(Dense) Matrix Algorithms

- Dense as opposed to sparse
 - "dense" means "arbitrary" since a dense algorithm can be applied to any matrix
 - in a "sparse" algorithm, represent a set of data items together with their locations within a structure
 - save on storage and execution time in a sparse representation
- Conventional to consider square matrices
 - simpler notation
 - easy generalisation to arbitrary (different) matrix dimensions

ParAlgs-2010 - p.1/4

Striping

- Striped partitioning by row: matrix is divided into groups of complete rows and each group is allocated to one processor
 - uniform striping if all groups contain the same number of rows
 - striped partitioning by column similarly
- block-striped if the rows in each group are consecutive in the matrix
 - e.g. if a $kp \times kp$ matrix is block-striped by row on p processors, processor $i(0 \le i \le p-1)$ holds rows $ki, ki+1, \ldots, k(i+1)-1$

Topics we will consider

- Mapping of matrices onto processors
- Parallel matrix algorithms
 - matrix transpose
 - matrix × vector multiply
 - matrix × matrix multiply
 - Solution of linear equations

ParAlgs-2010 - p.2/49

Cyclic Striping

- A partition is *cyclic-striped* if processor i holds all rows with index i modulo p $(0 \le i \le p-1)$
 - i.e. processor i holds rows $i, i + p, \dots, i + (k-1)p$
- block-cyclic-striped if blocks of q rows are striped, h blocks per processor. Processor i then has rows:

$$qi, qi + 1, \dots, q(i + 1) - 1, q(i + p), \dots,$$

 $q(i + p + 1) - 1, \dots, q(i + (h - 1)p), \dots,$
 $q(i + 1 + (h - 1)p) - 1$

ParAlgs-2010 - p.3/49

ParAlgs-2010 - p.4/49

Checkerboarding

- Matrix is divided into rectangular blocks
 - rows and columns are split no processor contains a whole row or column (except in the pathological case of striping)
 - uniform checkerboard uses same sized blocks
- Block-checkerboard if the blocks are sub-matrices, i.e. contiguous in original matrix
- Cyclic-checkerboard if the rows and columns in each block are selected cyclicly – cf. cyclic striping

ParAlgs-2010 - p.5/4

Matrix Transposition

Given matrix

$$A = [a_{ij} \mid 1 \le i, j \le n]$$

require

$$A' = [a_{ji} \mid 1 \le i, j \le n]$$

• Need to exchange the corresponding $n^2 - n$ off-diagonal elements $\Rightarrow (n^2 - n)/2$ exchanges $\approx n^2/2$ time-complexity on a single processor

Checkerboarding (2)

- Block-cyclic-checkerboard if equal sized sets of contiguous rows and columns in each block are selected block-cyclicly – cf. block-cyclic striping
- Checkerboarding naturally suited to mesh networks
 - e.g. one processor for each matrix element
 - more commonly, one processor for a sub-matrix
 - often embed logical mesh into a non-mesh physical network

ParAlgs-2010 - p.6/49

Checkerboard Partitioning

- First consider a mesh implementation with one element per processor
- i, j element moves up to its diagonal and then across the same number of hops to j, i position
- Need to synchronise the communication because of multiple transmissions on each link

ar Alos-2010 - p.7/49

Run-time on a Mesh

- All communications are concurrent point-to-point simple message transfers
- Maximum distance is 2(n-1) hops
- \Rightarrow latency is $2(n-1)(t_s+t_h+t_w)$ assuming one-word elements and separate SF communications

ParAlgs-2010 - p.9/49

Parallel Run-Time

Parallel run-time with store-and-forward routing is

$$T_p = n^2/2p + 2(\sqrt{p} - 1)(t_s + t_w n^2/p)$$

 $\simeq n^2/2p + 2t_s\sqrt{p} + 2t_w n^2/\sqrt{p}$

treating the per-hop terms t_h as negligible

- So the cost is $C_p = pT_p = \Theta(\sqrt{p}n^2)$
- So not cost optimal

Mesh of p < n Processors

- Assume p is a perfect square and that n is an integer multiple of \sqrt{p}
- Then the matrix is checkerboarded as a $\sqrt{p} \times \sqrt{p}$ block-matrix of $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks
- Algorithm is now:
 - transpose each block locally \Rightarrow time complexity $\simeq n^2/2p$
 - transpose blocks as above \Rightarrow communication latency $\simeq 2(\sqrt{p}-1)(t_s+t_wn^2/p)$

ParAlgs-2010 - p.10/49

Hypercube

Matrix may be transposed by transposing a block-matrix of its transposed blocks – as above

