COURSE 336, PERFORMANCE ANALYSIS, P.G. HARRISON Coursework 5 (Unassessed), 17/02/2006

- 1. In an M/M/1 queue, assume that customers arrive as a Poisson process with parameter one per 12 minutes, and that the service time is exponential at rate one service per 8 minutes. Calculate the following quantities:
 - (a) L the average number of customers in the system;
 - (b) W the average amount of time that a customer spends in the system;
 - (c) W_Q the average amount of time a customer spends in the queue, waiting to start service.

If there are no customers waiting to be served on arrival, what is the value of the queueing time random variable?

- 2. Consider an M/M/1 queue where the jobs' willingness to join the queue is influenced by the queue size. More precisely, a job which finds i other jobs in the system joins the queue with probability 1/(i+1) and departs immediately otherwise $(i=0,1,\ldots)$. Draw the state diagram for this system with arrival rate λ and mean service time $1/\mu$. Write down and solve the balance equations for the equilibrium probabilities π_i and show that a steady-state distribution always exists. Find the utilisation of the server, the throughput, the average number of jobs in the system and the average reponse time for a job that decides to join. Note that the form of equilibrium probabilities is the same as that of the M/M/ ∞ queue.
- 3. Consider an M/M/ $\!\infty$ queue with discouraged arrivals but with the following birth-and-death coefficients:

$$\lambda(i) = \frac{\lambda}{(i+1)^b}$$
 and $\mu(i) = i^c \mu$

where c is the "pressure-coefficient" – a constant that indicates the degree to which the service rate of the system is affected by the system state – and b is the "discouraging coefficien". Obtain the equilibrium probabilities π_i for this birth-and-death process. What is the equilibrium distribution when b+c=1?

- 4. Let D be a random interval between two consecutive departures from an M/M/1 queue at equilibrium. If, just after the first departure, the queue was not empty, then D coincides with the service time of the next job. If the queue was empty, then D consists of the period up to the next arrival, as well as the service time of the next job. Assuming that the probability of a non-empty system just after departure is the same as the utilisation, show that D is exponentially distributed with parameter λ .
- 5. Let X_1 and X_2 be two independent exponential random variables with parameters λ_1 and λ_2 . Prove that the random variable $Z = \min(X_1, X_2)$ is an exponential random variable with parameter $\lambda_1 + \lambda_2$.