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Pre-requisites
This a third-level computer architecture course

The usual path would be to take this course after following a 
course based on a textbook like “Computer Organization and 
Design” (Patterson and Hennessy, Morgan Kaufmann)

This course is based on the more advanced book by the same 
authors (see next slide)

You can take this course provided you’re prepared to catch 
up if necessary

Read chapters 1 to 8 of “Computer Organization and Design” (COD) if 
this material is new to you
If you have studied computer architecture before, make sure COD 
Chapters 2, 6, 7 are familiar
See also “Appendix A Pipelining: Basic and Intermediate Concepts” of 
course textbook

FAST review today of Pipelining, Performance, Caches, and 
Virtual Memory
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This is a textbook-based course
Computer Architecture: A Quantitative 
Approach (4th Edition)

John L. Hennessy, David A. Patterson

~580 pages.  Morgan Kaufmann (2007); ISBN: 
978-0-12-370490-0
with substantial additional material on CD

Price: £ 36.99 (Amazon.co.uk, Jan 2006
Publisher’s companion web site:

http://textbooks.elsevier.com/0123704901/

Textbook includes some vital introductory material as 
appendices:

Appendix A: tutorial on pipelining (read it NOW)
Appendix C: tutorial on caching (read it NOW)

Further appendices (some in book, some in CD) cover 
more advanced material (some very relevant to parts of 
the course), eg

Networks
Parallel applications
Implementing Coherence Protocols
Embedded systems
VLIW
Computer arithmetic (esp floating point)
Historical perspectives
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Who are these guys anyway and why 
should I read their book?

John Hennessy:
Founder, MIPS 
Computer Systems
President, Stanford 
University 

(previous president: Condoleezza Rice)

David Patterson
Leader, Berkeley RISC 
project (led to Sun’s 
SPARC)
RAID (redundant arrays 
of inexpensive disks)
Professor, University of 
California, Berkeley
Current president of the 
ACM
Served on Information 
Technology Advisory 
Committee to the US 
President

RAID-I (1989) 
consisted of a Sun 
4/280 workstation 
with 128 MB of 
DRAM, four dual-
string SCSI 
controllers, 28 
5.25-inch SCSI 
disks and 
specialized disk 
striping software.

RISC-I (1982) Contains 44,420 
transistors, fabbed in 5 micron 
NMOS, with a die area of 77 mm2, ran 
at 1 MHz. This chip is probably the 
first VLSI RISC.
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Administration details

Course web site:
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture.htm
l

Course mailing list (see web page for link):
332-advancedcomputerarchitecture-2006@doc.ic.ac.uk

Mailing list archive:
http://mailman.doc.ic.ac.uk/pipermail/332-
advancedcomputerarchitecture-2006/

Course textbook: H&P 4th ed
Read Appendix A right away
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Course organisationLecturer: 
Paul Kelly

Tutorial helper:
Ashley Brown – PhD student working on heterogenous multicore architectures and 
design-space exploration 

3 hours per week 
Nominally two hours of lectures, one hour of classroom tutorials
We will use the time more flexibly

Assessment:
Exam

For CS M.Eng. Class, exam will take place in last week of term
For everyone else, exam will take place early in the summer term
The goal of the course is to teach you how to think about computer 
architecture
The exam usually includes some architectural ideas not presented in the 
lectures

Coursework
You will be assigned a substantial, laboratory-based exercise
You will learn about performance tuning for computationally-intensive kernels
You will learn about using simulators, and experimentally evaluating 
hypotheses to understand system performance
You are encouraged to bring laptops to class to get started and get help 
during tutorials

Please do not use the computers for anything else during classes
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Course overview (plan)

Ch1
Review of pipelined, in-order 
processor architecture and simple 
cache structures

Ch2
Virtual memory
Benchmarking
Fab

Ch3
Caches in more depth
Software techniques to improve 
cache performance

Ch4
Instruction-level parallelism
Dynamic scheduling, out-of-order
Register renaming
Speculative execution
Branch prediction
Limits to ILP

