332
Advanced Computer Architecture

Chapter 1

Introduction and review of
Pipelines, Performance, Caches, and Virtual
Memory

January 2007
Paul H J Kelly

These lecture notes are partly based on the course text,
Hennessy and Patterson’'s Computer Architecture, a
quantitative approach (4" ed), and on the lecture slides of
David Patterson’s Berkeley course (€5252)

Course materials online at

http://www.doc.ic.ac.uk/~phik/AdvancedCompArchitecture
himl

Advanced Computer Architecture Chapter 1. pl

Pre-requisites
This a third-level computer architecture course

The usual path would be to take this course after following a
course based on a textbook like "Computer Organization and
Design” (Patterson and Hennessy, Morgan Kaufmann)

This course is based on the more advanced book by the same
authors (see next slide)

You can take this course provided you're prepared to catch
up if necessary
E

Read chapters 1 to 8 of “"Computer Organization and Design” (COD) if
this material is new to you

E If you have studied computer architecture before, make sure COD
Chapters 2, 6, 7 are familiar

E See also "Appendix A Pipelining: Basic and Intermediate Concepts” of
course textbook

FAST review today of Pipelining, Performance, Caches, and
Virtual Memory

Advanced Computer Architecture Chapter 1. p2

This is a textbook-based course

COMPUTER ARCKITECTURE

Computer Architecture: A Quantitative
Approach (4t Edition)

John L. Hennessy, David A. Patterson

~580 pages. Morgan Kaufmann (2007); ISBN:
978-0-12-370490-0
with substantial additional material on CD

Price: £ 36.99 (Amazon.co.uk, Jan 2006

Publisher’'s companion web site:
k http://textbooks.elsevier.com/0123704901/

Textbook includes some vital introductory material as
appendices:

k» Appendix A: tutorial on pipelining (read it NOW)

k» Appendix C: tutorial on caching (read it NOW)

Further appendices (some in book, some in CD) cover
more advanced material (some very relevant to parts of
the course), eg

Networks

Parallel applications

Implementing Coherence Protocols
Embedded systems

VLIW

Computer arithmetic (esp floating point)

T ¥y ¥y ¥y ¥y 7%

Historical perspectives
Advanced Computer Architecture Chapter 1. p3

Who are these guys anyway and why
should I read their book?

RAID-I (1989)
consisted of a Sun
4/280 workstation
with 128 MB of
DRAM, four dual-
string SCSI
controllers, 28
5.25-inch SCSIT
disks and
specialized disk
striping software.

John Hennessy:

Founder, MIPS
Computer Systems

President, Stanford
University

(previous president: Condoleezza Rice)

David Patterson

Leader, Berkeley RISC
project (led to Sun's
SPARC)

RAID (redundant arrays
of inexpensive disks)

Professor, University of
California, Berkeley

Current president of the
ACM

Served on Information
Technology Advisory
Committee to the US
President

http://www.cs.berkeley.edu/~pa
ttrsn/Arch/prototypes2.html

transistors, fabbed in 5 micron
NMOS, with a die area of 77 mm?2, ran
at 1 MHz. This chip is probably the
first VLSI RISC.

Advanced Computer Architecture Chapter 1. p4

Administration details

Course web site:

i http://www.doc.ic.ac.uk/~phik/AdvancedCompArchitecture . htm
I

B Course mailing list (see web page for link):
i 332 -advancedcomputerarchitecture-2006@doc.ic.ac.uk
B Mailing list archive:

i http://mailman.doc.ic.ac.uk/pipermail/332 -
advancedcomputerarchitecture-2006/

B Course textbook: H&P 4th ed
i Read Appendix A right away

Advanced Computer Architecture Chapter 1. p5

L

L

L

Lecturer:

e Paul Kelly Course organisation

Tutorial helper:

B Ashley Brown - PhD student working on heterogenous multicore architectures and
design-space exploration

3 hours per week
Nominally two hours of lectures, one hour of classroom tutorials
We will use the time more flexibly

Assessment:
B Exam
w For CS M.Eng. Class, exam will take place in last week of term
k For everyone else, exam will take place early in the summer term

i The goal of the course is to teach you how to think about computer
architecture

e lThe exam usually includes some architectural ideas not presented in the
ectures

® Coursework
ik You will be assigned a substantial, laboratory-based exercise
i You will learn about performance tuning for computationally-intensive kernels

w You will learn about using simulators, and experimentally evaluating
hypotheses to understand system performance

i You are encouraged to bring laptops to class to get started and get help
during tutorials

¢ Please do not use the computers for anything else during classes

Advanced Computer Architecture Chapter 1. p6

® Chl

B Review of pipelined, in-order
processor architecture and simple
cache structures

® Ch2

B Virtual memory
B Benchmarking
E Fab

® Ch3

E Caches in more depth

E Software techniques to improve
cache performance

® Ch4

E Instruction-level parallelism

B Dynamic scheduling, out-of-order
E Register renaming

B Speculative execution

B Branch prediction

B Limits to ILP

Chb

Compiler techniques - loop nest
transformations

Loop parallelisation, interchange,
tiling/blocking, skewing

Uniform frameworks

+ Ché

Multithreading, hyperthreading, SMT
Static instruction scheduling
Software pipelining

