
Advanced Computer Architecture

Chapter 4:

More sophisticated CPU architectures

Lecturer: Paul H J Kelly

Autumn 2001

Department of Computing

Imperial College

Room 423

email: phjk@doc.ic.ac.uk

C
ou

rs
e

w
eb

 s
ite

:
 h

ttp
://

w
w

w
.d

oc
.ic

.a
c.

uk
/~

ph
jk

/A
dv

an
ce

dC
om

pu
te

rA
rc

hi
te

ct
ur

e.
ht

m
l

Advanced Computer Architecture Chapter 4 §0 1

CHAPTER 4

4.1 Control hazards, branch prediction

4.2 Pipelining With Multicycle Operations

4.3 Dynamic instruction scheduling:

scoreboarding

4.4 Register renaming: Tomasulo’s algorithm

4.5 Issuing multiple instructions per clock cycle

4.6 Speculative execution

Advanced Computer Architecture Chapter 4 §0 2

4.1 Control Hazards, Branch

Prediction

BEQZ R1,Label IF ID EX memWB

successor 1 IF stall stall IF ID EX memWB

successor 2 IF ID EX memWB

Cycle 1 2 3 4 5 6 7 8 9

A taken branch could cause a three-cycle delay

in the DLX pipeline - two stalls and a repeated

IF:

• Condition is tested in EX

• Branch target address is calculated during

mem stage (DLX branch is relative to PC)

((why??))

Even if the branch is not taken, we still suffer

one stall.

Branches are common - 10% – 20%

(H&P pp.161)

Advanced Computer Architecture Chapter 4 §1 3

• Two part solution:

– Determine branch taken or not sooner

– Compute taken branch address earlier

• DLX branch conditions are deliberately

simple: BEQZ, BNEZ

• DLX solution:

– Move zero test to ID stage

– Introduce dedicated adder in ID stage

for calculating branch target address

• One cycle stall

Advanced Computer Architecture Chapter 4 §1 4

How can we avoid this stall?

• Predict branch taken

Benchmark studies show 53% taken

Doesn’t really work in DLX - we don’t

know the destination address

• Predict branch not taken (47%)

– Don’t stall - execute next instruction

– But “squash” it if branch turns out to

be taken

– i.e. block memory access and WB

– Luckily these come late in pipeline in

DLX

Advanced Computer Architecture Chapter 4 §1 5

• Delayed branch

– Don’t stall - always execute next

instruction

– Don’t squash results

– Used in DLX, Sparc

• In DLX 5-stage pipeline, one delay slot is

enough to avoid branch delay.

• In more aggressively pipelined machine (eg

MIPS R4000) more delay slots would be

needed

Advanced Computer Architecture Chapter 4 §1 6

Where to get instructions to fill branch delay

slot?

• Before branch instruction

• From the target address (only useful if

branch taken)

• From fall-through (only useful if not taken)

• May need to add code to cancel effect of

delay slot instructions inadvertently

executed, eg at end of a loop

How well do compilers do?

• Fills about 60% of branch delay slots

• Of these, about 80% actually contribute

usefully

• Overall effectiveness: 60%×80% = 50%

• Effective average branch delay ≈ 50%

It is much harder to make effective use of

multiple delay slots

Advanced Computer Architecture Chapter 4 §1 7

“Cancelling” branches

Cancelling (or “nullifying”) branches are a

variation on delayed branches.

Idea:

• Get compiler to predict whether branch is

probably taken or not

• Have two variants of delayed branch -

– BEQZL “branch likely”: predicted

taken, ie delayed branch, cancel if not

taken

– BEQZU “branch unlikely”: predicted

not-taken, ie delayed branch, cancel if

taken

• Squash the delay slot’s updates if

mispredicted

Unfortunately, compilers are not very good at

predicting branches. Profile-based branch

prediction improves performance substantially.

Advanced Computer Architecture Chapter 4 §1 8

Branch delays in a deeper pipeline

Consider the MIPS R4000 pipeline structure:

• IF: first half of fetching of instrn; PC

selection happens here as well as initiation

of I-cache access

• IS: second half of I-cache access

• RF: instruction decode and register fetch

• EX: ALU operation - arithmetic, effective

address calculation, branch target

computation, condition evaluation

• DF: data fetch; first half of D-cache access

• DS: second half of D-cache access hit

• TC: tag check; determine whether the

D-cache access was a hit

• WB: write back for loads and

register-register operations

Advanced Computer Architecture Chapter 4 §1 9

Two cycle load delay:

LD R1,100(R2) IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC

IF IS RF EX DF DS

ADD R4,R1,R3 IF IS RF EX DF

Three cycle branch delay:

BEQZ R1,Label IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC

IF IS RF EX DF DS

IF IS RF EX DF

IF IS RF EX

Delayed branches are of little value here

Advanced Computer Architecture Chapter 4 §1 10

Run-time branch prediction

Using profiles to inform the compiler is

awkward and unsatisfactory ((why??))

