
(Dense) Matrix Algorithms

Dense as opposed to sparse

“dense” means “arbitrary” since a dense
algorithm can be applied to any matrix

in a “sparse” algorithm, represent a set of
data items together with their locations
within a structure

save on storage and execution time in a
sparse representation

Conventional to consider square matrices

simpler notation

easy generalisation to arbitrary (different)
matrix dimensions

ParAlgs–2010 – p.1/49

Topics we will consider

Mapping of matrices onto processors

Parallel matrix algorithms

matrix transpose

matrix × vector multiply

matrix × matrix multiply

Solution of linear equations

ParAlgs–2010 – p.2/49

Striping

Striped partitioning by row : matrix is divided
into groups of complete rows and each group
is allocated to one processor

uniform striping if all groups contain the
same number of rows

striped partitioning by column similarly

block-striped if the rows in each group are
consecutive in the matrix

e.g. if a kp × kp matrix is block-striped by
row on p processors, processor
i(0 ≤ i ≤ p − 1) holds rows

ki, ki + 1, . . . , k(i + 1) − 1
ParAlgs–2010 – p.3/49

Cyclic Striping

A partition is cyclic-striped if processor i
holds all rows with index i modulo p
(0 ≤ i ≤ p − 1)

i.e. processor i holds rows
i, i + p, . . . , i + (k − 1)p

block-cyclic-striped if blocks of q rows are
striped, h blocks per processor. Processor i
then has rows:

qi, qi + 1, . . . , q(i + 1) − 1, q(i + p), . . . ,

q(i + p + 1) − 1 . . . , q(i + (h − 1)p), . . . ,

q(i + 1 + (h − 1)p) − 1

ParAlgs–2010 – p.4/49

Checkerboarding

Matrix is divided into rectangular blocks

rows and columns are split – no processor
contains a whole row or column (except in
the pathological case of striping)

uniform checkerboard uses same sized
blocks

Block-checkerboard if the blocks are
sub-matrices, i.e. contiguous in original
matrix

Cyclic-checkerboard if the rows and columns
in each block are selected cyclicly – cf. cyclic
striping

ParAlgs–2010 – p.5/49

Checkerboarding (2)

Block-cyclic-checkerboard if equal sized sets
of contiguous rows and columns in each
block are selected block-cyclicly – cf.
block-cyclic striping

Checkerboarding naturally suited to mesh
networks

e.g. one processor for each matrix element

more commonly, one processor for a
sub-matrix

often embed logical mesh into a non-mesh
physical network

ParAlgs–2010 – p.6/49

Matrix Transposition

Given matrix

A = [aij | 1 ≤ i, j ≤ n]

require

A′ = [aji | 1 ≤ i, j ≤ n]

Need to exchange the corresponding n2 − n
off-diagonal elements

⇒ (n2 − n)/2 exchanges
& n2/2 time-complexity on a single processor

ParAlgs–2010 – p.7/49

Checkerboard Partitioning

First consider a mesh implementation with
one element per processor

i, j element moves up to its diagonal and then
across the same number of hops to j, i
position

Need to synchronise the communication
because of multiple transmissions on each
link

ParAlgs–2010 – p.8/49

Run-time on a Mesh

All communications are concurrent
point-to-point simple message transfers

Maximum distance is 2(n − 1) hops

⇒ latency is 2(n − 1)(ts + th + tw)
assuming one-word elements and separate
SF communications

ParAlgs–2010 – p.9/49

Mesh of p < n Processors

Assume p is a perfect square and that n is an
integer multiple of

√
p

Then the matrix is checkerboarded as a√
p ×√

p block-matrix of (n/
√

p) × (n/
√

p)
blocks

Algorithm is now:

transpose each block locally⇒ time
complexity & n2/2p

transpose blocks as above
⇒ communication latency
& 2(

√
p − 1)(ts + twn2/p)

ParAlgs–2010 – p.10/49

Parallel Run-Time

Parallel run-time with store-and-forward
routing is

Tp = n2/2p + 2(
√

p − 1)(ts + twn2/p)

