
Page 1

Advanced Computer Architecture Chapter 5.1

332
Advanced Computer Architecture

Chapter 5

Instruction Level Parallelism
- the static scheduling approach

March 2006
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy
and Patterson’s Computer Architecture, a quantitative approach (3rd

ed), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Advanced Computer Architecture Chapter 5.2
Intel Pentium III AMD Athlon CPU core

Advanced Computer Architecture Chapter 5.3
Pentium 4 “Netburst”

Advanced Computer Architecture Chapter 5.4

Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization
http://www.intel.com/design/pentium4/manuals/24896607.pdf

Desktop Performance & Optimization for Intel® Pentium® 4 Processor
ftp://download.intel.com/design/pentium4/papers/24943801.pdf (much shorter!)

Intel® compilers
http://www.intel.com/s
oftware/products/compi
lers/

Intel’s VTune
performance analysis
tool

http://www.intel.com/s
oftware/products/vtune
/

AMD Athlon x86 Code
Optimization Guide

http://www.amd.com/us
-
en/assets/content_type
/white_papers_and_tec
h_docs/22007.pdf
(see page 67 for the
nine-step development
of a routine to copy an
array – 570MB/s to
1630MB/s)

Page 2

Advanced Computer Architecture Chapter 5.5

Example: Pentium 4 memory aliasing
“There are several cases where addresses with a given stride will
compete for some resource in the memory hierarchy. Note that first-
level cache lines are 64 bytes and second-level cache lines are 128
bytes. Thus the least significant 6 or 7 bits are not considered in alias
comparisons. The aliasing cases are listed below.

2K for data – map to the same first-level cache set (32 sets, 64-byte lines). There are 4
ways in the first-level cache, so if there are more that 4 lines that alias to the same 2K
modulus in the working set, there will be an excess of first-level cache misses.
16K for data – will look same to the store-forwarding logic. If there has been a store to an
address which aliases with the load, the load will stall until the store data is available.
16K for code – can only be one of these in the trace cache at a time. If two traces whose
starting addresses are 16K apart are in the same working set, the symptom will be a high
trace cache miss rate. Solve this by offsetting one of the addresses by 1 or more bytes.
32K for code or data – map to the same second-level cache set (256 sets, 128-byte
lines). There are 8 ways in the second-level cache, so if there are more than 8 lines that
alias to the same 32K modulus in the working set, there will be an excess of second-level
cache misses.
64K for data – can only be one of these in the first-level cache at a time. If a reference
(load or store) occurs that has bits 0-15 of the linear address, which are identical to a
reference (load or store) which is underway, then second reference cannot begin until
first one is kicked out of cache. Avoiding this kind of aliasing can lead to a factor of three
speedup.” (http://www.intel.com/design/pentium4/manuals/24896607.pdf page 2-38)

Advanced Computer Architecture Chapter 5.6

Review: extreme dynamic ILP
P6 (Pentium Pro, II, III, AMD Athlon)

Translate most 80x86 instructions to micro-operations
Longer pipeline than RISC instructions

Dynamically execute micro-operations
“Netburst” (Pentium 4, …)

Much longer pipeline, higher clock rate in same technology as P6
Trace Cache to capture micro-operations, avoid hardware translation

How can we take these ideas further?
Complexity of issuing multiple instructions per cycle
And of committing them

n-way multi-issue processor with an m-instruction dynamic scheduling window
m must increase if n is increased
Need n register ports
Need to compare each of the n instruction’s src and dst regs to determine
dependence

Predicting and speculating across multiple branches
With many functional units and registers, wires will be long – need pipeline stage
just to move the data across the chip

Advanced Computer Architecture Chapter 5.7

Overview
The previous Chapter: Dynamic scheduling, out-
of-order (o-o-o): binary compatible, exploiting
ILP in hardware: BTB, ROB, Reservation
Stations, ...

How much of all this complexity can you shift into
the compiler?
What if you can also change instruction set
architecture?

VLIW (Very Long Instruction Word)
EPIC (Explicitly Parallel Instruction Computer)

Intel’s (and HP’s) multi-billion dollar gamble for the future of
computer architecture: Itanium, IA-64
7 years in the making?

Advanced Computer Architecture Chapter 5.8

Static Branch Prediction

Simplest: Predict taken
average misprediction rate = untaken branch frequency,
which for the SPEC programs is 34%.
Unfortunately, the misprediction rate ranges from not very
accurate (59%) to highly accurate (9%)

Predict on the basis of branch direction?
choosing backward-going branches to be taken (loop)
forward-going branches to be not taken (if)
SPEC programs, however, most forward-going branches are
taken => predict taken is better

Predict branches on the basis of profile
information collected from earlier runs

Misprediction varies from 5% to 22%

Page 3

Advanced Computer Architecture Chapter 5.9

Running Example

This code adds a scalar to a vector:
for (i=1000; i>=0; i=i–1)

x[i] = x[i] + s;
Assume following latency all examples

Instruction Instruction Execution Latency
producing result using result in cycles in cycles
FP ALU op Another FP ALU op 4 3
FP ALU op Store double 3 2
Load double FP ALU op 1 1
Load double Store double 1 0
Integer op Integer op 1 0

Advanced Computer Architecture Chapter 5.10

FP Loop: Where are the Hazards?

Loop: L.D F0,0(R1) ;F0=vector element
ADD.D F4,F0,F2 ;add scalar from F2
S.D 0(R1),F4 ;store result
DSUBUI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!=zero
NOP ;delayed branch slot

Where are the stalls?

