
Page 1

Advanced Computer Architecture Chapter 3.1

332
Advanced Computer Architecture

Chapter 3

Instruction Level Parallelism and
Dynamic Execution

February 2007
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy
and Patterson’s Computer Architecture, a quantitative approach (3rd

4th eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course (CS252)

Advanced Computer Architecture Chapter 3.2

Recall from Pipelining Review

Pipeline CPI = Ideal pipeline CPI + Structural Stalls
+ Data Hazard Stalls + Control Stalls

Ideal pipeline CPI: measure of the maximum performance
attainable by the implementation
Structural hazards: HW cannot support this combination of
instructions
Data hazards: Instruction depends on result of prior instruction
still in the pipeline
Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow (branches
and jumps)

Advanced Computer Architecture Chapter 3.3

Instruction-Level Parallelism
(ILP)

Basic Block (BB) ILP is quite small
BB: a straight-line code sequence with no branches in except to the
entry and no branches out except at the exit
average dynamic branch frequency 15% to 25%
=> 4 to 7 instructions execute between a pair of branches
Plus instructions in BB likely to depend on each other

To obtain substantial performance enhancements, we
must exploit ILP across multiple basic blocks
Simplest: loop-level parallelism to exploit parallelism
among iterations of a loop

Vector is one way
If not vector, then either dynamic via branch prediction or static
via loop unrolling by compiler

Advanced Computer Architecture Chapter 3.4

InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it

or InstrJ is data dependent on InstrK which is dependent
on InstrI

Caused by a “True Dependence” (compiler term)
If true dependence caused a hazard in the pipeline, called
a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

Page 2

Advanced Computer Architecture Chapter 3.5

Dependences are a property of programs
Presence of dependence indicates potential for a
hazard, but actual hazard and length of any stall is a
property of the pipeline
Importance of the data dependencies

1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can

possibly be exploited
Today looking at HW schemes to avoid hazard

Data Dependence and Hazards

Advanced Computer Architecture Chapter 3.6

Name dependence: when 2 instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated with
that name
There are two kinds:
Name dependence #1: anti-dependence/WAR

InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”
If anti-dependence caused a hazard in the pipeline, called a Write
After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1:
Anti-dependence

Advanced Computer Architecture Chapter 3.7

Name Dependence #2:
Output dependence

InstrJ writes operand before InstrI writes it.

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”
If anti-dependence caused a hazard in the pipeline, called
a Write After Write (WAW) hazard

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Advanced Computer Architecture Chapter 3.8

ILP and Data Hazards
HW/SW must preserve program order:
order instructions would execute in if executed
sequentially 1 at a time as determined by original
source program
HW/SW goal: exploit parallelism by preserving program
order only where it affects the outcome of the program
Instructions involved in a name dependence can execute
simultaneously if name used in instructions is changed so
instructions do not conflict

Register renaming resolves name dependence for regs
Either by compiler or by HW

Page 3

Advanced Computer Architecture Chapter 3.9

Control Dependencies

Every instruction is control dependent on some
set of branches, and, in general, these control
dependencies must be preserved to preserve
program order
if p1 {
S1;

};
if p2 {
S2;

}
S1 is control dependent on p1, and S2 is control
dependent on p2 but not on p1.

Advanced Computer Architecture Chapter 3.10

Control Dependence Ignored

Control dependence need not be preserved
willing to execute instructions that should not have been executed,
thereby violating the control dependences, if can do so without
affecting correctness of the program

Instead, two properties critical to program correctness
are exception behavior and data flow

Advanced Computer Architecture Chapter 3.11

Exception Behavior

Preserving exception behavior => any changes in
instruction execution order must not change how
exceptions are raised in program (=> no new
exceptions)
Example:

DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:

Problem with moving LW before BEQZ?

Advanced Computer Architecture Chapter 3.12

Data Flow

Data flow: actual flow of data values among
instructions that produce results and those that
consume them

branches make flow dynamic, determine which instruction is supplier
of data

Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

OR depends on DADDU or DSUBU?
Must preserve data flow on execution

Page 4

Advanced Computer Architecture Chapter 3.13

Advantages of Dynamic Scheduling
Handles cases when dependences unknown at compile
time

(e.g., because they may involve a memory reference)

It simplifies the compiler
Allows code that compiled for one pipeline to run
efficiently on a different pipeline
Hardware speculation, a technique with significant
performance advantages, that builds on dynamic
scheduling

Advanced Computer Architecture Chapter 3.14

HW Schemes: Instruction Parallelism
Key idea: Allow instructions behind stall to proceed

DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

Enables out-of-order execution
and allows out-of-order completion
We will distinguish when an instruction is issued, begins
execution and when it completes execution; between
these two times, the instruction is in execution
In a dynamically scheduled pipeline, all instructions
pass through issue stage in order (in-order issue)

Advanced Computer Architecture Chapter 3.15

Dynamic Scheduling Step 1

Simple pipeline had 1 stage to check both
structural and data hazards: Instruction Decode
(ID), also called Instruction Issue
Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:
Issue—Decode instructions, check for structural
hazards
Read operands—Wait until no data hazards,
then read operands

Advanced Computer Architecture Chapter 3.16

A Dynamic Algorithm:
Tomasulo’s Algorithm

For IBM 360/91 (before caches!)
Goal: High Performance without special compilers
Small number of floating point registers (4 in 360)
prevented interesting compiler scheduling of operations

This led Tomasulo to try to figure out how to get more effective registers
— renaming in hardware!

Why study a 1966 Computer?
The descendents of this have flourished!

Alpha 21264, HP 8000, MIPS 10000/R12000, Pentium II/III/4, AMD
K5,K6,Athlon, PowerPC 603/604/G3/G4/G5, …

Page 5

Advanced Computer Architecture Chapter 3.17

IBM360/91

NASA's Space Flight Center in Greenbelt, Md, January 1968

NASA Center for Computational Sciences

Source:
http://www.columbia.edu/acis/history
/36091.html

Solid Logic Technology
(SLT), an IBM invention
which encapsulated 5-6
transistors into a small
module--a transition
technology between
discrete transistors and the
IC
About 12 were made

CPU cycle time: 60 nanoseconds
memory cycle time (to fetch and store
eight bytes in parallel): 780ns
Standard memory capacity: 2,097,152B
interleaved 16 ways (magnetic cores)
Up to 6,291,496 bytes of main storage
Up to 16.6-million additions/second
Ca.120K gates, ECL

Advanced Computer Architecture Chapter 3.18

Tomasulo Algorithm
Control & buffers distributed with Function Units (FU)

FU buffers called “reservation stations”; have pending operands
Registers in instructions replaced by values or pointers to
reservation stations(RS); called register renaming ;

avoids WAR, WAW hazards
More reservation stations than registers, so can do optimizations
compilers can’t

Results to FU from RS, not through registers, over Common
Data Bus that broadcasts results to all FUs
Load and Stores treated as FUs with RSs as well
Integer instructions can go past branches, allowing
FP ops beyond basic block in FP queue

Advanced Computer Architecture Chapter 3.19

Tomasulo Organization

FP addersFP adders

Add1
Add2
Add3

FP multipliersFP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Advanced Computer Architecture Chapter 3.20

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers
(value to be written)

Note: Qj,Qk=0 => ready
Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will
write each register, if one exists. Blank when no pending
instructions that will write that register.

Page 6

Advanced Computer Architecture Chapter 3.21

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units;
mark reservation station available

Normal data bus: data + destination (“go to” bus)
Common data bus: data + source (“come from” bus)

64 bits of data + 4 bits of Functional Unit source address
Write if matches expected Functional Unit (produces result)
Does the broadcast

Example speed:
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /

Advanced Computer Architecture Chapter 3.22

360/91 pipeline
The IBM 360/91’s pipeline:

See: The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling,by D. W. Anderson,
F. J. Sparacio, R. M. Tomasulo. IBM J. R&D (1967),
http://www.research.ibm.com/journal/rd/111/ibmrd1101C.pdf

11-12 circuit levels per pipeline stage, of 5-6ns each
CPU consists of three physical frames, each having
dimensions 66" L X 15" D X 78" H

Advanced Computer Architecture Chapter 3.23

Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Load1 No
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Clock cycle
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

Advanced Computer Architecture Chapter 3.24

Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Load1

Page 7

Advanced Computer Architecture Chapter 3.25

Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

2 FU Load2 Load1

Note: Can have multiple loads outstanding

Advanced Computer Architecture Chapter 3.26

Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in
Reservation Stations; MULT issued

• Load1 completing; what is waiting for Load1?

