332
Advanced Computer Architecture
Chapter 5

Instruction Level Parallelism
- the static scheduling approach

March 2006
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy

and Patterson's Computer Architecture, a quantitative approach (37

ed), and on the lecture slides of David Patterson and John
Kubiatowicz's Berkeley course

EEE

i» Pentium 4 “Netburst”

Page 1

l-'P Exe_cutmn Un'its

L1"Cache

' Data

TETE RIS be.eve v

I Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization
= http://www.intel.com/design/pentium4/manuals/24896607.pdf
w Desktop Performance & Optimization for Intel® Pentium® 4 Processor

» ftp://download.intel.com/design/pentium4/papers/24943801.pdf (much shorter!)
e Intel® compilers)))) .
Table 1. Approximate Ranges of Potential Application-Level Performance Gains of Several Code

» http://www.intel.com/s optimization Technigues
oftware/products/compi

fers/ tem | Category Codling Technique Potential Relative Performance Gain
1 Memsory Pay Attention to Store-To-Load | ~1.1 - 13X
I» Intel's VTune Forwarding Restrictions
performance analysis |: Memsory Avoid Cache Line Splits, MOB Splits | ~1.1 - 1.2X

tool 3 Memory

Avoid Aliasing =105 11X
=» http://www.intel.com/s |4 Use 16 Byte LoadStore ~LIX
M‘M s Use Optimal Prefetch Instruction =11 115X
- [Avoid Sparse Data Structures 1.1 - 13X
b AMD Athlon x86 Code |- Memory Use Hybrid SOA Data Structure ~LIX
Optimization Guide s Computation | Improve Branch Predictabil ity =105 11X
- T—"M 9 Computation | Minimize x87 Modes Changes =1l 13X
en/assets/content_type |1 Computation | Eliminate 387 FP Exceptions ~l1- 13X
%%’W 1 Computation__| Enable FT2/DAZ <11 - 13X on SSE applications
- —L(see page 67 for the 12 Computation | Replace Long-lstency Instructions <11 - 12X
nine-step development | 13 Graphics/Bus | Avoid Partial Writes Software Write- | ~1.1 - 1.2X
of a routine to copy an Combining
array - 570MB/s to 14 General Integer work aads ~1.0 = 13X
1630MB/s) -
15 Gigneral EL SIMD workloads =13- 17X

Example: Pentium 4 memory aliasing

I “There are several cases where addresses with a given stride will
compete for some resource in the memory hierarchy. Note that first-
level cache lines are 64 bytes and second-level cache lines are 128
bytes. Thus the least significant 6 or 7 bits are not considered in alias
comparisons. The aliasing cases are listed below.

= 2K for data — map to the same first-level cache set (32 sets, 64-byte lines). There are 4
ways in the first-level cache, so if there are more that 4 lines that alias to the same 2K
modulus in the working set, there will be an excess of first-level cache misses.

= 16K for data — will look same to the store-forwarding logic. If there has been a store to an
address which aliases with the load, the load will stall until the store data is available.

= 16K for code — can only be one of these in the trace cache at a time. If two traces whose
starting addresses are 16K apart are in the same working set, the symptom will be a high
trace cache miss rate. Solve this by offsetting one of the addresses by 1 or more bytes.

= 32K for code or data — map to the same second-level cache set (256 sets, 128-byte
lines). There are 8 ways in the second-level cache, so if there are more than 8 lines that
alias to the same 32K modulus in the working set, there will be an excess of second-level
cache misses.

= 64K for data — can only be one of these in the first-level cache at a time. If a reference
(load or store) occurs that has bits 0-15 of the linear address, which are identical to a
reference (load or store) which is underway, then second reference cannot begin until
first one is kicked out of cache. Avoiding this kind of aliasing can lead to a factor of three
speedup.” (http://www.intel.com/design/pentium4/manuals/24896607.pdf page 2-38)

Overview

i+ The previous Chapter: Dynamic scheduling, out-
of -order (0-0-0): binarz compatible, exploiting
ILP in hardware: BTB, ROB, Reservation
Stations,

i How much of all this complexity can you shift into
the compiler?

i What if you can also change instruction set
architecture?

k> VLIW (Very Long Instruction Word)

i EPIC (Explicitly Parallel Instruction Computer)

= Intel's (and HP's) multi-billion dollar %amble for the future of
computer architecture: Itanium, IA-64

% 7 years in the making?

Review: extreme dynamic ILP
i P6 (Pentium Pro, II, III, AMD Athlon)

= Translate most 80x86 instructions to micro-operations
® Longer pipeline than RISC instructions
= Dynamically execute micro-operations
» “Netburst” (Pentium 4, ..)
= Much longer pipeline, higher clock rate in same technology as P6
= Trace Cache to capture micro-operations, avoid hardware translation

= How can we take these ideas further?
» Complexity of issuing multiple instructions per cycle
= And of committing them
n-way multi-issue processor with an m-instruction dynamic scheduling window
@ m must increase if n is increased
@ Need n register ports

Need to compare each of the n instruction’s src and dst regs to determine
dependence

= Predicting and speculating across multiple branches

= With many functional units and registers, wires will be long - need pipeline stage
Jjust to move the data across the chip

Static Branch Prediction

I» Simplest: Predict taken

% average misprediction rate = untaken branch frequency,

which™for the SPEC programs is 34%.

® Unfortunately, the misrredicﬂon rate ranges from not very
accurate (59%) to highly accurate (9%)

I» Predict on the basis of branch direction?
® choosing backward-going branches to be taken (loop)
» forward-going branches to be not taken (if)

® SPEC programs, however, most forward-going branches are
taken => predict taken is better

I Predict branches on the basis of profile
information collected from earlier runs
® Misprediction varies from 5% to 22%

Page 2

Running Example

» This code adds a scalar to a vector:
for (i=1000; i>=0; i=i-1)
x[i] = x[i] + s;

I» Assume following latency all examples

Instruction Instruction Execution Latency
producing result using result in cycles in cycles
FP ALV op Another FP ALU op 4 3
FP ALV op Store double 3 2
Load double FP ALU op 1 1
Load double Store double 1 0
Integer op Integer op 1 0

FP Loop Showing Stalls

1 Loop: L.D FO,0(R1) ;FO=vector element
2 stall

3 ADD.D F4,FO0,F2 j;add scalar in F2

4 stall

5 stall

6 S.D 0(R1),F4 ;store result

7 DSUBUI R1,R1,8 ;decrement pointer 8B (DW)
8 BNEZ R1,Loop ;branch Rll!=zero

9 stall ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALV op Another FP ALU op 3

FP ALV op Store double 2

Load double FP ALU op 1

i 9 clocks: Rewrite code to minimize stalls?

