
Page 1

Advanced Computer Architecture Chapter 6.1

332
Advanced Computer Architecture

Chapter 6

Parallel architectures, shared memory,
and cache coherency

March 2006
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy
and Patterson’s Computer Architecture, a quantitative approach (3rd

ed), and on the lecture slides of David Patterson, John Kubiatowicz
and Yujia Jin at Berkeley

Advanced Computer Architecture Chapter 6.2

Overview
Why add another processor?
How should they be connected – I/O, memory bus, L2
cache, registers?
Cache coherency – the problem
Coherency – what are the rules?
Coherency using broadcast – update/invalidate
Coherency using multicast – SMP vs ccNUMA
Distributed directories, home nodes, ownership; the
ccNUMA design space
Beyond ccNUMA; COMA and Simple COMA
Hybrids and clusters

Advanced Computer Architecture Chapter 6.3

London e-Science Centre’s “Mars” cluster
408 CPUs:

72 dual 1.8GHz Opteron processors,
2Gb memory, 80Gb S-ATA disk,
Infiniband
40 dual 1.8GHz Opteron processors,
4Gb memory, 80Gb S-ATA disk,
Gigabit Ethernet
88 dual 1.8GHz Opteron processors,
2Gb memory, 80Gb S-STA disk,
Gigabit Ethernet
4 dual 2.2GHz Opteron processors,
4Gb memory, 36Gb SCSI disk, Gigabit
Ethernet
1 Mellanox MTS9600 Infiniband switch
configured with 72 ports
5 Extreme Networks Summit 400-48t
48 port Gigabit Switches

Advanced Computer Architecture Chapter 6.4

NPACI Blue Horizon, San Diego Supercomputer Center

144 eight-processor SMP High
Nodes perform the primary
compute functions.
12 two-processor SMP High Nodes
perform service functions.
1,152 Power3 processors in the
compute nodes run at 375 MHz.
Each processor has a peak
performance of 1.500 Mflops
(millions of floating-point
operations per second)
576 gigabytes of total system
memory, at 4 GB per compute node
5.1 terabytes -- 5,100 gigabytes -
- of associated disk

42 towers, or frames, house the
compute and service nodes. Four racks
house the disk.
1,500 square feet
Programmed using MPI (“Message
Passing Interface”)

Page 2

Advanced Computer Architecture Chapter 6.5

HPCx – Supercomputing service for UK science
Located at Daresbury Labs, Cheshire, operated by University
of Edinburgh Parallel Computing Centre
IBM eServer 575 nodes, each 16-way SMP Power5
96 nodes for compute jobs for users, a total 1536 processors

Four chips (8 processors) are
integrated into a multi-chip
module (MCM)
Two MCMs (16 processors)
comprise one frame
Each MCM is configured with
128 MB of L3 cache and 16
GB of main memory
Total main memory of 32 GB
per frame shared between
16 processors of frame
frames connected via IBM's
High Performance Switch
(HPS) Advanced Computer Architecture Chapter 6.6

SGI Origin 3800 at SARA, Netherlands

1024-CPU system consisting of two 512-CPU SGI Origin 3800 systems. Peak performance
of 1 TFlops (1012 floating point operations) per second. 500MHz R14000 CPUs organized in
256 4-CPU nodes
1 TByte of RAM. 10 TByte of on-line storage & 100 TByte near-line storage
45 racks, 32 racks containing CPUs & routers, 8 I/O racks & 5 racks for disks
Each 512-CPU machine offers application program a single, shared memory image

Advanced Computer Architecture Chapter 6.7

5,120 (640 8-way nodes) 500 MHz NEC CPUs
8 GFLOPS per CPU (41 TFLOPS total)
2 GB (4 512 MB FPLRAM modules) per CPU (10 TB
total)
shared memory inside the node
640 × 640 crossbar switch between the nodes
16 GB/s inter-node bandwidth
20 kVA power consumption per node

The “Earth Simulator”

Occupies purpose-built
building in Yokohama,
Japan
Operational late
2001/early 2002
Vector CPU using 0.15 µm
CMOS process,
descendant of NEC SX-5
Runs Super-UX OS

CPUs housed in
320 cabinets, 2
8-CPU nodes per
cabinet. The
cabinets are
organized in a ring
around the
interconnect,
which is housed in
another 65
cabinets
Another layer of
the circle is
formed by disk
array cabinets.
The whole thing
occupies a building
65 m long and 50
m wide

Advanced Computer Architecture Chapter 6.8

Bluegene/L at
LLNL

1024 nodes/cabinet, 2 CPUs per
node
65,536 nodes in total
32 x 32 x 64 3D torus
interconnect
1,024 gigabit-per-second links to
a global parallel file system to
support fast input/output to disk
1.5MWatts

Time-lapse movie of
installation of 131,072-
CPU system at Lawrence
Livermore Labs
“classified service in
support of the National
Nuclear Security
Administration’s stockpile
science mission”

Page 3

Advanced Computer Architecture Chapter 6.9

Top 500

Collated by Jack Dongarra of Oak Ridge and others
Uses measured performance on Linpack benchmark, not
“peak”. Advanced Computer Architecture Chapter 6.10

What are parallel computers used for?

