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Course details

I Lectures: Wednesdays 9:00–11:00, in 144;
Tutorials: Wednesdays 11:00–12:00, in 144.

I 18 lectures, 9 tutorials, 2 pieces of assessed coursework.

I Lecture notes on CATE: you are responsible for printing
them yourselves

I Books:
I Performance modelling of communication networks and

computer architectures Peter G. Harrison, Naresh M. Patel,
Addison-Wesley, 1992 ISBN 0201544199, 15 copies in library,
but out of print.

I Probabilistic Modelling I. Mitrani, Cambridge University Press
ISBN 0521585309
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Example 1: A simple transaction processing (TP) server

A transaction processing (TP) system accepts and processes a
stream of transactions, mediated through a (large) buffer:

...

I Transactions arrive “randomly” at some specified rate

I The TP server is capable of servicing transactions at a given
service rate

Q: If both the arrival rate and service rate are doubled, what
happens to the mean response time?
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Example 2: A simple TP server

Consider the same system as above:

...

I The arrival rate is 15tps

I The mean service time per transaction is 58.37ms

Q: What happens to the mean response time if the arrival rate
increases by 10%?
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Example 3: A simple multiprocessor TP system
Consider our TP system but this time with multiple transaction
processors

Single Queue

m parallel TP servers

.

.

.

Possion arrival 

process, rate λ

µ

µ

µ

I The arrival rate is 16.5 tps

I The mean service time per transaction is 58.37ms

Q: By how much is the system response time reduced by adding
one processor?
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Example 4: File allocation
What is the best way to allocate disk blocks to a heterogenous
disk I/O system?

µ1

µ2

q

1-q

γ

R

I Disk I/O requests are made at an average rate of 20 per
second

I Disk blocks can be located on either disk and the mean disk
access times are 30ms and 46ms respectively

Q: What is the optimal proportion of blocks to allocate to disk 1
to minimise average response time?
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Example 5: A simple computer model
Consider an open uniprocessor CPU system with just disks
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I Each submitted job makes 121 visits to the CPU, 70 to disk 1
and 50 to disk 2 on average

I The mean service times are 5ms for the CPU, 30ms for disk 1
and 37ms for disk 2

Q: What is the effect of replacing the CPU with one twice the
speed?
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Example 6: A Simple Batch Processor System

How does the above system perform in batch mode?
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I Each batch job makes 121 visits to the CPU, 70 to disk 1, 50
to disk 2 on average

I The mean service times are 5ms for the CPU, 30ms for disk 1
and 37ms for disk 2

Q: How does the system throughput vary with the number of
batch jobs and what is the effect of replacing Disk 1 with one
(a) twice and (b) three times the speed?
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Example 7: A multiprogramming system with virtual
memory
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I Suppose now we add VM and make disk 1 a dedicated paging
device

I Pages are 1Kbyte in size and the (usable) memory is
equivalent to 64K pages
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I Each job page faults at a rate determined by the following
lifetime function:

Life-time function example
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Q: What number of batch jobs keeps the system throughput at
its maximum and at what point does thrashing occur?

10 / 226



Example 8: A multiaccess multiprogramming system with
virtual memory

CPU

Disk 1

:

Terminals1

2

K

Disk 2

I During the day the system runs in interactive mode with a
number of terminal users

I The average think time of each user is 30 seconds

Q: How does the system response time and throughput vary with
the number of terminals and how many terminals can be
supported before the system starts to thrash?
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Introduction

Computer systems are

1. dynamic – they can pass through a succession of states as
time progresses

2. influenced by events which we consider here as random
phenomena

We also see these characteristics in queues of customers in a bank
or supermarket, or prices on the stock exchange.
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Definition of a stochastic process

Definition
A stochastic process SSS is a family of random variables
{Xt ∈ Ω|t ∈ T}, each defined on some sample space Ω (the same
for each) for a parameter space T .

I T and Ω may be either discrete or continuous
I T is normally regarded as time

I real time: continuous
I every month or after job completion: discrete

I Ω is the set of values each Xt may take
I bank balance: discrete
I number of active tasks: discrete
I time delay in communication network: continuous
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Example: The Poisson process

The Poisson process is a renewal process with renewal period
(interarrival time) having cumulative distribution function F and
probability density function (pdf) f

F (x) = P(X ≤ x) = 1− e−λx

f (x) = F ′(x) = λe−λx

λ is the parameter or rate of the Poisson process.
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Memoryless property of the (negative) exponential
distribution

If S is an exponential random variable

P(S ≤ t + s|S > t) = P(S ≤ s) ∀t, s ≥ 0

(i.e. it doesn’t matter what happened before time t)
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Proof.

P(S ≤ t + s|S > t) =
P(t < S ≤ t + s)

P(S > t)

=
P(S ≤ t + s)− P(S ≤ t)

1− P(S ≤ t)

=
1− e−λ(t+s) − (1− e−λt)

e−λt

(λ is the rate of the exp. distribution)

=
e−λt − e−λ(t+s)

e−λt
= 1− e−λs

= P(S ≤ s)
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Residual life

I If you pick a random time point during a renewal process,
what is the time remaining R to the next renewal instant
(arrival)?

I e.g. when you get to a bus stop, how long will you have to
wait for the next bus?

I If the renewal process is Poisson, R has the same distribution
as S by the memoryless property

I This means it doesn’t matter when the last bus went!
(contrast this against constant interarrival times in a perfectly
regular bus service)
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“Infinitesimal definition” of the Poisson process

P(arrival in (t, t + h)) = P(R ≤ h) = P(S ≤ h) ∀t

= 1− e−λh

= λh + o(h)

Therefore

1. Probability of an arrival in (t, t + h) is λh + o(h) regardless of
process history before t

2. Probability of more than one arrival in (t, t + h) is o(h)
regardless of process history before t
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I In fact we can take this result as an alternative definition of
the Poisson process.

I From it we can derive the distribution function of the
interarrival times (i.e. negative exponential) and the Poisson
distribution for Nt (the number of arrivals in time t)

P(Nt = n) =
(λt)n

n!
e−λt

I Assuming this result, interarrival time distribution is

P(S ≤ t) = 1− P(0 arrivals in (0, t))

= 1− e−λt
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Derivation of the interarrival time distribution

P(S > t + h) = P
(
(S > t) ∧ (no arrival in (t, t + h])

)
= P(S > t)P(no arrival in (t, t + h])

by the memoryless property. Let G (t) = P(S > t). Then:

G (t + h) = G (t)P(no arrival in (t, t + h])

= (1− hλ)G (t) + o(h)

and so
G (t + h)− G (t)

h
= −λG (t) + o(1)

giving
dG

dt
= −λG (t) ⇒ G (t) = ke−λt

for constant k . Thus F (t) = P(S ≤ t) = 1− G (t) = 1− ke−λt so
k = 1 because we know F (0) = 0.
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Superposition Property

If A1, . . . ,An are independent Poisson Processes with rates
λ1, . . . , λn respectively, let there be Ki arrivals in an interval of
length t from process Ai (1 ≤ i ≤ n). Then K = K1 + · · ·+ Kn has
Poisson distribution with parameter λt where λ = λ1 + · · ·+ λn.
i.e. the superposition of PPs with rates λi is a PP with rate

∑
i λi .
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Proof.
The distribution of K is the convolution of the distributions of the
Ki which are Poisson. E.g. if n = 2

P(K = k) =
k∑

i=0

(λ1t)i

i !
e−λ1t

(λ2t)k−i

(k − i)!
e−λ2t

=
e−(λ1+λ2)t

k!

k∑
i=0

(
k

i

)
(λ1t)i (λ2t)k−i

= e−(λ1+λ2)t [(λ1 + λ2)t]k

k!

as required. The proof for arbitrary n ≥ 2 is an easy induction on
n.
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Decomposition Property

If a Poisson Process is decomposed into processes B1, . . . ,Bn by
assigning each arrival of A to Bi with independent probability qi

(
∑

qi = 1), then B1, . . . ,Bn are independent Poisson Processes
with rates q1λ, . . . , qnλ.
Example: Two parallel processors, B1 and B2. Incoming jobs
(Poisson arrivals A) are directed to B1 with probability q1 and to
B2 with probability q2. Then each processor “sees” a Poisson
arrival process for its incoming job stream.
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Proof.
For n = 2, let Ki = number of arrivals to Bi in time t (i = 1, 2),
K = K1 + K2

P(K1 = k1,K2 = k2)︸ ︷︷ ︸
joint probability

= P(K1 = k1,K2 = k2|K = k1 + k2)︸ ︷︷ ︸
binomial

P(K = k1 + k2)︸ ︷︷ ︸
Poisson

=
(k1 + k2)!

k1!k2!
qk1

1 qk2
2

(λt)k1+k2

(k1 + k2)!
e−λt

=
(q1λt)k1

k1!
e−q1λt (q2λt)k2

k2!
e−q2λt

i.e. a product of two independent Poisson distributions (n ≥ 2: easy
induction)

λ1
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λ2
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A2

?

Poisson streams

λ
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Markov chains and Markov processes

I Special class of stochastic processes that satisfy the Markov
property (MP) where given the state of the process at time t,
its state at time t + s has probability distribution which is a
function of s only.

I i.e. the future behaviour after t is independent of the
behaviour before t

I Often intuitively reasonable, yet sufficiently “special” to
facilitate effective mathematical analysis

I We consider processes with discrete state (sample) space and:

1. discrete parameter space (times {t0, t1, . . . }), a Markov chain
or Discrete Time Markov Chain

2. continuous parameter space (times t ≥ 0, t ∈ R), a Markov
process or Continuous Time Markov Chain. E.g. number of
arrivals in (0, t) from a Poisson arrival process defines a
Markov Process because of the memoryless property.
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Markov chains

I Let X = {Xn|n = 0, 1, . . . } be an integer valued Markov chain
(MC), Xi ≥ 0,Xi ∈ Z , i ≥ 0. The Markov property states
that:

P(Xn+1 = j |X0 = x0, . . . ,Xn = xn) = P(Xn+1 = j |Xn = xn)

for j , n = 0, 1, . . .

I Evolution of an MC is completely described by its 1-step
transition probabilities

qij(n) = P(Xn+1 = j |Xn = i) for i , j , n,≥ 0

Assumption: qij(n) = qij is independent of time n (time
homogeneous) ∑

j∈Ω

qij = 1 ∀i ∈ Ω

26 / 226



I MC defines a transition probability matrix

Q =


q00 q01 · · ·
q10 q11 · · ·

...
...

. . .

qi0 · · · qii · · ·
...

 in which all rows sum to 1

I dimension = # of states in Ω if finite, otherwise countably
infinite

I conversely, any real matrix Q s.t. qij ≥ 0,
∑

j qij = 1 (called a
stochastic matrix) defines a MC
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MC example 1: Telephone line
The line is either idle (state 0) or busy (state 1).

idle at time n =⇒ idle at time (n + 1) w.p. 0.9

idle at time n =⇒ busy at time (n + 1) w.p. 0.1

busy at time n =⇒ idle at time (n + 1) w.p. 0.3

busy at time n =⇒ busy at time (n + 1) w.p. 0.7

so

Q =

[
0.9 0.1
0.3 0.7

]
may be represented by a state diagram:

0
 1
0.9


0.1


0.3


0.7
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MC example 2: Gambler

Bets £1 at a time on the toss of fair die. Loses if number is less
than 5, wins £2 if 5 or 6. Stops when broke or holds £100. If X0 is
initial capital (0 ≤ X0 ≤ 100) and Xn is the capital held after n
tosses {Xn|n ≤ 0, 1, 2, . . . } is a MC with qii = 1 if i = 0 or i ≥ 100,
qi ,i−1 = 2

3 , qi ,i+2 = 1
3 for i = 1, 2, . . . , 99 qij = 0 otherwise.