• First translate into MIPS code:
-To simplify, assume 8 is lowest address

Advanced Computer Architecture Chapter 5.11

FP Loop Showing Stalls

9 clocks: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: L.D F0,0(R1) ;F0=vector element
2 stall
3 ADD.D F4,F0,F2 ;add scalar in F2
4 stall
5 stall
6 S.D 0(R1),F4 ;store result
7 DSUBUI R1,R1,8 ;decrement pointer 8B (DW)
8 BNEZ R1,Loop ;branch R1!=zero
9 stall ;delayed branch slot

Advanced Computer Architecture Chapter 5.12

Revised FP Loop Minimizing Stalls

6 clocks, but just 3 for execution, 3 for loop overhead; How make
faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: L.D F0,0(R1)
2 stall
3 ADD.D F4,F0,F2
4 DSUBUI R1,R1,8
5 BNEZ R1,Loop ;delayed branch
6 S.D 8(R1),F4 ;altered when move past DSUBUI

Swap BNEZ and S.D by changing address of S.D

Page 4

Advanced Computer Architecture Chapter 5.13

Unroll Loop Four Times
(straightforward way)

Rewrite loop to
minimize stalls?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
Assumes R1 is multiple of 4

1 cycle stall
2 cycles stall

Advanced Computer Architecture Chapter 5.14

Unrolled Loop Detail

Do not usually know upper bound of loop
Suppose it is n, and we would like to unroll the loop to
make k copies of the body
Instead of a single unrolled loop, we generate a pair
of consecutive loops:

1st executes (n mod k) times and has a body that is the original loop
2nd is the unrolled body surrounded by an outer loop that iterates
(n/k) times
For large values of n, most of the execution time will be spent in the
unrolled loop

Advanced Computer Architecture Chapter 5.15

Unrolled Loop That Minimizes Stalls

What assumptions made
when moved code?

OK to move store past
DSUBUI even though
changes register
OK to move loads before
stores: get right data?
When is it safe for compiler
to do such changes?

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

Advanced Computer Architecture Chapter 5.16

Compiler Perspectives on Code Movement
Compiler concerned about dependencies in program
Whether or not a HW hazard depends on pipeline
Try to schedule to avoid hazards that cause performance
losses
(True) Data dependencies (RAW if a hazard for HW)

Instruction i produces a result used by instruction j, or
Instruction j is data dependent on instruction k, and instruction k is data
dependent on instruction i.

If dependent, can’t execute in parallel
Easy to determine for registers (fixed names)
Hard for memory (“memory disambiguation” problem):

Does 100(R4) = 20(R6)?
From different loop iterations, does 20(R6) = 20(R6)?

Page 5

Advanced Computer Architecture Chapter 5.17

Where are the name
dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D -8(R1),F4 ;drop DSUBUI & BNEZ
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D -16(R1),F4 ;drop DSUBUI & BNEZ
10 L.D F0,-24(R1)
11 ADD.D F4,F0,F2
12 S.D -24(R1),F4
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

How can remove them?

Advanced Computer Architecture Chapter 5.18

Where are the name
dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

The original “register renaming”

Advanced Computer Architecture Chapter 5.19

Compiler Perspectives on Code
Movement

Name Dependencies are Hard to discover for Memory
Accesses

Does 100(R4) = 20(R6)?
From different loop iterations, does 20(R6) = 20(R6)?

Our example required compiler to know that if R1 doesn’t
change then:

0(R1) ≠ -8(R1) ≠ -16(R1) ≠ -24(R1)

There were no dependencies between some loads and
stores so they could be moved by each other

Advanced Computer Architecture Chapter 5.20

Steps Compiler Performed to
Unroll

Check OK to move the S.D after DSUBUI and BNEZ,
and find amount to adjust S.D offset
Determine unrolling the loop would be useful by finding
that the loop iterations were independent
Rename registers to avoid name dependencies
Eliminate extra test and branch instructions and
adjust the loop termination and iteration code
Determine loads and stores in unrolled loop can be
interchanged by observing that the loads and stores
from different iterations are independent

requires analyzing memory addresses and finding that they do not
refer to the same address.

Schedule the code, preserving any dependences
needed to yield same result as the original code

Page 6

Advanced Computer Architecture Chapter 5.21

Another possibility:
Software Pipelining

Observation: if iterations from loops are independent, then
can get more ILP by taking instructions from different
iterations
Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (~ Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

Advanced Computer Architecture Chapter 5.22

Software Pipelining Example
Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12
10 DSUBUI R1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 S.D 0(R1),F4 ; Stores M[i]
2 ADD.D F4,F0,F2 ; Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DSUBUI R1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time

5 cycles per iteration

Advanced Computer Architecture Chapter 5.23

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

1 2 3 4 5 6 7 8

Pipeline fills Pipeline full Pipeline drains
Advanced Computer Architecture Chapter 5.24

When Safe to Unroll Loop?
Example: Where are data dependencies?
(A,B,C distinct & non-overlapping)

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}
1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same is
true of S2 for B[i] and B[i+1].
This is a “loop-carried dependence”: between iterations
For our prior example, each iteration was distinct
Implies that iterations can’t be executed in parallel,
Right????

Page 7

Advanced Computer Architecture Chapter 5.25

Does a loop-carried dependence
mean there is no parallelism???

