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332
Advanced Computer Architecture

Chapter 6 

Parallel architectures, shared memory, 
and cache coherency 

March 2006
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy 
and Patterson’s Computer Architecture, a quantitative approach (3rd

ed), and on the lecture slides of David Patterson, John Kubiatowicz
and Yujia Jin at Berkeley
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Overview
Why add another processor?
How should they be connected – I/O, memory bus, L2 
cache, registers?
Cache coherency – the problem
Coherency – what are the rules?
Coherency using broadcast – update/invalidate
Coherency using multicast – SMP vs ccNUMA
Distributed directories, home nodes, ownership; the 
ccNUMA design space
Beyond ccNUMA; COMA and Simple COMA
Hybrids and clusters
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London e-Science Centre’s “Mars” cluster
408 CPUs:

72 dual 1.8GHz Opteron processors, 
2Gb memory, 80Gb S-ATA disk, 
Infiniband
40 dual 1.8GHz Opteron processors, 
4Gb memory, 80Gb S-ATA disk, 
Gigabit Ethernet 
88 dual 1.8GHz Opteron processors, 
2Gb memory, 80Gb S-STA disk, 
Gigabit Ethernet 
4 dual 2.2GHz Opteron processors, 
4Gb memory, 36Gb SCSI disk, Gigabit 
Ethernet 
1 Mellanox MTS9600 Infiniband switch 
configured with 72 ports 
5 Extreme Networks Summit 400-48t 
48 port Gigabit Switches 
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NPACI Blue Horizon, San Diego Supercomputer Center

144 eight-processor SMP High 
Nodes perform the primary 
compute functions. 
12 two-processor SMP High Nodes 
perform service functions. 
1,152 Power3 processors in the 
compute nodes run at 375 MHz. 
Each processor has a peak 
performance of 1.500 Mflops
(millions of floating-point 
operations per second)
576 gigabytes of total system 
memory, at 4 GB per compute node
5.1 terabytes -- 5,100 gigabytes -
- of associated disk

42 towers, or frames, house the 
compute and service nodes. Four racks 
house the disk. 
1,500 square feet
Programmed using MPI (“Message 
Passing Interface”)
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HPCx – Supercomputing service for UK science
Located at Daresbury Labs,  Cheshire, operated by University 
of Edinburgh Parallel Computing Centre
IBM eServer 575 nodes, each 16-way SMP Power5
96 nodes for compute jobs for users, a total 1536 processors 

Four chips (8 processors) are 
integrated into a multi-chip 
module (MCM)
Two MCMs (16 processors) 
comprise one frame
Each MCM is configured with 
128 MB of L3 cache and 16 
GB of main memory
Total main memory of 32 GB 
per frame shared between 
16 processors of frame
frames connected via IBM's 
High Performance Switch 
(HPS) Advanced Computer Architecture Chapter 6.6

SGI Origin 3800 at SARA, Netherlands

1024-CPU system consisting of two 512-CPU SGI Origin 3800 systems. Peak performance 
of 1 TFlops (1012 floating point operations) per second.  500MHz R14000 CPUs organized in 
256 4-CPU nodes
1 TByte of RAM. 10 TByte of on-line storage & 100 TByte near-line storage
45 racks, 32 racks containing CPUs & routers, 8 I/O racks & 5 racks for disks
Each 512-CPU machine offers application program a single, shared memory image
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5,120 (640 8-way nodes) 500 MHz NEC CPUs 
8 GFLOPS per CPU (41 TFLOPS total) 
2 GB (4 512 MB FPLRAM modules) per CPU (10 TB 
total) 
shared memory inside the node 
640 × 640 crossbar switch between the nodes 
16 GB/s inter-node bandwidth 
20 kVA power consumption per node 

The “Earth Simulator”

Occupies purpose-built 
building in Yokohama, 
Japan
Operational late 
2001/early 2002
Vector CPU using 0.15 µm
CMOS process, 
descendant of NEC SX-5
Runs Super-UX OS

CPUs housed in 
320 cabinets, 2 
8-CPU nodes per 
cabinet. The 
cabinets are 
organized in a ring 
around the 
interconnect, 
which is housed in 
another 65 
cabinets
Another layer of 
the circle is 
formed by disk 
array cabinets. 
The whole thing 
occupies a building 
65 m long and 50 
m wide
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Bluegene/L  at 
LLNL

