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332
Advanced Computer Architecture

Chapter 2 

Caches and Memory Systems

January 2006
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy 
and Patterson’s Computer Architecture, a quantitative approach (3rd

ed), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course
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Miss-oriented Approach to Memory Access:

CPIExecution includes ALU and Memory instructions
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Review: Cache performance

Separating out Memory component entirely
AMAT = Average Memory Access Time
CPIALUOps does not include memory instructions
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There are three ways to improve cache 
performance:

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

yMissPenaltMissRateHitTimeAMAT ×+=

Average memory access time:
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Reducing Misses
Classifying Misses: 3 Cs

Compulsory—The first access to a block is not in the cache, so the 
block must be brought into the cache. Also called cold start misses or 
first reference misses.
(Misses in even an Infinite Cache)

Capacity—If the cache cannot contain all the blocks needed during 
execution of a program, capacity misses will occur due to blocks being 
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

Conflict—If block-placement strategy is set associative or direct 
mapped, conflict misses (in addition to compulsory & capacity misses) will 
occur because a block can be discarded and later retrieved if too many 
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

More recent, 4th “C”:
Coherence - Misses caused by cache coherence.
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Cache Size (KB)   
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Cache Size (KB)   
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2:1 Cache Rule (of thumb!)

Conflict

miss rate 1-way associative cache size X 
= miss rate 2-way associative cache size X/2
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3Cs Relative Miss Rate

Cache Size (KB)   
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Flaws: for fixed block size
Good: insight => invention
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How We Can Reduce Misses?

3 Cs: Compulsory, Capacity, Conflict
In all cases, assume total cache size not changed:
What happens if:

1) Change Block Size: 
Which of 3Cs is obviously affected?

2) Change Associativity: 
Which of 3Cs is obviously affected?

3) Change Compiler: 
Which of 3Cs is obviously affected?
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Block Size (bytes)   
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1. Reduce Misses via Larger Block Size
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2. Reduce Misses via Higher Associativity

2:1 Cache Rule of thumb: 
The Miss Rate of a direct-mapped cache of size N 
Is the same as the Miss Rate of a 2-way set-associative 
cache size of size N/2

on average, over a large suite of benchmarks

Beware: Execution time is only final measure!
Will Clock Cycle time increase?
Hill [1988] suggested hit time for 2-way vs. 1-way 
external cache +10%, 
internal + 2% 
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Example: Avg. Memory Access Time vs. 
Miss Rate

Example: assume CCT = 1.10 for 2-way, 1.12 for 4-
way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)
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3. Reducing Misses via a
“Victim Cache”

How to combine fast hit 
time of direct mapped 
yet still avoid conflict 
misses? 
Add buffer to place data 
discarded from cache
Jouppi [1990]: 4-entry 
victim cache removed 20% 
to 95% of conflicts for a 4 
KB direct mapped data 
cache
Used in Alpha, HP machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator
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4. Reducing Misses via 
“Pseudo-Associativity”

How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 
Divide cache: on a miss, check other half of cache to see if 
there, if so have a pseudo-hit (slow hit)

Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
Better for caches not tied directly to  processor (L2)
Used in MIPS R10000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time
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5. Reducing Misses by Hardware
Prefetching of Instructions & Data 

E.g., Instruction Prefetching
Alpha 21064 fetches 2 blocks on a miss
Extra block placed in “stream buffer”
On miss check stream buffer

Works with data blocks too:
Jouppi [1990] 1 data stream buffer got 25% misses from 4KB 
cache; 4 streams got 43%
Palacharla & Kessler [1994] for scientific programs for 8 streams 
got 50% to 70% of misses from 
2 64KB, 4-way set associative caches

Prefetching relies on having extra memory 
bandwidth that can be used without penalty
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6. Reducing Misses by 
Software Prefetching Data

Data Prefetch
Load data into register (HP PA-RISC loads)
Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
Special prefetching instructions cannot cause faults; a form of speculative 
execution

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.  

