Recall from Pipelining Review

Advanced Computer Architecture Chapter 4.2

332 Advanced Computer Architecture Chapter 4

Instruction Level Parallelism and Dynamic Execution

January 2004 Paul H J Kelly

Advanced Computer Architecture Chapter 4.1

These lecture notes are partly based on the course text, Hennessy and Patterson's *Computer Architecture*, a quantitative approach (3rd *ed*), and on the lecture slides of David Patterson and John Kubiatowicz's Berkeley course (*CS252*, Jan 2001)

Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data Hazard Stalls + Control Stalls <u>Ideal pipeline CPI</u>: measure of the maximum performance attainable by the implementation <u>Structural hazards</u>: HW cannot support this combination of instructions <u>Data hazards</u>: Instruction depends on result of prior instruction still in the pipeline

<u>Control hazards</u>: Caused by delay between the fetching of instructions and decisions about changes in control flow (branches and jumps)

	Technique	Reduces
	Dynamic scheduling	Data hazard stalls
	Dynamic branch prediction	Control stalls
extbook	Issuing multiple instructions per cycle	Ideal CPI
pter 3	Speculation	Data and control stalls
↓ ↓	Dynamic memory disambiguation	Data hazard stalls involving memory
A	Loop unrolling	Control hazard stalls
	Basic compiler pipeline scheduling	Data hazard stalls
xtbook apter 4	Compiler dependence analysis	Ideal CPI and data hazard stalls
, , , , , , , , , , , , , , , , , , ,	Software pipelining and trace scheduling	Ideal CPI and data hazard stalls
	Compiler speculation	Ideal CPT data and control stalls

Name Dependence #1: Anti-dependence

- Mame dependence: when 2 instructions use same register or memory location, called a name, but no flow of data between the instructions associated with that name
- Im There are two kinds:
- Name dependence #1: anti-dependence/WAR ➡ Instr₁ writes operand <u>before</u> Instr₁ reads it

Name Dependence #2: Output dependence

Advanced Computer Architecture Chapter 4

dvanced Computer Architecture Chapter

Instr_T writes operand *before* Instr_T writes it.

I: sub r1,r4,r3 J: add r1,r2,r3 K: mul r6,r1,r7

- In Called an "output dependence" by compiler writers This also results from the reuse of name "r1"
- If anti-dependence caused a hazard in the pipeline, called a Write After Write (WAW) hazard

Control Dependencies le Every instruction is control dependent on some set of branches, and, in general, these control dependencies must be preserved to preserve program order if p1 { S1; }; if p2 { S2; Is control dependent on p1, and s2 is control dependent on p2 but not on p1. Advanced Computer Architecture Chapter 4,10

Exception Behavior Preserving exception behavior => any changes in instruction execution order must not change how exceptions are raised in program (=> no new R2,R3,R4 R2,L1 R1,0(R2)

HW Schemes: Instruction Parallelism

In Key idea: Allow instructions behind stall to proceed

- DIVD F0,F2,F4
- ADDD F10,F0,F8
- SUBD F12,F8,F14
- Enables out-of-order execution and allows out-of-order completion
- ▶ Will distinguish when an instruction begins execution and when it completes execution; between these two times, the instruction is in execution
- In a dynamically scheduled pipeline, all instructions pass through issue stage in order (in-order issue)

Dynamic Scheduling Step 1

Advanced Computer Architecture Chapter 4.1

- Simple pipeline had 1 stage to check both structural and data hazards: Instruction Decode (ID), also called Instruction Issue
- Split the ID pipe stage of simple 5-stage pipeline into 2 stages:
- Issue—Decode instructions, check for structural hazards
- *Read operands*—Wait until no data hazards, then read operands

Advanced Computer Architecture Chapter 4,17

For IBM 360/91 (before caches!)

- Me Goal: High Performance without special compilers
- Small number of floating point registers (4 in 360) prevented interesting compiler scheduling of operations
 This led Tomasulo to try to figure out how to get more effective registers — renaming in hardware!
- Why study a 1966 Computer?
- ► The descendents of this have flourished!
 ➡ Alpha 21264, HP 8000, MIPS 10000/R12000, Pentium II/III/4, AMD K5,K6,Athlon, PowerPC 603/604/G3/G4/G5, ...

Reservation Station Components

Advanced Computer Architecture Chapter 4,20

Op: Operation to perform in the unit (e.g., + or -)

Vj, Vk: Value of Source operands

➡ Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers (value to be written)

Note: Qj,Qk=0 => ready

Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions that will write that register.