Ch5
Compiler techniques – loop nest 
transformations
Loop parallelisation, interchange, 
tiling/blocking, skewing
Uniform frameworks

Ch6
Multithreading, hyperthreading, SMT
Static instruction scheduling
Software pipelining
EPIC/IA-64; instruction-set support for 
speculation and register renaming

Ch7 
Shared-memory multiprocessors
Cache coherency
Large-scale cache-coherency; ccNUMA. 
COMA

Lab-based coursework exercise: 
Simulation study
“challenge”
Using performance analysis tools

Exam:
Answer 3 questions out of 4
Partially based on recent processor 
architecture article, which we will study in 
advance (see past papers)
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A "Typical" RISC
32-bit fixed format instruction (3 formats, see next slide)
32 32-bit general-purpose registers 

(R0 contains zero, double-precision/long operands occupy a pair)
Memory access only via load/store instructions

No instruction both accesses memory and does arithmetic
All arithmetic is done on registers

3-address, reg-reg arithmetic instruction
Subw r1,r2,r3 means r1 := r2-r3
registers identifiers always occupy same bits of instruction encoding

Single addressing mode for load/store: 
base + displacement 

ie register contents are added to constant from instruction word, and 
used as address, eg “lw R2,100(r1)” means “r2 := Mem[100+r1]”
no indirection

Simple branch conditions
Delayed branch

see: SPARC, MIPS, ARM, HP PA-Risc,
DEC Alpha, IBM PowerPC, 
CDC 6600, CDC 7600, Cray-1, 
Cray-2, Cray-3

Not: Intel IA-32, IA-64 (?),
Motorola 68000, 
DEC VAX, PDP-11, IBM 
360/370

Eg: VAX matchc instruction!
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Example: MIPS (Note register location)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

Q: What is the largest signed immediate operand for “subw r1,r2,X”?
Q: What range of addresses can a conditional branch jump to?



Advanced Computer Architecture Chapter 1. p10

5 Steps of MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Figure 3.1, Page 130, CA:AQA 2e
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Pipelining the MIPS datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc
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Sign
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Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Figure 3.1, Page 130, CA:AQA 2e

We will see more complex pipeline structures later.
For example, the Pentium 4 “Netburst” architecture has 31 stages.
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5-stage MIPS pipeline with pipeline buffers

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
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ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B 

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Figure 3.4, Page 134 , CA:AQA 2e
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Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Figure 3.3, Page 133 , CA:AQA 2e

Pipelining doesn’t help latency of single instruction
it helps throughput of entire workload

Pipeline rate limited by slowest pipeline stage
Potential speedup = Number pipe stages
Unbalanced lengths of pipe stages reduces speedup
Time to “fill” pipeline and time to “drain” it reduces speedup
Speedup comes from parallelism

For free – no new hardware
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It’s Not That Easy for Computers

Limits to pipelining: Hazards prevent 
next instruction from executing during its 
designated clock cycle

Structural hazards: HW cannot support this 
combination of instructions 
Data hazards: Instruction depends on result 
of prior instruction still in the pipeline 
Control hazards: Caused by delay between 
the fetching of instructions and decisions 
about changes in control flow (branches and 
jumps).
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One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Figure 3.6, Page 142 , CA:AQA 2e

Eg if there is only one memory for both instructions and data
Two different stages may need access at same time
Example: IBM/Sony/Toshiba Cell processor
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One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Figure 3.7, Page 143 , CA:AQA 2e

Instr 3 cannot be loaded in cycle 4
ID stage has nothing to do in cycle 5
EX stage has nothing to do in cycle 6, etc.  “Bubble” propagates
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I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Time (clock cycles)

IF ID/RF EX MEM WB

Figure 3.9, page 147 , CA:AQA 2e
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Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

Caused by a “Dependence” (in compiler nomenclature). 
This hazard results from an actual need for 
communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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Write After Read (WAR)
InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