29 / 226



MC example 3: I/O buffer with capacity M records
New record added in any unit of time w.p. α (if not full). Buffer
emptied in any unit of time w.p β. If both occur in same interval,
insertion done first. Let Xn be the number of records in buffer at
(discrete) time n. Then, assuming that insertions and emptying are
independent of each other and of their own past histories,
{Xn|n = 0, 1, . . . } is a MC with state space {0, 1, . . . ,M} and
state diagram:

0
 1
 M-1
 M


a(1-b)

a(1-b)
 a(1-b)


a(1-b)


(1-a)(1-b)

(1-a)(1-b)


1-b
1-a(1-b)


b


b


b


Figure: I/O buffer example
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MC example 3: I/O buffer with capacity M records

The transition matrix follows immediately, e.g.

q12 = α(1− β) = qn,n+1 (0 ≤ n ≤ M − 1)

qMM = 1− β
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Markov chain two-step transition probabilities

Let

q
(2)
ij = P(Xn+2 = j |Xn = i)

=
∑
k∈Ω

P(Xn+1 = k,Xn+2 = j |Xn = i) from law of tot. prob.

=
∑
k∈Ω

P(Xn+2 = j |Xn = i ,Xn+1 = k)P(Xn+1 = k |Xn = i)

=
∑
k∈Ω

P(Xn+2 = j |Xn+1 = k)P(Xn+1 = k |Xn = i) by MP

=
∑
k∈Ω

qikqkj by TH

= (Q2)ij
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Markov chain multi-step transition probabilities

Similarly, m-step transition probabilities :

q
(m)
ij = P(Xn+m = j |Xn = i) (m ≥ 1)

= (Qm)ij

by induction on m. Therefore we can compute probabilistic
behaviour of a MC over any finite period of time, in principle. E.g.
average no. of records in buffer at time 50

E [X50|X0 = 0] =

min(M,50)∑
j=1

jq
(50)
0j .
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Long term behaviour

Markov chain multi-step transition probabilities can be
computationally intractable. We wish to determine long-term
behaviour: hope that asymptotically MC approaches a steady-state
(probabilistically), i.e. that ∃{pj |j = 0, 1, 2, . . . } s.t.

pj = lim
n→∞

P(Xn = j |X0 = i) = lim
n→∞

q
(n)
ij

independent of i .
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Definitions and properties of MCs

Let vij = prob. that state j will eventually be entered, given that
the MC has been in state i , i.e.

vij = P(Xn = j for some n|X0 = i)

I If vij 6= 0, then j is reachable from i

I If vij = 0 ∀j 6= i , vii = 1, then i is an absorbing state

Example (1) & (3): all states reachable from each other (e.g. look
at transition diagrams)
Example (2): all states in {1, 2, . . . , 99} reachable from each other,
0 & 100 absorbing
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Closed and irreducible MCs
A subset of states, C is called closed if j /∈ C , implies j cannot be
reached from any i ∈ C . E.g. set of all states, Ω, is closed. If 6 ∃
proper subset C ⊂ Ω which is closed, the MC is called irreducible.
A Markov Chain is irreducible if and only if every state is reachable
from every other state. E.g. examples (1) & (3) and {0}, {100}
are closed in example (2).

S1


S3


S4


S2


S5


S6


Reducible


S1


S3


S4


S2


S5


S6


Irreducible
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Recurrent states

If vii = 1, state i is recurrent (once entered, guaranteed eventually
to return). Thus we have:
i recurrent implies i is either not visited by the MC or is visited an
infinite number of times – no visit can be the last (with non-zero
probability).
If i is not recurrent it is called transient. This implies the number
of visits to a transient state is finite w.p. 1 (has geometric
distribution). E.g. if C is a closed set of states, i /∈ C , j ∈ C and
vij 6= 0, then i is transient since MC will eventually enter C from i ,
never to return. E.g. in example (2), states 1 to 99 are transient,
states 0 and 100 are recurrent (as is any absorbing state)
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Proposition

If i is recurrent and j is reachable from i, then j is also recurrent.

Proof.
vjj 6= 1 implies vij 6= 1 since if the MC visits i after j it will visit i
repeatedly and with probability 1 will eventually visit j since
vij 6= 0. This implies vii 6= 0 since with non-zero probability the
MC can visit j after i but not return to i (w.p. 1− vji > 0).

Thus, in an irreducible MC, either all states are transient (a
transient MC) or recurrent (a recurrent MC).
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Further properties of MCs

Let X be an irreducible, recurrent MC and let nj
1, n

j
2, . . . be the

times of successive visits to state j , mj = E [nj
k+1 − nj

k ]
(k = 1, 2, . . . ), the mean interval between visits (independent of k
by the MP).
Intuition:

pj =
1

mj

Because the proportion of time spent, on average, in state j is
1/mj .
This is not necessarily true, because the chain may exhibit some
periodic behaviour:

The state j is periodic with period m > 1 if q
(k)
ii = 0 for k 6= rm

for any r ≥ 1 and P(Xn+rm = j for some r ≥ 1|Xn = j) = 1.
Otherwise it is aperiodic, or has period 1. (Note that a periodic
state is recurrent)
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Periodicity in an irreducible MC

Proposition

In an irreducible MC, either all states are aperiodic or periodic with
the same period. The MC is then called aperiodic or periodic
respectively.

Proposition

If {Xn|n = 0, 1, . . . } is an irreducible, aperiodic MC, then the
limiting probabilities {pj |j = 0, 1, . . . } exist and pj = 1/mj .
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Null and positive recurrence

If mj =∞ for state j then pj = 0 and state j is recurrent null.
Conversely, if mj <∞, then pj > 0 and state j is recurrent
non-null or positive recurrent.

Proposition

In an irreducible MC, either all states are positive recurrent or none
are. In the former case, the MC is called positive recurrent (or
recurrent non-null).
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A state which is aperiodic and positive recurrent is often called
ergodic and an irreducible MC whose states are all ergodic is also
called ergodic. When the limiting probabilities {pj |j = 0, 1, . . . } do
exist they form the

steady state

equilibrium

long term

 probability distribution (SSPD)

of the MC. They are determined by the following theorem.
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Steady state theorem for Markov chains

Theorem
An irreducible, aperiodic Markov Chain, X , with state space S and
one-step transition probability matrix Q = (qij |i , j ∈ S), is positive
recurrent if and only if the system of equations

pj =
∑
i∈S

piqij

with
∑

i∈S pi = 1 (normalisation) has a solution. If it exists, the
solution is unique and is the SSPD of X .
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Note
If S is finite, X is always positive recurrent, which implies the
equations have a unique solution. The solution is then found by
discarding a balance equation and replacing it with the normalising
equation (the balance equations are dependent since the rows of
homogeneous equations p− pQ = 0 all sum to zero).
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MC example 3: Discrete time buffer

1 ≤ i ≤ M − 1
From the steady state theorem:

pi = α(1− β)pi−1 + pi (1− α)(1− β)

i.e.
(α(1− β) + β)pi = α(1− β)pi−1

which is equivalent to the heuristic “flow balance“ view (cf.
CTMCs later):

Probability of leaving state i = Probability of entering state i

Therefore
pi = kpi−1 = k ip0

where k = α(1−β)
α+β−αβ (1 ≤ i ≤ M − 1).
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Discrete time buffer state transition diagram

0
 1
 M-1
 M


a(1-b)

a(1-b)
 a(1-b)


a(1-b)


(1-a)(1-b)

(1-a)(1-b)


1-b
1-a(1-b)


b


b


b


Figure: I/O buffer.
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i = M
βpM = α(1− β)pM−1

therefore

pM =
α(1− β)

β
kM−1p0

i = 0
Redundant equation (why?) – use as check

α(1− β)p0 =
M∑
i=1

βpi = β

M−1∑
i=1

k ip0 + kM−1α(1− β)p0

= p0

(
βk

1− kM−1

1− k
+ α(1− β)kM−1

)
rest is exercise
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Markov processes

I Continuous time parameter space, discrete state space

X = {Xt |t ≥ 0} Xt ∈ Ω

where Ω is a countable set.

I Markov property

P(Xt+s = j |Xu, u ≤ t) = P(Xt+s = j |Xt)

I Markov process is time homogeneous if the r.h.s. of this
equation does not depend on t

I qij(s) = P(Xt+s = j |Xt = i) = P(Xs = j |X0 = i)
(i , j = 0, 1, . . . )

I Transition probability functions of the MP

48 / 226



Memoryless property

Markov Property and time homogeneity imply:
If at time t the process is in state j , the time remaining in state j
is independent of the time already spent in state j : memoryless
property
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Proof.

P(S > t + s|S > t) = P(Xt+u = j , 0 ≤ u ≤ s|Xu = j , 0 ≤ u ≤ t)

where S = time spent in state j ,

state j entered at time 0

= P(Xt+u = j , 0 ≤ u ≤ s|Xt = j) by MP

= P(Xu = j , 0 ≤ u ≤ s|X0 = j) by T.H.

= P(S > s)

=⇒ P(S ≤ t + s|S > t) = P(S ≤ s)

Time spent in state i is exponentially distributed, parameter µi .
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Time homogeneous Markov Processes

The MP implies next state, j , after current state i depends only on
i , j – state transition probability qij . This implies the Markov
Process is uniquely determined by the products:

aij = µiqij

where µi is the rate out of state i and qij is the probability of
selecting state j next. The aij are the generators of the Markov
Process.

I intuitively reasonable
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Instantaneous transition rates

Consider now the (small) interval (t, t + h)

P(Xt+h = j |Xt = i) = µihqij + o(h)

= aijh + o(h)

I aij is the instantaneous transition rate i → j i.e. the average
number of transitions i → j per unit time spent in state i
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MP example: a Poisson process

aij =


λ if j = i + 1

0 if j 6= i , i + 1

not defined if j = i

because
P(arrival in (t, t + h))︸ ︷︷ ︸

i→i+1

= λh︸︷︷︸
ai,i+1h

+o(h)
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MP example: The buffer problem

I Records arrive as a P.P. rate λ

I Buffer capacity is M

I Buffer cleared at times spaced by intervals which are
exponentially distributed, parameter µ. Clearance times i.i.d.
and independent of arrivals (i.e. clearances are an
independent PP, rate µ)

aij =


λ if j = i + 1 (0 ≤ i ≤ M − 1)

µ if j = 0 (i 6= 0)

0 otherwise (j 6= i)

[Probability of > 1 arrivals or clearances, or ≥ 1 arrivals and
clearances in (t, t + h) is o(h)]
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MP example: The buffer problem state transition diagram

0
 1
 2
 M


l


m


m


m


l

l
l


Figure: Buffer problem

55 / 226



MP example: Telephone exchange
Suppose there 4 subscribers and any two calls between different
callers can be supported simultaneously. Calls are made by
non-connected subscribers according to independent PPs, rate λ
(callee chosen at random). Length of a call is (independent)
exponentially distributed, parameter µ. Calls are lost if called
subscriber is engaged. State is the number of calls in progress (0,1
or 2).

a01 = 4λ (all free)

a12 =
2

3
λ (caller has

1

3
probability of successful connection)

a10 = µ

a21 = 2µ (either call may end)

0
 1
 2


m

2m


4l
 2/3 l
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Exercise

The last equation follows because the distribution of the random
variable Z = min(X ,Y ) where X ,Y are independent exponential
random variables with parameters λ, µ respectively is exponential
with parameter λ+ µ. Prove this.
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The generator matrix

∑
j∈Ω,j 6=i

qij = 1 =⇒ µi =
∑

j∈Ω,j 6=i

aij

(hence instantaneous transition rate out of i). Let aii = −µi

(undefined so far)

(aij) = A =


a00 a01 . . .
a10 a11 . . .
. . .
ai0 ai1 . . . aii . . .
. . .