			Ŧ	•	· · l						0	
			I	om	asui	0 0	xai	npie	2 0	ycie	9	
Instruction	sta	tus:			Exec	Write						
Instruction		j	k	Issue	Comp	Result			Busy	Address	_	
LD	F6	34+	R2	1	3	4		Load1	No			
LD	F2	45 +	R3	2	4	5		Load2	No			
MULTD	F0	F2	F4	3				Load3	No			
SUBD	F8	F6	F2	4	7	8						
DIVD	F10	FO	F6	5								
ADDD	F6	F8	F2	6								
Reservation	ı St	ations	<i></i>		S1	<i>S2</i>	RS	RS				
7	ïme	Name	Busy	Op	V_j	Vk	Qj	Qk				
	1 6	Add1 Add2 Add3 Mult1	No Yes No Yes	ADDD	(M-M) 0 M(A2)	M(A2) R(F4)	M-44					
	-	Mult2	res	DIVD		M(A1)	Multi					
Register re.	sult	statu.	s:									
Clock				FO	F2	F4	F6	F8	F10	F12		F30
9			FU	Mult1	M(A2)		Add2	(M-M)	Mult2	5		
					<i>,</i>							
									Advance	d Computer Arch	itecture C	hapter 4,31

			10	mas	suio	CX	am	pie	Cy	cie	12	
Instruction	n sta	tus:			Exec	Write						
Instructio	n	j	k	Issue	Comp	Result			Busy	Addres	s	
LD	F6	34+	R2	1	3	4		Load1	No			
LD	F2	45 +	R3	2	4	5		Load2	No			
MULTD	FO	F2	F4	3				Load3	No			
SUBD	F8	F6	F2	4	7	8						
DIVD	F10	FO	F6	5								
ADDD	F6	F8	F2	6	10	11						
Reservatio	on St	ation	s:		<i>S1</i>	<i>S2</i>	RS	RS				
	Time	Name	Busy	Op	Vi	Vk	Oj	Ok				
		Add1	No						1			
		Add2	No									
		Add3	No									
	2	2 Mult1	Yes	MULTE	0 M(A2)	R(F4)						
		Mult2	Yes	DIVD		M(A1)	Mult1					
Register r	esult	statu	s:									
Clock				F0	F2	F4	F6	F8	F10	F12		F30
13			FU	Mult1	M(A2)	(1	M-M+N	(M-M)	Mult2			

Tomasulo Loop Example	Instruction status: Exec Write
Loop:LD F0 0 R1 MULTD F4 F0 F2 SD F4 0 R1 SUBI R1 R1 #8 BNEZ R1 Loop This time assume Multiply takes 4 clocks	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
 Assume 1st load takes 8 clocks (L1 cache miss), 2nd load takes 1 clock (hit) To be clear, will show clocks for SUBI, BNEZ Reality: integer instructions ahead of FI. Pt. Instructions Show 2 iterations 	Add3 No SD F4 0 R1 Mult1 No SUBI R1 R1 #8 Mult2 No No SUBI R1 R1 #8 Register result status R1 F0 F2 F4 F6 F8 F10 F12 F30 0 80 Fu

				Write	Exec				s:	on statu	nstructi
Fu	Addr	Busy		Result	Comp	Issue	k	j	ion	Instructi	ITER
1	80	Yes	Load1		9	1	R1	0	F0	LD	1
1	72	Yes	Load2			2	F2	F0	F4	MULTD	1
1		No	Load3			3	R1	0	F4	SD	1
Mult1	80	Yes	Store1			6	R1	0	FO	LD	2
Mult2	72	Yes	Store2			7	F2	FO	F4	MULTD	2
		No	Store3			8	R1	0	F4	SD	2
				RS	<i>S2</i>	<i>S1</i>			ions:	tion Stat	Reserva
			Code:	Qk	Qj	Vk	Vj	Ор	Busy	Name	Time
R1	0	F0	LD						No	Add1	
F2	F0	F4	MULTD						No	Add2	
R1	0	F4	SD						No	Add3	
#8 <	R1	R1	SUBI		Load1	R(F2)		Multd	Yes	Mult1	
	Loop	R1	BNEZ		Load2	R(F2)		Multd	Yes	Mult2	
									tatus	result st	Register
F30		F12	F10	F8	F6	F4	F2	F0		R1	Clock
						Mult2		Load2	Fu	72	9