EPIC/IA-64; instruction-set support for
speculation and register renaming

& Ch7

Shared-memory multiprocessors
Cache coherency

Large-scale cache-coherency; ccNUMA.
COMA

¢ Lab-based coursework exercise:

B Simulation study
E “challenge”
E Using performance analysis tools

& Exam:

E Answer 3 questions out of 4
E Partially based on recent processor

architecture article, which we will study in
advance (see past papers)

Course overview (plan)

Advanced Computer Architecture Chapter 1. p7

A "Typical" RISC

32-bit fixed format instruction (3 formats, see next slide)

¢ 32 32-bit general-purpose registers
B (RO contains zero, double-precision/long operands occupy a pair)

Memory access only via load/store instructions
E No instruction both accesses memory and does arithmetic
E All arithmetic is done on registers

¢ 3-address, reg-reg arithmetic instruction
E Subw rl,r2,r3 meansrl := r2-r3
B registers identifiers always occupy same bits of instruction encoding
¢ Single addressing mode for load/store:
base + displacement

E ie register contents are added to constant from instruction word, and
used as address, eg "lw R2,100(r1)" means "r2 := Mem[100+r1]"

E noindirection gpp: SPARC, MIPS, ARM, HP PA-Risc,
¢ Simple branch conditions DEC Alpha, IBM PowerPC,
+ Delayed branch CDC 6600, CDC 7600, Cray-1,

Cray-2, Cray-3

Not: Intel TA-32, IA-64 (?),
Motorola 68000,
DEC VAX, PDP-11, IBM
360/370

Eg: VAX matchc instruction!

Advanced Computer Architecture Chapter 1. p8

Example: MIPS (Note register location)

Register-Register

31 26 25 2120 16 15 1110 6 5 0
Op I Rsi I Rs2 I Rd I Opx
Register-Immediate
31 26 25 2120 16 15 0
Op I Rs1 I Rd I immediate
Branch
31 26 25 2120 16 15 0
Op I Rs1 'QSZ/OF”I immediate
Jump / Call
31 26 25 0
Op I target

Q: What is the largest signed immediate operand for "subw r1,r2 X"?
Q: What range of addresses can a conditional branch jump to?

Advanced Computer Architecture Chapter 1. p9

5 Steps of MIPS Datapath

Instruction éIns'rr'. Decodeé Execute Memory EWr-ife
Fetch i Reg. Fetch | Addr. Calc | Access | Back

Next PC : >

»

q

} Next SEQ PC

WB Data

Figure 3.1, Page 130, CA:AQA 2e Advanced Computer Architecture Chapter 1. p10

Pipelining the MIPS datapath

Instruction éIns'rr'. Decodeé Execute Memory éWr-ife
Fetch : Reg. Fetch : Addr. Calc | Access : Back

Next PC R

»

q

} Next SEQ PC

WB Data

We will see more complex pipeline structures later.
For example, the Pentium 4 "Netburst” architecture has 31 stages.

Figure 3.1, Page 130, CA:AQA 2e Advanced Computer Architecture Chapter 1. p11

5-stage MIPS pipeline with pipeline buffers

Instruction Instr. Decode Execute Memory Write
Fetch . Reg. Fetch : Addr. Calc i Access : Back
Next PC > :
Next SEQ PC

WB Data

 Data station&ry control

- local decode for each instruction phase / pipeline stage

Fiotre 3.4. Pace 134 . CA:AQA Ze Advanced Computer Architecture Chapter 1. p12

Time (clock cycles) Vlsuallzmg Pipelining
Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5 : Cycle 6: Cycle 7

| Stabolete
S H

t E

o | :

d | :

r] Ifetch:I:

° Plpelmmg doesnf help Ia'rency of smgle msTruchon :
¢ it helps throughput of entire workload

¢ Pipeline rate limited by slowest pipeline stage
Potential speedup = Number pipe stages
¢ Unbalanced lengths of pipe stages reduces speedup

¢ Time to "fill" pipeline and time to "drain” it reduces speedup

¢ Speedup comes from parallelism

E For free - no new hardware
Figure 3.3, Page 133 , CA:AQA 2e

Advanced Computer Architecture Chapter 1. p13

It's Not That Easy for Computers

¢Limits to pipelining: Hazards prevent
next instruction from executing during its
designated clock cycle

B Structural hazards: HW cannot support this
combination of instructions

EData hazards: Instruction depends on result
of prior instruction still in the pipeline

B Control hazards: Caused by delay between
the fetching of instructions and decisions
about changes in control flow (branches and

jumps).

