
Solution of Linear Equations

a00x0 + a01x1 + ... + a0(n−1)x(n−1) = b0

a10x0 + a11x1 + ... + a1(n−1)x(n−1) = b1

...
...

...
...

...

a(n−1)0x0 + a(n−1)1x1 + ... + a(n−1)(n−1)x(n−1) = b(n−1)

Ax = b in matrix form

A is an n × n matrix

b and x are vectors of length n

Small systems can be solved by Gaussian
elimination

expensive – Θ(n3)

hard to parallelise
ParAlgs–2011 – p.1/9

Upper/lower triangular form

We can write A = L + D + U where:

L = {lij | 0 ≤ i, j ≤ n − 1} is lower-triangular

lij =
aij j < i

0 j ≥ i

D = {dij | 0 ≤ i, j ≤ n − 1} is diagonal

dij =
aii

0 j %= i

U = {uij | 0 ≤ i, j ≤ n− 1} is upper-triangular

uij =
aij j > i

0 j ≤ i
ParAlgs–2011 – p.2/9

Assumption

We assume dii %= 0 for all i

if not, we can permute the variables of x or
the sequence of equations

but there is no solution if this is not possible

ParAlgs–2011 – p.3/9

Jacobi’s Method

Matrix equation can be written as:

x = D−1 (b − (L + U) x)

Jacobi iteration is simply defined by:

x(k+1) = D−1b − D−1(L + U)x(k)

where k ≥ 0 and x(0) is an initial “guess”

Or, in terms of elements:

x(k+1)
i =

1

aii
(bi−

∑

j %=i

aijx
(k)
j) for i, j = 0, 1, . . . , n−1

ParAlgs–2011 – p.4/9

Convergence of Jacobi

Sufficient condition for convergence is:

|aii| >
∑

j %=i

|aij| for 0 ≤ i, j ≤ n − 1

(A is strictly diagonally dominant)

A common check in practical implementations
is:

||x(k+1) − x(k)||∞
||x(k+1)||∞

< ε

where ||x||∞ = maxi|xi| (the infinity-norm) and
ε is a pre-defined threshold (e.g. 10−8 or less)

ParAlgs–2011 – p.5/9

Parallel Jacobi

Parallel implementation is straightforward:

D−1b is a constant vector

(D−1(L + U)x(k)) is evaluated by parallel
matrix-vector multiplication

x(k) is distributed according to the partition

of D−1(L + U), e.g. :

on row-processor for striping

on “diagonal” processor for
checkerboarding

or according to some other partitioning
scheme (more on this later!)

ParAlgs–2011 – p.6/9

Gauss-Seidel Method

Improve convergence of Jacobi by using
up-to-date information as it is computed

if components of x(k) are calculated in
increasing order of subscript, the
dot-product Lx can use components of x
from the current iteration

but the dot-product Ux can’t

Gauss-Seidel iteration is defined by:

x(k+1) = D−1b − D−1Lx(k+1) − D−1Ux(k)

Or in terms of the elements of the matrix and
vectors:

1
ParAlgs–2011 – p.7/9

Convergence of Gauss-Seidel

Same sufficient condition for convergence
(strict diagonal dominance of A) as Jacobi

Also the same practical test for numerical
convergence

If A is symmetric, then A positive-definite is a
necessary and sufficient condition

ParAlgs–2011 – p.8/9

Parallel Gauss-Seidel

Parallelisation is harder for Gauss-Seidel
because of the sequentiality of the update
process...

...although for some sparse matrices you may
be able to reorder the equations to allow
computation to be done in parallel

ParAlgs–2011 – p.9/9

