
Page 1

Advanced Computer Architecture Chapter 2.1

332
Advanced Computer Architecture

Chapter 2

Caches and Memory Systems

January 2006
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy
and Patterson’s Computer Architecture, a quantitative approach (3rd

ed), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Advanced Computer Architecture Chapter 2.2

Miss-oriented Approach to Memory Access:

CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ××+×=

CycleTimeyMissPenalt
Inst

MemMisses
Execution

CPIICCPUtime ×⎟
⎠
⎞

⎜
⎝
⎛ ×+×=

Review: Cache performance

Separating out Memory component entirely
AMAT = Average Memory Access Time
CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccessCPI
Inst

AluOpsICCPUtime AluOps ×⎟
⎠
⎞

⎜
⎝
⎛ ×+××=

yMissPenaltMissRateHitTimeAMAT ×+=
()
()DataDataData

InstInstInst

yMissPenaltMissRateHitTime
yMissPenaltMissRateHitTime

×+

+×+=

Advanced Computer Architecture Chapter 2.3

There are three ways to improve cache
performance:

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

Average memory access time:

Advanced Computer Architecture Chapter 2.4

Reducing Misses
Classifying Misses: 3 Cs

Compulsory—The first access to a block is not in the cache, so the
block must be brought into the cache. Also called cold start misses or
first reference misses.
(Misses in even an Infinite Cache)

Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

Conflict—If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses) will
occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

More recent, 4th “C”:
Coherence - Misses caused by cache coherence.

Page 2

Advanced Computer Architecture Chapter 2.5

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict

Compulsory vanishingly
small

Advanced Computer Architecture Chapter 2.6

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

2:1 Cache Rule (of thumb!)

Conflict

miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

Advanced Computer Architecture Chapter 2.7

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

Advanced Computer Architecture Chapter 2.8

How We Can Reduce Misses?

3 Cs: Compulsory, Capacity, Conflict
In all cases, assume total cache size not changed:
What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

Page 3

Advanced Computer Architecture Chapter 2.9

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size

Advanced Computer Architecture Chapter 2.10

2. Reduce Misses via Higher Associativity

2:1 Cache Rule of thumb:
The Miss Rate of a direct-mapped cache of size N
Is the same as the Miss Rate of a 2-way set-associative
cache size of size N/2

on average, over a large suite of benchmarks

Beware: Execution time is only final measure!
Will Clock Cycle time increase?
Hill [1988] suggested hit time for 2-way vs. 1-way
external cache +10%,
internal + 2%

Advanced Computer Architecture Chapter 2.11

Example: Avg. Memory Access Time vs.
Miss Rate

Example: assume CCT = 1.10 for 2-way, 1.12 for 4-
way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

Advanced Computer Architecture Chapter 2.12

3. Reducing Misses via a
“Victim Cache”

How to combine fast hit
time of direct mapped
yet still avoid conflict
misses?
Add buffer to place data
discarded from cache
Jouppi [1990]: 4-entry
victim cache removed 20%
to 95% of conflicts for a 4
KB direct mapped data
cache
Used in Alpha, HP machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

Page 4

Advanced Computer Architecture Chapter 2.13

4. Reducing Misses via
“Pseudo-Associativity”

How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?
Divide cache: on a miss, check other half of cache to see if
there, if so have a pseudo-hit (slow hit)

Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
Better for caches not tied directly to processor (L2)
Used in MIPS R10000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

Advanced Computer Architecture Chapter 2.14

5. Reducing Misses by Hardware
Prefetching of Instructions & Data

E.g., Instruction Prefetching
Alpha 21064 fetches 2 blocks on a miss
Extra block placed in “stream buffer”
On miss check stream buffer

Works with data blocks too:
Jouppi [1990] 1 data stream buffer got 25% misses from 4KB
cache; 4 streams got 43%
Palacharla & Kessler [1994] for scientific programs for 8 streams
got 50% to 70% of misses from
2 64KB, 4-way set associative caches

Prefetching relies on having extra memory
bandwidth that can be used without penalty

Advanced Computer Architecture Chapter 2.15

6. Reducing Misses by
Software Prefetching Data

Data Prefetch
Load data into register (HP PA-RISC loads)
Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
Special prefetching instructions cannot cause faults; a form of speculative
execution

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.