Can be incorrect.  Frees HW/SW to guess!
Issuing Prefetch Instructions takes time

Is cost of prefetch issues < savings in reduced misses?
Higher superscalar reduces difficulty of issue bandwidth
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7. Reducing Misses by Compiler 
Optimizations

McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software
Instructions

Reorder procedures in memory so as to reduce conflict misses
Profiling to look at conflicts(using tools they developed)

Data
Merging Arrays: improve spatial locality by single array of compound 
elements vs. 2 arrays
Loop Interchange: change nesting of loops to access data in order stored in 
memory
Loop Fusion: Combine 2 independent loops that have same looping and some 
variables overlap
Blocking: Improve temporal locality by accessing “blocks” of data repeatedly 
vs. going down whole columns or rows
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Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality
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Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through 
memory every 100 words; improved spatial 
locality
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Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After fusion */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. 
one miss per access; improve 
spatial locality

/* After array contraction */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ c = c[i][j];

a = 1/b[i][j] * c;
d[i][j] = a + c;}

The real payoff comes if 
fusion enables Array 
Contraction: values 
transferred in scalar 
instead of via array
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Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

Two Inner Loops:
Read all NxN elements of z[]
Read N elements of 1 row of y[] repeatedly
Write N elements of 1 row  of x[]

Capacity Misses a function of N & Cache Size:
2N3 + N2 => (assuming no conflict; otherwise …)

Idea: compute on BxB submatrix that fits
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Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

B called Blocking Factor
Capacity Misses from 2N3 + N2 to N3/B+2N2

Conflict Misses Too? 

(We return to this example and this technique in Chapter 5)
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Reducing Conflict Misses by Blocking

Conflict misses in caches not FA vs. Blocking size
Lam et al [1991] a blocking factor of 24 had a fifth the  misses vs. 
48 despite both fit in cache
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Performance Improvement           
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arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to 
Reduce Cache Misses (by hand)
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Summary: Miss Rate Reduction

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.  

Can be incorrect.  Frees HW/SW to guess!

CPUtime = IC × CPI Execution +
Memory accesses

Instruction
× Miss rate × Miss  penalty⎛ 

⎝ 
⎞ 
⎠ × Clock  cycle  time
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Review: Improving Cache Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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Write Policy:
Write-Through vs Write-Back

Write-through: all writes update cache and underlying memory/cache
Can always discard cached data - most up-to-date data is in memory
Cache control bit: only a valid bit

Write-back: all writes simply update cache
Can’t just discard cached data - may have to write it back to memory
Cache control bits: both valid and dirty bits

Other Advantages:
Write-through:

memory (or other processors) always have latest data
Simpler management of cache

Write-back:
much lower bandwidth, since data often overwritten multiple times
Better tolerance to long-latency memory?
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Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

Write allocate: allocate new cache line in cache
Usually means that you have to do a “read miss” to fill in 
rest of the cache-line!
Alternative: per/word valid bits

Write non-allocate (or “write-around”):
Simply send write data through to underlying 
memory/cache - don’t allocate new cache line!
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1. Reducing Miss Penalty: 
Read Priority over Write on Miss

Consider write-through with write buffers 
RAW conflicts with main memory reads on cache 
misses

Could simply wait for write buffer to empty, 
before allowing read
Risks serious increase in read miss penalty (old 
MIPS 1000 by 50% )
Solution:

• Check write buffer contents before read; 
if no conflicts, let the memory access 
continue

Write-back also needs buffer to hold 
displaced blocks

Read miss replacing dirty block
Normal: Write dirty block to memory, and then do 
the read
Instead copy the dirty block to a write buffer, then 
do the read, and then do the write
CPU stall less since restarts as soon as do read

CPU

in out

DRAM   
(or lower mem)

write
buffer

Cache
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2. Reduce Miss Penalty: 
Early Restart and Critical Word First

Don’t wait for full block to be loaded before restarting 
CPU

Early restart—As soon as the requested word of the block  ar rives, 
send it to the CPU and let the CPU continue execution
Critical Word First—Request the missed word first from memory and 
send it to the CPU as soon as it arrives; let the CPU continue execution 
while filling the rest of the words in the block. Also called wrapped 
fetch and requested word  first

