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1. The bottleneck in a network of service centres is the one with the maximum
demand, i.e. average amount of service required by all tasks in unit time.
It can be shown that demand is proportional to server utilisation.

(a) In a closed network, i.e. one with a constant population of tasks, K,
what happens to the location of the bottleneck as K increases?

(b) What happens to the bottlenecks utilisation as K →∞?

(c) What happens to the population at non-bottleneck servers as K →
∞?

(d) Which servers should you speed up to best improve performance?

(e) What should the server utilisations be for optimal performance?

Solution 1 (a) Demand per task depends only on workload and so the
ordering of nodes by workload by task satays the same as K increases.
Hence bottleneck stays in the same place.

(b) As K →∞ at least one node saturates and so has utilisation 1. This
is the largest possible utilisation, so the bottleneck must get utilisation
1.

(c) If there is a single bottleneck, the other nodes must get utilisation
< 1, so have finite queues with probability 1

(d) The bottleneck, since its maximum throughput is its service rate (util-
isation approaches 1 as K → ∞) and this limits the performance of
the rest of the network; this is clarified in the last lecture’s notes.

(e) You can always increase performance by upgrading the bottleneck.
Hence optimum performance when all servers are equal bottlenecks,
i.e. all have the same demand (λi/µi).

2. Consider a simple queue with arrival rate λ, mean service time m and
standard deviation of service time σ.

(a) If σ is always proportional to m, what would you expect to happen
to response time if the arrival rate and service rate both double?

(b) If σ doubles whilst λ and m remain fixed, what would you expect to
happen to average response time?
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Solution 2

(a) Response time should halve, since, if it depends on no other param-
eters, all we have done is to change the basic time unit – counting
half seconds instead of seconds.

(b) Now we’re not just changing the time unit. When service times are
highly variable response time might increase or decrease for a par-
ticular visit to the queue. What do you think would happen to mean
response time? Would you like to use a highly erratic system or a
consistent one? Most people prefer the latter and this is backed up in
the M/G/1 queue analysis.

3. Consider a queue in steady state with arrival rate λ, service rate µ and
utilisation U . How is the throughput related to the arrival rate? Prove
that U = λ/µ.

Solution 3 Arrival rate = throughput in steady state, so λ = utilisation
× service rate.

4. Suppose that the amount of time that a light-bulb works before burning
itself out is exponentially distributed with mean ten hours. Suppose that
a person enters a room in which such a light-bulb is burning. If this
person desires to work five hours, then what is the probability that he will
complete his work without the bulb burning out? What can be said if the
distribution is not exponential?

Solution 4 We write X for the random variable of the remaining life-
time of the bulb. Thus, since we know that the lifetime is exponentially
distributed parameter λ = 1

10 , i.e. mean 1
λ = 10, write:

P (X > t + 5|X > t) =
P (X > t ∧X > t + 5)

1− F (t)

=
P (X > t + 5)

1− F (t)

=
1− F (t + 5)

1− F (t)
.

=
1− (1− e−λ(t+5))

1− (1− e−λ(t))

=
e−λ(t+5)

e−λt

= e−λ5

= e−
1
2
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Perfectly acceptable and shorter solution invoking the memoryless property
of the exponential distribution:

P (X > 5) = 1− F (5) = 1− (1− e−5λ) = e−
1
2

If the lifetime distribution F(t) were not exponential, then we would cal-
culate the probability in the following way:

P (X > t + 5|X > t) =
P (X > t ∧X > t + 5)

1− F (t)

=
1− F (t + 5)

1− F (t)
.

Notice that in order to calculate the latter, we need to keep the information
about t, which was unnecessary in the previous case.

5. Given two exponentially distributed random variables X1 and X2, deter-
mine the probability that one is smaller than the other?

Solution 5 Assume that you have two independent exponential random
variables X1 and X2 with rates λ1 and λ2 respectively. Thus:

P (X1 < X2) =
∫ ∞

0

P (X1 < X2|X2 = x)λ2e
−λ2xdx

=
∫ ∞

0

P (X1 < x)λ2e
−λ2xdx

=
∫ ∞

0

(1− e−λ1x)λ2e
−λ2xdx

=
∫ ∞

0

λ2e
−λ2xdx− λ2

∫ ∞

0

e−(λ1+λ2)dx

= 1−
λ2

λ1 + λ2

=
λ1

λ1 + λ2

6. The times taken for transactions from sites A and B are exponentially dis-
tributed with means 1

λ and 1
µ minutes respectively on the host computer

system. If two transactions TA and TB arrive from A and B respectively
and their service is started immediately in both cases, what is the prob-
ability that TB finishes first? What if they are not both started at the
same time?
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Solution 6 Let XA and XB be the random variables for the lifetimes of
the transactions TA and TB respectively. Thus, by using the solution of
question (2), we have

P (XB < XA) =
µ

λ + µ
.

No change if the transactions do not start at the same time, provided one
has not finished before the other starts, by the memoryless property.

7. Customers arrive to a supermarket according to a Poisson process with
rate λ per hour. Suppose that two customers arrive during the first hour.
Find the probability that

• both arrived in the first 20 minutes;

• at least one of them arrived in the last 30 minutes.

Solution 7 Let the random variable N(1) = 2 mean that two customers
have arrived in an hour, and N( 1

3 = 2) mean that both customers have
arrived in the first twenty minutes.

P (N( 1
3 ) = 2|P (N(1) = 2)) =

P (N( 1
3 = 2 ∧N(1) = 2))

P (N(1) = 2)

=
P (N( 1

3 = 2 ∧ (N(1)−N( 1
3 )) = 0))

P (N(1) = 2)

=
P (N( 1

3 = 2 ∧N( 2
3 ) = 0))

P (N(1) = 2)

=
P (N( 1

3 = 2)P (N( 2
3 ) = 0)

P (N(1) = 2)

=

e−λ 1
3 ((λ

3 )2)e−
λ2
3

2!

e−λλ2

2!
= 1

9

For part (2) the answer is quite similar with N( 1
2 ) = 1 meaning that one
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customer arrived in half an hour.

P (N( 1
2 ) ≥ 1|N(1) = 2) = 1− P (N( 1

2 ) = 0|N(1) = 2)

= 1−
P (N( 1

2 ) = 0 ∧N(1) = 2)

P (N(1) = 2)

= 1−
P (N( 1

2 ) = 0 ∧ (N(1)−N( 1
2 )) = 2)

P (N(1) = 2)

= 1−
P (N( 1

2 ) = 0 ∧N( 1
2 ) = 2)

P (N(1) = 2)

= 1−

e−
λ
2 e−

λ
2 (λ

2 )2

2!

e−λλ2

2!
= 3

4 .

8. Let Tn be the instant of the nth arrival in a Poisson process with rate λ.
Show that the distribution function of Tn, Fn(x) is given by:

Fn(x) = 1−
n−1∑
k=0

(λx)k

k!
e−λx

Solution 8 If Tn is the instant of the nth arrival, then:

P (Tn ≤ t) = P (N(t) ≥ n)
= 1− P (N(t) < n).

Since P (N(t) < n) = P (N(t) = 0 ∨ N(t) = 1 ∨ . . . ∨ N(t) = n − 1) and
the events N(i) are disjoint, (i = 0, 1, . . . , n− 1), then we have:

Fn(x) = 1−
n−1∑
k=0

(λx)k

k!
e−λx.
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