
Solution of Linear Equations
a00x0 + a01x1 + ... + a0(n−1)x(n−1) = b0

a10x0 + a11x1 + ... + a1(n−1)x(n−1) = b1
...

a(n−1)0x0 + a(n−1)1x1 + ... + a(n−1)(n−1)x(n−1) = b(n−1)

Ax = b in matrix form
A is an n× n matrix
b and x are vectors of length n

Small systems can be solved by Gaussian
elimination
expensive – Θ(n3)

hard to parallelise
ParAlgs–2011 – p. 1/21

Upper/lower triangular form
We can write A = L+D+U where:

L = {lij | 0 ≤ i, j ≤ n− 1} is lower-triangular

lij =
aij j < i

0 j ≥ i

D = {dij | 0 ≤ i, j ≤ n− 1} is diagonal

dij =
aii
0 j %= i

U = {uij | 0 ≤ i, j ≤ n− 1} is upper-triangular

uij =
aij j > i

0 j ≤ i
ParAlgs–2011 – p. 2/21

Assumption

We assume dii %= 0 for all i
if not, we can permute the variables of x or
the sequence of equations
but there is no solution if this is not possible

ParAlgs–2011 – p. 3/21

Jacobi’s Method
Matrix equation can be written as:

x = D−1 (b− (L+U) x)

Jacobi iteration is simply defined by:

x(k+1) = D−1b−D−1(L+U)x(k)

where k ≥ 0 and x(0) is an initial “guess”
Or, in terms of elements:

x(k+1)
i =

1

aii
(bi−

∑

j %=i

aijx
(k)
j) for i, j = 0, 1, . . . , n−1

ParAlgs–2011 – p. 4/21

Convergence of Jacobi

Sufficient condition for convergence is:

|aii| >
∑

j %=i

|aij| for 0 ≤ i, j ≤ n− 1

(A is strictly diagonally dominant)
A common check in practical implementations
is:

||x(k+1) − x(k)||∞
||x(k+1)||∞

< ε

where ||x||∞ = maxi|xi| (the infinity-norm) and
ε is a pre-defined threshold (e.g. 10−8 or less)

ParAlgs–2011 – p. 5/21

Parallel Jacobi
Parallel implementation is straightforward:

D−1b is a constant vector
(D−1(L+U)x(k)) is evaluated by parallel
matrix-vector multiplication
x(k) is distributed according to the partition
of D−1(L+U), e.g. :
on row-processor for striping
on “diagonal” processor for
checkerboarding
or according to some other partitioning
scheme (more on this later!)

ParAlgs–2011 – p. 6/21

Gauss-Seidel Method
Improve rate of convergence of Jacobi by
using up-to-date information
if components of x(k+1) are calculated in
increasing order of subscript, Lx can use
x(k+1) instead of x(k)

but Ux can’t
Gauss-Seidel iteration is defined by:

x(k+1) = D−1b−D−1Lx(k+1) −D−1Ux(k)

or x(k+1)
i =

1

aii

(
bi −

∑

j<i

aijx
(k+1)
j −

∑

j>i

aijx
(k)
j

)

ParAlgs–2011 – p. 7/21

Convergence of Gauss-Seidel

Same sufficient condition for convergence
(strict diagonal dominance of A) as Jacobi

Also the same practical test for numerical
convergence

If A is symmetric, then A positive-definite is a
necessary and sufficient condition

ParAlgs–2011 – p. 8/21

Parallel Gauss-Seidel
Parallelisation is harder for Gauss-Seidel
because of the sequentiality of the update
process...

...although for some sparse matrices you may
be able to reorder the equations to allow
computation to be done in parallel

ParAlgs–2011 – p. 9/21

Gaussian elimination
To solve a system of linear equations A.x = b
in matrix form, Gaussian elimination
successively eliminates the variable xk from
equations k + 1, . . . n− 1 for k = 0, . . . , n− 2
by subtracting appropriate multiple of
(normalised) equation j from equation
k, k < j ≤ n− 1

usual “school" method
assume that the diagonal elements are
always positive and sufficiently large, but no
problem to include “pivoting"

ParAlgs–2011 – p. 10/21

The basic algorithm
For k = 0, . . . , n− 1:

For j = k, . . . , n− 1 :
α a[k, j] := a[k, j]/a[k, k]