Advanced Computer Architecture Chapter 3.27

Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2?

Advanced Computer Architecture Chapter 3.28

Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)
Add2 No
Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1

Page 8

Advanced Computer Architecture Chapter 3.29

Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6?

Advanced Computer Architecture Chapter 3.30

Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it?

Advanced Computer Architecture Chapter 3.31

Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
2 Add2 Yes ADDD (M-M) M(A2)

Add3 No
7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

8 FU Mult1 M(A2) Add2 (M-M) Mult2

Advanced Computer Architecture Chapter 3.32

Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
1 Add2 Yes ADDD (M-M) M(A2)

Add3 No
6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

9 FU Mult1 M(A2) Add2 (M-M) Mult2

Page 9

Advanced Computer Architecture Chapter 3.33

Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
0 Add2 Yes ADDD (M-M) M(A2)

Add3 No
5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it?

Advanced Computer Architecture Chapter 3.34

Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

11 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Write result of ADDD here?
• All quick instructions complete in this cycle!

Advanced Computer Architecture Chapter 3.35

Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

12 FU Mult1 M(A2) (M-M+M(M-M) Mult2

Advanced Computer Architecture Chapter 3.36

Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

13 FU Mult1 M(A2) (M-M+M(M-M) Mult2

Page 10

Advanced Computer Architecture Chapter 3.37

Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

14 FU Mult1 M(A2) (M-M+M(M-M) Mult2

Advanced Computer Architecture Chapter 3.38

Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

15 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Mult1 (MULTD) completing; what is waiting for it?

Advanced Computer Architecture Chapter 3.39

Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

16 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete

Advanced Computer Architecture Chapter 3.40

Skip a few cycles: Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

55 FU M*F4 M(A2) (M-M+M(M-M) Mult2

Page 11

Advanced Computer Architecture Chapter 3.41

Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Mult2 (DIVD) is completing; what is waiting for it?

Advanced Computer Architecture Chapter 3.42

Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56 57
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Result

• Once again: In-order issue, out-of-order execution and
out-of-order completion.

Advanced Computer Architecture Chapter 3.43

Tomasulo Drawbacks

Complexity
delays of 360/91, MIPS 10000, Alpha 21264,
IBM PPC 620
Many associative stores (CDB) at high speed

Performance limited by Common Data Bus
Each CDB must go to multiple functional units
⇒high capacitance, high wiring density
Number of functional units that can complete per cycle limited to
one!

Multiple CDBs ⇒ more FU logic for parallel assoc stores

Non-precise interrupts!
We will address this later

Advanced Computer Architecture Chapter 3.44

Tomasulo Loop Example
Loop:LD F0 0 R1

MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

This time assume Multiply takes 4 clocks
Assume 1st load takes 8 clocks
(L1 cache miss), 2nd load takes 1 clock (hit)
To be clear, will show clocks for SUBI, BNEZ

Reality: integer instructions ahead of Fl. Pt. Instructions

Show 2 iterations

Page 12

Advanced Computer Architecture Chapter 3.45

Loop Example
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 Load1 No
1 MULTD F4 F0 F2 Load2 No
1 SD F4 0 R1 Load3 No
2 LD F0 0 R1 Store1 No
2 MULTD F4 F0 F2 Store2 No
2 SD F4 0 R1 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

0 80 Fu

Added Store Buffers

Value of Register used for address, iteration control

Instruction Loop

Iter-
ation
Count

Advanced Computer Architecture Chapter 3.46

Loop Example Cycle 1
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80

Load2 No
Load3 No
Store1 No
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

1 80 Fu Load1

Advanced Computer Architecture Chapter 3.47

Loop Example Cycle 2
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No

Load3 No
Store1 No
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

2 80 Fu Load1 Mult1

Advanced Computer Architecture Chapter 3.48

Loop Example Cycle 3
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

3 80 Fu Load1 Mult1

Implicit renaming sets up data flow graph

Page 13

Advanced Computer Architecture Chapter 3.49

Loop Example Cycle 4
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

4 80 Fu Load1 Mult1

Dispatching SUBI Instruction (not in FP queue)
Advanced Computer Architecture Chapter 3.50

Loop Example Cycle 5
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

5 72 Fu Load1 Mult1

And, BNEZ instruction (not in FP queue)

Advanced Computer Architecture Chapter 3.51

Loop Example Cycle 6
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1

Store2 No
Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

6 72 Fu Load2 Mult1

Notice that F0 never sees Load from location 80
Advanced Computer Architecture Chapter 3.52

Loop Example Cycle 7
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 No

Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

7 72 Fu Load2 Mult2

Register file completely detached from computation
First and Second iteration completely overlapped

Page 14

Advanced Computer Architecture Chapter 3.53

Loop Example Cycle 8
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

8 72 Fu Load2 Mult2

Advanced Computer Architecture Chapter 3.54

Loop Example Cycle 9
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

9 72 Fu Load2 Mult2

Load1 completing: who is waiting?
Note: Dispatching SUBI

Advanced Computer Architecture Chapter 3.55

Loop Example Cycle 10
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 10 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

10 64 Fu Load2 Mult2

Load2 completing: who is waiting?
Note: Dispatching BNEZ

Advanced Computer Architecture Chapter 3.56

Loop Example Cycle 11
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

3 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
4 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

11 64 Fu Load3 Mult2

Next load in sequence

Page 15

Advanced Computer Architecture Chapter 3.57

Loop Example Cycle 12
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

2 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
3 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

12 64 Fu Load3 Mult2

Why not issue third multiply?
Advanced Computer Architecture Chapter 3.58

Loop Example Cycle 13
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

1 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
2 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

13 64 Fu Load3 Mult2

Why not issue third store?

Advanced Computer Architecture Chapter 3.59

Loop Example Cycle 14
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

0 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
1 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

14 64 Fu Load3 Mult2

Mult1 completing. Who is waiting?
Advanced Computer Architecture Chapter 3.60

Loop Example Cycle 15
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8

0 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

15 64 Fu Load3 Mult2

Mult2 completing. Who is waiting?

Page 16

Advanced Computer Architecture Chapter 3.61

Loop Example Cycle 16
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

16 64 Fu Load3 Mult1

Advanced Computer Architecture Chapter 3.62

Loop Example Cycle 17
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

17 64 Fu Load3 Mult1

Advanced Computer Architecture Chapter 3.63

Loop Example Cycle 18
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

18 64 Fu Load3 Mult1

Advanced Computer Architecture Chapter 3.64

Loop Example Cycle 19
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 19 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

19 56 Fu Load3 Mult1

Page 17

Advanced Computer Architecture Chapter 3.65

Loop Example Cycle 20
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 Yes 56
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 No
2 SD F4 0 R1 8 19 20 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

20 56 Fu Load1 Mult1

• Once again: In-order issue, out-of-order execution and
out-of-order completion.

Advanced Computer Architecture Chapter 3.66

Why can Tomasulo overlap iterations of
loops?

Register renaming
Multiple iterations use different physical destinations for registers
(dynamic loop unrolling).

Reservation stations
Permit instruction issue to advance past integer control flow operations
Also buffer old values of registers - totally avoiding the WAR stall
that we saw in the scoreboard.

Other perspective: Tomasulo building data flow
dependency graph on the fly.

Advanced Computer Architecture Chapter 3.67

Tomasulo’s scheme offers two major
advantages

(1) the distribution of the hazard detection logic
distributed reservation stations and the CDB
If multiple instructions waiting on single result, & each instruction
has other operand, then instructions can be released simultaneously
by broadcast on CDB
If a centralized register file were used, the units would have to
read their results from the registers when register buses are
available.

(2) the elimination of stalls for WAW and WAR hazards

Advanced Computer Architecture Chapter 3.68

What about Precise Interrupts?

Tomasulo had:

In-order issue, out-of-order execution, and out-of-
order completion

Need to “fix” the out-of-order completion aspect so
that we can find precise breakpoint in instruction
stream.

Page 18

Advanced Computer Architecture Chapter 3.69

Relationship between precise
interrupts and speculation:

Speculation is a form of guessing.
Important for branch prediction:

Need to “take our best shot” at predicting branch direction.

If we speculate and are wrong, need to back up and
restart execution at point at which we predicted
incorrectly:

This is exactly same as precise exceptions!