A is the generator matrix of the Markov Process. Rows of A sum
to zero (

∑
j∈S aij = 0)
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Transition probabilities and rates

I determined by A

qij =
aij

µi
= −

aij

aii

µi = −aii

I hence A is all we need to determine the Markov process
I Markov processes are instances of state transition systems

with the following properties
I The state holding time are exponentially distributed
I The probability of transiting from state i to state j depends

only on i and j

I In order for the analysis to work we require that the process in
irreducible – every state must be reachable from every other,
e.g.

59 / 226



Steady state results

Theorem

(a) if a Markov process is transient or recurrent null,
pj = 0 ∀j ∈ S and we say a SSPD does not exist

(b) If a Markov Process is positive recurrent, the limits pj exist,
pj > 0,

∑
j∈S pj = 1 and we say {pj |j ∈ S} constitute the

SSPD of the Markov Process.
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Steady state theorem for Markov processes

Theorem
An irreducible Markov Process X with state space S and generator
matrix A = (aij) (i , j ∈ S) is positive recurrent if and only if∑

i∈S

piaij = 0 for j ∈ S [Balance equations]∑
i∈S

pi = 1 [Normalising equation]

have a solution. This solution is unique and is the SSPD.

Note
At equilibrium the fluxes also balance into and out of every closed
contour drawn around any collection of states.
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Justification of the balance equation

The rate going from state i to j(6= i) is aij , the fraction of time
spent in i is pi∑

i 6=j

aijpi︸ ︷︷ ︸
Avg. no. of transitions i→j in unit time

=
∑
i 6=j

ajipj︸ ︷︷ ︸
Avg. no. of transitions j→i in unit time∑

i 6=j

flux(i → j) =
∑
i 6=j

flux(j → i) ∀j
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MP example: I/O buffer
By considering the flux into and out of each state 0, 1, . . . ,M we
obtain the balance equations:

λp0 = µ(p1 + · · ·+ pM) (State 0)

(λ+ µ)pi = λpi−1 (State i , for 1 ≤ i ≤ M − 1)

µpM = λpM−1 (State M)

Normalising equation:

p0 + p1 + · · ·+ pM = 1

=⇒ pj =
( λ

λ+ µ

)j µ

λ+ µ
(for 0 ≤ j ≤ M − 1)

pM =
( λ

λ+ µ

)M

Thus (for example) mean number of records in the buffer in the
steady state = MαM +

∑M−1
j=0 jαj µ

λ+µ where α = µ
λ+µ
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MP example: Telephone network

4λp0 = µp1 (State 0)(
µ+

2

3
λ
)

p1 = 4λp0 + 2µp2 (State 1)

2µp2 = λ
2

3
p1 (State 2)

Thus p1 = 4λ
µ p0, p2 = λ

3µp1 = 4λ2

3µ2 p0 with

p0 + p1 + p2 = 1 =⇒ p0 =
(

1 +
4λ

µ
+

4λ2

3µ2

)−1
.

Average number of calls in progress in the steady state

= 1.p1 + 2.p2 =
4λ
µ

(
1+ 2λ

3µ

)
1+ 4λ

µ
+ 4λ2

3µ2
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Birth-death processes and the single server queue (SSQ)

A Markov process with state space S = {0, 1, . . . } is called a
birth-death process if the only non-zero transition probabilities are
ai ,i+1 and ai+1,i (i ≥ 0), representing births and deaths
respectively. (In a population model, a00 would be 1 since 0 would
be an absorbing state.) The SSQ model consists of

I a Poisson arrival process, rate λ

I a queue which arriving tasks join

I a server which processes tasks in the queue in FIFO (or other)
order and has exponentially distributed service times,
parameter µ (i.e. given a queue length > 0, service
completions form a Poisson process, rate µ)
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I The state is the queue length (including the task being served
if any), i.e. the state space is {0, 1, . . . }

I SSQ model is a birth-death process

I λ, µ are in general functions of the queue length (i.e. state
dependent) and we write λ(n), µ(n) for state n.

mu


(Poisson) arrivals, rate


lambda


FIFO queue


Server, rate mu


(exponntial)


departures (service


completions)


Figure: Single server queue.
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Kendall’s notation

Notation
The SSQ with Poisson arrivals and exponential service times is
called an M/M/1 queue

I the first M describes the arrival process as a Markov process
(Poisson)

I the second M describes the service time distribution as a
Markov process (exponential)

I the 1 refers to a single server (m parallel server would be
denoted as M/M/m)

I Later we will consider M/G/1 queues, where the service time
distribution is non-Markovian (“general”)
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The memoryless property in the M/M/1 queue

SSQ therefore follows a Markov process and has the memoryless
property that:

1. Probability of an arrival in (t, t + h) = λ(i)h + o(h) in state i

2. Probability of a service completion in
(t, t + h) = µ(i)h + o(h) in state i > 0 (0 if i = 0)

3. Probability of more than 1 arrival, more than one service
completion or 1 arrival and 1 service completion in
(t, t + h) = o(h).

4. Form these properties we could derive a differential equation
for the transient queue length probabilities – compare Poisson
process.
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State transition diagram for the SSQ

0
 1
 i
 i+1


l(0)
 l(1)
 l(i-1)
 l(i)
 l(i+1)


m(i+2)
m(i+1)

m(i)
m(2)
m(1)


Figure: Single server queue state diagram.
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I Consider the balance equation for states inside the red (thick)
contour.

I Outward flux (all from state i): piλ(i) (i ≥ 0);
I Inward flux (all from state i + 1): pi+1µ(i + 1) (i ≥ 0).

Thus,
piλ(i) = pi+1µ(i + 1)

so

pi+1 =
λ(i)

µ(i + 1)
pi =

[ i∏
j=0

ρ(j)
]
p0

where ρ(j) = λ(j)
µ(j+1) .
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I Normalising equation implies

p0

(
1 +

∞∑
i=0

i∏
j=0

ρ(j)
)

= 1

so

p0 =
[ ∞∑

i=0

i−1∏
j=0

ρ(j)
]−1

where
∏−1

j=0 = 1 (the empty product). Therefore

pi =

∏i−1
j=0 ρ(j)∑∞

k=0

∏k−1
n=0 ρ(n)

(i ≥ 0).

I So, is there always a steady state?
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I SSQ with constant arrival and service rates

λ(n) = λ, µ(n) = µ, ρ(n) = ρ = λ/µ ∀n ∈ S

implies

p0 =
[ ∞∑

i=0

ρi
]−1

= 1− ρ

pi = (1− ρ)ρi (i ≥ 0)

I Mean queue length, L (including any task in service)

L =
∞∑
i=0

ipi =
∞∑
i=0

(1− ρ)iρi

= ρ(1− ρ)
d

dρ

{ ∞∑
i=0

ρi
}

= ρ(1− ρ)
d

dρ

{
(1− ρ)−1

}
=

ρ

1− ρ
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I Utilisation of server

U = 1− P(server idle) = 1− p0 = 1− (1− ρ) = ρ

= λ/µ.

However, we could have deduced this without solving for p0:
In the steady state (assuming it exists),

λ = arrival rate

= throughput

= P(server busy).service rate

= Uµ

This argument applies for any system in equilibrium – we
didn’t use the Markov property – see M/G/1 queue later.
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Response times

To analyse response times, need to consider the state of the queue
at the time of arrival of a task. We use the Random Observer
Property of the Poisson process.
The state of a system at equilibrium seen by an arrival of a Poisson
process has the same distribution as that seen by an observer at a
random instant, i.e. if the state at time t is denoted by St ,

P(St−0
= i | arrival at t0) = P(St−0

= i)

If the queue length seen by an arriving task is j ,

response time = residual service time of task in service (if j > 0)

+ j i.i.d. service times
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For exponential service times, residual service time has the same
distribution as full service time, so in this case

Response time = sum of (j + 1) i.i.d. service times.

Therefore, the mean response time, W is

W =
∑

pj(j + 1)µ−1 =
(

1 +
ρ

1− ρ

)
µ−1 =

1

µ− λ

and mean queueing time WQ (response time, excluding service
time)

WQ = W − µ−1 = Lµ−1 =
ρ

µ− λ
.
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Distribution of the waiting time, FW (x)

By the random observer property (and memoryless property)

FW (x) =
∞∑
j=0

pjEj+1(x)

where Ej+1(x) is the convolution of (j + 1) exponential
distributions, each with parameter µ — called the Erlang–(j + 1)
distribution with parameter µ. Similarly, for density functions:

fW (x) =
∞∑
j=0

pjej+1(x)

where ej+1(x) is the pdf corresponding to Ej+1(x), i.e.
d
dx Ej+1(x) = ej+1(x), defined by
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e1(x) = µe−µx

ej+1(x) = µ

∫ x

0
e−µ(x−u)ej(u)du︸ ︷︷ ︸

convolution of Erlang–j and exponential distributions

=⇒ ej(x) = µ
(µx)j−1

(j − 1)!
e−µx (Exercise)

=⇒ fW (x) = (µ− λ)e−(µ−λ)x (Exercise)

These results can be obtained much more easily using Laplace
transforms (which we will not detail here).
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Example
Given m Poisson streams, each with rate λ and independent of the
others, into a SSQ, service rate µ, what is the maximum value of
m for which, in steady state, at least 95% of waiting times,
W ≤ w? (Relevant in “end-to-end” message delays in
communication networks, for example.)
That is, we seek m such that P(W ≤ w) ≥ 0.95

=⇒ 1− e−(µ−mλ)w ≥ 0.95

=⇒ e−(µ−mλ)w ≤ 0.05

=⇒ e(µ−mλ)w ≥ 20

=⇒ µ−mλ ≥ ln 20

w

=⇒ m ≤ µ

λ
− ln 20

wλ

Note
m < µ/λ is equivalent to the existence of a steady state.
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Reversed processes

I The reversed process of a stochastic process is a dual process
I with the same state space
I in which the direction of time is reversed
I cf. viewing a video film backwards.