Generally useful only in large blocks, 
(Access to contiguous sequential words is very common –
but doesn’t benefit from either scheme – are they 
worthwhile?)

block
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3. Reduce Miss Penalty: Non-blocking 
Caches to reduce stalls on misses

Non-blocking cache or lockup-free cache allows data cache 
to continue to supply cache hits during a miss

requires full/empty bits on registers or out-of-order execution
requires multi-bank memories

“hit under miss” reduces the effective miss penalty by 
working during miss instead of ignoring CPU requests
“hit under multiple miss” or “miss under miss” may further 
lower the effective miss penalty by overlapping multiple 
misses

Significantly increases the complexity of the cache controller as there can 
be multiple outstanding memory accesses
Requires multiple memory banks (otherwise cannot support)
Pentium Pro allows 4 outstanding memory misses

Compare:
prefetching: overlap memory access with pre-miss instructions, 
Non-blocking cache: overlap memory access with post-miss instructions
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What happens on a Cache miss?
For in-order pipeline, 2 options:

Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF  ID  EX  Mem stall stall stall … stall Mem Wr
IF  ID  EX  stall stall stall … stall stall Ex Wr

Use Full/Empty bits in registers + MSHR queue
MSHR = “Miss Status/Handler Registers” (Kroft)
Each entry in this queue keeps track of status of outstanding memory 
requests to one complete memory line.

• Per cache-line: keep info about memory address.
• For each word: register (if any) that is waiting for result.
• Used to “merge” multiple requests to one memory line

New load creates MSHR entry and sets destination register to 
“Empty”.  Load is “released” from pipeline.
Attempt to use register before result returns causes instruction to 
block in decode stage.
Limited “out-of-order” execution with respect to loads. 
Popular with in-order superscalar architectures.

Out-of-order pipelines already have this functionality 
built in… (load queues, etc).
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Value of Hit Under Miss for SPEC

FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss
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4: Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

Definitions:
Local miss rate— misses in this cache divided by the total number of memory 
accesses to this cache (Miss rateL2)
Global miss rate—misses in this cache divided by the total number of memory 
accesses generated by the CPU
(Miss RateL1 x Miss RateL2) 
Global Miss Rate is what matters
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Comparing Local and Global Miss Rates
32 KByte 1st level 
cache;
Increasing 2nd level 
cache

Global miss rate close 
to single level cache 
rate provided L2 >> L1

Don’t use local miss 
rate

L2 not tied to CPU 
clock cycle!

Cost & A.M.A.T.

Generally Fast Hit 
Times and fewer 
misses

Since hits are few, 
target miss reduction

Fig 5.10 pg416
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Reducing Misses: 
Which apply to L2 Cache?

Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations
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Relative CPU Time   

Block Size   
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Reducing Miss Penalty Summary

Four techniques
Read priority over write on miss
Early Restart and Critical Word First on miss
Non-blocking Caches (Hit under Miss, Miss under Miss)
Second Level Cache

Can be applied recursively to Multilevel Caches
Danger is that time to DRAM will grow with multiple levels in 
between
First attempts at L2 caches can make things worse, since 
increased worst case is worse

CPUtime = IC × CPI Execution +
Memory  accesses

Instruction
× Miss rate × Miss  penalty⎛ 

⎝ 
⎞ 
⎠ × Clock  cycle  time
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There are three ways to improve cache 
performance:

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

yMissPenaltMissRateHitTimeAMAT ×+=

Average memory access time:
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Reducing the time to hit in the cache

Why does the Alpha 21164 have 8KB Instruction and 
8KB data cache + 96KB second level cache, all on-
chip?

1. Keep the cache small and simple
2. Keep address translation off the critical path
3. Pipeline the cache access

Advanced Computer Architecture Chapter 2.40

2. Fast hits by Avoiding Address 
Translation 

CPU
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Translate only on miss
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Overlap $ access
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across translation

VA
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Paging Virtual address space is divided into pages of equal size.
Main Memory is divided into page frames the same size.