FP Loop: Where are the Hazards?

+ First translate into MIPS code:

-To simplify, assume 8 is lowest address

Loop: L.D FO,0(R1) ;FO=vector element
ADD.D F4,FO0,F2 ;add scalar from F2
S.D 0(R1),F4 ;store result

DSuBUl R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1l!=zero
NOP ;delayed branch slot

Where are the stalls?

Revised FP Loop Minimizing Stalls

1 Loop: L.D FO,0(R1)

2 stall

3 ADD.D F4,FO,F2

4 DSuBUI R1,R1,8

5 BNEZ R1,Loop ;delayed branch

6 S.D 8(R1),F4 ;altered when move past DSUBUI

Swap BNEZ and S.D by changing address of S.D

Instruction Instruction Latency in
producing result using result clock cycles
FP ALV op Another FP ALU op 3

FP ALV op Store double 2

Load double FP ALV op 1

6 clocks_3 but just 3 for execution, 3 for loop overhead: How make
aster?

Page 3

Unroll Loop Four Times
(straightforward way)

) FO,0(R1) 1 cycle stall
ADD.D F4,F0,F2
S.D O(R1),F4
L.D F6,-8(R1)

; Rewrite loop to
3

4

5 ADD.D F8,F6,F2

6

7

8

9

2 WriTe
cycles stall minimize stalls?

;drop DSUBUI & BNEZ

S.D -8(R1),F8
L.D F10,-16(R1)
ADD.D F12,F10,F2

;drop DSUBUI & BNEZ

S.D -16(R1),F12 ;drop DSUBUI & BNEZ
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
Assumes R1 is multiple of 4

Unrolled Loop That Minimizes Stalls

3 toopL-D Eg’%iég) W What assumptions made
3 L.D F10,-16(R1) when moved code?

4 L.D F14,-24(R1) % OK to move store past

5 ADD.D F4,F0,F2 DSUBUI even though

6 ADD.D F8,F6,F2 changes register

7 ADD.D F12,F10,F2 » OK to move loads before

8 ADD.D F16,F14,F2 stores: get right data?

9 S.D O(R1),.F4 ® When is it safe for compiler
10 S.D -8(R1),F8 to do such changes?

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

Unrolled Loop Detail

i» Do not usually know upper bound of loop

I» Suppose it is n, and we would like to unroll the loop to
make k copies of the body
I» Instead of a single unrolled loop, we generate a pair
of consecutive loops:
® 1st executes (n mod k) times and has a body that is the original loop

® 2nd is the unrolled body surrounded by an outer loop that iterates
(n/Kk) times

® For large values of n, most of the execution time will be spent in the
unrolled loop

Compiler Perspectives on Code Movement

I» Compiler concerned about dependencies in program
i» Whether or not a HW hazard depends on pipeline

» Try to schedule to avoid hazards that cause performance
losses
I (True) Data dependencies (RAW if a hazard for HW)

= Instruction i produces a result used by instruction j, or

= Instruction j is data dependent on instruction k, and instruction k is data
dependent on instruction i.

i» If dependent, can't execute in parallel
i» Easy to determine for registers (fixed names)

i» Hard for memory ("memory disambiguation” problem):
®» Does 100(R4) = 20(R6)?
=% From different loop iterations, does 20(R6) = 20(R6)?

Page 4

1 Loop:L.D

2 ADD.D
3 S.D

4 L.D

5 ADD.D
6 S.D

7 L.D

8 ADD.D
9 S.D
10 L.D
11 ADD.D
12 S.D
13 DSUBUI
14 BNEZ
15 NOP

Where are the name
dependencies?

FO,0(R1)

F4,FO,F2

0(R1),F4 ;drop DSUBUI & BNEZ
FO,-8(R1)

F4,F0,F2

-8(R1),F4 ;drop DSUBUI & BNEZ
FO,-16(R1)

F4,F0,F2

-16(R1),F4 ;drop DSUBUI & BNEZ
FO,-24(R1)

F4,F0,F2

-24(R1),F4

R1,R1,#32 ;alter to 4*8
R1,LOOP

How can remove them?

Compiler Perspectives on Code

Movement

i» Name Dependencies are Hard to discover for Memory

Accesses

=% Does 100(R4) = 20(R6)?
®» From different loop iterations, does 20(R6) = 20(R6)?

i» Our example required compiler to know that if R1 doesn't

change then:

O(R1) # -8(R1) # -16(R1) # -24(R1)

There were no dependencies between some loads and
stores so they could be moved by each other

Page 5

Where are the name

dependencies?
1 Loop:L.D FO,0(R1)
2 ADD.D F4,F0,F2
3 S.D O(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12 :drop DSUBUI & BNEZ
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

The original “register renaming”

Steps Compiler Performed to
Unroll

» Check OK to move the S.D after DSUBUI and BNEZ,
and find amount to adjust S.D offset

i Determine unrolling the loop would be useful by finding
that the loop iterations were independent

» Rename registers to avoid name dependencies

i+ Eliminate extra test and branch instructions and
adjust the loop termination and iteration code

i» Determine loads and stores in unrolled loop can be
interchanged by observing that the loads and stores
from different iterations are independent

% requires analyzing memory addresses and finding that they do not
refer to the same address.

