332 Advanced Computer Architecture Chapter 4

Compiler issues: dependence analysis, vectorisation, automatic parallelisation

February 2006 Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and Patterson's Computer Architecture, a quantitative approach (3rd ed), and on the lecture slides of David Patterson and John Kubiatowicz's Berkeley course

Advanced Computer Architecture Chapter 4.1

Background reading

The material for this part of the course is introduced only very briefly in Hennessy and Patterson (section 4.4 pp319). A good textbook which covers it properly is

Michael Wolfe, High Performance Compilers for Parallel Computing. Addison Wesley, 1996.

Much of the presentation is taken from the following research paper:

▶U. Banerjee. Unimodular transformations of double loops. In Proceedings of the Third Workshop on Programming Languages and Compilers for Parallel Computing, Irvine, CA. Pitman/MIT Press, 1990.

Banerjee's paper gives a simplified account of the theory in the context only of perfect doubly-nested loops with well-known dependences.

Advanced Computer Architecture Chapter 4.3

Introduction

In this segment of the course we consider compilation issues for loops involving arrays:

- Me How execution order of a loop is constrained,
- Me How a compiler can extract dependence information, and
- Me How this can be used to optimise a program.

Understanding and transforming execn order can exploit architectural features:

- Pipelined, superscalar and VLIWprocessors
- > Systems which rely heavily on caches.
- MCPUs with special instructions for vectors.
- Multiprocessors.

Advanced Computer Architecture Chapter 4.

Background reading continued

- Monica Lam's group at Stanford have used these ideas to build a public-domain prototype compiler system "SUIF". The following paper describes how SUIF uses unimodular transformations to optimise locality:
 - →M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design and Implementation, volume 26, pages 30-44, Toronto, Ontario, Canada, June 1991.
- The Stanford work overcomes many of the restrictions of Banerjee's paper, but lies beyond the scope of this course.

Restructuring

- Here we consider a special kind of optimisation, which is currently performed only by specialist compilers -"restructuring compilers".
- Conventional optimisations (see the Dragon [1] book) must also be performed.
- The difference is this:
 - Conventional optimisations reduce the amount of work the computer has to do at run-time.
 - Restructuring aims to do the work in an order which suits the target architecture better.

Advanced Computer Architecture Chapter 4.

```
/*

* mm: Multiply A by B leaving the

* result in C.

* The result matrix is assumed

* to be initialised to zero.

*/

void mm1(A,B,C)

double A[512][512],

B[512][512],

C[512][512];

{

int i, j, k;

for (i = 0; i < 512; i++)

for (j = 0; j < 512; j++)

for (k = 0; k < 512; k++)

C[i][j] += A[i][k] * B[k][j];

}
```

Motivation: an example

- We will begin by looking at matrix multiplication.
- We will study the performance of a 512x512 doubleprecision floating point matrix multiply.
- We will investigate the performance of various versions in order to determine what transformations a compiler should be applying.

Advanced Computer Architecture Chapter 4

Architectural details

- The experiments were performed on an IBM Thinkpad T21 laptop with 128MB RAM:
- ► This machine has an 800MHz Intel Pentium III processor pipelined RISC CPU.
 - ⇒20 Entry RS, 40 Entry ROB
 - →Pipeline Depth: 12 (in-order) plus 2 (out-of-order) stages
 - ◆"up to 5 OPs/Cycle"
 - ◆The compiler used was Microsoft Visual Studio 6.0

Memory system

- L1 Instruction cache: 16 KB, 4-Way, 32 Byte/Line, LRU
- L1 Data cache: 16 KB, 4-way, 32 byte/line, non-blocking, dual-ported, write allocate, LRU
- L2 unified cache: 256 KB, 8-Way, 32 Byte/Line, nonblocking
- Note that the matrix occupies $512^2 \times 8 = 2MBytes$
- Each row of the matrix occupies 512x8 = 4KBytes.

Interchange loops

```
for (i = 0; i < 512; i++)
  for (k = 0; k < 512; k++){
   r = A[i][k];
   for (j = 0; j < 512; j++)
     C[i][i] += r * B[k][i];
▶ 5.2 seconds (51.6 MFLOPS).
```

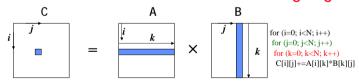
- Why is this such a good idea?
- How might a compiler perform this transformation?
- Mr. Can we do better still?

Performance

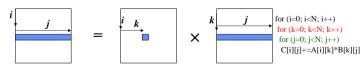
- The initial version runs in 10.3 seconds.
- The matrix multiplication takes 5123 steps, each involving two floating-point operations, an add and a multiply, i.e. 268x106.
- ▶ This loop achieves a computation rate of 268/10.3=26.1 MFLOPs.
- In That is, one floating-point operation completed every 30 clock cycles
- Me How are we going to get value for money?