Technique for both precise interrupts/exceptions and
speculation: in-order completion or commit

Advanced Computer Architecture Chapter 3.70

HW support for precise interrupts
Need HW buffer for results of
uncommitted instructions:
reorder buffer

3 fields: instr, destination, value
Use reorder buffer number instead of
reservation station when execution
completes
Supplies operands between execution
complete & commit
(Reorder buffer can be operand
source => more registers like RS)
Instructions commit
Once instruction commits,
result is put into register
As a result, easy to undo speculated
instructions
on mispredicted branches
or exceptions

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Advanced Computer Architecture Chapter 3.71

Four Steps of Speculative
Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & send
operands & reorder buffer no. for destination (this stage sometimes called
“dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch CDB for
result; when both in reservation station, execute; checks RAW (sometimes
called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update register
with result (or store to memory) and remove instr from reorder buffer.
Mispredicted branch flushes reorder buffer (sometimes called “graduation”)

Advanced Computer Architecture Chapter 3.72

Tomasulo without Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1
Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Issue: •Each instruction is issued in order
•Issue unit collects operands from the two instruction’s source registers
•Result may be a value, or, if value will be computed by an uncompleted
instruction, the tag of the RS to which it was issued.
•When instruction 1 is issued, F0 is updated to get result from MUL1
•When instruction 3 is issued, F0 is updated to get result from MUL2

Page 19

Advanced Computer Architecture Chapter 3.73

Tomasulo without Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1
Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Write-back: Common data bus•Instructions may complete out of order
•Result is broadcast on CDB
•Carrying tag of RS to which instruction was originally issued
•All RSs and registers monitor CDB and collect value if tag matches
•Any RS which has both operands and whose FU is free fires.
•When MUL1 completes result goes to store unit but not F0 Advanced Computer Architecture Chapter 3.74

Tomasulo with Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Advanced Computer Architecture Chapter 3.75
Tomasulo with Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Issue: •As before, but ROB entry is also allocated

•ROB entry for each instruction

•Holds destination register + value/tag for where
it will come from

Advanced Computer Architecture Chapter 3.76
Tomasulo with Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Write Back:
•As before, but ROB entry with matching tag also updated

•ROB entry for instruction 1 holds value for F0
•ROB entry for instruction 3 holds another value for F0

Page 20

Advanced Computer Architecture Chapter 3.77

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Commit:
•Commit unit processes ROB entries in issue order

•Each instruction waits in turn and commits when its
operands are completed

•Committed registers updated with values from ROB
•F0 is updated first with result from MUL1 then result from
MUL2 Advanced Computer Architecture Chapter 3.78

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

Tomasulo with Re-order Buffer

value
value
value
valueF3

F2
F1
F0

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3
Operand values/tags

Issue-side registers
(updated speculatively)

Commit-side registers
(updated when speculation resolved)

Advanced Computer Architecture Chapter 3.79

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4

SD F0, X
MUL F0, F1, F21

2

4
5

Issue
Opcode

Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

4

5

Commit

value
value
value
valueF3

F2
F1
F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

•Now extend example with conditional branch
•Assume predicted Not Taken
•When BEQ reaches head of commit queue, all instructions
which have been issued but have not yet committed are
erroneous

Advanced Computer Architecture Chapter 3.80

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4

SD F0, X
MUL F0, F1, F21

2

4
5

Issue
Opcode

Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL24

5

Commit

Value from MUL1
value
value
valueF3

F2
F1
F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

•Misprediction: all ROB entries are trashed

•Issue-side registers reset from commit-side registers

•Correct branch target instruction fetched and issued

Page 21

Advanced Computer Architecture Chapter 3.81

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4

SD F0, X
MUL F0, F1, F21

2

4
5

Issue
Opcode

Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL24

5

Commit

Value from MUL1
value
value
valueF3

F2
F1
F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

•Committed F0 holds value from first MUL

•RS of uncompleted speculatively-executed instruction
cannot be re-used until its FU (eg MUL2) completes

Advanced Computer Architecture Chapter 3.82

What are the hardware complexities with reorder buffer (ROB)?

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Com
pare network

How do you find the latest version of a register?
Looks like we need associative comparison network
Could use future file or just use the register result status buffer to track which
specific reorder buffer has received the value

Need as many ports on ROB as register file

Reorder Table

D
es

t
Re

g

Re
su

lt

Ex
ce

pt
io
ns

?

Va
lid

Pr
og

ra
m
 C

ou
nt

er

See S. Weiss and J. E. Smith, “Instruction Issue Logic for Pipelined Supercomputers”. ISCA,
1984 (http://citeseer.nj.nec.com/weiss84instruction.html)

Advanced Computer Architecture Chapter 3.83

Some subleties…
It’s vital to reduce the branch misprediction penalty. Does the
Tomasulo+ROB scheme described here roll-back as soon as the
branch is found to be mispredicted?

Stores are buffered in the ROB, and committed only when the
instruction is committed. A load can be issued while several
stores (perhaps to the same address) are uncommitted. We need
to make sure the load gets the right data.

What if a second conditional branch is encountered, before the
outcome of the first is resolved?

This discussion has assumed a single-issue machine. How can
these ideas be extended to allow multiple instructions to be
issued per cycle?

Issue
Monitoring CDBs for completion
Handling multiple commits per cycle

Advanced Computer Architecture Chapter 3.84

Tomasulo + ROB: Summary
Reservations stations: implicit register renaming to larger set of
registers + buffering source operands

Prevents registers as bottleneck
Avoids WAR, WAW hazards of Scoreboard (see textbook)
Allows loop unrolling in HW

Not limited to basic blocks
(integer units gets ahead, beyond branches)
Today, helps cache misses as well

Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)

Lasting Contributions
Dynamic scheduling
Register renaming
Load/store disambiguation

360/91 descendants are Pentium III, Pentium 4, Pentium M/Core;
PowerPC 604; MIPS R10000; HP-PA 8000; Alpha 21264 and more

Page 22

Advanced Computer Architecture Chapter 3.85

ResourcesPapers:
Instruction issue logic for high-performance, interruptable pipelined processors. G. S.
Sohi, S. Vajapeyam. International Conference on Computer Architecture, 1987
(http://doi.acm.org/10.1145/30350.30354)
Towards Kilo-instruction processors. Cristal, Santana, Valero, Martinez ACM Trans.
Architecture and Code Optimization (http://doi.acm.org/10.1145/1044823.1044825)

Animations:
SATSim Simplescalar

http://www.ece.gatech.edu/research/pica/SATSim/satsim.html
WebHase Tomasulo model:

www.dcs.ed.ac.uk/home/hase/webhase/demo/tomasulo.html
Other WebHase animations – simple pipeline, Scoreboarding etc:

http://www.icsa.informatics.ed.ac.uk/research/groups/hase/javahase/app-list.html
Israel Koren at U Massachussetts Amhurst:

http://www.ecs.umass.edu/ece/koren/architecture/Tomasulo/AppletTomasulo.html
http://www.ecs.umass.edu/ece/koren/architecture/

Processor performance
SPEC benchmarks – see http://www.spec.org/

CPU benchmarks: http://www.spec.org/cpu2000/results/cpu2000.html
HPC benchmarks: http://www.spec.org/hpc2002/results/hpc2002.html

Ace’s hardware SPEC summary:
http://www.aceshardware.com/SPECmine/top.jsp

Other simulators:
Liberty: http://liberty.cs.princeton.edu/
MicroLib: http://microlib.org/ Advanced Computer Architecture Chapter 3.86

360/91 design choices…
Speculation:

“Rather than wait for a valid CC, fetches are initiated for two instruction
double-words as a hedge against a successful branch. Following this, it is
assumed that the branch will fail, and a “conditional mode” is established. In
conditional mode, shown in Fig. 8, instructions are decoded and conditionally
forwarded to the execution units, and concomitant operand fetches are
initiated. The execution units are inhibited from completing conditional
instructions. When a valid condition code appears, the appropriate branching
action is detected and activates or cancels the conditional instructions.”

Prediction:
[after mispredict] “the role of conditional mode is reversed, i.e., when the
conditional branch is next encountered, it will be assumed that the branch will
be taken. The conditionally issued instructions are from the target path
rather than from the nobranch path as is the case when not in loop mode. A
cancel requires recovery from the branch guess.”

Right:
Organizationally, primary emphasis is placed on (1) alleviating the disparity
between storage time and circuit speed, and (2) the development of high
speed floating-point arithmetic algorithms.

Wrong:
“The complications of conditional mode, coupled with the fact that it is
primarily aimed at circumventing storage access delays, indicate that a
careful re-examination of its usefulness will be called for as the access time
decreases.”