Why not collect and use the information

dynamically?

(H&P pp.262)

Advanced Computer Architecture Chapter 4 §1 11

One-bit branch prediction

Idea: “Branch History Table”

• Maintain small table of branch predictions

• Indexed by low-order bits of PC

• Bit set indicates corresponding branch was

taken last time

Advanced Computer Architecture Chapter 4 §1 12

Performance of 1-bit prediction

Consider the conditional branch in a loop:

label:

body of loop

SUBI R1,R1,#1

BNEZ R1,label

• Suppose the loop is executed 9 times

• Branch is taken 9 times, not taken once

• What is the prediction accuracy, assuming

the prediction bit for the branch remains in

the prediction buffer?

Advanced Computer Architecture Chapter 4 §1 13

Q:

• Suppose the loop is executed 9 times

• Branch is taken 9 times, not taken once

• What is the prediction accuracy, assuming

the prediction bit for the branch remains in

the prediction buffer?

A:

• Will inevitably mispredict on 10th iteration

• Will also mispredict on first

• Because prediction bit was flipped on

previous execution of the loop’s last

iteration

– Branch is taken 90% of the time

– But correctly predicted only 80% of the

time

How can we do better?

Advanced Computer Architecture Chapter 4 §1 14

Two-bit branch prediction

Predict taken Predict taken

Predict not taken Predict not taken

not taken

taken

taken

not taken

not taken

not taken

taken

taken

Figure 1: State transition diagram for 2-bit

branch prediction

• Prediction misses twice before being

changed

• Need two bits for each table entry

• Implementation: either separate

cache-like BHT, or extra bits held with

each entry of the I-cache

• Still mispredicts 5% – 20%; many more

sophisticated schemes...

Advanced Computer Architecture Chapter 4 §1 15

Branch target prediction

• Predicting whether a branch is taken is not

much use in DLX because we have already

moved the test and target address

calculation into ID

• There is still a one-cycle branch delay

• The nullifying delayed branch idea uses

static prediction

• How can we avoid the delay when dynamic

prediction is correct?

• Problem:

BEQZ R1,Label IF ID EX memWB

successor 1 IF ID EX memWB

– Need to know the address from which to

load the next instruction

– Before the branch has been decoded!

Advanced Computer Architecture Chapter 4 §1 16

The Branch Target Buffer

Idea:

• Maintain small table

• Indexed by low-order bits of PC of

recently-executed branches

• Containing branch target address

• Accessed during IF, yields predicted next

PC

Advanced Computer Architecture Chapter 4 §1 17

Implementation:

• You must check that the prediction

actually refers to the current PC (cf tag

check in cache)

• BTB also includes branch prediction state

bits, and is updated when branch

prediction changes

• Must minimise cost of misprediction. E.g.

also fetch the predicted-not-taken

instruction

• Reduces branch delay to zero

– Can also predict virtual function calls

– Predicting function returns is harder;

see H&P pp.277

Advanced Computer Architecture Chapter 4 §1 18

Branch folding

• Idea: instead of just the branch target

address, stash the branch target instruction

in the BTB

• Skip IF stage for next instruction

• Effective CPI for branch is zero

• Could stash target instruction for both

taken and not-taken cases to reduce

misprediction delay

Advanced Computer Architecture Chapter 4 §1 19

Control hazards: summary

• Branches are very common, often every 5

instructions or so

• Delayed branches rely on compile-time

instruction scheduling

• Cancelling delayed branches rely on static

branch prediction

• 1-bit, 2-bit and cleverer dynamic prediction

schemes

• 5% – 20% “hard core” of mispredicted

branches

• Branch Target Buffer reduces delay for

predicted branches to zero

• Misprediction delays must be minimised

• Large effective misprediction delay with

multiple issue and speculative execution

Advanced Computer Architecture Chapter 4 §1 20

4.2 Pipelining With Multicycle

Operations

• Up to now we have assumed that the EX

and MEM stages can always be finished in

one clock cycle.