Advanced Computer Architecture Chapter 4.10

What was going on?



- ▶ IJK variant computes each element of result matrix C one at a time, as inner product of row of A and column of B
 - Traverses A in row-major order, B in column-major



- IKJ variant accumulates partial inner product into a row of result matrix C, using element of A and row of B
 - Traverses C and B in row-major order

Blocking (a.k.a. "tiling")

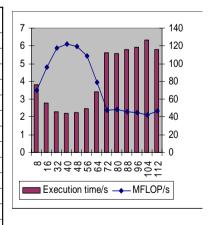
- Idea: reorder execn of loop nest so data isn't evicted from cache before it's needed again.
- Blocking is a combination of two transformations: "strip mining", followed by interchange; we start with

```
for (i = 0; i < 512; i++)
  for (k = 0; k < 512; k++){
    r = A[i][k];
    for (j = 0; j < 512; j++)
        C[i][j] += r * B[k][j]; }

w Strip mine the k and j loops:
  for (i = 0; i < 512; i++)
    for (kk = 0; kk < 512; kk += BLKSZ)
    for (k = kk; k < min(kk+BLKSZ,512); k++){
        r = A[i][k];
        for (j = 0; jj < 512; jj += BLKSZ)
        for (j = jj; j < min(jj+BLKSZ, 512); j++)
        C[i][j] += r * B[k][j];
}</pre>
```

Performance of blocked version

Blocking factor	Execution time	MFLOPS
8	3.815	70.4
16	2.784	96.4
32	2.283	117.6
40	2.193	122.4
48	2.253	119.1
56	2.473	108.5
64	3.404	78.9
72	5.608	47.9
80	5.578	48.1
88	5.808	46.2
96	5.928	45.3
104	6.309	42.5
112	5.778	46.5



Blocking/tiling - stripmine then interchange

- The inner i,k,j loops perform a multiplication of a pair of BLKSZxBLKSZ partial matrices.
- ▶ BLKSZ is chosen so that a BLKSZ x BLKSZ submatrix of B and a row of length BLKSZ of C can fit in the cache.
- What is the right value for BLKSZ?

Advanced Computer Architecture Chapter 4,15

Reducing overheads of blocking...

- The min operators in the inner loop bounds are likely to be a performance hit; if we choose a good blocking factor which divides the problem size exactly...
- Blocksize 32:
 ⇒2.013 seconds, 133.4 MFLOP/s
 Blocksize 64:
 ⇒2.915 seconds, 92.1 MFLOP/s

Impact....

- ▶ Original version: 10.3 seconds (26.1 MFLOP/s)
- ▶ Blocked version: 2.013 seconds (133.4 MFLOP/s)
 - ◆That was using a "good" optimising compiler!
 - →Factor of five performance improvement.
 - ⇒No reduction in amount of arithmetic performed.
- (The CodePlay VectorC compiler generates slightly better code for this inner, blocked loop, giving 155.0 MFLOPS)
- (the ATLAS library does even better)

Advanced Computer Architecture Chapter 4,18

Mark Consider:

Loop-carried dependences

▶ What does this loop do?

В:		1	1	1	1	1	1	1	1
A :	0								

Dependence

- ▶ Define:
 - ▶IN(S): set of memory locus which might be read by some execn of statement S
 - OUT(S): set of memory locns which might be written by some execn of statement S
- Reordering is constrained by dependences;
- ▶ There are four types:
 - Data ("true") dependence: S1 δ S2
 - OUT(S1) ∩ IN(S2)
 - Anti dependence: S1 ₹ S2
 - IN(S1) ∩ OUT(S2)
 - lacktriangle Output dependence: S1 δ° S2
 - OUT(S1) ∩ OUT(S2)
 - Control dependence: S1 δ^c S2
- These are static analogues of dynamic RAW, WAR, WAW and control hazards.

Advanced Computer Architecture Chapter 4.19

How?

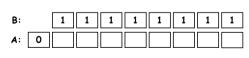
Mr Consider:

Loop-carried dependences

S1: A[0] := 0 for I = 1 to 8

S2 : A[I] := A[I-1] + B[I]

▶ What does this loop do?



- ▶ In this case, there is a data dependence
 - ◆This is a loop-carried dependence the dependence spans a loop iteration
 - →This loop is inherently sequential

Advanced Computer Architecture Chapter 4 21

B[6] B[7]

B[8]

What is a loop-carried dependence?

- Consider two iterations I¹ and I²
- ▶A dependence occurs between two statements S_p and S_q (not necessarily distinct), when an assignment in S_p^{II} refers to the same location as a use in S_a^{I2}
- ◆In the example,

$$S_1$$
: A[0] := 0
for I = 1 to 5
 S_2 : A[I] := A[I-1] + B[I]

- ► The assignment is ``A[I₁] := ...''
- The use is `` ... := A[I2-1] ...'
- ▶ These refer to the same location when I¹ = I²-1
- ▶ Thus I¹ < I², ie the assignment is in an earlier iteration

№ Notation: $S_2 \delta_{\zeta} S_2$

Advanced Computer Architecture Chapter 4.