& n2/2p + 2ts
√

p + 2twn2/
√

p

treating the per-hop terms th as negligible

So the cost is Cp = pTp = Θ(
√

pn2)

So not cost optimal

ParAlgs–2010 – p.11/49

Hypercube

Matrix may be transposed by transposing a
block-matrix of its transposed blocks – as above

Apply this procedure recursively to transpose
the blocks – recursive transposition algorithm

Base case is a 2 × 2 matrix

n × n matrix naturally maps onto a
p-hypercube

Suppose n and p are both powers of 2,
p ≤ (n/2)2 and log p even (p = 4, 16, 64, . . .)

Base cases are sub-matrices with n2/p
elements on a p-hypercube (≥ 4 elements)

ParAlgs–2010 – p.12/49

Hypercube Recursive Algorithm

1. First, allocate matrix blocks to 4 sub-cubes:

divide the matrix into 4 blocks

partition the hypercube into 4 sub-cubes –
i.e. split in two twice

allocate 1 block to each sub-cube,
swapping the off-diagonal blocks

2. Repeat the algorithm for each block on
each sub-cube until the sub-cubes each
contain one processor

(log p)/2 steps, since reduce dimension by
two each step

ParAlgs–2010 – p.13/49

Hypercube Recursive Algorithm (2)

In each step, the mesh algorithm on 2 × 2
block-matrices is applied

At each step, corresponding pairs of
processors in different sub-cubes
exchange data through another
corresponding processor in a diagonal
sub-cube

After each step, sizes of block-matrices
transposed in parallel are quartered

3. Finally, transpose the (n/
√

p) × (n/
√

p)
blocks locally in each processor

ParAlgs–2010 – p.14/49

Hypercube Recursive Algorithm (3)

Size of message representing swapping

blocks is always n2/p

Hence parallel run time is:

Tp = n2/2p + (ts + twn2/p) log p

Again, not cost optimal

ParAlgs–2010 – p.15/49

Block Striping

First suppose each of p processors has one
row of the p × p matrix

processor i must send its jth row element
to processor j (1 ≤ i)= j ≤ p)

all-to-all personalised communication

Now let each processor hold n/p rows of a
n × n matrix

must send n/p contiguous elements from
each row to every other processor

parallel communication of n/p × n/p
block-matrices, i.e. messages of size

m = n2/p2

ParAlgs–2010 – p.16/49

Block Striping (2)

Then every processor transposes each of its
p blocks

⇒ time complexity p.n2/(2p2) = n2/(2p)

familiar?!

Best parallel run time is on a hypercube with
cut-through (fastest ATAP communication)

⇒ Tp = n2

2p + ts(p − 1) + twn2

p + thp log p
2

cost-optimal ??

ParAlgs–2010 – p.17/49

Matrix × Vector

Compare row-wise striping with checkerboarding

n × n matrix · vector of n components
Note that the numbers of processors are
bounded by the sizes of the vector (n) and
matrix (n2) respectively

Consider the relative performance and
scalabilities of each partitioning on different
interconnection topologies

ParAlgs–2010 – p.18/49

Row-wise striping

First consider one row + one component of the
vector per processor

Every processor requires the whole vector, so
we need

all-to-all broadcast of each processor’s
vector-component to all the others

then processor i performs the dot-product
of the ith row with the vector

leaves the ith component of the
result-vector in processor i

ParAlgs–2010 – p.19/49

Row-wise striping (2)

Parallel run-time is Θ(n) because ATA
communication and vector dot-product are

must be cost-optimal

We’ll consider block-striping the matrix on
fewer processors

can be sure of a cost-optimal algorithm

recall cost-optimality is always preserved
by increasing the grain size

ParAlgs–2010 – p.20/49

p = n/k Processors

Block-stripe with k rows + k vector
components per processor

ATA broadcast of k elements in each
message. Latency:

& 2ts
√

p + twk(p − 1) & 2ts
√

p + twn on a
mesh

& ts log p + twk(p − 1) & ts log p + twn on a
hypercube

Followed by local computation of k
dot-products in each processor, i.e. Θ(nk)
computation time

