(Dense) Matrix Algorithms

Dense as opposed to sparse

> “dense” means “arbitrary” since a dense
algorithm can be applied to any matrix

> in a “sparse” algorithm, represent a set of
data items together with their locations
within a structure

> save on storage and execution time in a
sparse representation

Conventional to consider square matrices

> simpler notation

> easy generalisation to arbitrary (different)
matrix dimensions

] ParAlgs-2010 — p.1/49

Striping

Striped partitioning by row: matrix is divided

into groups of complete rows and each group

is allocated to one processor

> uniform striping if all groups contain the
same number of rows

> Striped partitioning by column similarly

block-striped if the rows in each group are
consecutive in the matrix

> e.g. if a kp x kp matrix is block-striped by
FOW ONn p Processors, processor
i(0 <i<p-—1) holds rows
kijki+1,... k(i+1)—1

| ParAlgs-2010 — p.3/49

Topics we will consider

> Mapping of matrices onto processors

> Parallel matrix algorithms
> matrix transpose
> matrix x vector multiply
> matrix x matrix multiply
> Solution of linear equations

] ParAlgs-2010 — p.2/49

Cyclic Striping

> A partition is cyclic-striped if processor i
holds all rows with index : modulo p
0<i<p-—-1)
> j.e. processor i holds rows

ihit+p,...,i+(k—1)p

> block-cyclic-striped if blocks of ¢ rows are

striped, h blocks per processor. Processor ¢
then has rows:

qi,qi+1,....,q(i+1)—1,q(i +p),...,
qi+p+1)—1...,q(i+(h—1)p),...,
qi +14+ (h—1)p) —1

| ParAlgs-2010 — p.4/49

Checkerboarding

Matrix is divided into rectangular blocks

> rows and columns are split — no processor
contains a whole row or column (except in
the pathological case of striping)

> uniform checkerboard uses same sized
blocks

Block-checkerboard if the blocks are
sub-matrices, i.e. contiguous in original
matrix

Cyclic-checkerboard if the rows and columns
in each block are selected cyclicly — cf. cyclic
striping

] ParAlgs-2010 — p.5/49

Matrix Transposition

Given matrix

require

Need to exchange the corresponding n? — n
off-diagonal elements

= (n? — n)/2 exchanges
~ n? /2 time-complexity on a single processor

| ParAlgs-2010 — p.7/49

Checkerboarding (2)

> Block-cyclic-checkerboard if equal sized sets
of contiguous rows and columns in each
block are selected block-cyclicly — cf.
block-cyclic striping
> Checkerboarding naturally suited to mesh
networks
> e.g. one processor for each matrix element
> more commonly, one processor for a
sub-matrix
> often embed logical mesh into a non-mesh
physical network

Checkerboard Partitioning

> First consider a mesh implementation with
one element per processor

2 1,7 element moves up to its diagonal and then
across the same number of hops to j, i
position

> Need to synchronise the communication
because of multiple transmissions on each
link

[—]

] ParAlgs—2010 — p.6/49

ParAlgs-2010 — p.8/49

Run-time on a Mesh

2> All communications are concurrent

point-to-point simple message transfers

2 Maximum distance is 2(n — 1) hops
° = latency is 2(n — 1)(ts + tj, + tu)

assuming one-word elements and separate

SF communications

ParAlgs—2010 — p.9/49

Parallel Run-Time

2 Parallel run-time with store-and-forward
routing is

T, = n°/2p+2(y/p — 1)(ts + tun®/p)

~ n?/2p+ 2t /D + 2tun®/\/p

treating the per-hop terms ¢, as negligible

> So the costis C, = pT), = O(/pn?)

> So not cost optimal

ParAlgs-2010 — p.11/49

Mesh of p < n Processors

> Assume p is a perfect square and that n is an
integer multiple of /p

2 Then the matrix is checkerboarded as a

/P X /p block-matrix of (n/,/p) x (n/\/p)

blocks

2 Algorithm is now:
> transpose each block locally = time
complexity ~ n?/2p
> transpose blocks as above
=- communication latency

~ 2(/P — 1)(ts + tuyn?/p)

I | ParAlgs-2010 — p.10/49

Hypercube

Matrix may be transposed by transposing a
block-matrix of its transposed blocks — as above

> Apply this procedure recursively to transpose
the blocks — recursive transposition algorithm

> Base case is a 2 x 2 matrix
2 n x n matrix naturally maps onto a
p-hypercube
> Suppose n and p are both powers of 2,
p < (n/2)*and logp even (p = 4,16,64,...)
> Base cases are sub-matrices with n?/p
elements on a p-hypercube (> 4 elements)

