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Course Structure

18 lectures

6 regular tutorials

3 lab-tutorials

1 revision lecture-tutorial (optional)
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Course Assessment

Exam (answer 3 out of 4 questions)

Either:

one laboratory exercise

one assessed coursework

or:

two laboratory exercises

1 revision lecture-tutorial (optional)
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Recommended Books

Kumar, Grama, Gupta, Karypis. Introduction
to Parallel Computing. Benjamin/Cummings.
Second Edition, 2002.
First Edition, 1994, is OK.

Main course text

Freeman and Phillips. Parallel Numerical
Algorithms. Prentice-Hall, 1992.

Main text for stuff on differential equations
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Other Books

Cosnard, Trystram. Parallel Algorithms and
Architectures. International Thomson
Computer Press, 1995.

Foster. Designing and Building Parallel
Programs. Addison-Wesley, 1994.

Akl. The Design and Analysis of Parallel
Algorithms. Prentice-Hall, 1989.

An old classic
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Course Outline

Topic No. of lec

Architectures & communication networks 4

Message Passing Interface (MPI) 2

Parallel performance metrics 2

Dense matrix algorithms 4

Sparse matrix algorithms 2

Dynamic search algorithms 4

TOTAL 18
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Computer Architectures

1. Sequential

John von Neumann model: CPU + Memory

Single Instruction stream, Single Data
stream (SISD)

Predictable performance of (sequential)
algorithms with respect to von Neumann
machine
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Computer Architectures

2. Parallel

Multiple cooperating processors, classified
by control mechanism, memory
organisation, interconnection network (IN)

Performance of parallel algorithm depends
on target architecture and how it is mapped
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Control Mechanisms

Single Instruction stream, Multiple Data
stream (SIMD): all processors execute the
same instructions synchronously⇒ good for
data parallelism

Multiple Instruction stream, Multiple Data
stream (MIMD): processors execute their own
programs asynchronously⇒ more general

process networks (static)

divide-and-conquer algorithms (dynamic)
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Control Mechanisms – hybrid

Single Program, Multiple Data stream
(SPMD): all processors run the same program
asynchronously
Hybrid SIMD / MIMD

also suitable for data-parallelism but needs
explicit synchronisation
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Memory Organization

1. Message-passing architecture

Several processors with their own (local)
memory interact only by message passing
over the IN

Distributed memory architecture
MIMD message-passing architecture ≡
multicomputer

2. Shared address space architecture

Single address space shared by all
processors
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Memory Organization (2)

2. Shared address space architecture (cont.)

Multiprocessor architecture
Uniform memory access (UMA)⇒
(average) access time same for all memory
blocks: e.g. single memory bank (or
hierarchy)

Otherwise non-uniform memory access
(NUMA): e.g. global address space is
distributed across the processors’ local
memories (distributed shared memory
multiprocessor)

Also cache hierarchies imply less uniformity
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Interconnection Network

1. Static (or direct) networks

Point to point communication amongst
processors

Typical in message-passing architectures

Examples are ring, mesh, hypercube

Topology critically affects parallel algorithm
performance (see coming lectures)
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Interconnection Network (2)

2. Dynamic (or indirect) networks

Connections between processors are
constructed dynamically during execution
using switches, e.g. crossbars or networks
of these such as multistage banyan (or
delta, or omega, or butterfly) networks.
Typically used to implement shared
address space architectures

But also in some message-passing
algorithms; e.g. the FFT on a butterfly (see
textbooks)
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Parallel Random Access Machine

The PRAM is an idealised model of
computation on a shared-memory MIMD
computer

Fixed number p of processors

Unbounded UMA global memory

All instructions last one cycle

Synchronous operation (‘common clock’) but
different instructions are allowed in different
processors on the same cycle
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PRAM memory access modes

Four modes of ‘simultaneous’ memory access (2
types of access, 2 modes)

EREW: Exclusive read, exclusive write. Weakest
PRAM model, minimum concurrency.

CREW: Concurrent read, exclusive write. Better.

