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1 The Poisson Distribution

(a) Given a single trial, let p be the probability that an event A is the
outcome of that trial. Now assume that the trials are repeated N
times, such that each trial is independent. Denote by AN the total
number of occurrences of event A in the N trials. Show that the
probability of A occurring k times, where 0 < k ≤ N , is given by:

P (AN = k) =
(

N

k

)
pk(1− p)N−k

Answer: Let the random variables X1, . . . , XN denote the N trials. There
are

N !
(N − k)!k!

=
(

N

k

)

distinct assignments of exactly k occurences of A to N completed
trials. Since each trial Xi is independent, we have that

P (X1 = x1, . . . , XN = xN ) =
N∏

i=1

P (Xi = xi)

We also know that P (Xi = A) = p and P (Xi 6= A) = 1 − p. The
result then follows, since the

(
N
k

)
distinct assignments are mutually

exclusive. This is the Binomial Distribution. QED.
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(b) Now suppose that the probability of the event A occuring in any given
small time-step δt is λδt, where λ is some constant. Consider N in-
dependent consecutive trials, each taking δt time, such that the time
taken for the N trials is t = Nδt. What is the probability that event
A occurs k times during the N trials, where 0 < k ≤ N?

Answer: Let ANδt denote the total number of occurrences of A after the
N consecutive time intervals of δt. We use the binomial distribution
from 1(a) to get the expression for the probability of k occurrences of
A.

P (ANδt = k) =
(

N

k

)
(λδt)k(1− λδt)N−k

QED.

(c) Let At denote the number of times that event A occurs during time
t. Using (b) or otherwise, show that the probability of the event A
occuring k times during time t, for all k > 0, is:

P (At = k) =
(λt)k

k!
e−λt

(Hint: consider the expression from (b), letting N →∞)

Answer: We let N → ∞ in Eq. 1. Thus, intuitively we are now perform-
ing an ’infinite’ number of trials, but the probability of each of the
trials yielding A is becoming ’infinitesimal’. Treat the terms in Eq. 1
separately:

lim
N→∞

(
N

k

)
(λδt)k = lim

N→∞
N !

(N − k)!k!
(λt)k

Nk

= lim
N→∞

N(N − 1) . . . (N −N + 1)(λt)k

Nk(N − k) . . . (N −N + 1)k!

= lim
N→∞

N(N − 1) . . . (N − k + 1)(λt)k

Nkk!

=
(λt)k

k!
and in the second term, we substitute δt = t/N to get:

lim
N→∞

(1− λδt)N−k = lim
N→∞

(
1− λt

N

)N−k

= e−λt

Thus, combining the two terms yields the answer. QED.
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2 Application to a simple server

The probability distribution in 1(c) is called the Poisson Distribution. In
terms of applications to computer performance modelling, consider a server
and requests being made to the server. Suppose that we think the proba-
bility of a request being made to the server in a given small time-step δt is
proportional to the time step (with a given proportionality constant λ) and
that each request to the server is independent of the other requests (this
corresponds exactly to the “infinitesimal definition” given in the lectures).
The Poisson distribution will then determine the probability of k requests
to our server during a specified time t.

(a) What is the expected number of requests to the server during time t,
under these assumptions?

Answer: We can just work it through:

E(X) =
∞∑

k=0

k
(λt)k

k!
e−λt

= e−λt
∞∑

k=1

k
(λt)k

k!

= (λt)e−λt
∞∑

k=1

(λt)k−1

(k − 1)!

= (λt)e−λt
∞∑

k=0

(λt)k

k!

= (λt)e−λteλt

= λt

QED.

Alternatively, we can use the independence of each of the N trials from
which we derived the Poisson distribution in 1(c). Once again, let the
random variables X1, . . . , XN denote the N trials. We know that the
Xi are independent. The mean number of occurences of the event A
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in each trial is given by:

E(Xi) = 1× λδt + 0× (1− λδt)
= λδt

=
λt

N

Now summing over the N time-steps (trials), by the independence of
each time-step (trial), we get that:

E(X) = lim
N→∞

( N∑

i=1

E(Xi)
)

= lim
N→∞

( N∑

i=1

λt

N

)

= λt

QED.

(b) Calculate the variance in the number of requests to the server, under
these assumptions.

(Note: The variance of a random variable X is defined to be V ar(X) =
E(X2)−E(X)2, where E(X) is the expectation of the variable X)

Answer: There are at least three ways to show this. First is to go via
moment generating functions (see for example [1]). The moment gen-
erating function of a random variable X is defined as in Eq. 1:

MX(s) = E(esX) (1)

The moment generating function of the Poisson distributed random
variable X is then given by:

MX(s) = E(esX)

=
∞∑

k=0

esk (λt)k

k!
e−λt

=
∞∑

k=0

(es)k (λt)k

k!
e−λt

= e−λt
∞∑

k=0

(λtes)k

k!

= e(es−1)λt
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By definition of the moment generating function, E(X) = M ′
X(0) and

E(X2) = M ′′
X(0). We have:

M ′
X(s) = (λt)e(es−1)λtet

and

M ′′
X(s) =

d

dt
(λte(es−1)λtet)

= (λt)2e(es−1)λt + (λt)et

by the chain and product and chain rule respectively. The variance is
then given by:

V ar(X) = E(X2)−E(X)2

= M ′′
X(0)− (M ′

X(0))2

= λ2t2 + λt− λ2t2

= λt

QED

The second way is to compute E(X2) directly.

E(X2) =
∞∑

k=0

k2 (λt)k

k!
e−λt

= e−λt
∞∑

k=1

k2 (λt)k

k!

= λte−λt
∞∑

k=1

k
(λt)k−1

(k − 1)!

= λte−λt
∞∑

k=1

d

d(λt)

( (λt)k

(k − 1)!

)

Now, as the series expansion of the exponential function converges uni-
formly (standard result – see most textbooks on elementary analysis),
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we can interchange the limits of summation and differentiation:

E(X2) = λte−λt d

d(λt)

( ∞∑

k=1

(λt)k

(k − 1)!

)

= λte−λt d

d(λt)

(
λt

∞∑

k=1

(λt)k−1

(k − 1)!

)

= λte−λt d

d(λt)
(λteλt)

= λte−λt(eλt + λ2t2eλt)
= λt + λ2t2

and the result follows, given the value of expectation calculated in
2(b). QED

The third way is perhaps the neatest. We will use the independence of
each of the N trials (from which we derived the Poisson distribution
in 1(c)) and first calculate the variance of each trial Xi.

E(X2
i ) = 12 × λδt + 02 × (1− λδt)

= λδt

E(Xi)2 = (λδt)2

V ar(Xi) = E(X2
i )−E(Xi)2

= λδt− (λδt)2

= λδt(1− λδt)

Now, the variance of the Poisson distribution is given by summing the
variances of the N independent trials:

6



V ar(X) = lim
N→∞

( N∑

i=1

V ar(Xi)
)

= lim
N→∞

( N∑

i=1

λδt(1− λδt)
)

= lim
N→∞

( N∑

i=1

λt

N

(
1− λt

N

))

= lim
N→∞

(
λt

(
1− λt

N

))

= λt

QED
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