Types of dependence

- If a solution to the dependence equation exists, a dependence of some kind occurs
- From The dependence type depends on what solutions exist
- \blacktriangleright The solutions consist of a set of pairs (I1,I2)
- ▶ We would appear to have a data dependence if

$$A[\phi_p(\mathbf{I})] \in OUT(S_p)$$
 and

$$A[\phi_q(I)] \in IN(S_q)$$

- But we only really have a data dependence if the assignments precede the uses, ie
 - $\phi S_p \delta_c S_q$
 - ▶if, for each solution pair (I^1,I^2) , $I^1 < I^2$

Advanced Computer Architecture Chapter 4,24

Definition: The dependence equation

- In A dependence occurs between two statements S_p and S_q (not necessarily distinct), when there exists a pair of loop iterations \mathbf{I}^1 and \mathbf{I}^2 , such that a memory reference in $\mathbf{S}_q^{\,\mathrm{II}}$ may refer to the same location as memory reference in $\mathbf{S}_q^{\,\mathrm{II}}$.
- This might occur if S_D and S_d refer to some common array A
- ▶ Suppose S_p refers to $A[\phi_p(I)]$
- Suppose S_q refers to $A[\phi_a(I)]$

 $(\phi_p(\mathbf{I}) \text{ is some subscript} \\ \text{expression involving } \mathbf{I})$

A dependence of some kind occurs between S_p and S_q if there exists a solution to the equation

$$\phi_p(\mathbf{I}^1) = \phi_q(\mathbf{I}^2)$$

▶ for integer values of I¹ and I² lying within the loop bounds

Advanced Computer Architecture Chapter 4,23

Dependence versus anti-dependence

▶ If the uses precede the assignments, we actually have an anti-dependence, ie

$$S_p \ \overline{\delta}_{<} \ S_q$$

if, for each solution pair (I^1, I^2), $I^1 > I^2$

If there are some solution pairs (I¹,I²) with I¹ < I² and some with I¹ > I₂, we write

$$S_p \delta_* S_q$$

▶ If, for all solution pairs (I¹,I²), I¹ = I², there are dependences within an iteration of the loop, but there are no loop-carried dependences:

$$S_p \delta_{\bar{z}} S_q$$

Dependence distance

In many common examples, the set of solution pairs is characterised easily:

- Definition: dependence distance
 - ➡If, for all solution pairs (I¹,I²),

$$I^1 = I^2 - k$$

then the dependence distance is k

For example in the loop we considered earlier,

$$S_1$$
: A[0] := 0
for I = 1 to 5
 S_2 : A[I] := A[I-1] + B[I]

We find that S_2 δ , S_2 with dependence distance 1.

((of course there are many cases where the difference is not constant and so the dependence cannot be summarised this way)).

Advanced Computer Architecture Chapter 4,2

Nested loops

- **▶**Up to now we have looked at single loops
- Mow let's generalise to loop "nests"
- ▶ We begin by considering a very simple loop with a very common dependence pattern. This example is also used in Banerjee's paper:

for
$$I_1$$
 = 0 to 3 do
for I_2 = 0 to 3 do
 $S: A[I_1,I_2] := A[I_1-1,I_2] + A[I_1,I_2-1]$

№ Dependence structure?

Advanced Computer Architecture Chapter 4,28

Reuse distance

- When optimising for cache performance, it is sometimes useful to consider the re-use relationship,
 - \Rightarrow IN(S₁) \cap IN(S₂)
- Here there is no dependence it doesn't matter which read occurs first
- Nonetheless, cache performance can be improved by minimising the reuse distance
- In the reuse distance is calculated essentially the same way
- 🌬 Eg

▶ Here we have a loop-carried reuse with distance 5

Advanced Computer Architecture Chapter 4,27

System of dependence equations

▶ Consider the dependence equations for this loop nest:

for
$$I_1$$
 = 0 to 3 do
for I_2 = 0 to 3 do

$$S: A[I_1,I_2] := A[I_1-1,I_2] + A[I_1,I_2-1]$$

- ▶ There are two potential dependences arising from the three references to A, so two systems of dependence equations to solve:
- 1. Between $A[I_1^1, I_2^1]$ and $A[I_1^2 1, I_2^2]$:

$$\begin{cases}
I_1^1 = I_1^2 - 1 \\
I_2^1 = I_2^2
\end{cases}$$

2. Between $A[I_1^1, I_2^1]$ and $A[I_1^2, I_2^2 - 1]$:

$$\begin{cases} I_1^1 = I_1^2 \\ I_2^1 = I_2^2 - 1 \end{cases}$$

((strictly we should also consider output dependences between $A[\mathbf{I}_1^1,\mathbf{I}_2^1]$ and $A[\mathbf{I}_1^2,\mathbf{I}_2^2]$, but this is obviously absent)), puter Architecture Chapter 4.29