Executing loops in parallel
Improve performance of single application
Barrier synchronisation at end of loop
Iteration i of loop 2 may read data produced by iteration i of
loop 1 – but perhaps also from other iterations
Example: NaSt3DGP

High-throughput servers
Eg. database, transaction processing, web server, e-
commerce
Improve performance of single application
Consists of many mostly-independent transactions
Sharing data
Synchronising to ensure consistency
Transaction roll-back

Mixed, multiprocessing workloads

Advanced Computer Architecture Chapter 6.11

Why add another processor?

Increasing the complexity of a single CPU leads to diminishing
returns

Due to lack of instruction-level parallelism
Too many simultaneous accesses to one register file
Forwarding wires between functional units too long - inter-cluster
communication takes >1 cycle

Number of transistors

pe
rf

or
m

an
ce

Smallest working CPU

Further simultaneous
instruction issue slots
rarely usable in real code

Advanced Computer Architecture Chapter 6.12

Architectural effectiveness of Intel processors

Source: http://www.galaxycentre.com/intelcpu.htm and Intel

Architectural effectiveness shows performance gained through
architecture rather than clock rate
Extra transistors largely devoted to cache, which of course is
essential in allowing high clock rate

0

1

2

3

4

5

6

7

8

40
04

80
08

80
80

80
85

80
86

80
88

80
28

6
80

38
6D

X
80

38
6S

X
80

38
6S

L
Int

el4
86

DX
Int

el4
86

SX
Int

elD
X2

int
el4

86
SL

int
elD

X4

Pen
tiu

m
 60

&66
Pen

tiu
m

 75

Pen
tiu

m
 90

/10
0

Pen
tiu

m
 12

0
Pen

tiu
m

 13
3

Pen
tiu

m
 15

0
Pen

tiu
m

 16
6

Pen
tiu

m
 20

0

Pen
tiu

m
 16

6M
MX

Pen
tiu

m
 20

0 M
M

X

Pen
tiu

m
 23

3 M
M

X

Pen
tiu

m
 P

ro
 15

0

Pen
tiu

m
 II

23
3

#transistors/M

MIPS/MHZ

SPECint92/MHz

SPECint95/50MHz

7.5M transistors

4.5M transistors

1.2M transistors

SP
EC

in
t9

5=
9.

47
@

23
3M

H
z

•2
18

.9
 M

IP
S

SP
EC

in
t9

5=
4.

01

Page 4

Advanced Computer Architecture Chapter 6.13

Architectural effectiveness of Intel processors

Sources: http://www.galaxycentre.com/intelcpu.htm http://www.specbench.org/ www.sandpile.org and Intel

0

5

10

15

20

25

30

35

40

45

40
04

80
08

80
80

80
85

80
86

80
88

80
28

6

80
38

6D
X

80
38

6S
X

80
38

6S
L

In
te

l4
86

D
X

In
te

l4
86

S
X

In
te

lD
X
2

in
te

l4
86

S
L

in
te

lD
X
4

P
en

tiu
m

 6
0&

66

P
en

tiu
m

 7
5

P
en

tiu
m

 9
0/

10
0

P
en

tiu
m

 1
20

P
en

tiu
m

 1
33

P
en

tiu
m

 1
50

P
en

tiu
m

 1
66

P
en

tiu
m

 2
00

P
en

tiu
m

 1
66

M
M

X

P
en

tiu
m

 2
00

 M
M

X

P
en

tiu
m

 2
33

 M
M

X

P
en

tiu
m

 P
ro

 1
50

P
en

tiu
m

 II
 2

33

P
en

tiu
m

 II
I 4

50
M

H
z

P
en

tiu
m

 II
I 7

33
M

H
z

A
M

D
 A

th
lo

n
X
P

P
en

tiu
m

 4

0

10

20

30

40

50

60

MIPS/MHZ

#transistors/M

SPECint92/MHz*10

SPECint95/MHz*1000

SPECint2000/MHz*100

h

42M transistors

9.5M transistors

3.1M transistors

SPECint92=16.8@25MHz

SPECint92=70.4@60MHz

SPECint95=2.31@75MHz

SPECint95=6.08@150MHz

SPECint2000=644@1533MHz

SPECint2000=656@2000MHz

(SPECint2000=1085
@3060MHz)

Advanced Computer Architecture Chapter 6.14

January 12, 2004 BWRC, UC Berkeley 12

Computation Density of Processors

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pentium MMX
(P55C)

Celeron
(Mendocino)

Pentium III EB Pentium III-S Penitum 4
(Willamette)

Pentium 4
(Northwood)

(M
O

PS
/M

H
z/

M
ili

on
 T

ra
ns

is
to

r)

Serial instruction stream limits parallelism
Power consumption limits performance

http://bwrc.eecs.berkeley.edu/Presentations/Retreats/Winter_Retreat_2004/

Advanced Computer Architecture Chapter 6.15

How to add another processor?