Consider:
for (i=0; i< 8; i=i+1) {

A = A + C[i]; /* S1 */
}

Could compute:

“Cycle 1”: temp0 = C[0] + C[1];
temp1 = C[2] + C[3];
temp2 = C[4] + C[5];
temp3 = C[6] + C[7];

“Cycle 2”: temp4 = temp0 + temp1;
temp5 = temp2 + temp3;

“Cycle 3”: A = temp4 + temp5;

Relies on associative nature of “+”.
See “Parallelizing Complex Scans and Reductions” by Allan Fisher and
Anwar Ghuloum (http://doi.acm.org/10.1145/178243.178255)

Advanced Computer Architecture Chapter 5.26

Associativity in floating point

(a+b)+c = a+(b+c) ?

Example: Consider 3-digit base-10 floating-point

1+1+1+1+1+1+1+1+…..+1+1+1+1+1+1+1+1+1+1+1+1000

1000+1+1+1+1+1+1+1+1+…..+1+1+1+1+1+1+1+1+1+1+1+1

Consequence: many compilers use loop unrolling and
reassociation to enhance parallelism in summations
And results are different!

1000 ones

1000 ones

Advanced Computer Architecture Chapter 5.27

Hardware Support for Exposing
More Parallelism at Compile-Time

Conditional or Predicated Instructions
Discussed before in context of branch prediction
Conditional instruction execution

First instruction slot Second instruction slot
LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7
BEQZ R10,L
LW R8,0(R10)
LW R9,0(R8)

Waste slot since 3rd LW dependent on result of
2nd LW

Advanced Computer Architecture Chapter 5.28

Hardware Support for Exposing
More Parallelism at Compile-Time

Use predicated version load word (LWC)?
load occurs unless the third operand is 0

First instruction slot Second instruction slot
LW R1,40(R2) ADD R3,R4,R5
LWC R8,20(R10),R10 ADD R6,R3,R7
BEQZ R10,L
LW R9,0(R8)

If the sequence following the branch were short,
the entire block of code might be converted to
predicated execution, and the branch eliminated

Page 8

Advanced Computer Architecture Chapter 5.29

Exception Behavior Support

Several mechanisms to ensure that speculation by
compiler does not violate exception behavior

For example, cannot raise exceptions in predicated code if annulled
Prefetch does not cause exceptions

Advanced Computer Architecture Chapter 5.30

Hardware Support for Memory Reference
Speculation

To help compiler to move loads across stores, when it
cannot be absolutely certain that such a movement is
correct, a special instruction to check for address
conflicts can be included in the architecture

The special instruction is left at the original location of the load and
the load is moved up across stores
When a speculated load is executed, the hardware saves the address
of the accessed memory location
If a subsequent store changes the location before the check
instruction, then the speculation has failed
If only load instruction was speculated, then it suffices to redo the
load at the point of the check instruction

Advanced Computer Architecture Chapter 5.31

What if We Can Change Instruction Set?

Superscalar processors decide on the fly how many
instructions to issue

HW complexity of Number of instructions to issue O(n2)

Why not allow compiler to schedule instruction level
parallelism explicitly?
Format the instructions in a potential issue packet so
that HW need not check explicitly for dependences

Advanced Computer Architecture Chapter 5.32

VLIW: Very Large Instruction Word
Each “instruction” has explicit coding for multiple
operations

In IA-64, grouping called a “packet”
In Transmeta, grouping called a “molecule” (with “atoms” as ops)

Tradeoff instruction space for simple decoding
The long instruction word has room for many operations
By definition, all the operations the compiler puts in the long instruction
word are independent => execute in parallel
E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits
wide

Need compiling technique that schedules across several branches

Page 9

Advanced Computer Architecture Chapter 5.33

Recall: Unrolled Loop that Minimizes Stalls
for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

Advanced Computer Architecture Chapter 5.34

Loop Unrolling in VLIW
Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

Advanced Computer Architecture Chapter 5.35

Recall: Software Pipelining

Observation: if iterations from loops are independent, then
can get more ILP by taking instructions from different
iterations
Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (~ Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

Advanced Computer Architecture Chapter 5.36

Recall: Software Pipelining Example
Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12
10 DSUBUIR1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 S.D 0(R1),F4 ; Stores M[i]
2 ADD.D F4,F0,F2 ; Adds to M[i-1]
3 L.D F0,-16(R1); Loads M[i-2]
4 DSUBUIR1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time

Page 10

Advanced Computer Architecture Chapter 5.37

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,-48(R1) ST 0(R1),F4 ADD.D F4,F0,F2 1
L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUI R1,R1,#24 2
L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3

Software pipelined across 9 iterations of original loop
In each iteration of above loop, we:

Store to m,m-8,m-16 (iterations I-3,I-2,I-1)
Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)
Load from m-48,m-56,m-64 (iterations I+3,I+4,I+5)

9 results in 9 cycles, or 1 clock per iteration
Average: 3.3 ops per clock, 66% efficiency

Note: Need fewer registers for software pipelining
(only using 7 registers here, was using 15)

Advanced Computer Architecture Chapter 5.38

Trace Scheduling
Parallelism across IF branches vs. LOOP branches?
Two steps:

Trace Selection
Find likely sequence of basic blocks (trace)
of (statically predicted or profile predicted)
long sequence of straight-line code

Trace Compaction
Squeeze trace into few VLIW instructions
Need bookkeeping code in case prediction is wrong

This is a form of compiler-generated speculation
Compiler must generate “fixup” code to handle cases in which trace is not the
taken branch
Needs extra registers: undoes bad guess by discarding

Subtle compiler bugs mean wrong answer
vs. poorer performance; no hardware interlocks