Can be incorrect. Frees HW/SW to guess!
Issuing Prefetch Instructions takes time

Is cost of prefetch issues < savings in reduced misses?
Higher superscalar reduces difficulty of issue bandwidth

Advanced Computer Architecture Chapter 2.16

7. Reducing Misses by Compiler
Optimizations

McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software
Instructions

Reorder procedures in memory so as to reduce conflict misses
Profiling to look at conflicts(using tools they developed)

Data
Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays
Loop Interchange: change nesting of loops to access data in order stored in
memory
Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap
Blocking: Improve temporal locality by accessing “blocks” of data repeatedly
vs. going down whole columns or rows

Page 5

Advanced Computer Architecture Chapter 2.17

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

Advanced Computer Architecture Chapter 2.18

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through
memory every 100 words; improved spatial
locality

Advanced Computer Architecture Chapter 2.19

Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After fusion */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs.
one miss per access; improve
spatial locality

/* After array contraction */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ c = c[i][j];

a = 1/b[i][j] * c;
d[i][j] = a + c;}

The real payoff comes if
fusion enables Array
Contraction: values
transferred in scalar
instead of via array

Advanced Computer Architecture Chapter 2.20

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

Two Inner Loops:
Read all NxN elements of z[]
Read N elements of 1 row of y[] repeatedly
Write N elements of 1 row of x[]

Capacity Misses a function of N & Cache Size:
2N3 + N2 => (assuming no conflict; otherwise …)

Idea: compute on BxB submatrix that fits

Page 6

Advanced Computer Architecture Chapter 2.21

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

B called Blocking Factor
Capacity Misses from 2N3 + N2 to N3/B+2N2

Conflict Misses Too?

(We return to this example and this technique in Chapter 5)
Advanced Computer Architecture Chapter 2.22

Reducing Conflict Misses by Blocking

Conflict misses in caches not FA vs. Blocking size
Lam et al [1991] a blocking factor of 24 had a fifth the misses vs.
48 despite both fit in cache

Blocking Factor

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

Advanced Computer Architecture Chapter 2.23

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

Advanced Computer Architecture Chapter 2.24

Summary: Miss Rate Reduction

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.

Can be incorrect. Frees HW/SW to guess!

CPUtime = IC × CPI Execution +
Memory accesses

Instruction
× Miss rate × Miss penalty⎛

⎝
⎞
⎠ × Clock cycle time

Page 7

Advanced Computer Architecture Chapter 2.25

Review: Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Advanced Computer Architecture Chapter 2.26

Write Policy:
Write-Through vs Write-Back

Write-through: all writes update cache and underlying memory/cache
Can always discard cached data - most up-to-date data is in memory
Cache control bit: only a valid bit

Write-back: all writes simply update cache
Can’t just discard cached data - may have to write it back to memory
Cache control bits: both valid and dirty bits

Other Advantages:
Write-through:

memory (or other processors) always have latest data
Simpler management of cache

Write-back:
much lower bandwidth, since data often overwritten multiple times
Better tolerance to long-latency memory?

Advanced Computer Architecture Chapter 2.27

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

Write allocate: allocate new cache line in cache
Usually means that you have to do a “read miss” to fill in
rest of the cache-line!
Alternative: per/word valid bits

Write non-allocate (or “write-around”):
Simply send write data through to underlying
memory/cache - don’t allocate new cache line!

Advanced Computer Architecture Chapter 2.28

1. Reducing Miss Penalty:
Read Priority over Write on Miss

Consider write-through with write buffers
RAW conflicts with main memory reads on cache
misses

Could simply wait for write buffer to empty,
before allowing read
Risks serious increase in read miss penalty (old
MIPS 1000 by 50%)
Solution:

• Check write buffer contents before read;
if no conflicts, let the memory access
continue

Write-back also needs buffer to hold
displaced blocks

Read miss replacing dirty block
Normal: Write dirty block to memory, and then do
the read
Instead copy the dirty block to a write buffer, then
do the read, and then do the write
CPU stall less since restarts as soon as do read

CPU

in out

DRAM
(or lower mem)

write
buffer

Cache

Page 8

Advanced Computer Architecture Chapter 2.29

2. Reduce Miss Penalty:
Early Restart and Critical Word First

Don’t wait for full block to be loaded before restarting
CPU

Early restart—As soon as the requested word of the block ar rives,
send it to the CPU and let the CPU continue execution
Critical Word First—Request the missed word first from memory and
send it to the CPU as soon as it arrives; let the CPU continue execution
while filling the rest of the words in the block. Also called wrapped
fetch and requested word first

Generally useful only in large blocks,
(Access to contiguous sequential words is very common –
but doesn’t benefit from either scheme – are they
worthwhile?)