Idea: instead of trying to exploit more instruction-
level parallelism by building a bigger CPU, build two -
or more
This only makes sense if the application parallelism
exists…
Why might it be better?

No need for multiported register file
No need for long-range forwarding
CPUs can take independent control paths
Still need to synchronise and communicate
Program has to be structured appropriately…

Advanced Computer Architecture Chapter 6.16

How to add another processor?
How should the CPUs be connected?
Idea: systems linked by network connected via I/O bus

Eg Fujitsu AP3000, Myrinet, Quadrics

Idea: CPU/memory packages linked by network connecting
main memory units

Eg SGI Origin

Idea: CPUs share main memory
Eg Intel Xeon SMP

Idea: CPUs share L2/L3 cache
Eg IBM Power4

Idea: CPUs share L1 cache
Idea: CPUs share registers, functional units

Cray/Tera MTA (multithreaded architecture), Symmetric multithreading (SMT),
as in Hyperthreaded Pentium 4, Alpha 21464, etc

Page 5

Advanced Computer Architecture Chapter 6.17

How to program a parallel computer?
Shared memory makes parallel
programming much easier:

for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

par_for(i=0; I<N; ++i)
for(j=0; j<M; ++j)
A[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel
Second loop operates on columns in
parallel
With distributed memory we would
have to program message passing to
transpose the array in between
With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

Advanced Computer Architecture Chapter 6.18

Shared-memory parallel - OpenMP
OpenMP is a standard design for language extensions
for shared-memory parallel programming
Language bindings exist for Fortran, C and to some
extent (eg research prototypes) for C++, Java and C#
Implementation requires compiler support

Example:
for(i=0; I<N; ++i)

#pragma omp parallel for
for(j=0; j<M; ++j)
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

#pragma omp parallel for
par_for(i=0; I<N; ++i)

for(j=0; j<M; ++j)
A[i,j] = (A[i,j-1] + A[i,j])*0.5;

Advanced Computer Architecture Chapter 6.19

Implementing shared-memory parallel loop

“self-scheduling” loop
FetchAndAdd() is atomic
operation to get next un-
executed loop iteration:
Int FetchAndAdd(int *i) {
lock(i);
r = I;
i = i+1;
unlock(i);
return(r);

}

if (myThreadId() == 0)
i = 0;

barrier();
// on each thread
while (true) {
local_i = FetchAndAdd(&i);
if (local_i >= N) break;
C[local_i] = 0.5*(A[local_i] + B[local_i]);

}
barrier();

for (i=0; i<N; i++) {
C[i] = A[i] + B[i];

}

There are smarter ways to implement
FetchAndAdd….

Barrier(): block
until all threads
reach this point

Optimisations:
• Work in chunks
• Avoid unnecessary barriers
• Exploit “cache affinity” from loop to loop

Advanced Computer Architecture Chapter 6.20

More OpenMP

#pragma omp parallel for \
default(shared) private(i) \
schedule(static,chunk) \
reduction(+:result)

for (i=0; i < n; i++)
result = result + (a[i] * b[i]);

default(shared) private(i):
All variables except i are
shared by all threads.
schedule(static,chunk):
Iterations of the parallel
loop will be distributed in
equal sized blocks to each
thread in the “team”
reduction(+:result):
performs a reduction on the
variables that appear in its
argument list

A private copy for each variable is
created for each thread. At the
end of the reduction, the
reduction operator is applied to all
private copies of the shared
variable, and the final result is
written to the global shared
variable.

http://www.llnl.gov/computing/tutorials/openMP/#REDUCTION

Page 6

Advanced Computer Architecture Chapter 6.21

Distributed-memory parallel - MPI

MPI (“Message-passing Interface) is a standard API
for parallel programming using message passing
Usually implemented as library
Six basic calls:

MPI_Init - Initialize MPI
MPI_Comm_size - Find out how many processes there are
MPI_Comm_rank - Find out which process I am
MPI_Send - Send a message
MPI_Recv - Receive a message
MPI_Finalize - Terminate MPI

Key idea: collective operations
MPI_Bcast - broadcast data from the process with rank "root" to all
other processes of the group.
MPI_Reduce – combine values on all processes into a single value using
the operation defined by the parameter op.