S | ParAlgs-2010 — p.12/49

Hypercube Recursive Algorithm Hypercube Recursive Algorithm (2}

> 1. First, allocate matrix blocks to 4 sub-cubes: > In each step, the mesh algorithm on 2 x 2
> divide the matrix into 4 blocks block-matrices is applied
> partition the hypercube into 4 sub-cubes — > At each step, corresponding pairs of

processors in different sub-cubes
exchange data through another
corresponding processor in a diagonal

i.e. split in two twice

> allocate 1 block to each sub-cube,
swapping the off-diagonal blocks

sub-cube
> 2. Repeat the algorithm for each block on > After each step, sizes of block-matrices
each sub-cube until the sub-cubes each transposed in parallel are quartered

contain one processor

> (logp)/2 steps, since reduce dimension by
two each step

> 3. Finally, transpose the (n/./p) x (n//D)
blocks locally in each processor

[C—] Paigs-2010- 134 [—] Partigs-2010p.1ae0
Hypercube Recursive Algorithm (3} Block Striping
> Size of message representing swapping > First suppose each of p processors has one
blocks is always n?/p row of the p x p matrix

> processor ¢ must send its jth row element
to processor j (1 <i+# j < p)
T, =n?/2p + (ts + tyn®/p)logp > all-to-all personalised communication

> Hence parallel run time is:

> Now let each processor hold n/p rows of a
n X n matrix
> must send n/p contiguous elements from
each row to every other processor
> parallel communication of n/p x n/p
block-matrices, i.e. messages of size
m = n’/p’
T ——] ParAlgs-2010 - p.15/49 T ——]

2 Again, not cost optimal

Block Striping (2)

> Then every processor transposes each of its
p blocks

> = time complexity p.n?/(2p*) = n?/(2p)
> familiar?!

2 Best parallel run time is on a hypercube with
cut-through (fastest ATAP communication)

o =T, =5+ ty(p— 1) 4 e 4 lpps

> cost-optimal ??

I | ParAlgs-2010 — p.17/49

Row-wise striping

First consider one row + one component of the
vector per processor

> Every processor requires the whole vector, so
we need

> all-to-all broadcast of each processor’s
vector-component to all the others

> then processor i performs the dot-product
of the ith row with the vector

> |eaves the ith component of the
result-vector in processor i

N | ParAlgs-2010 - p.19/49

Matrix x Vector

Compare row-wise striping with checkerboarding
2 n x n matrix - vector of n components

> Note that the numbers of processors are
bounded by the sizes of the vector (n) and
matrix (n?) respectively

> Consider the relative performance and
scalabilities of each partitioning on different
interconnection topologies

R | ParAlgs-2010 — p.18/49

Row-wise striping (2)

> Parallel run-time is ©(n) because ATA
communication and vector dot-product are

> must be cost-optimal

> We’ll consider block-striping the matrix on
fewer processors
> can be sure of a cost-optimal algorithm

> recall cost-optimality is always preserved
by increasing the grain size

] | ParAlgs-2010 — p.20/49

p = n/k Processors Parallel Run-Time

> Block-stripe with k rows + k vector > Thus, the asymptotic parallel run-time is
components per processor > n?/p+ 2ts/p + tyn (Mesh)
> ATA broadcast of £ elements in each > n?/p+t,logp + t,n (hypercube)

message. Latency:

2 Cost-optimal for p < ©
o ~ 2t,\/p+ twk(p—1) ~ 2t5\/P + tynona P p < O(n)

> always holds

mesh
> even for fine-grain striping of one row per
> ~tilogp+tuk(p—1) ~tslogp+t,nona -
hypercube processor, as we anticipated

> Followed by local computation of &
dot-products in each processor, i.e. ©(nk)
computation time

Scalability Scalability (2)
> Recall that the overhead is O, = pT,, — W for > Since W = ©(n?) we solve
problem size W on p processors. So:)
o> O, = 2t;p\/P + t,np ON @ Mesh O(n") = 2tspv/p + tunp
> O, = tsplogp + t,np on a hypercube > Thus ©(n) = t,p + o(p) since p < O(n)
> |soefficiency is given by the function W (p) > same argument and result for hypercube
that satisfies the equation °> So W = ©O(p*) for mesh and hypercube
W(p) = KO, ° Hence must increase problem size (here size
_ o of matrix) as the square of the number of
where K = E/(1 — E) at given efficiency £ processors to maintain efficiency
> Note that n > p = W = Q(p?) gives a lower > e.g. double dimension of matrix for double
bound the number of processors

] | ParAlgs-2010 - p.23/49 "] ParAigs—2010 - p.24/49

Column-wise striping

Each processor holds one column of matrix +
one vector-component which?