I If the reversed process is stochastically identical to the original
process, that process is called reversible
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Detailed balance equations

I A reversible process satisfies — as a necessary and sufficient
condition for reversibility — the detailed balance equations

πi aij = πj aji for all states i 6= j ∈ S

I A = (aij) is the process’s generator matrix (transition rates
i → j)

I π= (πi | i ∈ S) is its equilibrium probability distribution vector

I Detailed balance equations simply say that the probability flux
from state i to state j is equal to the probability flux from
state j to state i for all states i 6= j
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Example — the M/M/1 queue

Recall our derivation of steady state probabilities for the M/M/1
queue with state-dependent rates:

I Balancing probability flux into and out of the subset of states
{0, 1, . . . , i} we found

πi ai ,i+1 = πi+1 ai+1,i

I There are no other classes of directly connected states

I Therefore the M/M/1 queue is reversible – including M/M/m,
a special case of state-dependent M/M/1
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Burke’s Theorem

Now consider the departure process of an M/M/1 queue
I It is precisely the arrival process in the reversed queue

I remember, time is going backwards
I so, state decrements (departures) become increments (arrivals)

in the reversed process

I Since the reversed process is also an M/M/1 queue, its
arrivals are Poisson and independent of the past behaviour of
the queue

I Therefore the departure process of the (forward or reversed)
M/M/1 queue is Poisson and independent of the future state
of the queue

I Equivalently, the state of the queue at any time is
independent of the departure process before that time
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Reversed Processes

I Most Markov processes are not reversible but we can still
define the reversed process X−t of any Markov process Xt at
equilibrium

I It is straightforward to find the reversed process of a Markov
process if its steady state probabilities are known:

I The reversed process of a Markov process {Xt} at equilibrium,
with state space S , generator matrix A and steady state
probabilities π, is a Markov process with generator matrix A′

defined by
a′ij = πjaji/πi (i , j ∈ S)

and with the same stationary probabilities π

I So the flux from i to j in the reversed process is equal to the
flux from j to i in the forward process, for all states i 6= j
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Proof.
For i 6= j and h > 0,

P(Xt+h = i)P(Xt = j |Xt+h = i) = P(Xt = j)P(Xt+h = i |Xt = j).

Thus,

P(Xt = j |Xt+h = i) =
πj

πi
P(Xt+h = i |Xt = j)

at equilibrium. Dividing by h and taking the limit h→ 0 yields the
required equation for a′ij when i 6= j . But, when i = j ,

−a′ii =
∑
k 6=i

a′ik =
∑
k 6=i

πkaki

πi
=
∑
k 6=i

aik = −aii .

That π is also the stationary distribution of the reversed process
now follows since

−πia
′
ii = πi

∑
k 6=i

aik =
∑
k 6=i

πka′ki .
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Why is this useful?

In an irreducible Markov process, we may:

I Choose a reference state 0 arbitrarily

I Find a sequence of directly connected states 0, . . . , j

I calculate

πj = π0

j−1∏
i=0

ai ,i+1

a′i+1,i

= π0

j−1∏
i=0

a′i ,i+1

ai+1,i

I So if we can determine the matrix Q ′ independently of the
steady state probabilities π , there is no need to solve balance
equations.
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RCAT, SPA and Networks

I A compositional result in Stochastic Process Algebra called
RCAT (Reversed Compound Agent Theorem) finds many
reversed processes and hence simple solutions for steady state
probabilities

I open and closed queueing networks
I multiple classes of customers
I ‘negative customers’ that ‘kill’ customers rather than add to

them in a queue
I batches and other synchronized processes

I Automatic or mechanised, unified implementation

I Hot research topic – see later in the course!
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Multiple parallel servers — M/M/m queue

1


2


m


single queue


m parallel servers


Figure: Multiple parallel servers.
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M/M/m SSQ
SSQ representation:

λ(n) = λ (n ≥ 0)

µ(n) =

{
nµ 1 ≤ n ≤ m

mµ n ≥ m

The front of the queue is served by any available server.

By a general result for the M/M/1 queue:

pj = p0

j−1∏
i=0

λ(i)

µ(i + 1)
=

{
p0

ρj

j! 0 ≤ j ≤ m

p0
ρj

m!mj−m j ≥ m

so

p0 =
1∑m−1

i=0
ρi

i! + ρm

m!

∑∞
i=m( ρm )i−m

=
1∑m−1

i=0
ρi

i! + ρm

(m−1)!(m−ρ)

.
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Average number of busy servers, S

S =
m−1∑
k=1

kpk + m
∞∑

k=m

pk = · · · = ρ

Steady state argument

arrival rate = λ

average throughput = Sµ (µ per active server)

=⇒ Sµ = λ (in equilibrium).

Utilisation U = S/m = ρ/m, the average fraction of busy servers.
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Waiting times

Waiting time is the same as service time if an arrival does not have
to queue. Otherwise, the departure process is Poisson, rate mµ,
whilst the arrived task is queueing (all servers busy). This implies
that the queueing time is the same as the queueing time in the
M/M/1 queue with service rate mµ.

I Let

q = P(arrival has to queue)

= P(find ≥ m jobs on arrival)

I by R.O.P.

q =
∞∑

j=m

pj = p0
ρm

(m − 1)!(m − ρ)
Erlang delay formula
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I Let Q be the queueing time random variable (excluding
service)

FQ(x) = P(Q ≤ x) = P(Q = 0) + P(Q ≤ x |Q > 0)P(Q > 0)

= (1− q) + q(1− e−(mµ−λ)x)

= 1− qe−(mµ−λ)x

P(Q ≤ x |Q > 0) is given by the SSQ, rate mµ, result for
waiting time. (Why is this?)
Note that FQ(x) has a jump at the origin, FQ(0) 6= 0.

I Mean queueing time

WQ =
q

mµ− λ
I Mean waiting time

W = WQ + 1/µ =
(q + m)µ− λ
µ(mµ− λ)

I Exercise: What is the waiting time density function?
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The infinite server

I In the M/M/m queue, let m→∞
I “unlimited service capacity”
I always sufficient free servers to process an arriving task - e.g.

when the number tasks in the system is finite
I no queueing =⇒ infinite servers model delays in a task’s

processing

pj =
ρj

j!
p0 =⇒ p0 = e−ρ

I balance equations have a solution for all λ, µ
I this is not surprising since the server can never be overloaded

I This result is independent of the exponential assumption – a
property of the queueing discipline (here there is no queueing
– a pathological case)
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M/M/m queues with finite state space

M/M/1/k (k is the max. queue length) queue

µ(n) = nµ for all queue lengths n

λ(n) =

{
λ 0 ≤ n < k

0 n ≥ k

Hence, if ρ = λ/µ.

pj =

p0ρ
j j = 0, 1, . . . , kQj−1
i=0 λ(i)Qj−1

i=0 µ(i+1)
= 0 j > k (as λ(k) = 0)
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Telephone network with maximum capacity of k calls

λ(n) =

{
λ 0 ≤ n < k

0 n ≥ k
µ(n) = nµ when n calls are in progress

so we have an M/M/k/k queue.

pj = p0
ρj

j!
j = 0, 1, . . . , k (ρ = λ/µ)

Probability that a call is lost:

pk =
ρk/k!∑k
j=0 ρ

j/j!
Erlang loss formula

Throughput = λ(1− pk)
[

= µ

k∑
j=1

jpj

]
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Terminal system with parallel processing

N users logged on to a computer system with m parallel processors

I exponentially distributed think times, mean 1/λ, before
submitting next task

I each processor has exponential service times, mean 1/µ

Single Queue

.

.

.

P1

P2

Pm

(0≤n≤N tasks)

.

.

.

T1

T2

TN

Figure: Terminals with parallel processors.
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I tasks may use any free processor, or queue (FIFO) if there are
none.

I state space S = {n|0 ≤ n ≤ N} where n is the queue length
(for all processors)

I Poisson arrivals, rate λ(n) = (N − n)λ

I Service rate µ(n) =

{
nµ 1 ≤ n ≤ m

mµ m ≤ n ≤ N
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Steady state probabilities {pi |0 ≤ i ≤ N}

pi = p0

∏
λ(i − 1)∏
µ(i)

=
N(N − 1) . . . (N − i + 1)

i !
ρip0 (0 ≤ i ≤ m)

=⇒ pi =

{(
N
i

)
ρip0 0 ≤ i ≤ m

N!
(N−i)!m!mi−m ρ

ip0 m ≤ i ≤ N

p0 =
{m−1∑

i=0

(
N

i

)
ρi +

N∑
i=m

N!

(N − i)!m!mi−m
ρi
}−1

0
 1
 m-1
 m
 N


Nl
 (N-1)l
 (N-m+2)l
 (N-m+1)l
 l
(N-m)l


mmu
mmu
mmu
(m-1)mu
2mu


mu


Figure: State transition diagram.
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The throughput is either given by

µ
{m−1∑

j=1

jpj + m
N∑

j=m

pj

}
(mean departure rate from processors)

or

λ
{

N −
N∑

j=1

jpj

}
(mean arrival rate)

Other performance measures as previously
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The case of “always sufficient processors” - m ≥ N

I Here there is no case m < i ≤ N

=⇒ pi =

(
N

i

)
ρip0 (0 ≤ i ≤ N)

=⇒ p0 =
{ N∑

i=0

(
N

i

)
ρi
}−1

= (1 + ρ)−N

Thus pi =

(
N

i

)( ρ

1 + ρ

)i( 1

1 + ρ

)N−i

(Binomial distribution)
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I Probabilistic explanation
I pi is the probability of i “successes” in N Bernoulli (i.i.d.) trials
I probability of success = ρ

1+ρ = 1/µ
1/λ+1/µ = fraction of time

user is waiting for a task to complete in the steady state =
probability (randomly) observe a user in wait-mode.

I probability of failure = fraction of time user is in think mode in
the steady state = probability (randomly) observe a user in
think-mode

I random observations are i.i.d. in steady state =⇒ trials are
Bernoulli

I hence Binomial distribution

I result is independent of distribution of think times.
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Analogy with a queueing network

Regard the model as a 2-server, cyclic queueing network

T1

P1


TN
 PM


tasks
N
n
 
 
0
no queueing


=⇒

P
T


infinite server
 Multi-server


Figure: Original and equivalent network.

I As already observed, IS server is insensitive to its service time
distribution as far as queue length distribution is concerned.

I Multi-server becomes IS if M ≥ N =⇒ 2 IS servers.
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Little’s result/formula/law (J.D.C. Little, 1961)

Suppose that a queueing system Q is in steady state (i.e. there are
fixed, time independent probabilities of observing Q in each of its
possible states at random times.) Let:

L = average number of tasks in Q in steady state

W = average time a task spends in Q in steady state

λ = arrival rate (i.e. average number of tasks entering

or leaving Q in unit time)

Then
L = λW .
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Intuitive Justification

Suppose a charge is made on a task of £1 per unit time it spends
in Q

I Total collected on average in unit time = L

I Average paid by one task = W

I If charges collected on arrival (or departure), average collected
in unit time = λ.W

=⇒ L = λW

I Example: M/M/1 queue

W = (L + 1)/µ by R.O.P.

L = λW =⇒ W =
1

µ− λ
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Application of Little’s law

Server utilisation U.

 
 


 


 
 
  


Figure: Little’s law.
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I Consider server, rate µ (constant), inside some queueing
system: i.e. average time for one service = 1/µ

I Let total throughput of server = λ = total average arrival rate
(since in steady state)

I Apply Little’s result to the server only (without the queue)

mean queue length = 0.P(idle) + 1.P(busy)

= U

mean service time = µ−1

=⇒ U =
λ

µ

I Not the easiest derivation! This is a simple work conservation
law.
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Single server queue with general service times: the M/G/1
queue

Assuming that arrivals are Poisson with constant rate λ, service
time distribution has constant mean µ−1 (service rate µ) and that
a steady state exists

Utilisation, U = P(queue length > 0)

=
µ−1

λ−1
= λ/µ = “load.”