- Apply this procedure recursively to transpose the blocks – recursive transposition algorithm
- \bullet Base case is a 2×2 matrix
- $n \times n$ matrix naturally maps onto a p-hypercube
 - Suppose n and p are both powers of 2, $p \le (n/2)^2$ and $\log p$ even $(p = 4, 16, 64, \ldots)$
 - Base cases are sub-matrices with n^2/p elements on a p-hypercube (≥ 4 elements)

Hypercube Recursive Algorithm

- 1. First, allocate matrix blocks to 4 sub-cubes:
 - divide the matrix into 4 blocks
 - partition the hypercube into 4 sub-cubes –
 i.e. split in two twice
 - allocate 1 block to each sub-cube, swapping the off-diagonal blocks
- 2. Repeat the algorithm for each block on each sub-cube until the sub-cubes each contain one processor
 - $> (\log p)/2$ steps, since reduce dimension by two each step

ParAlgs-2010 - p.13/49

Hypercube Recursive Algorithm (3

- $oldsymbol{\circ}$ Size of message representing swapping blocks is always n^2/p
- Hence parallel run time is:

$$T_p = n^2/2p + (t_s + t_w n^2/p)\log p$$

Again, not cost optimal

Hypercube Recursive Algorithm (2

- In each step, the mesh algorithm on 2×2 block-matrices is applied
 - At each step, corresponding pairs of processors in different sub-cubes exchange data through another corresponding processor in a diagonal sub-cube
 - After each step, sizes of block-matrices transposed in parallel are quartered
- 3. Finally, transpose the $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks locally in each processor

ParAlgs-2010 - p.14/49

Block Striping

- First suppose each of p processors has one row of the $p \times p$ matrix
 - processor i must send its jth row element to processor j $(1 \le i \ne j \le p)$
 - all-to-all personalised communication
- Now let each processor hold n/p rows of a $n \times n$ matrix
 - must send n/p contiguous elements from each row to every other processor
 - parallel communication of $n/p \times n/p$ block-matrices, i.e. messages of size $m=n^2/p^2$

Block Striping (2)

- Then every processor transposes each of its p blocks
 - \Rightarrow time complexity $p.n^2/(2p^2) = n^2/(2p)$
 - familiar?!
- Best parallel run time is on a hypercube with cut-through (fastest ATAP communication)
 - $\Rightarrow T_p = \frac{n^2}{2p} + t_s(p-1) + \frac{t_w n^2}{p} + \frac{t_h p \log p}{2}$
 - cost-optimal ??

ParAlgs-2010 - p.17/49

Row-wise striping

First consider one row + one component of the vector per processor

- Every processor requires the whole vector, so we need
 - all-to-all broadcast of each processor's vector-component to all the others
 - then processor i performs the dot-product of the ith row with the vector
 - leaves the *i*th component of the result-vector in processor *i*

Matrix × **Vector**

Compare row-wise striping with checkerboarding

- \bullet $n \times n$ matrix \cdot vector of n components
- Note that the numbers of processors are bounded by the sizes of the vector (n) and matrix (n²) respectively
- Consider the relative performance and scalabilities of each partitioning on different interconnection topologies

ParAlgs-2010 - p.18/49

Row-wise striping (2)

- Parallel run-time is $\Theta(n)$ because ATA communication and vector dot-product are
 - must be cost-optimal
- We'll consider block-striping the matrix on fewer processors
 - can be sure of a cost-optimal algorithm
 - recall cost-optimality is always preserved by increasing the grain size

010 - p 19/49

p = n/k Processors

- Block-stripe with k rows + k vector components per processor
- ATA broadcast of k elements in each message. Latency:
 - $m{s}\simeq 2t_s\sqrt{p}+t_wk(p-1)\simeq 2t_s\sqrt{p}+t_wn$ on a mesh
 - $m{\circ} \simeq t_s \log p + t_w k(p-1) \simeq t_s \log p + t_w n$ on a hypercube
- Followed by local computation of k dot-products in each processor, i.e. $\Theta(nk)$ computation time

ParAlgs-2010 - p.21/

Scalability

- Recall that the overhead is $O_p = pT_p W$ for problem size W on p processors. So:
 - $O_p = 2t_s p \sqrt{p} + t_w np$ on a mesh
 - $O_p = t_s p \log p + t_w n p$ on a hypercube
- $\ \ \,$ Isoefficiency is given by the function W(p) that satisfies the equation

$$W(p) = KO_p$$

where K = E/(1-E) at given efficiency E

 $\mbox{Note that } n \geq p \Rightarrow W = \Omega(p^2) \mbox{ gives a lower bound }$