1024 nodes/cabinet, 2 CPUs per 
node
65,536 nodes in total
32 x 32 x 64 3D torus 
interconnect
1,024 gigabit-per-second links to 
a global parallel file system to 
support fast input/output to disk
1.5MWatts

Time-lapse movie of 
installation of 131,072-
CPU system at Lawrence 
Livermore Labs
“classified service in 
support of the National 
Nuclear Security 
Administration’s stockpile 
science mission”
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Top 500

Collated by Jack Dongarra of Oak Ridge and others
Uses measured performance on Linpack benchmark, not 
“peak”. Advanced Computer Architecture Chapter 6.10

What are parallel computers used for?

Executing loops in parallel
Improve performance of single application
Barrier synchronisation at end of loop
Iteration i of loop 2 may read data produced by iteration i of 
loop 1 – but perhaps also from other iterations
Example: NaSt3DGP

High-throughput servers
Eg. database, transaction processing, web server, e-
commerce
Improve performance of single application
Consists of many mostly-independent transactions
Sharing data
Synchronising to ensure consistency
Transaction roll-back

Mixed, multiprocessing workloads
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Why add another processor?

Increasing the complexity of a single CPU leads to diminishing 
returns

Due to lack of instruction-level parallelism
Too many simultaneous accesses to one register file
Forwarding wires between functional units too long - inter-cluster 
communication takes >1 cycle

Number of transistors

pe
rf

or
m

an
ce

Smallest working CPU

Further simultaneous 
instruction issue slots 
rarely usable in real code 
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Architectural effectiveness of Intel processors

Source: http://www.galaxycentre.com/intelcpu.htm and Intel

Architectural effectiveness shows performance gained through 
architecture rather than clock rate
Extra transistors largely devoted to cache, which of course is 
essential in allowing high clock rate 
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Architectural effectiveness of Intel processors

Sources: http://www.galaxycentre.com/intelcpu.htm http://www.specbench.org/ www.sandpile.org and Intel
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January 12, 2004 BWRC, UC Berkeley 12

Computation Density of Processors
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Serial instruction stream limits parallelism
Power consumption limits performance

http://bwrc.eecs.berkeley.edu/Presentations/Retreats/Winter_Retreat_2004/
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How to add another processor?

Idea: instead of trying to exploit more instruction-
level parallelism by building a bigger CPU, build two -
or more
This only makes sense if the application parallelism 
exists…
Why might it be better?

No need for multiported register file
No need for long-range forwarding
CPUs can take independent control paths
Still need to synchronise and communicate
Program has to be structured appropriately…
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How to add another processor?
How should the CPUs be connected?
Idea: systems linked by network connected via I/O bus

Eg Fujitsu AP3000, Myrinet, Quadrics

Idea: CPU/memory packages linked by network connecting 
main memory units

Eg SGI Origin

Idea: CPUs share main memory
Eg Intel Xeon SMP

Idea: CPUs share L2/L3 cache
Eg IBM Power4

Idea: CPUs share L1 cache
Idea: CPUs share registers, functional units

Cray/Tera MTA (multithreaded architecture), Symmetric multithreading (SMT), 
as in Hyperthreaded Pentium 4, Alpha 21464, etc
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How to program a parallel computer?
Shared memory makes parallel 
programming much easier:

for(i=0; I<N; ++i) 
par_for(j=0; j<M; ++j) 
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

par_for(i=0; I<N; ++i) 
for(j=0; j<M; ++j) 
A[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel
Second loop operates on columns in 
parallel
With distributed memory we would 
have to program message passing to 
transpose the array in between
With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:
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Shared-memory parallel - OpenMP
OpenMP is a standard design for language extensions 
for shared-memory parallel programming
Language bindings exist for Fortran, C and to some 
extent (eg research prototypes) for C++, Java and C#
Implementation requires compiler support

Example:
for(i=0; I<N; ++i) 

#pragma omp parallel for
for(j=0; j<M; ++j) 
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

#pragma omp parallel for
par_for(i=0; I<N; ++i) 

for(j=0; j<M; ++j) 
A[i,j] = (A[i,j-1] + A[i,j])*0.5;
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Implementing shared-memory parallel loop