▶ The same loop:

Iteration space graph

for
$$I_1$$
 = 0 to 3 do
for I_2 = 0 to 3 do
 $S: A[I_1,I_2] := A[I_1-1,I_2] + A[I_1,I_2-1]$

For humans the easy way to understand this loop nest is to draw the *iteration space graph* showing the iteration-to-iteration dependences:

The diagram shows an arrow for each solution of each dependence equation.

Advanced Computer Architecture Chapter 4.30

Interchange: counter-example

for
$$I_1$$
 = 0 to 3 do
for I_2 = 0 to 3 do
 S : $A[I_1, I_2]$:= $A[I_1 + 1, I_2 - 1] + B[I_1, I_2]$

- ▶ This loop is interchangeable: the top-to-bottom, left-to-right execution order is also valid since all dependence constraints (as shown by the arrows) are still satisfied.
- The inner loop is not vectorisable since there is a dependence chain linking successive iterations.
 - (to use a vector instruction, need to be able to operate on each element of the vector in parallel)
- ▶ Similarly, the outer loop is not parallel
- Interchanging the loop does not improve vectorisability or parallelisability

Advanced Computer Architecture Chapter 4,31

Interchange: counter-example

for
$$I_1$$
 = 0 to 3 do

for I_2 = 0 to 3 do

 $S: A[I_1,I_2] := A[I_1+1,I_2-1] + B[I_1,I_2]$

$$S^{00} S^{01} S^{02} S^{03}$$

$$S^{10} S^{11} S^{12} S^{13}$$

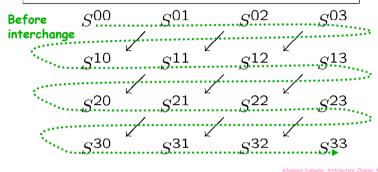
$$S^{20} S^{21} S^{22} S^{23}$$

$$S^{30} S^{31} S^{32} S^{33}$$

dyanced Computer Architecture Chapter 4 33

Interchange: counter-example

for
$$I_1$$
 = 0 to 3 do
for I_2 = 0 to 3 do
 S : A[I_1, I_2] := A[$I_1 + 1, I_2 - 1$] + B[I_1, I_2]



Interchange: condition

- A loop is interchangeable if all dependence constraints (as shown by the arrows) are still satisfied by the topto-bottom, left-to-right execution order
- ▶ How can you tell whether a loop can be interchanged?
- Look at it's dependence direction vectors:
 - ◆Is there a dependence direction vector with the form (<,>)?
 - $\bullet ie$ there is a dependence distance vector (k_1,k_2) with $k_1\!\!>\!\!0$ and $k_2\!\!<\!\!0$?
 - ▶If so, interchange would be invalid
 - Because the arrows would be traversed backwards
 - ▶All other dependence directions are OK.

Advanced Computer Architecture Chapter 4.36

Interchange: counter-example

▶ Consider this variation:

Skewing

for
$$k_1 := 0$$
 to 3 do
for $k_2 := k_1$ to k_1+3 do

$$S: A[k_1,k_2-k_1] := A[k_1-1,k_2-k_1]+A[k_1,k_2-k_1-1]$$

- In The inner loop's control variable runs from k_1 to k_1+3 . In The iteration space of this loop has 4^2 iterations just
- like the original loop.
- ▶ If we draw the iteration space with each iteration S^{K1,K2} at coordinate position (K₁,K₂), it is skewed to form a lozenge shape:

Skewing preserves semantics

- To see that this loop performs the same computation, lets work out its dependence structure.
- First label each iteration with the element of A to which it assians

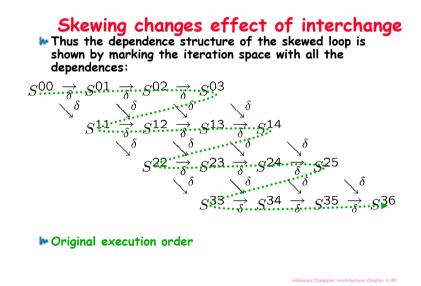
3	gns.						
	S^{00}	S^{01}	S^{02}	S^{03}			
	A_{OO}	A _{O1}	A ₀₂	A ₀₃			
		S^{11}	S^{12}	S^{13}	S^{14}		
		A ₁₀	A ₁₁	A ₁₂	A ₁₃		
			S^{22}	S^{23}	S^{24}	S^{25}	
			A ₂₀	A ₂₁	A ₂₂	A ₂₃	
				S^{33}	S^{34}	S^{35}	S^{36}
				A ₃₀	A ₃₁	A32	A33