Parallel Run-Time

- Thus, the asymptotic parallel run-time is
 - $n^2/p + 2t_s\sqrt{p} + t_w n$ (mesh)
 - $n^2/p + t_s \log p + t_w n$ (hypercube)
- Cost-optimal for $p \leq \Theta(n)$
 - always holds
 - even for fine-grain striping of one row per processor, as we anticipated

ParAlgs-2010 - p.22/49

Scalability (2)

ullet Since $W=\Theta(n^2)$ we solve

$$\Theta(n^2) = 2t_s p \sqrt{p} + t_w n p$$

- Thus $\Theta(n) = t_w p + o(p)$ since $p \leq \Theta(n)$
- same argument and result for hypercube
- So $W = \Theta(p^2)$ for mesh and hypercube
- Hence must increase problem size (here size of matrix) as the square of the number of processors to maintain efficiency
 - e.g. double dimension of matrix for double the number of processors

Column-wise striping

- Each processor holds one column of matrix + one vector-component which?
- Each processor performs *n* multiplications
- Then all-to-one (single-node) accumulation, reducing with + on the columns
- Result-vector ends up in the accumulating node
- $\Theta(n)$ complexity
- Similar complexity to row-wise striping for p < n processors

ParAlgs-2010 - p.25/4

Checkerboard Partitioning (2)

- 3. Local scalar multiplications (as in columnwise striping), constant computation time
- 4. Concurrent single-node accumulation, reducing with + across columns (as in columnwise striping) \Rightarrow latency $\Theta(n) \mid \Theta(\log n)$ on mesh | hypercube
- Net performance:
 - **∍** latency $\Theta(n)$, cost $\Theta(n^3)$ on a mesh
 - latency $\Theta(\log n)$, cost $\Theta(n^2 \log n)$ on a hypercube
- Not cost-optimal

Checkerboard Partitioning

Assume first that $p = n^2$ for an $n \times n$ matrix

- 1. Send vector component i to processor (i, i)
 - may be set up this way initially
 - otherwise, assume vector is sent via n concurrent simple message transfers \Rightarrow latency $\Theta(n) \mid \Theta(\log n)$ on mesh \mid hypercube
- 2. Parallel one-to-all broadcast of vector components in the diagonal processors to whole columns \Rightarrow latency $\Theta(n) \mid \Theta(\log n)$ on mesh | hypercube

ParAlgs-2010 - p.26/49

$p < n^2$ Processors

- Assume p is a perfect square such that $n = k\sqrt{p}$
- Exactly the same algorithm works except that:
 - $\ ^{\circ}$ message size is k in each communication step, corresponding to k components per processor
 - computation step involves the dot product of a $k \times k$ matrix and k-vector $\Rightarrow k^2$ products and k(k-1) sums

Performance

Parallel run-time on (e.g.) a mesh with cut-through is then:

$$T_p = n^2/p + t_s + t_w n/\sqrt{p} + t_h \sqrt{p}$$

$$+ (t_s + t_w n/\sqrt{p}) \log \sqrt{p} + t_h \sqrt{p}$$

$$+ (t_s + t_w n/\sqrt{p}) \log \sqrt{p} + t_h \sqrt{p}$$

$$\simeq n^2/p + t_s \log p + (t_w n \log p)/\sqrt{p} + 3t_h \sqrt{p}$$

- Cost-optimal if $p\sqrt{p} \leq \Theta(n^2)$ i.e. $n \geq \Theta(p^{3/4})$ (not obvious!)
- Isoefficiency function is, asymptotically, $\Theta(\max(p(\log p)^2, p^{3/2})) = \Theta(p^{3/2})$

ParAlgs-2010 - p.29/4

Striping vs. Checkerboarding (2)

- Similarly, checkerboarding has a smaller asymptotic isoefficiency function:
 - $\Theta(p^2) > \Theta(p^{3/2})$
 - hence checkerboarding more scalable
- Similar results for a hypercube (exercise)
- But does this *really* mean the checkerboard algorithm is better?