(For an alternate viewpoint, utilisation may be seen as the average
amount of work arriving in unit time; we already know this, of
course.)
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Writing

Mean queue length = L

Mean number in queue = LQ

Mean waiting time = W

Mean queueing time = WQ

then by Little’s law,

L = λW

LQ = λWQ

and by definition
W = WQ + 1/µ

So we have 3 equations and 4 unknowns.
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The fourth equation

I By the random observer property, queue faced on arrival has
mean length LQ (excluding task in service, if any)

I By “residual life” result for renewal processes, average service
time remaining for task in service (if any) is µM2

2 where M2 is
the second moment of the service time distribution
(M2 =

∫∞
0 x2f (x)dx where f (x) is the pdf of service time)

I Thus, since ρ = P(∃ a task being served at arrival instant)

WQ = LQ .1/µ+ ρ.
µM2

2
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I Now

LQ = λWQ =⇒ LQ ,WQ , L,W

L = ρ+
λ2M2

2(1− ρ)

I Observe that if standard deviation
mean (and hence the second

moment) of service time distribution is large, L is also (not
trivial as M2 increases with µ−1 - but not difficult either!)
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Embedded Markov chain

I State of the M/G/1 queue at time t is X (t) ∈ S where the
state space S = {n|n ≥ 0} as in M/M/1 queue.

I M/G/1 queue is not a Markov process
I P(X (t + s)|X (u), u ≤ t) 6= P(X (t + s)|X (t)) ∀t, s
I e.g. if a service period does not begin at time t
I no memoryless property

I Consider times t1, t2, . . . of successive departures and let
Xn = X (t+

n )
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I Given Xi , X (t) for t > ti is independent of X (t ′) for t ′ < ti
since at time t+

i
I time to next arrival is exponential with parameter λ because

arrival process is Poisson
I instantaneously, no task is in service, so time to next departure

is a complete service time or that plus the time to next arrival
(if queue empty)

=⇒ {Xi |i ≥ 1} is a Markov Chain with state space S
({ti |i ≥ 1} are called “Markov times”)

I It can be shown that, in steady state of E.M.C., distribution
of no. of jobs, j , “left behind” by a departure = distribution
of no. of jobs, j , seen by an arrival = limn→∞ P(Xn = j) by
R.O.P.

I Here we solve pj =
∑∞

n=0 pnqnj (j ≥ 0) for appropriate
one-step transition probabilities qij .
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Balance equations for the M/G/1 queue

I Solution for {pj} exists iff ρ = λ
µ < 1, equivalent to p0 > 0

since p0 = 1− U = 1− ρ in the steady state.

I Valid one-step transitions are i → j for
j = i − 1, i , i + 1, i + 2, . . . since we may have an arbitrary
number of arrivals between successive departures.

I Let
rk = P(k arrivals in a service period)

then

qij = P(Xn+1 = j |Xn = i) n ≥ 0

= rj−i+1︸ ︷︷ ︸
because i→i−1+(j−i+1)

i ≥ 1, j ≥ i − 1

q0j = rj j ≥ 0
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[Eventually a job arrives, so 0→ 1, and then 1→ j if there are j
arrivals in its service time since then 1→ 1− 1 + j = j ]

=⇒ p0 = 1− ρ

pj = p0rj +

j+1∑
i=1

pi rj−i+1 (j ≥ 0)

where rk =
∫∞

0
λx)k

k! e−λx f (x)dx if service time density function is
f (x) (known). This is because

P(k arrivals in service time|service time = x) = λx)k

k! e−λx and
P(service time ∈ (x , x + dx)) = f (x)dx
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Solutions to the balance equations

I In principle we could solve the balance equations by “forward
substitution”

I p0 is known
I j = 0: p0 allows us to find p1

I j = 1: p0, p1 allow us to find p2

...

I j = i : p0, p1, . . . , pi allow us to find pi+1

but computationally this is impractical in general
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I Define generating functions

p(z) =
∞∑
i=0

piz
i

r(z) =
∞∑
i=0

riz
i

Recap:

p′(z) =
∞∑
i=1

ipiz
i−1

=⇒ p′(1) = mean value of distribution {pj |j ≥ 0}

p′′(z) =
∞∑
i=2

(i2 − i)piz
i−2

=⇒ p′′(1) = M2 −M1
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I Multiply balance equations by z j and sum:

p(z) = p0r(z) +
∞∑
j=0

j+1∑
i=1

pi rj−i+1z j

= p0r(z) + z−1
∞∑
i=0

∞∑
j=0

pi+1z i+1rj−iz
j−i

where rk = 0 for k < 0

= p0r(z) + z−1
∞∑
i=0

pi+1z i+1
∞∑
j=0

rj−iz
j−i

= p0r(z) + z−1(p(z)− p0)r(z)
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Solution for p(z) and the Pollaczek-Khinchine result

p(z) =
p0(1− z)r(z)

r(z)− z

where r(z) =

∫ ∞
0

∞∑
k=0

(λxz)k

k!
e−λx f (x)dx

=

∫ ∞
0

e−λx(1−z)f (x)dx

= f ∗(λ− λz)

which is the Laplace transform of f at the point λ− λz
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Recap: Laplace transform f ∗ of f defined by

f ∗(s) =

∫ ∞
0

e−sx f (x)dx

so that
dn

dsn
f ∗(s) =

∫ ∞
0

(−x)ne−sx f (x)dx

=⇒ dnf ∗(s)

dsn

∣∣∣
s=0

= (−1)nMn nth moment of f (x)

E.g. f ∗(0) = 1, −f ∗′(0) = mean service time = 1/µ. Thus,

p(z) =
(1− ρ)(1− z)f ∗(λ− λz)

f ∗(λ− λz)− z

p′(1) =⇒ P-K formula . . .
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Derivation of P-K formula

p′

1− ρ
=

(f ∗ − z)(−λ(1− z)f ∗′ − f ∗) + (1− z)f ∗(1 + λf ∗′)

(f ∗ − z)2

where f ∗ = f ∗(λ− λz) etc.

I When z = 1, both denominator and nominator vanish
( =⇒ f ∗(λ− λ.1) = f ∗(0) = 1)

I L’Hopital rule =⇒

p′(1)

1− ρ
= lim

z→1

{λ((1− 2z)f ∗′ − λz(1− z)f ∗′)− λf ∗′ + 2λf ∗f ∗′

−2(f ∗ − z)(1 + λf ∗′)

}
I Again, when z = 1, both denominator and nominator vanish
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I L’Hopital rule now gives

p′(1)

1− ρ
=
λ(−2f ∗′(0) + λf ∗′′(0)− 2λf ∗′(0)2)

2(1 + λf ∗′(0))2

(since f ∗(0) = 1)

=
λ2M2 + 2(λ/µ)(1− (λ/µ))

2(1− (λ/µ))2
P-K formula!

(since f ∗′(0) = 1/µ)

I Hard work compared to previous derivation! But in principle
we could obtain any moment (“well known” result for variance
of queue length)
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Waiting time distribution

I The tasks left in an M/G/1 queue on departure of a given
task are precisely those which arrived during its waiting time

=⇒ pj =

∫ ∞
0

(λx)j

j!
e−λxh(x)dx

because P(j arrivals|waiting time = x) =
(λx)j

j!
e−λx

P(waiting time ∈ (x , x + dx)) = h(x)dx

=⇒ p(z) = h∗(λ− λz)

by the same reasoning as before.

121 / 226



I Laplace transform of waiting time distribution is therefore (let
z = λ−s

λ )

h∗(s) = p
(λ− s

λ

)
=

(1− ρ)sf ∗(s)

λf ∗(s)− λ+ s

I Exercise: Verify Little’s Law for the M/G/1 queue:

p′(1) = −λh∗′(0).

122 / 226



Example: Disk access time model

track queue


head (one for each track)


n equal sized sectors


(records) per track


 


Figure: Fixed head disk.
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Assumptions

I Tasks in the track queue require random sector

I arrivals to an empty queue always find the head at the
beginning of a sector (as with the next task in the queue after
a service completion)

=⇒ service times may be
1

nR
(requires next sector)

2

nR
(next but one)

...

1

R
(the one just gone)

(strictly, for arrivals to an empty queue, service times have
continuous sample space [1/nR, 1/nR + 1/R))

I Mean service time, µ−1 =
∑n

j=1
1
n

j
nR = n+1

2nR

I Second moment, M2 =
∑n

j=1
1
n ( j

nR )2 = (n+1)(2n+1)
6n2R2
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Solution and asymptotic behaviour

I Load is ρ = λ/µ = λ(n+1)
2nR =⇒ λ < 2nR

n+1 if drum track is not
to be saturated

I Mean queue length, L = ρ+ λ2(n+1)(2n+1)
12n2R2(1−ρ)

I As n→∞, i.e. many sectors on track
I assumption about arrivals to an empty queue becomes exact

(large n =⇒ good approximation)
I ρ→ λ

2R

I L→ λ
2R + λ2

3R(2R−λ)
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Queueing Networks

I Collection of servers/queues interconnected according to some
topology

1


3
 5


2
 4

departures


departures


external arrivals


Figure: Network example
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I Servers may be
I processing elements in a computer, e.g. CPU I/O devices
I stations/nodes in a communication network (may be widely

separated geographically)

I Topology represents the possible routes taken by tasks
through the system

I May be several different classes of tasks (multi-class network)
I different service requirements at each node
I different routing behaviours
I more complex notation, but straightforward generalisation of

the single-class network in principle
I we will consider only the single class case
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Types of network

I Open: at least one arc coming from the outside and at least
one going out

I must be at least one of each type or else the network would be
saturated or null (empty in the steady state)

I e.g. the example above

I Closed: no external (incoming or outgoing) arc
I constant network population of tasks forever circulating
I e.g. the example above with the external arcs removed from

nodes 1 and 4

I Mixed: multi-class model which is open with respect to some
classes and closed with respect to others – e.g. in the example
above a class whose tasks only ever alternated between nodes
2 and 4 would be closed, whereas a class using all nodes
would be open
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Types of server

I Server defined by its service time distribution (we assume
exponential but can be general for non-FCFS disciplines) and
its queueing discipline (for each class)

I FCFS (FIFO)
I LCFS (LIFO)
I IS (i.e. a delay node: no queueing)
I PS (Processor sharing: service shared equally amongst all tasks

in the queue)

I Similar results for queue length probabilities (in S.S.) for all

129 / 226



Open networks (single class)

I Notation:
M servers, 1, 2, . . . ,M with FCFS discipline and exponential
service times, mean 1

µi (ni )
, when queue length is ni

(1 ≤ i ≤ M)
I state dependent service rates to a limited extent
I µi (nj) for i 6= j =⇒ blocking: rate at one server depends on

the state of another, e.g. rate → 0 when finite queue at next is
full

I External Poisson arrivals into node i , rate γi , (1 ≤ i ≤ M)
(= 0 if no arrivals)
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I Routing probability matrix Q = (qij |1 ≤ i ≤ M)
I qij = probability that on leaving node i a task goes to node j

independently of past history
I qi0 = 1−

∑M
j=1 qij = probability of external departure from

node i
I at least one qi0 > 0, i.e. at least one row of Q sums to less

than 1

I State space of network S = {(n1, . . . , nM)}|ni ≥ 0}
I queue length vector random variable is (N1, . . . ,NM)
I p(n) = p(n1, . . . , nM) = P(N1 = n1, . . . ,NM = nM)
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Traffic equations

Determine mean arrival rates λi to each node i in the network

i


external arrival g

i


l

1

q


1i


l

M

q


Mi


l

i

q


i0


l

i

q


i1


l

i

q


iM


l

i
 l


i


must also be l

i

 in steady


state


Figure: Traffic equations
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In the steady state, λi = γi +
∑M

j=1 λjqji for (1 ≤ i ≤ M) =⇒
unique solution for {λi} (because of properties of Q)

I independent of Poisson assumption since we are only
considering mean numbers of arrivals in unit time

I assumes only the existence of a steady state

Example

1

g


q


1-q


Figure: Traffic example.