Swapping 
Disc 

Virtual 
Memory 

Active 
Pages

• Running or ready  process
– some pages in main memory

• Waiting process
– all pages can be on disk

• Paging is transparent to programmer

Paging Mechanism

(1) Address Mapping
(2) Page Transfer

Real 
Memory 

Inactive 
Pages

(Review introductory operating systems material 
for students lacking CS background)
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P W Process 
Page Table 

Program Address
Main Store

Page P

B

B+W

P= Page No.
W=Word No.
B= Page  Frame Addr.

Paging - Address Mapping

Pointer to 
current Page 
Table 

Example:  Word addressed machine, W = 8 bits, page size = 256

Amap(P,W) := PPT[P] * 256  +  W

Note:  The Process Page Table (PPT) itself can be paged
(Review introductory operating systems material 

for students lacking CS background)
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P W

PPT -
Process 
Page Table 

Program Address
Main Store

Page P

B

B+W

P= Page No.
W=Word No.
B= Page  Frame Addr.

Paging - Address Mapping

Pointer to 
current Page 
Table 

(Review introductory operating systems material 
for students lacking CS background)

B

TLB – cache 
of PPT 

If page is absent in 
TLB, look in PPT TLB (Translation Lookaside

Buffer) is small cache 
containing recently-
accessed page table values
Eg 64-entry fully-
associative
Closely integrated with L1 
cache
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Paging - Page Transfer
What happens when we access a page which is currently not in main 
memory (i.e. the page table entry is empty)?

Page Fault → Suspend running process
→ Get page from disk
→ Update page table
→ Resume process (re-execute instruction)
? Can one instruction cause more than one page fault?

The location of a page on disk can be recorded in a separate table or in the page 
table itself using a presence bit.

Page 
Table 
Entry 

B1

D0

Main Memory Page 
Frame Location 

Disk Page Location

Presence bit set

Presence bit clear

Note: We can run 
another ready 
process while the 
page fault is being 
serviced. 

(Review introductory operating systems material 
for students lacking CS background)
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2. Fast hits by Avoiding Address 
Translation

Send virtual address to cache? Called Virtually Addressed Cache or just 
Virtual Cache vs.  Physical Cache

Every time process is switched logically must flush the cache; otherwise get false hits
Cost is time to flush + “compulsory” misses from empty cache

Dealing with aliases (sometimes called synonyms/homonyms); 
Two different virtual addresses map  to same physical address,
Two different physical addresses mapped to by the same virtual address in different 
contexts
I/O must interact with cache, so need virtual address

Solution to aliases
HW guaranteess covers index field & direct mapped, they must be unique;
called page coloring

Solution to cache flush
Add process identifier tag that identifies process as well as address within process: can’t 
get a hit if wrong process

Advanced Computer Architecture Chapter 2.46

Synonyms and homonyms in address translation

Homonyms (same sound different meaning)
same virtual address points to two different physical addresses in 
different processes
If you have a virtually-indexed cache, flush it between context switches 
- or include PID in cache tag

Synonyms (different sound same meaning)
different virtual addresses (from the same or different processes) point 
to the same physical address
in a virtually addressed cache

a virtual address could be cached twice under different physical
addresses
updates to one cached copy would not be reflected in the other 
cached copy
solution: make sure synonyms can’t co-exist in the cache, e.g., OS can 
forces synonyms to have the same index bits in a direct mapped 
cache (sometimes called page colouring)

(a nice explanation in more detail can be found at http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf)
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2. Fast Cache Hits by Avoiding 
Translation: Process ID impact

Black is uniprocess
Light Gray is 
multiprocess when 
flush cache
Dark Gray is 
multiprocess when 
use Process ID tag
Y axis: Miss Rates 
up to 20%
X axis: Cache size 
from 2 KB to 1024 
KB
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2. Fast Cache Hits by Avoiding Translation: 
Index with Physical Portion of Address

If index is physical part of 
address, can start tag access in 
parallel with translation so that 
can compare to physical tag
Limits cache to page size: what if 
want bigger caches and uses same 
trick?