Can’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Reads are always in stage 2, and 
Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline because: 
All instructions take 5 stages, and 
Writes are always in stage 5

Will see WAR and WAW in later more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149 , CA:AQA 2e

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg



Advanced Computer Architecture Chapter 1. p22

HW Change for Forwarding
Figure 3.20, Page 161, CA:AQA 2e
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Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg



Advanced Computer Architecture Chapter 1. p24

Data Hazard Even with Forwarding
Figure 3.13, Page 154 , CA:AQA 2e

Time (clock cycles)

or   r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch A
LU DMemBubble Reg

EX stage waits in cycle 4 for operand
Following instruction (“and”) waits in ID stage 
Missed instruction issue opportunity…



Advanced Computer Architecture Chapter 1. p25

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd

Code for d = e-f

Code for a = b+c
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

Software Scheduling to Avoid Load Hazards

Fast code:

d,RdSWd,RdSW
Rd,Re,RfSUBRd,Re,RfSUB
a,RaSWSTALL
Rf,fLWRf,fLW

Re,eLW
a,RaSW

Ra,Rb,RbADDRa,Rb,RcADD
Re,eLWSTALL
Rc,cLWRc,cLW
Rb,bLWRb,bLW

10 cycles (2 stalls) 8 cycles (0 stalls)

Show the stalls 
explicitly
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Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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Example: Branch Stall Impact

Suppose 30% of instructions are branch
If we really had a 3 cycle stall everytime it would be 
bad!
Two part solution:

Determine whether branch is taken or not sooner, AND
Compute taken branch target address earlier

In the MIPS instruction set, the branch instruction 
tests if specified register = 0 or ≠ 0
MIPS Solution:

Move Zero test to ID/RF stage
Introduce a new adder to calculate new PC in ID/RF stage
1 clock cycle penalty for branch versus 3
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A
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Figure 3.22, page 163, CA:AQA 2/e
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Four Branch Hazard Alternatives
#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
Execute successor instructions in sequence
“Squash” instructions in pipeline if branch actually taken

With MIPS we have advantage of late pipeline state update

47% MIPS branches are not taken on average

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
53% MIPS branches are taken on average

But in MIPS instruction set we haven’t calculated branch target 
address yet (because branches are relative to the PC)

MIPS still incurs 1 cycle branch penalty
With some other machines, branch target is known before 
branch condition
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Four Branch Hazard Alternatives
#4: Delayed Branch

Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

1 slot delay allows proper decision and branch target 
address in 5 stage pipeline
MIPS uses this; eg in

“SW R3, X” instruction is executed regardless
“SW R4, X” instruction is executed only if R1 is non-zero

Branch delay of length n

LW R3, #100
LW R4, #200
BEQZ R1, L1
SW R3, X
SW R4, X

L1:
LW R5,X
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Four Branch Hazard Alternatives
#4: Delayed Branch

Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

1 slot delay allows proper decision and branch target 
address in 5 stage pipeline
MIPS uses this; eg in

“SW R3, X” instruction is executed regardless
“SW R4, X” instruction is executed only if R1 is non-zero

Branch delay of length n

LW R3, #100
LW R4, #200
BEQZ R1, L1
SW R3, X
SW R4, X

L1:
LW R5,X

If (R1==0) 
X=100

Else
X=100
X=200

R5 = X



Advanced Computer Architecture Chapter 1. p33

Delayed Branch
Where to get instructions to fill branch delay slot?