Advanced Computer Architecture Chapter 1. p14

One Memory Port/Structural Hazards
Time (clock cycles)

Cycle 1§Cycle 2 ECycle 3E Cycle 4ECycIe 5E Cycle 6§Cycle 7

n .
':, Instr 1 Ife*ch:I: | .B DMem

Instr 2 : P [rfetch 1 .ﬁ DMem
o !
"1 Instr 3 DMem
d
r I N Str 4 Ifetch I .B DMem

Eg if there is only one memory for both ins'rruchons and data
+ Two different stages may need access at same time
Example: IBM/Sony/Toshiba Cell processor

Fioure 3.6. Page 142 CA:AOA 2e Advanced Computer Architecture Chapter 1. p15

One Memory Port/Structural Hazards
Time (clock cycles)

I Load Ifetch
n
i Instr 1
r.

Instr 2
o
r
d Stall
e
r| Instr 3 :

Ifetch I Reg

: |Ifetch

Cycle IECycIe 2 ECycIe 3 Cycle 4§Cycle 5 Cycle 6§Cycle 7 '

: |Ifetch

Instr 3 cannot be loaded in c-ycle 4
ID stage has nothing to do in cycle 5

EX stage has nothing to do in cycle 6, etc.

Fiaure 3.7. Paae 143 . CA:AQA 2e

w

Reg

“Bubble” propa gates

Advanced Comput ure Chapter 1. pl16

Time (clock cycles)

Data Hazard on R1

IF ID/RF EX MEM WB

I| add r1,r2,r3 fe-
n
S
|1 sub r4,r1,r3
r.
o| and r6,rl,r7
r
d
e | Or rs,rl,r9
r

- xor r10,rl1,rl1l

Figure 3.9, page 147 , CA:AQA 2e

R

[fetcH

ALV

[fetch

DMen

ALV

[fetch

M 9
Men g
o)
R ;(‘ DMen g

rerc || rea] .E DentLReq |

Advanced Computer Architecture Chapter 1. p17

Three Generic Data Hazards

Read After Write (RAW)
Instr; tries to read operand before Instr; writes it

I: add r1,r2,r3
J: sub r4,r1,r3

Caused by a "Dependence” (in compiler nomenclature).
This hazard results from an actual need for
communication.

Advanced Computer Architecture Chapter 1. p18

Three Generic Data Hazards

¢ Write After Read (WAR)
Instr; writes operand before Instr; reads it

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,rl,r7

¢ Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

¢ Can't happen in MIPS 5 stage pipeline because:
B All instructions take 5 stages, and
E Reads are always in stage 2, and
E Writes are always in stage 5

Advanced Computer Architecture Chapter 1. p19

Three Generic Data Hazards

¢ Write After Write (WAW)
Instr; writes operand before Instr; writes it.

1: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,rl,r7

Called an "output dependence” by compiler writers
This also results from the reuse of name "ri1”.

Can't happen in MIPS 5 stage pipeline because:
B All instructions take 5 stages, and

B Writes are always in stage 5

#® Will see WAR and WAW in later more complicated pipes

Advanced Computer Architecture Chapter 1. p20

“‘FMRH

S0 0

add

sub

and

or

Xor

Forwarding to Avoid Data Hazard

Figure 3.10, Page 149 , CA:AQA 2e

Time (clock cycles)

rl, r2, r3ffe:-

r4,rl1,r3

roe,rl,r7/

r8,rl1,r9

rio,rl,rll

[fetch

[fetcH

[fetch

Advanced Computer Architecture Chapter 1. p21

NextPC

SJU24S162y

Immediate

HW Change for Forwarding

Figure 3.20, Page 161, CA:AQA 2e

A\ A 4

xXnw

‘VV {V \ 4

xXnw

Data
Memory

v
4

xXnw
|

v
L 4

Advanced Computer Architecture Chapter 1. p22

I+ N

S0 Q3Q

Data Hazard Even with Forwarding

Time (clock cycles)

Figure 3.12, Page 153 , CA:AQA 2e

Iw rl, O(FZ) Ifetch | IH | .ﬁ DMem

sub r4,rl1,r6

and ré6,rl,r7

or r8,rl1,r9

nrere] I | wea[] 524!5

[

fetch| .H i .:a

DMem 2g

rfetch | .n i .2

Advanced Computer Architecture Chapter 1. p23

J 40 I N

N0 QYQ

Data Hazard Even with Forwarding
Figure 3.13, Page 154 , CA:AQA 2e

Time (clock cycles)

lw rl, O(r2)

subr4,rlr6

and r6,r1,r7

or r8,r1,r9

| EX stage

Following

nrercl || Réa] l»ﬁ “ﬂ
brerot I H@l -:E
Ifetc” W@J ik |rﬁ

Blstsiole

waits in cycle 4 for operand
instruction ("and”) waits in ID stage

DMem

Missed instruction issue opportunity...