Higher associativity

Page coloring
A cache conflict occurs if two 
cache blocks that have the same 
tag (physical address) are mapped 
to two different virtual addresses 
Make sure OS never creates a 
page table mapping with this 
property

CPU

TLB Cache

MEM

VA

PA
Tags

PA
L2 $

Page number | Page offset
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3: Fast Hits by pipelining Cache
Case Study: MIPS R4000 

8 Stage Pipeline:
IF–first half of fetching of instruction; PC selection happens here as 
well as initiation of instruction cache access.
IS–second half of access to instruction cache. 
RF–instruction decode and register fetch, hazard checking and also 
instruction cache hit detection.
EX–execution, which includes effective address calculation, ALU 
operation, and branch target computation and condition evaluation.
DF–data fetch, first half of access to data cache.
DS–second half of access to data cache.
TC–tag check, determine whether the data cache access hit.
WB–write back for loads and register-register operations.

What is impact on Load delay? 
Need 2 instructions between a load and its use!
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Case Study: MIPS R4000
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Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken
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R4000 Performance
Not ideal CPI of 1:

Load stalls (1 or 2 clock cycles)
Branch stalls (2 cycles + unfilled slots)
FP result stallsFP result stalls: RAW data hazard (latency)
FP structural stalls: Not enough FP hardware (parallelism)
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What is the Impact of What You’ve 
Learned About Caches?

1960-1985: Speed 
= ƒ(no. operations)
1990

Pipelined 
Execution & 
Fast Clock Rate
Out-of-Order 
execution
Superscalar 
Instruction Issue

1998: Speed = 
ƒ(non-cached memory accesses)
Superscalar, Out-of-Order machines hide L1 data cache miss 
(5 clocks) but not L2 cache miss (50 clocks)?
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Processor issues 48-bit 
virtual addresses
Separate Instr & Data 
TLB & Caches
TLBs fully associative
TLB updates in SW
(“Priv Arch Libr”)
Caches 8KB direct 
mapped, write thru, 
virtually-indexed, 
physically tagged
Critical 8 bytes first
Prefetch instr. stream 
buffer
4 entry write buffer 
between D$ & L2$ 
incorporates victim 
buffer: to give read 
priority over write
2 MB L2 cache, direct 
mapped, WB (off-chip)
256 bit path to main 
memory,  4 x 64-bit 
modules

Alpha 21064
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Alpha Memory Performance: Miss Rates of SPEC92

8K

8K
2M

Integer benchmark 
average:
I$ miss = 2%
D$ miss = 13%
L2 miss = 0.6%

Floating-point 
benchmark average:
I$ miss = 1%
D$ miss = 21%
L2 miss = 0.3%

Overall 
average:
I$ miss = 6%
D$ miss = 32%
L2 miss = 10%
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Alpha CPI Components
Instruction stall: branch mispredict (green);
Data cache (blue); Instruction cache (yellow); L2$ (pink) 
Other: compute + reg conflicts, structural conflicts
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Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
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Practical exercise: explore memory 
hierarchy on your favourite computer

Download Stefan Manegold’s “cache and TLB 
calibrator”:

http://www.cwi.nl/~manegold/Calibrator/calibrator.shtml
(or find installed copy in ~phjk/ToyPrograms/C/ManegoldCalibrator)

This program consists of a loop which runs over an 
array repeatedly

The size of the array is varied to evaluate cache size
The stride is varied to explore block size
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Memory hierarchy of a 
2.2GHz Intel Pentium 4 Xeon

Memory access latency is close to 
1ns when loop reuses array smaller 
than 8KB level-1 cache
While array is smaller than 512KB, 
access time is 2-8ns, depending on 
stride
When array exceeds 512KB, 
accesses miss both level-1 and 
level-2 caches
Worst case (large stride) suffers 
158ns access latency
Q:

How many instructions could be 
executed in 158ns?
what is the level-1 cache block 
size?
What is the level-2 cache block 
size?
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Instructions for running the Manegold calibrator
Get a copy:

cp /homes/phjk/ToyPrograms/C/ManegoldCalibrator/calibrator.c ./

Compile it:
gcc –O3 –o calibrator calibrator.s

Find out CPU MHz 
cat /proc/cpuinfo

Run it; ./calibrator <CPUMHz> <size> <filename>
Eg on media03:

./calibrator 3000 64M media03
Output is delivered to a set of files “media03.*”

Plot postscript graphs using generated gnuplot scripts:
gnuplot media03.cache-miss-latency.gp
gnuplot media03.cache-replace-time.gp
gnuplot media03.TLB-miss-latency.gp

View the generated postscript files:
gv media03.cache-miss-latency.ps &
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Main Memory Background
Performance of Main Memory: 

Latency: Cache Miss Penalty
Access Time: time between request and word arrives
Cycle Time: time between requests

Bandwidth: I/O & Large Block Miss Penalty (L2)

Main Memory is DRAM: Dynamic Random Access Memory
Dynamic since needs to be refreshed periodically (8 ms, 1% time)
Addresses divided into 2 halves (Memory as a 2D matrix):

RAS or Row Access Strobe
CAS or Column Access Strobe

Cache uses SRAM: Static Random Access Memory
No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM  4-8, 
Cost/Cycle time: SRAM/DRAM  8-16
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The first real “random-access memory”
technology was based on magnetic 
“cores” – tiny ferrite rings threaded 
with copper wires
That’s why people talk about “Out-of-
Core”, “In-Core,” “Core Dump”
Non-volatile, magnetic
Lost out when 4 Kbit DRAM became 
available
Access time 750 ns, cycle time 1500-
3000 ns

Main Memory Deep Background

http://www.faqs.org/docs/electric/Digital/DIGI_15.html
http://www.psych.usyd.edu.au/pdp-11/core.html

Pulse on sense line if any core flips 
its magnetisation state 
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The first magnetic core memory, 
from the IBM 405 Alphabetical 
Accounting Machine. The photo 
shows the single drive lines through 
the cores in the long direction and 
fifty turns in the short direction. 
The cores are 150 mil inside 
diameter, 240 mil outside, 45 mil 
high. This experimental system was 
tested successfully in April 1952. 

524,000 36-bit words and a total 
cycle time of eight microseconds in 
each memory (1964 – for the 
IBM7094)
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Single transistor 
Capacitor stores charge
Decays with time
Destructive read-outhttp://www.research.ibm.com/journal/rd/462/mandelman.html

DRAM cell design
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DRAM array design

Square array of cells
Address split into Row 
address and Column 
Address bits
Row address selects row 
of cells to be activated
Cells discharge
Cell state latched by per-
column sense amplifiers
Column address selects 
data for output
Data must be written 
back to selected row

http://www.faculty.iu-bremen.de/birk/lectures/PC101-2003/08dram/Principles/DRAM02.htm
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4 Key DRAM Timing Parameters
tRAC: minimum time from RAS line falling to the valid 
data output. 

Quoted as the speed of a DRAM when buy
A typical 4Mb DRAM tRAC = 60 ns
Speed of DRAM since on purchase sheet?

tRC: minimum time from the start of one row access 
to the start of the next. 

tRC = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

tCAC: minimum time from CAS line falling to valid 
data output. 

15 ns for a 4Mbit DRAM with a tRAC of 60 ns

tPC: minimum time from the start of one column 
access to the start of the next. 

35 ns for a 4Mbit DRAM with a tRAC of 60 ns
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A
D

OE_L

256K x 8
DRAM9 8

WE_LCAS_LRAS_L

OE_L

A Row Address

WE_L

Junk

Read Access
Time

Output Enable
Delay

CAS_L

RAS_L

Col Address Row Address JunkCol Address

D High Z Data Out

DRAM Read Cycle Time

Early Read Cycle: OE_L asserted before CAS_L Late Read Cycle: OE_L asserted after CAS_L

Every DRAM access begins 
at:

The assertion of the RAS_L
2 ways to read: 
early or late v. CAS 

Junk Data Out High Z

DRAM Read Timing
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DRAM Performance

A 60 ns (tRAC) DRAM can 
perform a row access only every 110 ns (tRC) 
perform column access (tCAC) in 15 ns, but time between column 
accesses is at least 35 ns (tPC). 