Before branch instruction
From the target address: only valuable when branch taken
From fall through: only valuable when branch not taken

target

before
Blt R1,L1
fallthru

L1:Compiler effectiveness for single branch delay slot:
Fills about 60% of branch delay slots
About 80% of instructions executed in branch delay slots 
useful in computation
About 50% (60% x 80%) of slots usefully filled

Delayed Branch downside: 7-8 stage pipelines, 
multiple instructions issued per clock (superscalar)

Canceling branches
Branch delay slot instruction is executed but write-back is 
disabled if it is not supposed to be executed
Two variants: branch “likely taken”, branch “likely not-taken”
allows more slots to be filled
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Now, Review of Memory Hierarchy
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Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1
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“Moore’s Law”
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Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<1ns

Cache
10s-100s K Bytes
1-10 ns
$10/ MByte

Main Memory
M Bytes
100ns- 300ns
$1/ MByte

Disk
10s G Bytes, 10 ms 
(10,000,000 ns)
$0.0031/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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The Principle of Locality
The Principle of Locality:

Programs access a relatively small portion of the address 
space at any instant of time.

Two Different Types of Locality:

Temporal Locality (Locality in Time): If an item is 
referenced, it will tend to be referenced again soon 
(e.g., loops, reuse)

Spatial Locality (Locality in Space): If an item is 
referenced, items whose addresses are close by tend to 
be referenced soon 
(e.g., straightline code, array access)

In recent years, architectures have become 
increasingly reliant (totally reliant?) on 
locality for speed
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Interesting exception: Cray/Tera
MTA, first delivered June 1999:

www.cray.com/products/systems/mta/

Each CPU switches every cycle 
between 128 threads

Each thread can have up to 8 
outstanding memory accesses

3D toroidal mesh interconnect

Memory accessed hashed to spread 
load across banks

MTA-1 fabricated using Gallium 
Arsenide, not silicon
“nearly un-manufacturable”
(wikipedia)

http://www.karo.com
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Memory Hierarchy: Terminology
Hit: data appears in some block in the upper level 
(example: Block X) 

Hit Rate: the fraction of memory access found in the upper level
Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
Miss: data needs to be retrieved from a block in 
the lower level (Block Y)

Miss Rate  = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor
Hit Time << Miss Penalty (500 instructions on Alpha 
21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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Cache Measures
Hit rate: fraction found in that level

So high that usually talk about Miss rate
Miss rate fallacy: as MIPS to CPU performance, 
miss rate to average memory access time in memory 

Average memory-access time 
= Hit time + Miss rate x Miss penalty 

(ns or clocks)

Miss penalty: time to replace a block from 
lower level, including time to replace in CPU

access time: time to lower level 
= f(latency to lower level)
transfer time: time to transfer block 
=f(BW between upper & lower levels)
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1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

Direct-mapped cache - storage
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1 KB Direct Mapped Cache, 32B blocks
For a 2N byte cache:

The uppermost (32 - N) bits are always the Cache Tag
The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

Compare

HitDirect-mapped cache – read access
Data
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1 KB Direct Mapped Cache, 32B blocks

0
1
2
3

:

Cache Data
Byte 0

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

6

7

8

9

10

11

12

13

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

5

4

3

2

1

0

35

34

33

Main Memory

Cache location 0 can be occupied 
by data from main memory 
location 0, 32, 64, … etc.
Cache location 1 can be occupied 
by data from main memory 
location 1, 33, 65, … etc.

In general, all locations with same 
Address<9:4> bits map to the same 
location in the cache Which one should 
we place in the cache?

How can we tell which one is in 
the cache?
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Direct-mapped Cache - structure
Capacity: C bytes (eg 1KB)
Blocksize: B bytes (eg 32)
Byte select bits: 0..log(B)-1 (eg 0..4)
Number of blocks: C/B (eg 32)
Address size: A (eg 32 bits)
Cache index size: I=log(C/B) (eg log(32)=5)
Tag size: A-I-log(B) (eg 32-5-5=22)

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Cache Block

Compare
Adr Tag

Hit
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Two-way Set Associative Cache
N-way set associative: N entries for each Cache 
Index

N direct mapped caches operated in parallel (N typically 2 to 4)

Example: Two-way set associative cache
Cache Index selects a “set” from the cache
The two tags in the set are compared in parallel
Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit



