Solution of Linear Equations

agpro + enzTr + .. + Aom—1)Tm—1) = bo
a10%o + a11x1 + ...+ 1(n—1)%(n—-1) = b
A(n—1)0T0 + Qn-1)1T1 T o T Q1) (n-1)T(n-1) = bm-1)

2> Ax = b in matrix form
> Ais an n x n matrix
> b and x are vectors of length n
> Small systems can be solved by Gaussian
elimination
> expensive — O(n?)
> hard to parallelise

] ParAlgs-2011 — p.1/9

Assumption

2> We assume d;; # 0 for all ¢

> if not, we can permute the variables of x or
the sequence of equations

> but there is no solution if this is not possible

N | ParAlgs-2011 - p.3/9

Upper/lower triangular form

We can write A = L + D + U where:

° L={l;;|0<14,5 <n—1}islower-triangular

[— Qij j<Z
Y0 >
°> D={d;;|0<i,j <n—1}isdiagonal
Qi

di; =
0 g

°© U= {u;; | 0<14,j <n—1}is upper-triangular

Qij j>Z

Uz =
Y0 j<i

S | ParAlgs-2011 — p.2/9

Jacobi’s Method

> Matrix equation can be written as:
x=D"'(b—(L+U)x)
> Jacobi iteration is simply defined by:
x"Y) = D7 'b — DL 4 U)x®

where k£ > 0 and z(¥) is an initial “guess”
2 Or, in terms of elements:

kt) _ 1 () i
T, = a—ii(bl—Za”azj) fori,j=0,1,...

JFi

[———————]

,n—1

ParAlgs—2011 - p.4/9

Convergence of Jacobi Parallel Jacobi

> Sufficient condition for convergence is: > Parallel implementation is straightforward:
> D~!b is a constant vector

> (D~YL 4 U)x™) is evaluated by parallel
matrix-vector multiplication

‘aii‘ >Z|CLZ']'| fOI'OSi,an—l
J#

T p .
(A is strictly diagonally dominant) > x*) is distributed according to the partition

2 A common check in practical implementations of DI(L + U), e.g. :

S 2D — 5®)| > on royv-processor for striping

) <e > on “diagonal” processor for
[l checkerboarding
where ||z||o = max;|z;| (the infinity-norm) and > or according to some other partitioning
¢ is a pre-defined threshold (e.g. 10~° or less) scheme (more on this later!)
Gauss-Seidel Method Convergence of Gauss-Seidel

> Improve convergence of Jacobi by using > Same sulfficient condition for convergence

up-to-date information as it is computed (strict diagonal dominance of A) as Jacobi

> if components of x(*) are calculated in

: . . > Also the same practical test for numerical
increasing order of subscript, the

convergence
dot-product Lx can use components of x
from the current iteration > If A is symmetric, then A positive-definite is a
> but the dot-product Ux can’t necessary and sufficient condition

> Gauss-Seidel iteration is defined by:
X(k+1) _ Dflb . DflLX(k+l) . DflUX(kj)

2 QOr in terms of the elements of the matrix and

vectors:
e ParAlgs-2011 - p.7/9 e ParAlgs—2011 - p.8/9

P

Parallel Gauss-Seidel

> Parallelisation is harder for Gauss-Seidel
because of the sequentiality of the update
process...

> ...although for some sparse matrices you may
be able to reorder the equations to allow
computation to be done in parallel

