Solution of Linear Equations

agpro + a1+ ..+ AGm-1)Tm-1) = bo
a10%0 + anT + .+ A(n—1)T(n—1) = by
A(n—1)0C0 + Q-1 + - T AGu—1)n-1)Tm-1) = bmn-1)

> Ax = b in matrix form
> A IS an n X n matrix
> b and x are vectors of length n
°> Small systems can be solved by Gaussian
elimination
> expensive — O(n?)
> hard to parallelise

ParAlgs—2011 — p. 1/21

Upper/lower triangular form

We can write A = L + D + U where:
> L={l;; |0<14,5 <n—1}islower-triangular

Qi 7 <1
lij = .
0 7>1
°> D={d;; | 0<1,j <n—1}is diagonal

U

0 i

© U= {u; | 0<14,7 <n—1}isupper-triangular

dz’j —

Qi 7>

Uij = .
g 0 7<1

> We assume d;; # 0 for all ¢

> If not, we can permute the variables of x or
the sequence of equations

> but there is no solution if this is not possible

ParAlgs—2011 — p. 3/21

Jacobi’s Method

°> Matrix equation can be written as:
x=D""'(b— (L+U)x)
2 Jacobi iteration is simply defined by:
x*) =D 'y — D YL + U)x®

where k£ > 0 and 2% is an initial “guess”
> QOr, in terms of elements:

k+1) _ Lo (k) o _
T, — a—%(bz—gazja:j) fori,;=0,1,...,n—1
Ve

Convergence of Jacobi

> Sufficient condition for convergence is:
;| >Z\ai]~| for0 <4,7<n-—1
J71
(A is strictly diagonally dominant)
2> A common check in practical implementations

iS:
H:lj(kH) _ le(k)Hoo
[ECET
where ||x|| = max;|z;| (the infinity-norm) and

e is a pre-defined threshold (e.g. 10~° or less)

Parallel Jacobi

2 Parallel implementation is straightforward:

> D~ 1b is a constant vector

> (D~YL + U)x¥) is evaluated by parallel
matrix-vector multiplication

> x*¥) is distributed according to the partition
of D"}L +U), e.g.:
> 0N row-processor for striping

> on “diagonal” processor for
checkerboarding

> or according to some other partitioning
scheme (more on this later!)

Gauss-Seidel Method

> |Improve rate of convergence of Jacobi by
using up-to-date information

> if components of x**1) are calculated in
increasing order of subscript, Lx can use

x**1) instead of x*)
> but Ux can’t

° Gauss-Seidel iteration is defined by:

X(k:—l—l) _ D—lb o D—lLX(k—I—l) . D—lUX(k)

k+1) 1 (k+1) (k)
or X, = CL_m (bz — Zaijxj — Zaija:j)

J<t J>1

Convergence of Gauss-Seidel

° Same sufficient condition for convergence
(strict diagonal dominance of A) as Jacobi

> Also the same practical test for numerical
convergence

> |f A is symmetric, then A positive-definite is a
necessary and sufficient condition

Parallel Gauss-Seidel

> Parallelisation is harder for Gauss-Seidel
because of the sequentiality of the update
process...

° ...although for some sparse matrices you may
be able to reorder the equations to allow
computation to be done in parallel

Gaussian elimination

° To solve a system of linear equations A.x =Db
in matrix form, Gaussian elimination
successively eliminates the variable x; from
equationsk+1,...n—1fork=0,...,n—2
by subtracting appropriate multiple of
(normalised) equation 5 from equation
k,k<j7<n-—1

2 usual “school" method

° assume that the diagonal elements are
always positive and sufficiently large, but no
problem to include “pivoting"