Each processor performs n multiplications

Then all-to-one (single-node) accumulation,
reducing with + on the columns

Result-vector ends up in the accumulating
node

©(n) complexity

Similar complexity to row-wise striping for
p < n processors

1] | ParAlgs-2010 — p.25/49

Checkerboard Partitioning (2)

. Local scalar multiplications (as in columnwise
striping), constant computation time

. Concurrent single-node accumulation,
reducing with + across columns (as in
columnwise striping) = latency

O(n) | ©(logn) on mesh | hypercube

Net performance:

> latency ©(n), cost ©(n?*) on a mesh

> latency ©(logn), cost O(n*logn) on a
hypercube

> Not cost-optimal

] | ParAlgs-2010 - p.27/49

Checkerboard Partitioning

Assume first that p = n? for an n x n matrix

1. Send vector component i to processor (i, 1)
> may be set up this way initially
> otherwise, assume vector is sent via n
concurrent simple message transfers =
latency ©(n) | ©(logn) on mesh |
hypercube

2. Parallel one-to-all broadcast of vector
components in the diagonal processors to
whole columns = latency ©(n) | ©(logn) on
mesh | hypercube

1 | ParAlgs-2010 — p.26/49

» < n’ Processors

> Assume p is a perfect square such that
n=ky/p
> Exactly the same algorithm works except that:
> message size is k in each communication
step, corresponding to £ components per
processor
> computation step involves the dot product

of a k x k matrix and k-vector = k?
products and k(k — 1) sums

] | ParAlgs-2010 — p.28/49

Performance Striping vs. Checkerboarding

> Parallel run-time on (e.g.) a mesh with > Computation times for an n x n matrix and p
cut-through is then: processors are the same, viz n?/p
> This is simply because we did not consider
_ 2
T, = n'/ptts+ton/Vp Jlr thy/p non-communication overheads
ts + 1y t . .
(s & tun//p)log P+ tav/p 2> Communication times for the mesh networks
+(ts + tun//p)log /b + th/p we considered are:
~ n*/p+tslogp + (tunlogp)/\/p + 3tuy/p o 2ts\/p+t,n (row-wise striping)
> Cost-optimal if p,/p < O(n?) i.e. n > O(p*4) > tslogp + (tunlogp)/\/p + 3tn\/D

(not obvious!) (checkerboard)

> |soefficiency function is, asymptotically, > Thus, block-checkerboarding is faster

©(max(p(log p)?, p*/?)) = O (p*?)

Striping vs. Checkerboarding (2) Striping vs. Checkerboarding (3)
> Similarly, checkerboarding has a smaller 2 we’ve changed two things in our comparison
asymptotic isoefficiency function: > partitioning strategy — row striping vs.
> O(p?) > 0(p*?) checkerboarding, and
> hence checkerboarding more scalable > communication switching mechanism —

> Similar results for a hypercube (exercise) store-and-forward vs. cut-through

> But does this really mean the checkerboard
algorithm is better?

> But remember, for all-to-all communication on
all the networks we’ve considered,
store-and-forward achieves the optimal data
transmission time term, viz. (p — 1)mt,,

> This term may or may not dominate . ..

Matrix x Matrix In support of 7}

> Simple serial algorithm requires calculation of If we were to compare parallel run-time 7}, with
n? vector dot-products Strassen’s algorithm as the “best serial run-time’:
> asymptotic serial run-time is n’ > We would have to use Strassen’s algorithm
> in fact, best known serial run-time is itself for local sub-matrix multiplications (at
achieved by Strassen’s algorithm least) for a fair comparison;

(“divide-and-conquer” tngSe) which has > Also note that Strassen’s algorithm tends to
asymptotic complexity n~ be very unstable numerically, so often not
> But we’ll take “best” serial run-time to be usable in practice
Ty = ©(n?) for simplicity, and because . ..

Simplest Parallel Algorithm The Algorithm
2 To multiply two n x n matrices A and B with 1. All-to-all broadcast of the sub-matrices A;;. in
result C' = A - B, use block-checkerboard each row i
partitioning 2. All-to-all broadcast of the sub-matrices By; in
> Processor (i,7), 0 <4,5 < ,/p—1, holds the each column j
5 X 5 block-matrices A;;, B;; defined by: 3. Computation in each processor (i, j) of vector
< o B <k 1 dot-products of:
Lan | ?\/ﬁ Shs (Z' i)‘/ﬁ’]'\/ﬁ Shs (‘2 +1)vPp} 2 the row vectors obtained by catenating the
{one [iv/p < h < (i +1)y/p,jVp < k < (G +1)/p} rows of A, ..., Ai(/1)
and computes the result C;; = A;; - By; and
2 To compute Cj;, need all sub-matrices A;; in ° tEe co:umn ve;:tors obtained by catenating
row i and all By; in column j (0 < k < /p—1) the columns of Bo;, ..., B 5-1),

| ParAlgs-2010 - p.35/49] | ParAlgs-2010 — p.36/49

Computation time

> Computation of dot-products is the same for
any network topology

> (n/\/p)* = n?/p dot-products of vectors of
n components

> = n?/p computation time

Mesh

] ParAlgs—2010 — p.37/49

Isoefficiency Function (Mesh)

Communication comprises two all-to-all
broadcasts amongst ,/p processors (in the
rows and columns)

Message size is n?/p elements (submatrices)
Hence communication latency (neglecting t)
is 2{t;\/D + tw(n®/p)(\/p — 1)} =~

2(ts\/p + tun?//p) for large p

So parallel run-time is

T,=n3/p+ 2t4\/D + 2twn2/\/]_9

Cost, C, = n® + 2 p>/? + Qtan\/f)

= cost-optimal if p = O(n?)