Advanced Computer Architecture Chapter 1. p24

Software Scheduling to Avoid Load Hazards

Try producing fast code for

assuming a, b, c, d ,e, and f in memory.

a=Db+c;
d=e-f;
Slow code:
(LW Rb,b
Code for a = b+ LW Rc,c
ADD Ra,Rb,Rc
» SW a,Ra
(LW Re.e
Code ford = e-f{ LW Rf,f
SUB Rd,Re,Rf
» SW d,Rd

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra

SUB Rd,Re,Rf

SW

d,Rd

Advanced Computer Architecture Chapter 1. p25

Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b +c;
d=e-f;
assuming a, b, c, d ,e, and f in memory.
Slow code: Fast code:
LW Rb,b LW Rb,b
LW Rc,c LW Rc,c
STALL LW Re,e Show the stalls
ADD Ra,Rb,Rc ADD Ra,Rb,Rb explicitly
SW a,R
LW Re,
LW Rf,f LW Rf,f
STALL SW a,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf
SW d,Rd SW d,Rd

10 cycles (2 stalls) 8 cycles (O stalls)

Advanced Computer Architecture Chapter 1. p26

10:

14:

18:

22:

36:

beq
and
or

add

Xor

|
r2,r3,r5

ro,rl,r7/

r8,rl,r9

}
rio,rl,rll

Control Hazard on Branches
Three Stage Stall

rl,r3,36 I

rerc .B |'E ‘

DMen

fetch .E I |%

Fretc .r I .s

I et | .B I 'E

DMen

rfetch | .H I 'E

Advanced Computer Architecture Chapter 1. p27

Example: Branch Stall Impact

¢ Suppose 30% of instructions are branch

¢ If we really had a 3 cycle stall everytime it would be
bad!

¢ Two part solution:
B Determine whether branch is taken or not sooner, AND
B Compute taken branch target address earlier

In the MIPS instruction set, the branch instruction
tests if specified register = O or = O

¢ MIPS Solution:
B Move Zero test to ID/RF stage
B Introduce a new adder to calculate new PC in ID/RF stage
E 1 clock cycle penalty for branch versus 3

Advanced Computer Architecture Chapter 1. p28

Pipelined MIPS Datapath with early branch

determination
Instruction Instr. Decode Execute Memory Write
Fetch i Reg. Fetch i Addr. Calc i Access : Back

Next PC

: _ Next ,
iy SEQPC

WB Data

Figure 3.22, page 163, CA:AQA 2/e Advanced Computer Architecture Chapter 1. p29

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken

E Execute successor instructions in sequence
B "Squash” instructions in pipeline if branch actually taken

E With MIPS we have advantage of late pipeline state update
E 47% MIPS branches are not taken on average

E PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

B 53% MIPS branches are taken on average

E But in MIPS instruction set we haven't calculated branch target
address yet (because branches are relative to the PC)

ke MIPS still incurs 1 cycle branch penalty

i With some other machines, branch target is known before
branch condition

Advanced Computer Architecture Chapter 1. p30

Four Branch Hazard Alternatives
#4: Delayed Branch

B Define branch to take place AFTER a following instruction

branch instruction
sequential successor,
sequential successor,

........ Branch delay of length »
sequential successorn/ Y]
branch target 1t taken

B 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

E MIPS uses this; eg in| | W R3, #100

LW R4, #200
BEQZ R1, L1
SW R3, X
SW R4, X

L1:
LW R5,X

E "SW R3, X" instruction is executed regardless

E "SW R4, X" instruction is executed only if R1 is non-zero
Advanced Computer Architecture Chapter 1. p31

Four Branch Hazard Alternatives

#4: Delayed Branch

B Define branch to take place AFTER a following instruction

branch 1nstruction

sequential successor,
sequential successor,

sequential successor

branch target 1t taken

/ Branch delay of length n

B 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

B MIPS uses this; eg in

E "SW R3, X" instruction is executed regardless

LW R3, #100
LW R4, #200
BEQZ R1, L1
SW R3, X
SW R4, X

L1:
LW R5,X

If (R1==0)
X=100
Else
X=100
X=200
R5 = X

E "SW R4, X" instruction is executed only if R1 is non-zero

Advanced Computer Architecture Chapter 1. p32

Delayed Branch

¢ Where to get instructions to fill branch delay slot?
B Before branch instruction
B From the target address: only valuable when branch taken
® From fall through: only valuable when branch not taken

¢ Compiler effectiveness for single branch delay slot: Li{Farger
E Fills about 60% of branch delay slots

B About 80% of instructions executed in branch delay slots
useful in computation

B About 50% (60% x 80%) of slots usefully filled

¢ Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

before
Blt R1 L1

fallthru

¢ Canceling branches

E Branch delay slot instruction is executed but write-back is
disabled if it is not supposed to be executed

E Two variants: branch “likely taken”, branch “likely not-taken”
B allows more slots to be filled

Advanced Computer Architecture Chapter 1. p33

Now, Review of Memory Hierarchy

Advanced Computer Architecture Chapter 1. p34

Recap: Who Cares About the Memory Hierarchy?