instructi	on statu	s:				Exec	Write				
ITER	Instructi	ion	j	k	Issue	Сотр	Result		Busy	Addr	Fu
1	LD	F0	0	R1	1	9	10	Load1	No		
1	MULTD	F4	F0	F2	2			Load2	No		L
1	SD	F4	0	R1	3			Load3	Yes	64	
2	LD	F0	0	R1	6	10	11	Store1	Yes	80	Mult1
2	MULTD	F4	FO	F2	7			Store2	Yes	72	Mult2
2	SD	F4	0	R1	8			Store3	No		
Reservat	tion Stat	ions:			<i>S1</i>	S2	RS				
Time	Name	Busy	Op	Vj	Vk	Qj	Qk	Code:			
	Add1	No						LD	F0	0	R1 <
	Add2	No						MULTD	F4	F0	F2
	Add3	No						SD	F4	0	R1
3	Mult1	Yes	Multd	M[80]	R(F2)			SUBI	R1	R1	#8
4	Mult2	Yes	Multo	M[72]	R(F2)			BNEZ	R1	Loop	
Register	result st	atus	\rightarrow	<u> </u>							
Clock	R1		FO	F2	F4	F6	F8	F10	F12		F30
11	64	Fu	Load3		Mult2						

Instructi	ion statu	s:				Exec	Write				
ITER	Instruct	ion	j	k	Issue	Comp	Result		Busy	Addr	Fu
1	LD	F0	0	R1	1	9	10	Load1	No		1
1	MULTD	F4	F0	F2	2			Load2	No		
1	SD	F4	0	R1	3			Load3	Yes	64	
2	LD	FO	0	R1	6	10	11	Store1	Yes	80	Mult1
2	MULTD	F4	FO	F2	7			Store2	Yes	72	Mult2
2	SD	F4	0	R1	8			Store3	No		
Reserva	tion Stat	ions:			S1	<i>S2</i>	RS				
Time	Name	Busy	Ор	V_j	Vk	Qj	Qk	Code:			
	Add1	No						LD	F0	0	R1
	Add2	No						MULTD	F4	F0	F2 <
	Add3	No						SD	F4	0	R1
1	Mult1	Yes	Multd	M[80]	R(F2)			SUBI	R1	R1	#8
2	Mult2	Yes	Multd	M[72]	R(F2)			BNEZ	R1	Loop	
Register	result si	tatus									
Clock	R1		F0	F2	F4	F6	F8	F10	F12		F30
13	64	Fu	Load3		Mult2						

nstructi	ion statu	s:				Exec	Write				
ITER	Instruct	ion	j	k	Issue	Comp	Result		Busy	Addr	Fu
1	LD	F0	0	R1	1	_9	10	Load1	No		1
1	MULTD	F4	F0	F2	2	14		Load2	No		
1	SD	F4	0	R1	3	\square		Load3	Yes	64	
2	LD	FO	0	R1	6	10	11	Store1	Yes	80	Mult1
2	MULTD	F4	FO	F2	7			Store2	Yes	72	Mult2
2	SD	F4	0	R1	8			Store3	No		
Reserva	tion Stat	ions:			<i>S1</i>	<i>S2</i>	RS				
Time	Name	Busy	Op	V_j	Vk	Qj	Qk	Code:			
	Add1	No						LD	F0	0	R1
	Add2	No						MULTD	F4	F0	F2
	Add3	No						SD	F4	0	R1
0	Mult1	Yes	Multd	M[80]	R(F2)			SUBI	R1	R1	#8
1	Mult2	Yes	Multd	M[72]	R(F2)			BNEZ	R1	Loop	
Register	result si	tatus									
Clock	R1		F0	F2	F4	F6	F8	F10	F12		F30
14	64	Fu	Load3		Mult2						

