
Solution of Linear Equations

a00x0 + a01x1 + ... + a0(n−1)x(n−1) = b0

a10x0 + a11x1 + ... + a1(n−1)x(n−1) = b1

...
...

...
...

...

a(n−1)0x0 + a(n−1)1x1 + ... + a(n−1)(n−1)x(n−1) = b(n−1)

Ax = b in matrix form

A is an n × n matrix

b and x are vectors of length n

Small systems can be solved by Gaussian
elimination

expensive – Θ(n3)

hard to parallelise
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Upper/lower triangular form

We can write A = L + D + U where:

L = {lij | 0 ≤ i, j ≤ n − 1} is lower-triangular

lij =
aij j < i

0 j ≥ i

D = {dij | 0 ≤ i, j ≤ n − 1} is diagonal

dij =
aii

0 j %= i

U = {uij | 0 ≤ i, j ≤ n− 1} is upper-triangular

uij =
aij j > i

0 j ≤ i
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Assumption

We assume dii %= 0 for all i

if not, we can permute the variables of x or
the sequence of equations

but there is no solution if this is not possible
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Jacobi’s Method

Matrix equation can be written as:

x = D−1 (b − (L + U) x)

Jacobi iteration is simply defined by:

x(k+1) = D−1b − D−1(L + U)x(k)

where k ≥ 0 and x(0) is an initial “guess”

Or, in terms of elements:

x(k+1)
i =

1

aii
(bi−

∑

j %=i

aijx
(k)
j ) for i, j = 0, 1, . . . , n−1
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Convergence of Jacobi

Sufficient condition for convergence is:

|aii| >
∑

j %=i

|aij| for 0 ≤ i, j ≤ n − 1

(A is strictly diagonally dominant)

A common check in practical implementations
is:

||x(k+1) − x(k)||∞
||x(k+1)||∞

< ε

where ||x||∞ = maxi|xi| (the infinity-norm) and
ε is a pre-defined threshold (e.g. 10−8 or less)
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Parallel Jacobi

Parallel implementation is straightforward:

D−1b is a constant vector

(D−1(L + U)x(k)) is evaluated by parallel
matrix-vector multiplication

x(k) is distributed according to the partition

of D−1(L + U), e.g. :

on row-processor for striping

on “diagonal” processor for
checkerboarding

or according to some other partitioning
scheme (more on this later!)
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Gauss-Seidel Method

Improve convergence of Jacobi by using
up-to-date information as it is computed

if components of x(k) are calculated in
increasing order of subscript, the
dot-product Lx can use components of x
from the current iteration

but the dot-product Ux can’t

Gauss-Seidel iteration is defined by:

x(k+1) = D−1b − D−1Lx(k+1) − D−1Ux(k)

Or in terms of the elements of the matrix and
vectors:

1
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Convergence of Gauss-Seidel

Same sufficient condition for convergence
(strict diagonal dominance of A) as Jacobi

Also the same practical test for numerical
convergence

If A is symmetric, then A positive-definite is a
necessary and sufficient condition
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Parallel Gauss-Seidel

Parallelisation is harder for Gauss-Seidel
because of the sequentiality of the update
process...

...although for some sparse matrices you may
be able to reorder the equations to allow
computation to be done in parallel
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