ParAlgs—2011 — p. 10/21

The basic algorithm

For k=0,...,n—1:
Forj=k,...,.n—1:

o alk, j] = alk, j]/alk, K
(i.e. divide row k of A and b|k| by alk, k|
EndFor)

o/ blk| := blk]/alk, k|
Fori=k+1,....n—1:
Forj=k,...,.n—1:

b ali, j| := ali, j] — ali, k| x alk, j]
(i.e. subtract scaled row £ from row j)
EndFor)
I blt1] := bli] — ali, k] x blk]
EndFor 1

EndFor k

Parallel implementation

Use single-row-striping (one row and vector
element per processor)

° Processor F; initially holds b; and
{a;; 10<j<n—-1} (0<i<n—1)

> Division step « Is a serial computation step,
performed in each processor P, at the
beginning of each iteration £, 0 < k <n -1

> Elimination step 5 requires one-to-all
broadcast
> of elements b, and ay; for j > k, i.e. k | ay
> to processors FPy.1,..., P,

Computation time

In step k£ > 0, processor k performs a division
step («) and processorst =k +1,...,n—1
perform an elimination step (5):

° alk,j| :=alk,j|/alk, k] : n — k — 1 divisions on
processor P

2 a’[laj] = a’[laj] o Q[Z,k] X CL[]C,]] :n—k—1
multiplications and subtractions on processor
P, inparallel, k <i<n

Parallel run time

2> No overlap amongst computation steps within
or between iterations, so total computation
time is:

n—1
SZn—k— 1=3n(n—-1)/2
k=0

> Communication at £th iteration has message
length n — £ — 1 so latency on a hypercube is

(ts +tw(n —k—1))logn

Parallel run-time (2)

° Total communication latency is therefore
im0 (ts + tuw(n —k — 1)) logn

°> Thus, parallel run-time is:
T,=3nn—1)/24 (ts +tw(n —1)/2)nlogn

> Costis C, = O(n’logn)

2 Not cost-optimal

Pipelining

Above algorithm is synchronous, i.e. the n
iteration steps run sequentially with no overlap

° Q@Greater potential for speed if they do overlap

° = asynchronous or pipelined Gaussian
Elimination

2 no need to wait to do elimination step 3 after
communication in step «

> similarly, no need for the next processor in the
outer loop to wait to
> do its division step («) for the next iteration

> start its one-to-all broadcast

ParAlgs—2011 — p. 16/21

Pipelining algorithm

The asynchronous algorithm now becomes “data
driven”, or “lazy”: each processor executes thus:

1. Send any data destined for other processors
—I.e. a part-row;

2. Perform any computation for which it has
sufficient data — i.e. in steps « or 5;

3. Otherwise wait to receive data

Performance

The time elapsed between initiation of iterations
k and k£ + 1 (cf. cut-through argument) comprises:
2 time for division in part-row
> n — k — 1 operations
2 time to communicate n — k elements from
processor k to processor k + 1
> single hop time is t; + t,(n — k — 1)

> time for elimination in processor k + 1,

> 2(n — k — 1) operations, as in serial
algorithm

ParAlgs—2011 — p. 18/21

Performance (2)

> Total time between iterations £,k + 1 is
therefore
ts+ (tw +3ty)(n —k —1)

where ¢, is the time for an arithmetic
operation — latency O(n)

> Total parallel run time is therefore
n—2
T, = to+ (n—Dts+ (ty+3ta) Y n—k—1
k=0

= to+ (n— Dty +n(ty, + 3ty)(n —1)/2

> Cost, C, = ©(n’) == Cost-optimal!

Load imbalance

As the iteration number increases
> lower numbered processors become idle
° one may be partially loaded with active rows
> the rest are fully loaded

> after a fraction x of the iterations are
complete, only a fraction 1 — x (roughly) of the
processors are busy

ParAlgs—2011 — p. 20/21

Load imbalance (2)

° load imbalance = limited efficiency (about
2/3)

> much efficiency can be regained by cyclic
Striping

> maximum difference between processor
loadings in any step is then O(n) operations,
corresponding to one row’s difference in the
partition

> further efficiency gains by block row-striping