Processor-DRAM Memory Gap (latency)

1000

o
o

Performance

=
o

"Moore's Law'

v— pProc
T 60%/yr.
(2X/1.5yr)

Processor-Memory
Performance Gap:
(grows 50% / year)

1980
1981

~— DRAM
DRAM 9°/o/yr‘.
(2X/10 yrs)
~o's'o
5888

Advanced Computer Architecture Chapter 1. p35

Levels of the Memory Hierarchy

ft'apadfyT' Upper Level
ccess Time Staging
Cost Xfer Unit * faster
CPU Registers .
100s B)%'es ReglsTers
<ins A)
Instr. Operands ~ Bregy/compiler
Cache v
10s-100s K Bytes C
ache
1-10 ns
$10/ MByte 4 cache cntl
Blocks 8-128 bytes
Main Memory v
M Bytes
100ns- 300ns Memory
$1/ MByte - oS
Pages 512-4K bytes
Disk Y
10s G Bytes, 10 ms Disk
(10,000,000 ns)
$0.0031/ MBY"'C A Flles USCI‘/OPZI“O"'OI" !
Mbytes
- v Larger
ape
infinite Tape Lower Level
sec-min

$0.0014/ MByte

Advanced Computer Architecture Chapter 1. p36

The Principle of Locality
The Principle of Locality:

B Programs access a relatively small portion of the address
space at any instant of time.

¢ Two Different Types of Locality:

B Temporal Locality (Locality in Time): If an item is
referenced, it will tend to be referenced again soon
(e.g., loops, reuse)

B Spatial Locality (Locality in Space): If an item is
referenced, items whose addresses are close by tend to
be referenced soon
(e.g., straightline code, array access)

In recent years, architectures have become
increasingly reliant (totally reliant?) on
locality for speed

Advanced Computer Architecture Chapter 1. p37

@ Interesfring exception:_Cray/Tera
MTA, firsT delivered June '1999:

B www.cray.com/products/systems/mta/

| # Each CPU switches every cycle
| between 128 threads

Each thread can have up to 8
outstanding memory accesses

3D toroidal mesh interconnect

Memory accessed hashed to spread
load across banks

MTA-1 fabricated using Gallium
Arsenide, not silicon

“nearly un-manufacturable”
(wikipedia)

http://www.ke Advanced Computer Architecture Chapter 1. p38

Memory Hierarchy: Terminology

Hit: data appears in some block in the upper level
(example: Block X)
B : the fraction of memory access found in the upper level
B : Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
¢ : data needs to be retrieved from a block in
the lower level (Block Y)
B = 1 - (Hit Rate)
_ : Time to replace a block in the upper level +

Time to deliver the block the processor

Hit Time << Miss Penalty (500 instructions on Alpha
21264)

Lower Level
To Processor | Upper Level Memory
Memory
Blk X
From Processor R BIk Y

Advanced Computer Architecture Chapter 1. p39

Cache Measures
® Hit rate: fraction found in that level

B So high that usually talk about Miss rate

B Miss rate fallacy: as MIPS to CPU performance,
miss rate tfo average memory access time in memory

o Aver'a%_e‘ memory-access time
= Hit time + Miss rate x Miss penalty
(ns or clocks)

* Miss penalty: time to replace a block from
lower level, including time to replace in CPU

B access time: time to lower level
= f(latency to lower level)

B fransfer fime: time to transfer block
=f(BW between upper & lower levels)

Advanced Computer Architecture Chapter 1. p40

1 KB Direct Mapped Cache, 32B blocks

For a 2N byte cache:
E The uppermost (32 - N) bits are always the Cache Tag

E The lowest M bits are the Byte Select (Block Size = 2M)
31 9 4 0

Cache Tag Example: 0x50 Cache Index Byte Select

Ex: 0x01 Ex: 0x00
Stored as part |

of the cache “state”

Valid Bit Cache Tag Cache Data
Byte31] " |Bytel |Byt40 |0
0x50 Y Byte 63| " * | Byte 33| Byte 32| 1+—
2
3
Byte 1023 " Byte 992 | 31

Direct-mapped cache - storage

Advanced Computer Architecture Chapter 1. p41

1 KB Direct Mapped Cache, 32B blocks

For a 2N byte cache:
E The uppermost (32 - N) bits are always the Cache Tag
E The lowest M bits are the Byte Select (Block Size = 2M)

31 9 4 0
Cache Tag Example: 0x50 Cache Index Byte Select
Ex: 0x01 Ex: 0x00
Stored as part | -
of the cache “state”
Valid Bit Cache Tag Cache Data
Byte31] " |Bytel |ByteO |0
0x50 Bytg63| " " | Bytgq33|Bytg32| 1+—
2
3
Bytq 1023 " Byte 992 | 31
C ComEar'e > \" } /

lDa’ra

Advanced Computer Architecture Chapter 1. p42

Direct-mapped cache - read access QHiT

O ® N o0 O A w N = O

W W W W W NN NN NN N NN N s e s e s e e
A W N = O OV ® N o0 O & W N = O VYV ® N O OGO & W N = O

w
o

1 KB Direct Mapped Cache, 32B blocks

Main Memory

&

Cache location O can be occupied
by data from main memory
location 0, 32, 64, .. efc.