Instructi	on statu	s:			•	Exec	Write	•	•		
ITER	Instruct	ion	i	k	Issue	Com	Result		Busy	Addr	Fu
1	LD	FO	0	R1	1	9	_10_	Load1	No		1
1	MULTD	F4	F0	F2	2	14	15	Load2	No		
1	SD	F4	0	R1	3			Load3	Yes	64	
2	LD	FO	0	R1	6	10	11	Store1	Yes	80	[80]*R2
2	MULTD	F4	FO	F2	7	15	וו	Store2	Yes	72	Mult2
2	SD	F4	0	R1	8		ן ו	Store3	No		
Reserva	tion Stat	ions:			<i>S1</i>	<i>S2</i>	RS				
Time	Name	Busy	Op	Vj	Vk	Qj	Qk	Code:			
	Add1	No						LD	F0	0	R1
	Add2	No						MULTD	F4	F0	F2 <
	Add3	No						SD	F4	0	R1
	Mult1	No						SUBI	R1	R1	#8
0	Mult2	Yes	Multd	M[72]	R(F2)			BNEZ	R1	Loop	
Register	result si	tatus									
Clock	R1		F0	F2	F4	F6	F8	F10	F12		F30
15	64	Fu	Load3		Mult2						
	-		. –					. –			

Instructi	ion statu	s:				Exec	Write				
ITER	Instructi	ion	j	k	Issue	Comp	Result		Busy	Addr	Fu
1	LD	F0	0	R1	1	9	10	Load1	No		1
1	MULTD	F4	F0	F2	2	14	15	Load2	No		
1	SD	F4	0	R1	3			Load3	Yes	64	
2	LD	F0	0	R1	6	10	11	Store1	Yes	80	[80]*R2
2	MULTD	F4	FO	F2	7	15	16	Store2	Yes	72	[72]*R2
2	SD	F4	0	R1	8			Store3	Yes	64	Mult1
Reserva	tion Stat	ions:			SI	<i>S2</i>	RS				
Time	Name	Busy	Ор	Vj	Vk	Qj	Qk	Code:			
	Add1	No						LD	F0	0	R1
	Add2	No						MULTD	F4	F0	F2
	Add3	No						SD	F4	0	R1 <
	Mult1	Yes	Multd		R(F2)	Load3		SUBI	R1	R1	#8
	Mult2	No						BNEZ	R1	Loop	
Register	• result st	atus									
Clock	R1		F0	F2	F4	F6	F8	F10	F12		F30
17	64	Fu	Load3		Mult1						

Instructi	on statu	s:				Exec	Write				
ITER	Instruct	ion	j	k	Issue	Сотр	Result		Busy	Addr	Fu
1	LD	F0	0	R1	1	9	10	Load1	No		
1	MULTD	F4	F0	F2	2	_14_	15	Load2	No		
1	SD	F4	0	R1	3	18		Load3	Yes	64	
2	LD	FO	0	R1	6	10	11	Store1	Yes	80	[80]*R2
2	MULTD	F4	FO	F2	7	15	16	Store2	Yes	72	[72]*R2
2	SD	F4	0	R1	8			Store3	Yes	64	Mult1
Reserva	tion Stat	ions:			S1	<i>S2</i>	RS				
Time	Name	Busy	Op	Vj	Vk	Qj	Qk	Code:			
	Add1	No						LD	F0	0	R1
	Add2	No						MULTD	F4	F0	F2
	Add3	No						SD	F4	0	R1
	Mult1	Yes	Multd		R(F2)	Load3		SUBI	R1	R1	#8 ┥
	Mult2	No						BNEZ	R1	Loop	
Register	result si	tatus									
Clock	R1		F0	F2	F4	<i>F6</i>	F8	F10	F12		F30
18	64	Fu	Load3		Mult1						

				Lo	оор	Ex	am	ple (Cyc	:le :	19	
Instructi	ion statu	s:			•	Exec V	Vrite	•	•			
ITER	Instruct	ion	i	k	Issue	CompR	esult		Busy	Addr	Fu	
1	LD	F0	0	R1	1	9	10	Load1	No			
1	MULTD	F4	F0	F2	2	14	15	Load2	No			
1	SD	F4	0	R1	3	18	19	Load3	Yes	64		
2	LD	F0	0	R1	6	10	11	Store1	No			
2	MULTD	F4	FO	F2	7	کلے	16	Store2	Yes	72	[72]*R2	
2	SD	F4	0	R1	8	19		Store3	Yes	64	Mult1	
Reserva	tion Stat	ions:			<i>S1</i>	<i>S2</i>	RS					
Time	Name	Busy	Op	Vj	Vk	Qj	Qk	Code:				
	Add1	No						LD	F0	0	R1	
	Add2	No						MULTD	F4	F0	F2	
	Add3	No						SD	F4	0	R1	
	Mult1	Yes	Multd		R(F2)	Load3		SUBI	R1	R1	#8	
	Mult2	No						BNEZ	R1	Loop		━
Register	result s	tatus										
Clock	R1		F0	F2	F4	F6	F8	F10	F12		F30	
19	56	Fu	Load3		Mult1							
									Advanced	Computer Ar	chitecture Cha	pter 4.63

What about Precise Interrupts?