ParAlgs-2010 — p.38/49

° 0, = 2t,p*? + 2t,W?3,/p and so the
isoefficiency function may be

o W =2Ktyp*? (first term only)
> or W =2Kt,W?3,/p
o = W = 8K%p*?t3 (second)

> Thus isoefficiency is ©(p*/?)

[——————————]

Hypercube

Same reasoning, but communication latency
is 2{t;log /D + tw(n?*/p)(/p — 1)}

Hence parallel run-time is (for large p)

T, =n?/p+ tslogp + 2t,n*/\/p

So cost, C), = n® + t,plogp + 2t,n*\/p

= cost-optimal if p = O(n?)

Same as mesh asymptotically

ParAlgs-2010 - p.39/49

] ParAlgs-2010 — p.40/49

Isoefficiency Function (Hypercube} Space Optimisations

° 0, =tsplogp+ 2t,W?*3,/p and so the > Disadvantage of this algorithm is a high
isoefficiency function may be memory requirement
> W = Ktyplogp (first term only) > ,/p blocks at each processor
> or W =2Kt,W?3,/p > = total memory needed = ©(n?,/p) as

> = W = 8K%/%3 (second) opposed to ©(n?) for the serial algorithm

> But p < n? and so p*? < n®. Thus again
isoefficiency is ©(p*/?) since this is Q(plog p)

> Space optimisations can be obtained by
rotating block submatrices so that parts of the
computation at each processor can be done
after each alignment of blocks

Cannon’s and Fox’s Algorithms A Time Optimisation (DNS)

2 |n Cannon’s algorithm, blocks are rotated > Dekel-Nassimi-Sahni algorithm improves
horizontally and vertically by “appropriate parallel run-time by using up to n?® processors
amounts_ _ ‘ > Assign each of the n* scalar multiplications to
> left (circular) shift block A;; through a separate processor, say P, if processors

posﬂpns N are organised in n n x n planes
> up shift block B;; through 903|t|ons © Then sum the values (products of previous
> accu_mulate block C;; by adding block step) in each column of the plane
matrix products > P, holds A;; and By; and multiplies them
2 Fox’s algorithm combines ,/p successive > column sum is therefore A;. - B, = Cj;

one-to-all row broadcasts with /p single step
upwards shifts

Abstract Implementation

Hypercube Implementation

On a CREW PRAM (abstract machine),
assume A and B are distributed over plane 0
-l.e. F)ijO has Ai]‘ and Bi]‘

All processors in the other planes fetch their
data in constant time

Multiplications take unit time (in parallel) and
the additions can be done in log n steps

Hence log n (asymptotic) complexity
Not cost-optimal with CREW

Cost-optimal with CRCW if additions are
done by writes reducing with +

> Need to move data physically, in contrast to

the PRAM

Assume n = 2¢ and that the planes consist of
n sub-cubes — connected at corresponding
nodes, as in the recursive definition of a
hypercube

DNS algorithm has n? scalar multiplications in
parallel (constant time) + three
communication steps:

Hypercube Implementation (2)

Fewer Than n° Processors

. one-to-one communication of each column
(c) of A and each row (r) of B to respective
planes (c,r)

2 A;; goes to Pjj;

2 Bj; goes to Pjj;

. one-to-all broadcast along rows (for A) and
columns (for B) in each plane above 0

° A;; broadcast to P

° B;; broadcast to P;;

. single node accumulation in the third
dimension, reducing with +

[—————— |

Each step has latency
O©(logn) = T, = ©(log n) in the above
algorithm, so not cost-optimal

Consider, therefore, p = ¢* processors, where
g < n and g divides n

Partition the matrix into p blocks of size
(n/q) x (n/q)
DNS algorithm is as above except that

operations are now on submatrices — i.e.
matrix multiplication and addition

Hypercube Implementation

2 On a hypercube, we find, ignoring the
relatively small contribution from the

one-to-one communication in the first step (to
plane 0)

T, ~ (n/q)® + 3tylogq+ 3t,(n/q)*logq
= n’/p+t,1ogp + tu(n®/p**) logp
> Cost-optimal if n3 = Q(p(logp)?)
o Isoefficiency function is ©(p(log p)?)

ParAlgs-2010 — p.49/49

