
Advanced Computer Architecture Chapter 1. p1

January 2007
Paul H J Kelly

These lecture notes are partly based on the course text,
Hennessy and Patterson’s Computer Architecture, a

quantitative approach (4th ed), and on the lecture slides of
David Patterson’s Berkeley course (CS252)

332
Advanced Computer Architecture

Chapter 1

Introduction and review of
Pipelines, Performance, Caches, and Virtual

Memory

Course materials online at
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture
.html

Advanced Computer Architecture Chapter 1. p2

Pre-requisites
This a third-level computer architecture course

The usual path would be to take this course after following a
course based on a textbook like “Computer Organization and
Design” (Patterson and Hennessy, Morgan Kaufmann)

This course is based on the more advanced book by the same
authors (see next slide)

You can take this course provided you’re prepared to catch
up if necessary

Read chapters 1 to 8 of “Computer Organization and Design” (COD) if
this material is new to you
If you have studied computer architecture before, make sure COD
Chapters 2, 6, 7 are familiar
See also “Appendix A Pipelining: Basic and Intermediate Concepts” of
course textbook

FAST review today of Pipelining, Performance, Caches, and
Virtual Memory

Advanced Computer Architecture Chapter 1. p3

This is a textbook-based course
Computer Architecture: A Quantitative
Approach (4th Edition)

John L. Hennessy, David A. Patterson

~580 pages. Morgan Kaufmann (2007); ISBN:
978-0-12-370490-0
with substantial additional material on CD

Price: £ 36.99 (Amazon.co.uk, Jan 2006
Publisher’s companion web site:

http://textbooks.elsevier.com/0123704901/

Textbook includes some vital introductory material as
appendices:

Appendix A: tutorial on pipelining (read it NOW)
Appendix C: tutorial on caching (read it NOW)

Further appendices (some in book, some in CD) cover
more advanced material (some very relevant to parts of
the course), eg

Networks
Parallel applications
Implementing Coherence Protocols
Embedded systems
VLIW
Computer arithmetic (esp floating point)
Historical perspectives

Advanced Computer Architecture Chapter 1. p4

Who are these guys anyway and why
should I read their book?

John Hennessy:
Founder, MIPS
Computer Systems
President, Stanford
University

(previous president: Condoleezza Rice)

David Patterson
Leader, Berkeley RISC
project (led to Sun’s
SPARC)
RAID (redundant arrays
of inexpensive disks)
Professor, University of
California, Berkeley
Current president of the
ACM
Served on Information
Technology Advisory
Committee to the US
President

RAID-I (1989)
consisted of a Sun
4/280 workstation
with 128 MB of
DRAM, four dual-
string SCSI
controllers, 28
5.25-inch SCSI
disks and
specialized disk
striping software.

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 micron
NMOS, with a die area of 77 mm2, ran
at 1 MHz. This chip is probably the
first VLSI RISC.

ht
tp

:/
/w

ww
.c

s.
be

rk
el

ey
.e

du
/~

pa
tt

rs
n/

A
rc

h/
pr

ot
ot

yp
es

2.
ht

m
l

Advanced Computer Architecture Chapter 1. p5

Administration details

Course web site:
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture.htm
l

Course mailing list (see web page for link):
332-advancedcomputerarchitecture-2006@doc.ic.ac.uk

Mailing list archive:
http://mailman.doc.ic.ac.uk/pipermail/332-
advancedcomputerarchitecture-2006/

Course textbook: H&P 4th ed
Read Appendix A right away

Advanced Computer Architecture Chapter 1. p6

Course organisationLecturer:
Paul Kelly

Tutorial helper:
Ashley Brown – PhD student working on heterogenous multicore architectures and
design-space exploration

3 hours per week
Nominally two hours of lectures, one hour of classroom tutorials
We will use the time more flexibly

Assessment:
Exam

For CS M.Eng. Class, exam will take place in last week of term
For everyone else, exam will take place early in the summer term
The goal of the course is to teach you how to think about computer
architecture
The exam usually includes some architectural ideas not presented in the
lectures

Coursework
You will be assigned a substantial, laboratory-based exercise
You will learn about performance tuning for computationally-intensive kernels
You will learn about using simulators, and experimentally evaluating
hypotheses to understand system performance
You are encouraged to bring laptops to class to get started and get help
during tutorials