“self-scheduling” loop 
FetchAndAdd() is atomic 
operation to get next un-
executed loop iteration:
Int FetchAndAdd(int *i) { 
lock(i);
r = I;
i = i+1;
unlock(i);
return(r);

}

if (myThreadId() == 0) 
i = 0;

barrier();
// on each thread
while (true) {
local_i = FetchAndAdd(&i);
if (local_i >= N) break;
C[local_i] = 0.5*(A[local_i] + B[local_i]);

}
barrier();

for (i=0; i<N; i++) {
C[i]  = A[i] + B[i];

}

There are smarter ways to implement 
FetchAndAdd….

Barrier(): block 
until all threads 
reach this point

Optimisations: 
• Work in chunks
• Avoid unnecessary barriers
• Exploit “cache affinity” from loop to loop

Advanced Computer Architecture Chapter 6.20

More OpenMP

#pragma omp parallel for \
default(shared) private(i) \
schedule(static,chunk) \
reduction(+:result)

for (i=0; i < n; i++) 
result = result + (a[i] * b[i]); 

default(shared) private(i):
All variables except i are 
shared by all threads.
schedule(static,chunk):
Iterations of the parallel 
loop will be distributed in 
equal sized blocks to each 
thread in the “team”
reduction(+:result):
performs a reduction on the 
variables that appear in its 
argument list

A private copy for each variable is 
created for each thread. At the 
end of the reduction, the 
reduction operator is applied to all 
private copies of the shared 
variable, and the final result is 
written to the global shared 
variable. 

http://www.llnl.gov/computing/tutorials/openMP/#REDUCTION
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Distributed-memory parallel - MPI

MPI (“Message-passing Interface) is a standard API 
for parallel programming using message passing
Usually implemented as library
Six basic calls:

MPI_Init - Initialize MPI 
MPI_Comm_size - Find out how many processes there are 
MPI_Comm_rank - Find out which process I am 
MPI_Send - Send a message 
MPI_Recv - Receive a message 
MPI_Finalize - Terminate MPI 

Key idea: collective operations
MPI_Bcast - broadcast data from the process with rank "root" to all 
other processes of the group. 
MPI_Reduce – combine values on all processes into a single value using 
the operation defined by the parameter op. 
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MPI Example: initialisation ! Compute number of processes and myrank
CALL MPI_COMM_SIZE(comm, p, ierr) 
CALL MPI_COMM_RANK(comm, myrank, ierr)

! compute size of local block 
m = n/p
IF (myrank.LT.(n-p*m)) THEN 

m = m+1 
END IF 

! Compute neighbors
IF (myrank.EQ.0) THEN 

left = MPI_PROC_NULL 
ELSE left = myrank - 1 
END IF 
IF (myrank.EQ.p-1)THEN 

right = MPI_PROC_NULL 
ELSE right = myrank+1 
END IF 

! Allocate local arrays 
ALLOCATE (A(0:n+1,0:m+1), B(n,m))

SPMD
“Single Program, Multiple Data”
Each processor executes the 
program
First has to work out what part 
it is to play

“myrank” is index of this CPU
“comm” is MPI “communicator” –
abstract index space of p 
processors

In this example, array is 
partitioned into slices

http://www.netlib.org/utk/papers/mpi-book/node51.html

0 1 2 3
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2

!Main Loop
DO WHILE(.NOT.converged)

! compute boundary iterations so they’re ready to be sent right away
DO i=1, n 

B(i,1)=0.25*(A(i-1,j)+A(i+1,j)+A(i,0)+A(i,2)) 
B(i,m)=0.25*(A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1)) 

END DO
! Communicate 
CALL MPI_ISEND(B(1,1),n, MPI_REAL, left, tag, comm, req(1), ierr) 
CALL MPI_ISEND(B(1,m),n, MPI_REAL, right, tag, comm, req(2), ierr) 
CALL MPI_IRECV(A(1,0),n, MPI_REAL, left, tag, comm, req(3), ierr) 
CALL MPI_IRECV(A(1,m+1),n, MPI_REAL, right, tag, comm, req(4), ierr)
! Compute interior 
DO j=2, m-1 

DO i=1, n 
B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 

END DO 
END DO 
DO j=1, m 

DO i=1, n 
A(i,j) = B(i,j) 