» Schedule the code, preserving any dependences
needed to yield same result as the original code

Another possibility:
Software Pipelining

i» Observation: if iterations from loops are independent, then
can get more ILP by taking instructions from different
iterations

I» Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (~ Tomasulo in SW)

Iteration

Iteration .
1 Iteration

Iteration

Iteration
4

Software-
pipelined
iteration

N J =) —
Y g

Pipeline fills Pipeline full

Pipeline drains

Page 6

Software Pipelining Example

Before: Unrolled 3 times After: Software Pipelined

1 L.D FO,0(R1) 1 S.D 0(R1),F4 ; Stores M[i]

2 ADD.DF4,F0,F2 2 ADD.D F4,FO0,F2 ; Adds to M[i-1]

3 s.D O0O(R1),F4 /3 L.D FO,-16(R1);Loads M[i-2]

4 L.D F6,-8(R1) 4 DSUBUI R1,R1,#8

5 ADD.DF8,F6,F2 5 BNEZ R1,LOOP

6 S.D -8(R1),F8

7 L.D F10,-16(R1) o

8 ADD.DF12,F10,F2 ‘ . SW Pipeline

9 S.D -16(R1),F12

10 DSUBUI R1,R1,#24 ~...T...‘
Ime

11 BNEZ R1,LOOP

overlapped ops

ADEREREE

‘ Loop Unrolled

+ Symbolic Loop Unrolling

- Maximize result-use distance /
Less code space than unrolling
Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

Time

5 cycles per iteration

When Safe to Unroll Loop?

i+ Example: Where are data dependencies?
(A.B,C distinct & non-overlapping)
for (i=0: i<100; i=i+1) {
A[i+1] = A[i] + C[i1; /* S1 */
BLi+1] = B[i] + A[i+1]; /* S2 */
¥
1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same is
true of S2 for B[i] and B[i+1].
This is a “loop-carried dependence”: between iterations
i» For our prior example, each iteration was distinct

i~ Implies that iterations can't be executed in parallel,
Right????

Does a loop-carried dependence
mean there is no parallelism???
b Consider:) o
for (|;O; /I\<+8(;Z[=;!+1) 5* s1 %/

Could compute:

“Cycle 1”: tempO = C[0] + C[1];
4 templ = c[z] + c[s];
temp2 = C[4] + C[5];
temp3 = C[6] + C[7]1:
“Cycle 2": temp4 = tempQO + templ;
temp5 = temp2 + temp3;
“Cycle 3": A = temp4 + temp5;

i+ Relies on associative nature of "+".

See "Parallelizing Complex Scans and Reductions” by Allan Fisher and
Anwar Ghuloum (http://doi.acm.org/10.1145/178243.178255)

Hardware Support for Exposing
More Parallelism at Compile-Time

» Conditional or Predicated Instructions
% Discussed before in context of branch prediction
Conditional instruction execution

i+ First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5
ADD R6,R3,R7
BEQZ RI10,L
LW R8,0(R10)
LW R9,0(R8)
I» Waste slot since 3rd LW dependent on result of
2nd LW

Associativity in floating point
i+ (a+b)+c = a+(b+c) ?
i» Example: Consider 3-digit base-10 floating-point

1+1+1+1+1+1+1+1+ +1+1+1+41+1+1+1+1+1+1+1+1000

1000 ones

1000+1+1+1+1+1+1+1+1+ +1+1+1+1+1+1+1+1+1+1+1+1

1000 ones

Consequence: many compilers use loop unrolling and
reassociation to enhance parallelism in summations

And results are different!

Hardware Support for Exposing
More Parallelism at Compile-Time

I» Use predicated version load word (LWC)?

= load occurs unless the third operand is O
i First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5
Lwc R8,20(R10),R10 ADD R6,R3,R7
BEQZ R10,L

LW R9,0(R8)

» If the sequence following the branch were short,
the entire block of code might be converted to
predicated execution, and the branch eliminated

Page 7

Exception Behavior Support

i» Several mechanisms to ensure that speculation by
compiler does not violate exception behavior
= For example, cannot raise exceptions in predicated code if annulled
= Prefetch does not cause exceptions

What if We Can Change Instruction Set?

I» Superscalar processors decide on the fly how many
instructions to issue
% HW complexity of Number of instructions to issue O(n?)
i*» Why not allow compiler to schedule instruction level
parallelism explicitly?
i» Format the instructions in a potential issue packet so
that HW need not check explicitly for dependences

Hardware Support for Memory Reference
Speculation

I» To help compiler to move loads across stores, when it
cannot be absolutely certain that such a movement is
correct, a special instruction to check for address
conflicts can be included in the architecture

® The special instruction is left at the original location of the load and
the load is moved up across stores

=® When a speculated load is executed, the hardware saves the address
of the accessed memory location

% If a subsequent store changes the location before the check
instruction, then the speculation has failed

® If only load instruction was speculated, then it suffices to redo the
load at the point of the check instruction

VLIW: Very Large Instruction Word

i» Each “instruction” has explicit coding for multiple
operations
% In IA-64, grouping called a “packet”
% In Transmeta, grouping called a "molecule” (with “"atoms” as ops)

i~ Tradeoff instruction space for simple decoding
% The long instruction word has room for many operations

% By definition, all the operations the compiler puts in the long instruction
word are independent => execute in parallel

®» E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
® 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits
wide
% Need compiling technique that schedules across several branches

Page 8

Recall: Unrolled Loop that Minimizes Stalls

for Scalar
1loop: L.D FO,0(R1) L.D to ADD.D: 1 Cycle
2 L.D F6,-8(R1) ADD.D to S.D: 2 Cycles
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,FO0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D O(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

Recall: Software Pipelining

i» Observation: if iterations from loops are independent, then
can get more ILP by taking instructions from different
iterations

I» Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (~ Tomasulo in SW)

Iteration
0

Iteration)
1 Iteration
2 Iteration
3 Iteration
—4

Software-
pipelined
iteration

Page 9

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op.2 branch
L.D FO,0(R1) L.D F6,-8(R1) 1
L.D FMRTJ‘E‘B-FH—ZMRJ.)\MTW 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.DFZFU’F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD, F10,F2 ADD.D F16,F14,F2 4
Ml&m ADD.D F24,F22,F2 5
S.D O(R1),F4 D -8(R1),F8 ADD.D F28,F26,F2 6
S.D-16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15vs. 6 in SS)

Recall: Software Pipelining Example

Before: Unrolled 3 times
1 L.D FO,0(R1) 1 S.D
ADD.D F4,F0,F2 2

; -8(R1),F8
L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D -16(R1),F12

10 DSUBUIR1,R1,#24

11 BNEZ R1,LOOP

S.D O(R1),F4 3 L.D
L.D F6,-8(R1) 4 DSUBUI
ADD.D F8,F6,F2 5 BNEZ

VOoONOOI b wWwN
[
o

* Symbolic Loop Unrolling

— Maximize result-use distance

— Less code space than unrolling

— Fill & drain pipe only once per loop

After: Software Pipelined

0(R1),F4 ; Stores M[i]