In practice, external address delays and turning around buses 
make it 40 to 50 ns

These times do not include the time to drive the 
addresses off the microprocessor nor the memory 
controller overhead!
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DRAM History
DRAMs: capacity +60%/yr, cost –30%/yr

2.5X cells/area, 1.5X die size in 3 years

2007 DRAM fab line costs $4.6B (2004 prices)
DRAM only: density, leakage v. speed

Rely on increasing no. of computers & memory per computer 
(60% market)

SIMM or DIMM is replaceable unit 
=> computers use any generation DRAM

Commodity, second source industry 
=> high volume, low profit, conservative

Little organization innovation in 20 years

Order of importance: 1) Cost/bit 2) Capacity
First RAMBUS: 10X BW, +30% cost => little impact

“Elpida to Build $4.6B DRAM Fab in Japan” (Electronic News, 6/9/2004 )
http://www.reed-electronics.com/electronicnews/article/CA424812.html



Page 18

Advanced Computer Architecture Chapter 2.69

DRAM Today: 1 Gbit DRAM and more
Infineon (Dresden)

Organisation x4,x8,x16
Clock 133-200 MHz
Data Pins 68
Die Size 160 mm2

Metal Layers 3
Technology 110nm

Future (in lab 2005):
0.7 micron 
Hi-k dielectric (Al2O3)
75:1 trench capacitor aspect ratio

Infineon News 2004-12-14 http://www.infineon.com/cgi/ecrm.dll/jsp/showfrontend.do?lang=EN&news_nav_oid=-9979&content_type=NEWS&content_oid=117074
Infineon Samples 1Gbit DDR SDRAMs Electronics News, 8/26/2003  http://www.reed-electronics.com/electronicnews/article/CA318799.html

Video: http://registration.infineon.com/registration/video/video.asp
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Fast Memory Systems: DRAM specific
Multiple CAS accesses: several names (page mode)

Extended Data Out (EDO): 30% faster in page mode
New DRAMs to address gap; 
what will they cost, will they survive?

RAMBUS: “reinvent DRAM interface”
Each Chip a module vs. slice of memory
Short bus between CPU and chips
Does own refresh
Variable amount of data returned
Originally 1 byte / 2 ns (500 MB/s per chip)
Direct Rambus DRAM (DRDRAM) 16 bits at 400MHz, with a transfer on 
both clock edges, leading to 1.6GB/s
20% increase in DRAM area

Synchronous DRAM: 2 banks on chip, a clock signal to DRAM, transfer 
synchronous to system clock (66 - 150 MHz).  “Double Data Rate” DDR SDRAM 
also transfers on both clock edges
Intel claims RAMBUS Direct (16 b wide) is future PC memory?

Niche memory or main memory?
e.g., Video RAM for frame buffers, DRAM + fast serial output

Advanced Computer Architecture Chapter 2.71

Main Memory Organizations

Simple: 
CPU, Cache, 
Bus, Memory 
same width 
(32 or 64 bits)

CPU

Cache

Memory

Bus

CPU

Cache

Memory

Bus

CPU

Cache

Memory

Bank 0

Bus

Memory

Bank 1

Memory

Bank 2

Memory

Bank 3

Wide: 
CPU/Mux 1 word; 
Mux/Cache, Bus, 
Memory N words 
(Alpha: 64 bits & 256 
bits; UtraSPARC 512)

Interleaved: 
CPU, Cache, Bus 1 word: 
Memory N Modules
(4 Modules); example is 
word interleaved
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Main Memory Performance

Timing model (word size is 32 bits)
1 to send address, 
6 access time, 1 to send data
Cache Block is 4 words

Simple M.P. = 4 x (1+6+1) = 32
Wide M.P. = 1 + 6 + 1 = 8
Interleaved M.P. = 1 + 6 + 4x1  = 11
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Independent Memory Banks