Advanced Computer Architecture Chapter 3.87

Tomasulo Algorithm and Branch Prediction

360/91 predicted branches, but lacked full
speculation:

Instructions along predicted branch path can complete
But results cannot be forwarded until branch outcome resolved

Speculation with Reorder Buffer allows execution past
branch, and then discard if branch fails

The key difference is that speculative instructions can pass values to
each other
just need to hold instructions in buffer until branch can commit

Advanced Computer Architecture Chapter 3.88

Case for Branch Prediction when
Issue N instructions per clock cycle

1. Branches will arrive up to n times faster in an n-issue
processor

2. Amdahl’s Law => relative impact of the control stalls
will be larger with the lower potential CPI in an n-
issue processor

Page 23

Advanced Computer Architecture Chapter 3.89

7 Branch Prediction Schemes

1. 1-bit Branch-Prediction Buffer
2. 2-bit Branch-Prediction Buffer
3. Correlating Branch Prediction Buffer
4. Tournament Branch Predictor
5. Branch Target Buffer
6. Integrated Instruction Fetch Units
7. Return Address Predictors

Advanced Computer Architecture Chapter 3.90

Dynamic Branch Prediction

Performance = ƒ(accuracy, cost of misprediction)
Branch History Table: Lower bits of PC address index
table of 1-bit values

Says whether or not branch taken last time
No address check (saves HW, but may not be right branch)

Problem: in a loop, 1-bit BHT will cause
2 mispredictions (avg is 9 iterations before exit):

End of loop case, when it exits instead of looping as before
First time through loop on next time through code, when it predicts
exit instead of looping
Only 80% accuracy even if loop 90% of the time

Advanced Computer Architecture Chapter 3.91

Solution: 2-bit scheme where change prediction only if
get misprediction twice: (Figure 3.7, p. 198)

Red: stop, not taken
Green: go, taken
Adds hysteresis to decision making process

Dynamic Branch Prediction
(Jim Smith, 1981)

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT

T

NT

NT

Advanced Computer Architecture Chapter 3.92

The 2-bit branch history table (BHT)

index

2-bit local
branch
history

prediction
bit n....1,0

Program counter

k low-order bits

0

1

2k

Predict
taken

Predict
not-taken

Predict
taken

Predict
not-taken

taken

not
taken

not takentaken

taken

taken

not taken

not taken

(Generalises to n-bit BHT:
saturating counter)

Page 24

Advanced Computer Architecture Chapter 3.93

n-bit
BHT -

how well
does it
work?

0 2 4 6 8 10 12 14 16 18

Frequency of misprediction

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

B
en

ch
m

ar
k

ap
pl

ic
at

io
n

Prediction accuracy of an 4096-entry two-bit prediction buffer versus an infinite buffer for the SPEC89
benchmarks (H&P Fig 4.15)

Unlimited entries

4096 entries

2-bit predictor often very good, sometimes awful
Little evidence that BHT capacity is an issue
1-bit is usually worse, 3-bit is not usefully better

Advanced Computer Architecture Chapter 3.94

N-bit BHT - why does it work so well?
n-bit BHT predictor essentially based on a saturating counter:
taken increments, not-taken decrements
predict taken if most significant bit is set

Predict
taken

Predict
not-taken

Predict
taken

Predict
not-taken

taken

not
taken

not takentaken

taken

taken

not taken

not taken

11 10

01 00

Most branches are highly
biased: either almost-
always taken, or almost-
always not-taken
Works badly for branches
which aren’t

Often called the “bimodal”
predictor

Advanced Computer Architecture Chapter 3.95

Bias

Zh
en

do
ng

Su
 a

nd
 M

in
 Z

ho
u,

 A
 c

om
pa

ra
tiv

e
an

al
ys

is
 o

f b
ra

nc
h

pr
ed

ic
tio

n
sc

he
m

es
(h

ttp
://

w
w

w
.c

s.b
er

ke
le

y.
ed

u/
~z

he
nd

on
g/

cs
25

2/
pr

oj
ec

t.h
tm

l)

Advanced Computer Architecture Chapter 3.96

Is local history all there is to it?

The bimodal predictor uses the BHT to record “local
history” - the prediction information used to predict a
particular branch is determined only by its memory
address
Consider the following sequence: if (C1) then

S1;
endif
if (C2) then

S2;
endif
if (C3) then

S3;
endif

It is very likely that condition C2 is
correlated with C1 - and that C3 is
correlated with C1 and C2
How can we use this observation?

Page 25

Advanced Computer Architecture Chapter 3.97

Global history

Definition: Global history. The taken - not-taken
history for all previously-executed branches.
Idea: use global history to improve branch prediction
Compromise: use m most recently-executed branches
Implementation: keep an m-bit Branch History
Register (BHR) - a shift register recording taken -
not-taken direction of the last m branches
Question: How to combine local information with global
information?

Advanced Computer Architecture Chapter 3.98

index

bit n....1,0

Program counter
k low-order bits

0

1

2k

Branch history register
m bits

bit n....1,0
0

1

2k

prediction

bit n....1,0
0

1

2k

bit n....1,0
0

1

2k

Select

n-bit local
branch history

2m n-bit BHTs

Popular
choice is
m=2,
n=2, so
four
tables
each of
2x2k bits

2 2 2 2

This is an
(m,n)
“gselect”
correlating
predictor:

m global
bits record
behaviour
of last m
branches
These m
bits are
used to
select
which of
the 2m n-
bit BHTs to
use

Advanced Computer Architecture Chapter 3.99

How many bits of branch history should be used?

(2,2) is good, (4,2) is better, (10,2) is worse

Zh
en

do
ng

Su
 a

nd
 M

in
 Z

ho
u,

 A
 c

om
pa

ra
tiv

e
an

al
ys

is
 o

f b
ra

nc
h

pr
ed

ic
tio

n
sc

he
m

es
(h

ttp
://

w
w

w
.c

s.b
er

ke
le

y.
ed

u/
~z

he
nd

on
g/

cs
25

2/
pr

oj
ec

t.h
tm

l)

Advanced Computer Architecture Chapter 3.100

There are many variations on the idea:
gselect: many combinations of n and m
global: use only the global history to index the BHT - ignore the PC
of the branch being predicted (an extreme (n,m) gselect scheme)
gshare: arrange bimodal predictors in single BHT, but construct its
index by XORing low-order PC address bits with global branch history
shift register - claimed to reduce conflicts
Per-address Two-level Adaptive using Per-address pattern history (PAp):
for each branch, keep a k-bit shift register recording its history,
and use this to index a BHT for this branch (see Yeh and Patt,
1992)

Each suits some programs well but not all

Variations

Page 26

Advanced Computer Architecture Chapter 3.101

Horses for courses

Zh
en

do
ng

Su
 a

nd
 M

in
 Z

ho
u,

 A
 c

om
pa

ra
tiv

e
an

al
ys

is
 o

f b
ra

nc
h

pr
ed

ic
tio

n
sc

he
m

es
(h

ttp
://

w
w

w
.c

s.b
er

ke
le

y.
ed

u/
~z

he
nd

on
g/

cs
25

2/
pr

oj
ec

t.h
tm

l)

Advanced Computer Architecture Chapter 3.102

Extreme example - “go”

“go” is a
SPEC95
benchmark code
with highly-
dynamic,
highly-
correlated
branch
behaviour

• The bias of “go”s branches is more-or-less evenly spread between
0% taken and 100% taken

• All known predictors do badly

Zh
en

do
ng

Su
 a

nd
 M

in
 Z

ho
u,

 A
 c

om
pa

ra
tiv

e
an

al
ys

is
 o

f b
ra

nc
h

pr
ed

ic
tio

n
sc

he
m

es
(h

ttp
://

w
w

w
.c

s.b
er

ke
le

y.
ed

u/
~z

he
nd

on
g/

cs
25

2/
pr

oj
ec

t.h
tm

l)

Advanced Computer Architecture Chapter 3.103

Some dynamic applications have highly-correlated branches

For “go”, optimum BHR size (m) is much larger

Zh
en

do
ng

Su
 a

nd
 M

in
 Z

ho
u,

 A
 c

om
pa

ra
tiv

e
an

al
ys

is
 o

f b
ra

nc
h

pr
ed

ic
tio

n
sc

he
m

es
(h

ttp
://

w
w

w
.c

s.b
er

ke
le

y.
ed

u/
~z

he
nd

on
g/

cs
25

2/
pr

oj
ec

t.h
tm

l)

Advanced Computer Architecture Chapter 3.104

Review: Correlating Branches
Idea: taken/not taken
of recently executed
branches is related to
behavior of next
branch (as well as the
history of that branch
behavior)

Then behavior of recent
branches selects between,
say, 4 predictions of next
branch, updating just that
prediction

(2,2) predictor: 2-bit
global, 2-bit local

Branch address (4 bits)

2-bits per branch
local predictors

PredictionPrediction

2-bit global
branch history

(01 = not taken then taken)

Page 27

Advanced Computer Architecture Chapter 3.105

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

0%

1%

5%

9% 9%

12%

5%

18%

10%

0% 0% 0%

5%

9% 9%

11%

5%

18%

10%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

nasa7 matrix300 tomcatv doducd spice fpppp gcc espresso eqntott li

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(H&P3ed Figure 3.15, p. 206)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

Advanced Computer Architecture Chapter 3.106

Re-evaluating Correlation

Several of the SPEC benchmarks have less than
a dozen branches responsible for 90% of taken
branches:
program branch % static # = 90%
compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214
Real programs + OS more like gcc
Small benefits beyond benchmarks for
correlation? problems with branch aliases?