Advanced Computer Architecture Chapter 6.22

MPI Example: initialisation ! Compute number of processes and myrank
CALL MPI_COMM_SIZE(comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)

! compute size of local block
m = n/p
IF (myrank.LT.(n-p*m)) THEN

m = m+1
END IF

! Compute neighbors
IF (myrank.EQ.0) THEN

left = MPI_PROC_NULL
ELSE left = myrank - 1
END IF
IF (myrank.EQ.p-1)THEN

right = MPI_PROC_NULL
ELSE right = myrank+1
END IF

! Allocate local arrays
ALLOCATE (A(0:n+1,0:m+1), B(n,m))

SPMD
“Single Program, Multiple Data”
Each processor executes the
program
First has to work out what part
it is to play

“myrank” is index of this CPU
“comm” is MPI “communicator” –
abstract index space of p
processors

In this example, array is
partitioned into slices

http://www.netlib.org/utk/papers/mpi-book/node51.html

0 1 2 3

Advanced Computer Architecture Chapter 6.23

2

!Main Loop
DO WHILE(.NOT.converged)

! compute boundary iterations so they’re ready to be sent right away
DO i=1, n

B(i,1)=0.25*(A(i-1,j)+A(i+1,j)+A(i,0)+A(i,2))
B(i,m)=0.25*(A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1))

END DO
! Communicate
CALL MPI_ISEND(B(1,1),n, MPI_REAL, left, tag, comm, req(1), ierr)
CALL MPI_ISEND(B(1,m),n, MPI_REAL, right, tag, comm, req(2), ierr)
CALL MPI_IRECV(A(1,0),n, MPI_REAL, left, tag, comm, req(3), ierr)
CALL MPI_IRECV(A(1,m+1),n, MPI_REAL, right, tag, comm, req(4), ierr)
! Compute interior
DO j=2, m-1

DO i=1, n
B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

END DO
END DO
DO j=1, m

DO i=1, n
A(i,j) = B(i,j)

END DO
END DO
! Complete communication
DO i=1, 4

CALL MPI_WAIT(req(i), status(1.i), ierr)
END DO

END DO
http://www.netlib.org/utk/papers/mpi-book/node51.html

Example:
Jacobi2D

Sweep over A
computing
moving
average of
neighbouring
four elements

Compute new
array B from
A, then copy
it back into B

This version
tries to
overlap
communication
with
computation

B(1:n,1) B(1:n,m)

Advanced Computer Architecture Chapter 6.24

How to connect processors...
Tradeoffs:

close coupling to minimise delays incurred when processors interact
separation to avoid contention for shared resources

Result:
spectrum of alternative approaches based on application requirements, cost, and
packaging/integration issues

Currently:
just possible to integrate 2 full-scale CPUs on one chip together with large
shared L2 cache
common to link multiple CPUs on same motherboard with shared bus connecting
to main memory
more aggressive designs use richer interconnection network, perhaps with cache-
to-cache transfer capability

Page 7

Advanced Computer Architecture Chapter 6.25

Multiple caches… and trouble

Suppose processor 0 loads memory location x
x is fetched from main memory and allocated into processor 0’s cache(s)

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

First-level cache

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2

Advanced Computer Architecture Chapter 6.26

Multiple caches… and trouble

Suppose processor 1 loads memory location x
x is fetched from main memory and allocated into processor 1’s cache(s)
as well

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2

Advanced Computer Architecture Chapter 6.27

Multiple caches… and trouble

Suppose processor 0 stores to memory location x
Processor 0’s cached copy of x is updated
Processor 1 continues to used the old value of x

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2

Advanced Computer Architecture Chapter 6.28

Multiple caches… and trouble

Suppose processor 2 loads memory location x
How does it know whether to get x from main memory, processor
0 or processor 1?

First-level cache
x

CPU

second-level cache
x

First-level cache
x

CPU

second-level cache
x

First-level cache
X?

CPU

second-level cache

Interconnection network

Main memory
x

Processor 0 Processor 1 Processor 2

Page 8

Advanced Computer Architecture Chapter 6.29

Implementing distributed, shared memory

Two issues:
1. How do you know where to find the latest

version of the cache line?
2. How do you know when you can use your

cached copy – and when you have to look for
a more up-to-date version?