CRCW: Concurrent read, concurrent write. Maximum
concurrency. Can simulate on a EREW
PRAM (exercise)

ERCW: Exclusive read, concurrent write. Unusual?
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Concurrent Write Semantics

Arbitration is needed to define a unique
semantics of concurrent write in CRCW and
ERCW PRAMs

Common All values to be written are the same

Arbitrary Pick one writer at random

Priority All processors have a preassigned priority

Reduce Write the (generalised) sum of all values
attempting to be written. ‘Sum’ can be any
associative and commutative operator – cf.
‘reduce’ or ‘fold’ of functional languages.
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PRAM role

Natural extension of the von Neumann model
with zero cost communication (via shared
memory)

We will use the PRAM to assess the
complexity of some parallel algorithms

Gives an upper bound on performance, e.g.
minimum achievable latency
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Static Interconnection Networks

1. Completely connected

direct link between every pair of processors

ideal performance but complex and
expensive

2. Star

all communication through a special
‘central’ processor

central processor liable to become a
bottleneck

logically equivalent to a bus – associated
with shared memory machines (dynamic
network)
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Static Interconnection Networks (2)

3. Linear array and ring

connect processors in tandem

with wrap-around gives a ring

communication via multiple ‘hops’ over
links through intermediate processors

basis for quantitative analysis of many
other common networks
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Static Interconnection Networks (3)

4. Mesh

generalisation of linear array (or ring with
wrap-around) to more than one dimension

processors labelled by rectilinear
coordinates

links between adjacent processors on each
coordinate axis (i.e. in each dimension)

multiple paths between source and
destination processors
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Static Interconnection Networks (4)

5. Tree

unique path between any pair of
processors

processors reside at the leaves of the tree

Internal nodes may be processors (typical
in static network) or switches (typical in
dynamic networks)

bottlenecks higher up the tree

can alleviate by increasing bandwidth at
higher levels→ fat tree (e.g. in CM5)
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Cube Networks

In a k-ary d-cube topology – of dimension d and
radix k – each processor is connected to d others
(with wrap-around) and there are k processors
along each dimension

Regular d-dimensional mesh with kd

processors

Processors labelled by d digit number with
radix k

Ring of p processors is a p-ary 1-cube

Wrap-around mesh of p processors is a√
p-ary 2-cube
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Hypercubes

A k-ary d-cube can be formed from k k-ary
(d − 1)-cubes by connecting corresponding
nodes into rings
e.g. composition of rings to form a
wrap-around mesh

Hypercube ≡ binary d-cube

nodes labelled by binary numbers of d
digits

each node connected directly to d others

adjacent nodes differ in exactly one bit
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Embeddings into Hypercubes

Hypercube is the most richly connected topology
we have considered (apart from completely
connected) so can we consider other topologies
as embedded subnetworks?

1. Ring of 2d nodes

Need to find a sequence of adjacent
nodes, with wraparound, in a d-hypercube

Adjacent node labels differ in exactly one
bit position
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Mapping: ring→ hypercube

Assign processor i in the ring to node G(i, d)
in the hypercube where G is the binary
reflected Gray code (RGC) defined by:
G(0, 1) = 0, G(1, 1) = 1 and

G(i, n + 1) =

{
G(i, n) i < 2n

2n + G(2n+1 − 1 − i, n) i ≥ 2n

This is easily seen recursively, by
concatenating the mapping for a
(d− 1)-hypercube with its reverse and pre- (or
app-)ending a 0 onto one mapping and a 1
onto the other .....
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Why is this true?