Im Tomasulo had:

In-order issue, out-of-order execution, and out-oforder completion

Meed to "fix" the out-of-order completion aspect so that we can find precise breakpoint in instruction stream.

Relationship between precise interrupts and speculation:

Advanced Computer Architecture Chapter 4.6

advantages

Speculation is a form of guessing.

Important for branch prediction: Need to "take our best shot" at predicting branch direction.

If we speculate and are wrong, need to back up and restart execution at point at which we predicted incorrectly:

This is exactly same as precise exceptions!

In Technique for both precise interrupts/exceptions and speculation: in-order completion or commit

Some subleties... It's vital to reduce the branch misprediction penalty. Does the Tomasulo+ROB scheme described here roll-back as soon as the branch is found to be mispredicted?

- Stores are buffered in the ROB, and committed only when the instruction is committed. A load can be issued while several stores (perhaps to the same address) are uncommitted. We need to make sure the load gets the right data.
- What if a second conditional branch is encountered, before the outcome of the first is resolved?
- ▶ This discussion has assumed a single-issue machine. How can these ideas be extended to allow multiple instructions to be issued per cycle?
 - 🔹 Issue
 - Monitoring CDBs for completion
 - Handling multiple commits per cycle

Case for Branch Prediction when Issue N instructions per clock cycle

- 1. Branches will arrive up to *n* times faster in an *n*-issue processor
- 2. Amdahl's Law => relative impact of the control stalls will be larger with the lower potential CPI in an *n*issue processor

7 Branch Prediction Schemes

Advanced Computer Architecture Chapte

- 1. 1-bit Branch-Prediction Buffer
- 2. 2-bit Branch-Prediction Buffer
- 3. Correlating Branch Prediction Buffer
- 4. Tournament Branch Predictor
- 5. Branch Target Buffer
- 6. Integrated Instruction Fetch Units
- 7. Return Address Predictors

Is local history all th	nere is to it?	Global hist	ory
 The bimodal predictor uses the BHT to history" - the prediction information use particular branch is determined only by address Consider the following sequence: It is very likely that condition C2 is correlated with C1 - and that C3 is correlated with C1 and C2 How can we use this observation? 	record "local ed to predict a its memory if (C1) then S1; endif if (C2) then S2; endif if (C3) then S3; endif	 Definition: <u>Global history</u>. The taken - not-taken history for all previously-executed branches. Idea: use global history to improve branch prediction Compromise: use <i>m</i> most recently-executed branches Implementation: keep an <i>m</i>-bit Branch History Register (BHR) - a shift register recording taken - not-taken direction of the last m branches Question: How to combine local information with global information? 	I
	Advanced Computer Architecture Chapter 4.83	Advanced Computer Architecture Cho	pter 4.84

Page 22

Pitfall: Sometimes bigger and dumber is better

- № 21264 uses tournament predictor (29 Kbits)
- Earlier 21164 uses a simple 2-bit predictor with 2K entries (or a total of 4 Kbits)
- SPEC95 benchmarks, 21264 outperforms
 21264 avg. 11.5 mispredictions per 1000 instructions
 21164 avg. 16.5 mispredictions per 1000 instructions
- Reversed for transaction processing (TP) !
 \$ 21264 avg. 17 mispredictions per 1000 instructions
 \$ 21164 avg. 15 mispredictions per 1000 instructions
- ▶ TP code much larger & 21164 hold 2X branch predictions based on local behavior (2K vs. 1K local predictor in the 21264)

Warm-up effects and context-switching

- In real life, applications are interrupted and some other program runs for a while (if only the OS)
- IF This means the branch prediction is regularly trashed
- Me Simple predictors re-learn fast
 - in 2-bit bimodal predictor, all executions of given branch update same 2 bits
- M Sophisticated predictors re-learn more slowly
 - for example, in (2,2) gselect predictor, prediction updates are spread across 4 BHTs
- Selective predictor may choose fast learner predictor until better predictor warms up