Advanced Computer Architecture Chapter 5.39

Advantages of HW (Tomasulo) vs.
SW (VLIW) Speculation

HW advantages:
HW better at memory disambiguation since knows actual addresses
HW better at branch prediction since lower overhead
HW maintains precise exception model
HW does not execute bookkeeping instructions
Same software works across multiple implementations
Smaller code size (not as many nops filling blank instructions)

SW advantages:
Window of instructions that is examined for parallelism much higher
Much less hardware involved in VLIW (unless you are Intel…!)
More involved types of speculation can be done more easily
Speculation can be based on large-scale program behavior, not just local
information

Advanced Computer Architecture Chapter 5.40

Superscalar v. VLIW

Smaller code size
Binary compatibility
across generations of
hardware Simplified Hardware for

decoding, issuing
instructions
No Interlock Hardware
(compiler checks?)
More registers, but
simplified Hardware for
Register Ports (multiple
independent register
files?)

Page 11

Advanced Computer Architecture Chapter 5.41

Problems with First Generation VLIW

Increase in code size
generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops
whenever VLIW instructions are not full, unused functional units
translate to wasted bits in instruction encoding

Operated in lock-step; no hazard detection HW
a stall in any functional unit pipeline caused entire processor to
stall, since all functional units must be kept synchronized
Compiler might know functional unit latencies, but caches harder to
predict

Binary code compatibility
Pure VLIW => different numbers of functional units and unit
latencies require different versions of the code

Advanced Computer Architecture Chapter 5.42

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

IA-64: instruction set architecture; EPIC is type
EPIC = 2nd generation VLIW?

Itanium™ first implementation
Highly parallel and deeply pipelined hardware at 800Mhz
6-wide, 10-stage pipeline
Not competitive

Itanium 2
6-wide, 8-stage pipeline
16KB L1I, 16KB L1D (one cycle), 256KB L2 (5 cycle), 3MB L3 (12 cycle), all on-die
http://www.intel.com/products/server/processors/server/itanium2/
Competitive for some applications (eg SPEC FP)

128 64-bit integer registers + 128 82-bit floating point registers
Not separate register files per functional unit as in old VLIW

Hardware checks dependencies
(interlocks => binary compatibility over time)
Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

Advanced Computer Architecture Chapter 5.43

IA-64 Registers
The integer registers are configured to help
accelerate procedure calls using a register stack

mechanism similar to that developed in the Berkeley RISC-I
processor and used in the SPARC architecture.
Registers 0-31 are always accessible and addressed as 0-31
Registers 32-128 are used as a register stack and each procedure is
allocated a set of registers (from 0 to 96)
The new register stack frame is created for a called procedure by
renaming the registers in hardware;
a special register called the current frame pointer (CFM) points to
the set of registers to be used by a given procedure

8 64-bit Branch registers used to hold branch
destination addresses for indirect branches
64 1-bit predicate registers

Advanced Computer Architecture Chapter 5.44

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

Instruction group: a sequence of consecutive instructions
with no register data dependences

All the instructions in a group could be executed in parallel, if sufficient
hardware resources existed and if any dependences through memory were
preserved
An instruction group can be arbitrarily long, but the compiler must explicitly
indicate the boundary between one instruction group and another by placing
a stop between 2 instructions that belong to different groups

IA-64 instructions are encoded in bundles, which are 128
bits wide.

Each bundle consists of a 5-bit template field and 3 instructions, each 41
bits in length

3 Instructions in 128 bit “groups”; field determines if instructions
dependent or independent

Smaller code size than old VLIW, larger than x86/RISC
Groups can be linked to show independence > 3 instr

Page 12

Advanced Computer Architecture Chapter 5.45

5 Types of Execution in Bundle
Execution Instruction Instruction Example
Unit Slot type Description Instructions

I-unit A Integer ALU add, subtract, and, or, cmp
I Non-ALU Int shifts, bit tests, moves

M-unit A Integer ALU add, subtract, and, or, cmp
M Memory access Loads, stores for int/FP regs

F-unit F Floating point Floating point instructions
B-unit B Branches Conditional branches, calls
L+X L+X Extended Extended immediates, stops

• 5-bit template field within each bundle describes both the
presence of any stops associated with the bundle and the
execution unit type required by each instruction within the
bundle (see Fig 4.12 page 271)

Advanced Computer Architecture Chapter 5.46

IA-64 Registers

Both the integer and floating point registers support
register rotation for registers 32-128.
Register rotation is designed to ease the task of
register allocation in software pipelined loops
When combined with predication, possible to avoid the
need for unrolling and for separate prologue and
epilogue code for a software pipelined loop

makes the SW-pipelining usable for loops with smaller numbers of
iterations, where the overheads would traditionally negate many of
the advantages

Advanced Computer Architecture Chapter 5.47

How Register Rotation Helps Software
Pipelining

The concept of a software pipelining branch:

L1: ld4 r35 = [r4], 4 // post-increment by 4
st4 [r5] = r37, 4 // post-increment by 4
br.ctop L1 ;;

The br.ctop instruction in the example rotates
the general registers (actually br.ctop does more as we shall see)

Therefore the value stored into r35 is read in r37 two
iterations (and two rotations) later.