R1,R1,#8
R1,LOOP

’ SW Pipeline

Time
‘ Loop Unrolled

2RBE

overlapped ops

ADD.D F4,F0,F2 ; Adds to M[i-1]
FO,-16(R1); Loads M[i-2]

Time

vs. once per each unrolled iteration in loop unrolling

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D FO,-48(R1) ST O(R1),F4 ADD.D F4,F0,F2 1
L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUIRL,R1#24 2
L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3

» Software pipelined across 9 iterations of original loop
= In each iteration of above loop, we:
@ Store to m,m-8,m-16
@ Compute for m-24,m-32,m-40 (iterations I,1+1,1+2)
@ Load from m-48,m-56,m-64 (iterations +3,1+4,1+5)
e 9results in 9 cycles, or 1 clock per iteration
I Average: 3.3 ops per clock, 66% efficiency
Note: Need fewer registers for software pipelining
(only using 7 registers here, was using 15)

(iterations 1-3,1-2,1-1)

Advantages of HW (Tomasulo) vs.
SW (VLIW) Speculation

i» HW advantages:
=» HW better at memory disambiguation since knows actual addresses
» HW better at branch prediction since lower overhead
% HW maintains precise exception model
» HW does not execute bookkeeping instructions
®» Same software works across multiple implementations
® Smaller code size (not as many nops filling blank instructions)

» SW advantages:
#» Window of instructions that is examined for parallelism much higher
®» Much less hardware involved in VLIW (unless you are Intel..!)
® More involved types of speculation can be done more easily

% Speculation can be based on large-scale program behavior, not just local
information

Page 10

Trace Scheduling

w Parallelism across IF branches vs. LOOP branches?

 Two steps:
= Trace Selection

® Find likely sequence of basic blocks (#race)
of (statically predicted or profile predicted)
long sequence of straight-line code

= Trace Compaction
® Squeeze trace into few VLIW instructions
® Need bookkeeping code in case prediction is wrong

b This is a form of compiler-generated speculation

= Compiler must generate “fixup” code to handle cases in which trace is not the
taken branc

= Needs extra registers: undoes bad guess by discarding

Subtle compiler bugs mean wrong answer
vs. poorer performance; no hardware interlocks

Superscalar v. VLIW

i» Smaller code size
i» Binary compatibility
across generations of

hardware b Simplified Hardware for

decoding, issuing
instructions

i No Interlock Hardware
(compiler checks?)

i» More registers, but
simplified Hardware for
Register Ports (multiple
independent register
files?)

Problems with First Generation VLIW

i» Increase in code size

= generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops

= whenever VLIW instructions are not full, unused functional units
translate to wasted bits in instruction encoding

I» Operated in lock-step: no hazard detection HW

= a stall in any functional unit pipeline caused entire processor to
stall, since all functional units must be kept synchronized

= Compiler might know functional unit latencies, but caches harder to
predict

i» Binary code compatibility

= Pure VLIW => different numbers of functional units and unit
latencies require different versions of the code

IA-64 Registers

i The integer registers are configured to help
accelerate procedure calls using a register stack

% mechanism similar to that developed in the Berkeley RISC-I
processor and used in the SPARC architecture.

Registers 0-31 are always accessible and addressed as 0-31

% Registers 32-128 are used as a register stack and each procedure is
allocated a set of registers (from O to 96)

® The new register stack frame is created for a called procedure by
renaming the registers in hardware;

% a special register called the current frame pointer (CFM) points to
the set of registers to be used by a given procedure

i 8 64-bit Branch registers used to hold branch
destination addresses for indirect branches

» 64 1-bit predicate registers

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

b TA-64: instruction set architecture; EPIC is type
» EPIC = 2nd generation VLIW?
b Itanium™ first implementation
= Highly parallel and deeply pipelined hardware at 800Mhz
=» 6-wide, 10-stage pipeline
=» Not competitive
b Itanium 2
=» 6-wide, 8-stage pipeline
= 16KB L1I, 16KB L1D (one cycle), 256KB L2 (5 cycle), 3MB L3 (12 cycle), all on-die
» http://www.intel.com/products/server/processors/server/itanium2/
= Competitive for some applications (eg SPEC FP)
b 128 64-bit integer registers + 128 82-bit floating point registers
= Not separate register files per functional unit as in old VLIW
i Hardware checks dependencies
(interlocks => binary compatibility over time)

v Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

Intel/HP TA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

I» Instruction group: a sequence of consecutive instructions
with no register data dependences

® All the instructions in a group could be executed in parallel, if sufficient
hardware resources existed and if any dependences through memory were
preserved

= An instruction group can be arbitrarily long, but the compiler must explicitly
indicate the boundary between one instruction group and another by placing
a stop between 2 instructions that belong to different groups
i» IA-64 instructions are encoded in bundles, which are 128
bits wide.
= Each bundle consists of a 5-bit template field and 3 instructions, each 41
bits in length
3 Instructions in 128 bit “groups”; field determines if instructions
dependent or independent
» Smaller code size than old VLIW, larger than x86/RISC
= Groups can be linked to show independence > 3 instr

Page 11

5 Types of Execution in Bundle

Execution Instruction Instruction Example

Unit Slot type Description Instructions

I-unit A Integer ALV add, subtract, and, or, cmp
I Non-ALU Int shifts, bit tests, moves

M-unit A Integer ALV add, subtract, and, or, cmp
M Memory access Loads, stores for int/FP regs

F-unit F Floating point Floating point instructions

B-unit B Branches Conditional branches, calls

L+X L+X Extended Extended immediates, stops

- 5-bit template field within each bundle describes both the
presence of any stops associated with the bundle and the
execution unit type required by each instruction within the
bundle (see Fig 4.12 page 271)

How Register Rotation Helps Software,
Pipelinings

The concept of a software pipelining branch:

L1: 1d4 r35 =[r4],4 // post-increment by 4
st4 [r5] =r37,4 // post-increment by 4 2
br.ctop L1 ;;

/TF-

The br.ctop instruction in the example rotates
the general registers (actually br.ctop does more as we shall see)

Therefore the value stored into r35 is read in r37 two
iterations (and two rotations) later.

The register rotation eliminated a dependence between
the load and the store instructions, and allowed the loop to
execute in one cycle.

i Register rotation is useful for procedure calls

i It's also useful for software-pipelined loops

v The Iogical-to-ph¥sical register mapping is shifted by 1 each time
the branch ("br.ctop”) is executed

http://www.cs.ualberta.