block

Advanced Computer Architecture Chapter 2.30

3. Reduce Miss Penalty: Non-blocking
Caches to reduce stalls on misses

Non-blocking cache or lockup-free cache allows data cache
to continue to supply cache hits during a miss

requires full/empty bits on registers or out-of-order execution
requires multi-bank memories

“hit under miss” reduces the effective miss penalty by
working during miss instead of ignoring CPU requests
“hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

Significantly increases the complexity of the cache controller as there can
be multiple outstanding memory accesses
Requires multiple memory banks (otherwise cannot support)
Pentium Pro allows 4 outstanding memory misses

Compare:
prefetching: overlap memory access with pre-miss instructions,
Non-blocking cache: overlap memory access with post-miss instructions

Advanced Computer Architecture Chapter 2.31

What happens on a Cache miss?
For in-order pipeline, 2 options:

Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall … stall Mem Wr
IF ID EX stall stall stall … stall stall Ex Wr

Use Full/Empty bits in registers + MSHR queue
MSHR = “Miss Status/Handler Registers” (Kroft)
Each entry in this queue keeps track of status of outstanding memory
requests to one complete memory line.

• Per cache-line: keep info about memory address.
• For each word: register (if any) that is waiting for result.
• Used to “merge” multiple requests to one memory line

New load creates MSHR entry and sets destination register to
“Empty”. Load is “released” from pipeline.
Attempt to use register before result returns causes instruction to
block in decode stage.
Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

Out-of-order pipelines already have this functionality
built in… (load queues, etc).

Advanced Computer Architecture Chapter 2.32

Value of Hit Under Miss for SPEC

FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

AMAT (in cycles)

Page 9

Advanced Computer Architecture Chapter 2.33

4: Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

Definitions:
Local miss rate— misses in this cache divided by the total number of memory
accesses to this cache (Miss rateL2)
Global miss rate—misses in this cache divided by the total number of memory
accesses generated by the CPU
(Miss RateL1 x Miss RateL2)
Global Miss Rate is what matters

Advanced Computer Architecture Chapter 2.34

Comparing Local and Global Miss Rates
32 KByte 1st level
cache;
Increasing 2nd level
cache

Global miss rate close
to single level cache
rate provided L2 >> L1

Don’t use local miss
rate

L2 not tied to CPU
clock cycle!

Cost & A.M.A.T.

Generally Fast Hit
Times and fewer
misses

Since hits are few,
target miss reduction

Fig 5.10 pg416

Advanced Computer Architecture Chapter 2.35

Reducing Misses:
Which apply to L2 Cache?

Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

Advanced Computer Architecture Chapter 2.36

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

32KB L1, 8 byte path to memory

Page 10

Advanced Computer Architecture Chapter 2.37

Reducing Miss Penalty Summary

Four techniques
Read priority over write on miss
Early Restart and Critical Word First on miss
Non-blocking Caches (Hit under Miss, Miss under Miss)
Second Level Cache

Can be applied recursively to Multilevel Caches
Danger is that time to DRAM will grow with multiple levels in
between
First attempts at L2 caches can make things worse, since
increased worst case is worse

CPUtime = IC × CPI Execution +
Memory accesses

Instruction
× Miss rate × Miss penalty⎛

⎝
⎞
⎠ × Clock cycle time

Advanced Computer Architecture Chapter 2.38

There are three ways to improve cache
performance:

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

Average memory access time:

Advanced Computer Architecture Chapter 2.39

Reducing the time to hit in the cache

Why does the Alpha 21164 have 8KB Instruction and
8KB data cache + 96KB second level cache, all on-
chip?

1. Keep the cache small and simple
2. Keep address translation off the critical path
3. Pipeline the cache access

Advanced Computer Architecture Chapter 2.40

2. Fast hits by Avoiding Address
Translation

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to
remain invariant

across translation

VA
Tags

L2 $

Page 11

Advanced Computer Architecture Chapter 2.41

Paging Virtual address space is divided into pages of equal size.
Main Memory is divided into page frames the same size.

Swapping
Disc

Virtual
Memory

Active
Pages

• Running or ready process
– some pages in main memory

• Waiting process
– all pages can be on disk

• Paging is transparent to programmer

Paging Mechanism

(1) Address Mapping
(2) Page Transfer

Real
Memory

Inactive
Pages

(Review introductory operating systems material
for students lacking CS background)

Advanced Computer Architecture Chapter 2.42

P W Process
Page Table

Program Address
Main Store

Page P

B

B+W

P= Page No.
W=Word No.
B= Page Frame Addr.