• This may be difficult or impossible to

organise

• Examples:

– Integer multiply

– Integer divide

– Floating-point add, multiply

– FP divide, square root etc

? Cache misses

• How does this complicate pipeline control?

(H&P pp.187,201)

Advanced Computer Architecture Chapter 4 §2 21

FP arithmetic components

• FP arithmetic generally consists of several

stages. E.g. FP Addition (H&P pp.A-23)

– Unpack FP operands, deal with signs

– Shift so mantissae are aligned according

to exponents

– Add

– Renormalise, accommodating carries

– Round

– Compute sign of result

• Some are functionally distinct from one

another and are therefore efficient to

pipeline

• Some units are not easy to pipeline, leading

to structural hazards

• Some stages are used in more than one

instruction, leading to potential structural

hazards

Advanced Computer Architecture Chapter 4 §2 22

Example: R4000 FPU

Add: U S+A A+R R+S

Mul: U E+M M M M M N N+A R

Div: U A R D28 D+A D+R D+R D+A D+R A R

Cmp: U A R

cycle 1 2 3 4 5 6 7 8 9 10 11

Table shows FP stages needed by each FP instn

in each cycle:

U: Unpack FP numbers

S: Operand shift

A: Mantissa add

R: Rounding

E: Exception test

M:First stage of multiplier

N: Second stage of multiplier

D: Divide stage

Advanced Computer Architecture Chapter 4 §2 23

Supporting multiple outstanding
FP operations

IF ID MEM WB

EX

M1 M2 M3 M4 M5 M6 M7 M8 M9

A1 A2 A3 A4

FP/integer divider

FP adder

FP multiplier

Integer unit

Figure 2: Multiple FP units, divide not

pipelined

Diagram shows fully-pipelined Add and

Multiply, but Divide is non-pipelined.

(H&P pp.190)

Advanced Computer Architecture Chapter 4 §2 24

Structural hazards

• In R4000 some stages are shared (eg

R,S,A) ⇒ structural hazards possible

• Non-pipelined stages (eg Divide)

• Initiation interval: The number of cycles

after initiation of an operation (eg Divide)

before another Divide can be issued

without structural stall

• Latency: the number of cycles after

initiation of an operation before the result

is available

Advanced Computer Architecture Chapter 4 §2 25

Example:

Suppose we have separate, non-pipelined FP

Add, Multiply and Divide units. Consider:

ADDF R3, R1, R2

SUBF R6, R4, R5

MULF R8, R6, R7

DIVF R10, R3, R9

Timing:

+ IF ID EX EX EX mem WB

− IF ID stall stall EX EX EX mem WB

× IF stall stall ID stall stall EX ...EX mem WB

÷ stall stall IF stall stall ID EX...EX mem WB

Figure 3: Structural and data stalls with non-

pipelined FPUs

Advanced Computer Architecture Chapter 4 §2 26

OBSERVE

• Because the DLX pipeline only issues

instructions in order, DIVF is stalled

unnecessarily

• Instructions are not necessarily completed

in order (“out-of-order completion”)

This creates new hazard possibilities.

Advanced Computer Architecture Chapter 4 §2 27

NEW DATA HAZARDS

Thus far we have seen one kind of data hazard:

a calculation must wait until a value it needs

has been calculated. There are actually three

kinds of data hazard:

RAW “Read after write”: the register must be

read after it has been written (or at least

calculated)

WAW “Write after write”: The register must be

written after previous instructions have

written to it - updates must be performed

in order

WAR “Write after read”: The register must only

be written to after previous instructions

have read it

WAW and WAR hazards couldn’t happen in

the simple DLX pipeline

(H&P pp.151)

Advanced Computer Architecture Chapter 4 §2 28

WAR

“Write after read”: The register must only be

written to after previous instructions read it:

DIVF R1, R2, R3 IF ID EX EX EX EX EX memWB

STORE R6, A IF ID stall stall stall EX memWB

SUBF R6, R4, R5 IF ID EX memWB

↑
?R6 read here?

↑
R6 written here

If R6 is only read when the STORE instrn is

ready to execute, it could already have been

overwritten by a later instruction.

WAR hazards cannot occur in DLX even

extended with long-latency FP operations:

• In DLX, registers are always read in order

in ID

• Copies of the operands are held when the

instruction is stalled

WAR hazards become a serious concern with

scoreboarding, as we see shortly.

Advanced Computer Architecture Chapter 4 §2 29

WAW

• EXAMPLE

With out-of-order completion, instructions

can write their results in a different order,

eg.