The register rotation eliminated a dependence between
the load and the store instructions, and allowed the loop to
execute in one cycle.

ht
tp

:/
/w

w
w.

cs
.u

al
be

rt
a.

ca
/~

am
ar

al
/c

ou
rs

es
/6

80
/w

eb
sl
id

es
/T

F-
H
W

S
up

So
ft

Pi
pe

lin
e/

sl
d0

23
.h

tm

Register rotation is useful for procedure calls
It’s also useful for software-pipelined loops
The logical-to-physical register mapping is shifted by 1 each time
the branch (“br.ctop”) is executed

Advanced Computer Architecture Chapter 5.48

Software Pipelining Example in the IA-64
mov pr.rot = 0 // Clear all rotating predicate registers
cmp.eq p16,p0 = r0,r0 // Set p16=1
mov ar.lc = 4 // Set loop counter to n-1
mov ar.ec = 3 // Set epilog counter to 3

…
loop:
(p16) ldl r32 = [r12], 1 // Stage 1: load x
(p17) add r34 = 1, r33 // Stage 2: y=x+1
(p18) stl [r13] = r35,1 // Stage 3: store y

br.ctop loop // Branch back

“Stage” predicate mechanism allows successive stages of the
software pipeline to be filled on start-up and drained when the
loop terminates
The software pipeline branch “br.ctop” rotates the predicate
registers, and injects a 1 into p16
Thus enabling one stage at a time, for execution of prologue
When loop trip count is reached, “br.ctop” injects 0 into p16,
disabling one stage at a time, then finally falls-through

ht
tp

:/
/w

w
w.

cs
.u

al
be

rt
a.

ca
/~

am
ar

al
/c

ou
rs

es
/6

80
/w

eb
sl
id

es
/T

F-
H
W

S
up

So
ft

Pi
pe

lin
e/

sl
d0

27
.h

tm

Page 13

Advanced Computer Architecture Chapter 5.49

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x1
32 33 34 35 36 37 38

General Registers (Physical)

0 01
16 17 18

Predicate Registers

4
LC

3
EC

x4
x5

x1
x2
x3

Memory

39

32 33 34 35 36 37 38 39

General Registers (Logical)

0
RRBht

tp
:/

/w
w
w.

cs
.u

al
be

rt
a.

ca
/~

am
ar

al
/c

ou
rs

es
/6

80
/w

eb
sl
id

es
/T

F-
H
W

S
up

S
of

tP
ip
el
in
e/

Advanced Computer Architecture Chapter 5.50

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0 01
16 17 18

Predicate Registers

4
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
32 33 34 35 36 37 38

General Registers (Physical)

39

32 33 34 35 36 37 38 39

General Registers (Logical)

0
RRBht

tp
:/

/w
w
w.

cs
.u

al
be

rt
a.

ca
/~

am
ar

al
/c

ou
rs

es
/6

80
/w

eb
sl
id

es
/T

F-
H
W

S
up

S
of

tP
ip
el
in
e/

Advanced Computer Architecture Chapter 5.51

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0 01
16 17 18

Predicate Registers

4
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
32 33 34 35 36 37 38

General Registers (Physical)

39

32 33 34 35 36 37 38 39

General Registers (Logical)

0
RRBht

tp
:/

/w
w
w.

cs
.u

al
be

rt
a.

ca
/~

am
ar

al
/c

ou
rs

es
/6

80
/w

eb
sl
id

es
/T

F-
H
W

S
up

So
ft

Pi
pe

lin
e/

Advanced Computer Architecture Chapter 5.52

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0 01
16 17 18

Predicate Registers

4
LC

3
EC

1

x4
x5

x1
x2
x3

Memory

x1
33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

-1
RRB

Page 14

Advanced Computer Architecture Chapter 5.53

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01
16 17 18

Predicate Registers

3
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

-1
RRB

Advanced Computer Architecture Chapter 5.54

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01
16 17 18

Predicate Registers

3
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2

-1
RRB

Advanced Computer Architecture Chapter 5.55

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01
16 17 18

Predicate Registers

3
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-1
RRB

Advanced Computer Architecture Chapter 5.56

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01
16 17 18

Predicate Registers

3
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-1
RRB

Page 15

Advanced Computer Architecture Chapter 5.57

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 01
16 17 18

Predicate Registers

3
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
33 34 35 36 37 38 39

General Registers (Physical)

32

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-1
RRB

Advanced Computer Architecture Chapter 5.58

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

2
LC

3
EC

1

x4
x5

x1
x2
x3

Memory

x1
34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1

-2
RRB

Advanced Computer Architecture Chapter 5.59

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

2
LC

3
EC

x4
x5

x1
x2
x3

Memory

x1
34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2
RRB

Advanced Computer Architecture Chapter 5.60

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

y2

1 11
16 17 18

Predicate Registers

2
LC

3
EC

x4
x5

x1
x2
x3

Memory

34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2
RRB

Page 16

Advanced Computer Architecture Chapter 5.61

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

2
LC

3
EC

x4
x5

x1
x2
x3 y1

Memory

y2
34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2
RRB

Advanced Computer Architecture Chapter 5.62

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

2
LC

3
EC

x4
x5

x1
x2
x3 y1

Memory

y2
34 35 36 37 38 39 32

General Registers (Physical)

33

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

-2
RRB

Advanced Computer Architecture Chapter 5.63

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

1
LC

3
EC

1

x4
x5

x1
x2
x3 y1

Memory

-3
RRB

y2
35 36 37 38 39 32 33

General Registers (Physical)

34

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

Advanced Computer Architecture Chapter 5.64

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

1
LC

3
EC

x4
x5

x1
x2
x3 y1

Memory

-3
RRB

y2 x4
35 36 37 38 39 32 33

General Registers (Physical)