The loop body is

$$A[k_1,k_2-k_1] := A[k_1-1,k_2-k_1]+A[k_1,k_2-k_1-1]$$

▶ E.g. iteration S₂₃ does:

$$A[2,1] := A[1,1] + A[2,0]$$

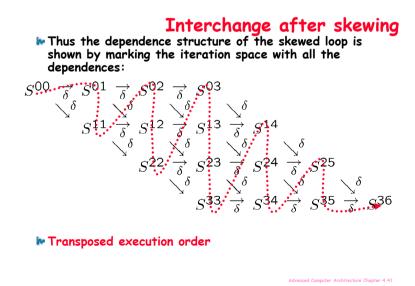


Thus the dependence structure of the skewed loop is shown by marking the iteration space with all the dependences:
$$S^{00} \xrightarrow{\delta} S^{01} \xrightarrow{\delta} S^{02} \xrightarrow{\delta} S^{03}$$

$$S^{11} \xrightarrow{\delta} S^{12} \xrightarrow{\delta} S^{13} \xrightarrow{\delta} S^{14}$$

$$S^{22} \xrightarrow{\delta} S^{23} \xrightarrow{\delta} S^{24} \xrightarrow{\delta} S^{25}$$

$$S^{33} \xrightarrow{\delta} S^{34} \xrightarrow{\delta} S^{35} \xrightarrow{\delta} S^{36}$$
We Can this loop nest be vectorised?
We Can this loop nest be interchanged?



- You can think of loop interchange as changing the way the iteration space is traversed
- Alternatively, you can think of it as a change to the way the runtime code instances are mapped onto the iteration space
- ▶ Traversal is always lexicographic - ie leftto-right, top-down

 S^{00}

- The inner loop is now vectorisable.
- The skewed iteration space has N rows and 2N-1 columns, but still only N² actual statement instances.
- What are the appropriate loop bounds?

for
$$k_2 := 0$$
 to $2N_2 - 2$ do
for $k_1 := \max(0, K_2 - N_2 + 2)$ to $\min(K_2, N_1)$ do
 $S : A[k_1, k_2 - k_1] := A[k_1 - 1, k_2 - k_1] + A[k_1, k_2 - k_1 - 1]$

- The inner loop is now vectorisable.
- The skewed iteration space has N rows and 2N-1 columns, but still only N² actual statement instances.
- What are the appropriate loop bounds?

for
$$k_2$$
 := ? to ? do
for k_1 := ? to ? do
 $S: A[k_1,k_2-k_1] := A[k_1-1,k_2-k_1]+A[k_1,k_2-k_1-1]$

$$S^{00}$$

$$\delta \downarrow \delta$$

$$S^{01} S^{11}$$

$$\delta \downarrow \delta \delta \downarrow \delta$$

$$S^{02} S^{12} S^{22}$$

$$\delta \downarrow \delta \delta \downarrow \delta \downarrow \delta$$

$$S^{03} S^{13} S^{23} S^{33}$$

$$\delta \delta \downarrow \delta \delta \downarrow \delta \delta \downarrow$$

$$S^{14} S^{24} S^{34}$$

$$\delta \delta \downarrow \delta \delta \downarrow$$

$$\delta \delta \downarrow \delta \delta \downarrow$$

$$S^{14} S^{24} S^{35}$$

$$\delta \delta \downarrow \delta \delta \downarrow$$

$$\delta \delta \delta \downarrow$$

$$\delta \delta \downarrow$$

$$\delta \delta \delta \downarrow$$

Advanced Computer Architecture Chapter 4.43

Skewing and interchange: summary

- Original loop interchangeable but not vectorisable.
- We skewed inner loop by outer loop by factor 1.
- Still not vectorisable, but interchangeable.
- Interchanged, skewed loop is vectorisable.
- Bounds of new loop not simple!

for $k_2 := 0$ to $2N_2 - 2$ do for $k_1 := \max(0, K_2 - N_2 + 2)$ to $\min(K_2, N_1)$ do $S : A[k_1, k_2 - k_1] := A[k_1 - 1, k_2 - k_1] + A[k_1, k_2 - k_1 - 1]$

- → Is skewing ever invalid?
- Does skewing affect interchangeability?
- Does skewing affect dependence distances?
- Can you predict value of skewing?