DIVF R1, R2, R3

STORE R1, A

SUBF R1, R4, R5

The divide finishes after the subtract,

leaving the wrong result in R1.

• This is called a WAW (Write-after-Write)

hazard.

• WAW hazards occur because instructions

no longer reach WB in order

Advanced Computer Architecture Chapter 4 §2 30

Handling WAW hazards

In our static DLX pipeline with multicycle

operations, we can neglect WAR hazards but

WAW hazards need attention.

A simple solution is to stall the WB stage so

that register writes occur in issue order.

This need not lead to a performance loss, if

enough forwarding is provided - but this can

get very complicated indeed.

Advanced Computer Architecture Chapter 4 §2 31

PERFORMANCE

Without out-of-order issue (covered in the next

section, this static-pipeline approach has

somewhat disappointing performance.

• EXAMPLE 1: Consider the spice

circuit-simulation benchmark (which

heavily involves floating point), running on

the MIPS R3000.

35% of total no of clock cycles are stalls:

load delays: 3% (assume perfect cache)

branch delays: 2%

FP structural stalls: 3%

FP data hazard stalls: 27%

• EXAMPLE 2: H&P pp.208 shows a

similar breakdown for R4000 - pipelining

the Add and Multiply doesn’t help

We will therefore focus on reducing data hazard

stalls; we will examine hardware techniques

first then consider compile-time approaches.

Advanced Computer Architecture Chapter 4 §2 32

4.3 Dynamic Instruction

Scheduling

IDEA: Allow instructions to issue out of order

when dependencies allow.

EXAMPLE:

DIVF R1, R2, R3

ADDF R4, R1, R5

SUBF R5, R5, R6

Here, ADDF is delayed waiting for result of

DIVF. Meanwhile SUBF can proceed. We must

delay writing it’s result, or take some other

action, or ADDF will get the wrong data.

• This is primarily of interest with

long-running operations such as FP

arithmetic and memory accesses

• Low-latency operations (such as integer

arithmetic) are handled separately by a

simple statically-scheduled pipeline

(H&P pp.241)

Advanced Computer Architecture Chapter 4 §3 33

Hazards

Goal: schedule execution to prevent hazards

from causing stalls. Recall the three kinds of

hazard:

• Control (conditional branches)

• Structural (contention for hardware)

• Data

– RAW (read-after-write)

– WAW (write-after-write)

– WAR - new

We will consider two approaches:

• Scoreboarding

Directly addresses RAW hazards

• Register renaming/Tomasulo

Overcomes WAW and WAR hazards

Register renaming is the basis for speculative

execution, which addresses control hazards.

Advanced Computer Architecture Chapter 4 §3 34

Instruction issue/overtaking

Fundamental principle:

• Split ID into two components:

– IS (Issue)

Each instruction is processed in order,

and the scoreboard is interrogated and

updated to reflect the data flow

– RO (read operands)

Buffer each issued instruction, wait

until no data hazards, then initiate

execution. Execution of delayed

instructions can start in any order

Simple assumption (for scoreboarding):

• Operands are always read from registers —

ie there is no forwarding

The role of the scoreboard is to activate those

appropriate instructions delayed in the RO

stage, just as soon as their operands are

delivered to their source registers.

Advanced Computer Architecture Chapter 4 §3 35

We modify the pipeline structure as follows :

IF IS

EX

M1 M2 M3 M4 M5 M6 M7 M8 M9

A1 A2 A3 A4

FP/integer divider

FP adder

FP multiplier

Integer unit

RO

RO

RO

RO

Registers

WB

WB

WB

WB

Figure 4: Data path for scoreboarding

Advanced Computer Architecture Chapter 4 §3 36

In more detail...

Issue: This stage processes instructions in

order.

It stalls if an instruction

• requires an FU which is busy

• shares its destination register with another

instruction already being executed.

When issue stalls, no further instructions can

be issued.

This deals with structural and WAW hazards.

Advanced Computer Architecture Chapter 4 §3 37

Read operands:

This stage maintains a table of instructions

received from the Issue stage. Each instruction

is delayed until its operands are available, that

is:

• an instruction can be executed as soon as

both its operands are available

• an operand is available if the register it’s in

is not currently being written, and will not

be written by any active instruction.

• When an instruction is activated, its

operands are fetched from the register file,

and the required FU is instructed to begin

execution

• This deals with RAW hazards.