Page 12

IA-64 Registers

i» Both the integer and floating point registers support
register rotation for registers 32-128.

I» Register rotation is designed to ease the task of
register allocation in software pipelined loops

i» When combined with (rr'edicaﬁon, possible to avoid the
need for unrolling and for separate prologue and
epilogue code for a software pipelined loop

% makes the SW-pipelining usable for loops with smaller numbers of
iterations, where the overheads would traditionally negate many of
the advantages

Software Pipelining Example in the IA—64E

mov pr.rot =0 // Clear all rotating predicate registers
cmp.eq p16,p0 =r0,r0 // Set pl1l6=1
mov ar.lc =4 // Set loop counter to n-1
mov ar.ec =3 // Set epilog counter to 3
loop:
(p16) Idl r32 =[ri12],1 // Stage 1: load x
(p17) addr34 =1,r33 // Stage 2: y=x+1
(p18) stl[r13] =r35,1 // Stage 3: storey
br.ctop loop // Branch back

v “Stage” predicate mechanism allows successive stages of the
software pipeline to be filled on start-up and drained when the
loop terminates

i The software pipeline branch “br.ctop” rotates the predicate
registers, and injects a 1 into p16

i Thus enabling one stage at a time, for execution of prologue

k» When loop trip count is reached, "br.ctop” injects O into p16,
disabling one stage at a time, then finally falls-through

1d027 . h

pel

http://www.cs.ualberta.

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF -HWSupSof tPipeline/

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF -HWSupSof tPipeline/

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory

<=

X1

X2

X3

x4

X5

General Registers (Physical)
32 33 34 35 36 37 38 39

o] [[[[]]

32 33 34 35 36 37 38 39
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
ZIEY
RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(pl7) addr34 =1,r33
(p18) stl [r13] =r35,1
br.ctop loop
Memory

<=

X1

X2

X3

x4

X5

General Registers (Physical)
32 33 34 35 36 37 38 39

bal [[[[]1]]

32 33 34 35 36 37 38 39
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
ZIEY
RRB

Page 13

http://www.cs .ualberta.ca/~amaral/courses/680/webslides/TF -HWSupSoftPipeline/

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory

<

X1

X2

x3

x4

X5

General Registers (Physical)
32 33 34 35 36 37 38 39

bal [[[[[1]]

32 33 34 35 36 37 38 39
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
ZIEY
RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory

X1

X2

x3

x4

X5

General Registers (Physical)
32 33 34 35 36 37 38 39

bal [[[[[1]]

33 34 35 36 37 38 39 32
General Registers (Logical)

Predicate Registers

® [Eloo]

16 17 18
LC EC
ZIEY
RRB

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[r12],1

x1
(pl7) addr34 =1,r33 ‘33‘34‘35‘36‘37‘38‘39‘32‘
(p18) Zﬂ [tr13]| =r3si General Registers (Logical)
r.ctop loop <
Memory Predicate Registers
1 16 17 18
X
LC EC
x2
= e
x4
= RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 <11 2
(p17) addr34 =1,r33 P Dapal | [[[De
18) stl [r13] =r35,1 33 34 35 36 37 38 39 32
(P ! General Registers (Logical)
br.ctop loop
Memory Predicate Registers
16 17 18
x1 LC EC
X2
xa EINE]
X4
xS RRB

Page 14

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[r12],1 <= ‘xl‘ ‘ ‘ ‘ ‘ ‘ ‘xz‘

(p17) addr34 =1,r33 33 34 35 36 37 3839 32
(p18) stl[r13] =r35,1

General Registers (Logical)

br.ctop loop R
Memory Predicate RegiSters
e 16 17 18
XL | et
........... LC EC
X2 enpunnan
X3 EInEl
x4
e RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[r12],1 x1|y1 X2
(D) EeeliEs = Y 33 3)‘/4 35 ‘36 ‘37 ‘38 ‘39 ‘32‘
(p18) stl[r13] =r351 A General Registers (Logical)
br.ctop loop
Memory Predicate Registers
16 17 18
x1 LC EC
X2
X3 EINE]
x4
e RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) 1di 132 =[r12],1 . =
(ili) GER e = (R 33 24‘35‘36‘37‘38‘39‘32‘
(p18) stl[r13] =r35,1 General Registers (Logical
br.ctop loop < g (Logical)
Memory Predicate Registers
16 17 18
x1 LC EC
X2
x3] [5]
x4
S RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 <G ol aha
(pl7) addrs4 =1,r33 ‘34 ‘36 ‘37 ‘38 ‘39 |32 ‘33‘
(p18) stl[r13] =r35,1 General Registers (Logical)
br.ctop loop :
Memory Predicate Regjsters
16 1718
x1 c . EC
X2
o o I — [2] B
x4
X RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 x1|yl x2
@ly) eslred =i, e 34)3/5 ‘36 ‘37 ‘38 ‘39 ‘32 ‘33‘
(p18) stl[r13] =r35,1 General Registers (Logical
br.ctop loop <= o (togicah
Memory Predicate Registers
16 17 18
x1 LC EC
X2
X3 B E
x4
x> RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12], 1 2] | | | [xa)<
(p17) addr34 =1,r33 ¢ 34 35 36 37 38 39 32 33
(p18) stl[r13] =r35,1 General Registers (Logical)
br.ctop loop
Memory Predicate Registers
16 17 18
x1 LC EC
X2
x3 H E
x4
S RRB

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

O e <z BT 1 1T Dslal
(918) aﬂ 'i3 = é;:l B4 35 36 37 38 39 32 33
(p18) stl[r13] =r35, < General Registers (Logical)

br.ctop loop :
Memory Predicate Registers
1 16 17 18
X :
4 LC EC
x2 5
X3 yl < = [3]
x4
= RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[r12],1 ‘y2|y1 H ‘ ‘ ‘ |X3‘X2‘
(ili) GER e = (R 35 36 37 38 39 32 33 34
(p18) stl[r13] =r35,1 General Registers (Logical
br.ctop loop <= g (Logical)
Memory Predicate Registers
16 17 18
x1 LC EC
X2
x3 vyl . EI
x4
S RRB