We will find answers to this after first thinking about
what a distributed shared memory implementation is
supposed to do…

Advanced Computer Architecture Chapter 6.30

Cache consistency (aka cache coherency)
Goal (?):

“Processors should not continue to use out-of-date
data indefinitely”

Goal (?):
“Every load instruction should yield the result of the
most recent store to that address”

Goal (?): (definition: Sequential Consistency)
“the result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order
specified by its program”

(Leslie Lamport, “How to make a multiprocessor computer that correctly executes multiprocess
programs” (IEEE Trans Computers Vol.C-28(9) Sept 1979)

Advanced Computer Architecture Chapter 6.31

Implementing Strong Consistency: update

Idea #1: when a store to address x
occurs, update all the remote cached
copies
To do this we need either:

To broadcast every store to every remote cache
Or to keep a list of which remote caches hold the
cache line
Or at least keep a note of whether there are any
remote cached copies of this line

But first…how well does this update idea
work?

Advanced Computer Architecture Chapter 6.32

Implementing Strong Consistency: update…

Problems with update
1. What about if the cache line is several

words long?
Each update to each word in the line leads to a
broadcast

2. What about old data which other
processors are no longer interested in?

We’ll keep broadcasting updates indefinitely…
Do we really have to broadcast every store?
It would be nice to know that we have exclusive
access to the cacheline so we don’t have to
broadcast updates…

Page 9

Advanced Computer Architecture Chapter 6.33

A more cunning plan… invalidation
Suppose instead of updating remote cache lines, we
invalidate them all when a store occurs?
After the first write to a cache line we know there
are no remote copies – so subsequent writes don’t lead
to communication
Is invalidate always better than update?

Often
But not if the other processors really need the new data as soon as
possible

Note that to exploit this, we need a bit on each
cache line indicating its sharing state
(analogous to write-back vs write-through caches)

Advanced Computer Architecture Chapter 6.34

Update vs invalidate

Update:
May reduce latency of subsequent remote
reads
if any are made

Invalidate:
May reduce network traffic
e.g. if same CPU writes to the line before
remote nodes take copies of it

Advanced Computer Architecture Chapter 6.35

The “Berkeley" Protocol
Four cache line states:

Broadcast invalidations on
bus unless cache line is
exclusively “owned”
(DIRTY)

• Write hit:
• No action if line is DIRTY
• If VALID or SHARED-DIRTY,

• an invalidation is sent, and
• the local state set to DIRTY

• Write miss:
• Line comes from owner (as with

read miss).
• All other copies set to INVALID,

and line in requesting cache is set
to DIRTY

• Read miss:
– If another cache has the

line in SHARED-DIRTY or
DIRTY,

• it is supplied
• changing state to SHARED-

DIRTY
– Otherwise

• the line comes from
memory. The state of the

• line is set to VALID

– INVALID
– VALID : clean, potentially shared, unowned
– SHARED-DIRTY : modified, possibly shared, owned
– DIRTY : modified, only copy, owned

Advanced Computer Architecture Chapter 6.36

Berkeley cache
coherence protocol:

state transition
diagram

1. INVALID
2. VALID: clean, potentially shared, unowned
3. SHARED-DIRTY: modified, possibly shared, owned
4. DIRTY: modified, only copy, owned

The Berkeley
protocol is
representative of
how typical bus-
based SMPs work

Q: What has to
happen on a
“Bus read
miss”?

Page 10

Advanced Computer Architecture Chapter 6.37

The job of the cache controller - snooping
The protocol state transitions are implemented by the cache
controller – which “snoops” all the bus traffic
Transitions are triggered either by

the bus (Bus invalidate, Bus write miss, Bus read miss)
The CPU (Read hit, Read miss, Write hit, Write miss)

For every bus transaction, it looks up the directory (cache
line state) information for the specified address

If this processor holds the only valid data (DIRTY), it responds to a “Bus read
miss” by providing the data to the requesting CPU
If the memory copy is out of date, one of the CPUs will have the cache line in
the SHARED-DIRTY state (because it updated it last) – so must provide data
to requesting CPU
State transition diagram doesn’t show what happens when a cache line is
displaced…

Advanced Computer Architecture Chapter 6.38

Berkeley protocol - summary
Invalidate is usually better than update
Cache line state “DIRTY” bit records whether remote
copies exist

If so, remote copies are invalidated by broadcasting message on bus –
cache controllers snoop all traffic

Where to get the up-to-date data from?
Broadcast read miss request on the bus
If this CPUs copy is DIRTY, it responds
If no cache copies exist, main memory responds
If several copies exist, the CPU which holds it in “SHARED-DIRTY”
state responds
If a SHARED-DIRTY cache line is displaced, … need a plan

How well does it work?
See extensive analysis in Hennessy and Patterson

Advanced Computer Architecture Chapter 6.39

Remote
Read
Place Data
on Bus?