Advanced Computer Architecture Chapter 1. p46

Disadvantage of Set Associative Cache
N-way Set Associative Cache v. Direct Mapped Cache:

N comparators vs. 1
Extra MUX delay for the data
Data comes AFTER Hit/Miss

In a direct mapped cache, Cache Block is available BEFORE 
Hit/Miss:

Possible to assume a hit and continue.  Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Basic cache terminology

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Example: Intel Pentium 4 Level-1 cache (pre-Prescott)
Capacity: 8K bytes (total amount of data cache can store)
Block: 64 bytes (so there are 8K/64=128 blocks in the cache)
Sets: 4 (addresses with same index bits can be placed in one of 4 ways)
Ways: 32 (=128/4, that is each RAM array holds 32 blocks)
Index: 5 bits (since 25=32 and we need index to select one of the 32 ways)
Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)
Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])
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4 Questions for Memory Hierarchy

Q1: Where can a block be placed in the upper level? 
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss? 
(Block replacement)

Q4: What happens on a write? 
(Write strategy)
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Q1: Where can a block be placed in 
the upper level? 

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7

Set 0
2
4
6

0 1

In a fully-associative cache, block 
12 can be placed in any location in 
the cache

In a direct-mapped 
cache, block 12 can only 
be placed in one cache 
location, determined by 
its low-order address 
bits –

(12 mod 8) = 4

In a two-way set-
associative cache, the 
set is determined by its 
low-order address bits –

(12 mod 4) = 0
Block 12 can be placed in 
either of the two cache 
locations in set 0
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Q2: How is a block found if it is in the upper 
level?

Tag on each block
No need to check index or block offset

Increasing associativity shrinks index, expands tag

Block
Offset

Block Address

IndexTag

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Q3: Which block should be replaced on a 
miss?

Easy for Direct Mapped
Set Associative or Fully Associative:

Random
LRU (Least Recently Used)

Assoc:       2-way 4-way 8-way
Size LRU     Ran    LRU Ran      LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Q4: What happens on a write?
Write through—The information is written 
to both the block in the cache and to the 
block in the lower-level memory

Write back—The information is written only 
to the block in the cache. The modified 
cache block is written to main memory only 
when it is replaced.

is block clean or dirty?

Pros and Cons of each?
WT: read misses cannot result in writes
WB: no repeated writes to same location

WT always combined with write buffers so 
that don’t wait for lower level memory
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Write Buffer for Write Through

A Write Buffer is needed between the Cache and 
Memory

Processor: writes data into the cache and the write buffer
Memory controller: write contents of the buffer to memory

Write buffer is just a FIFO:
Typical number of entries: 4
Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM 
write cycle

Memory system designer’s nightmare:
Store frequency (w.r.t. time)   ->  1 / DRAM write cycle
Write buffer saturation

Processor
Cache

Write Buffer

DRAM
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A Modern Memory Hierarchy
By taking advantage of the principle of locality:

Present the user with as much memory as is available in the 
cheapest technology.
Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s  
(10s ms)

Speed (ns): 10s 100s
100s

Gs
Size (bytes):

Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s  
(10s sec)

Ts
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Large-scale storageStorageTek STK 9310 
(“Powderhorn”)

2,000, 3,000, 4,000, 
5,000, or 6,000 
cartridge slots per 
library storage module 
(LSM)
Up to 24 LSMs per 
library (144,000 
cartridges) under ACSLS 
control
Up to 16 LSMs per 
library (96,000 
cartridges) under NCS 
control
120 TB (1 LSM) to 
28,800 TB capacity (24 
LSM)
Up to 30 MB/sec native 
throughput per hour

Up to 28.8 petabytes
Ave 4s to load tape
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Summary #1/4: 
Pipelining & Performance

Just overlap tasks; easy if tasks are independent
Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

Hazards limit performance on computers:
Structural: need more HW resources
Data (RAW,WAR,WAW): need forwarding, compiler scheduling
Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction Cycle

Time is measure of performance: latency or 
throughput
CPI Law:
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Summary #2/4: Caches

The Principle of Locality:
Program access a relatively small portion of the address space at any 
instant of time.