Paging - Address Mapping

Pointer to
current Page
Table

Example: Word addressed machine, W = 8 bits, page size = 256

Amap(P,W) := PPT[P] * 256 + W

Note: The Process Page Table (PPT) itself can be paged
(Review introductory operating systems material

for students lacking CS background)

Advanced Computer Architecture Chapter 2.43

P W

PPT -
Process
Page Table

Program Address
Main Store

Page P

B

B+W

P= Page No.
W=Word No.
B= Page Frame Addr.

Paging - Address Mapping

Pointer to
current Page
Table

(Review introductory operating systems material
for students lacking CS background)

B

TLB – cache
of PPT

If page is absent in
TLB, look in PPT TLB (Translation Lookaside

Buffer) is small cache
containing recently-
accessed page table values
Eg 64-entry fully-
associative
Closely integrated with L1
cache

Advanced Computer Architecture Chapter 2.44

Paging - Page Transfer
What happens when we access a page which is currently not in main
memory (i.e. the page table entry is empty)?

Page Fault → Suspend running process
→ Get page from disk
→ Update page table
→ Resume process (re-execute instruction)
? Can one instruction cause more than one page fault?

The location of a page on disk can be recorded in a separate table or in the page
table itself using a presence bit.

Page
Table
Entry

B1

D0

Main Memory Page
Frame Location

Disk Page Location

Presence bit set

Presence bit clear

Note: We can run
another ready
process while the
page fault is being
serviced.

(Review introductory operating systems material
for students lacking CS background)

Page 12

Advanced Computer Architecture Chapter 2.45

2. Fast hits by Avoiding Address
Translation

Send virtual address to cache? Called Virtually Addressed Cache or just
Virtual Cache vs. Physical Cache

Every time process is switched logically must flush the cache; otherwise get false hits
Cost is time to flush + “compulsory” misses from empty cache

Dealing with aliases (sometimes called synonyms/homonyms);
Two different virtual addresses map to same physical address,
Two different physical addresses mapped to by the same virtual address in different
contexts
I/O must interact with cache, so need virtual address

Solution to aliases
HW guaranteess covers index field & direct mapped, they must be unique;
called page coloring

Solution to cache flush
Add process identifier tag that identifies process as well as address within process: can’t
get a hit if wrong process

Advanced Computer Architecture Chapter 2.46

Synonyms and homonyms in address translation

Homonyms (same sound different meaning)
same virtual address points to two different physical addresses in
different processes
If you have a virtually-indexed cache, flush it between context switches
- or include PID in cache tag

Synonyms (different sound same meaning)
different virtual addresses (from the same or different processes) point
to the same physical address
in a virtually addressed cache

a virtual address could be cached twice under different physical
addresses
updates to one cached copy would not be reflected in the other
cached copy
solution: make sure synonyms can’t co-exist in the cache, e.g., OS can
forces synonyms to have the same index bits in a direct mapped
cache (sometimes called page colouring)

(a nice explanation in more detail can be found at http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf)

Advanced Computer Architecture Chapter 2.47

2. Fast Cache Hits by Avoiding
Translation: Process ID impact

Black is uniprocess
Light Gray is
multiprocess when
flush cache
Dark Gray is
multiprocess when
use Process ID tag
Y axis: Miss Rates
up to 20%
X axis: Cache size
from 2 KB to 1024
KB

Advanced Computer Architecture Chapter 2.48

2. Fast Cache Hits by Avoiding Translation:
Index with Physical Portion of Address

If index is physical part of
address, can start tag access in
parallel with translation so that
can compare to physical tag
Limits cache to page size: what if
want bigger caches and uses same
trick?

Higher associativity

Page coloring
A cache conflict occurs if two
cache blocks that have the same
tag (physical address) are mapped
to two different virtual addresses
Make sure OS never creates a
page table mapping with this
property

CPU

TLB Cache

MEM

VA

PA
Tags

PA
L2 $

Page number | Page offset

Page 13

Advanced Computer Architecture Chapter 2.49

3: Fast Hits by pipelining Cache
Case Study: MIPS R4000

8 Stage Pipeline:
IF–first half of fetching of instruction; PC selection happens here as
well as initiation of instruction cache access.
IS–second half of access to instruction cache.
RF–instruction decode and register fetch, hazard checking and also
instruction cache hit detection.
EX–execution, which includes effective address calculation, ALU
operation, and branch target computation and condition evaluation.
DF–data fetch, first half of access to data cache.
DS–second half of access to data cache.
TC–tag check, determine whether the data cache access hit.
WB–write back for loads and register-register operations.

What is impact on Load delay?
Need 2 instructions between a load and its use!