END DO 
END DO 
! Complete communication 
DO i=1, 4 

CALL MPI_WAIT(req(i), status(1.i), ierr) 
END DO

END DO 
http://www.netlib.org/utk/papers/mpi-book/node51.html

Example: 
Jacobi2D

Sweep over A 
computing 
moving 
average of 
neighbouring 
four elements

Compute new 
array B from 
A, then copy 
it back into B

This version 
tries to 
overlap 
communication 
with 
computation

B(1:n,1) B(1:n,m)
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How to connect processors...
Tradeoffs:

close coupling to minimise delays incurred when processors interact
separation to avoid contention for shared resources

Result:
spectrum of alternative approaches based on application requirements, cost, and 
packaging/integration issues

Currently:
just possible to integrate 2 full-scale CPUs on one chip together with large 
shared L2 cache
common to link multiple CPUs on same motherboard with shared bus connecting 
to main memory
more aggressive designs use richer interconnection network, perhaps with cache-
to-cache transfer capability
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Multiple caches… and trouble

Suppose processor 0 loads memory location x
x is fetched from main memory and allocated into processor 0’s cache(s) 

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

First-level cache

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2
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Multiple caches… and trouble

Suppose processor 1 loads memory location x
x is fetched from main memory and allocated into processor 1’s cache(s) 
as well

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2
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Multiple caches… and trouble

Suppose processor 0 stores to memory location x
Processor 0’s cached copy of x is updated
Processor 1 continues to used the old value of x 

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2
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Multiple caches… and trouble

Suppose processor 2 loads memory location x
How does it know whether to get x from main memory, processor 
0 or processor 1?

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache
X?

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2
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Implementing distributed, shared memory

Two issues:
1. How do you know where to find the latest 

version of the cache line?
2. How do you know when you can use your 

cached copy – and when you have to look for 
a more up-to-date version?

We will find answers to this after first thinking about 
what a distributed shared memory implementation is 
supposed to do…
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Cache consistency (aka cache coherency)
Goal (?):

“Processors should not continue to use out-of-date 
data indefinitely”

Goal (?):
“Every load instruction should yield the result of the 
most recent store to that address”

Goal (?):   (definition: Sequential Consistency)
“the result of any execution is the same as if the 
operations of all the processors were executed in some 
sequential order, and the operations of each individual 
processor appear in this sequence in the order 
specified by its program”

(Leslie Lamport, “How to make a multiprocessor computer that correctly executes multiprocess
programs” (IEEE Trans Computers Vol.C-28(9) Sept 1979)
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Implementing Strong Consistency: update

Idea #1: when a store to address x 
occurs, update all the remote cached 
copies
To do this we need either:

To broadcast every store to every remote cache
Or to keep a list of which remote caches hold the 
cache line
Or at least keep a note of whether there are any
remote cached copies of this line

But first…how well does this update idea 
work?
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Implementing Strong Consistency: update…

Problems with update
1. What about if the cache line is several 

words long?
Each update to each word in the line leads to a 
broadcast

2. What about old data which other 
processors are no longer interested in?

We’ll keep broadcasting updates indefinitely…
Do we really have to broadcast every store?
It would be nice to know that we have exclusive 
access to the cacheline so we don’t have to 
broadcast updates…



Page 9

Advanced Computer Architecture Chapter 6.33

A more cunning plan… invalidation
Suppose instead of updating remote cache lines, we 
invalidate them all when a store occurs?
After the first write to a cache line we know there 
are no remote copies – so subsequent writes don’t lead 
to communication
Is invalidate always better than update?

Often
But not if the other processors really need the new data as soon as 
possible

Note that to exploit this, we need a bit on each 
cache line indicating its sharing state
(analogous to write-back vs write-through caches)
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Update vs invalidate

Update:
May reduce latency of subsequent remote 
reads
if any are made

Invalidate:
May reduce network traffic
e.g. if same CPU writes to the line before 
remote nodes take copies of it
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The “Berkeley" Protocol
Four cache line states:

Broadcast invalidations on 
bus unless cache line is 
exclusively “owned”
(DIRTY)

