

Thus either of conditions 1 or 2 implies y (k) → 0 and so x(k) → x
as k → ∞. For condition 3, diagonalising G (more generally, when
there are multiple eigenvlues, putting G into Jordan Normal Form)
we have

G k = V−1DkV → 0 as k → ∞

where D = diag(λ1, . . . ,λm) and |λi | < 1 ∀i .
Peter Harrison Computational Techniques: 233 – 2

Choosing G for efficient solution

Given G , the rate of convergence is r(G) = − log10 ρ(G).

Peter Harrison Computational Techniques: 233 – 2

Choosing G for efficient solution

Given G , the rate of convergence is r(G) = − log10 ρ(G).

Why? ... look at previous proof.

Peter Harrison Computational Techniques: 233 – 2

Choosing G for efficient solution

Given G , the rate of convergence is r(G) = − log10 ρ(G).

Why? ... look at previous proof.

So we want to choose G = −M−1N so that both

1 −M−1Nx and c = M−1b are easy to compute

2 ρ(−M−1N) is small.

Peter Harrison Computational Techniques: 233 – 2

Choosing G for efficient solution

Given G , the rate of convergence is r(G) = − log10 ρ(G).

Why? ... look at previous proof.

So we want to choose G = −M−1N so that both

1 −M−1Nx and c = M−1b are easy to compute

2 ρ(−M−1N) is small.

For example:

M = I is good for 1.

M = A is good for 2. but probably not for 1.

Peter Harrison Computational Techniques: 233 – 2

Common splitting of A

Assuming A has no zeros on the diagonal (can often relabel the
variables xi to permute the rows and columns, if necessary, to
avoid this),

A = D − L̃ − Ũ = D(I − L − U)

where D is the diagonal of A, −L̃, Ũ are the strict lower and upper
triangular parts of A, L = D−1L̃ and U = D−1Ũ

Peter Harrison Computational Techniques: 233 – 2

Common splitting of A

Assuming A has no zeros on the diagonal (can often relabel the
variables xi to permute the rows and columns, if necessary, to
avoid this),

A = D − L̃ − Ũ = D(I − L − U)

where D is the diagonal of A, −L̃, Ũ are the strict lower and upper
triangular parts of A, L = D−1L̃ and U = D−1Ũ

Example :

A =




2 −4 2
−3 1 −5
6 −2 2





Peter Harrison Computational Techniques: 233 – 2

Jacobi method

Using this splitting gives N = L̃ + Ũ and the fixed point equation

x = D−1b − D−1Nx

with G = −D−1N = I − D−1A = L + U, c = D−1b.

Peter Harrison Computational Techniques: 233 – 2

Jacobi method

Using this splitting gives N = L̃ + Ũ and the fixed point equation

x = D−1b − D−1Nx

with G = −D−1N = I − D−1A = L + U, c = D−1b.

The iteration x(k+1) = Gx(k) + c now yields

x(k+1)
i =

1

aii



bi −
∑

j "=i

aijx
(k)
j





Peter Harrison Computational Techniques: 233 – 2

Jacobi method

Using this splitting gives N = L̃ + Ũ and the fixed point equation

x = D−1b − D−1Nx

with G = −D−1N = I − D−1A = L + U, c = D−1b.

The iteration x(k+1) = Gx(k) + c now yields

x(k+1)
i =

1

aii



bi −
∑

j "=i

aijx
(k)
j





Update of xi requires access to only row i of A

Peter Harrison Computational Techniques: 233 – 2

Jacobi method

Using this splitting gives N = L̃ + Ũ and the fixed point equation

x = D−1b − D−1Nx

with G = −D−1N = I − D−1A = L + U, c = D−1b.

The iteration x(k+1) = Gx(k) + c now yields

x(k+1)
i =

1

aii



bi −
∑

j "=i

aijx
(k)
j





Update of xi requires access to only row i of A

Good for parallel computation (see Course 429)

Peter Harrison Computational Techniques: 233 – 2

Gauss-Seidel method

This is intended to give faster convergence by using more
up-to-date data:

Peter Harrison Computational Techniques: 233 – 2

Gauss-Seidel method

This is intended to give faster convergence by using more
up-to-date data:

x(k+1)
i =

1

aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

m∑

j=i+1

aijx
(k)
j





Peter Harrison Computational Techniques: 233 – 2

Gauss-Seidel method

This is intended to give faster convergence by using more
up-to-date data:

x(k+1)
i =

1

aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

m∑

j=i+1

aijx
(k)
j





In matrix form, (D − L̃)x(k+1) = Ũx(k) + b, i.e.

x(k+1) = (I − L)−1Ux(k) + (I − L)−1D−1b

Peter Harrison Computational Techniques: 233 – 2

Gauss-Seidel method

This is intended to give faster convergence by using more
up-to-date data:

x(k+1)
i =

1

aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

m∑

j=i+1

aijx
(k)
j





In matrix form, (D − L̃)x(k+1) = Ũx(k) + b, i.e.

x(k+1) = (I − L)−1Ux(k) + (I − L)−1D−1b

So now G = (I − L)−1U as opposed to L + U for Jacobi.

