Solution of Linear Equations

$$a_{00}x_0 + a_{01}x_1 + \dots + a_{0(n-1)}x_{(n-1)} = b_0$$

$$a_{10}x_0 + a_{11}x_1 + \dots + a_{1(n-1)}x_{(n-1)} = b_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{(n-1)0}x_0 + a_{(n-1)1}x_1 + \dots + a_{(n-1)(n-1)}x_{(n-1)} = b_{(n-1)}$$

- $\mathbf{a} \mathbf{x} = \mathbf{b}$ in matrix form
 - A is an $n \times n$ matrix
 - f b and f x are vectors of length n
- Small systems can be solved by Gaussian elimination
 - expensive $-\Theta(n^3)$
 - hard to parallelise

Upper/lower triangular form

We can write A = L + D + U where:

• $L = \{l_{ij} \mid 0 \le i, j \le n-1\}$ is lower-triangular

$$l_{ij} = \begin{cases} a_{ij} & j < i \\ 0 & j \ge i \end{cases}$$

• $\mathbf{D} = \{d_{ij} \mid 0 \le i, j \le n-1\}$ is diagonal

$$d_{ij} = \begin{cases} a_{ii} \\ 0 & j \neq i \end{cases}$$

• $\mathbf{U} = \{u_{ij} \mid 0 \le i, j \le n-1\}$ is upper-triangular

$$u_{ij} = \begin{cases} a_{ij} & j > i \\ 0 & j \le i \end{cases}$$

Assumption

- We assume $d_{ii} \neq 0$ for all i
 - if not, we can permute the variables of \mathbf{x} or the sequence of equations
 - but there is no solution if this is not possible

Jacobi's Method

Matrix equation can be written as:

$$\mathbf{x} = \mathbf{D}^{-1} (\mathbf{b} - (\mathbf{L} + \mathbf{U}) \mathbf{x})$$

Jacobi iteration is simply defined by:

$$\mathbf{x}^{(k+1)} = \mathbf{D}^{-1}\mathbf{b} - \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x}^{(k)}$$

where $k \ge 0$ and $x^{(0)}$ is an initial "guess"

Or, in terms of elements:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} (b_i - \sum_{j \neq i} a_{ij} x_j^{(k)})$$
 for $i, j = 0, 1, \dots, n-1$

Convergence of Jacobi

Sufficient condition for convergence is:

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}| \text{ for } 0 \le i, j \le n - 1$$

(A is strictly diagonally dominant)

A common check in practical implementations is:

$$\frac{||x^{(k+1)} - x^{(k)}||_{\infty}}{||x^{(k+1)}||_{\infty}} < \varepsilon$$

where $||x||_{\infty} = \max_i |x_i|$ (the *infinity-norm*) and ε is a pre-defined threshold (e.g. 10^{-8} or less)

Parallel Jacobi

- Parallel implementation is straightforward:
 - $\mathbf{D}^{-1}\mathbf{b}$ is a constant vector
 - $(\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})\mathbf{x}^{(k)})$ is evaluated by parallel matrix-vector multiplication
 - $\mathbf{x}^{(k)}$ is distributed according to the partition of $\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})$, e.g. :
 - on row-processor for striping
 - on "diagonal" processor for checkerboarding
 - or according to some other partitioning scheme (more on this later!)

Gauss-Seidel Method

- Improve rate of convergence of Jacobi by using up-to-date information
 - if components of $\mathbf{x}^{(k+1)}$ are calculated in increasing order of subscript, $\mathbf{L}\mathbf{x}$ can use $\mathbf{x}^{(k+1)}$ instead of $\mathbf{x}^{(k)}$
 - but Ux can't
- Gauss-Seidel iteration is defined by:

$$\mathbf{x}^{(k+1)} = \mathbf{D}^{-1}\mathbf{b} - \mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{U}\mathbf{x}^{(k)}$$
or $x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j > i} a_{ij} x_j^{(k)} \right)$

Convergence of Gauss-Seidel

- Same sufficient condition for convergence (strict diagonal dominance of A) as Jacobi
- Also the same practical test for numerical convergence
- If A is symmetric, then A positive-definite is a necessary and sufficient condition

Parallel Gauss-Seidel

- Parallelisation is harder for Gauss-Seidel because of the sequentiality of the update process...
- ...although for some sparse matrices you may be able to reorder the equations to allow computation to be done in parallel

