332
Advanced Computer Architecture
Chapter 2
Review of Virtual Memory, Cost, Integrated Circuits, Benchmarks, Moore's Law

January 2004 Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and Patterson's Computer Architecture, a quantitative approach (3rd ed), and on the lecture slides of David Patterson's Berkeley David Pattersons Berkeley
course (CS252, Jan 2001)

Address Map

$V=\{0,1, \ldots, n-1\} \quad \begin{aligned} & \text { virtual address space } \\ & M=\{0,1, \ldots, m-1\} \\ & \text { physical address space }\end{aligned} n>m$
MAP: $V-$-> $\cup\{\varnothing\}$ address mapping function
$\operatorname{MAP}(a)=a^{\prime} \quad$ if data at virtual address a is present in physical address \underline{a}^{\prime} and $\underline{a^{\prime}}$ is present in M
$=\varnothing$ if data at virtual address a is not present in M

Basic Issues in VM System Design

- size of information blocks that are transferred from secondary to main storage (M)
O block of information brought into M, and M is full, then some region of M must be released to make room for the new block -of Must be relen
replacement policy
O which region of M is to hold the new block --> placement policy
O missing item fetched from secondary memory only on the occurrence

Paging Organization
virtual and physical address space partitioned into blocks of equal size

$$
\square_{\text {pages }} \text { page frames }
$$

Page 1

Address translation before cache access

It takes an extra memory access to translate VA to PA
This makes cache access very expensive, and this is the "innermost loop" that you want to go as fast as possible

So it's not a feasible option...

Cache access before address translation: aliasing problems

Problems with accessing cache using virtual addresses:
Synonym aliasing problem: two different virtual addresses map to same physical address $\Rightarrow>$ two different cache entries holding data for the same physical address! For update: must update all cache entries with same physical address
or memory becomes inconsistent
Determining this requires significant hardware: essentially an
associative lookup on the physical address tags to see if you have
multiple hits
Homonym aliasing problem: after a context-switch from process A to process B, the VA to PA mapping changes. A VA address x in process A may refer to a different value in process B.
Can these problems be avoided in software, by the operating system?

Cache access before address translation

Why access cache with PA at all?
Access cache with VA, translate only on cache miss
Unfortunately there are problems....

Page 2

Translation Look-Aside Buffers

Just like any other cache, the TLB can be organized as fully associative, set associative, or direct mapped
TLBs are usually small, typically not more than 128-256 entries even on high end machines. This permits fully associative
lookup on these machines. Most mid-range machines use small n-way set associative organizations.

$$
20 \dagger
$$

Reducing Translation Time

Machines with TLBs go one step further to reduce \# cycles/cache access
They overlap the cache access with the TLB access:
high order bits of the VA are used to look in the TLB while low
high order bits of the VA are used to look in the TLB while low
order bits are used as index into cache

Problems With Overlapped TLB Access

Overlapped access only works as long as the address bits used to
index into the cache do not change as the result of $\vee A$ tran index into the cache do not change as the result of $V A$ translation
This usually limits things to small caches, large page sizes, or high n-way set associative caches if you want a large cache
Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K :

Page 3

SPEC: System Performance Evaluation Cooperative

- First Round 1989
- 10 programs yielding a single number ("SPECmarks")

Second Round 1992

- SPECInt92 (6 integer programs) and SPECfp92 (14 floating point programs) - Compiler Flags unlimited. March 93 of DEC 4000 Model 610:
spice: unix.c:/def=(sysv, has_bcopy,"bcopy $(a, b, c)=\operatorname{memcpy}(b, a, c) "$ wave5: /ali=(all, dcom=nat)/ag=a/ur=4/ur=200 wave5: / /norecu/ag=a/ur=4/ur2=200/lc=blas
- Third Round 1995
* new set of programs: SPECint95 (8 integer programs) and SPECfp95 (10 floating point)
- "benchmarks useful for 3 years"
- Single flag setting for all programs: SPECint_base95, SPECfp_base95

How to Summarize Performance
Arithmetic mean (weighted arithmetic mean) tracks execution time:

$$
\Sigma\left(T_{i}\right) / n \text { or } \Sigma\left(W_{i}^{*} T_{i}\right)
$$

Harmonic mean (weighted harmonic mean) of rates (e.g., MFLOPS) tracks execution time: $n / \Sigma\left(1 / R_{i}\right)$ or $n / \Sigma\left(W_{i} / R_{i}\right)$
Normalized execution time is handy for scaling performance (e.g., X times faster than performance (e.g.
SPARCstation 10)
But do not take the arithmetic mean of normalized execution time, use the geometric mean:

$$
\begin{aligned}
& \text { Time, use tre ge } \\
& \left(\Pi T_{j} / N_{j}\right)^{1 / n}
\end{aligned}
$$

(H\&P 3rd ed pp. 36 is essential reading... "This section should be read by anyone who has uttered the words "performance" and computer in the same breath" Robert Bernecky, book review, Doctor Dobb's Journal)

SPEC: System Performance Evaluation Cooperative
 Fourth Round 2000: SPEC CPU2000

- 12 Integer
- 14 Floating Point
- 2 choices on compilation:
" "aggressive" (SPECint2000,SPECfp2000)
"conservative" (SPECint_base2000,SPECfp_base):
flags same for all programs, no more than 4 flags, same compiler for conservative, can change for aggressive
- multiple data sets so that can train compiler if trying to collect data for input to compiler to improve optimization
- Homework: check out the SPEC website:
www.specbench.org