Advanced Computer Architecture Chapter 4 §3 38

WB

• Essentially, when the FU completes, it

writes its result to the destination register.

• However, because of possible WAR

hazards, the scoreboard must be consulted

first. If a WAR hazard exists, the FU must

wait before writing its result.

• After updating the register, details are

relayed to the Read Operands stage so that

any instructions waiting are enabled.

Advanced Computer Architecture Chapter 4 §3 39

• Is it possible to perform dynamic

scheduling better?

• What might now cause a stall?

– Issue:

∗ structural hazard - inevitable

∗ WAW data hazard - rare but notice

that stall delays issue of other

instructions

– Read Operands:

∗ RAW data hazard - inevitable but

when data becomes available, it is

routed via a register, with extra cycle

delay.

If several instructions are waiting for

one value, they could all start as soon

as it becomes available - but have to

access registers serially.

– WB:

∗ WAR hazard

This is not inevitable

Advanced Computer Architecture Chapter 4 §3 40

The term scoreboard was introduced with the

first processor with dynamic instruction

scheduling, the CDC 6600, produced by

Control Data Corporation in 1964: this was the

first real “supercomputer”.

The 6600 had 16 Functional Units (FUs):

• 4 FP units, 7 integer units and 5 memory

units.

A revised design, the 7600 had one, pipelined

FP adder and one pipelined FP multiplier

instead of 4 non-pipelined units. The dynamic

instruction scheduling issues are the same.

Advanced Computer Architecture Chapter 4 §3 41

Scoreboard control

IF IS

EX

M1 M2 M3 M4 M5 M6 M7 M8 M9

A1 A2 A3 A4

FP/integer divider

FP adder

FP multiplier

Integer unit

RO

RO

RO

RO

Registers

WB

WB

WB

WB

• Reservation stations (RO) hold instns

which are executing or awaiting operands

• Instn is blocked in IS until reservation

station is free

• Broadcast destination register of

completing instn to enable instns waiting

for it

Advanced Computer Architecture Chapter 4 §3 42

• But check for WAR hazard first ((how))

Advanced Computer Architecture Chapter 4 §3 43

Costs of scoreboarding

• Need comparators to monitor completing

instructions’ destination registers, + WAW

and WAR hazard detection

• Multiple buses and perhaps also multiple

ports for register file

Advanced Computer Architecture Chapter 4 §3 44

4.4 Tomasulo’s “Register

Renaming” scheme

The scoreboarding scheme is somewhat

unsatisfactory because :

• It fails to perform forwarding - operands

cannot be used until they have been

written to the register file.

• WAR hazards still cause stalls

Tomasulo’s design deals with both these

problems in an interesting way.

(H&P pp.251)

Advanced Computer Architecture Chapter 4 §4 45

IDEA:

When a functional unit finishes an instruction,

broadcast the result on a common data bus, to

all the functional units, just in case this is what

they’re waiting for.

Q: How does an FU know what it’s waiting

for?

A: Each FU is fronted by a buffer, a

“reservation station”, containing the

opcode it is supposed to perform, and the

operands

– OR If the operand is not yet available,

the reservation station holds a tag

identifying the FU which will generate

the operand.

Advanced Computer Architecture Chapter 4 §4 46

• When an FU finishes an instruction, it

broadcasts (on the common data bus) the

result, together with a tag, its FU number.

• All the reservation stations monitor the

common data bus. Watching out for the

results whose tags match the operand tags.

• A reservation station activates its FU as

soon as

– the FU has finished it previous

instruction

– both operands have arrived.

Advanced Computer Architecture Chapter 4 §4 47

How is this done?

opcode operand1 operand2

Reservation Station 1 RS2 RS3

Functional Unit 1 FU2 FU3

Registers

R0

R1

R2

R3

R4

R5

R6

R7

Identifier
of generating FU,
if value is still being
calculated

Value, if present

Common Data Bus (CDB)

=? Update reg if tag matches

=? Update reg if tag matches

Instruction Issue

Opcode

tag assignment/register renaming

• Each register monitors the CDB for a value

tagged appropriately and updates the its

contents when a match occurs

Advanced Computer Architecture Chapter 4 §4 48

THE SEQUENCE OF EVENTS

ISSUE

• Get an instruction from the floating-point

operation queue. If there is an empty

reservation station for an appropriate FU,

sent the opcode and destination register to

the reservation station.

• If the operands are in registers, send them

too.