ParAlgs–2010 – p.21/49

Parallel Run-Time

Thus, the asymptotic parallel run-time is

n2/p + 2ts
√

p + twn (mesh)

n2/p + ts log p + twn (hypercube)

Cost-optimal for p ≤ Θ(n)

always holds

even for fine-grain striping of one row per
processor, as we anticipated

ParAlgs–2010 – p.22/49

Scalability

Recall that the overhead is Op = pTp − W for
problem size W on p processors. So:

Op = 2tsp
√

p + twnp on a mesh

Op = tsp log p + twnp on a hypercube

Isoefficiency is given by the function W (p)
that satisfies the equation

W (p) = KOp

where K = E/(1 − E) at given efficiency E

Note that n ≥ p ⇒ W = Ω(p2) gives a lower
bound

ParAlgs–2010 – p.23/49

Scalability (2)

Since W = Θ(n2) we solve

Θ(n2) = 2tsp
√

p + twnp

Thus Θ(n) = twp + o(p) since p ≤ Θ(n)

same argument and result for hypercube

So W = Θ(p2) for mesh and hypercube

Hence must increase problem size (here size
of matrix) as the square of the number of
processors to maintain efficiency

e.g. double dimension of matrix for double
the number of processors

ParAlgs–2010 – p.24/49

Column-wise striping

Each processor holds one column of matrix +
one vector-component which?

Each processor performs n multiplications

Then all-to-one (single-node) accumulation,
reducing with + on the columns

Result-vector ends up in the accumulating
node

Θ(n) complexity

Similar complexity to row-wise striping for
p ≤ n processors

ParAlgs–2010 – p.25/49

Checkerboard Partitioning

Assume first that p = n2 for an n × n matrix

1. Send vector component i to processor (i, i)

may be set up this way initially

otherwise, assume vector is sent via n
concurrent simple message transfers⇒
latency Θ(n) | Θ(log n) on mesh |
hypercube

2. Parallel one-to-all broadcast of vector
components in the diagonal processors to
whole columns⇒ latency Θ(n) | Θ(log n) on
mesh | hypercube

ParAlgs–2010 – p.26/49

Checkerboard Partitioning (2)

3. Local scalar multiplications (as in columnwise
striping), constant computation time

4. Concurrent single-node accumulation,
reducing with + across columns (as in
columnwise striping)⇒ latency
Θ(n) | Θ(log n) on mesh | hypercube

Net performance:

latency Θ(n), cost Θ(n3) on a mesh

latency Θ(log n), cost Θ(n2 log n) on a
hypercube

Not cost-optimal
ParAlgs–2010 – p.27/49

p < n2 Processors

Assume p is a perfect square such that
n = k

√
p

Exactly the same algorithm works except that:

message size is k in each communication
step, corresponding to k components per
processor

computation step involves the dot product
of a k × k matrix and k-vector⇒ k2

products and k(k − 1) sums

ParAlgs–2010 – p.28/49

Performance

Parallel run-time on (e.g.) a mesh with
cut-through is then:

Tp = n2/p + ts + twn/
√

p + th
√

p

+(ts + twn/
√

p) log
√

p + th
√

p

+(ts + twn/
√

p) log
√

p + th
√

p

& n2/p + ts log p + (twn log p)/
√

p + 3th
√

p

Cost-optimal if p
√

p ≤ Θ(n2) i.e. n ≥ Θ(p3/4)
(not obvious!)

Isoefficiency function is, asymptotically,

Θ(max(p(log p)2, p3/2)) = Θ(p3/2)
ParAlgs–2010 – p.29/49

Striping vs. Checkerboarding

Computation times for an n × n matrix and p
processors are the same, viz n2/p

This is simply because we did not consider
non-communication overheads

Communication times for the mesh networks
we considered are:

2ts
√

p + twn (row-wise striping)

ts log p + (twn log p)/
√

p + 3th
√

p
(checkerboard)

Thus, block-checkerboarding is faster

ParAlgs–2010 – p.30/49

Striping vs. Checkerboarding (2)

Similarly, checkerboarding has a smaller
asymptotic isoefficiency function:

Θ(p2) > Θ(p3/2)

hence checkerboarding more scalable

Similar results for a hypercube (exercise)

But does this really mean the checkerboard
algorithm is better?