Snoop Cache Extensions
Extensions:

Fourth State: Ownership

Remote
Write

or Miss due to
address conflict

Write back block

Remote Write or
Miss due to

address conflict
Invalid

Shared
(read/only)

Modified
(read/write)

CPU Read hit

CPU Read

CPU Write
Place Write
Miss on bus

CPU Write

CPU read hit
CPU write hit

Exclusive
(read/only)

CPU Write
Place Write
Miss on Bus? CPU Read hit

Remote Read
Write back
block

Shared-> Modified,
need invalidate only
(upgrade request), don’t
read memory
Berkeley Protocol

Clean exclusive state (no
miss for private data on
write)
MESI Protocol
Cache supplies data when
shared state
(no memory access)
Illinois Protocol

Place read miss
on bus

Place Write
Miss on
Bus

Advanced Computer Architecture Chapter 6.40

Snooping Cache Variations

Berkeley
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic
Protocol

Exclusive
Shared
Invalid

Illinois
Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
If read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI
Protocol

Modified (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid

Page 11

Advanced Computer Architecture Chapter 6.41

Implementation Complications
Write Races:

Cannot update cache until bus is obtained
Otherwise, another processor may get bus first,
and then write the same cache block!

Two step process:
Arbitrate for bus
Place miss on bus and complete operation

If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.
Split transaction bus:

Bus transaction is not atomic:
can have multiple outstanding transactions for a block
Multiple misses can interleave,
allowing two caches to grab block in the Exclusive state
Must track and prevent multiple misses for one block

Must support interventions and invalidations

Advanced Computer Architecture Chapter 6.42

Implementing Snooping Caches

Multiple processors must be on bus, access to both
addresses and data
Add a few new commands to perform coherency,
in addition to read and write
Processors continuously snoop on address bus

If address matches tag, either invalidate or update
Since every bus transaction checks cache tags,
could interfere with CPU just to check:

solution 1: duplicate set of tags for L1 caches just to allow checks in
parallel with CPU
solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

block size, associativity of L2 affects L1

Advanced Computer Architecture Chapter 6.43

Implementing Snooping Caches

Bus serializes writes, getting bus ensures no one else can
perform memory operation
On a miss in a write-back cache, may have the desired
copy and it’s dirty, so must reply
Add extra state bit to cache to determine shared or not
Add 4th state (MESI)

Advanced Computer Architecture Chapter 6.44

Large-Scale Shared-Memory Multiprocessors

Bus inevitably becomes a bottleneck when many
processors are used

Use a more general interconnection network
So snooping does not work

DRAM memory is also distributed
Each node allocates space from local DRAM
Copies of remote data are made in cache

Major design issues:
How to find and represent the “directory" of each line?
How to find a copy of a line?

As a case study, we will look at S3.MP (Sun's Scalable
Shared memory Multi-Processor, a CC-NUMA (cache-
coherent non-uniform memory access) architecture

Page 12

Advanced Computer Architecture Chapter 6.45

Larger MPs

Separate Memory per Processor
Local or Remote access via memory controller
1 Cache Coherency solution: non-cached pages
Alternative: directory per cache that tracks state of every block in
every cache

Which caches have a copies of block, dirty vs. clean, ...

Info per memory block vs. per cache block?
PLUS: In memory => simpler protocol (centralized/one location)
MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

Prevent directory as bottleneck?
distribute directory entries with memory, each keeping track of which
Procs have copies of their blocks

Advanced Computer Architecture Chapter 6.46

Distributed Directory MPs

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Processor
+cache

Memory

Directory

I/O

Interconnection network

Advanced Computer Architecture Chapter 6.47

Directory Protocol
Similar to Snoopy Protocol: Three states

Shared: ≥ 1 processors have data, memory up-to-date
Uncached (no processor has it; not valid in any cache)
Exclusive: 1 processor (owner) has data;

memory out-of-date

In addition to cache state, must track which
processors have data when in the shared state
(usually bit vector, 1 if processor has copy)
Keep it simple(r):

Writes to non-exclusive data
=> write miss
Processor blocks until access completes
Assume messages received
and acted upon in order sent

Advanced Computer Architecture Chapter 6.48

Directory Protocol

No bus and don’t want to broadcast:
interconnect no longer single arbitration point
all messages have explicit responses

Terms: typically 3 processors involved
Local node where a request originates
Home node where the memory location
of an address resides
Remote node has a copy of a cache
block, whether exclusive or shared

Example messages on next slide:
P = processor number, A = address

Page 13

Advanced Computer Architecture Chapter 6.49

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory; invalidate
the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

Advanced Computer Architecture Chapter 6.50

State Transition Diagram for an
Individual Cache Block in a

Directory Based System
States identical to snoopy case; transactions
very similar.
Transitions caused by read misses, write misses,
invalidates, data fetch requests
Generates read miss & write miss msg to home
directory.
Write misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch
requests.
Note: on a write, a cache block is bigger, so
need to read the full cache block

Advanced Computer Architecture Chapter 6.51

CPU -Cache State Machine
State machine
for CPU requests
for each
memory block
Invalid state
if in
memory

Fetch/Invalidate
send Data Write Back message

to home directory

Invalidate

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

CPU read miss: send Data
Write Back message and read
miss to home directory

Advanced Computer Architecture Chapter 6.52

State Transition Diagram for the
Directory

Same states & structure as the transition
diagram for an individual cache
2 actions: update of directory state &
send msgs to statisfy requests
Tracks all copies of memory block.
Also indicates an action that updates the
sharing set, Sharers, as well as sending a
message.