Advanced Computer Architecture Chapter 3.107

Avoid branch prediction by turning branches into
conditionally executed instructions:
if (x) then A = B op C else NOP

If false, then neither store result nor cause exception
Expanded ISA of Alpha, MIPS, PowerPC, SPARC have
conditional move; PA-RISC can annul any following instr.
IA-64: 64 1-bit condition fields selected
so conditional execution of any instruction
This transformation is called “if-conversion”

Drawbacks to conditional instructions
Still takes a clock even if “annulled”
Stall if condition evaluated late
Complex conditions reduce effectiveness;
condition becomes known late in pipeline

x

A =
B op C

Predicated Execution

Advanced Computer Architecture Chapter 3.108

BHT Accuracy

Mispredict because either:
Wrong guess for that branch
Got branch history of wrong branch when index the table

4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18% (eqntott), with
spice at 9% and gcc at 12%
For SPEC92,
4096 about as good as infinite table

Page 28

Advanced Computer Architecture Chapter 3.109

Tournament Predictors

Motivation for correlating branch predictors is 2-
bit predictor failed on important branches; by
adding global information, performance improved
Tournament predictors: use 2 predictors, 1 based
on global information and 1 based on local
information, and combine with a selector
Hopes to select right predictor for right branch

Advanced Computer Architecture Chapter 3.110

Tournament Predictor in Alpha 21264

4K 2-bit counters to choose from among a global predictor
and a local predictor
Global predictor also has 4K entries and is indexed by the
history of the last 12 branches; each entry in the global
predictor is a standard 2-bit predictor

12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

Local predictor consists of a 2-level predictor:
Top level a local history table consisting of 1024 10-bit entries;
each 10-bit entry corresponds to the most recent 10 branch
outcomes for the entry. 10-bit history allows patterns 10
branches to be discovered and predicted.
Next level Selected entry from the local history table is used to
index a table of 1K entries consisting a 3-bit saturating
counters, which provide the local prediction

Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

Advanced Computer Architecture Chapter 3.111

% of predictions from local
predictor in Tournament

Prediction Scheme
98%
100%

94%
90%

55%
76%

72%
63%

37%
69%

0% 20% 40% 60% 80% 100%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

Advanced Computer Architecture Chapter 3.112

94%

96%

98%

98%

97%

100%

70%

82%

77%

82%

84%

99%

88%

86%

88%

86%

95%

99%

0% 20% 40% 60% 80% 100%

gcc

espresso

li

fpppp

doduc

tomcatv

Branch prediction accuracy

Profile-based
2-bit counter
Tournament

Accuracy of Branch Prediction

Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)

Page 29

Advanced Computer Architecture Chapter 3.113

Accuracy v. Size (SPEC89)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

Local

Correlating

Tournament

Advanced Computer Architecture Chapter 3.114

Need Address
at Same Time as Prediction

Branch Target Buffer (BTB): Address of branch index to get prediction
AND branch address (if taken)

Note: must check for branch match now, since can’t use wrong branch address (Figure
3.19, p. 262)

Branch PC Predicted PC

=?

PC of instruction
FETCH

Extra
prediction state

bits
Yes: instruction is
branch and use
predicted PC as
next PC

No: branch not
predicted, proceed normally

(Next PC = PC+4)

Advanced Computer Architecture Chapter 3.115

Special Case Return Addresses

Register Indirect branch hard to predict address
SPEC89 85% such branches for procedure return
Since stack discipline for procedures, save return
address in small buffer that acts like a stack: 8 to 16
entries has small miss rate

Advanced Computer Architecture Chapter 3.116

Pitfall: Sometimes bigger and
dumber is better

21264 uses tournament predictor (29 Kbits)
Earlier 21164 uses a simple 2-bit predictor with
2K entries (or a total of 4 Kbits)
SPEC95 benchmarks, 21264 outperforms

21264 avg. 11.5 mispredictions per 1000 instructions
21164 avg. 16.5 mispredictions per 1000 instructions

Reversed for transaction processing (TP) !
21264 avg. 17 mispredictions per 1000 instructions
21164 avg. 15 mispredictions per 1000 instructions

TP code much larger & 21164 hold 2X branch
predictions based on local behavior (2K vs. 1K
local predictor in the 21264)

Page 30

Advanced Computer Architecture Chapter 3.117

Warm-up effects and context-switching

In real life, applications are interrupted and some
other program runs for a while (if only the OS)
This means the branch prediction is regularly trashed
Simple predictors re-learn fast

in 2-bit bimodal predictor, all executions of given branch update
same 2 bits

Sophisticated predictors re-learn more slowly
for example, in (2,2) gselect predictor, prediction updates are
spread across 4 BHTs

Selective predictor may choose fast learner predictor
until better predictor warms up

Advanced Computer Architecture Chapter 3.118

Warm-up...

Best predictor takes 20,000 instructions to overtake bimodal Zh
en

do
ng

Su
 a

nd
 M

in
 Z

ho
u,

 A
 c

om
pa

ra
tiv

e
an

al
ys

is
 o

f b
ra

nc
h

pr
ed

ic
tio

n
sc

he
m

es
(h

ttp
://

w
w

w
.c

s.b
er

ke
le

y.
ed

u/
~z

he
nd

on
g/

cs
25

2/
pr

oj
ec

t.h
tm

l)

Advanced Computer Architecture Chapter 3.119

Dynamic Branch Prediction Summary

Prediction becoming important part of scalar execution
Branch History Table: 2 bits for loop accuracy

Saturating counter (bimodal) scheme handles highly-biased branches well
Some applications have highly dynamic branches

Correlation: Recently executed branches correlated with next
branch.

Either different branches
Or different executions of same branches

Tournament Predictor: more resources to competitive solutions and
pick between them
Branch Target Buffer: include branch address & prediction
Predicated Execution can reduce number of branches, number of
mispredicted branches
Return address stack for prediction of indirect jump

Advanced Computer Architecture Chapter 3.120

Branch prediction resources

Design tradeoffs for the Alpha EV8 Conditional Branch
Predictor (André Seznec, Stephen Felix, Venkata
Krishnan, Yiannakis Sazeides)

SMT: 4 threads, wide-issue superscalar processor, 8-way issue,
512 registers (cancelled June 2001 when Alpha dropped)
Paper: http://citeseer.ist.psu.edu/seznec02design.html
Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

Branch prediction in the Pentium family (Agner Fog)
Reverse engineering Pentium branch predictors using direct access to
BTB
http://www.x86.org/articles/branch/branchprediction.htm

Championship Branch Prediction Competition (CBP-1),
organised by the Journal of Instruction-level
Parallelism

http://www.jilp.org/cbp/

Page 31

Advanced Computer Architecture Chapter 3.121

Getting CPI < 1:
Issuing Multiple Instructions/Cycle

Vector Processing: Explicit coding of independent loops
as operations on large vectors of numbers

Multimedia instructions being added to many processors

Superscalar: varying no. instructions/cycle (1 to 8),
scheduled by compiler or by HW (Tomasulo)

IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

(Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by the
compiler; put ops into wide templates (TBD)

Intel Architecture-64 (IA-64) 64-bit address
Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

Will discuss shortly

Anticipated success of multiple instructions lead to
Instructions Per Clock cycle (IPC) vs. CPI

Advanced Computer Architecture Chapter 3.122

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
1 cycle load delay expands to 3 instructions in SS

instruction in right half can’t use it, nor instructions in next slot

Advanced Computer Architecture Chapter 3.123

Multiple Issue Issues
issue packet: group of instructions from
fetch unit that could potentially issue in 1
clock

If instruction causes structural hazard or a data
hazard either due to earlier instruction in execution or
to earlier instruction in issue packet, then instruction
does not issue
0 to N instruction issues per clock cycle, for N-issue

Performing issue checks in 1 cycle could
limit clock cycle time: O(n2-n) comparisons

issue stage usually split and pipelined
1st stage decides how many instructions from within
this packet can issue, 2nd stage examines hazards
among selected instructions and those already been
issued
higher branch penalties => prediction accuracy
important

I0 I1 I2 I3

I0
I1

I2
I3

Advanced Computer Architecture Chapter 3.124

Multiple Issue Challenges
While Integer/FP split is simple for the HW, get CPI of 0.5
only for programs with:

Exactly 50% FP operations AND No hazards
If more instructions issue at same time, greater difficulty
of decode and issue:

Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 1 or
2 instructions can issue; (N-issue ~O(N2-N) comparisons)
Register file: need 2x reads and 1x writes/cycle
Rename logic: must be able to rename same register multiple times in one
cycle! For instance, consider 4-way issue:
add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 ⇒ sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!
Result buses: Need to complete multiple instructions/cycle

So, need multiple buses with associated matching logic at every
reservation station.
Or, need multiple forwarding paths

Page 32

Advanced Computer Architecture Chapter 3.125

Dynamic Scheduling in Superscalar
The easy way

How to issue two instructions and keep in-order
instruction issue for Tomasulo?