Gaussian elimination

- To solve a system of linear equations $A.\mathbf{x} = \mathbf{b}$ in matrix form, Gaussian elimination successively eliminates the variable x_k from equations $k+1, \ldots n-1$ for $k=0, \ldots, n-2$ by subtracting appropriate multiple of (normalised) equation j from equation $k, k < j \le n-1$
- usual "school" method
- assume that the diagonal elements are always positive and sufficiently large, but no problem to include "pivoting"

The basic algorithm

```
For k = 0, ..., n - 1:
       For j = k, ..., n - 1:
           a[k,j] := a[k,j]/a[k,k]
\alpha
           (i.e. divide row k of A and b|k| by a|k, k|
       EndFor j
a' b[k] := b[k]/a|k,k|
       For i = k + 1, ..., n - 1:
           For j = k, ..., n - 1:
               a[i, j] := a[i, j] - a[i, k] \times a[k, j]
               (i.e. subtract scaled row k from row j)
           EndFor j
      b[i] := b[i] - a[i,k] \times b[k]
       EndFor i
EndFor k
```

Parallel implementation

Use single-row-striping (one row and vector element per processor)

- Processor P_i initially holds b_i and $\{a_{ij} \mid 0 \le j \le n-1\} \quad (0 \le i \le n-1)$
- Division step α is a serial computation step, performed in each processor P_k at the beginning of each iteration $k, 0 \le k \le n-1$
- ullet Elimination step eta requires one-to-all broadcast
 - of elements b_k and a_{kj} for j > k, i.e. $k \downarrow a_k$
 - to processors P_{k+1}, \ldots, P_{n-1}

Computation time

In step $k \ge 0$, processor k performs a division step (α) and processors $i = k + 1, \ldots, n - 1$ perform an elimination step (β) :

- a[k,j] := a[k,j]/a[k,k] : n-k-1 divisions on processor P_k
- $a[i,j] := a[i,j] a[i,k] \times a[k,j] : n-k-1$ multiplications and subtractions on processor P_i in parallel, k < i < n

Parallel run time

No overlap amongst computation steps within or between iterations, so total computation time is:

$$3\sum_{k=0}^{n-1} n - k - 1 = 3n(n-1)/2$$

• Communication at kth iteration has message length n-k-1 so latency on a hypercube is

$$(t_s + t_w(n - k - 1)) \log n$$

Parallel run-time (2)

Total communication latency is therefore

$$\sum_{k=0}^{n-1} (t_s + t_w(n-k-1)) \log n$$

Thus, parallel run-time is:

$$T_p = 3n(n-1)/2 + (t_s + t_w(n-1)/2)n \log n$$

- Cost is $C_p = \Theta(n^3 log n)$
- Not cost-optimal

Pipelining

Above algorithm is synchronous, i.e. the n iteration steps run sequentially with no overlap

- Greater potential for speed if they do overlap
- asynchronous or pipelined Gaussian Elimination
- no need to wait to do elimination step β after communication in step α
- similarly, no need for the next processor in the outer loop to wait to
 - do its division step (α) for the next iteration
 - start its one-to-all broadcast

Pipelining algorithm

The asynchronous algorithm now becomes "data driven", or "lazy": each processor executes thus:

- Send any data destined for other processors
 i.e. a part-row;
- 2. Perform any computation for which it has sufficient data i.e. in steps α or β ;
- 3. Otherwise wait to receive data

Performance

The time elapsed between *initiation* of iterations k and k+1 (cf. cut-through argument) comprises:

- time for division in part-row
 - n-k-1 operations
- time to communicate n-k elements from processor k to processor k+1
 - single hop time is $t_s + t_w(n-k-1)$
- time for elimination in processor k+1,
 - 2(n-k-1) operations, as in serial algorithm

Performance (2)

• Total time between iterations k, k+1 is therefore

$$t_s + (t_w + 3t_a)(n - k - 1)$$

where t_a is the time for an arithmetic operation – latency O(n)

Total parallel run time is therefore

$$T_p = t_a + (n-1)t_s + (t_w + 3t_a) \sum_{k=0}^{n-2} n - k - 1$$
$$= t_a + (n-1)t_s + n(t_w + 3t_a)(n-1)/2$$

• Cost, $C_p = \Theta(n^3) \implies Cost-optimal!$

Load imbalance

As the iteration number increases

- lower numbered processors become idle
- one may be partially loaded with active rows
- the rest are fully loaded
- after a fraction x of the iterations are complete, only a fraction 1-x (roughly) of the processors are busy

Load imbalance (2)

- load imbalance \Rightarrow *limited efficiency* (about 2/3)
- much efficiency can be regained by cyclic striping
- maximum difference between processor loadings in any step is then O(n) operations, corresponding to one row's difference in the partition
- further efficiency gains by block row-striping