• Write hit:
• No action if line is DIRTY
• If VALID or SHARED-DIRTY,

• an invalidation is sent, and
• the local state set to DIRTY

• Write miss:
• Line comes from owner (as with 

read miss). 
• All other copies set to INVALID, 

and line in requesting cache is set 
to DIRTY

• Read miss: 
– If another cache has the 

line in SHARED-DIRTY or 
DIRTY, 

• it is supplied
• changing state to SHARED-

DIRTY
– Otherwise

• the line comes from 
memory. The state of the

• line is set to VALID

– INVALID
– VALID : clean, potentially shared, unowned
– SHARED-DIRTY : modified, possibly shared, owned
– DIRTY : modified, only copy, owned
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Berkeley cache 
coherence protocol:

state transition 
diagram

1. INVALID
2. VALID: clean, potentially shared, unowned
3. SHARED-DIRTY: modified, possibly shared, owned
4. DIRTY: modified, only copy, owned

The Berkeley 
protocol is 
representative of 
how typical bus-
based SMPs work

Q: What has to 
happen on a 
“Bus read 
miss”?
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The job of the cache controller - snooping
The protocol state transitions are implemented by the cache 
controller – which “snoops” all the bus traffic
Transitions are triggered either by

the bus (Bus invalidate, Bus write miss, Bus read miss)
The CPU (Read hit, Read miss, Write hit, Write miss)

For every bus transaction, it looks up the directory (cache 
line state) information for the specified address

If this processor holds the only valid data (DIRTY), it responds to a “Bus read 
miss” by providing the data to the requesting CPU
If the memory copy is out of date, one of the CPUs will have the cache line in 
the SHARED-DIRTY state (because it updated it last) – so must provide data 
to requesting CPU
State transition diagram doesn’t show what happens when a cache line is 
displaced…
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Berkeley protocol - summary
Invalidate is usually better than update
Cache line state “DIRTY” bit records whether remote 
copies exist

If so, remote copies are invalidated by broadcasting message on bus –
cache controllers snoop all traffic

Where to get the up-to-date data from?
Broadcast read miss request on the bus
If this CPUs copy is DIRTY, it responds
If no cache copies exist, main memory responds
If several copies exist, the CPU which holds it in “SHARED-DIRTY”
state responds
If a SHARED-DIRTY cache line is displaced, … need a plan

How well does it work?
See extensive analysis in Hennessy and Patterson
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Remote
Read
Place Data 
on Bus?

Snoop Cache Extensions
Extensions: 

Fourth State: Ownership

Remote
Write

or  Miss due to
address conflict

Write back block

Remote Write or 
Miss due to

address conflict
Invalid

Shared
(read/only)

Modified
(read/write)

CPU Read hit

CPU Read

CPU Write 
Place Write 
Miss on bus

CPU Write

CPU read hit
CPU write hit

Exclusive 
(read/only)

CPU Write
Place Write 
Miss on Bus? CPU Read hit

Remote Read
Write back 
block

Shared-> Modified, 
need invalidate only 
(upgrade request), don’t 
read memory
Berkeley Protocol

Clean exclusive state (no 
miss for private data on 
write)
MESI Protocol
Cache supplies data when 
shared state 
(no memory access)
Illinois Protocol

Place read miss
on bus

Place Write 
Miss on 
Bus
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Snooping Cache Variations

Berkeley 
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic 
Protocol

Exclusive
Shared
Invalid

Illinois 
Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
If read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI 
Protocol

Modified (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid
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Implementation Complications
Write Races:

Cannot update cache until bus is obtained
Otherwise, another processor may get bus first, 
and then write the same cache block!

Two step process:
Arbitrate for bus 
Place miss on bus and complete operation

If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then restart.
Split transaction bus:

Bus transaction is not atomic: 
can have multiple outstanding transactions for a block
Multiple misses can interleave, 
allowing two caches to grab block in the Exclusive state
Must track and prevent multiple misses for one block

Must support interventions and invalidations
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Implementing Snooping Caches

Multiple processors must be on bus, access to both 
addresses and data
Add a few new commands to perform coherency, 
in addition to read and write
Processors continuously snoop on address bus

If address matches tag, either invalidate or update
Since every bus transaction checks cache tags, 
could interfere with CPU just to check: 

solution 1: duplicate set of tags for L1 caches just to allow checks in 
parallel with CPU
solution 2: L2 cache already duplicate, 
provided L2 obeys inclusion with L1 cache

block size, associativity of L2 affects L1
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Implementing Snooping Caches