Striping vs. Checkerboarding

- Computation times for an $n \times n$ matrix and p processors are the same, viz n^2/p
 - This is simply because we did not consider non-communication overheads
- Communication times for the mesh networks we considered are:
 - $2t_s\sqrt{p}+t_wn$ (row-wise striping)
 - $t_s \log p + (t_w n \log p)/\sqrt{p} + 3t_h\sqrt{p}$ (checkerboard)
- Thus, block-checkerboarding is faster

ParAlgs-2010 - p.30/49

Striping vs. Checkerboarding (3)

- we've changed two things in our comparison
 - partitioning strategy row striping vs. checkerboarding, and
 - communication switching mechanism store-and-forward vs. cut-through
- ullet But remember, for all-to-all communication on all the networks we've considered, store-and-forward achieves the optimal data transmission time term, viz. $(p-1)mt_w$
- This term may or may not dominate . . .

ParAlgs-2010 - p.31/49

Matrix × **Matrix**

- Simple serial algorithm requires calculation of n^2 vector dot-products
 - ullet asymptotic serial run-time is n^3
 - \circ in fact, best known serial run-time is achieved by Strassen's algorithm ("divide-and-conquer" type) which has asymptotic complexity $n^{2.8}$
- But we'll take "best" serial run-time to be $T_1 = \Theta(n^3)$ for simplicity, and because . . .

ParAlgs-2010 - p.33/49

Simplest Parallel Algorithm

- To multiply two $n \times n$ matrices A and B with result $C = A \cdot B$, use block-checkerboard partitioning
- Processor $(i,j),\ 0 \leq i,j \leq \sqrt{p}-1$, holds the $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ block-matrices A_{ij}, B_{ij} defined by:

$$\{a_{hk} \mid i\sqrt{p} \le h < (i+1)\sqrt{p}, j\sqrt{p} \le k < (j+1)\sqrt{p}\}\$$

 $\{b_{hk} \mid i\sqrt{p} \le h < (i+1)\sqrt{p}, j\sqrt{p} \le k < (j+1)\sqrt{p}\}\$

and computes the result $C_{ij} = A_{ij} \cdot B_{ij}$

To compute C_{ij} , need all sub-matrices A_{ik} in row i and all B_{kj} in column j $(0 \le k \le \sqrt{p} - 1)$

In support of $T_1 \ldots$

If we were to compare parallel run-time T_p with Strassen's algorithm as the "best serial run-time":

- We would have to use Strassen's algorithm itself for local sub-matrix multiplications (at least) for a fair comparison;
- Also note that Strassen's algorithm tends to be very unstable numerically, so often not usable in practice

ParAlgs-2010 - p.34/49

The Algorithm

- 1. All-to-all broadcast of the sub-matrices A_{ik} in each row i
- 2. All-to-all broadcast of the sub-matrices B_{kj} in each column j
- 3. Computation in each processor (i, j) of vector dot-products of:
 - the row vectors obtained by catenating the rows of $A_{i0},\ldots,A_{i(\sqrt{p}-1)}$

and

• the column vectors obtained by catenating the columns of $B_{0j}, \ldots, B_{(\sqrt{p}-1),j}$

Computation time

- Computation of dot-products is the same for any network topology
 - $(n/\sqrt{p})^2 = n^2/p$ dot-products of vectors of n components
 - $\Rightarrow n^3/p$ computation time

ParAlgs-2010 - p.37/4

Isoefficiency Function (Mesh)

- $O_p=2t_sp^{3/2}+2t_wW^{2/3}\sqrt{p}$ and so the isoefficiency function may be
 - $W = 2Kt_sp^{3/2}$ (first term only)
 - or $W=2Kt_wW^{2/3}\sqrt{p}$
 - $\Rightarrow W = 8K^3p^{3/2}t_w^3$ (second)
- Thus isoefficiency is $\Theta(p^{3/2})$

Mesh

- Communication comprises two all-to-all broadcasts amongst \sqrt{p} processors (in the rows and columns)
- Message size is n^2/p elements (submatrices)
- Hence communication latency (neglecting t_h) is $2\{t_s\sqrt{p}+t_w(n^2/p)(\sqrt{p}-1)\}\simeq 2(t_s\sqrt{p}+t_wn^2/\sqrt{p})$ for large p
- So parallel run-time is $T_p = n^3/p + 2t_s\sqrt{p} + 2t_w n^2/\sqrt{p}$
- \mathbf{cost} , $C_p = n^3 + 2t_s p^{3/2} + 2t_w n^2 \sqrt{p}$ \mathbf{cost} -optimal if $p = O(n^2)$

ParAlgs-2010 - p.38/49

Hypercube

- Same reasoning, but communication latency is $2\{t_s \log \sqrt{p} + t_w(n^2/p)(\sqrt{p} 1)\}$
- Hence parallel run-time is (for large p) $T_p = n^3/p + t_s \log p + 2t_w n^2/\sqrt{p}$
- So cost, $C_p = n^3 + t_s p \log p + 2t_w n^2 \sqrt{p}$
- \Rightarrow cost-optimal if $p = O(n^2)$
- Same as mesh asymptotically