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[r12],1

(p17) addr34 =1,r33 ‘§i|Z:H36‘37‘38‘39|;5‘§§‘
(p18) Etrl (I:::c:l).s]lojprasll General Registers (Logical)
Memory Predicate Registers
1 16 17 18
X
LC EC
X2
x3 vyl . EI
X4
S RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 <= ‘V2|V1H ‘ ‘ .X3‘X2‘
(p17) addr34 =1,r33 35 36 37 38739 32 33 34
(p18) stl[r13] =r35,1 General Reg,i§ters (Logical)
br.ctop loop
Memory et Rredicate Registers
16 17 18

x1 : LC EC

X2

X3 e al III (2]

X4 wespereentt

e RRB

Software Pipelining Example in the IA-64

loop:

(p16)
(p17)
(p18)

Software Pipelining Example in the IA-64

loop:

(p16)
(p17)
(p18)

Idl r32 =1[ri12],1
addr34 =1, r33
stl [r13] =r35,1
br.ctop loop
Memory

<4

X1
X2
X3
X4
X5

yl

Idl r32 =1[r12],1
addr34 =1,r33
stl [r13] =r35,1
br.ctop loop
Memory

X1
X2

X3

X4

X5

yl

y2

General Registers (Physical)
32 33 34 35 36 37 38 39

belva] [[|

35 36 37 38 39 32 33 34
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
ESRNEY

RRB

General Registers (Physical)
32 33 34 35 36 37 38 39

belva] [[|

35 36 37 38 39 32 33 34
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
ESRNEY

RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory

<=

X1
X2
X3
X4
X5

y2 *

General Registers (Physical)
32 33 34 35 36 37 38 39

belva] [[|

35 36 37 38 39 32 33 34
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
ESRNEY

RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory

X1
X2

X3

X4

X5

vyl

y2

Page 17

General Registers (Physical)
32 33 34 35 36 37 38 39

belva] [[|

36 37 38 39 32 33 34 35
General Registers (Logical)

Predicate Registers

©

16 17 18
LC EC
CINEY

RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
olo e iz = [kl | |
(p17) addrs4 =1,r33 36 37 3839 32 33 34 35
(p18) stl [r13] =r35,1 General-Registers (Logical)
brctoploop e
Memory * Predicate Registers
16 17 18

5 LC EC

x2

x3 1 [o] (3]

X e " y2

x5 RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1
L L
(p18) stl[r13] =r35,1 S General Registers (Logical)
br.ctop loop 5
Memory Predicate Registg’rs
0 16 17 18
X
) LC . EC
X3 al . EI
x4 y2__ | | e
X5 Ve RRB

Page 18

Software Pipelining Example in the IA-64

loop:

(p16)
(p17)
(p18)

General Registers (Physical)
32 33 34 35 36 37 38 39

Idl r32 =[r12],1

2|yl 4|y3
addr34 =1,133 < belvi] BSBdlvalys]
stl [r13] =r35,1 36 37 38 39 32 33 34 35
! General Registers (Logical)

br.ctop loop

Memory Predicate Registers

16 17 18

x1 LC EC

X2

x3 vyl . EI

x4 y2

xS RRB

Software Pipelining Example in the IA-64

loop:

(p16)
(p17)
(p18)

General Registers (Physical)
32 33 34 35 36 37 38 39

yelya] | [xEllya]y3]

36 37 38 39 32 33 34 35
General Registers (Logical)

Idl r32 =1[r12],1
addr34 =1,r33
stl [r13] =r35,1

br.ctop loop <=
Memory Predicate Registers
1 16 17 18
X
LC EC
X2
x3 vyl . EI
x4 y2
2 y3 RRB

Software Pipelining Example in the IA-64 Software Pipelining Example in the IA-64

General Registers (Physical) General Registers (Physical)
loop: 32 33 34 35 36 37 38 39 loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[ri12],1 2[y1 - 4|v3 (p16) Idl r32 =1[r12],1 2|y1 - 4|y3
(ili) GER e = (R ‘;’7 |ZS H39 ‘32 33 34 ::/5 |33’6 ‘ () eklEs = Y ‘)3/7 |)3/8 H39 ‘32 33 34 ::,5 ‘Zﬁ ‘
(p18) stl[r13] =r35,1 General Registers (Logical (p18) stl[r13] =r35,1 General Registers (Logical
br.ctop loop <= ¢ (Logical) br.ctop loop <= 9 (Logical)
Memory PrediI%eRe-gisters Memory Predicate Registers
16 17 18 16 17 18
X1 X1
= LC EC " Lc EC
x3 vyl . x3 yl .
x4 y2 x4 y2
x5 v3 RRB xS y3 RRB

Software Pipelining Example in the IA-64 Software Pipelining Example in the IA-64

General Registers (Physical) General Registers (Physical)
loop: 32 33 34 35 36 37 38 39 loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 < (p16) IdI r32 =[r12], 1
y2 |yl -y4 y3 y2|yl 5|y4|y3
(pig) agd rf; f lééaf ‘37 | 38 H39 ‘32 33 34 35 |36 ‘ (pié) a:jld I’f; f lé5r313 ‘37 | 38 H39 ‘32 !%’4 |35 ‘36 ‘
(p18) Z [tr]I = &, General Registers (Logical) (p18) E [{]I = sy, General Registers (Logical)
r.ctop loop r.ctop loop
Memory Predicate Registers Memory Predicate Registers
16 17 18 16 17 18
X1 X1
& LC EC & LC EC
x3 yl . x3 yl .
5 22 % v
X y3 RRB X y3 RRB

Page 19

Software Pipelining Example in the IA-64

loop:

(p16) Idl r32 =1[ri12],1

(pl7) addr34 =1,r33

(p18) stl [r13] =r35,1 <=

br.ctop loop
Memory
X1
X2
x3 vl
x4 y2
x5 y3
y4 <

General Registers (Physical)
32 33 34 35 36 37 38 39

yelya] [BBlys[ya]y3]

37 38 39 32/33 34 35 36
General Regigters (Logical)

Predicaté Registers

16 17 18
LC EC
o

RRB

Software Pipelining Example in the IA-64

loop:

(p16) Idl r32 =7[ri12],1
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1

br.ctop loop <=
Memory
x1
X2
x3 y1
x4 y2
x5 V3
v4

General Registers (Physical)
32 33 34 35 36 37 38 39

belya] [BBlyslyalys]
36 37 38 39 32 33 34 35
General Registers (Logical)

Predicate Registers

<® [o[o[d]

16 17 18
LC EC
o

RRB

Page 20

Software Pipelining Example in the IA-64

loop:

(p16) Idl r32 =1[r12],1

(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1

br.ctop loop <=
Memory
X1
X2
x3 y1
x4 y2
x5 y3
va4

General Registers (Physical)
32 33 34 35 36 37 38 39

belya] [BBlysyalys]
37 38 39 32 33 34 35 36
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
o
RRB

Software Pipelining Example in the IA-64

loop:

(p16) Idl r32 =[r12],1 <=mm
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory
X1
X2
x3 vl
x4 y2
x5 y3
va4

General Registers (Physical)
32 33 34 35 36 37 38 39

belya] [BBlysyalys]
36 37 38 39 32 33 34 35
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
o
RRB

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[ri12],1 2[y1 4|v3
G s it e L L VS
(p18) stl[r13] =r35,1

General Registers (Logical)

br.ctop loop
Predicate Registers

0 16 17 18
X
X2 LC EC
X3 yl .
x4 y2
XS y3 RRB

v 6]

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

(p16) Idl r32 =[r12],1 ye[ya] [BBlys][yalys]

(p17) el =i, (&R 36 37 38 39 32 33 34 35
(p18) stl[r13] =r35,1

General Registers (Logical)

br.ctop loop <=mm
Memory Predicate Registers
-
x2 LC EC
L x3 | yl .
X4 v2
= Vi RRB
5 K

Page 21

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

(p16) Idl r32 =[r12],1 ‘y2|y1H ‘ .y5|y4‘y3‘

(pl7) addr34 =1,r33 7 38 3% 32 "
(p18) st [r13] =r35,1 < 36 3 3% 32 33 3435

br.ctoploop L
Memory :Pr'edicate Registers
2 LC EC
X3 y]_ :': .
e y2
S y‘3‘ RRB
T [-6]

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39

(p16) Idl r32 =1[r12],1

y2|yl . 5|y4|y3
(pg) aﬂd rf; = 1é£313 ‘36|37 Hsa ‘39 32 ?¥3 |34 ‘35‘
(p18) stl[r13] =r35, General Registers (Logical)

br.ctop loop <=
Memory Predicate Registers
.
%2 LC EC
T vyl .
x4 y2
2 y‘31 RRB
5 [-e]

T) w Cach
Software Pipelining Example in the TA-64 <3008 L1 @ eycle) Itanium™ Processor Silicon
= 96KB L2 (7 cycle) (Copyright: Intel at Hotchips 00)

= 2 or 4 MB L3 (off chip)
= 133 MHz 64-bit bus

General Registers (Physical) i SpecFP: 711
loop: 32 33 34 35 36 37 38 39 : 404
(p16) Idl r32 =[r12], 1 byl | BBlyslyalys] w Speclnt:
(p17) addr34 =1,r33 yely Yo y4]y: k= 36-bit addresses (6468
. 37 38 39 32 33 34 35 36 : —
(p18) stl[r13] =r35,1 General Registers (Logical 1A-32
br.ctop loop <= 9 (Logical) o RRieem) | 00 B -
Memory Predicate Registers -
1 16 17 18 <j> e
X e
) LC EC
X3 yl . . T, e 7._&
x4 y2 . .
XS y3 RRB
va4
¥s [-7] B —
Core Processor Die 4 x 1IMB L3 cache

Itanium™ EPIC Design Maximizes SW-HW Synergy 10 Stage In-Order Core Pipeline
(Copyright: Intel at Hotchips 00)

Architecture Features programmed by compiler
Register

Stack Predication
& Rotation

Branch Explicit

Hints Parallelism Speculation Hints

1
1
1
Data & Control Memory |
1
1
1

WORD-LINE
EXPAND _ RENAME DECODE

REN / WL.D

INST POINTER ~ FETCH
GENERATION

Page 22

Itanium processor 10-stage
pipeline

I» Front-end (stages IPG, Fetch, and Rotate):
prefetches up to 32 bytes per clock (2 bundles)
into a prefetch buffer, which can hold up to 8
bundles (24 instructions)

® Branch prediction is done using a multilevel adaptive
predictor like P6 microarchitecture

i~ Instruction delivery (stages EXP and REN):
distributes up to 6 instructions to the 9
functional units

®» Implements registers renaming for both rotation and register

stacking.
Floating o
Branch Point Pipeline I"'Gﬂlum 2
Integer Unit i+ Caches

Unit Unit Control

- Integer =» 32KB L1 (1 cycle)
Engine Register =» 256KB L2 (5 cycle)
9 File » 3 MB L3 (on chip)

Multimedia ™ 200 MHz 128-bit Bus

Unit b SpecFP: 1356

I SpecInt: 810

i 44-bit addresses
(18TB)

i 221M transistors

Data 19.5 x 21.6 mm

16KB L1| |
Cache
Advanced Clock
Load
Address
Table

16KB LID
Cache

Hardware 7 .
D = Translation ® http://cpus.hp.com/tec
age = hnical_references/
Lookaside

Walk
e Buffer

256KB L2 Cache Bus Logic
and Control

L3 Tags

Itanium processor 10-stage

, £i£eline
k» Operand delivery (WLD and REG): accésses
register file, performs register bypassing,
accesses and updates a register scoreboard, and
checks predicate dependences.
®» Scoreboard used to detect when individual instructions can
proceed, so that a stall of 1 instruction in a bundle need not
cause the entire bundle to stall
b+ Execution (EXE, DET, and WRB): executes
instructions through ALUs and load/store units,
detects exceptions and posts NaTs, retires
instructions and performs write-back

» Deferred exception handling for speculative instructions is
supported by providing the equivalent of poison bits, called
NaTs for Not a Thing, for the GPRs (which makes the GPRs
effectively 65 bits wide), and NaT Val (Not a Thing Value) for
FPRs (already 82 bits wides)

Comments on Itanium

i» Remarkably, the Itanium has many of the features
more commonly associated with the dynamically-
scheduled pipelines

= strong emphasis on branch prediction, register renaming,
scoreboarding, a deep pipeline with many stages before
execution (to handle instruction alignment, renaming, etc.), and
several stages following execution to handle exception detection

I Surprising that an approach whose goal is to rely
on compiler technology and simpler HW seems to
be at least as complex as dynamically scheduled
processors!