Matrix representation of loop transformations

To skew the inner loop by the outer loop by factor 1 we adjust the loop bounds, and replace I₁ by K₁, and I₂ by K₂-K₁. That is,

$$(K_1,K_2) = (I_1,I_2) . U$$

where U is a 2 x 2 matrix

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

That is,

$$(K_1,K_2) = (I_1,I_2) \cdot U = (I_1,I_2+I_1)$$

▶ The inverse gets us back again:

$$(I_1,I_2) = (K_1,K_2) \cdot U^{-1} = (K_1,K_2-K_1)$$

Advanced Computer Architecture Chapter 4,46

Using matrices to reason about dependence

Recall that:

▶ There is a dependence between two iterations (I_1^1, I_2^1) and (I_1^2, I_2^2) if there is a memory location which is assigned to in iteration (I_1^1, I_2^1) , and read in iteration (I_1^2, I_2^2) .

((unless there is an intervening assignment))

- If (I_1^1, I_2^1) precedes (I_1^2, I_2^2) it is a *data*-dependence.
- ▶ If (I_1^2, I_2^2) precedes (I_1^1, I_2^1) it is a *anti-*dependence.
- ▶ If the location is assigned to in both iterations, it is an output-dependence.
- The dependence distance vector (D_1,D_2) is $(I_1^2-I_1^1,I_2^2-I_2^1)$.

Advanced Computer Architecture Chapter 4.48

- Matrix U maps each statement instance S^{III2} to its position in the new iteration space, S^{K1K2}:
- ▶ Original iteration space:

	I_2 :			
I_1	0	1	2	3
0	S^{00}	S^{01}	S^{02}	S^{03}
1	S^{10}	S^{11}	S^{12}	S^{13}
2	S^{20}	S^{21}	S^{22}	S^{23}
3	S^{30}	S^{31}	S^{32}	S^{33}

▶ Transformed iteration space:

	K_2 :							
K_1	0	1	2	3	4	5	6	The
0	S^{00}	S^{01}	S^{02}	S^{03}				dependences
1		S^{11}	S^{12}	S^{13}	S^{14}			are subject to
2			S^{22}	S^{23}	S^{24}	S^{25}		the same
3				S^{33}	S^{34}	S^{35}	S^{36}	transformation.

Advanced Computer Architecture Chapter 4.47

Transforming dependence vectors

- Iterations (I_1^1,I_2^1) . U and (I_1^2,I_2^2) . U will also read and write the same location.
- The transformation U is valid iff (I₁¹,I₂¹). U precedes (I₁²,I₂²). U whenever there is a dependence between (I₁¹, I₂¹) and (I₁², I₂²).
- ▶ In the transformed loop the dependence distance vector is also transformed, to

$$(D_1,D_2)$$
. U

Definition: Lexicographic ordering: $(I_1^1,I_2^1) \text{ precedes } (I_1^2,I_2^2)$ $\text{If } I_1^1 < I_1^2, \text{ or } I_1^1 = I_1^2 \text{ and } I_2^1 < I_2^2$ ("Lexicographic" is dictionary order - both "baz" and "can" precede "cat")

Example: loop given earlier

Before transformation we had two dependences:

1. Distance: (1,0), direction: (<,.)

2. Distance: (0,1), direction: (.,<)

After transformation by matrix

$$\mathbf{U} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

(i.e. skewing of inner loop by outer) we get:

1. Distance: (1,1), direction: (<,<)

2. Distance: (0,1), direction: (.,<)

Advanced Computer Architecture Chapter 4.5

Summary

- $\mathbb{I}(I_1,I_2)$. U maps each statement instance (I_1,I_2) to its new position (K_1,K_2) in the transformed loop's execution sequence
- (D₁,D₂). U gives new dependence distance vector, giving test for validity
- Captures skewing, interchange and reversal
- \blacktriangleright Compose transformations by matrix multiplication U_1 . U_2
- Resulting loop's bounds may be a little tricky
 - →Efficient algorithms exist [Banerjee90] to maximise parallelism by skewing and loop interchanging
 - →Efficient algorithms exist to optimise cache performance by finding the combination of blocking, block size, interchange and skewing which leads to the best reuse [Wolf91]

Advanced Computer Architecture Chapter 4,52

- We can also represent loop interchange by a matrix transformation.
- Market After transforming the skewed loop by matrix

$$\mathbf{V} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- ▶ (i.e. loop interchange) we get:
- 1. Distance: (1,1), direction: (<,<)
- 2. Distance: (1,0), direction: (<,.)
- ▶ The transformed iteration space is the transpose of the skewed iteration space:

Advanced Computer Architecture Chapter 4.51

References

- ► Hennessy and Patterson: Section 4.4 (pp.319)
- Background: "conventional" compiler techniques
 - A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison Wesley, 1986.
 - Andrew Appel and Jens Palsberg, Modern Compiler Implementation. Cambridge University Press, 2002.
 - Cooper and Torczon, Engineering a Compiler. Morgan Kaufmann 2004.
 - Morgan, Building an Optimizing Compiler
- Textbooks covering restructuring compilers
 - Michael Wolfe. High Performance Compilers for Parallel Computing. Addison Wesley 1996
 - Steven Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
 - Ken Kennedy and Randy Allen, Optimizing Compilers for Modern Architectures. Morgan Kaufmann, 2001.