• If an operand is not yet in a register, it

must be being computed by some active

FU. Send the identifier tag for the FU to

the reservation station instead.

(To do this, the registers are tagged with

the FU which will provide their value).

Advanced Computer Architecture Chapter 4 §4 49

EXECUTE

• If one or more of the operands is not yet

available, monitor the common data bus

until a value with the appropriate tag

appears.

• When both operands are available and the

FU is free, execute the operation.

• This ensures RAW hazards are dealt with.

WRITE RESULT

• When the FU finishes, broadcast it on the

common data bus, and from there in to the

registers and any FU’s waiting for this

result.

Advanced Computer Architecture Chapter 4 §4 50

STRUCTURAL HAZARDS

• The reservation stations form a buffer,

allowing an instruction to be issued to the

RS even if the FU is busy.

• The instruction will be stalled in the RS

until the FU is free

• If another instruction needs the FU, it will

stall in the issue stage until the RS is free.

This may cause delay in issuing other

instructions

• The CDB limits the machine to one

completion per clock. If several

instructions complete in the same cycle a

priority scheme is used to provide access to

the CDB serially.

Q: Is it possible to deal with this by

duplicating the CDB?

Advanced Computer Architecture Chapter 4 §4 51

WAR HAZARDS

EXAMPLE

MULF R0, R0, R2

SD R0, 0(R11) (Store R0)

MULF R0, R4, R6

SD R0, 8(R11) (Store R0)

• Note that there is no data dependence

between the MULF instructions, but there

is a WAR hazard (“anti-dependence”)

between the first SD and the second

MULF.

• With the scoreboard scheme this results in

a stall

• With Tomasulo’s scheme it does not.

WHY?

Advanced Computer Architecture Chapter 4 §4 52

WAW HAZARDS

EXAMPLE

MULF R0, R2, R4

ADDF R0, R6, R8

• When MULF is issued the register R0 will

be marked with the identifier of the

multiply unit.

• Ordinarily, any following instruction which

uses R0 would get its operand from the

multiply unit when it finishes, via the

CDB.

• However, when the ADDF is issued,

register R0 is marked with the identifier

tag of the adder.

• When the multiply completes, it will

broadcast on the CDB, but no register or

FU will be interested.

Advanced Computer Architecture Chapter 4 §4 53

Register renaming

• WAR hazards happen when a register is

reused

• This could be avoided by the compiler - if

instruction set has enough registers

• In a loop, can’t avoid reusing registers in

successive iterations (except by unrolling)

• Tomasulo’s scheme dynamically assigns a

tag to each value to be calculated

• You need a distinct tag for each reservation

station - so in effect, tags identify

additional registers in the machine,

invisible to the programmer

• The instruction-level parallelism is not

limited by the number of registers available

(Tomasulo was working on the IBM

360/91, which had to use an instruction set

with just 4 FP registers)

Advanced Computer Architecture Chapter 4 §4 54

Memory accesses

• We have not looked at how loads and stores

are handled. This is an important area

where dynamic scheduling is advantageous

• With dynamic scheduling, loads and stores

can be re-ordered

Advanced Computer Architecture Chapter 4 §4 55

Memory access disambiguation

To get loads right when loads and stores can be

reordered, we need to check the actual

addresses:

• Maintain a buffer containing the target

addresses of issued store instructions

• Check each load to see whether its target

address matches the address of an

outstanding store

• If so, stall the load until the value to be

stored becomes available, and substitute it

in — bypassing the memory.

Advanced Computer Architecture Chapter 4 §4 56

TOMASULO : CONCLUSIONS

• Yields improved performance through

→ reduced latency via forwarding

→ reduced stalls due to structural, WAR

and WAW hazards

• Substantial hardware cost

– Associative lookup needed for tag

matching

– For every register and reservation

station

– Tag matching must be very fast

• Performance could be improved by

duplicating the CDB, but would need to do

double tag matching at every register and

reservation station

Advanced Computer Architecture Chapter 4 §4 57

4.5 Multiple instructions/cycle

How can we reduce CPI to less than 1?

• “Superpipelined”: Clock IS twice as fast

as rest of CPU

• Very Long Instrn Words (VLIW):

– IF/ID/IS fetch & issue fixed no of instns

– Scheduled by the compiler

– Unused issue slots are empty

– As seen in Intel i860, Multiflow Trace,

HP/Intel IA-64 (“Merced”) (?)