Assume 1 integer + 1 floating point
1 Tomasulo control for integer, 1 for floating point

Issue 2X Clock Rate, so that issue remains in order
Only loads/stores might cause dependency between
integer and FP issue:

Replace load reservation station with a load queue;
operands must be read in the order they are fetched
Load checks addresses in Store Queue to avoid RAW violation
Store checks addresses in Load Queue to avoid WAR,WAW

Advanced Computer Architecture Chapter 3.126

Register renaming, virtual registers
versus Reorder Buffers

Alternative to Reorder Buffer is a larger virtual set of
registers and register renaming
Virtual registers hold both architecturally visible
registers + temporary values

replace functions of reorder buffer and reservation station

Renaming process maps names of architectural
registers to registers in virtual register set

Changing subset of virtual registers contains architecturally visible
registers

Simplifies instruction commit: mark register as no
longer speculative, free register with old value
Adds 40-80 extra registers: Alpha, Pentium,…

Size limits no. instructions in execution (used until commit)

Advanced Computer Architecture Chapter 3.127

How much to speculate?

Speculation Pro: uncover events that would
otherwise stall the pipeline (cache misses)
Speculation Con: speculate costly if exceptional
event occurs when speculation was incorrect
Typical solution: speculation allows only low-cost
exceptional events (1st-level cache miss)
When expensive exceptional event occurs, (2nd-
level cache miss or TLB miss) processor waits until
the instruction causing event is no longer
speculative before handling the event
Assuming single branch per cycle: aggressive
designs may speculate across multiple branches!

Advanced Computer Architecture Chapter 3.128

Limits to ILP

Conflicting studies of amount
Benchmarks (vectorized Fortran FP vs. integer C programs)
Hardware sophistication
Compiler sophistication

How much ILP is available using existing mechanisms
with increasing HW budgets?
Do we need to invent new HW/SW mechanisms to keep
on processor performance curve?

Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
Motorola AltiVec: 128 bit ints and FPs
Supersparc Multimedia ops, etc.

Page 33

Advanced Computer Architecture Chapter 3.129

Limits to ILP
Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
2 & 3 => machine with perfect speculation & an
unbounded buffer of instructions available
4. Memory-address alias analysis – addresses are known
& a store can be moved before a load provided
addresses not equal

Also:
unlimited number of instructions issued/clock cycle;
perfect caches;
1 cycle latency for all instructions (FP *,/);

Advanced Computer Architecture Chapter 3.130

Upper Limit to ILP: Ideal Machine
(H&P3ed Figure 3.35, page 242)

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

IP
C

Advanced Computer Architecture Chapter 3.131

35

41

16

61
58

60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

Program

In
st

ru
ct

io
n

is
su

es
 p

er
 c

yc
le

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
cf H&P3ed Figure 3.39, Page 248

Change from Infinite
window to examine to
2000 and maximum issue
of 64 instructions per
clock cycle

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

Advanced Computer Architecture Chapter 3.132

11

15

12

29

54

10

15

12

49

16

10
13

12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4 5 5

59

45

0

10

20

30

40

50

60

70

gcc espresso li fpppp doducd tomcatv

Program

In
st

ru
ct

io
n

is
su

es
 p

er
 c

yc
le

Infinite 256 128 64 32 None

More Realistic HW:
Renaming Register Impact

H&P3ed Figure 3.42, Page 251

Change 2000 instr
window, 64 instr issue,
8K 2 level Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

Page 34

Advanced Computer Architecture Chapter 3.133

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4
5 4 4

6 5
3

5
3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW:
Memory Address Alias Impact

H&P3ed Figure 3.44, Page 252

Change 2000 instr window,
64 instr issue, 8K 2 level
Prediction, 256 renaming
registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

Advanced Computer Architecture Chapter 3.134

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW for ‘00: Window Impact
(Figure 3.45, Page 309)

Perfect disambiguation (HW),
1K Selective Prediction, 16
entry return, 64 registers,
issue as many as window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

Advanced Computer Architecture Chapter 3.135

Limits to ILP - resources

Limits of Control Flow on Parallelism .
Monica S. Lam, Robert P. Wilson.
19th ISCA, May 1992, pages 19-21.
Limits of Instruction-Level Parallelism .
David W. Wall.
DEC-WRL Research Report 93/6, Nov. 1993
The Distribution of Instruction-Level and Machine
Parallelism and Its Effect on Performance .
Norman P. Jouppi.
IEEE Transactions on Computers, Dec. 1989.

Advanced Computer Architecture Chapter 3.136

How to Exceed ILP Limits of this study?

WAR and WAW hazards through memory: eliminated
WAW and WAR hazards through register renaming,
but not in memory usage
Unnecessary dependences (compiler not unrolling
loops so iteration variable dependence)
Overcoming the data flow limit: value prediction,
predicting values and speculating on prediction

Address value prediction and speculation predicts addresses and
speculates by reordering loads and stores; could provide better
aliasing analysis, only need predict if addresses =

Value Locality and Load Value Prediction. Mikko H. Lipasti, Christopher B.
Wilkerson, John Paul Shen. Slides by Kundan Nepal:
http://www.lems.brown.edu/~iris/en291s9-04/lectures/kundanvalue_pred.pdf

Page 35

Advanced Computer Architecture Chapter 3.137

How to Exceed ILP Limits of this study?

Vector instructions
Next section of this Chapter

Simultaneous Multi-threading
Later section of this Chapter

Multiprocessors
Later Chapter

Advanced Computer Architecture Chapter 3.138
25

Alternative Model:
Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

add.vv v3, v1, v2

VECTOR
(N operations)

Vector processors have high-level operations that work on
linear arrays of numbers: "vectors"

Advanced Computer Architecture Chapter 3.139

Properties of Vector Processors

Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate
Vector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over 64 elements
=> no (data) caches required! (Do use instruction cache)
Reduces branches and branch problems in pipelines
Single vector instruction implies lots of work (loop)

=> fewer instruction fetches

Advanced Computer Architecture Chapter 3.140

Spec92fp Operations (Millions) Instructions (M)
Program RISC Vector R / V RISC Vector R / V
swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71x
nasa7 69 41 1.7x 69 2.2 31x
su2cor 51 35 1.4x 51 1.8 29x
tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x
mdljdp2 32 52 0.6x 32 15.8 2x

Operation & Instruction Count:
RISC v. Vector Processor

(from F. Quintana, U. Barcelona.)