READ Research papers:

- THIS

 D. F. Bacon and S. L. Graham and O. J. Sharp, "Compiler Transformations for High-Performance Computing". ACM Computing Surveys V26 N4 Dec 1994

 http://doi.acm.org/10.1145/197405.197406
 - U. Banerjee. Unimodular transformations of double loops. In Proceedings of the Third Workshop on Programming Languages and Compilers for Parallel Computing, Irvine, CA. Pitman/MIT Press, 1990.
 - M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design and Implementation, volume 26, pages 30-44, Toronto, Ontario, Canada, June 1991.

A little history...early days at Bell Labs

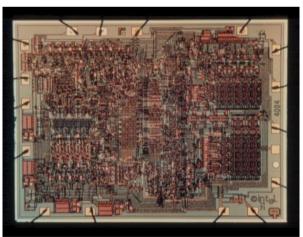
- ▶ 1940: Russell Ohl develops PN junction (accidentally...)
- ▶ 1945: Shockley's lab established
- ▶ 1947: Bardeen and Brattain create point-contact transistor with two PN junctions, gain=18
- ▶ 1951: Shockley develops junction transistor which can be manufactured in quantity
- 1952: British radar expert GWA Dummer forecasts "solid block [with] layers of insulating, conducting and amplifying materials
- № 1954: first transistor radio. Also Texas Instruments makes first silicon transistor (price \$2.50)

First pointcontact transistor invented at Bell Labs. (Source: Bell Labs.)

The three inventors of the transistor: William Shockley. seated), John Bardeen (left) and Walter Brattain right) in 1948; the hree inventors hared the Nobel orize in 1956.

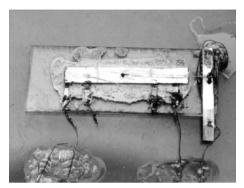
This background section is not covered in the lectures

- № 1970: Intel starts selling a 1K bit RAM
- № 1971: Intel introduces first microproces sor, the 4004
 - 4-bit buses
 - Clock rate 108 KHz
 - **2300** transistors
 - 📫 10μm process



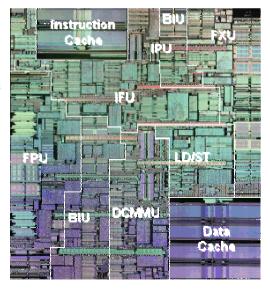
Pre-historic integrated circuits

№ 1958: The first monolithic integrated circuit, about the size of a finger tip, developed at Texas Instruments by Jack Kilby. The IC was a chip of a single Germanium crystal containing one transistor, one capacitor, and one resistor (Source: Texas Instruments)



Source: http://kasap3.usask.ca/server/kasap/photo1.html

- ▶ IBM Power3 microprocessor
- **№ 15M** transistors
- № 0.18µm copper/SOI process
- About 270mm²

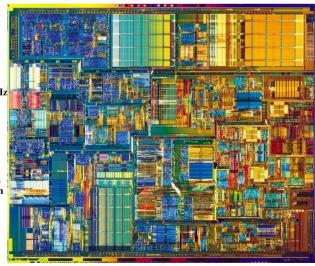


- Chips are made from slices of a singlecrystal silicon ingot
- ► Each slice is about 30cm in diameter, and 250-600 microns thick
- Transistors and wiring are constructed by photolithography
- Essentially a printing/etching process
- With lines ca. 0.18μm wide

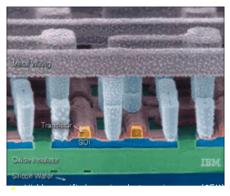
Intel Pentium 4

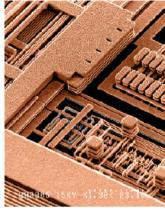
- ► 42 M transistors
- 0.13mm copper/SOI process
- Clock speeds: 2200, 2000MHz
- Die size 146 square mm
- Power consumption 55.1W (2200), 52.4W (2000)
- Price (\$ per chip, in 1,000-chip units, Jan 2002):

US\$562 (2200) US\$364 (2000)

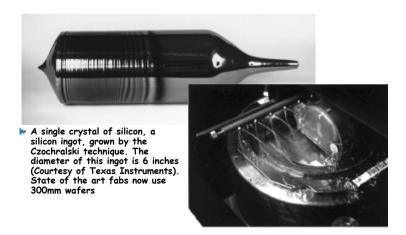


Advanced Computer Architecture Chapter 4 60





Highly magnified scanning electron microscope (SEM) view of IBM's six-level copper interconnect technology in an integrated circuit chip. The aluminum in transistor interconnections in a silicon chip has been replaced by copper that has a higher conductivity (by nearly 40%) and also a better ability to carry higher current densities without electromigration. Lower copper interconnect resistance means higher speeds and lower RC constants (Photograph courtesy of IBM Corporation, 1997.)