Cache location 1 can be occupied
by data from main memory
location 1, 33, 65, .. efc.

m In general, all locations with same
Address<9:4> bits map to the same
location in the cache Which one should
we place in the cache?

How can we tell which one is in
the cache?

Cache Data

Byte31] ** |Bytel |ByteO

Byte 63| " * | Byte 33| Byte 32

w NN - O

Byte 1023 " Byte 992 | 31

Advanced Computer Architecture Chapter 1. p43

Direct-mapped Cache - structure

¢ Capacity: C bytes (eg 1KB)

¢ Blocksize: B bytes (eg 32)

¢ Byte select bits: 0..log(B)-1 (eg 0..4)

¢ Number of blocks: C/B (eg 32)

¢+ Address size: A (eg 32 bits)

¢ Cache index size: I=log(C/B) (eg log(32)=5)
¢ Tag size: A-I-log(B) (eg 32-5-5=22)

Cache Index
Valid Cache Tag Cache Data

Cache Block 0

AdrTag(v)
Comparg—

—n\ M
B e

1 Cache Block

Hit?

Advanced Computer Architecture Chapter 1. p44

Two-way Set Associative Cache

¢ N-way set associative: N entries for each Cache
Index
B N direct mapped caches operated in parallel (N typically 2 to 4)

¢ Example: Two-way set associative cache
B Cache Index selects a “"set” from the cache
B The two tags in the set are compared in parallel
B Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Adr Ta Corr‘lrpar E— 1 (‘)r om‘|'oare D E—
XSell Mux Selo,/_(

l 1l Cache Block

Advanced Computer Architecture Chapter 1. p45

Disadvantage of Set Associative Cache
¢ N-way Set Associative Cache v. Direct Mapped Cache:

E N comparators vs
E Extra MUX delay

|
for the data

E Data comes AFTER Hit/Miss
¢ In a direct mapped cache, Cache Block is available BEFORE

Hit/Miss:

E Possible to assume a hit and continue.

Valid Cache Tag

Cache Data

Cache Block 0

«

AdrTag(‘)
Comparg—

Cache Index
Cache Data Cache Tag Valid

Recover later if miss.

Cache Block 0

pit |

D_ﬁSelll Mux OSeIO,/_C_ omparg)«
(GR) -

R

NS

\

. Cache Block

v

Advanced Computer Architecture Chapter 1. p46

Basic cache terminology
Example: Intel Pentium 4 Level-1 cache (pre-Prescott)

Capacity: 8K bytes (total amount of data cache can store)

Block: 64 bytes (so there are 8K/64=128 blocks in the cache)

Sets: 4 (addresses with same index bits can be placed in one of 4 ways)

+ Ways: 32 (=128/4, that is each RAM array holds 32 blocks)

4+ Index: 5 bits (since 2°=32 and we need index to select one of the 32 ways)
¢ Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)
Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

|

Adr Ta A 4 A 4 A 4 A 4
——=(Compar)—),XSell Mux O Selo/{@l
(2 -
R
N\
1l Cache Block

Hit Advanced Computer Architecture Chapter 1. p47

4 Questions for Memory Hierarchy

¢+ Q1: Where can a block be placed in the upper level?
(Block placement)

¢+ Q2: How is a block found if it is in the upper level?
(Block identification)

¢ Q3: Which block should be replaced on a miss?
(Block replacement)

¢ Q4: What happens on a write?
(Write strategy)

Advanced Computer Architecture Chapter 1. p48

Q1: Where can a block be placed in
the upper level?

I — E— — — — — In a direct-mapped

In a fully-associative cache, block cache, block 12 can only

12 can be placed in any location in 'lf’e plqceddin one FGthE
the cache ocafion, determined by

its low-order address
bits -

NOOIRhWNLO

(12mod 8)=4

Set o ﬂi In a two-way set-

2 associative cache, the
6 set is determined by its
low-order address bits -
(12mod4)=0

Block 12 can be placed in
either of the two cache
locations in set O

Advanced Computer Architecture Chapter 1. p49

Q2: How is a block found if it is in the upper

level?
Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Adr Ta Corr‘{par — 1 (‘)r om‘|'oare —
D.ﬁSell Mux SeIO,/_C_
m —
R
N

_ l 1 Cache Block
Hit

¢ Tag on each block
B No need to check index or block offset

Block Address Block
Offset

Tag Index

¢ Increasing associativity shrinks index, expands tag

Advanced Computer Architecture Chapter 1. p50

Q3: Which block should be replaced on a

miss?

Easy for Direct Mapped
Set Associative or Fully Associative:

B Random

B LRU (Least Recently Used)
AssocC: 2-way 4-way 8-way
Size LRU Ran |[LRU Ran LRU Ran
16 KB | 52% 57%|4.7% 53% |4.4% 5.0%
64KB [1.9% 20%|(15% 1.7% |[1.4% 1.5%
256 KB |11.15% 1.17% [1.13% 1.13%(1.12% 1.12%

Advanced Computer Architecture Chapter 1. p51

Q4: What happens on a write?