Please do not use the computers for anything else during classes

Advanced Computer Architecture Chapter 1. p7

Course overview (plan)

Ch1
Review of pipelined, in-order
processor architecture and simple
cache structures

Ch2
Virtual memory
Benchmarking
Fab

Ch3
Caches in more depth
Software techniques to improve
cache performance

Ch4
Instruction-level parallelism
Dynamic scheduling, out-of-order
Register renaming
Speculative execution
Branch prediction
Limits to ILP

Ch5
Compiler techniques – loop nest
transformations
Loop parallelisation, interchange,
tiling/blocking, skewing
Uniform frameworks

Ch6
Multithreading, hyperthreading, SMT
Static instruction scheduling
Software pipelining
EPIC/IA-64; instruction-set support for
speculation and register renaming

Ch7
Shared-memory multiprocessors
Cache coherency
Large-scale cache-coherency; ccNUMA.
COMA

Lab-based coursework exercise:
Simulation study
“challenge”
Using performance analysis tools

Exam:
Answer 3 questions out of 4
Partially based on recent processor
architecture article, which we will study in
advance (see past papers)

Advanced Computer Architecture Chapter 1. p8

A "Typical" RISC
32-bit fixed format instruction (3 formats, see next slide)
32 32-bit general-purpose registers

(R0 contains zero, double-precision/long operands occupy a pair)
Memory access only via load/store instructions

No instruction both accesses memory and does arithmetic
All arithmetic is done on registers

3-address, reg-reg arithmetic instruction
Subw r1,r2,r3 means r1 := r2-r3
registers identifiers always occupy same bits of instruction encoding

Single addressing mode for load/store:
base + displacement

ie register contents are added to constant from instruction word, and
used as address, eg “lw R2,100(r1)” means “r2 := Mem[100+r1]”
no indirection

Simple branch conditions
Delayed branch

see: SPARC, MIPS, ARM, HP PA-Risc,
DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1,
Cray-2, Cray-3

Not: Intel IA-32, IA-64 (?),
Motorola 68000,
DEC VAX, PDP-11, IBM
360/370

Eg: VAX matchc instruction!

Advanced Computer Architecture Chapter 1. p9

Example: MIPS (Note register location)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Q: What is the largest signed immediate operand for “subw r1,r2,X”?
Q: What range of addresses can a conditional branch jump to?

Advanced Computer Architecture Chapter 1. p10

5 Steps of MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Figure 3.1, Page 130, CA:AQA 2e

Advanced Computer Architecture Chapter 1. p11

Pipelining the MIPS datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Figure 3.1, Page 130, CA:AQA 2e

We will see more complex pipeline structures later.
For example, the Pentium 4 “Netburst” architecture has 31 stages.

Advanced Computer Architecture Chapter 1. p12

5-stage MIPS pipeline with pipeline buffers

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Figure 3.4, Page 134 , CA:AQA 2e

Advanced Computer Architecture Chapter 1. p13

Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Figure 3.3, Page 133 , CA:AQA 2e

Pipelining doesn’t help latency of single instruction
it helps throughput of entire workload

Pipeline rate limited by slowest pipeline stage
Potential speedup = Number pipe stages
Unbalanced lengths of pipe stages reduces speedup
Time to “fill” pipeline and time to “drain” it reduces speedup
Speedup comes from parallelism

For free – no new hardware

Advanced Computer Architecture Chapter 1. p14

It’s Not That Easy for Computers

Limits to pipelining: Hazards prevent
next instruction from executing during its
designated clock cycle

Structural hazards: HW cannot support this
combination of instructions
Data hazards: Instruction depends on result
of prior instruction still in the pipeline
Control hazards: Caused by delay between
the fetching of instructions and decisions
about changes in control flow (branches and
jumps).