Page 14

Advanced Computer Architecture Chapter 6.53

Directory State Machine
State machine
for Directory requests for
each
memory block
Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache Advanced Computer Architecture Chapter 6.54

Example Directory Protocol
Message sent to directory causes two actions:

Update the directory
More messages to satisfy request

Block is in Uncached state: the copy in memory is the
current value; only possible requests for that block
are:

Read miss: requesting processor sent data from memory &requestor
made only sharing node; state of block made Shared.
Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached. Sharers indicates the identity of the owner.

Block is Shared => the memory value is up-to-date:
Read miss: requesting processor is sent back the data from memory
& requesting processor is added to the sharing set.
Write miss: requesting processor is sent the value. All processors in
the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
Exclusive.

Advanced Computer Architecture Chapter 6.55

Example Directory Protocol
Block is Exclusive: current value of the block is held in the
cache of the processor identified by the set Sharers (the
owner) => three possible directory requests:

Read miss: owner processor sent data fetch message, causing state of block
in owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting
processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still has
a readable copy). State is shared.
Data write-back: owner processor is replacing the block and hence must
write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.
Write miss: block has a new owner. A message is sent to old owner causing
the cache to send the value of the block to the directory from which it is
sent to the requesting processor, which becomes the new owner. Sharers is
set to identity of new owner, and state of block is made Exclusive.

Advanced Computer Architecture Chapter 6.56

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Page 15

Advanced Computer Architecture Chapter 6.57

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Advanced Computer Architecture Chapter 6.58

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Advanced Computer Architecture Chapter 6.59

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

A1

Advanced Computer Architecture Chapter 6.60

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

Page 16

Advanced Computer Architecture Chapter 6.61

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

Advanced Computer Architecture Chapter 6.62

Implementing a Directory

We assume operations atomic, but they are
not; reality is much harder; must avoid
deadlock when run out of bufffers in network
(see Appendix E)

Optimizations:
read miss or write miss in Exclusive: send data directly to
requestor from owner vs. 1st to memory and then from
memory to requestor

Advanced Computer Architecture Chapter 6.63

Synchronization

Why Synchronize? Need to know when it is
safe for different processes to use shared
data

Issues for Synchronization:
Uninterruptable instruction to fetch and update memory
(atomic operation);
User level synchronization operation using this primitive;
For large scale MPs, synchronization can be a bottleneck;
techniques to reduce contention and latency of synchronization

Advanced Computer Architecture Chapter 6.64

Uninterruptable Instruction to Fetch and
Update Memory

Atomic exchange: interchange a value in a register for a value in
memory
0 => synchronization variable is free
1 => synchronization variable is locked and unavailable

Set register to 1 & swap
New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

Key is that exchange operation is indivisible

Test-and-set: tests a value and sets it if the value passes the test
Fetch-and-increment: it returns the value of a memory location and
atomically increments it

0 => synchronization variable is free

Page 17

Advanced Computer Architecture Chapter 6.65

Uninterruptable Instruction to
Fetch and Update Memory

Hard to have read & write in 1 instruction: use 2 instead
Load linked (or load locked) + store conditional

Load linked returns the initial value
Store conditional returns 1 if it succeeds (no other store to same memory
location since preceeding load) and 0 otherwise

Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

Advanced Computer Architecture Chapter 6.66

User Level Synchronization—
Operation Using this Primitive

Spin locks: processor continuously tries to acquire, spinning
around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

What about MP with cache coherency?
Want to spin on cache copy to avoid full memory latency
Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all
other copies; this generates considerable bus traffic
Solution: start by simply repeatedly reading the variable;
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

Advanced Computer Architecture Chapter 6.67

Another MP Issue:
Memory Consistency Models

What is consistency? When must a processor see the new
value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

Impossible for both if statements L1 & L2 to be true?
What if write invalidate is delayed & processor continues?