Bus serializes writes, getting bus ensures no one else can 
perform memory operation
On a miss in a write-back cache, may have the desired 
copy and it’s dirty, so must reply
Add extra state bit to cache to determine shared or not
Add 4th state (MESI)
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Large-Scale Shared-Memory Multiprocessors

Bus inevitably becomes a bottleneck when many
processors are used

Use a more general interconnection network
So snooping does not work

DRAM memory is also distributed
Each node allocates space from local DRAM
Copies of remote data are made in cache

Major design issues:
How to find and represent the “directory" of each line?
How to find a copy of a line?

As a case study, we will look at S3.MP (Sun's Scalable 
Shared memory Multi-Processor, a CC-NUMA (cache-
coherent non-uniform memory access) architecture
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Larger MPs

Separate Memory per Processor
Local or Remote access via memory controller
1 Cache Coherency solution: non-cached pages 
Alternative: directory per cache that tracks state of every block in 
every cache

Which caches have a copies of block, dirty vs. clean, ...

Info per memory block vs. per cache block?
PLUS: In memory => simpler protocol (centralized/one location)
MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

Prevent directory as bottleneck? 
distribute directory entries with memory, each keeping track of which 
Procs have copies of their blocks
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Distributed Directory MPs

Processor
+cache
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Directory

I/O
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+cache

Memory

Directory

I/O
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Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Interconnection network
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Directory Protocol
Similar to Snoopy Protocol: Three states

Shared: ≥ 1 processors have data, memory up-to-date
Uncached (no processor has it; not valid in any cache)
Exclusive: 1 processor (owner) has data; 

memory out-of-date

In addition to cache state, must track which 
processors have data when in the shared state 
(usually bit vector, 1 if processor has copy)
Keep it simple(r):

Writes to non-exclusive data 
=> write miss
Processor blocks until access completes
Assume messages received 
and acted upon in order sent
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Directory Protocol

No bus and don’t want to broadcast:
interconnect no longer single arbitration point
all messages have explicit responses

Terms: typically 3 processors involved
Local node where a request originates
Home node where the memory location 
of an address resides
Remote node has a copy of a cache 
block, whether exclusive or shared

Example messages on next slide: 
P = processor number, A = address
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Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A; 
make P a read sharer and arrange to send data back 

Write miss Local cache Home directory P, A
Processor P writes data at address A; 
make P the exclusive owner and arrange to send data back 

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory; invalidate 
the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)
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State Transition Diagram for an 
Individual Cache Block in a 

Directory Based System
States identical to snoopy case; transactions 
very similar.
Transitions caused by read misses, write misses, 
invalidates, data fetch requests
Generates read miss & write miss msg to home 
directory.
Write misses that were broadcast on the bus for 
snooping => explicit invalidate & data fetch 
requests.
Note: on a write, a cache block is bigger, so 
need to read the full cache block
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CPU -Cache State Machine
State machine
for CPU  requests
for each 
memory block
Invalid state
if in 
memory

Fetch/Invalidate
send Data Write Back message 

to home directory

Invalidate

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss 
msg to h.d.

CPU Write:Send 
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back 
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message 
and Write Miss to home 
directory

CPU read miss: send Data 
Write Back message and read 
miss to home directory
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State Transition Diagram for the 
Directory 

Same states & structure as the transition 
diagram for an individual cache
2 actions: update of directory state & 
send msgs to statisfy requests 
Tracks all copies of memory block. 
Also indicates an action that updates the 
sharing set, Sharers, as well as sending a 
message.



Page 14

Advanced Computer Architecture Chapter 6.53

Directory State Machine
State machine
for Directory requests for 
each 
memory block
Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}
send Data Value 
Reply

Write Miss: 
send Invalidate 
to Sharers;
then Sharers = {P};
send Data Value 
Reply msg

Write Miss:
Sharers = {P}; 
send Data 
Value Reply
msg

Read miss:
Sharers += {P}; 
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss: 
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P}; 
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache Advanced Computer Architecture Chapter 6.54

Example Directory Protocol
Message sent to directory causes two actions:

Update the directory
More messages to satisfy request

Block is in Uncached state: the copy in memory is the 
current value; only possible requests for that block 
are:

Read miss: requesting processor sent data from memory &requestor 
made only sharing node; state of block made Shared.
Write miss: requesting processor is sent the value & becomes the 
Sharing node. The block is made Exclusive to indicate that the only 
valid copy is cached. Sharers indicates the identity of the owner. 