Advanced Computer Architecture Chapter 1. p15

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Figure 3.6, Page 142 , CA:AQA 2e

Eg if there is only one memory for both instructions and data
Two different stages may need access at same time
Example: IBM/Sony/Toshiba Cell processor

Advanced Computer Architecture Chapter 1. p16

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Figure 3.7, Page 143 , CA:AQA 2e

Instr 3 cannot be loaded in cycle 4
ID stage has nothing to do in cycle 5
EX stage has nothing to do in cycle 6, etc. “Bubble” propagates

Advanced Computer Architecture Chapter 1. p17

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Time (clock cycles)

IF ID/RF EX MEM WB

Figure 3.9, page 147 , CA:AQA 2e

Advanced Computer Architecture Chapter 1. p18

Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

Caused by a “Dependence” (in compiler nomenclature).
This hazard results from an actual need for
communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

Advanced Computer Architecture Chapter 1. p19

Write After Read (WAR)
InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

Can’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Reads are always in stage 2, and
Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

Advanced Computer Architecture Chapter 1. p20

Three Generic Data Hazards

Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Writes are always in stage 5

Will see WAR and WAW in later more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Advanced Computer Architecture Chapter 1. p21

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149 , CA:AQA 2e

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Advanced Computer Architecture Chapter 1. p22

HW Change for Forwarding
Figure 3.20, Page 161, CA:AQA 2e

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

Advanced Computer Architecture Chapter 1. p23

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Advanced Computer Architecture Chapter 1. p24

Data Hazard Even with Forwarding
Figure 3.13, Page 154 , CA:AQA 2e

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch A
LU DMemBubble Reg

EX stage waits in cycle 4 for operand
Following instruction (“and”) waits in ID stage
Missed instruction issue opportunity…

Advanced Computer Architecture Chapter 1. p25

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

Code for d = e-f

Code for a = b+c

Advanced Computer Architecture Chapter 1. p26

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

Software Scheduling to Avoid Load Hazards

Fast code:

d,RdSWd,RdSW
Rd,Re,RfSUBRd,Re,RfSUB
a,RaSWSTALL
Rf,fLWRf,fLW

Re,eLW
a,RaSW

Ra,Rb,RbADDRa,Rb,RcADD
Re,eLWSTALL
Rc,cLWRc,cLW
Rb,bLWRb,bLW

10 cycles (2 stalls) 8 cycles (0 stalls)

Show the stalls
explicitly

Advanced Computer Architecture Chapter 1. p27

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Advanced Computer Architecture Chapter 1. p28

Example: Branch Stall Impact

Suppose 30% of instructions are branch
If we really had a 3 cycle stall everytime it would be
bad!
Two part solution:

Determine whether branch is taken or not sooner, AND
Compute taken branch target address earlier

In the MIPS instruction set, the branch instruction
tests if specified register = 0 or ≠ 0
MIPS Solution:

Move Zero test to ID/RF stage
Introduce a new adder to calculate new PC in ID/RF stage
1 clock cycle penalty for branch versus 3

Advanced Computer Architecture Chapter 1. p29

A
dder

IF/ID

Pipelined MIPS Datapath with early branch
determination
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM
4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm
M

U
X

ID
/EX

Figure 3.22, page 163, CA:AQA 2/e

Advanced Computer Architecture Chapter 1. p30

Four Branch Hazard Alternatives
#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
Execute successor instructions in sequence
“Squash” instructions in pipeline if branch actually taken

With MIPS we have advantage of late pipeline state update

47% MIPS branches are not taken on average

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
53% MIPS branches are taken on average

But in MIPS instruction set we haven’t calculated branch target
address yet (because branches are relative to the PC)

MIPS still incurs 1 cycle branch penalty
With some other machines, branch target is known before
branch condition

Advanced Computer Architecture Chapter 1. p31

Four Branch Hazard Alternatives
#4: Delayed Branch

Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

1 slot delay allows proper decision and branch target
address in 5 stage pipeline
MIPS uses this; eg in

“SW R3, X” instruction is executed regardless
“SW R4, X” instruction is executed only if R1 is non-zero

Branch delay of length n

LW R3, #100
LW R4, #200
BEQZ R1, L1
SW R3, X
SW R4, X

L1:
LW R5,X

Advanced Computer Architecture Chapter 1. p32

Four Branch Hazard Alternatives
#4: Delayed Branch

Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

1 slot delay allows proper decision and branch target
address in 5 stage pipeline
MIPS uses this; eg in

“SW R3, X” instruction is executed regardless
“SW R4, X” instruction is executed only if R1 is non-zero

Branch delay of length n

LW R3, #100
LW R4, #200
BEQZ R1, L1
SW R3, X
SW R4, X

L1:
LW R5,X

If (R1==0)
X=100

Else
X=100
X=200

R5 = X

Advanced Computer Architecture Chapter 1. p33

Delayed Branch
Where to get instructions to fill branch delay slot?