Page 23

EPIC/IA-64/Itanium principles

w Start loads early
= advance loads - move above stores when alias analyis is incomplete
= speculative loads - move above branches
I Predication to eliminate many conditional branches
= 64 predicate registers
% almost every instruction is predicated
I register rich
% 128 integer registers (64 bits each)
= 128 floating-point registers
v Independence architecture
= VLIW flavor, but fully interlocked (i.e., no delay slots)
= three 41-bit instruction syllables per 128-bit "bundle"

each bundle contains 5 "template bits" which specify independence of following
syllables (within bundle and between bundles)

i unbundled branch architecture
= eight branch registers
= multiway branches
i Rotating register files
= lower 48 of the predicate registers rotate
lower 96 of the integer registers rotate

Itanium - rumours exaqggerated?

O]
2
V)
K
£
S
3
LE|
2
NASA's 10,240-processor Columbia supercomputer is built from 20 Altix systems, eagh
powered by 512 Intel Itanium 2 processors. Peak performance 42.7 TeraFlops. Runsy
Linux. (Image courtesy of Silicon Graphics, Inc.)]
<
SGI has similar contracts at
- Japan Atomic Energy Research Institute (JAERI) (2048 processors :ventually)
- Leibniz Rechenzentrum Computing Center (LRZ) at the Bavarian y of and Hi ies, Munich

(3328 processors eventually)

Page 24

Itanium Timeline

k 1981: Bob Rau leads Polycyclic Architecture project at TRW/ESL
w 1983: Josh Fisher describes ELI-512 VLIW design and trace scheduling
 1983-1988: Rau at Cydrome works on VLIW design called Cydra-5, but company folds 1988
 1984-1990: Fisher at Multiflow works on VLIW design called Trace, but company folds 1990
= 1988: Dick Lampman at HP hires Bob Rau and Mike Schlansker from Cydrome and also gets IP
rights from Cydrome
1989: Rau & Schlansker begin FAST (Fine-grained Architecture & Software Technologies) research
project at HP; later develop HP PlayDoh architecture
W 1990-1993: B|II Worley leads PA-WW (Precision Architecture Wide-Word) effort at HP Labs to b$
successor to PA-RISC architecture: also called SP-PA (Super-Parallel Processor Architecture) &
SWS (SuperWorkStation) 3
HP hires Josh Fisher, input to PA-WW N
e Input to PA-WW from Hitachi team, led by Yasuyuki Okada §
b 1991: Hans Mulder joins Intel to start work on a 64-bit architecture §
w 1992: Worley r ds HP seek a tor manufacturing partner S
 1993: HP starts effort to develop PA-WW as a product :
 Dec 1993: HP investigates partnership with Intel E
w June 1994: announcement of cooperation between HP & Intel: PA-WW starting point for joint 3
design: John Crawford of Intel leads joint team :
w 1997: the term EPIC is coined ;
Oct 1997: Microprocessor Forum presentations by Intel and HP S
ke July 1998: Carole Dulong of Intel, "The IA-64 Architecture at Work," IEEE Computer N
w Feb 1999: release of ISA details of IA-64]
2001: Intel marketing prefers IPF (Itanium Processor Family) to IA-64 5
I May 2001 - Ttanium (Merced) §
k July 2002 - Itanium 2 (McKinley) 3
k Aug 2004: “Itanium sales fall $13.4bn shy of $14bn forecast” (The Register) E
Ik Dec 2004: HP transfers last of Itanium development to Intel ~
Top 20 SPEC systems
Top 20 SPECint2000 Top 20 SPECIp2000
inr int Full Full
& MHz Pracessor peak base resis MET Processor p:gk b:l:e resalis
1 2800 Athlon 64 FX 1970 i 1900 POWERS+ 3030 2839 |
2 2800 Opteron 1956 1900 POWERS 2796
3 1852 1600 Ttanivm 2 2712
4 1839 2800 Opteron 2344
5 1821 2800 Athlon 64 FX 2261
6 1772 2160 SPARCE4 V 2236
7 2160 SPARCE4 V 1620 3733 Pent s
§ 1600 Iranium 2 1580 3800 Pent 1946
9 3667 Pentium 4 Xeon 1567 1724
MP
10 1900 POWERS+ 1513 1717
11 1900 POWERS 1456 1684
12 3400 Pentinmn 4 1393 1631
13 2000 Athlon 64 1335 2260 Pent 1378
14 2200 Athlon XP 1080 1250 Alpha ‘I‘G4C 1365
15 2200 PowerPC 970 1040 1600 UltraSPARC IIIi 1353
16 1300 Alpha 21364 ¥4 1450 POWER4+ 1295
17 1450 POWER4+ a78 2000 Athlon 64 1250
18 1250 Alpha 21264C 928 1200 UltraSPARC III Cu 1118
19 1600 UltraSPARC ITHi 845 2200 Athlon XP 982 §
20 2000 Athlon MP 766 1000 POWER4 886 843

Aces Hardware analysis of SPEC benchmark data
http://www.aceshardware.com/SPECmine/top. isp

Summary#1: Hardware versus Software
Speculation Mechanisms

i» To speculate extensively, must be able to
disambiguate memory references
®» Much easier in HW than in SW for code with pointers
> HW-based speculation works better when control flow
is unpredictable, and when HW-based branch
prediction is superior to SW-based branch prediction
done at compile time
% Mispredictions mean wasted speculation
i» HW -based speculation maintains precise exception
model even for speculated instructions
i» HW-based speculation does not require compensation
or bookkeeping code

Summary #3: Software Scheduling

i Instruction Level Parallelism (ILP) found either by compiler
or hardware.

i» Loop level parallelism is easiest to see

= SW dependencies/compiler sophistication determine if compiler can unroll
loops

= Memory dependencies hardest to determine => Memory disambiguation
= Very sophisticated transformations available

» Trace Scheduling to Parallelize If statements
I~ Superscalar and VLIW: CPI < 1 (IPC > 1)

= Dynamic issue vs. Static issue
= More instructions issue at same time => larger hazard penalty

= Limitation is often number of instructions that you can successfully fetch
and decode per cycle

Page 25

Summary#2: Hardware versus
Software Speculation Mechanisms

ont'd
i» Compiler-based approaches may benefit from 'ﬁ'\e
ability to see further in the code sequence, resulting
in better code scheduling

» HW-based speculation with dynamic scheduling does
not require different code sequences to achieve good
performance for different implementations of an
architecture

% may be the most important in the long run?