• Superscalar:

– IF fetches large package of instns then

checks for hazards between them

– Issues all instns up to first hazard

– Saves rest for next cycle

– As seen in many modern CPUs

Advanced Computer Architecture Chapter 4 §5 58

In superscalar,

• Avoids wasted instruction space

• Can be compatible with older

implementations

• But actual issue rate can be improved by

compile-time scheduling to create

hazard-free instruction packages

In VLIW,

• Instruction set exposes internal

architecture

In both cases,

• Dynamic scheduling (eg Tomasulo) can be

used.

• Compiler scheduling helps

Advanced Computer Architecture Chapter 4 §5 59

Static 2×superscalar DLX

• Instn packet: 1 FP & 1 anything else

• Fetch 64-bits/cycle; Int on left, FP on right

• Can only issue 2nd instn if 1st issues

• Add ports for FP regs so FP load & FP op

can issue together

Type Pipeline stages

Int. instn IF ID EX memWB

FP instn IF ID EX memWB

Int. instn IF ID EX memWB

FP instn IF ID EX memWB

Int. instn IF ID EX memWB

FP instn IF ID EX memWB

Advanced Computer Architecture Chapter 4 §5 60

Increased effective delays

Int: LD F0 ,100(R1) IF ID EX mem WB

FP: instn IF ID EX memWB

Int: LD R2 ,100(R1) IF ID EX mem WB

FP: instn IF ID EX memWB

Int: instn IF ID EX memWB

FP: ADDD F2, F0 ,F1 IF ID EX memWB

Int: ADD R4, R2 ,R3 IF ID EX memWB

FP: instn IF ID EX memWB

• Load delay is increased from 1 to at least

3, since instn in right half can’t use it, nor

instns in next slot

• Needs more aggressive compiler instn

scheduling

Advanced Computer Architecture Chapter 4 §5 61

Static 2×superscalar - problems

New hazards:

• While Integer/FP split is simple for the

HW, get CPI of 0.5 only for programs with

exactly 50% FP operations

Data and control hazards cause more stalls:

• Any hazard in an instn package blocks

second issue

Hardware complexity:

• If more instns issue at same time, greater

difficulty of decode and issue

• Even in 2×, ID must examine 2 opcodes, 6

register specifiers, & decide if 1 or 2 instns

can issue

(H&P pp.279)

Advanced Computer Architecture Chapter 4 §5 62

Simplifying issue...

• VLIW: tradeoff instn space for simple

decoding

• By definition, all the operations the

compiler puts in the multi-instn package

can execute in parallel

• E.g., 2 integer operations, 2 FP ops, 2

Memory refs, 1 branch

– Eg 16–24 bits per field

– Instn size at least 7 × 16 = 112

– When insufficient instruction-level

parallelism is present, instruction’s

fields are sparsely used

– Very large code size

– Increased memory bandwidth demand

due to instns

(H&P pp.284)

Advanced Computer Architecture Chapter 4 §5 63

Static SS: Branch delays

• 10%–20% of DLX instns are branches

• Average length of basic block (ie

branch-free sequence) little more that 5

• Whole basic block could fit into one instn

• But data hazards prevent this, both in

VLIW and in static superscalar

Advanced Computer Architecture Chapter 4 §5 64

IDEA: trace scheduling

• Compiler technique that schedules across

several branches

• Packs operations from most-likely path

(“trace”) into minimum no of instn words

• Using static branch prediction based on

execution profiles

• In effect, compile-time speculative

execution

• Misprediction penalty still large (though

could speculate on both branches...)

Nasty practical problem:

• Instructions executed speculatively (moved

across a branch) might cause page faults or

FP exceptions

(Software pipelining is essentially the same idea

applied to loops; see tutorial exercise)

(H&P pp.296)

Advanced Computer Architecture Chapter 4 §5 65

Dynamic superscalar (H&P pp.282)

• Dynamic scheduling should reduce

dependence on sophisticated compiler and

large no of registers

• Key issue: What hazards can block

simultaneous issue?

– Can issue dependent instns together

–
.
.
.
tags for dependent instns can be

issued to reservn stations concurrently

– But must check for structural stalls: all

reservn stations full, or two instns need

same one

– Issue is in-order: if instni of an n-word

package has an issue stall, it’s very hard

to issue instni+1–instnn

– (n completions/clock needs n CDBs)

• Nasty problem:

– Conditional branches

Advanced Computer Architecture Chapter 4 §5 66

Branches in a dynamic superscalar

• We want to issue a package of dependent

instns, e.g.