Before branch instruction
From the target address: only valuable when branch taken
From fall through: only valuable when branch not taken

target

before
Blt R1,L1
fallthru

L1:Compiler effectiveness for single branch delay slot:
Fills about 60% of branch delay slots
About 80% of instructions executed in branch delay slots
useful in computation
About 50% (60% x 80%) of slots usefully filled

Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

Canceling branches
Branch delay slot instruction is executed but write-back is
disabled if it is not supposed to be executed
Two variants: branch “likely taken”, branch “likely not-taken”
allows more slots to be filled

Advanced Computer Architecture Chapter 1. p34

Now, Review of Memory Hierarchy

Advanced Computer Architecture Chapter 1. p35

Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

Advanced Computer Architecture Chapter 1. p36

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<1ns

Cache
10s-100s K Bytes
1-10 ns
$10/ MByte

Main Memory
M Bytes
100ns- 300ns
$1/ MByte

Disk
10s G Bytes, 10 ms
(10,000,000 ns)
$0.0031/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Advanced Computer Architecture Chapter 1. p37

The Principle of Locality
The Principle of Locality:

Programs access a relatively small portion of the address
space at any instant of time.

Two Different Types of Locality:

Temporal Locality (Locality in Time): If an item is
referenced, it will tend to be referenced again soon
(e.g., loops, reuse)

Spatial Locality (Locality in Space): If an item is
referenced, items whose addresses are close by tend to
be referenced soon
(e.g., straightline code, array access)

In recent years, architectures have become
increasingly reliant (totally reliant?) on
locality for speed

Advanced Computer Architecture Chapter 1. p38

Interesting exception: Cray/Tera
MTA, first delivered June 1999:

www.cray.com/products/systems/mta/

Each CPU switches every cycle
between 128 threads

Each thread can have up to 8
outstanding memory accesses

3D toroidal mesh interconnect

Memory accessed hashed to spread
load across banks

MTA-1 fabricated using Gallium
Arsenide, not silicon
“nearly un-manufacturable”
(wikipedia)

http://www.karo.com

Advanced Computer Architecture Chapter 1. p39

Memory Hierarchy: Terminology
Hit: data appears in some block in the upper level
(example: Block X)

Hit Rate: the fraction of memory access found in the upper level
Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
Miss: data needs to be retrieved from a block in
the lower level (Block Y)

Miss Rate = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
Hit Time << Miss Penalty (500 instructions on Alpha
21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Advanced Computer Architecture Chapter 1. p40

Cache Measures
Hit rate: fraction found in that level

So high that usually talk about Miss rate
Miss rate fallacy: as MIPS to CPU performance,
miss rate to average memory access time in memory

Average memory-access time
= Hit time + Miss rate x Miss penalty

(ns or clocks)

Miss penalty: time to replace a block from
lower level, including time to replace in CPU

access time: time to lower level
= f(latency to lower level)
transfer time: time to transfer block
=f(BW between upper & lower levels)

Advanced Computer Architecture Chapter 1. p41

1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

Direct-mapped cache - storage

Advanced Computer Architecture Chapter 1. p42

1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

Compare

HitDirect-mapped cache – read access
Data

Advanced Computer Architecture Chapter 1. p43

1 KB Direct Mapped Cache, 32B blocks

0
1
2
3

:

Cache Data
Byte 0

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

6

7

8

9

10

11

12

13

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

5

4

3

2

1

0

35

34

33

Main Memory

Cache location 0 can be occupied
by data from main memory
location 0, 32, 64, … etc.
Cache location 1 can be occupied
by data from main memory
location 1, 33, 65, … etc.

In general, all locations with same
Address<9:4> bits map to the same
location in the cache Which one should
we place in the cache?

How can we tell which one is in
the cache?