34

32 33 34 35 36 37 38 39

General Registers (Logical)

x2y1 x3

Page 17

Advanced Computer Architecture Chapter 5.65

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

1
LC

3
EC

x4
x5

x1
x2
x3 y1

Memory

y2 x4
35 36 37 38 39 32 33

General Registers (Physical)

34

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 x3

-3
RRB

Advanced Computer Architecture Chapter 5.66

Software Pipelining Example in the IA-64

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1 11
16 17 18

Predicate Registers

1
LC

3
EC

x4
x5

x1
x2
x3 y1

y2

Memory

y2 x4
35 36 37 38 39 32 33

General Registers (Physical)

34

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 x3

-3
RRB

Advanced Computer Architecture Chapter 5.67

Software Pipelining Example in the IA-64

1 11
16 17 18

Predicate Registers

1
LC

3
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2

Memory

y2 x4
35 36 37 38 39 32 33

General Registers (Physical)

34

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 x3

-3
RRB

Advanced Computer Architecture Chapter 5.68

Software Pipelining Example in the IA-64

1 11
16 17 18

Predicate Registers

0
LC

3
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

1

x4
x5

x1
x2
x3 y1

y2

Memory

-4
RRB

y2 x4
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 x3

Page 18

Advanced Computer Architecture Chapter 5.69

Software Pipelining Example in the IA-64

1 11
16 17 18

Predicate Registers

0
LC

3
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2

Memory

y2 x5 x4
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 x3

-4
RRB

Advanced Computer Architecture Chapter 5.70

Software Pipelining Example in the IA-64

1 11
16 17 18

Predicate Registers

0
LC

3
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2

Memory

y2 x5 x4
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-4
RRB

Advanced Computer Architecture Chapter 5.71

Software Pipelining Example in the IA-64

1 11
16 17 18

Predicate Registers

0
LC

3
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2
y3

Memory

-4
RRB

y2 x5 x4
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

Advanced Computer Architecture Chapter 5.72

Software Pipelining Example in the IA-64

1 11
16 17 18

Predicate Registers

0
LC

3
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2
y3

Memory

y2 x5 x4
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-4
RRB

Page 19

Advanced Computer Architecture Chapter 5.73

Software Pipelining Example in the IA-64

1 10
16 17 18

Predicate Registers

0
LC

2
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0

x4
x5

x1
x2
x3 y1

y2
y3

Memory

y2 x5 x4
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-5
RRB

Advanced Computer Architecture Chapter 5.74

Software Pipelining Example in the IA-64

1 10
16 17 18

Predicate Registers

0
LC

2
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0

x4
x5

x1
x2
x3 y1

y2
y3

Memory

y2 x5 x4
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-5
RRB

Advanced Computer Architecture Chapter 5.75

Software Pipelining Example in the IA-64

1 10
16 17 18

Predicate Registers

0
LC

2
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2
y3

Memory

y2 x5 x4
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-5
RRB

Advanced Computer Architecture Chapter 5.76

Software Pipelining Example in the IA-64

1 10
16 17 18

Predicate Registers

0
LC

2
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3 y1

y2
y3

Memory

y2 x5 y5
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-5
RRB

Page 20

Advanced Computer Architecture Chapter 5.77

Software Pipelining Example in the IA-64

1 10
16 17 18

Predicate Registers

0
LC

2
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3

y4

y1
y2
y3

Memory

y2 x5 y5
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-5
RRB

Advanced Computer Architecture Chapter 5.78

Software Pipelining Example in the IA-64

1 10
16 17 18

Predicate Registers

0
LC

2
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3

y4

y1
y2
y3

Memory

y2 x5 y5
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-5
RRB

Advanced Computer Architecture Chapter 5.79

Software Pipelining Example in the IA-64

0 10
16 17 18

Predicate Registers

0
LC

1
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0

x4
x5

x1
x2
x3

y4

y1
y2
y3

Memory

y2 x5 y5
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-6
RRB

Advanced Computer Architecture Chapter 5.80

Software Pipelining Example in the IA-64

0 10
16 17 18

Predicate Registers

0
LC

1
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3

y4

y1
y2
y3

Memory

y2 x5 y5
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-6
RRB

Page 21

Advanced Computer Architecture Chapter 5.81

Software Pipelining Example in the IA-64

0 10
16 17 18

Predicate Registers

0
LC

1
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3

y4

y1
y2
y3

Memory

y2 x5 y5
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-6
RRB

Advanced Computer Architecture Chapter 5.82

Software Pipelining Example in the IA-64

0 10
16 17 18

Predicate Registers

0
LC

1
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3

y4
y5

y1
y2
y3

Memory

y2 x5 y5
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-6
RRB

Advanced Computer Architecture Chapter 5.83

Software Pipelining Example in the IA-64

0 10
16 17 18

Predicate Registers

0
LC

1
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3

y4
y5

y1
y2
y3

Memory

y2 x5 y5
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-6
RRB

Advanced Computer Architecture Chapter 5.84

Software Pipelining Example in the IA-64

0 10
16 17 18

Predicate Registers

0
LC

1
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

x4
x5

x1
x2
x3

y4
y5

y1
y2
y3

Memory

y2 x5 y5
36 37 38 39 32 33 34

General Registers (Physical)