BEQZ R10,Label IF IS

LD F0 ,100(R1) IF IS mem mem WB

ADDD F2 , F0 ,F1 IF IS RO RO EX EX WB

LD R2 ,100(R1) IF IS mem mem WB

SUBD F3, F2 ,F4 IF IS RO RO RO RO EX EX WB

ADD R4, R2 ,R3 IF IS RO RO EX WB

Issue no. 1 2

• Suppose branch is last item of prev issue

(eg
.
.
.
we block issue of rest of package)

• Issue 2 mustn’t proceed speculatively

• Because it will update several registers

• These registers are used to pass values

from instn to instn

• They would have to be reinstated if the

branch were mispredicted

Advanced Computer Architecture Chapter 4 §5 67

4.6 Speculative Execution

How can we avoid blocking issue on branches?

• Tomasulo’s scheme allows values to be

passed from instn to instn without

updating registers

• So we extend it so register update is

delayed until conditional branch is resolved

• We need somewhere to stash results while

waiting to be committed

(H&P pp.308)

Advanced Computer Architecture Chapter 4 §6 68

Re-order buffer

• Re-order buffer (ROB) provides additional

registers to hold values waiting to be

committed

• ROB registers are managed like reservation

stations, waiting for service

• The ROB updates the “true” destination

register with the allocated ROB register

value

• This “commit” stage occurs in-order, so

that the machine’s programmer-visible

state is consistent

Advanced Computer Architecture Chapter 4 §6 69

Tomasulo extended with ROB

opcode operand1 operand2

Reservation Station 1 RS2 RS3

Functional Unit 1 FU2 FU3

Programmer-visible registers

R0

R1

R2

R3

R4

R5

R6

R7

Common Data Bus (CDB)

Instruction Issue

Opcode

tag assignment/register renaming

ROB0

ROB1

ROB2

ROBn

Re-order buffer registers

Re-order buffer

 Update register
indexed by number

Identifier
of generating FU
Value, if present

Instn type
and destination

....=? Update ROB reg if tag matches

true registers
available for
reading by
issue stage

Advanced Computer Architecture Chapter 4 §6 70

Sequence of events

• Issue: as before except ROB register is

allocated and passed tag of the FU which

will generate the result.

Branches are also passed to the ROB

• Execute: no change

• Write result: broadcast on CDB as before,

but result is collected in ROB register

instead of true register

• Commit: ROB register is allocated for each

uncommitted instn. Process them in order,

writing results to true destination

Note

• true registers are only updated by ROB

Advanced Computer Architecture Chapter 4 §6 71

Re-order buffer: commit

• Commit:

ROB register is allocated for each

uncommitted instn.

Process them in order, writing results to

true destination

– select ROB register of next instn in

order

– wait for values to arrive if necessary

– pass result to destination register

– ROB register is freed for reallocation

Unless instn was a branch

Advanced Computer Architecture Chapter 4 §6 72

Re-order buffer: branches

When the ROB encounters a conditional

branch, there are two cases:

• Correctly-predicted

No further action is necessary

• Incorrectly-predicted

Need to prevent updates which would arise

from mis-speculatively–executed instns still

to be committed

Action:

– Flush entire ROB contents

(so still-finishing instns broadcast

results but results aren’t collected)

– Fetch next instn from proper next PC

address

Advanced Computer Architecture Chapter 4 §6 73

Re-order buffer: subtleties

• ROB is also a good place to do memory

disambiguation and to delay memory

writes until committed

• ROB must actually commit multiple instns

per cycle if it is to keep up with multiple

issue

• What happens when a second conditional

branch is encountered before a preceding

one is committed?

• How to reduce misprediction penalty?

• How big should the ROB be?

(ROB size is sometimes called the window,

since this is the extent to which the

processor looks ahead to find work to do)

Advanced Computer Architecture Chapter 4 §6 74

Speculative execution: summary

• The tricky problem is to execute dependent

chains of instructions speculatively

• This is vital in multiple-issue processors

where effective branch delay would be huge

even if correctly predicted

• Compiler techniques like trace scheduling

and software pipelining exist, and can be

assisted by various hardware techniques

• A dynamic technique builds neatly on

Tomasulo’s scheme

• Issue stage renames destn reg to ROB reg

• ROB copies ROB regs to true destn regs in

proper execn order

• This simplifies processing of interrupts,

exceptions and page faults

• 20% of HP8000’s 3.8M transistors devoted

to instn reorder buffer

Advanced Computer Architecture Chapter 4 §6 75