Advanced Computer Architecture Chapter 1. p44

Direct-mapped Cache - structure
Capacity: C bytes (eg 1KB)
Blocksize: B bytes (eg 32)
Byte select bits: 0..log(B)-1 (eg 0..4)
Number of blocks: C/B (eg 32)
Address size: A (eg 32 bits)
Cache index size: I=log(C/B) (eg log(32)=5)
Tag size: A-I-log(B) (eg 32-5-5=22)

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Advanced Computer Architecture Chapter 1. p45

Two-way Set Associative Cache
N-way set associative: N entries for each Cache
Index

N direct mapped caches operated in parallel (N typically 2 to 4)

Example: Two-way set associative cache
Cache Index selects a “set” from the cache
The two tags in the set are compared in parallel
Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Advanced Computer Architecture Chapter 1. p46

Disadvantage of Set Associative Cache
N-way Set Associative Cache v. Direct Mapped Cache:

N comparators vs. 1
Extra MUX delay for the data
Data comes AFTER Hit/Miss

In a direct mapped cache, Cache Block is available BEFORE
Hit/Miss:

Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Advanced Computer Architecture Chapter 1. p47

Basic cache terminology

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Example: Intel Pentium 4 Level-1 cache (pre-Prescott)
Capacity: 8K bytes (total amount of data cache can store)
Block: 64 bytes (so there are 8K/64=128 blocks in the cache)
Sets: 4 (addresses with same index bits can be placed in one of 4 ways)
Ways: 32 (=128/4, that is each RAM array holds 32 blocks)
Index: 5 bits (since 25=32 and we need index to select one of the 32 ways)
Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)
Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])

Advanced Computer Architecture Chapter 1. p48

4 Questions for Memory Hierarchy

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)

Advanced Computer Architecture Chapter 1. p49

Q1: Where can a block be placed in
the upper level?

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7

Set 0
2
4
6

0 1

In a fully-associative cache, block
12 can be placed in any location in
the cache

In a direct-mapped
cache, block 12 can only
be placed in one cache
location, determined by
its low-order address
bits –

(12 mod 8) = 4

In a two-way set-
associative cache, the
set is determined by its
low-order address bits –

(12 mod 4) = 0
Block 12 can be placed in
either of the two cache
locations in set 0

Advanced Computer Architecture Chapter 1. p50

Q2: How is a block found if it is in the upper
level?

Tag on each block
No need to check index or block offset

Increasing associativity shrinks index, expands tag

Block
Offset

Block Address

IndexTag

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Advanced Computer Architecture Chapter 1. p51

Q3: Which block should be replaced on a
miss?

Easy for Direct Mapped
Set Associative or Fully Associative:

Random
LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Advanced Computer Architecture Chapter 1. p52

Q4: What happens on a write?
Write through—The information is written
to both the block in the cache and to the
block in the lower-level memory

Write back—The information is written only
to the block in the cache. The modified
cache block is written to main memory only
when it is replaced.

is block clean or dirty?

Pros and Cons of each?
WT: read misses cannot result in writes
WB: no repeated writes to same location

WT always combined with write buffers so
that don’t wait for lower level memory

Advanced Computer Architecture Chapter 1. p53

Write Buffer for Write Through

A Write Buffer is needed between the Cache and
Memory

Processor: writes data into the cache and the write buffer
Memory controller: write contents of the buffer to memory

Write buffer is just a FIFO:
Typical number of entries: 4
Works fine if: Store frequency (w.r.t. time) << 1 / DRAM
write cycle

Memory system designer’s nightmare:
Store frequency (w.r.t. time) -> 1 / DRAM write cycle
Write buffer saturation

Processor
Cache

Write Buffer

DRAM

Advanced Computer Architecture Chapter 1. p54

A Modern Memory Hierarchy
By taking advantage of the principle of locality:

Present the user with as much memory as is available in the
cheapest technology.
Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s
100s

Gs
Size (bytes):

Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
(10s sec)

Ts

Advanced Computer Architecture Chapter 1. p55

Large-scale storageStorageTek STK 9310
(“Powderhorn”)

2,000, 3,000, 4,000,
5,000, or 6,000
cartridge slots per
library storage module
(LSM)
Up to 24 LSMs per
library (144,000
cartridges) under ACSLS
control
Up to 16 LSMs per
library (96,000
cartridges) under NCS
control
120 TB (1 LSM) to
28,800 TB capacity (24
LSM)
Up to 30 MB/sec native
throughput per hour