Proof by induction: a sketch (all that is necessary
here) is:

1. Certainly true for d = 1, when 0 &→ 0 and
1 &→ 1

2. For d ≥ 0, assume successive node
addresses in any d-cube ring mapping differ
in only one bit

3. Hence same applies in each half of the RGC
for a (d + 1)-cube

4. But because of the reflection, the same holds
for adjacent nodes in different halves.
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Mapping: mesh→ hypercube

The mapping for an m dimensional mesh is
obtained by concatenating the RGCs for each
individual dimension

Thus node (i1, . . . , im) in a 2r1 × . . . × 2rm

mesh maps to node

G(i1, r1) <> . . . <> G(im, rm)

E.g. in an 8 × 8 square mesh, the node at
coordinate (2, 7) maps to hypercube node
(0, 1, 1, 1, 0, 0).
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Mapping: tree→ hypercube

Consider a (complete) binary tree of depth d
with processors at the leaves only

This embeds into a d-hypercube as follows,
via a many-to-one mapping that maps every
node

1. map the root (level 0) to any node, e.g.
(0, . . . , 0)

2. For each node at level j, if mapped to

hypercube node !k, map the left child to !k

and the right child to !k with bit j inverted.

3. repeat for j = 1, . . . , d
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Monotonicity of the mapping

Distance between two tree-nodes is 2n for
some n ≥ 1 (difference between d and the
level of the lowest common ancestor)

The corresponding distance in the hypercube
is n – think of bit-changes

Nodes further apart in the hypercube must be
further apart in the tree, but the converse may
not hold:
because of richer hypercube connectivity

some bits might flip back

distant tree-nodes might happen to be
closer in the hypercube: d are adjacent
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Communication Costs

Time spent sending data between processors in
a parallel algorithm is a significant overhead –
communication latency – defined by the switching
mechanism and parameters:

1. Startup time, ts : message preparation, route
initialisation etc. Incurred once per message.

2. Per-hop time, or node latency, th : time for
header to pass between directly connected
processors. Incurred for every link in a path.

3. Per-word transfer time, tw : tw = 1/r for
channel bandwidth r words per second.
Relates message length to latency.
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Switching Mechanisms

1. Store-and-forward routing

Each intermediate processor on a
communication path receives an entire
message and only then sends it on to the next
node on the path

For a message of size m words, the
communication latency on a path of l links is:

tcomm = ts + (mtw + th)l

Typically th is small and so we often
approximate tcomm = ts + mtwl
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Switching Mechanisms (2)

2. Cut-through routing

Reduce idle time of resources by ‘pipelining’
messages along a path ‘in pieces’

Messages are advanced to the out-link of a
node as they arrive at the in-link

Wormhole routing splits messages into flits
(flow-control digits) which are then pipelined
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Wormhole Routing

As soon as a flit is completely received, it is
sent on to the next node in the message’s
path (same path for all flits)

No need for buffers for whole messages –
unless asynchronous multiple inputs are
allowed for the same out-link

Hence more time-efficient and more memory
efficient

But in a bufferless system, messages may
become blocked (waiting for a processor
already transmitting another message)⇒
possible deadlock
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Wormhole Routing (2)

On an l-link path, header flit latency = lth

An m-word message will all arrive mtw after
the header

For a message of size m words, the
communication latency on a path of l links is
therefore:

tcomm = ts + mtw + lth

Θ(m + l) for cut-through vs. Θ(ml) for
store-and-forward

similar for small l (identical for l = 1)
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Communication Operations

Certain types of computation occur in many
parallel algorithms

Some are implemented naturally by particular
communication patterns

We consider the following patterns of
communication – where the dual operations,
with the direction of the communication
reversed, are shown in brackets . . .
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Communication Patterns

simple message transfer between two
processors (same for dual)

one-to-all broadcast (single node
accumulation)

all-to-all broadcast (multi-node accumulation)

one-to-all personalised (single node gather)

all-to-all personalised, or ‘scatter’ (multi-node
gather)

more exotic patterns, e.g. permutations
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Simple Message Transfer

Most basic type of communication

Dual operation is of the same type

Latency for single message is :

Tsmt-sf = ts + twml + thl for store-and-forward
routing

Tsmt-ct = ts + twm + thl for cut-through
routing

where l is the number of hops . . .
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Number of hops, l

This depends on the network topology – l is at
most:

)p/2* for a ring

2)√p/2* for a wrap-around square mesh of p
processors ()a/2* + )b/2* for an a × b mesh)

log p for a hypercube

So for a hypercube with cut-through,

T smt-ct-h = ts + twm + th log p
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Comparison of SF and CT