λ1 = γ + λ1q =⇒ λ1 =
γ

1− q

133 / 226



I Arrivals to a node are not in general Poisson, e.g. this simple
example. If there is no feedback then all arrival processes are
Poisson because

1. departure process of M/M/1 queue is Poisson
2. superposition of independent Poisson processes is Poisson

I Similarly, let Ri be the average interval between a task’s
arrival at server i and its departure from the network

I Ri is the “average remaining sojourn time”

Ri = Wi +
M∑

j=1

qijRj
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Steady state queue length probabilities

Jackson’s theorem

1. The number of tasks at any server is independent of the
number of tasks at every other server in the steady state

2. Node i behaves as if it were subjected to Poisson arrivals, rate
λi (1 ≤ i ≤ M)

I Thus, even though arrivals at each node are not, in general,
Poisson, we can treat the system as if it were a collection of
M independent M/M/1 queues

=⇒ p(n1, . . . , nM) ∝
M∏
i=1

{ λni
i∏ni

j=1 µi (j)

}
where µi (j) is the rate of server i when the queue length is j
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I If service rates are constant, µi ,

p(n) ≈
M∏
i=1

ρni
i =

M∏
i=1

(1− ρi )ρ
ni
i

where ρi = λi
µi

I p(n)→ usual performance measures such as mean queue
lengths, utilisations, throughput by standard methods – mean
waiting times by Little’s result

Note
The normalising constant for {p(n)|n ∈ S} is not shown for the
general case: it is the product of those for the M/M/1 queues.
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Mean Value analysis

I Can exploit Jackson’s theorem directly, together with Little’s
result, if only average quantities are required

I values for mean queue lengths Li are those for isolated M/M/1
queues with arrival rates λi (1 ≤ i ≤ M)

I assuming constant service rates µi

Li =
ρi

1− ρi
for 1 ≤ i ≤ M

(average number of tasks at node i)
I total average number of tasks in network

L =
M∑
i=1

Li =
M∑
i=1

ρi

1− ρi
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I Waiting times
I Average waiting time in the network, W = L/γ by Little’s

result where γ =
∑M

i=1 γi is the total arrival rate
I Average time spent at node i during each visit

Wi = Li/λi =
1

µi (1− ρi )

I Average time spent queueing on a visit to node i

WQi = LQi/λi =
ρi

µi (1− ρi )
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An alternative formulation

I Let vi be the average number of visits made by a task to
server i

γvi = average number of arrivals to node i in unit time = λi

where γ is the average number of arrivals to the whole
network in unit time and vi the average number of visits a
given arrival makes to node i

vi =
λi

γ
(1 ≤ i ≤ M)

I Let Di be the total average service demand on node i from
one task

Di =
vi

µi
=
ρi

γ

ρi = γDi = average work for node i arriving from outside the
network in unit time
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I Often specify a queueing network directly in terms of
{Di |1 ≤ i ≤ M} and γ; then there is no need to solve the
traffic equations

I

Li =
ρi

1− ρi
=

γDi

1− γDi

L and W as before

I Let Bi = total average time a task spends at node i

Bi = viWi =
vi

µi (1− ρi )
=

Di

1− γDi

alternatively apply Little’s result to node i with the external
arrival process directly

Bi =
Li

γ
=

Di

1− γDi
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I However, Di and γ cannot be used to determine µi and hence
neither Wi nor Ri

I Specification for delay nodes (IS) i
I Li = ρi = γDi

I Bi = Di (no queueing)
I Wi = 1/µi

I Di = vi/µi (as for any work conserving discipline also)
I service time distribution arbitrary
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Distribution of time delays

I Even though arrivals at each node are not, in general, Poisson,
the Random Observer Property still holds: waiting time
distribution at node i is exponential, parameter µi − λi again
as expected from Jackson’s theorem.

I Networks with no overtaking (“tree-like” networks) are easy
to solve for time delay distributions:
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1


4


5


3


2


route r = (1,2,3)


Figure: A network with no overtaking.
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I sojourn time on any route is the sum of independent,
exponential random variables

I this argument is independent of Jackson’s theorem and one
proof uses the idea of reversibility of the M/M/1 queue

I time delay distribution is a convolution of exponentials, e.g.
f1 ? f2 ? f3 for route r where fi (t) = (µi − λi )e−(µi−λi )t for
i = 1, 2, 3.
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Time delays in general networks

I mean sojourn time for any route is always easy because the
mean of a sum of random variables is equal to the sum of the
means of those random variables, whether or not they are
independent

I in networks with overtaking, the distribution of route sojourn
times remains an open problem. For example, in the network
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1
 3


2


overtaking possible


no overtaking


Figure: A network with overtaking.
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I I sojourn time distribution on route 1→ 3 is the convolution of
2 exponentials

I sojourn time distribution on route 1→ 2→ 3 is not the
convolution of 3 exponentials because the queue length faced
at node 3 upon arrival depends on the number of departures
from node 1 during the sojourn time at node 2.

I The Random Observer Property is not applicable since the
arrival to node 3 is not random when conditioned on the
previous arrival at node 1.

I Jackson’s theorem does not apply because it is concerned only
with steady state probabilities, i.e. the asymptotic behaviour
of pt(n) at the single point in time t as t →∞.

I Subject of many research papers.
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Closed Queueing Networks

I No external arrivals or departures (no γi terms).

I Routing probabilities satisfy

M∑
j=1

qij = 1 for 1 ≤ i ≤ M

I State space S = {(n1, . . . , nM)|ni ≥ 0,
∑M

j=1 nj = K} for
population K

I |S | = # of ways of putting K balls into M bags =
(
K+M−1

M−1

)
I finiteness of S → steady state always exists
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I Traffic equations are

λi =
M∑

j=1

λjqji for 1 ≤ i ≤ M

I homogeneous linear equations with an infinity of solutions
which differ by a multiplicative factor (because |I − Q| = 0
since rows all sum to zero)

I let (e1, . . . , eM) be any non-zero solution (typically chosen by
fixing one ei to a convenient value, like 1)

therefore ei ∝ arrival rate λi , i.e. ei = cλi

xi = ei
µi
∝ load = ρi , i.e. xi = cρi
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Steady state probability distribution for S

I Jackson’s theorem extends to closed networks which have a
product form solution

p(n1, . . . , nM) =
1

G

M∏
i=1

eni
i∏ni

j=1 µi (j)
where

M∑
i=1

ni = K . (1)

where µi (j) is the service rate of the exponential server i when
its queue length is j .

I G is the normalising constant of the network

G =
∑
nnn∈S

M∏
i=1

eni
i∏ni

j=1 µi (j)
(2)

not easy to compute (see later)
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I Prove the result by using the network’s steady state balance
equations:

Total flux out of state nnn = p(nnn)
M∑
i=1

µi (ni )ε(ni )

= Total flux into state nnn :
∑
i ,j

nnnj
i → nnn

=
M∑
i=1

M∑
j=1

p(nnnj
i )ε(ni )µj((nnnj

i )j)qji

where ε(n) =

{
0 if n = 0

1 if n > 0

nnnj
i =

{
(n1, . . . , ni − 1, . . . , nj + 1, . . . , nM) if i 6= j

nnni
i = nnn otherwise
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note that (nnnj
i )j =

{
nj + 1 if i 6= j

ni otherwise

I Try

p(n1, . . . , nM) =
1

G

M∏
i=1


eni
i

ni∏
j=1

µi (j)

 where
∑
i=1

ni = K .
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Then require

1

G

M∏
i=1

 eni

i
ni∏

j=1

µi (j)


∑

i

µi (ni )ε(ni ) =
1

G

M∏
i=1

 eni

i
ni∏

j=1

µi (j)


∑

i,j :i=j

µi (ni )ε(ni )qji

+
1

G

M∏
i=1

eni

i
ni∏

j=1

µi (j)

×

∑
i,j :i 6=j

ej

ei

µi (ni )

µj(nj + 1)
ε(ni )µj(nj + 1)qji

i.e. ∑
i

µi (ni )ε(ni ) =
∑

i

µi (ni )ε(ni )

{∑
j ejqji

ei

}
which is satisfied if eee satisfies the traffic equations.
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I Note that if eee ′ = ceee is another solution to the traffic
equations, the corresponding probabilities p′(nnn) and G ′ are

p′(nnn) =
1

G ′
Gc

P
ni p(nnn) =

GcK

G ′
p(nnn)

G ′ = cK G =
∑
nnn∈S

Gc
P

ni p(nnn)

and therefore p′(nnn) = p(nnn). This confirms the arbitrariness of
eee up to a multiplicative factor.
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Computation of the normalising constant

I We consider only the case of servers with constant service
rates to get an efficient algorithm.

I There are also algorithms for networks with servers having
state dependent service rates, e.g. the convolution algorithm.

I Less efficient but important since the alternative MVA
algorithm also requires constant rates.
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I Define G = g(K ,M) where

g(n,m) =
∑

n∈S(n,m)

m∏
i=1

xni
i

where S(n,m) = {(n1, . . . , nm)|ni ≥ 0,
∑m

i=1 ni = n} and
xi = ei

µi
(1 ≤ i ≤ m).

I state space for subnetwork of nodes 1, 2, . . . ,m and population
n.
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I For n,m > 0

g(n,m) =
∑

n∈S(n,m),nm=0

m∏
i=1

xni
i +

∑
n∈S(n,m),nm>0

m∏
i=1

xni
i

=
∑

n∈S(n,m−1)

m−1∏
i=1

xni
i + xm

∑
ki =ni (i 6=m)
km=nm−1
n∈S(n,m)

m∏
i=1

xki
i

= g(n,m − 1) + xmg(n − 1,m)

because {k |ki ≥ 0;
m∑

i=1

ki = n − 1} = S(n − 1,m).

157 / 226



I Boundary conditions:

g(0,m) = 1 for m > 0

g(n, 0) = 0 for n ≥ 0

I Note

g(0,m) =
∑

n=(0,...,0)

m∏
i=1

x0
i = 1

and
g(n, 1) = x1g(n − 1, 1) = xn

1
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Marginal queue length probabilities and performance
measures

I Although p(k) ∝
∏

pi (ki ) it is not the case that
P(Ni = ki ) = pi (ki ), as in the open networks. The use of
M/M/1 factors is just a convenient mathematical device,
there is no probabilistic interpretation.

I Probability that a server is idle (= 1− utilisation)

P(NM = 0) =
1

g(K ,M)

∑
n∈S(n,m),nm=0

M−1∏
i=1

xni
i =

g(K ,M − 1)

g(K ,M)
.

