COURSE 336 PERFORMANCE ANALYSIS P.G. HARRISON

 $\begin{array}{c} {\rm Coursework} \ 3 \\ {\rm 03/02/2006} \\ {\rm Assessed} \end{array}$

due date: see CATE

A small shop has space for one customer only. If the shop is empty, then in the next time-unit, either a customer arrives with probability α or the shop remains empty. If a customer has arrived, then the shop is full, and could either stay full in the next time-unit or the customer could leave the shop empty with probability β .

- 1. Describe the behaviour of the shop as a Discrete Markov Chain with two states 1,2 representing the two states of the shop: empty and full. Define the one step probability matrix \mathbf{Q} .
- 2. Write down the state probability at time 0, assuming that initially the Markov Chain is in the state empty. Calculate $q_{12}^{(2)}$ and $q_{11}^{(2)}$.
- 3. Write down the state probability at time 0, assuming that initially the Markov Chain is in the state full. Calculate $q_{12}^{(2)}$ and $q_{11}^{(2)}$.
- 4. Given the matrix $M=\begin{pmatrix}1&\alpha\\1&-\beta\end{pmatrix}$ show that $\mathbf{Q}M=M\begin{pmatrix}1&0\\0&\omega\end{pmatrix}$. where $\omega=1-\alpha-\beta$. Hence show that, for $n\geq0$

$$\mathbf{Q}^n M = M \left(\begin{array}{cc} 1 & 0 \\ 0 & \omega^n \end{array} \right).$$

5. Verify that the inverse of the matrix M is $\frac{1}{\alpha+\beta}\begin{pmatrix} \beta & \alpha \\ 1 & -1 \end{pmatrix}$. Then show that:

$$\mathbf{Q}^n = \frac{1}{\alpha + \beta} \left(\begin{array}{cc} \beta + \alpha \omega^n & \alpha (1 - \omega^n) \\ \beta (1 - \omega^n) & \alpha + \beta \omega^n \end{array} \right).$$

6. If $-1 < \omega < 1$ and \mathbf{Q}^{∞} is the limit of \mathbf{Q}^n as $n \to \infty$, show that the rows of \mathbf{Q}^{∞} are the same $p = (p_1, p_2)$ and satisfy $p = p\mathbf{Q}$.

For which values of α, β does \mathbf{Q}^n not converge $n \to \infty$? What property does the Markov chain exhibit? What is the significance of case $\omega = 1$?