Temporal Locality: Locality in Time
Spatial Locality: Locality in Space

Three Major Categories of Cache Misses:
Compulsory Misses: sad facts of life.  Example: cold start misses.
Capacity Misses: increase cache size
Conflict Misses:  increase cache size and/or associativity.

Write Policy:
Write Through: needs a write buffer.  
Write Back: control can be complex

Today CPU time is often dominated by memory access time, not 
just computational work.  What does this mean to 
Compilers, Data structures, Algorithms?



Advanced Computer Architecture Chapter 1. p58

Additional material 
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Pipelining: A very familiar idea…

Laundry Example
Ann, Brian, Cathy, Dave 
each have one load of clothes 
to wash, dry, and iron
Washer takes 30 minutes

Dryer takes 40 minutes

Ironing takes 20 minutes

A B C D
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Sequential Laundry

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time
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Pipelined Laundry:
Principle: everyone starts work ASAP

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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Pipelined Laundry:
Lessons-

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelining doesn’t help 
latency of single task, it 
helps throughput of 
entire workload
Pipeline rate limited by 
slowest pipeline stage
Multiple tasks operating 
simultaneously
Potential speedup = 
Number pipe stages
Unbalanced lengths of 
pipe stages reduces 
speedup
Time to “fill” pipeline 
and time to “drain” it 
reduces speedup
Speedup comes from 
parallelism

For free – no new 
hardware
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Which is faster?

• Time to run the task  (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns …
(Performance)

– Throughput, bandwidth

Plane

Boeing 
747

BAC/Sud
Concorde

Speed

610 
mph

1350 
mph

Washington 
DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput 
(pmph)

286,700

178,200

First flew in December 
1967

First flew in  February, 
1969

Now, review basic performance issues in 
processor design

(Background material not covered in lectures)
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Performance(X) Execution_time(Y)
n         = =

Performance(Y) Execution_time(X)

Definitions
Performance is in units of things per sec

bigger is better

If we are primarily concerned with response time

performance(x) =           1                   
execution_time(x)

" X is n times faster than Y"  means

Background material not covered in lectures)
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Aspects of CPU Performance (CPU Law)

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

Background material not covered in lectures)
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Cycles Per Instruction
(Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count 
=  Cycles / Instruction Count    

“Average Cycles per Instruction”

j
n

j
j I CPI   TimeCycle  time CPU ×∑×=

=1

Countn Instructio
I

 F      whereF CPI  CPI
1

j
j

n

j
jj =×=∑

=

Background material not covered in lectures)
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Example: Calculating CPI

Typical Mix of 
instruction types
in program

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)

1.5

Background material not covered in lectures)
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Example: Branch Stall Impact

Assume CPI = 1.0 ignoring branches
Assume solution was stalling for 3 cycles
If 30% branch, Stall 3 cycles 

Op Freq Cycles CPI(i) (% Time)
Other 70% 1 .7 (37%)
Branch 30% 4 1.2 (63%)

=> new CPI = 1.9, or almost 2 times slower

Background material not covered in lectures)
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Example 2: Speed Up Equation for 
Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, Ideal CPI = 1:

Background material not covered in lectures)
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Example 3: Evaluating Branch Alternatives 
(for 1 program)

Scheduling Branch CPI speedup v.
scheme penalty stall

Stall pipeline 3 1.42 1.0
Predict taken 1 1.14 1.26
Predict not taken 1 1.09 1.29
Delayed branch 0.5 1.07 1.31

Assuming Conditional & Unconditional branches 
make up 14% of the total instruction count, and 
65% of them change the PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

Background material not covered in lectures)
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Example 4: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard 
Architecture”)
Machine B: Single ported memory, but its pipelined 
implementation has a 1.05 times faster clock rate
Ideal CPI = 1 for both
Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster

(Background material not covered in lectures)