In general

P(Ni = 0) =
Gi (K )

G (K )
for 1 ≤ i ≤ M
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where G (K ) = g(K ,M) and Gi (k) is the normalising constant for
the same network with the server i removed and population k

Gi (k) =
∑

n∈S(k,M−1)

M−1∏
j=1

y
nj

j

where

yj =

{
xj for 1 ≤ j < i

xj+1 for i ≤ j ≤ M − 1

I utilisation of node i

Ui (K ) = 1− Gi (K )

G (K )
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Alternative Formulation: Cumulative Probabilities

I For 1 ≤ k ≤ K and 1 ≤ i ≤ M

P(Ni ≥ k) =
∑

n∈S(K ,M),ni≥k

M∏
j=1

x
nj

j

G (K )

=
xk
i

G (K )

∑
mi =ni−k

ni≥k mj =nj (j 6=i)
n∈S(K ,M)

M∏
j=1

x
mj

j

=
xk
i

G (K )

∑
m∈S(K−k,M)

M∏
j=1

x
mj

j

= xk
i

G (K − k)

G (K )
.
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Therefore the utilisation is given by

Ui = xi
G (K − 1)

G (K )

I Equating two expressions for Ui yields the recurrence relation
for g(k ,m) previously

I Throughput of server i ,

Ti (k) = µiUi (k) = ei
G (K − 1)

G (K )

proportional to visitation rate as expected.
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I Queue length distribution at server i is P(Ni = k) = pi (k) for
0 ≤ k ≤ K and 1 ≤ i ≤ M

pi (k) = P(Ni ≥ k)− P(Ni ≥ k + 1)

= xk
i

G (K − k)− xiG (K − k − 1)

G (K )
.

where G (−1) = 0 by definition.
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I Notice that the previous formulation gives a more concise
formulation for pi (k)

pi (k) =
1

G (K )

∑
n∈S(K ,M),ni =k

M∏
j=1

x
nj

j

=
xk
i

G (K )

∑
n∈S(K−k,M),ni =0

M∏
j=1

x
nj

j

= xk
i

Gi (K − k)

G (K )

for 0 ≤ k ≤ K and 1 ≤ i ≤ M. This is a generalisation of the
result obtained for Ui (k).
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I Mean queue length at server i , 1 ≤ i ≤ M, Li (k)

Li (K ) =
K∑

k=1

kP(Ni = k)

=
K∑

k=1

P(Ni ≥ k)

=

∑K
k=1 xk

i G (K − k)

G (K )
.
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Equivalent open networks and the use of mean value
analysis

I Consider an irreducible network – one in which every arc is
traversed within finite time from any given time with
probability 1

Closed


Network


0


arc 
a2


arc a1


arc a


arrivals


departures


Figure: Equivalent open network.
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I i.e. a network represented by an irreducible positive recurrent
Markov process (finite state space)

I we introduce a node, 0, in one of the arcs and replace arc a by
arc a1, node 0 and arc a2

I Source of a1 is source of a
I destination of a2 is destination of a

I Whenever a task arrives at node 0 (along arc a1), it departs
from the network and is immediately replaced by a
stochastically identical task which leaves node 0 along arc a2

I Define the network’s throughput, T , to be the average rate at
which tasks pass along arc a in the steady state.

I i.e. T is mean number of tasks traversing a in unit time.
I One can choose any arc in an irreducible network.
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Visitation rates and application of Little’s result

I Let the visitation rate be vi and the average arrival rate be λi

for node i , 1 ≤ i ≤ M, then λi = Tvi where T is the external
arrival rate.

I The set {vi |1 ≤ i ≤ M} satisfies the traffic equations, as we
could have derived directly by a similar argument.

I Suppose arc a connects node α to node β in the closed
network 1 ≤ α, β ≤ M, then v0 = vαqαβ because all traffic
from α to β goes through node 0 in the open network.

I But every task enters node 0 exactly once, hence vα = 1
qαβ

since v0 = 1. This determines {vi |1 ≤ i ≤ M} uniquely.
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I Little’s result now yields

Li = λiWi = TviWi

M∑
i=1

Li = K = T
M∑
i=1

viWi

since the sum of all queue lengths is exactly K in the closed
network

=⇒ T =
K∑M

i=1 viWi
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Mean waiting times

I

Wi =
1

µi
[1 + Yi ]

where the first term is the arriving task’s mean service time
and Yi is the mean number of tasks seen by new arrivals at
server i .

I For an IS (delay) server Wi = 1
µi

, otherwise . . .

I Do not have the random observer property
I number of tasks seen on arrival does not have the same steady

state distribution as the queue length since K tasks are seen
with probability 0. (arrival cannot “see itself”)

I do not have Yi = L− 1 as in open networks

170 / 226



I Do have the analogous Task (or Job) Observer Property:
The state of a closed queueing network in equilibrium seen by
a new arrival at any node has the same distribution as that of
the state of the same network in equilibrium with the arriving
task removed (i.e. with population K − 1)

I arriving task behaves as a random observer in a network with
population reduced by one

I intuitively appealing since the “one” is the task itself
I but requires a lengthy proof (omitted)
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Recurrence relations for throughput, mean waiting times
and mean queue length

I Task observer property yields, for 1 ≤ i ≤ M,K > 0,

Yi (K ) = Li (K − 1).

I Hence we obtain the recurrence relations

Wi (K ) =
1

µi
[1 + Li (K − 1)]

T (K ) =
K∑M

i=1 viWi (K )

Li (K ) = viT (K )Wi (K )

for 1 ≤ i ≤ M,K > 0 and the initial condition Li (0) = 0
I T (K ),Wi (K ), Li (K ) easily computed by a simple iteration,

calculating 2M + 1 quantities each time round the loop

{Li (K − 1)} →{Wi (K )} → T (K )︸ ︷︷ ︸
→{Li (K)}
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Alternative formulation

I Total average time spent at node i when population is K

Bi (K ) = viWi (K )

for 1 ≤ i ≤ M

I Total average service time (demand) a task requires from
node i

Di =
vi

µi

for 1 ≤ i ≤ M independent of population K .
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I Therefore

Bi (K ) = Di [1 + Li (K − 1)]

T (K ) =
K∑M

i=1 Bi (K )

Li (K ) = T (K )Bi (K )

for 1 ≤ i ≤ M

I Total average time in network spent by a task

W (K ) =
M∑
i=1

viWi (K ) =
M∑
i=1

Bi (K ) =
K

T (K )

as expected by Little’s law
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I Utilisation of node i

Ui (K ) =
λi

µi
= T (K )

vi

µi
= T (K )Di ≤ 1

which implies

T (K ) ≤ min
1≤i≤M

1

Di

which implies the maximum throughput is dictated by a
bottleneck server (or servers) - that (those) with maximum Di
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A faster approximate algorithm

I Algorithms given above need to evaluate 2M + 1 quantities
for each population between 1 and K

I Would be faster if we could relate Yi (K ) to Li (K ) rather than
Li (K − 1), which implies that we do not need to worry about
populations less than K

I

Yi (K ) =
K − 1

K
Li (K )

is a good approximation, exact for K = 1 and correct
asymptotic behaviour as K →∞ (exercise)
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I then

Bi (K ) = Di

[
1 +

K − 1

K
T (K )Bi (K )

]
I

Bi (K ) =
Di

1− K−1
K DiT (K )

I Thus we obtain the fixed point equation

T (K ) = f (T (K ))

where

f (x) =
K∑M

i=1
Di

1−K−1
K

Dix

there are many numerical methods to solve such equations
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Example: Multiprogramming computer system
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I/O device nodes


CPU node


Figure: A multiprogrammed computer.
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I Insert node 0 in route from CPU back to itself, throughput is
the rate at which tasks are interrupted at CPU node, this is
an arbitrary choice

I visitation rates

v1 = a1v1 +
M∑

j=2

vj

vi = aiv1 for i ≥ 2

v1 =
1

a1
with choice of position of node 0

therefore
vi =

ai

a1
for i ≥ 2
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I Sanity check: is the first equation is satisfied?

Di =
ai

a1µi
for i ≥ 2

D1 =
1

a1µ1

therefore T (K ) follows by solving recurrence relations

I total CPU throughput = T (K)
a1

(fraction a1 recycles)
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Application: A batch system with virtual memory

I Most medium-large computer systems use virtual memory

I It is well-known that above a certain degree of
multiprogramming performance deteriorates rapidly

I Important questions are
I How does the throughput and turnaround time vary with the

degree of multiprogramming
I What is the threshold below which to keep the degree of

multiprogramming?
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Representation of paging

I Suppose node 2 is the paging device (e.g. fast disk)
I assume dedicated to paging
I easy to include non-paging I/O also

I We aim to determine the service demand of a task at node 2,
D2, from tasks’ average paging behaviour

I use results from ’70s working set theory
I consider the page fault rate for varying amounts of main store

allocated to a task

I Let the population be K
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I paging behaviour will be represented by a lifetime function:
I h(x) = average CPU time between consecutive page faults

when a task has x pages of memory
I h(0) ≈ 0 (the first instruction causes a fault)
I h(x) = C , the total CPU time of a task for x ≥ some constant

value m, where m is the “size” of the task
I h is an increasing function: the more memory a task has the

less frequent will be its page faults on average.
I Two possible types of lifetime functions:
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Figure: Lifetime functions

184 / 226



I For (a) h(x) =

{
axb for x ≤ m

amb = C for x ≥ m
, b > 1

I For (b) h(x) = C
1+(a/x)2

I Note that for (b) there is no m s.t. h(m) = C
I Let each task have P/K pages of memory of size P pages

I average CPU time between faults = h(P/K )
I average number of faults during life of task = D1

h(P/K)

I average time at node 2 per fault = 1
µ2
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I Therefore average paging time of a task (from node 2)
I D2 = H(K ) = D1

µ2h(P/K)
I D2 = d2 + H(K ) if average non-paging requirement of a task

from node 2 is d2

I As K →∞, T (K )→ 0 since T (K ) ≤ min 1
Di

and D2 →∞
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Solution

I We again use the alternative form of the MVA algorithm

I For population K and 1 ≤ k ≤ K

Bi (k) = Di (K )[1 + Li (k − 1)] (1 ≤ i ≤ M)

T (k) =
k∑M

i=1 Bi (k)

Li (k) = T (k)Bi (k) (1 ≤ i ≤ M)

I Notice that only D2 is a function of K − D1 and D3 are
constant
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I Computation for a range of populations requires 2 nested
loops:

I outer loop for K = 1, 2, . . . ,Kmax

I inner loop for k = 1, 2, . . . ,K
I need new value for H(K ) each time round the outer loop
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Choice of lifetime function

We assume (arbitrarily) the lifetime function

h(x) =

{
D1( x

10000 )3.5, x ≤ 10000

D1 otherwise

for all tasks, i.e.

Life-time function example
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Figure: Lifetime function example.
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Thrashing curves

Mean job processing time vs. number of jobs
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Figure: Mean job processing time vs. number of jobs.
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Throughput vs. number of jobs
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Figure: Throughput vs. number of Jobs.
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Decomposition

I Separable queueing models are prone to break down in some
situations:

I There is usually a good model for small parts of any network
I Composing the bits can be hard unless the criteria for

separability are (reasonably) met

I Ideally, we need a method to:
I Reduce complexity (breaking a large problem into smaller

manageable ones)
I Provide approximate solutions where the necessary

assumptions do not hold
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I The most powerful general method is decomposition
(sometimes called aggregation)

I The idea is to replace a subnetwork of a (complex) system
with a single flow-equivalent server (FES)

F.E.S.

Subnetwork

Figure: Flow equivalent server.
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I We exploit the fact that servers in separable networks may
have state dependent service rates, i.e. µn for queue length n

I To find the required µn, we compute the “throughput”, τn, of
the subnetwork when the population is n and set

µn = τn, n = 0, 1, . . .

I The throughput can be determined by any method, e.g. an
explicit Markov model, standard queueing network algorithm
(e.g. MVA), or even simulation

I The technique is analogous to Norton’s Theorem in electrical
circuit theory.
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Method

1. Identify the subnetwork to be aggregated

Subnetwork


Figure: Flow equivalent server — step 1.

2. Short-circuit the rest of the network (i.e. use the same
visitation rates as in the original subnetwork)
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Subnetwork


Figure: Flow equivalent server — step 2.