Vector reduces ops by 1.2X, instructions by 20X

Page 36

Advanced Computer Architecture Chapter 3.141

Styles of Vector Architectures

memory-memory vector processors: all vector operations
are memory to memory
vector-register processors: all vector operations between
vector registers (except load and store)

Vector equivalent of load-store architectures
Includes all vector machines since late 1980s:
Cray, Convex, Fujitsu, Hitachi, NEC
We assume vector-register for rest of lectures

Advanced Computer Architecture Chapter 3.142

Components of Vector Processor
Vector Register: fixed length bank holding a single vector

has at least 2 read and 1 write ports
typically 8-32 vector registers, each holding 64-128 64-bit elements

Vector Functional Units (FUs): fully pipelined, start new
operation every clock

typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), integer
add, logical, shift; may have multiple of same unit

Vector Load-Store Units (LSUs): fully pipelined unit to
load or store a vector; may have multiple LSUs
Scalar registers: single element for FP scalar or address
Cross-bar to connect FUs , LSUs, registers

Advanced Computer Architecture Chapter 3.143

“DLXV” Vector Instructions

Instr. Operands Operation Comment
ADDV V1,V2,V3 V1=V2+V3 vector + vector
ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
MULTV V1,V2,V3 V1=V2xV3 vector x vector
MULSV V1,F0,V2 V1=F0xV2 scalar x vector
LV V1,R1 V1=M[R1..R1+63] load, stride=1
LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
MOV VM,R1 Vec. Mask = R1 set vector mask

Advanced Computer Architecture Chapter 3.144
32

Memory operations

Load/store operations move groups of data between
registers and memory
Three types of addressing

Unit stride
Fastest

Non-unit (constant) stride
Indexed (gather-scatter)

Vector equivalent of register indirect
Good for sparse arrays of data
Increases number of programs that vectorize

Page 37

Advanced Computer Architecture Chapter 3.145

DAXPY (Y = a * X + Y)

LD F0,a
ADDI R4,Rx,#512 ;last address to

load
loop: LD F2, 0(Rx) ;load X(i)

MULTD F2,F0,F2 ;a*X(i)
LD F4, 0(Ry) ;load Y(i)
ADDD F4,F2, F4 ;a*X(i) + Y(i)
SD F4 ,0(Ry) ;store into Y(i)
ADDI Rx,Rx,#8 ;increment index to X
ADDI Ry,Ry,#8 ;increment index to Y
SUB R20,R4,Rx ;compute bound
BNZ R20,loop ;check if done

LD F0,a ;load scalar a
LV V1,Rx ;load vector X
MULTS V2,F0,V1 ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV V4,V2,V3 ;add
SV Ry,V4 ;store the result

Assuming vectors X, Y
are length 64

Scalar vs. Vector

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)
578 (2+9*64) vs.

6 instructions (96X)
64 operation vectors +
no loop overhead
also 64X fewer pipeline
hazards

Advanced Computer Architecture Chapter 3.146

NEC SX-8

35 GFLOPs peak
per CPU
Eg University of
Stuttgart
installation:

Peak
Performance 12
TFlops
72 nodes, 8 CPUs
per node
Memory 9.2 TB
Disk 160 TB shared
disk, 72 * 140 GB
local
16GB/s node-to-
node interconnect

Advanced Computer Architecture Chapter 3.147

Virtual Processor Vector Model
Vector operations are SIMD
(single instruction multiple data)operations
Each element is computed by a virtual processor (VP)
Number of VPs given by vector length

vector control register

Advanced Computer Architecture Chapter 3.148

Vector Architectural State

General
Purpose

Registers

Flag
Registers

(32)

VP0 VP1 VP$vlr-1

vr0
vr1

vr31

vf0
vf1

vf31

$vdw bits

1 bit

Virtual Processors ($vlr)

vcr0
vcr1

vcr31

Control
Registers

32 bits

Page 38

Advanced Computer Architecture Chapter 3.149
33

Vector Implementation

Vector register file
Each register is an array of elements
Size of each register determines maximum
vector length
Vector length register determines vector length
for a particular operation

Multiple parallel execution units = “lanes”
(sometimes called “pipelines” or “pipes”)

Advanced Computer Architecture Chapter 3.150
34

Vector Terminology:
4 lanes, 2 vector functional units

(Vector
Functional
Unit)

Advanced Computer Architecture Chapter 3.151

Vector Execution Time

Time = f(vector length, data dependicies, struct. hazards)
Initiation rate: rate that FU consumes vector elements
(= number of lanes; usually 1 or 2 on Cray T-90)
Convoy: set of vector instructions that can begin execution
in same clock (no struct. or data hazards)
Chime: approx. time for a vector operation
m convoys take m chimes; if each vector length is n, then
they take approx. m x n clock cycles (ignores overhead;
good approximization for long vectors)

4 conveys, 1 lane, VL=64
=> 4 x 64 - 256 clocks
(or 4 clocks per result)

1: LV V1,Rx ;load vector X
2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y
3: ADDV V4,V2,V3 ;add
4: SV Ry,V4 ;store the result

Advanced Computer Architecture Chapter 3.152

Start-up time: pipeline latency time (depth of FU
pipeline); another sources of overhead
Operation Start-up penalty (from CRAY-1)
Vector load/store 12
Vector multply 7
Vector add 6

Assume convoys don't overlap; vector length = n:

Convoy Start 1st result last result
1. LV 0 12 11+n (12+n-1)
2. MULV, LV 12+n 12+n+12 23+2n Load start-up

3. ADDV 24+2n 24+2n+6 29+3n Wait convoy 2

4. SV 30+3n 30+3n+12 41+4n Wait convoy 3

Page 39

Advanced Computer Architecture Chapter 3.153

Why startup time for each vector
instruction?

Why not overlap startup time of back-to-back vector
instructions?
Cray machines built from many ECL chips operating at
high clock rates; hard to do?
Berkeley vector design (“T0”) didn’t know it wasn’t
supposed to do overlap, so no startup times for
functional units (except load)

Advanced Computer Architecture Chapter 3.154

Vector Load/Store Units & Memories
Start-up overheads usually longer fo LSUs
Memory system must sustain (# lanes x word) /clock cycle
Many Vector Procs. use banks (vs. simple interleaving):
1) support multiple loads/stores per cycle
=> multiple banks & address banks independently
2) support non-sequential accesses (see soon)
Note: No. memory banks > memory latency to avoid stalls

m banks => m words per memory lantecy l clocks
if m < l, then gap in memory pipeline:

clock: 0 … l l+1 l+2 … l+m- 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m

may have 1024 banks in SRAM

Advanced Computer Architecture Chapter 3.155

Vector Length

What to do when vector length is not exactly 64?
vector-length register (VLR) controls the length of
any vector operation, including a vector load or store.
(cannot be > the length of vector registers)

do 10 i = 1, n

10 Y(i) = a * X(i) + Y(i)
Don't know n until runtime!
n > Max. Vector Length (MVL)?

Advanced Computer Architecture Chapter 3.156

Strip Mining

Suppose Vector Length > Max. Vector Length (MVL)?
Strip mining: generation of code such that each vector
operation is done for a size Š to the MVL
1st loop do short piece (n mod MVL), rest VL = MVL

low = 1
VL = (n mod MVL) /*find the odd size piece*/
do 1 j = 0,(n / MVL) /*outer loop*/
do 10 i = low,low+VL-1 /*runs for length VL*/

Y(i) = a*X(i) + Y(i) /*main operation*/
10 continue

low = low+VL /*start of next vector*/
VL = MVL /*reset the length to max*/

1 continue

Page 40

Advanced Computer Architecture Chapter 3.157

Common Vector Metrics

R∞: MFLOPS rate on an infinite-length vector
vector “speed of light”
Real problems do not have unlimited vector lengths, and the start-up
penalties encountered in real problems will be larger
(Rn is the MFLOPS rate for a vector of length n)

N1/2: The vector length needed to reach one-half of R�
a good measure of the impact of start-up

NV: The vector length needed to make vector mode faster
than scalar mode

measures both start-up and speed of scalars relative to vectors, quality of
connection of scalar unit to vector unit

Advanced Computer Architecture Chapter 3.158

Vector Stride

Suppose adjacent elements not sequential in memory
do 10 i = 1,100

do 10 j = 1,100
A(i,j) = 0.0
do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)
Either B or C accesses not adjacent (800 bytes between)
stride: distance separating elements that are to be merged
into a single vector (caches do unit stride)
=> LVWS (load vector with stride) instruction
Strides => can cause bank conflicts
(e.g., stride = 32 and 16 banks)
Think of address per vector element

Advanced Computer Architecture Chapter 3.159

Compiler Vectorization on Cray XMP
Benchmark %FP %FP in vector
ADM 23% 68%
DYFESM 26% 95%
FLO52 41% 100%
MDG 28% 27%
MG3D 31% 86%
OCEAN 28% 58%
QCD 14% 1%
SPICE 16% 7% (1% overall)
TRACK 9% 23%
TRFD 22% 10%

Advanced Computer Architecture Chapter 3.160

Vector Opt #1: ChainingSuppose:
MULV V1,V2,V3
ADDV V4,V1,V5 ; separate convoy?
chaining: vector register (V1) is not as a single entity but
as a group of individual registers, then pipeline forwarding
can work on individual elements of a vector
Flexible chaining: allow vector to chain to any other active
vector operation => more read/write port
As long as enough HW, increases convoy size

MULV ADDV
64 647 6 Total: 7+64+6+64=141

Pipeline fill

MULV

ADDV

64

64

7

6 Total: 7+6+64 = 77
Pipeline fill

Page 41

Advanced Computer Architecture Chapter 3.161

Example Execution of Vector Code
Vector

Memory Pipeline
Vector

Multiply Pipeline
Vector

Adder Pipeline

8 lanes, vector length 32,
chaining

Scalar

Advanced Computer Architecture Chapter 3.162

Vector Opt #2: Conditional Execution
Suppose:

do 100 i = 1, 64
if (A(i) .ne. 0) then

A(i) = A(i) – B(i)
endif

100 continue
vector-mask control takes a Boolean vector: when vector-
mask register is loaded from vector test, vector
instructions operate only on vector elements whose
corresponding entries in the vector-mask register are 1.
Still requires clock even if result not stored; if still

performs operation, what about divide by 0?