® Write through—The information is written
to both the block in the cache and to the
block in the lower-level memory

¢ Write back—The information is written only
to the block in the cache. The modified
cache block is written to main memory only
when it is replaced.
E is block clean or dirty?

Pros and Cons of each?
E WT: read misses cannot result in writes
E WB: no repeated writes to same location

¢ WT always combined with write buffers so
that don't wait for lower level memory

Advanced Computer Architecture Chapter 1. p52

Write Buffer for Write Through

Processor DRAM

‘ *| Cache |*

Write Buffer

¢ A Write Buffer is needed between the Cache and
Memory
E Processor: writes data into the cache and the write buffer
E Memory controller: write contents of the buffer to memory

¢ Write buffer is just a FIFO:

B Typical number of entries: 4

B Works fine if: Store frequency (w.r.t. time) << 1 / DRAM
write cycle

Memory system designer’s nightmare:
B Store frequency (w.r.t. time) -> 1 / DRAM write cycle
E Write buffer saturation

Advanced Computer Architecture Chapter 1. p53

A Modern Memory Hierarchy
¢ By taking advantage of the principle of locality:

B Present the user with as much memory as is available in the
cheapest technology.

B Provide access at the speed offered by the fastest technology.

Processor
Control Tertiary
/ Secondary Storage
second | | Main >0re9¢ | |(Disk/Tape)
P ® Level M (Disk)
X o S eve emory
Datapath(<. 11 | 8 & Cache | | (DRAM)
@ ® = (SRAM)
—\ B
L 1L 1
\
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
Size (bytes): 100s (10s ms) (10s sec)
Ks Ms Gs Ts

Advanced Computer Architecture Chapter 1. p54

#+ StorageTek STK 9310
C“Powderhorn) Large-scale storage

® 2,000, 3,000, 4,000, ¢ e 2 - -
5,000, or 6,000 /l e 1] E::f—_ th

cartridge slots per

library storage module
(LSM) 1 ‘I'

E Up to 24 LSMs per ST _ _
library (144,000 | i B = E
cartridges) under ACSLE [1 TS 11 - :

control

B Up to 16 LSMs per
library (96,000
cartridges) under NCS
control

E 120 TB (1 LSM) to
28,800 TB capacity (24
LSM)

E Up to 30 MB/sec native
throughput per hour

+ Up to 28.8 petabytes
Ave 4s to load tape

Advanced Computer Architecture Chapter 1. p55

Summary #1/4:
Pipelining & Performance
¢ Just overlap tasks. easy if tasks are independent
¢ Speed Up < Pipeline Depth; if ideal CPT is 1, then:

Pipeline depth CYC|3 Time,ivelined

Speed
PeedtiP =1+ Pipeline stall cPL Cycle Time

pipelined

¢ Hazards limit performance on computers:
B Structural: need more HW resources
B Data (RAW,WAR,WAW): need forwarding, compiler scheduling
B Control: delayed branch, prediction

¢ Time is measure of performance: latency or
throughput

CPI Law:

CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Advanced Computer Architecture Chapter 1. p56

Summary #2/4: Caches

¢ The Principle of Locality:

B Program access a relatively small portion of the address space at any
instant of time.

i Temporal Locality: Locality in Time
i Spatial Locality: Locality in Space

¢ Three Major Categories of Cache Misses:
B Compulsory Misses: sad facts of life. Example: cold start misses.
B Capacity Misses: increase cache size
B Conflict Misses: increase cache size and/or associativity.
P

+ Write Policy:
B Write Through: needs a write buffer.
E Write Back: control can be complex

¢ Today CPU time is often dominated by memory access time, not
just computational work. What does this mean to
Compilers, Data structures, Algorithms?

Advanced Computer Architecture Chapter 1. p57

Additional material

Advanced Computer Architecture Chapter 1. p58

Pipelining: A very familiar idea...

¢ Laundry Example

Ann, Brian, Cathy, Dave @@3&5

each have one load of clothes
to wash, dry, and iron

Washer takes 30 minutes

o

(-

Dryer takes 40 minutes

Ironing takes 20 minutes ﬁ

Advanced Computer Architecture Chapter 1. p59

Sequential Laundry
6 PM 7 8 9 10 11 Midnight

| Time

@ (o 7t
T
© Tt

[=)

N0 QY Q Xt QY
0

r —d
v

(-

Sequential laundry takes 6 hours for 4 loads

30 40 20 30 40 20 30 40 2030 40 20

.

* If they learned pipelining, how long would laundry take?