Memory consistency models:
what are the rules for such cases?
Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors were
interleaved => assignments before ifs above

SC: delay all memory accesses until all invalidates done

Advanced Computer Architecture Chapter 6.68

Memory Consistency Model
Weak consistency schemes offer faster execution than sequential
consistency
Several processors provide fence instructions to enforce sequential
consistency when an instruction stream passes such a point. Expensive!
Not really an issue for most programs;
they are synchronized

A program is synchronized if all access to shared data are ordered by
synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

Only those programs willing to be nondeterministic are not
synchronized: “data race”: outcome f(proc. speed)
Several Relaxed Models for Memory Consistency since most programs
are synchronized; characterized by their attitude towards: RAR,
WAR, RAW, WAW
to different addresses

Page 18

Advanced Computer Architecture Chapter 6.69

Summary

Caches contain all information on state of cached
memory blocks
Snooping and Directory Protocols similar; bus makes
snooping easier because of broadcast (snooping =>
uniform memory access)
Directory has extra data structure to keep track of
state of all cache blocks
Distributing directory => scalable shared address
multiprocessor
=> Cache coherent, Non uniform memory access

Advanced Computer Architecture Chapter 6.70

Case study:
Sun’s S3MP

Protocol Basics
S3.MP uses distributed
singly-linked sharing lists,
with static homes

Each line has a “home"
node, which stores the
root of the directory

Requests are sent to the
home node

Home either has a copy of
the line, or knows a node
which does

Advanced Computer Architecture Chapter 6.71

S3MP: Read Requests
Simple case: initially only the home has the data:

• Home replies with the data, creating a sharing
chain containing just the reader

Curved arrows
show messages,
bold straight
arrows show
pointers

Advanced Computer Architecture Chapter 6.72

S3MP: Read Requests -
remote

More interesting case: some other
processor has the data

Home passes request to first
processor in chain, adding
requester into the sharing list

Page 19

Advanced Computer Architecture Chapter 6.73

S3MP -
Writes

If the line is exclusive (i.e. dirty bit is set) no message is required
Else send a write-request to the home

Home sends an invalidation message down the chain
Each copy is invalidated (other than that of the requester)
Final node in chain acknowledges the requester and the home

Chain is locked for the duration of the invalidation

Advanced Computer Architecture Chapter 6.74

When a read or
write requires a
line to be copied
into the cache
from another
node, an existing
line may need to
be replaced
Must remove it
from the sharing
list
Must not lose last
copy of the line

S3MP - Replacements

Advanced Computer Architecture Chapter 6.75

Finding your data

How does a CPU find a valid copy of a specified
address’s data?

1. Translate virtual address to physical
2. Physical address includes bits which identify “home” node
3. Home node is where DRAM for this address resides
4. But current valid copy may not be there – may be in another CPU’s

cache
5. Home node holds pointer to sharing chain, so always knows where

valid copy can be found

Advanced Computer Architecture Chapter 6.76

ccNUMA summary
S3MP’s cache coherency protocol implements strong
consistency

Many recent designs implement a weaker consistency model…

S3MP uses a singly-linked sharing chain
Widely-shared data – long chains – long invalidations, nasty
replacements
“Widely shared data is rare”

In real life:
IEEE Scalable Coherent Interconnect (SCI): doubly-linked sharing list
SGI Origin 2000: bit vector sharing list

Real Origin 2000 systems in service with 256 CPUs
Sun E10000: hybrid multiple buses for invalidations, separate switched
network for data transfers

Many E10000s in service, often with 64 CPUs

Page 20

Advanced Computer Architecture Chapter 6.77

Beyond ccNUMA

COMA: cache-only memory architecture
Data migrates into local DRAM of CPUs where it is being used
Handles very large working sets cleanly
Replacement from DRAM is messy: have to make sure someone still
has a copy
Scope for interesting OS/architecture hybrid
System slows down if total memory requirement approaches RAM
available, since space for replication is reduced

Examples: DDM, KSR-1/2, rumours from IBM…

Advanced Computer Architecture Chapter 6.79

Which cache should the cache controller control?

L1 cache is already very busy with CPU traffic
L2 cache also very busy…
L3 cache doesn’t always have the current value for a
cache line

1. Although L1 cache is normally write-through, L2 is normally write-
back

2. Some data may bypass L3 (and perhaps L2) cache (eg when
stream-prefetched)

– In Power4, cache controller manages L2 cache – all
external invalidations/requests

– L3 cache improves access to DRAM for accesses
both from CPU and from network

Advanced Computer Architecture Chapter 6.80

Summary and Conclusions
Caches are essential to gain the maximum performance
from modern microprocessors
The performance of a cache is close to that of SRAM but at
the cost of DRAM
Caches can be used to form the basis of a parallel computer
Bus-based multiprocessors do not scale well: max < 10
nodes
Larger-scale shared-memory multiprocessors require more
complicated networks and protocols
CC-NUMA is becoming popular since systems can be built
from commodity components (chips, boards, OSs) and use
existing software
e.g. HP/Convex, Sequent, Data General, SGI, Sun, IBM