Isoefficiency Function (Hypercube

- $O_p = t_s p \log p + 2t_w W^{2/3} \sqrt{p}$ and so the isoefficiency function may be
 - $W = Kt_sp\log p$ (first term only)
 - or $W=2Kt_wW^{2/3}\sqrt{p}$
 - $\Rightarrow W = 8K^3p^{3/2}t_w^3$ (second)
- But $p \le n^2$ and so $p^{3/2} \le n^3$. Thus again isoefficiency is $\Theta(p^{3/2})$ since this is $\Omega(p \log p)$

ParAlgs-2010 - p.41/4

Cannon's and Fox's Algorithms

- In Cannon's algorithm, blocks are rotated horizontally and vertically by "appropriate amounts"
 - left (circular) shift block A_{ij} through i positions
 - ullet up shift block B_{ij} through j positions
 - ullet accumulate block C_{ij} by adding block matrix products
- Fox's algorithm combines \sqrt{p} successive one-to-all row broadcasts with \sqrt{p} single step upwards shifts

Space Optimisations

- Disadvantage of this algorithm is a high memory requirement
 - \sqrt{p} blocks at each processor
 - \Rightarrow total memory needed $=\Theta(n^2\sqrt{p})$ as opposed to $\Theta(n^2)$ for the serial algorithm
- Space optimisations can be obtained by rotating block submatrices so that parts of the computation at each processor can be done after each alignment of blocks

ParAlgs-2010 - p.42/49

A Time Optimisation (DNS)

- Dekel-Nassimi-Sahni algorithm improves parallel run-time by using up to n^3 processors
- Assign each of the n^3 scalar multiplications to a separate processor, say P_{ijk} if processors are organised in $n \times n$ planes
- Then sum the values (products of previous step) in each column of the plane
 - \bullet P_{ijk} holds A_{ik} and B_{kj} and multiplies them
 - column sum is therefore $A_{i\cdot}\cdot B_{\cdot j}=C_{ij}$

ParAlgs-2010 - p.43/49

ParAlgs-2010 - p.44/49

Abstract Implementation

- On a CREW PRAM (abstract machine), assume A and B are distributed over plane 0 i.e. P_{ij0} has A_{ij} and B_{ij}
- All processors in the other planes fetch their data in constant time
- Multiplications take unit time (in parallel) and the additions can be done in $\log n$ steps
- Hence $\log n$ (asymptotic) complexity
- Not cost-optimal with CREW
- Cost-optimal with CRCW if additions are done by writes reducing with +

ParAlgs-2010 - p.45/49

Hypercube Implementation (2)

- 1. one-to-one communication of each column (c) of A and each row (r) of B to respective planes (c,r)
 - A_{ij} goes to P_{ijj}
 - \bullet B_{ij} goes to P_{iji}
- 2. one-to-all broadcast along rows (for A) and columns (for B) in each plane above 0
 - A_{ij} broadcast to P_{ikj}
 - B_{ij} broadcast to P_{kji}
- single node accumulation in the third dimension, reducing with +

Hypercube Implementation

- Need to move data physically, in contrast to the PRAM
- Assume $n=2^d$ and that the planes consist of n sub-cubes connected at corresponding nodes, as in the recursive definition of a hypercube
- DNS algorithm has n^3 scalar multiplications in parallel (constant time) + three communication steps:

ParAlgs-2010 - p.46/49

Fewer Than n^3 Processors

- Each step has latency $\Theta(\log n) \Rightarrow T_p = \Theta(\log n)$ in the above algorithm, so not cost-optimal
- Consider, therefore, $p=q^3$ processors, where q < n and q divides n
- Partition the matrix into p blocks of size $(n/q) \times (n/q)$
- DNS algorithm is as above except that operations are now on submatrices – i.e. matrix multiplication and addition

Hypercube Implementation

 On a hypercube, we find, ignoring the relatively small contribution from the one-to-one communication in the first step (to plane 0)

$$T_p \simeq (n/q)^3 + 3t_s \log q + 3t_w (n/q)^2 \log q$$

= $n^3/p + t_s \log p + t_w (n^2/p^{2/3}) \log p$

- Cost-optimal if $n^3 = \Omega(p(\log p)^3)$
- Isoefficiency function is $\Theta(p(\log p)^3)$

ParAins_2010 _ n 49/49