ParAlgs–2010 – p.31/49

Striping vs. Checkerboarding (3)

we’ve changed two things in our comparison

partitioning strategy – row striping vs.
checkerboarding, and

communication switching mechanism –
store-and-forward vs. cut-through

But remember, for all-to-all communication on
all the networks we’ve considered,
store-and-forward achieves the optimal data
transmission time term, viz. (p − 1)mtw

This term may or may not dominate . . .

ParAlgs–2010 – p.32/49

Matrix × Matrix

Simple serial algorithm requires calculation of

n2 vector dot-products

asymptotic serial run-time is n3

in fact, best known serial run-time is
achieved by Strassen’s algorithm
(“divide-and-conquer” type) which has
asymptotic complexity n2.8

But we’ll take “best” serial run-time to be
T1 = Θ(n3) for simplicity, and because . . .

ParAlgs–2010 – p.33/49

In support of T1 . . .

If we were to compare parallel run-time Tp with
Strassen’s algorithm as the “best serial run-time’:

We would have to use Strassen’s algorithm
itself for local sub-matrix multiplications (at
least) for a fair comparison;

Also note that Strassen’s algorithm tends to
be very unstable numerically, so often not
usable in practice

ParAlgs–2010 – p.34/49

Simplest Parallel Algorithm

To multiply two n × n matrices A and B with
result C = A · B, use block-checkerboard
partitioning

Processor (i, j), 0 ≤ i, j ≤ √
p − 1 , holds the

n√
p ×

n√
p block-matrices Aij, Bij defined by:

{ahk | i
√

p ≤ h < (i + 1)
√

p, j
√

p ≤ k < (j + 1)
√

p}
{bhk | i

√
p ≤ h < (i + 1)

√
p, j

√
p ≤ k < (j + 1)

√
p}

and computes the result Cij = Aij · Bij

To compute Cij, need all sub-matrices Aik in

row i and all Bkj in column j (0 ≤ k ≤ √
p− 1)

ParAlgs–2010 – p.35/49

The Algorithm

1. All-to-all broadcast of the sub-matrices Aik in
each row i

2. All-to-all broadcast of the sub-matrices Bkj in
each column j

3. Computation in each processor (i, j) of vector
dot-products of:

the row vectors obtained by catenating the
rows of Ai0, . . . , Ai(√p−1)

and

the column vectors obtained by catenating
the columns of B0j, . . . , B(√p−1),j

ParAlgs–2010 – p.36/49

Computation time

Computation of dot-products is the same for
any network topology

(n/
√

p)2 = n2/p dot-products of vectors of
n components

⇒ n3/p computation time

ParAlgs–2010 – p.37/49

Mesh

Communication comprises two all-to-all
broadcasts amongst

√
p processors (in the

rows and columns)

Message size is n2/p elements (submatrices)

Hence communication latency (neglecting th)
is 2{ts

√
p + tw(n2/p)(

√
p − 1)} &

2(ts
√

p + twn2/
√

p) for large p

So parallel run-time is
Tp = n3/p + 2ts

√
p + 2twn2/

√
p

Cost, Cp = n3 + 2tsp3/2 + 2twn2√p
⇒ cost-optimal if p = O(n2)

ParAlgs–2010 – p.38/49

Isoefficiency Function (Mesh)

Op = 2tsp3/2 + 2twW 2/3√p and so the
isoefficiency function may be

W = 2Ktsp3/2 (first term only)

or W = 2KtwW 2/3√p

⇒ W = 8K3p3/2t3w (second)

Thus isoefficiency is Θ(p3/2)