Advanced Computer Architecture Chapter 2.50

Case Study: MIPS R4000

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken

Advanced Computer Architecture Chapter 2.51

R4000 Performance
Not ideal CPI of 1:

Load stalls (1 or 2 clock cycles)
Branch stalls (2 cycles + unfilled slots)
FP result stallsFP result stalls: RAW data hazard (latency)
FP structural stalls: Not enough FP hardware (parallelism)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c

na
sa

7

or
a

sp
ic

e2
g6

su
2c

or

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural
stalls

Advanced Computer Architecture Chapter 2.52

What is the Impact of What You’ve
Learned About Caches?

1960-1985: Speed
= ƒ(no. operations)
1990

Pipelined
Execution &
Fast Clock Rate
Out-of-Order
execution
Superscalar
Instruction Issue

1998: Speed =
ƒ(non-cached memory accesses)
Superscalar, Out-of-Order machines hide L1 data cache miss
(5 clocks) but not L2 cache miss (50 clocks)?

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

Page 14

Advanced Computer Architecture Chapter 2.53

Processor issues 48-bit
virtual addresses
Separate Instr & Data
TLB & Caches
TLBs fully associative
TLB updates in SW
(“Priv Arch Libr”)
Caches 8KB direct
mapped, write thru,
virtually-indexed,
physically tagged
Critical 8 bytes first
Prefetch instr. stream
buffer
4 entry write buffer
between D$ & L2$
incorporates victim
buffer: to give read
priority over write
2 MB L2 cache, direct
mapped, WB (off-chip)
256 bit path to main
memory, 4 x 64-bit
modules

Alpha 21064

Advanced Computer Architecture Chapter 2.54

0.01%

0.10%

1.00%

10.00%

100.00%

A
lp

ha
S

or
t

TP
C

-B
 (d

b1
) Li S

c

C
om

pr
es

s

O
ra

E
ar

D
od

uc

To
m

ca
tv

M
dl

jp
2

S
pi

ce

S
u2

co
r

M
is

s
R

at
e I $

D $
L2

Alpha Memory Performance: Miss Rates of SPEC92

8K

8K
2M

Integer benchmark
average:
I$ miss = 2%
D$ miss = 13%
L2 miss = 0.6%

Floating-point
benchmark average:
I$ miss = 1%
D$ miss = 21%
L2 miss = 0.3%

Overall
average:
I$ miss = 6%
D$ miss = 32%
L2 miss = 10%

Advanced Computer Architecture Chapter 2.55

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

A
lp

ha
S

or
t

TP
C

-B
 (d

b1
) Li S

c

C
om

pr
es

s

O
ra

E
ar

D
od

uc

To
m

ca
tv

M
dl

jp
2

CP
I

L2
I$
D$
I Stall
Other

Alpha CPI Components
Instruction stall: branch mispredict (green);
Data cache (blue); Instruction cache (yellow); L2$ (pink)
Other: compute + reg conflicts, structural conflicts

Advanced Computer Architecture Chapter 2.56

Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

m
is

s
ra

te
m

is
s

pe
na

lty

Page 15

Advanced Computer Architecture Chapter 2.57

Practical exercise: explore memory
hierarchy on your favourite computer

Download Stefan Manegold’s “cache and TLB
calibrator”:

http://www.cwi.nl/~manegold/Calibrator/calibrator.shtml
(or find installed copy in ~phjk/ToyPrograms/C/ManegoldCalibrator)

This program consists of a loop which runs over an
array repeatedly

The size of the array is varied to evaluate cache size
The stride is varied to explore block size

Advanced Computer Architecture Chapter 2.58

Memory hierarchy of a
2.2GHz Intel Pentium 4 Xeon

Memory access latency is close to
1ns when loop reuses array smaller
than 8KB level-1 cache
While array is smaller than 512KB,
access time is 2-8ns, depending on
stride
When array exceeds 512KB,
accesses miss both level-1 and
level-2 caches
Worst case (large stride) suffers
158ns access latency
Q:

How many instructions could be
executed in 158ns?
what is the level-1 cache block
size?
What is the level-2 cache block
size?