Memory banks for independent accesses 
vs. faster sequential accesses

Multiprocessor
I/O
CPU with Hit under n Misses, Non-blocking Cache

Superbank: all memory active on one block transfer (or 
Bank)
Bank: portion within a superbank that is word interleaved 
(or Subbank)

Superbank Bank

…

Superbank Number Superbank Offset
Bank Number Bank Offset
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Independent Memory Banks
How many banks?
number banks ≤ number clocks to access word in bank

For sequential accesses, otherwise will return to original bank before it 
has next word ready
(like in vector case)

Increasing DRAM => fewer chips => harder to have 
banks
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Avoiding Bank Conflicts
Lots of banks

int x[256][512];
for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)
x[i][j] = 2 * x[i][j];

Conflicts occur even with 128 banks, since 512 is multiple of 128, 
conflict on word accesses
SW: loop interchange or declaring array not power of 2 (“array 
padding”)
HW: Prime number of banks

bank number =  address mod number of banks
address within bank = address / number of words in bank
modulo & divide per memory access with prime no. banks?
address within bank = address mod number words in bank
bank number? easy if 2N words per bank
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Chinese Remainder Theorem
As long as two sets of integers ai and bi follow these rules

and that ai and aj are co-prime if i ≠ j, then the integer x has only one 
solution (unambiguous mapping):

bank number = b0, number of banks = a0 (= 3 in example)
address within bank = b1, number of words in bank = a1(= 8 in example)
N word address 0 to N-1, prime no. banks, words power of 2

b i = x mod a i, 0 ≤ b i < a i, 0 ≤ x < a 0 × a1 × a 2 ×…

Fast Bank Number

Seq. Interleaved Modulo Interleaved
Bank Number: 0 1 2 0 1 2

Address within 
Bank: 0 0 1 2 0 16 8

1 3 4 5 9 1 17
2 6 7 8 18 10 2
3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23
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DRAMs per PC over Time
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Need for Error Correction!
Motivation:

Failures/time proportional to number of bits!
As DRAM cells shrink, more vulnerable

Went through period in which failure rate was low enough 
without error correction that people didn’t do correction

DRAM banks too large now
Servers always corrected memory systems

Basic idea: add redundancy through parity bits
Simple but wasteful version:

Keep three copies of everything, vote to find right value
200% overhead, so not good! 

Common configuration: Random error correction
SEC-DED (single error correct, double error detect)
One example: 64 data bits + 8 parity bits (11% overhead)
Papers up on reading list from last term tell you how to do these types 
of codes

Really want to handle failures of physical components as well
Organization is multiple DRAMs/SIMM, multiple SIMMs
Want to recover from failed DRAM and failed SIMM!
Requires more redundancy to do this
All major vendors thinking about this in high-end machines
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Architecture in practice

(as reported in Microprocessor Report, Vol 13, No. 5)
Emotion Engine: 6.2 GFLOPS, 75 million polygons per second
Graphics Synthesizer: 2.4 Billion pixels per second
Claim: Toy Story realism brought to games!
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FLASH
Mosfet cell with 
two gates
One “floating”
To program, charge 
tunnels via <7nm 
dielectric
Cells can only be 
erased (reset to 0) 
in blocks

More esoteric Storage Technologies?

1 Gbit NAND Flash memory
bwrc.eecs.berkeley.edu/Classes/ICDesign/ EE241_s02/Lectures/lecture28-Flash.pdf 

Jan 2005:
$1000

16GB Q2’05

NAND design: sequential read, high density
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FRAM
Perovskite ferroelectric crystal forms dielectric in 
capactor, stores bit via phase change
100ns read, 100ns write
Very low write energy (ca.1nJ)

More esoteric Storage Technologies?

http://www.fma.fujitsu.com/fram/framDocs01.asp?grOut=Documentation&sec=Documentation

Fully integrated with
logic fab process
Currently used in 
Smartcards/RFID
Soon to overtake 
Flash?
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Main Memory Summary

Wider Memory
Interleaved Memory: for sequential or independent 
accesses
Avoiding bank conflicts: SW & HW
DRAM specific optimizations: page mode & Specialty 
DRAM
Need Error correction