35

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-6
RRB

Page 22

Advanced Computer Architecture Chapter 5.85

Software Pipelining Example in the IA-64

0 00
16 17 18

Predicate Registers

0
LC

0
EC

loop:
(p16) ldl r32 = [r12], 1
(p17) add r34 = 1, r33
(p18) stl [r13] = r35,1

br.ctop loop

0

x4
x5

x1
x2
x3

y4
y5

y1
y2
y3

Memory

y2 x5 y5
37 38 39 32 33 34 35

General Registers (Physical)

36

32 33 34 35 36 37 38 39

General Registers (Logical)

y3y1 y4

-7
RRB

Advanced Computer Architecture Chapter 5.86

FPUIA-32
Control

Instr.
Fetch &
Decode

Cache

Cache

TLB

Integer Units

IA-64 Control

Bus

Core Processor Die 4 x 1MB L3 cache

Itanium™ Processor Silicon
(Copyright: Intel at Hotchips ’00)

Caches
32KB L1 (2 cycle)
96KB L2 (7 cycle)
2 or 4 MB L3 (off chip)

133 MHz 64-bit bus
SpecFP: 711
SpecInt: 404
36-bit addresses (64GB)

Advanced Computer Architecture Chapter 5.88

Branch
Hints

Memory
Hints

Instruction
Cache

& Branch
Predictors

FetchFetch Memory Memory
SubsystemSubsystem

Three
levels of
cache:
L1, L2, L3

Register
Stack
& Rotation

Explicit
Parallelism

128 GR &
128 FR,
Register
Remap

&
Stack
Engine

Register Register
HandlingHandling

Fast, Sim
ple 6-Issue

IssueIssue ControlControl

MicroMicro--architecture Features in hardwarearchitecture Features in hardware: :

Itanium™ EPIC Design Maximizes SW-HW Synergy
(Copyright: Intel at Hotchips ’00)

Architecture Features programmed by compiler::

Predication Data & Control
Speculation

B
ypasses &

 D
ependencies

Parallel ResourcesParallel Resources

4 Integer +
4 MMX Units

2 FMACs
(4 for SSE)

2 L.D/ST units

32 entry ALAT

Speculation Deferral Management
Advanced Computer Architecture Chapter 5.89

10 Stage In-Order Core Pipeline
(Copyright: Intel at Hotchips ’00)

Front EndFront End
•• PrePre--fetch/Fetch of up to 6 fetch/Fetch of up to 6
instructions/cycleinstructions/cycle

•• Hierarchy of branch Hierarchy of branch
predictorspredictors

•• Decoupling bufferDecoupling buffer

Instruction DeliveryInstruction Delivery
•• Dispersal of up to 6 Dispersal of up to 6
instructions on 9 portsinstructions on 9 ports

•• Reg. remappingReg. remapping
•• Reg. stack engineReg. stack engine

Operand DeliveryOperand Delivery
•• RegReg read + Bypasses read + Bypasses
•• Register scoreboardRegister scoreboard
•• Predicated Predicated

dependencies dependencies

ExecutionExecution
•• 4 single cycle 4 single cycle ALUsALUs, 2 ld/, 2 ld/strstr
•• Advanced load control Advanced load control
•• Predicate delivery & branchPredicate delivery & branch
•• Nat/Exception/Nat/Exception///RetirementRetirement

IPG FET ROT EXP REN REG EXE DET WRBWL.D

REGISTER READ
WORD-LINE
DECODERENAMEEXPAND

INST POINTER
GENERATION

FETCH ROTATE EXCEPTION
DETECT

EXECUTE WRITE-BACK

Page 23

Advanced Computer Architecture Chapter 5.90

Itanium processor 10-stage
pipeline

Front-end (stages IPG, Fetch, and Rotate):
prefetches up to 32 bytes per clock (2 bundles)
into a prefetch buffer, which can hold up to 8
bundles (24 instructions)

Branch prediction is done using a multilevel adaptive
predictor like P6 microarchitecture

Instruction delivery (stages EXP and REN):
distributes up to 6 instructions to the 9
functional units

Implements registers renaming for both rotation and register
stacking.

Advanced Computer Architecture Chapter 5.91

Itanium processor 10-stage
pipeline

Operand delivery (WLD and REG): accesses
register file, performs register bypassing,
accesses and updates a register scoreboard, and
checks predicate dependences.

Scoreboard used to detect when individual instructions can
proceed, so that a stall of 1 instruction in a bundle need not
cause the entire bundle to stall

Execution (EXE, DET, and WRB): executes
instructions through ALUs and load/store units,
detects exceptions and posts NaTs, retires
instructions and performs write-back

Deferred exception handling for speculative instructions is
supported by providing the equivalent of poison bits, called
NaTs for Not a Thing, for the GPRs (which makes the GPRs
effectively 65 bits wide), and NaT Val (Not a Thing Value) for
FPRs (already 82 bits wides)

Advanced Computer Architecture Chapter 5.92

Itanium 2

221M transistors
19.5 x 21.6 mm
http://cpus.hp.com/tec
hnical_references/

Caches
32KB L1 (1 cycle)
256KB L2 (5 cycle)
3 MB L3 (on chip)

200 MHz 128-bit Bus
SpecFP: 1356
SpecInt: 810
44-bit addresses
(18TB)

Advanced Computer Architecture Chapter 5.93

Comments on Itanium
Remarkably, the Itanium has many of the features
more commonly associated with the dynamically-
scheduled pipelines

strong emphasis on branch prediction, register renaming,
scoreboarding, a deep pipeline with many stages before
execution (to handle instruction alignment, renaming, etc.), and
several stages following execution to handle exception detection

Surprising that an approach whose goal is to rely
on compiler technology and simpler HW seems to
be at least as complex as dynamically scheduled
processors!