If message size m is very small, latency is
similar for SF and CT

If message size is large, i.e. m >> l, CT
becomes asymptotically independent of path
length l

CT much faster than SF
Tsmt-ct + twm + single hop latency under SF
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One-to-All Broadcast (OTA)

Single processor sends data to all or a subset
of other processors

E.g. matrix-vector multiplication: broadcast
each element of the vector over its
corresponding column

In the dual operation, single node
accumulation, data may not only be collected
but also mapped by an associative operator

e.g. sum a list of elements initially
distributed over processors

cf. concurrent write in PRAM
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All-to-All Broadcast (ATA)

Each processor performs (simultaneously)
one-to-all broadcast with its own data

Used in matrix operations, e.g. matrix
multiplication, reduction and parallel-prefix

In the dual operation – multinode
accumulation – each processor receives
single-node accumulation

Could implement ATA by sequentially
performing p OTAs

Far better to proceed in parallel and catenate
incoming data
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Reduction

To broadcast the reduction of the data held in all
processors with an associative operator, we can:

1. ATA broadcast the data and then reduce
locally in every node . . . inefficient

2. Single node accumulation at one node
followed by OTA broadcast . . . better

3. Modify ATA broadcast so that instead of
catenating messages, the incoming data and
the current accumulated value are operated
on by the associative operator – e.g. summed
– the result overwriting the accumulated value
..... the most efficient
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Parallel Prefix

The Parallel Prefix of a function f over a
non-null list [x1, . . . , xn] is the list of reductions
of f over all sublists [x1, . . . , xi] for 1 ≤ i ≤ n,
where reducef [x1] = x1 for all f

Could implement as n reductions

Better to modify the third reduction method by
only updating the accumulator at each node
when data comes in from the appropriate
nodes (otherwise it is just passed on)
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All-to-All Personalised

Every processor sends a distinct message of
size m to every other processor – ‘total
exchange’

E.g. in matrix transpose, FFT, database join

Communication patterns identical to ATA

Label messages by pairs (x, y) where x is the
source processor and y is the destination
processor: uniquely determines the message
contents

List of n messages denoted
[(x1, y1), . . . , (xn, yn)]
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Performance Metrics

1. Run Time, Tp

A parallel algorithm is hard to justify
without improved run-time

Tp = Elapsed time on p processors:
between the start of computation on the
first processor to start, and termination of
computation on the last processor to finish
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Performance Metrics (2)

2. Speed-up, Sp

Sp =
serial run-time of “best” sequential algorithm

Tp

“best” algorithm is the optimal one for the
problem, if known, or the fastest known, if
not

often in practice (always in this course) T1

Sp ≥ 1 . . . usually!
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Example – addition on hypercube

Add up p = 2d numbers on a d-hypercube

Use single node accumulation

Each single-hop communication combined
with one addition operation

⇒ Sp = Θ(p/ log p)
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Performance Metrics (2)

3. Efficiency, Ep

Ep =
Sp

p

Fraction of time for which a processor is
doing useful work

Ep = Θ(1/ log p) in above example
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Performance Metrics (3)

4. Cost, Cp

Cp = p×Tp so that Ep =
best serial run-time

Cp

A parallel algorithm is cost-optimal if Cp ∝
best serial run time

Equivalently if Ep = Θ(1)

Above example is not cost-optimal since
best serial run time is Θ(p)
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Granularity

“Amount of work allocated to each processor”

Few processors, relatively large processing
load on each⇒ coarse-grained parallel
algorithm

Many processors, relatively small processing
load on each⇒ fine-grained parallel
algorithm
e.g. our hypercube algorithm to add up p
numbers

typically many small communications, often
in parallel
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Increasing the granularity

Let each processor “simulate” k processors in
a finer-grained parallel algorithm

Computation at each processor increases by
a factor k

Communication time increases by factor ≤ k

typically << k

but may have much larger message sizes,
e.g. k parallel communications may map to
a single communication k times bigger