Advanced Computer Architecture Chapter 2.59

Instructions for running the Manegold calibrator
Get a copy:

cp /homes/phjk/ToyPrograms/C/ManegoldCalibrator/calibrator.c ./

Compile it:
gcc –O3 –o calibrator calibrator.s

Find out CPU MHz
cat /proc/cpuinfo

Run it; ./calibrator <CPUMHz> <size> <filename>
Eg on media03:

./calibrator 3000 64M media03
Output is delivered to a set of files “media03.*”

Plot postscript graphs using generated gnuplot scripts:
gnuplot media03.cache-miss-latency.gp
gnuplot media03.cache-replace-time.gp
gnuplot media03.TLB-miss-latency.gp

View the generated postscript files:
gv media03.cache-miss-latency.ps &

Advanced Computer Architecture Chapter 2.60

Main Memory Background
Performance of Main Memory:

Latency: Cache Miss Penalty
Access Time: time between request and word arrives
Cycle Time: time between requests

Bandwidth: I/O & Large Block Miss Penalty (L2)

Main Memory is DRAM: Dynamic Random Access Memory
Dynamic since needs to be refreshed periodically (8 ms, 1% time)
Addresses divided into 2 halves (Memory as a 2D matrix):

RAS or Row Access Strobe
CAS or Column Access Strobe

Cache uses SRAM: Static Random Access Memory
No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM 4-8,
Cost/Cycle time: SRAM/DRAM 8-16

Page 16

Advanced Computer Architecture Chapter 2.61

The first real “random-access memory”
technology was based on magnetic
“cores” – tiny ferrite rings threaded
with copper wires
That’s why people talk about “Out-of-
Core”, “In-Core,” “Core Dump”
Non-volatile, magnetic
Lost out when 4 Kbit DRAM became
available
Access time 750 ns, cycle time 1500-
3000 ns

Main Memory Deep Background

http://www.faqs.org/docs/electric/Digital/DIGI_15.html
http://www.psych.usyd.edu.au/pdp-11/core.html

Pulse on sense line if any core flips
its magnetisation state

Advanced Computer Architecture Chapter 2.62

The first magnetic core memory,
from the IBM 405 Alphabetical
Accounting Machine. The photo
shows the single drive lines through
the cores in the long direction and
fifty turns in the short direction.
The cores are 150 mil inside
diameter, 240 mil outside, 45 mil
high. This experimental system was
tested successfully in April 1952.

524,000 36-bit words and a total
cycle time of eight microseconds in
each memory (1964 – for the
IBM7094)

S
ou

rc
es

:
ht

tp
:/

/w
w
w-

03
.i
bm

.c
om

/i
bm

/h
is
to

ry
/e

xh
ib

it
s/

sp
ac

e/
sp

ac
e_

23
61

.h
tm

l
ht

tp
:/

/w
w
w.

co
lu
m
bi

a.
ed

u/
ac

is
/h

is
to

ry
/c

or
e.

ht
m
l

Advanced Computer Architecture Chapter 2.63

Single transistor
Capacitor stores charge
Decays with time
Destructive read-outhttp://www.research.ibm.com/journal/rd/462/mandelman.html

DRAM cell design

Advanced Computer Architecture Chapter 2.64

DRAM array design

Square array of cells
Address split into Row
address and Column
Address bits
Row address selects row
of cells to be activated
Cells discharge
Cell state latched by per-
column sense amplifiers
Column address selects
data for output
Data must be written
back to selected row

http://www.faculty.iu-bremen.de/birk/lectures/PC101-2003/08dram/Principles/DRAM02.htm

Page 17

Advanced Computer Architecture Chapter 2.65

4 Key DRAM Timing Parameters
tRAC: minimum time from RAS line falling to the valid
data output.

Quoted as the speed of a DRAM when buy
A typical 4Mb DRAM tRAC = 60 ns
Speed of DRAM since on purchase sheet?

tRC: minimum time from the start of one row access
to the start of the next.

tRC = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

tCAC: minimum time from CAS line falling to valid
data output.

15 ns for a 4Mbit DRAM with a tRAC of 60 ns

tPC: minimum time from the start of one column
access to the start of the next.

35 ns for a 4Mbit DRAM with a tRAC of 60 ns

Advanced Computer Architecture Chapter 2.66

A
D

OE_L

256K x 8
DRAM9 8

WE_LCAS_LRAS_L

OE_L

A Row Address

WE_L

Junk

Read Access
Time

Output Enable
Delay

CAS_L

RAS_L

Col Address Row Address JunkCol Address

D High Z Data Out

DRAM Read Cycle Time

Early Read Cycle: OE_L asserted before CAS_L Late Read Cycle: OE_L asserted after CAS_L

Every DRAM access begins
at:

The assertion of the RAS_L
2 ways to read:
early or late v. CAS

Junk Data Out High Z

DRAM Read Timing

Advanced Computer Architecture Chapter 2.67

DRAM Performance

A 60 ns (tRAC) DRAM can
perform a row access only every 110 ns (tRC)
perform column access (tCAC) in 15 ns, but time between column
accesses is at least 35 ns (tPC).