SPEC First Round

- One program: 99\% of time in single line of code - New front-end compiler could improve dramatically

Impact of Means on SPECmark89 for IBM 550

	Ratio to	VAX		ime:	Weigh	ted Time:
Program	Before	After	Before	After	Before	After
gcc	30	29	49	51	8.91	9.22
espresso	35	34	65	67	7.64	7.86
spice	47	47	510	510	5.69	5.69
doduc	46	49	41	38	5.81	5.45
nasa7	78	144	258	140	3.43	1.86
li	34	34	183	183	7.86	7.86
eqntott	40	40	28	28	6.68	6.68
matrix 300	78	730	58	6	3.43	0.37
fpppp	90	87	34	35	2.97	3.07
tomcatv	33	138	20	19	2.01	1.94
Mean	54	72	124	108	54.42	49.99
	Geometric			Arithmetic We		ighted Arith.
	Ratio	1.33	Ratio	1.16	Ratio	1.09

Performance Evaluation

- "For better or worse, benchmarks shape a field" \square Good products created when have:
- Good benchmarks
- Good ways to summarize performance
- Given sales is a function in part of performance relative to competition, investment in improving product as reported by performance summary
- If benchmarks/summary inadequate, then choose between improving product for real programs vs. improving product to get more sales: Sales almost always wins!
Execution time is the measure of computer performance!

Pre-historic integrated circuits

- 1958: The first monolithic integrated circuit, about the size of a finger tip developed at Texas Instruments by Jack Kilby. The IC was a chip of a single Germanium crystal containing one transistor, one capacitor, and one resistor (Source: Texas Instruments)

Source: http://kasap3.usask.ca/server/kasap/photo1.htm

Chips are made from slices of a singlecrystal silicon ingot

- Each slice is about 30 cm in diameter, and 250-600 microns thick
- Transistors and wiring are constructed by photolithography
- Essentially a printing/etching process
- With lines ca. $0.18 \mu \mathrm{~m}$ wide
-IBM Power3
microprocessor
15M transistors
$-0.18 \mu \mathrm{~m}$
copper/SOI
process
- About $270 \mathrm{~mm}^{2}$

Page 6

Integrated circuit fabrication is a printing process . Grow pure silicon crystal
. Slice into wafers and polish
. Grow surface layer of silicon dioxide (ie glass), either using high-temperature oxygen or chemical vapour deposition
Coat surface with photoresist layer, then use mask to selectively expose photoresist to ultraviolet light
Etch away silicon dioxide regions not covered by hardened photoresist
Further phool hograhy seps buld up add iona hayrs, such as polysilicon
Exposed silicon is doped with small quantities of chemicals which alter its semiconductor behaviour to create transistors
Further photolithography steps build layers of metal for wiring
Die are tested, diced, tested and packaged

Wafer saw: Each wafer is cut into many individual die using a diamond-edge saw with a cutting edge about the thickness of a human hair. (Photograph courtesy of Micron Technology, Inc., Boise, Idaho)

Page 7

Integrated Circuits Costs

IC cost $=\frac{\text { Die cost }+ \text { Testing cost }+ \text { Packaging cost }}{\text { Final }}$ Final test yield
Die cost $=\quad$ Wafer cost
Dies per wafer $=\frac{\pi(\text { Wafer_dia } m / 2)^{2}}{\text { Die_Area }}-\frac{\pi \times \text { Wafer_diam }}{\sqrt{2 \cdot \text { Die_Area }}}-$ Test_Die

Die Cost goes roughly with die area ${ }^{4}$

						Intel	x86/Pentium Family

Real World Examples

Chip \quadMe 		Line width	Wafer cost	efect $/ \mathrm{cm}^{2}$	Area mm^{2}	Dies/ wafer	Yield	Cost
386DX	2	0.90	\$900	1.0	43	360	71\%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54\%	\$12
PowerPC 601	4	0.80	\$1700	1.3	121	115	28\%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27\%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19\%	\$149
SuperSPARC	3	0.70	\$1700	1.6	256	48	13\%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9\%	\$417

* From "Estimating IC Manufacturing Costs," by Linley Gwennap,

Microprocessor Report, August 2, 1993, p. 15

Technology Trends: Microprocessor Capacity

CMOS improvements:

- Die size: 2 x every 3 yrs
- Line width: halve $/ 7 \mathrm{yrs}$
"Graduation Window" entiums III Processor 4 Process
transistors
100,000,000
10,000,000
1,000,000

100,000

10,000

Page 9

Review \#3/3: TLB, Virtual Memory

- Caches, TLBs, Virtual Memory all understood by examining how they deal with 4 questions:

1. Where can block be placed?
2. Where can block be
3. How is block found?
4. What block is replaced on miss?
5. How are writes handled?

- Page tables map virtual address to physical address
- TLBs make virtual memory practical
- Locality in data => locality in addresses of data, temporal and spatia
- TLB misses are significant in processor performance
- funny times, as most systems can't access all of 2nd level cache funny times, as most
without TLB misses!
- Today VM allows many processes to share single memory without having to swap all processes to disk: today VM protection is more important than memory hierarchy

Summary

- Performance Summary needs good benchmarks and good ways to summarize performance
- Transistors/chip for microprocessors growing via "Moore's Law" 2X 1.5/yrs
- Disk capacity (so far) is growing at a faster rate over the last 4-5 years
DRAM capacity is growing at a slower rate over the last 4-5 years
In general, Bandwidth improving fast, latency improving slowly