Block is Shared => the memory value is up-to-date:
Read miss: requesting processor is sent back the data from memory 
& requesting processor is added to the sharing set.
Write miss: requesting processor is sent the value. All processors in 
the set Sharers are sent invalidate messages, & Sharers is set to 
identity of requesting processor. The state of the block is made
Exclusive.
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Example Directory Protocol
Block is Exclusive: current value of the block is held in the 
cache of the processor identified by the set Sharers (the 
owner) => three possible directory requests:

Read miss: owner processor sent data fetch message, causing state of block 
in owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting 
processor. 
Identity of requesting processor is added to set Sharers, which still 
contains the identity of the processor that was the owner (since it still has 
a readable copy).  State is shared.
Data write-back: owner processor is replacing the block and hence must 
write it back, making memory copy up-to-date 
(the home directory essentially becomes the owner), the block is now 
Uncached, and the Sharer set is empty. 
Write miss: block has a new owner. A message is sent to old owner causing 
the cache to send the value of the block to the directory from which it is 
sent to the requesting processor, which becomes the new owner. Sharers is 
set to identity of new owner, and state of block is made Exclusive.

Advanced Computer Architecture Chapter 6.56

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

A1
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1
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Implementing a Directory

We assume operations atomic, but they are 
not; reality is much harder; must avoid 
deadlock when run out of bufffers in network 
(see Appendix E)

Optimizations:
read miss or write miss in Exclusive: send data directly to 
requestor from owner vs. 1st to memory and then from 
memory to requestor
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Synchronization

Why Synchronize? Need to know when it is 
safe for different processes to use shared 
data

Issues for Synchronization:
Uninterruptable instruction to fetch and update memory 
(atomic operation);
User level synchronization operation using this primitive;
For large scale MPs, synchronization can be a bottleneck; 
techniques to reduce contention and latency of synchronization
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Uninterruptable Instruction to Fetch and 
Update Memory

Atomic exchange: interchange a value in a register for a value in 
memory
0 => synchronization variable is free 
1 => synchronization variable is locked and unavailable

Set register to 1 & swap
New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

Key is that exchange operation is indivisible

Test-and-set: tests a value and sets it if the value passes the test
Fetch-and-increment: it returns the value of a memory location and 
atomically increments it

0 => synchronization variable is free 
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Uninterruptable Instruction to 
Fetch and Update Memory

Hard to have read & write in 1 instruction: use 2 instead
Load linked (or load locked) + store conditional

Load linked returns the initial value
Store conditional returns 1 if it succeeds (no other store to same memory 
location since preceeding load) and 0 otherwise

Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try  ; branch store fails (R3 = 0)
mov R4,R2  ; put load value in R4

Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional 
beqz R2,try  ; branch store fails (R2 = 0)
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User Level Synchronization—
Operation Using this Primitive

Spin locks: processor continuously tries to acquire, spinning 
around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

What about MP with cache coherency?
Want to spin on cache copy to avoid full memory latency
Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all 
other copies; this generates considerable bus traffic
Solution: start by simply repeatedly reading the variable; 
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?
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Another MP Issue: 
Memory Consistency Models

What is consistency? When must a processor see the new 
value? e.g., seems that
P1: A = 0; P2: B = 0;

..... .....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

Impossible for both if statements L1 & L2 to be true?
What if write invalidate is delayed & processor continues?