Advanced Computer Architecture Chapter 1. p60

@@m@

N0 QY Q Xt QY

Pipelined Laundry:
Principle: everyone starts work ASAP

6PM 7 8 9 10 11 Midnight

30 %40 40 40 20
JeI 7

JeI 7
o)

Pipelined laundry takes 3.5 hours for 4 loads

Advanced Computer Architecture Chapter 1. p61

Pipelined Laundry:
Lessons-

¢ Pipelining doesn't hel
Iha'r|enc hof Siﬁglf} 1'(11(3 , it
elps throughput o
6 PM 7 8 9 en‘lfi,r'e work oc':d

| Time # Pipeline rate limited by
slowest pipeline stage

N0 QY Q Xxh QY

30 40 40 40 40 20 +# Multiple tasks operating
— s simultaneously
&5 P %E ¢ Potential speedup =
Number pipe stages
=7 = ¢ Unbalanced lengths of
- pipe stages reduces
{ speedup
= ¢ Time to “fill" pipeline
@ - and time to “drain” it
, & reduces speedup
=1 ﬁ ¢ Speedup comes from
& = pgr'allel?sm
E For free - no new
Pipelined laundry takes 3.5 hours ;ordw'*rdoads

Advanced Computer Architecture Chapter 1. p62

Now, review basic performance issues in
processor design

Which is faster?

6.5 hours 286,700

178,200

- Time to run the task (ExTime)

- Execution time, response time, latency

+ Tasks per day, hour, week, sec, ns ..
(Performance)
- Throughput, bandwidth

(BGCkground material not covered in l@CTUf'eS) Advanced Computer Architecture Chapter 1. p63

Definitions

#Performance is in units of things per sec
B bigger is better

+If we are primarily concerned with response time

Eperformance(x) = 1
execution_time(x)

means
Performance(X) Execution_time(Y)
N = =
Performance(Y) Execution_time(X)

;GCkground material not covered in I@CTUP@S) Advanced Computer Architecture Chapter 1. p64

Aspects of CPU Performance (CPU Law)

CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X
Compiler X (X)
Inst. Set. X X
Organization X X
Technology X

;GCkgr'OLlnd material not covered in I@CTUI"@S) Advanced Computer Architecture Chapter 1. p65

Cycles Per Instruction
(Throughput)

“"Average Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x En) CPI; x I,

j=1

"Instruction Frequency”

n |
CPI=) CPI,;xF, whereF, = J

= ' Instruction Count

;GCkgr'OUhd material not covered in ICCTUP@S) Advanced Computer Architecture Chapter 1. p66

Base Machine (Reg / Reg)
Cycles CPI(i)

Op
ALV
Load
Store
Branch

lackground material not covered in lectures)

Fre

50%
20%
10%
20%

1

2
2
2

/
Typical Mix of

instruction types

in program

4
2
4

5

1.

5

Example: Calculating CPI

(% Time)
(33%)
(27%)
(13%)
(27%)

Advanced Computer Architecture Chapter 1. p67

Example: Branch Stall Impact

Assume CPI = 1.0 ignoring branches

#+ Assume solution was stalling for 3 cycles
+ If 30% branch, Stall 3 cycles

¢ Op Freq Cycles CPI(i) (% Time)
¢ Other 70% 1 7 (37%)
¢ Branch 30% 4 1.2 (630/0)

#=>new CPI = 1.9, or almost 2 times slower

;GCkground material not covered in I@CTUP@S) Advanced Computer Architecture Chapter 1. p68

Example 2: Speed Up Equation for
Pipelining

CPI = Ideal CPT + Average Stall cycles per Inst

pipelined

Ideal CPT x Pipeline depth CYC|€ Time,inelined

Speedup =
PEETUP = Ideal cPT + Pipeline stall cPT” Cycle Time

pipelined

For simple RISC pipeline, Ideal CPT = 1:

Pipeline depth CYC|3 Time,ivelined

Speed
PeedtiP =1+ Pipeline stall cPL Cycle Time

pipelined

;GCkground material not covered in IQCTUPQS) Advanced Computer Architecture Chapter 1. p69

Example 3: Evaluating Branch Alternatives
(for 1 program)

Pipeline depth
1 +Branch frequency x Branch penalty

Pipeline speedup =

Scheduling Branch CPI speedup v.

scheme penalty stall
Stall pipeline 3 1.42 1.0
Predict taken 1 1.14 1.26
Predict not taken 1 1.09 1.29
Delayed branch 0.5 1.07 1.31

Assuming Conditional & Unconditional branches
make up 14% of the total instruction count, and
65% of them change the PC

;GCkgr'OUhd material not covered in I@CTUP@S) Advanced Computer Architecture Chapter 1. p70

Example 4: Dual-port vs. Single-port

Machine A: Dual ported memory ("Harvard
Architecture”)

Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

Ideal CPI = 1 for both

¢ Loads are 40% of instructions executed
SpeedUp, = Pipeline Depth/(1 + 0) x (clock
= Pipeline Depth
SpeedUpg = Pipeline Depth/(1 + 0.4 x 1) x (clock
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth
SpeedUp, / SpeedUpg = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster

/clock

unpipe pipe)

/(clock / 1.05)

unpipe unpipe

(BGCkground material not covered in ICCTUPCS) Advanced Computer Architecture Chapter 1. p71