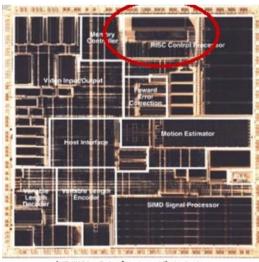


Integrated circuit fabrication is a printing

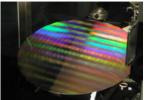
- 1. Grow pure silicon crystal
- Slice into wafers and polish
- 3. Grow surface layer of silicon dioxide (ie glass), either using high-temperature oxygen or chemical vapour deposition
- 4. Coat surface with photoresist layer, then use mask to selectively expose photoresist to ultraviolet light
- 5. Etch away silicon dioxide regions not covered by hardened photoresist
- . Further photolithography steps build up additional layers, such as polysilicon
- 7. Exposed silicon is doped with small quantities of chemicals which alter its semiconductor behaviour to create transistors
- 8. Further photolithography steps build layers of metal for wiring
- 9. Die are tested, diced, tested and packaged

The future

- More transistors
- Migher clock rates
- Lower power
- System-on-a-chip
- Field-programmable gate arrays
- "Compiling to silicon"
- M Optical interconnect
- Quantum computing?



AVP-111 Video Codec from Lucent Technologies



Close up of the wafer as it spins during a testing procedure

Checking wafers processing in a vertical diffusion

Intel technicians monitor wafers in an automated wet et tool. The process cleans the wafers of any excess process chemicals or contamination.

Advanced Computer Architecture Chapter 4 63

Intel ×86/Pentium Family

CPU	Year	Data Bus	Max. Mem.	Transistors	Clock MHz	Av. MIPS	Level-1 Caches
8086	1978	16	1MB	29K	5-10	0.8	
80286	1982	16	16MB	134K	8-12	2.7	
80386	1985	32	4GB	275K	16-33	6	
80486	1989	32	4GB	1.2M	25-100	20	8Kb
Pentium	1993	64	4GB	3.1M	60-233	100	8K Instr + 8K Data
Pentium Pro	1995	64	64GB	5.5M +15.5M	150-200	440	8K + 8K ₊ Level2
Pentium II	1997	64	64GB	7M	266-450	466-	16K+16K + L2
Pentium III	1999	64	64GB	8.2M	500-1000	1000-	16K+16K + L2
Pentium IV	2001	64	64GB	42M	1300-2000		8K + L2

On-line manuals: http://x86.ddj.com/intel.doc/386manuals.htm

On-line details: http://www.sandpile.org/ia32/index.htm

Integrated Circuits Costs

$$IC \ cost = \frac{\text{Die cost} + \text{Testing cost} + \text{Packaging cost}}{\text{Final test yield}}$$

$$\text{Die cost} = \frac{\text{Wafer cost}}{\text{Dies per Wafer} \times \text{Die yield}}$$

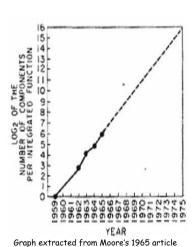
$$\text{Dies per wafer} = \frac{\pi \left(\text{Wafer_dia m/2}\right)^2}{\text{Die_Area}} - \frac{\pi \times \text{Wafer_diam}}{\sqrt{2} \cdot \text{Die_Area}} - \text{Test_Die}$$

$$\text{Die Yield} = \text{Wafer_yield} \times \left\{1 - \left(\frac{\text{Defect_Density} \times \text{Die_area}}{\sqrt{2} \cdot \text{Die_Area}}\right)^{-\alpha}\right\}$$

Die Cost goes roughly with die area4

Advanced Computer Architecture Chapter 4.6

Moore's "Law"



Cramming more components onto integrated circuits

By Gordon E. Moore

Electronics, Volume 38, Number 8, April 19, 1965

(See

http://www.intel.com/research/silicon/mooreslaw.htm)

"With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip"

(U)

Gordon Moore left Fairchild to found Intel in 1968 with Robert Noyce and Andy Grove,

Advanced Computer Architecture Chapter 4,68

Real World Examples

				Defect /cm²				Die Cost	
386DX	2	0.90	\$900	1.0	43	360	71%	\$4	
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$12	
PowerPC 6	01 4	0.80	\$1700	1.3	121	115	28%	\$53	
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73	
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149	
SuperSPAF	RC 3	0.70	\$1700	1.6	256	48	13%	\$272	
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417	

From "Estimating IC Manufacturing Costs," by Linley Gwennap, *Microprocessor Report*, August 2, 1993, p. 15

Advanced Computer Architecture Chapter 4,67

Technology Trends: Microprocessor Capacity