ParAlgs–2010 – p.39/49

Hypercube

Same reasoning, but communication latency

is 2{ts log
√

p + tw(n2/p)(
√

p − 1)}
Hence parallel run-time is (for large p)
Tp = n3/p + ts log p + 2twn2/

√
p

So cost, Cp = n3 + tsp log p + 2twn2√p

⇒ cost-optimal if p = O(n2)

Same as mesh asymptotically

ParAlgs–2010 – p.40/49

Isoefficiency Function (Hypercube)

Op = tsp log p + 2twW 2/3√p and so the
isoefficiency function may be

W = Ktsp log p (first term only)

or W = 2KtwW 2/3√p

⇒ W = 8K3p3/2t3w (second)

But p ≤ n2 and so p3/2 ≤ n3. Thus again

isoefficiency is Θ(p3/2) since this is Ω(p log p)

ParAlgs–2010 – p.41/49

Space Optimisations

Disadvantage of this algorithm is a high
memory requirement

√
p blocks at each processor

⇒ total memory needed = Θ(n2√p) as
opposed to Θ(n2) for the serial algorithm

Space optimisations can be obtained by
rotating block submatrices so that parts of the
computation at each processor can be done
after each alignment of blocks

ParAlgs–2010 – p.42/49

Cannon’s and Fox’s Algorithms

In Cannon’s algorithm, blocks are rotated
horizontally and vertically by “appropriate
amounts”

left (circular) shift block Aij through i
positions

up shift block Bij through j positions

accumulate block Cij by adding block
matrix products

Fox’s algorithm combines
√

p successive
one-to-all row broadcasts with

√
p single step

upwards shifts

ParAlgs–2010 – p.43/49

A Time Optimisation (DNS)

Dekel-Nassimi-Sahni algorithm improves

parallel run-time by using up to n3 processors

Assign each of the n3 scalar multiplications to
a separate processor, say Pijk if processors
are organised in n n × n planes

Then sum the values (products of previous
step) in each column of the plane

Pijk holds Aik and Bkj and multiplies them

column sum is therefore Ai· · B·j = Cij

ParAlgs–2010 – p.44/49

Abstract Implementation

On a CREW PRAM (abstract machine),
assume A and B are distributed over plane 0
– i.e. Pij0 has Aij and Bij

All processors in the other planes fetch their
data in constant time

Multiplications take unit time (in parallel) and
the additions can be done in log n steps

Hence log n (asymptotic) complexity

Not cost-optimal with CREW

Cost-optimal with CRCW if additions are
done by writes reducing with +

ParAlgs–2010 – p.45/49

Hypercube Implementation

Need to move data physically, in contrast to
the PRAM

Assume n = 2d and that the planes consist of
n sub-cubes – connected at corresponding
nodes, as in the recursive definition of a
hypercube

DNS algorithm has n3 scalar multiplications in
parallel (constant time) + three
communication steps:

ParAlgs–2010 – p.46/49

Hypercube Implementation (2)

1. one-to-one communication of each column
(c) of A and each row (r) of B to respective
planes (c,r)

Aij goes to Pijj

Bij goes to Piji

2. one-to-all broadcast along rows (for A) and
columns (for B) in each plane above 0

Aij broadcast to Pikj

Bij broadcast to Pkji

3. single node accumulation in the third
dimension, reducing with +

ParAlgs–2010 – p.47/49

Fewer Than n3 Processors

Each step has latency
Θ(log n) ⇒ Tp = Θ(log n) in the above
algorithm, so not cost-optimal

Consider, therefore, p = q3 processors, where
q < n and q divides n

Partition the matrix into p blocks of size
(n/q) × (n/q)

DNS algorithm is as above except that
operations are now on submatrices – i.e.
matrix multiplication and addition

ParAlgs–2010 – p.48/49

Hypercube Implementation

On a hypercube, we find, ignoring the
relatively small contribution from the
one-to-one communication in the first step (to
plane 0)

Tp & (n/q)3 + 3ts log q + 3tw(n/q)2 log q

= n3/p + ts log p + tw(n2/p2/3) log p

Cost-optimal if n3 = Ω(p(log p)3)

Isoefficiency function is Θ(p(log p)3)

ParAlgs–2010 – p.49/49