Hence Tp/k ≤ k × Tp and so Cp/k ≤ Cp

Cost-optimality preserved – may be created?
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Addition on Hypercube Again

Add n numbers on a d-hypercube of p = 2d

processors

Let each processor simulate k = n/p
processes (assuming p | n)

Each processor adds locally k numbers in
Θ(k) time

p partial sums are added in Θ(log p) time

Tp = Θ(k + log p) and Cp = Θ(n + p log p)

Cost optimal if n = Θ(p log p)
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Addition on Hypercube Again (2)

Alternatively, try communication in the first log p
steps, followed by local addition of n/p numbers

Tp = Θ((n/p) log p)

So Cp = Θ((n) log p) = log p × Θ(C1)

never cost-optimal
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Scalability

Efficiency decreases as the number of
processors increases

Consequence of Amdahl’s Law:

Sp ≤
problem size

size of serial part of problem

where size is the number of basic computation
steps in the best serial algorithm
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Scalability (2)

A parallel system is scalable if it can maintain
the efficiency of a parallel algorithm by
simultaneously increasing the number of
procesors and problem size

E.g. in the above example, efficiency remains
at 80% if n is increased with p as 8p log p

But you can’t tell me why yet!
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The Isoefficiency Metric

Measure of the extent to which a parallel
system is scalable

Define the overhead, Op to be the amount of
computation not performed in the best serial
algorithm

Op = Cp − W

where W is the problem size

Op includes setup overheads and possible
changes to an algorithm to make it parallel,
but usually (100% in this course) comprises
the communication latency
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Overhead in Hypercube-Addition

For the above addition on a hypercube
example, at granularity k = n/p

Tp = n/p + 2 log p

assuming time 1 for addition and single hop
communication. Then

Op = 2p log p
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Isoefficiency

For a scalable system, the isoefficiency
function I determines W in terms of p and E
such that efficiency, Ep, is fixed at some
specified constant value E

E = Sp/p = W/Cp

=
W

W + Op(W )

=
1

1 + Op(W )/W
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Isoefficiency (2)

Rearranging, 1 + Op(W )/W = 1/E, and so

W =
E

1 − E
Op(W )

This is the Isoefficiency Equation

Setting K = E/(1 − E) for our given E, let the
solution of this equation (assuming it exists,
i.e. for a scalable system) be W = I(p,K) –
the Isoefficiency function
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Back to Hypercube-Addition

For the addition on a hypercube example it’s
easy:

I(p,K) = 2Kp log p

More generally, Op varies with W and the
isoefficiency equation is non-trivial, e.g.
non-linear

Plenty of examples in the rest of the course!
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Cost-optimality and Isoefficiency

A parallel system is cost-optimal if and only if
Cp = Θ(W ), i.e. its cost is asymptotically the
same as the cost of the serial algorithm

This implies the upper bound on the overhead

Op(W ) = O(W )

or lower bound on the problem size

W = Ω(Op(W ))

Not surprising – you don’t want a bigger
overhead than the computation of the solution
itself!
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Cost-optimality and Isoefficiency (2)

For the above example W = Θ(n) and
Op(W ) = 2p log p so that the system cannot be

cost-optimal unless n = Ω(p log p)

the condition for cost-optimality already
derived

the system is then scalable – its isoefficiency
function is Θ(p log p)
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Minimum Run-Time

Assuming differentiability of the expression for
Tp, find p = p0 such that

dTp

dp
= 0

giving Tp = Tmin
p

For the above example,

Tp = n/p + 2 log p

p0 = n/2 ⇒ Tmin
p = 2 log n

Not cost-optimal
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Minimum Cost-Optimal Run-Time

For isoefficiency function Θ(f(p)) (at any
efficiency), W = Ω(f(p)) or p = O(f−1(W ))

Then minimum cost-optimal run time is

Tmin-cost-opt
p = Ω(W/f−1(W ))

For our example, n = f(p) = p log p and we
find p = f−1(n) = n/ log p + n/ log n so that

Tmin-cost-opt
p + 3 log n − 2 log log n

here, same asymptotic complexity as T min
p
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