Advanced Computer Architecture Chapter 4,10

Getting CPI < 1: Issuing Multiple Instructions/Cycle Vector Processing: Explicit coding of independent loops as operations on large vectors of numbers Multimedia instructions being added to many processors Multimedia instructions being added to many processors Superscalar: varying no. instructions/cycle (1 to 8), scheduled by compiler or by HW (Tomasulo)

- Screauled by compiler or by Hw (Iomasuic ⇒ IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4
- (Very) Long Instruction Words (V)LIW: fixed number of instructions (4-16) scheduled by the compiler; put ops into wide templates (TBD)
 - Intel Architecture-64 (IA-64) 64-bit address
 Renamed: "Explicitly Parallel Instruction Computer (EPIC)"
 Will discuss shortly
- Anticipated success of multiple instructions lead to Instructions Per Clock_cycle (IPC) vs. CPI

```
Advanced Computer Architecture Chapter 4.107
```


Multiple Issue Challenges While Integer/FP split is simple for the HW, get CPI of 0.5 only for programs with: Exactly 50% FP operations AND No hazards If more instructions issue at same time, greater difficulty of decode and issue: ➡ Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 1 or 2 instructions can issue; (N-issue ~O(N²-N) comparisons) Register file: need 2x reads and 1x writes/cycle Rename logic: must be able to rename same register multiple times in one cycle! For instance, consider 4-way issue: add r1, r2, r3 add p11, p4, p7 sub r4, r1, r2 \Rightarrow sub p22, p11, p4 lw r1, 4(r4) lw p23, 4(p22) add r5, r1, r2 add p12, p23, p4 Imagine doing this transformation in a single cycle! Result buses: Need to complete multiple instructions/cycle So, need multiple buses with associated matching logic at every reservation station. • Or, need multiple forwarding paths

Dynamic Scheduling in Superscalar The easy way

▶ How to issue two instructions and keep in-order instruction issue for Tomasulo?

Assume 1 integer + 1 floating point

- ➡ 1 Tomasulo control for integer, 1 for floating point
- Issue 2X Clock Rate, so that issue remains in order
- Only loads/stores might cause dependency between integer and FP issue:
 - Replace load reservation station with a load queue; operands must be read in the order they are fetched
 - ➡Load checks addresses in Store Queue to avoid RAW violation
 - Store checks addresses in Load Queue to avoid WAR, WAW

Register renaming, virtual registers versus Reorder Buffers

Advanced Computer Architecture Chapter 4,110

Advanced Computer Architecture Chapter 4,11

- Alternative to Reorder Buffer is a larger virtual set of registers and register renaming
- Virtual registers hold both architecturally visible registers + temporary values
 - replace functions of reorder buffer and reservation station
- Renaming process maps names of architectural registers to registers in virtual register set
 - Changing subset of virtual registers contains architecturally visible registers
- Simplifies instruction commit: mark register as no longer speculative, free register with old value
- Adds 40-80 extra registers: Alpha, Pentium,...
 Size limits no. instructions in execution (used until commit)