I Compute the throughput τn, on the short-circuit arc for all
populations 0, 1, . . .

Population n


Throughput =
  

n


Figure: Flow equivalent server — step 3.

196 / 226



I Define a single FES with service rate µn = τn, n = 0, 1, . . .

I Replace the subnetwork with the FES and re-solve

FES


Figure: Flow equivalent server — step 5.
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I If necessary repeat the process (i.e. hierarchically)

Note
We can either aggregate the tricky part or aggregate the easy part
leaving a smaller tricky network behind!

FES


Aggregating the


sub-network


Easy Subnetwork


FES
 FES


Aggregating the rest  of


the system


Easy Subnetwork


Figure: Flow equivalent server — trick.
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Application: A multiprogramming system with virtual
memory

I Let us now revisit the multiprogrammed virtual memory
system, this time with terminals rather than batch processing:

2


Terminals


Disk 2


CPU


1


K


Disk 1


Figure: Multiprogramming system with virtual memory
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I The average think time of each user is 30 seconds

I Q: How does the system throughput and response time vary
with the number of terminals, K , and at what point does the
system start to thrash?

I As users submit jobs, they increase the population at the
computer system and consume memory

I The problem is that the performance of the computer
subsystem depends on the number of jobs there

I But the number of jobs at the subsystem is governed by the
number of terminals

I Specifically, the Disk 1 service rate depends on the population
of the entire subnetwork: no simple (product-form) solution
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Figure: Multiprogramming system with virtual memory — step 1
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I In the batch model we computed previously the
throughput,τn, when there were n batch jobs being processed

I We can thus aggregate the server subsystem into a
flow-equivalent server whose service rate at population n is

µn = τn

I That is

2


Terminals


1


K


FES


Figure: Multiprogramming system with virtual memory - FES
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I approximation because of lack of product-form solution

I The resulting reduced network is a simple M/M/1 queue with
state dependent arrival and service rates:

λn = (K − n)λ

µn = τn

where 0 ≤ n ≤ K and where λ = 1/30 is the submission rate
for a single terminal in the “think” state

I Let pn be the equilibrium probability that there are n jobs at
the subsystem (i.e. K − n users in “think” mode)
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I The magic formula for the M/M/1 queue gives

pn =
(K − n + 1)λ

µn

(K − n)λ

µn−1
. . .

Kλ

µ1
p0

= λn K !

(K − n)!

n∏
i=1

1

µi

with the usual constraint that

p0 + p1 + · · ·+ pk = 1

I The algorithm requires one loop to compute p0 and a further
loop to find the pn, 1 ≤ n ≤ K

I We are interested here in the throughput and mean response
time for a given value of K
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I The throughput is:

τ = p0µ0 + p1µ1 + · · ·+ pKµK

I We next need to find the mean population of the subsystem:

L = 0× p0 + 1× p1 + · · ·+ K × pK

I The mean waiting time then follows from Little’s law

W = L/τ

I With the same paging model as the batch system earlier, this
is what happens to τ as we increase K
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Throughput vs. number of terminals
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Figure: Throughput vs. number of terminals.

206 / 226



I The saturation point is clear! Beyond this the mean
population of the computer subsystem is such that thrashing
occurs

I Here is the behaviour of the mean waiting time as we increase
W

Mean response time vs. number of terminals
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I And finally (for the record), here is L:

Central server population vs. number of terminals
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Figure: Central server population vs. number of terminals.
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The Markov Modulated Poisson Process (MMPP)

I Poisson process is a good model for many arrival streams
I more short interarrival times than long
I superposition of many sparse independent renewal processes is

asymptotically Poisson
I right intuitive properties given minimal information (i.e. arrival

rate)

I But cannot model many characteristics seen in modern
networks

I multiple traffic types with known switching pattern between
types

I correlated traffic, i.e. non-zero correlation between interarrival
times

I self-similarity
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I MMPP accounts for some of these limitations
I models stochastically changing modes with different rates
I has non-zero autocorrelation which can be calculated
I integrates well into queueing models – the MMPP/M/1 queue
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Definition

I The MMPP is a Poisson process with rate that depends on
the state (called phase) of an independent continuous time
finite Markov chain X (t)

I N is the number of phases
I λk is the rate of the Poisson process in phase k
I so the probability of an arrival in a small interval of length h in

phase k is
λkh + o(h)
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I The modulating Markov chain X (t) is assumed irreducible
and so has a steady state

I let the generator matrix (instantaneous transition rate matrix)
be Q

I let the equilibrium probability of being in state k be

πk = lim
t→∞

P(X (t) = k)

I Average arrival rate in steady state is then

λ =
N∑

k=1

πkλk
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State at Arrival Instants

I Important for response time distributions

I Do not have the Random Observer Property

I In a long period of time T at equilibrium
I expected time spent in state k is πkT
I expected number of arrivals that see state k = λkπkT
I total number of arrivals has mean λT

I So probability that an arrival sees state k in steady state is

π′k =
λkπk

λ
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The MMPP/M/1 queue

I Suppose the queue has MMPP arrival process as defined
above and server with exponential service times of constant
mean µ−1

I Simple MP
I easy to write down the balance equations
I apply steady state theorem
I conditions harder to derive rigorously but expect that the

queue has a steady state iff

λ < µ
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I The MP has a 2-dimensional state space
I phase of the MMPP horizontally (say)
I queue length vertically
I infinite lattice strip for unbounded queue

I Let the steady state probability for phase k and queue length
j be denoted by πjk and let the vector vj = (πj1, πj2, . . . , πjN)

I Balance equations are, for state (i , j + 1)

πj+1,i

λi + µ+
∑
k 6=i

qik

 =
∑
k 6=i

πj+1,kqki + λiπj ,i + µπj+2,i
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The MMPP/M/1 queue (continued)

I This may be written in matrix form as

vjΛ + vj+1(Q − Λ− µI ) + µvj+2I = 0

where I is the unit N × N matrix and Λ is the diagonal matrix
with the arrival rates λk down the diagonal, i.e.
Λ = diag(λ1, . . . , λN)

I For states (i , 0) we get

v0(Q − Λ) + µv1I = 0
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I The normalising equation is

∞∑
j=0

vj · (1, 1, . . . , 1) = 1

I These equations give the unique equilibrium probabilities if
λ < µ
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Exact solution methods

I We have a matrix recurrence relation of the form

vjQ0 + vj+1Q1 + vj+2Q2 = 0

for j ≥ 0 and constant matrices Q0,Q1,Q2

I Spectral Analysis (Chakka and Mitrani; see Mitrani’s book,
last chapter)
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I find the eigenvalues ξk and eigenvectors ek of a certain
N−dimensional matrix given by Q and (λ1, . . . , λN)

I solution can then be shown to be, for a queue of unbounded
capacity

π =
N∑

k=1

akξ
kek

where the ak are constants determined by the equations at
queue length 0 and normalisation

I more complex result for queues of finite capacity
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I Matrix Geometric Method
I Closely related to Spectral Analysis but a completely different

approach
I Try a solution of the form vj = M ju for some matrix M and

vector u
I Then solve

Q0 + MQ1 + M2Q2 = 0

for M
I u from the other equations
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Approximate solution methods

I It often happens that phase changes are rare in comparison to
arrivals and departures

I rates in Q-matrix << λ1, . . . , λN , µ
I e.g. phase changes represent change of traffic type, such as

data, video, voice

I Often then a good approximation to use (an approximate)
decomposition, cf. queueing networks
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I For each phase k , solve the M/M/1 queue assuming the

arrival rate is constant, λk , giving equilibrium probability p
(k)
j

for queue length j , 1 ≤ k ≤ N
I i.e. solve all the ‘columns’ in the 2-D state space
I can only work if every λk < µ

I Then solve the phase process for the equilibrium probability rk
of being in phase k , i.e. solve

r · Q = 0

I Approximate the solution by

πjk = p
(k)
j rk
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Fitting MMPPs

I MMPP can be fitted to observed data by matching:
I average arrival rate λ (or mean interarrival time)
I higher moments of interarrival time (variance etc.)
I autocorrelation function (ACF)
I Hurst parameter, a measure of self-similarity

I Matching moments is easy but often gives a poor match on
correlation, the main reason for using the MMPP in the first
place!
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I Can use ACF to model correlated traffic directly
I next slide
I computationally difficult and expensive
I possibly use spectral methods, cf. Fourier transforms

I Hurst parameter gives a good representation of ‘how
correlated’ traffic is, but only contributes one parameter in the
matching process

I Better used to validate another matching process
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Autocorrelation function of the MMPP

I The autocorrelation function at lag k ≥ 1 for the above
MMPP is

ρk =
π∗R−2Λ[{I − eπ∗R−1Λ}{R−1Λ}k−1]R−2Λe

2π∗R−3Λe− (π∗R−2Λe)2

where the matrix R = Λ−Q, e = (1, 1, . . . , 1) and π∗ = πΛ
π.λ .

I Autocorrelation function is easily calculated by the above
formula, given the parameters of the MMPP

225 / 226



I But the converse, to determine the parameters from the ACF,
is hard!

I gives non-linear equations in several variables (the sought-after
parameters)

I fixed point methods of solution tend to be unstable
I research area
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Derivation of the Poisson process

The proof of the claim is by induction on the integers. Let
Pn(t) = (P(Nt = n).
Base case (n = 0)

P0(t + h) = P(Nt = 0 & no arrivals in (t, t + h))

= P0(t)(1− λh + o(h)) (by independence)

=⇒ P0(t + h)− P0(t)

h
= −λP0(t) + o(1)

P ′0(t) = −λP0(t) as h→ 0

=⇒ P0(t) = Ce−λt

P0(0) = P(N0 = 0) = 1 therefore C = 1
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Inductive Step (n > 0)

Pn(t + h) = Pn(t)P0(h) + Pn−1(h)P1(h) + o(h)

= (1− λh)Pn(t) + λhPn−1(t) + o(h)

=⇒ P ′n(t) = −λPn(t) + λPn−1(t)

=⇒ d

dt
(eλtPn(t)) = λeλtPn−1(t)
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Inductive hypothesis:

Pn−1(t) = e−λt (λt)n−1

(n − 1)!

This is OK for n = 1. Then

d

dt
(eλtPn(t)) =

(λ)n

(n − 1)!
tn−1

=⇒ eλtPn(t) =
(λt)n

(n)!
+ D

For t = 0, Pn(t) = 0 for n ≥ 2 and so D = 0. Thus

Pn(t) = e−λt λt

n!
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I Associated with each arc in a state transition diagram is a
rate, e.g.:
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Figure: Transition rates in Markov chains
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I The state holding time depends on the departure rates
(1/(ri ,a + ri ,b + ri ,c) is the mean holding time for state i in the
example).

I The probability flux from a state i to a state j is the average
number of transitions from i → j per unit time at equilibrium:

Probability flux(i → j) = ri ,jpi

I At equilibrium (if it exists) the total flux into each state must
balance the total flux out of it

I For example, in the example, for state i alone:

(ri ,a + ri ,b + ri ,c)pi = rj ,ipj + rk,ipk
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I Treating all states the same way leads to a set of linear
equations:∑

j 6=i

aijpi =
∑
j 6=i

ajipj = −aiipi for all j ∈ S

I Called the balance equations and subject to the normalising
equation ∑

i∈S

pi = 1

I The steady-state theorem tells us that if these equations
have a solution then there is a steady-state and that the
solution is unique

I This often provides a short-cut to the solution – see the
M/M/1 queue later.
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