In practice, external address delays and turning around buses
make it 40 to 50 ns

These times do not include the time to drive the
addresses off the microprocessor nor the memory
controller overhead!

Advanced Computer Architecture Chapter 2.68

DRAM History
DRAMs: capacity +60%/yr, cost –30%/yr

2.5X cells/area, 1.5X die size in 3 years

2007 DRAM fab line costs $4.6B (2004 prices)
DRAM only: density, leakage v. speed

Rely on increasing no. of computers & memory per computer
(60% market)

SIMM or DIMM is replaceable unit
=> computers use any generation DRAM

Commodity, second source industry
=> high volume, low profit, conservative

Little organization innovation in 20 years

Order of importance: 1) Cost/bit 2) Capacity
First RAMBUS: 10X BW, +30% cost => little impact

“Elpida to Build $4.6B DRAM Fab in Japan” (Electronic News, 6/9/2004)
http://www.reed-electronics.com/electronicnews/article/CA424812.html

Page 18

Advanced Computer Architecture Chapter 2.69

DRAM Today: 1 Gbit DRAM and more
Infineon (Dresden)

Organisation x4,x8,x16
Clock 133-200 MHz
Data Pins 68
Die Size 160 mm2

Metal Layers 3
Technology 110nm

Future (in lab 2005):
0.7 micron
Hi-k dielectric (Al2O3)
75:1 trench capacitor aspect ratio

Infineon News 2004-12-14 http://www.infineon.com/cgi/ecrm.dll/jsp/showfrontend.do?lang=EN&news_nav_oid=-9979&content_type=NEWS&content_oid=117074
Infineon Samples 1Gbit DDR SDRAMs Electronics News, 8/26/2003 http://www.reed-electronics.com/electronicnews/article/CA318799.html

Video: http://registration.infineon.com/registration/video/video.asp

Advanced Computer Architecture Chapter 2.70

Fast Memory Systems: DRAM specific
Multiple CAS accesses: several names (page mode)

Extended Data Out (EDO): 30% faster in page mode
New DRAMs to address gap;
what will they cost, will they survive?

RAMBUS: “reinvent DRAM interface”
Each Chip a module vs. slice of memory
Short bus between CPU and chips
Does own refresh
Variable amount of data returned
Originally 1 byte / 2 ns (500 MB/s per chip)
Direct Rambus DRAM (DRDRAM) 16 bits at 400MHz, with a transfer on
both clock edges, leading to 1.6GB/s
20% increase in DRAM area

Synchronous DRAM: 2 banks on chip, a clock signal to DRAM, transfer
synchronous to system clock (66 - 150 MHz). “Double Data Rate” DDR SDRAM
also transfers on both clock edges
Intel claims RAMBUS Direct (16 b wide) is future PC memory?

Niche memory or main memory?
e.g., Video RAM for frame buffers, DRAM + fast serial output

Advanced Computer Architecture Chapter 2.71

Main Memory Organizations

Simple:
CPU, Cache,
Bus, Memory
same width
(32 or 64 bits)

CPU

Cache

Memory

Bus

CPU

Cache

Memory

Bus

CPU

Cache

Memory

Bank 0

Bus

Memory

Bank 1

Memory

Bank 2

Memory

Bank 3

Wide:
CPU/Mux 1 word;
Mux/Cache, Bus,
Memory N words
(Alpha: 64 bits & 256
bits; UtraSPARC 512)

Interleaved:
CPU, Cache, Bus 1 word:
Memory N Modules
(4 Modules); example is
word interleaved

Advanced Computer Architecture Chapter 2.72

Main Memory Performance

Timing model (word size is 32 bits)
1 to send address,
6 access time, 1 to send data
Cache Block is 4 words

Simple M.P. = 4 x (1+6+1) = 32
Wide M.P. = 1 + 6 + 1 = 8
Interleaved M.P. = 1 + 6 + 4x1 = 11

Page 19

Advanced Computer Architecture Chapter 2.73

Independent Memory Banks

Memory banks for independent accesses
vs. faster sequential accesses

Multiprocessor
I/O
CPU with Hit under n Misses, Non-blocking Cache

Superbank: all memory active on one block transfer (or
Bank)
Bank: portion within a superbank that is word interleaved
(or Subbank)

Superbank Bank

…

Superbank Number Superbank Offset
Bank Number Bank Offset

Advanced Computer Architecture Chapter 2.74

Independent Memory Banks
How many banks?
number banks ≤ number clocks to access word in bank