Advanced Computer Architecture Chapter 4,122

workstation Microprocessors									
							3/2(001	
Processor	Alpha 21264B	AMD Athlon	HP PA-8600	IBM Power3-II	Intel Pentium III	Intel Pentium 4	MIPS R12000	Sun Ultra-II	Sun Ultra-III
Clock Rate	833MHz	1.2GHz	552MHz	450MHz	1.0GHz	1.5GHz	400MHz	480MHz	900MHz
Cache (I/D/L2)	64K/64K	64K/64K/256K	512K/1M	32K/64K	16K/16K/256K	12K/8K/256K	32K/32K	16K/16K	32K/64K
Issue Rate	4 issue	3 x86 instr	4 issue	4 issue	3 x86 instr	3 x ROPs	4 issue	4 issue	4 issue
Pipeline Stages	7/9 stages	9/11 stages	7/9 stages	7/8 stages	12/14 stages	22/24 stages	6 stages	6/9 stages	14/15 stages
Out of Order	80 instr	72ROPs	56 instr	32 instr	40 ROPs	126 ROPs	48 instr	None	None
Rename regs	48/41	36/36	56 total	16 int/24 fp	40 total	128 total	32/32	None	None
BHT Entries	4K × 9-bit	4K × 2-bit	2K×2-bit	2K × 2-bit	>= 512	4K×2-bit	2K × 2-bit	512 × 2-bit	16K × 2-bit
TLB Entries	128/128	280/288	120 unified	128/128	321 / 64D	128I/65D	64 unified	64I/64D	128I/512D
Memory B/W	2.66GB/s	2.1GB/s	1.54GB/s	1.6GB/s	1.06GB/s	3.2GB/s	539 MB/s	1.9GB/s	4.8GB/s
Packag e	CPGA-588	PGA-462	LGA-544	SCC-1088	PGA-370	PGA-423	CPGA-527	CLGA-787	1368 FC-LGA
IC Process	0.18µ 6M	0.18µ 6M	0.25µ 2M	0.22µ 6m	0.18µ 6M	0.18µ 6M	0.25µ 4M	0.29µ 6M	0.18µ 7M
Die Size	115mm ²	117mm ²	477mm ²	163mm ²	106mm ²	217mm ²	204mm ²	126 mm ²	210mm ²
Transistors	15.4 million	37 million	130 million	23 million	24 million	42 million	7.2 million	3.8 million	29 million
Est mfg cost*	\$160	\$62	\$330	\$110	\$39	\$110	\$125	\$70	\$145
Power(Max)	75W*	76W	60W*	36W*	30W	55W(TDP)	25W*	20W*	65W
Availability	1Q01	4Q00	3Q00	4Q00	2Q00	4Q00	2Q00	3Q0	4Q00
Max issue: 4 instructions (many CPUs) Max rename registers: 128 (Pentium 4) Max BHT: 4K × 9 (Alpha 21264B), 16Kx2 (Ultra III) Max Window Size (OOO): 126 intructions (Pent. 4) Max Pipeline: 22/24 stages (Pentium 4)									
Source: Microprocessor Report, www.MPRonline.commed commuter Architecture Chapter 4 122									

Warkstation Microphococcons

	SPEC	2000 Pert	ormance	3/2001 50	ource: Mic	roprocess	or Report	, www.MPR	online.com	
Processor	Alpha 21264B	AMD Athlon	HP PA-8600	IBM Power 3-II	Intel Pill	Intel P4	MIPS R12000	Sun Ultra-II	Sun Ultra-III	
System or Motherboard	Alpha ES40 Model 6	AMD GA-7ZM	HP9000 j6000	RS/6000 44P-170	Dell Prec. 420	Intel	5GI 2200	Sun Enterprs 450	Sun Blade 1000	
Clock Rate	833MHz	1.2GHz	552MHz	450MHz	1GHz	▶ 1.5GHz	400MHz	480MHz	900MHz	
External Cache	8MB	None	Nonc	8MB	None	None	SMB	8MB	8MB	
164.gzip	392	n/a	376	230	545	553	226	165	349	
175.vpr	452	n/a	421	285	354	298	384	212	383	
176.gcc	617	n/a	577	350	401	588	313	232	500	
181.mcf	441	n/a	384	498	276	473	563	356	474	
186.crafty	694	n/a	472	304	523	497	334	175	439	
197.parser	360	n/a	361	171	362	472	283	211	412	
252.con	645	n/a	395	280	615	650	360	209	465	
253.perlbmk	526	n/a	406	215	614	703	246	247	457	
254.gap	365	n/a	229	256	443	708	204	171	300	
255.vortex	673	n/a	764	312	717	735	294	304	581	
256.bzip2	560	n/a	349	258	396	420		237	500	
300.twolf	658	n/a	479	414	394 1	2X 403 1	6X 451	243	473	
SPECint_base2000	518	n/a	417	286	454	524	320	225	438	
168.wupside	529	360	340	360	416	759	280	284	497	
171.swim	1,156	506	761	279	493	1,244	300	285	752	
172.mgrid	580	272	462	319	274	558	231	226	377	
173.applu	424	298	563	327	280	641	237	150	221	
177.mesa	713	302	300	330	541	553	289	273	469	
178.galgel	558	468	569	429	335	537	989	735	1,266	
179.art	1,540	213	419	969	410	514	995	920	990	
183.equake	231	236	347	560	249	739	222	149	211	
187.facerec	822	411	258	257	307	451	411	459	718	
188.ammp	488	221	376	326	294	366	373	313	421	
189.lucas	731	237	370	284	349	764	259	205	204	
191.fma3d	528	365	302	340	297	427	192	207	302	
200.sixtrack	340	256	286	234	170	257	199	159	273	
301.aspi	553	278	523	349	371 1	7X 427	252	189	340	
SPECfp_base2000	590	304	400	356	329	549	319	274	427	
	Advanced Computer Architecture Chapter 4,123									