Peter Harrison Computational Techniques: 233 – 2

Successive over-relaxation, SOR(ω)

A generalisation of Gauss-Seidel by “smoothing”:

Peter Harrison Computational Techniques: 233 – 2

Successive over-relaxation, SOR(ω)

A generalisation of Gauss-Seidel by “smoothing”:

x(k+1)
i := (1 − ω)x(k)

i + ωx(k+1)
i

where x(k+1)
i on the RHS is computed by Gauss-Seidel.

ω is the relaxation parameter, 0 < ω < 2 (see later).

Peter Harrison Computational Techniques: 233 – 2

Successive over-relaxation, SOR(ω)

A generalisation of Gauss-Seidel by “smoothing”:

x(k+1)
i := (1 − ω)x(k)

i + ωx(k+1)
i

where x(k+1)
i on the RHS is computed by Gauss-Seidel.

ω is the relaxation parameter, 0 < ω < 2 (see later). Thus

x(k+1)
i = (1 − ω)x(k)

i +
ω

aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

m∑

j=i+1

aijx
(k)
j





Peter Harrison Computational Techniques: 233 – 2

Successive over-relaxation, SOR(ω)

A generalisation of Gauss-Seidel by “smoothing”:

x(k+1)
i := (1 − ω)x(k)

i + ωx(k+1)
i

where x(k+1)
i on the RHS is computed by Gauss-Seidel.

ω is the relaxation parameter, 0 < ω < 2 (see later). Thus

x(k+1)
i = (1 − ω)x(k)

i +
ω

aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

m∑

j=i+1

aijx
(k)
j





In matrix form, (D − ωL̃)x(k+1) = ((1 − ω)D + ωŨ)x(k) + ωb, i.e.

x(k+1) = (I − ωL)−1((1 − ω)I + ωU)x(k) + ω(I − ωL)−1D−1b

Peter Harrison Computational Techniques: 233 – 2

Successive over-relaxation, SOR(ω)

A generalisation of Gauss-Seidel by “smoothing”:

x(k+1)
i := (1 − ω)x(k)

i + ωx(k+1)
i

where x(k+1)
i on the RHS is computed by Gauss-Seidel.

ω is the relaxation parameter, 0 < ω < 2 (see later). Thus

x(k+1)
i = (1 − ω)x(k)

i +
ω

aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

m∑

j=i+1

aijx
(k)
j





In matrix form, (D − ωL̃)x(k+1) = ((1 − ω)D + ωŨ)x(k) + ωb, i.e.

x(k+1) = (I − ωL)−1((1 − ω)I + ωU)x(k) + ω(I − ωL)−1D−1b

Now G = (I −ωL)−1((1−ω)I + ωU), so ω = 1 gives Gauss-Seidel.

Peter Harrison Computational Techniques: 233 – 2

Convergence conditions

Definitions: A square matrix A is strictly row diagonally
dominant if |aii | >

∑
j "=i |aij |.

Peter Harrison Computational Techniques: 233 – 2

Convergence conditions

Definitions: A square matrix A is strictly row diagonally
dominant if |aii | >

∑
j "=i |aij |.

Theorem: A sufficient condition for both Jacobi and
Gauss-Seidel to converge is that A is strictly row diagonally
dominant. G-S is faster.

Peter Harrison Computational Techniques: 233 – 2

Sketch of the proof

1 Using the subordinate $∞-norm, we show ||G || < 1 where
G = −D−1N.

Peter Harrison Computational Techniques: 233 – 2

Sketch of the proof

1 Using the subordinate $∞-norm, we show ||G || < 1 where
G = −D−1N.

2 Strict diagonal dominance implies all absolute row sums of G
are less than one.

Peter Harrison Computational Techniques: 233 – 2

Sketch of the proof

1 Using the subordinate $∞-norm, we show ||G || < 1 where
G = −D−1N.

2 Strict diagonal dominance implies all absolute row sums of G
are less than one.

3 Hence the maximum absolute row sum is less than one, and
so therefore is the $∞-norm.

Peter Harrison Computational Techniques: 233 – 2

Sketch of the proof

1 Using the subordinate $∞-norm, we show ||G || < 1 where
G = −D−1N.

2 Strict diagonal dominance implies all absolute row sums of G
are less than one.

3 Hence the maximum absolute row sum is less than one, and
so therefore is the $∞-norm.

4 Any norm less than one leads to convergence, by the theorem
above.

Peter Harrison Computational Techniques: 233 – 2

Other results

1 If A is weakly row diagonally dominant and irreducible, both
Jacobi and G-S still converge, and G-S is faster.

Peter Harrison Computational Techniques: 233 – 2

Other results

1 If A is weakly row diagonally dominant and irreducible, both
Jacobi and G-S still converge, and G-S is faster.

A square matrix A is irreducible if, by symmetric permutation
of rows and columns (i.e. variable renaming in a system of
linear equations) it cannot take the form:

[
A11 A12

O A22

]

where the block matrices A11 and A22 are square.

Peter Harrison Computational Techniques: 233 – 2

Other results

1 If A is weakly row diagonally dominant and irreducible, both
Jacobi and G-S still converge, and G-S is faster.

A square matrix A is irreducible if, by symmetric permutation
of rows and columns (i.e. variable renaming in a system of
linear equations) it cannot take the form:

[
A11 A12

O A22

]

where the block matrices A11 and A22 are square.

2 A necessary condition for SOR(ω) to converge is that
0 < ω < 2. This condition is also sufficient if A is positive
definite (see later for definition).

Peter Harrison Computational Techniques: 233 – 2