Advanced Computer Architecture Chapter 3.163

Vector Opt #3: Sparse Matrices
Suppose:

do 100 i = 1,n

100 A(K(i)) = A(K(i)) + C(M(i))
gather (LVI) operation takes an index vector and fetches
the vector whose elements are at the addresses given by
adding a base address to the offsets given in the index
vector => a nonsparse vector in a vector register
After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a scatter
store (SVI), using the same index vector
Can't be done by compiler since can't know Ki elements
distinct, no dependencies; by compiler directive
Use CVI to create index 0, 1xm, 2xm, ..., 63xm

Advanced Computer Architecture Chapter 3.164

Sparse Matrix Example

Cache (1993) vs. Vector (1988)
IBM RS6000 Cray YMP

Clock 72 MHz 167 MHz
Cache 256 KB 0.25 KB
Linpack 140 MFLOPS 160 (1.1)
Sparse Matrix 17 MFLOPS 125 (7.3)

(Cholesky Blocked)
Cache: 1 address per cache block (32B to 64B)
Vector: 1 address per element (4B)

Page 42

Advanced Computer Architecture Chapter 3.165

Applications
Limited to scientific computing?

Multimedia Processing (compress., graphics, audio synth, image proc.)

Standard benchmark kernels (Matrix Multiply, FFT, Convolution,
Sort)
Lossy Compression (JPEG, MPEG video and audio)
Lossless Compression (Zero removal, RLE, Differencing, LZW)
Cryptography (RSA, DES/IDEA, SHA/MD5)
Speech and handwriting recognition
Operating systems/Networking (memcpy, memset, parity, checksum)
Databases (hash/join, data mining, image/video serving)
Language run-time support (stdlib, garbage collection)
even SPECint95

Advanced Computer Architecture Chapter 3.166

Vector for Multimedia?
Intel MMX/SSE instruction set extensions

Similar extensions on other processor families, eg PowerPC AltiVec
Idea: pack multiple short-word operands into one long register

Eg 128-bit register
2 64-bit doubles
4 32-bit floats or ints
8 16-bit ints or fixed-point
16 8-bit ints
Often with media-specific instructions eg saturated arithmetic

Claim: overall speedup 1.5 to 2X for 2D/3D graphics, audio, video,
speech, comm., ...

Initially hand-coded, accessible using special intrinsic functions
Delivered via libraries such as the Intel Performance Primitives (IPP)
Some support from compilers such as Intel’s, but awkward constraints (eg
alignment of operands)

+

Advanced Computer Architecture Chapter 3.167

Mediaprocessing:
Vectorizable? Vector Lengths?

Kernel Vector length
Matrix transpose/multiply # vertices at once
DCT (video, communication) image width
FFT (audio) 256-1024
Motion estimation (video) image width, iw/16
Gamma correction (video) image width
Haar transform (media mining) image width
Median filter (image processing) image width
Separable convolution (img. proc.) image width

(from Pradeep Dubey - IBM,
http://www.research.ibm.com/people/p/pradeep/tutor.html)

Advanced Computer Architecture Chapter 3.168

Vector Pitfalls

Pitfall: Concentrating on peak performance and ignoring start-up
overhead: NV (length faster than scalar) > 100!
Pitfall: Increasing vector performance, without comparable increases in
scalar performance
(Amdahl's Law)

failure of Cray competitor from his former company
Pitfall: Good processor vector performance without providing good
memory bandwidth

MMX?

Page 43

Advanced Computer Architecture Chapter 3.169

Vector Advantages
Easy to get high performance; N operations:

are independent
use same functional unit
access disjoint registers
access registers in same order as previous instructions
access contiguous memory words or known pattern
can exploit large memory bandwidth
hide memory latency (and any other latency)

Scalable (get higher performance as more HW resources available)
Compact: Describe N operations with 1 short instruction (v. VLIW)
Predictable (real-time) performance vs. statistical performance (cache)
Multimedia ready: choose N * 64b, 2N * 32b, 4N * 16b, 8N * 8b
Mature, developed compiler technology
Vector Disadvantage: Out of Fashion

Advanced Computer Architecture Chapter 3.170

Vector Summary

Alternate model accommodates long memory latency,
doesn’t rely on caches as does Out-Of-Order,
superscalar/VLIW designs
Much easier for hardware: more powerful instructions,
more predictable memory accesses, fewer hazards, fewer
branches, fewer mispredicted branches, ...
What % of computation is vectorizable?
Is vector a good match to new apps such as multimedia,
DSP?

Advanced Computer Architecture Chapter 3.171

Beyond ILP: Multithreading, Simultaneous
Multithreading (SMT)

Cray/Tera MTA
http://www.cray.com/products/system
s/mta/,
http://www.utc.edu/~jdumas/cs460/pa
persfa01/craymta/

(Source: Asanovic http://www.cag.lcs.mit.edu/6.893-f2000/lectures/l06-tera.pdf)
Advanced Computer Architecture Chapter 3.172

Co
m
pa

q
A
lp
ha

 2
14

64
 -

ht
tp

:/
/r

es
ea

rc
h.

ac
.u

pc
.e

s/
pa

ct
01

/k
ey

no
te

s/
em

er
.p

df

Page 44

Advanced Computer Architecture Chapter 3.173

SMT

Alpha 21464
One CPU with
4 Thread
Processing
Units (TPUs)
“6% area
overhead
over single-
thread 4-
issue CPU”

Advanced Computer Architecture Chapter 3.174

SMT
performance

Alpha 21464

Intel Pentium 4
with
hyperthreading:

http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf

Advanced Computer Architecture Chapter 3.175

Beyond ILP: Multithreading, Simultaneous Multithreading (SMT)

MLX1 - A Tiny Multithreaded 586
Core for Smart Mobile Devices

http://www.cs.washington.edu/researc
h/smt/memoryLogix.pdf

“A tiny ‘synthesis-friendly’ 586 core for SoC
solutions”
For smart mobile devices that demand high
MIPS / W
Uses SMT to deliver more performance in
smaller die area
Leverages from the PC platform”

Advanced Computer Architecture Chapter 3.176

SMT in a network processorClearwater Networks CNP810SP
http://www.zytek.com/~melvin/clearwater.html
8 threads execute simultaneously, utilizing
variable number of resources on a cycle by cycle
basis.
In each cycle 0-3 instructions can be executed
from each of the threads depending on instruction
dependencies and availability of resources
Maximum IPC of the entire core is 10
In each cycle two threads are selected for fetch
and their respective program counters (PCs) are
supplied to the dual-ported instruction cache
Each port supplies eight instructions, so there is a
maximum fetch bandwidth of 16 instructions
The two threads chosen for fetch in each cycle
are the two that have the fewest number of
instructions in their respective IQs
The 8 threads are divided into two clusters of 4
for ease of implementation.
Thus the dispatch logic is split into two groups
where each group dispatches up to six instructions
from four different threads
Eight function units are grouped into two sets of
four, each set dedicated to a single cluster
There are also two ports to the data cache that
are shared by both clusters.
A maximum of 10 instructions can be dispatched
in each cycle. The function units are fully
bypassed so that dependent instructions can be
dispatched in successive cycles.

Page 45

Advanced Computer Architecture Chapter 3.177

Conclusion

1985-2000: 1000X performance
Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

“industry been following a roadmap of ideas known in 1985
to exploit Instruction Level Parallelism and (real) Moore’s
Law to get 1.55X/year”

Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order
execution, …

ILP limits: To make performance progress in future need
to have explicit parallelism from programmer vs. implicit
parallelism of ILP exploited by compiler, HW?

Otherwise drop to old rate of 1.3X per year?
Less than 1.3X because of processor-memory performance gap?

Impact on you: if you care about performance,
better think about explicitly parallel algorithms
vs. rely on ILP?