Up to 28.8 petabytes
Ave 4s to load tape

Advanced Computer Architecture Chapter 1. p56

Summary #1/4:
Pipelining & Performance

Just overlap tasks; easy if tasks are independent
Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

Hazards limit performance on computers:
Structural: need more HW resources
Data (RAW,WAR,WAW): need forwarding, compiler scheduling
Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Time is measure of performance: latency or
throughput
CPI Law:

Advanced Computer Architecture Chapter 1. p57

Summary #2/4: Caches

The Principle of Locality:
Program access a relatively small portion of the address space at any
instant of time.

Temporal Locality: Locality in Time
Spatial Locality: Locality in Space

Three Major Categories of Cache Misses:
Compulsory Misses: sad facts of life. Example: cold start misses.
Capacity Misses: increase cache size
Conflict Misses: increase cache size and/or associativity.

Write Policy:
Write Through: needs a write buffer.
Write Back: control can be complex

Today CPU time is often dominated by memory access time, not
just computational work. What does this mean to
Compilers, Data structures, Algorithms?

Advanced Computer Architecture Chapter 1. p58

Additional material

Advanced Computer Architecture Chapter 1. p59

Pipelining: A very familiar idea…

Laundry Example
Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and iron
Washer takes 30 minutes

Dryer takes 40 minutes

Ironing takes 20 minutes

A B C D

Advanced Computer Architecture Chapter 1. p60

Sequential Laundry

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Advanced Computer Architecture Chapter 1. p61

Pipelined Laundry:
Principle: everyone starts work ASAP

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Advanced Computer Architecture Chapter 1. p62

Pipelined Laundry:
Lessons-

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload
Pipeline rate limited by
slowest pipeline stage
Multiple tasks operating
simultaneously
Potential speedup =
Number pipe stages
Unbalanced lengths of
pipe stages reduces
speedup
Time to “fill” pipeline
and time to “drain” it
reduces speedup
Speedup comes from
parallelism

For free – no new
hardware

Advanced Computer Architecture Chapter 1. p63

Which is faster?

• Time to run the task (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns …
(Performance)

– Throughput, bandwidth

Plane

Boeing
747

BAC/Sud
Concorde

Speed

610
mph

1350
mph

Washington
DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

First flew in December
1967

First flew in February,
1969

Now, review basic performance issues in
processor design

(Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p64

Performance(X) Execution_time(Y)
n = =

Performance(Y) Execution_time(X)

Definitions
Performance is in units of things per sec

bigger is better

If we are primarily concerned with response time

performance(x) = 1
execution_time(x)

" X is n times faster than Y" means

Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p65

Aspects of CPU Performance (CPU Law)

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p66

Cycles Per Instruction
(Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

“Average Cycles per Instruction”

j
n

j
j I CPI TimeCycle time CPU ×∑×=

=1

Countn Instructio
I

 F whereF CPI CPI
1

j
j

n

j
jj =×=∑

=

Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p67

Example: Calculating CPI

Typical Mix of
instruction types
in program

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)

1.5

Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p68

Example: Branch Stall Impact

Assume CPI = 1.0 ignoring branches
Assume solution was stalling for 3 cycles
If 30% branch, Stall 3 cycles

Op Freq Cycles CPI(i) (% Time)
Other 70% 1 .7 (37%)
Branch 30% 4 1.2 (63%)

=> new CPI = 1.9, or almost 2 times slower

Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p69

Example 2: Speed Up Equation for
Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, Ideal CPI = 1:

Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p70

Example 3: Evaluating Branch Alternatives
(for 1 program)

Scheduling Branch CPI speedup v.
scheme penalty stall

Stall pipeline 3 1.42 1.0
Predict taken 1 1.14 1.26
Predict not taken 1 1.09 1.29
Delayed branch 0.5 1.07 1.31

Assuming Conditional & Unconditional branches
make up 14% of the total instruction count, and
65% of them change the PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

Background material not covered in lectures)

Advanced Computer Architecture Chapter 1. p71

Example 4: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard
Architecture”)
Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate
Ideal CPI = 1 for both
Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster

(Background material not covered in lectures)