(i.e. divide row k of A and b[k] by a[k, k]
EndFor j

α′ b[k] := b[k]/a[k, k]
For i = k + 1, . . . , n− 1 :

For j = k, . . . , n− 1 :
β a[i, j] := a[i, j]− a[i, k]× a[k, j]

(i.e. subtract scaled row k from row j)
EndFor j

β′ b[i] := b[i]− a[i, k]× b[k]
EndFor i

EndFor k
ParAlgs–2011 – p. 11/21

Parallel implementation

Use single-row-striping (one row and vector
element per processor)

Processor Pi initially holds bi and
{aij | 0 ≤ j ≤ n− 1} (0 ≤ i ≤ n− 1)

Division step α is a serial computation step,
performed in each processor Pk at the
beginning of each iteration k, 0 ≤ k ≤ n− 1

Elimination step β requires one-to-all
broadcast
of elements bk and akj for j > k, i.e. k ↓ ak
to processors Pk+1, . . . , Pn−1

ParAlgs–2011 – p. 12/21

Computation time

In step k ≥ 0, processor k performs a division
step (α) and processors i = k + 1, . . . , n− 1
perform an elimination step (β):

a[k, j] := a[k, j]/a[k, k] : n− k − 1 divisions on
processor Pk

a[i, j] := a[i, j] − a[i, k]× a[k, j] : n− k − 1
multiplications and subtractions on processor
Pi in parallel, k < i < n

ParAlgs–2011 – p. 13/21

Parallel run time
No overlap amongst computation steps within
or between iterations, so total computation
time is:

3
n−1∑

k=0

n− k − 1 = 3n(n− 1)/2

Communication at kth iteration has message
length n− k − 1 so latency on a hypercube is

(ts + tw(n− k − 1)) log n

ParAlgs–2011 – p. 14/21

Parallel run-time (2)

Total communication latency is therefore∑n−1
k=0(ts + tw(n− k − 1)) log n

Thus, parallel run-time is:
Tp = 3n(n− 1)/2 + (ts + tw(n− 1)/2)n log n

Cost is Cp = Θ(n3logn)

Not cost-optimal

ParAlgs–2011 – p. 15/21

Pipelining
Above algorithm is synchronous, i.e. the n
iteration steps run sequentially with no overlap

Greater potential for speed if they do overlap
⇒ asynchronous or pipelined Gaussian
Elimination
no need to wait to do elimination step β after
communication in step α

similarly, no need for the next processor in the
outer loop to wait to
do its division step (α) for the next iteration
start its one-to-all broadcast

ParAlgs–2011 – p. 16/21

Pipelining algorithm

The asynchronous algorithm now becomes “data
driven”, or “lazy”: each processor executes thus:
1. Send any data destined for other processors
– i.e. a part-row;

2. Perform any computation for which it has
sufficient data – i.e. in steps α or β;

3. Otherwise wait to receive data

ParAlgs–2011 – p. 17/21

Performance
The time elapsed between initiation of iterations
k and k+1 (cf. cut-through argument) comprises:

time for division in part-row
n− k − 1 operations

time to communicate n− k elements from
processor k to processor k + 1

single hop time is ts + tw(n− k − 1)

time for elimination in processor k + 1,
2(n− k − 1) operations, as in serial
algorithm

ParAlgs–2011 – p. 18/21

Performance (2)

Total time between iterations k, k + 1 is
therefore

ts + (tw + 3ta)(n− k − 1)

where ta is the time for an arithmetic
operation – latency O(n)

Total parallel run time is therefore

Tp = ta + (n− 1)ts + (tw + 3ta)
n−2∑

k=0

n− k − 1

= ta + (n− 1)ts + n(tw + 3ta)(n− 1)/2

Cost, Cp = Θ(n3) =⇒ Cost-optimal!
ParAlgs–2011 – p. 19/21

Load imbalance
As the iteration number increases

lower numbered processors become idle
one may be partially loaded with active rows
the rest are fully loaded
after a fraction x of the iterations are
complete, only a fraction 1− x (roughly) of the
processors are busy

ParAlgs–2011 – p. 20/21

Load imbalance (2)

load imbalance⇒ limited efficiency (about
2/3)
much efficiency can be regained by cyclic
striping
maximum difference between processor
loadings in any step is then O(n) operations,
corresponding to one row’s difference in the
partition
further efficiency gains by block row-striping

ParAlgs–2011 – p. 21/21