Page 24

Advanced Computer Architecture Chapter 5.94

EPIC/IA-64/Itanium principles
Start loads early

advance loads - move above stores when alias analyis is incomplete
speculative loads - move above branches

Predication to eliminate many conditional branches
64 predicate registers
almost every instruction is predicated

register rich
128 integer registers (64 bits each)
128 floating-point registers

Independence architecture
VLIW flavor, but fully interlocked (i.e., no delay slots)
three 41-bit instruction syllables per 128-bit "bundle"
each bundle contains 5 "template bits" which specify independence of following
syllables (within bundle and between bundles)

unbundled branch architecture
eight branch registers
multiway branches

Rotating register files
lower 48 of the predicate registers rotate
lower 96 of the integer registers rotate

Advanced Computer Architecture Chapter 5.95

Itanium Timeline
1981: Bob Rau leads Polycyclic Architecture project at TRW/ESL
1983: Josh Fisher describes ELI-512 VLIW design and trace scheduling
1983-1988: Rau at Cydrome works on VLIW design called Cydra-5, but company folds 1988
1984-1990: Fisher at Multiflow works on VLIW design called Trace, but company folds 1990
1988: Dick Lampman at HP hires Bob Rau and Mike Schlansker from Cydrome and also gets IP
rights from Cydrome
1989: Rau & Schlansker begin FAST (Fine-grained Architecture & Software Technologies) research
project at HP; later develop HP PlayDoh architecture
1990-1993: Bill Worley leads PA-WW (Precision Architecture Wide-Word) effort at HP Labs to be
successor to PA-RISC architecture; also called SP-PA (Super-Parallel Processor Architecture) &
SWS (SuperWorkStation)
HP hires Josh Fisher, input to PA-WW
Input to PA-WW from Hitachi team, led by Yasuyuki Okada
1991: Hans Mulder joins Intel to start work on a 64-bit architecture
1992: Worley recommends HP seek a semiconductor manufacturing partner
1993: HP starts effort to develop PA-WW as a product
Dec 1993: HP investigates partnership with Intel
June 1994: announcement of cooperation between HP & Intel; PA-WW starting point for joint
design; John Crawford of Intel leads joint team
1997: the term EPIC is coined
Oct 1997: Microprocessor Forum presentations by Intel and HP
July 1998: Carole Dulong of Intel, “The IA-64 Architecture at Work," IEEE Computer
Feb 1999: release of ISA details of IA-64
2001: Intel marketing prefers IPF (Itanium Processor Family) to IA-64
May 2001 - Itanium (Merced)
July 2002 - Itanium 2 (McKinley)
Aug 2004: “Itanium sales fall $13.4bn shy of $14bn forecast” (The Register)
Dec 2004: HP transfers last of Itanium development to Intel (b

as
ed

 o
n

ht
tp

:/
/w

ww
.c

s.
cl
em

so
n.

ed
u/

~m
ar

k/
ep

ic
.h

tm
l

Advanced Computer Architecture Chapter 5.96

Itanium – rumours exaggerated?

• NASA's 10,240-processor Columbia supercomputer is built from 20 Altix systems, each
powered by 512 Intel Itanium 2 processors. Peak performance 42.7 TeraFlops. Runs
Linux. (Image courtesy of Silicon Graphics, Inc.)

• SGI has similar contracts at
– Japan Atomic Energy Research Institute (JAERI) (2048 processors eventually)
– Leibniz Rechenzentrum Computing Center (LRZ) at the Bavarian Academy of Sciences and Humanities, Munich

(3328 processors eventually)

ht
tp

:/
/w

ww
.i
nt

el
.c

om
/t

ec
hn

ol
og

y/
co

m
pu

ti
ng

/h
w1

00
41

.h
tm

Advanced Computer Architecture Chapter 5.97

Aces Hardware analysis of SPEC benchmark data
http://www.aceshardware.com/SPECmine/top.jsp

Page 25

Advanced Computer Architecture Chapter 5.98

Summary#1: Hardware versus Software
Speculation Mechanisms

To speculate extensively, must be able to
disambiguate memory references

Much easier in HW than in SW for code with pointers
HW-based speculation works better when control flow
is unpredictable, and when HW-based branch
prediction is superior to SW-based branch prediction
done at compile time

Mispredictions mean wasted speculation
HW-based speculation maintains precise exception
model even for speculated instructions
HW-based speculation does not require compensation
or bookkeeping code

Advanced Computer Architecture Chapter 5.99

Summary#2: Hardware versus
Software Speculation Mechanisms

cont’d
Compiler-based approaches may benefit from the
ability to see further in the code sequence, resulting
in better code scheduling
HW-based speculation with dynamic scheduling does
not require different code sequences to achieve good
performance for different implementations of an
architecture

may be the most important in the long run?

Advanced Computer Architecture Chapter 5.100

Summary #3: Software Scheduling

Instruction Level Parallelism (ILP) found either by compiler
or hardware.
Loop level parallelism is easiest to see

SW dependencies/compiler sophistication determine if compiler can unroll
loops
Memory dependencies hardest to determine => Memory disambiguation
Very sophisticated transformations available

Trace Scheduling to Parallelize If statements
Superscalar and VLIW: CPI < 1 (IPC > 1)

Dynamic issue vs. Static issue
More instructions issue at same time => larger hazard penalty
Limitation is often number of instructions that you can successfully fetch
and decode per cycle