For sequential accesses, otherwise will return to original bank before it
has next word ready
(like in vector case)

Increasing DRAM => fewer chips => harder to have
banks

Advanced Computer Architecture Chapter 2.75

Avoiding Bank Conflicts
Lots of banks

int x[256][512];
for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)
x[i][j] = 2 * x[i][j];

Conflicts occur even with 128 banks, since 512 is multiple of 128,
conflict on word accesses
SW: loop interchange or declaring array not power of 2 (“array
padding”)
HW: Prime number of banks

bank number = address mod number of banks
address within bank = address / number of words in bank
modulo & divide per memory access with prime no. banks?
address within bank = address mod number words in bank
bank number? easy if 2N words per bank

Advanced Computer Architecture Chapter 2.76

Chinese Remainder Theorem
As long as two sets of integers ai and bi follow these rules

and that ai and aj are co-prime if i ≠ j, then the integer x has only one
solution (unambiguous mapping):

bank number = b0, number of banks = a0 (= 3 in example)
address within bank = b1, number of words in bank = a1(= 8 in example)
N word address 0 to N-1, prime no. banks, words power of 2

b i = x mod a i, 0 ≤ b i < a i, 0 ≤ x < a 0 × a1 × a 2 ×…

Fast Bank Number

Seq. Interleaved Modulo Interleaved
Bank Number: 0 1 2 0 1 2

Address within
Bank: 0 0 1 2 0 16 8

1 3 4 5 9 1 17
2 6 7 8 18 10 2
3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23

Page 20

Advanced Computer Architecture Chapter 2.77

DRAMs per PC over Time
M

in
im

um
 M

em
or

y
Si

ze
DRAM Generation

‘86 ‘89 ‘92 ‘96 ‘99 ‘02
1 Mb 4 Mb 16 Mb 64 Mb 256 Mb 1 Gb

4 MB

8 MB

16 MB

32 MB

64 MB

128 MB

256 MB

32 8
16 4

8 2

4 1

8 2

4 1

8 2

Advanced Computer Architecture Chapter 2.78

Need for Error Correction!
Motivation:

Failures/time proportional to number of bits!
As DRAM cells shrink, more vulnerable

Went through period in which failure rate was low enough
without error correction that people didn’t do correction

DRAM banks too large now
Servers always corrected memory systems

Basic idea: add redundancy through parity bits
Simple but wasteful version:

Keep three copies of everything, vote to find right value
200% overhead, so not good!

Common configuration: Random error correction
SEC-DED (single error correct, double error detect)
One example: 64 data bits + 8 parity bits (11% overhead)
Papers up on reading list from last term tell you how to do these types
of codes

Really want to handle failures of physical components as well
Organization is multiple DRAMs/SIMM, multiple SIMMs
Want to recover from failed DRAM and failed SIMM!
Requires more redundancy to do this
All major vendors thinking about this in high-end machines

Advanced Computer Architecture Chapter 2.79

Architecture in practice

(as reported in Microprocessor Report, Vol 13, No. 5)
Emotion Engine: 6.2 GFLOPS, 75 million polygons per second
Graphics Synthesizer: 2.4 Billion pixels per second
Claim: Toy Story realism brought to games!

Advanced Computer Architecture Chapter 2.80

FLASH
Mosfet cell with
two gates
One “floating”
To program, charge
tunnels via <7nm
dielectric
Cells can only be
erased (reset to 0)
in blocks

More esoteric Storage Technologies?

1 Gbit NAND Flash memory
bwrc.eecs.berkeley.edu/Classes/ICDesign/ EE241_s02/Lectures/lecture28-Flash.pdf

Jan 2005:
$1000

16GB Q2’05

NAND design: sequential read, high density

Page 21

Advanced Computer Architecture Chapter 2.81

FRAM
Perovskite ferroelectric crystal forms dielectric in
capactor, stores bit via phase change
100ns read, 100ns write
Very low write energy (ca.1nJ)

More esoteric Storage Technologies?

http://www.fma.fujitsu.com/fram/framDocs01.asp?grOut=Documentation&sec=Documentation

Fully integrated with
logic fab process
Currently used in
Smartcards/RFID
Soon to overtake
Flash?

Advanced Computer Architecture Chapter 2.82

Main Memory Summary

Wider Memory
Interleaved Memory: for sequential or independent
accesses
Avoiding bank conflicts: SW & HW
DRAM specific optimizations: page mode & Specialty
DRAM
Need Error correction