Memory consistency models: 
what are the rules for such cases?
Sequential consistency: result of any execution is the 
same as if the accesses of each processor were kept in 
order and the accesses among different processors were 
interleaved => assignments before ifs above

SC: delay all memory accesses until all invalidates done
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Memory Consistency Model
Weak consistency schemes offer faster execution than sequential 
consistency
Several processors provide fence instructions to enforce sequential 
consistency when an instruction stream passes such a point. Expensive!
Not really an issue for most programs; 
they are synchronized

A program is synchronized if all access to shared data are ordered by 
synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

Only those programs willing to be nondeterministic are not 
synchronized: “data race”: outcome f(proc. speed)
Several Relaxed Models for Memory Consistency since most programs 
are synchronized; characterized by their attitude towards: RAR, 
WAR, RAW, WAW 
to different addresses
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Summary

Caches contain all information on state of cached 
memory blocks 
Snooping and Directory Protocols similar; bus makes 
snooping easier because of broadcast (snooping => 
uniform memory access)
Directory has extra data structure to keep track of 
state of all cache blocks
Distributing directory => scalable shared address 
multiprocessor 
=> Cache coherent, Non uniform memory access
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Case study:
Sun’s S3MP

Protocol Basics
S3.MP uses distributed 
singly-linked sharing lists,
with static homes

Each line has a “home" 
node, which stores the
root of the directory

Requests are sent to the 
home node

Home either has a copy of 
the line, or knows a node 
which does
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S3MP: Read Requests
Simple case: initially only the home has the data:

• Home replies with the data, creating a sharing
chain containing just the reader

Curved arrows 
show messages, 
bold straight 
arrows show 
pointers
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S3MP: Read Requests -
remote

More interesting case: some other 
processor has the data

Home passes request to first
processor in chain, adding 
requester into the sharing list



Page 19

Advanced Computer Architecture Chapter 6.73

S3MP -
Writes

If the line is exclusive (i.e. dirty bit is set) no message is required
Else send a write-request to the home

Home sends an invalidation message down the chain
Each copy is invalidated (other than that of the requester)
Final node in chain acknowledges the requester and the home

Chain is locked for the duration of the invalidation
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When a read or 
write requires a 
line to be copied
into the cache 
from another 
node, an existing
line may need to 
be replaced
Must remove it 
from the sharing 
list
Must not lose last 
copy of the line

S3MP - Replacements
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Finding your data

How does a CPU find a valid copy of a specified 
address’s data?

1. Translate virtual address to physical
2. Physical address includes bits which identify “home” node
3. Home node is where DRAM for this address resides
4. But current valid copy may not be there – may be in another CPU’s 

cache
5. Home node holds pointer to sharing chain, so always knows where 

valid copy can be found
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ccNUMA summary
S3MP’s cache coherency protocol implements strong 
consistency

Many recent designs implement a weaker consistency model…

S3MP uses a singly-linked sharing chain
Widely-shared data – long chains – long invalidations, nasty 
replacements
“Widely shared data is rare”

In real life:
IEEE Scalable Coherent Interconnect (SCI): doubly-linked sharing list
SGI Origin 2000: bit vector sharing list

Real Origin 2000 systems in service with 256 CPUs
Sun E10000: hybrid multiple buses for invalidations, separate switched 
network for data transfers

Many E10000s in service, often with 64 CPUs
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Beyond ccNUMA

COMA: cache-only memory architecture
Data migrates into local DRAM of CPUs where it is being used
Handles very large working sets cleanly
Replacement from DRAM is messy: have to make sure someone still 
has a copy
Scope for interesting OS/architecture hybrid
System slows down if total memory requirement approaches RAM 
available, since space for replication is reduced

Examples: DDM, KSR-1/2, rumours from IBM…
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Which cache should the cache controller control?

L1 cache is already very busy with CPU traffic
L2 cache also very busy…
L3 cache doesn’t always have the current value for a 
cache line

1. Although L1 cache is normally write-through, L2 is normally write-
back

2. Some data may bypass L3 (and perhaps L2) cache (eg when 
stream-prefetched)

– In Power4, cache controller manages L2 cache – all 
external invalidations/requests

– L3 cache improves access to DRAM for accesses 
both from CPU and from network
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Summary and Conclusions
Caches are essential to gain the maximum performance 
from modern microprocessors
The performance of a cache is close to that of SRAM but at 
the cost of DRAM
Caches can be used to form the basis of a parallel computer
Bus-based multiprocessors do not scale well: max < 10 
nodes
Larger-scale shared-memory multiprocessors require more 
complicated networks and protocols
CC-NUMA is becoming popular since systems can be built 
from commodity components (chips, boards, OSs) and use 
existing software
e.g. HP/Convex, Sequent, Data General, SGI, Sun, IBM


