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Instruction Level Parallelism and 
Dynamic Execution 
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These lecture notes are partly based on the course text, Hennessy 
and Patterson’s Computer Architecture, a quantitative approach (3rd

4th eds), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course (CS252)
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Recall from Pipelining Review

Pipeline CPI = Ideal pipeline CPI + Structural Stalls 
+ Data Hazard Stalls + Control Stalls

Ideal pipeline CPI: measure of the maximum performance 
attainable by the implementation
Structural hazards: HW cannot support this combination of 
instructions
Data hazards: Instruction depends on result of prior instruction 
still in the pipeline
Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow (branches 
and jumps)
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Instruction-Level Parallelism 
(ILP)

Basic Block (BB) ILP is quite small
BB: a straight-line code sequence with no branches in except to the 
entry and no branches out except at the exit
average dynamic branch frequency 15% to 25% 
=> 4 to 7 instructions execute between a pair of branches
Plus instructions in BB likely to depend on each other

To obtain substantial performance enhancements, we 
must exploit ILP across multiple basic blocks
Simplest: loop-level parallelism to exploit parallelism 
among iterations of a loop

Vector is one way
If not vector, then either dynamic via branch prediction or static 
via loop unrolling by compiler
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InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it

or InstrJ is data dependent on InstrK which is dependent 
on InstrI

Caused by a “True Dependence” (compiler term)  
If true dependence caused a hazard in the pipeline, called 
a Read After Write (RAW) hazard 

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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Dependences are a property of programs
Presence of dependence indicates potential for a 
hazard, but actual hazard and length of any stall is a 
property of the pipeline
Importance of the data dependencies

1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can 

possibly be exploited
Today looking at HW schemes to avoid hazard

Data Dependence and Hazards
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Name dependence: when 2 instructions use same 
register or memory location, called a name, but no 
flow of data between the instructions associated with 
that name
There are two kinds:
Name dependence #1: anti-dependence/WAR

InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”
If anti-dependence caused a hazard in the pipeline, called a Write 
After Read (WAR) hazard

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1: 
Anti-dependence
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Name Dependence #2: 
Output dependence

InstrJ writes operand before InstrI writes it.

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”
If anti-dependence caused a hazard in the pipeline, called 
a Write After Write (WAW) hazard

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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ILP and Data Hazards
HW/SW must preserve program order: 
order instructions would execute in if executed 
sequentially 1 at a time as determined by original 
source program
HW/SW goal: exploit parallelism by preserving program 
order only where it affects the outcome of the program
Instructions involved in a name dependence can execute 
simultaneously if name used in instructions is changed so 
instructions do not conflict

Register renaming resolves name dependence for regs
Either by compiler or by HW
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Control Dependencies

Every instruction is control dependent on some 
set of branches, and, in general, these control 
dependencies must be preserved to preserve 
program order
if p1 {
S1;

};
if p2 {
S2;

}
S1 is control dependent on p1, and S2 is control 
dependent on p2 but not on p1.
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Control Dependence Ignored

Control dependence need not be preserved
willing to execute instructions that should not have been executed, 
thereby violating the control dependences, if can do so without 
affecting correctness of the program 

Instead, two properties critical to program correctness 
are exception behavior and data flow
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Exception Behavior

Preserving exception behavior => any changes in 
instruction execution order must not change how 
exceptions are raised in program (=> no new 
exceptions)
Example:

DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:

Problem with moving LW before BEQZ?
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Data Flow

Data flow: actual flow of data values among 
instructions that produce results and those that 
consume them

branches make flow dynamic, determine which instruction is supplier 
of data

Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

OR depends on DADDU or DSUBU? 
Must preserve data flow on execution



Page 4

Advanced Computer Architecture Chapter 3.13

Advantages of Dynamic Scheduling
Handles cases when dependences unknown at compile 
time 

(e.g., because they may involve a memory reference)

It simplifies the compiler 
Allows code that compiled for one pipeline to run 
efficiently on a different pipeline 
Hardware speculation, a technique with significant 
performance advantages, that builds on dynamic 
scheduling
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HW Schemes: Instruction Parallelism
Key idea: Allow instructions behind stall to proceed

DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

Enables out-of-order execution
and allows out-of-order completion
We will distinguish when an instruction is issued, begins 
execution and when it completes execution; between 
these two times, the instruction is in execution
In a dynamically scheduled pipeline, all instructions 
pass through issue stage in order (in-order issue)
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Dynamic Scheduling Step 1

Simple pipeline had 1 stage to check both 
structural and data hazards: Instruction Decode 
(ID), also called Instruction Issue
Split the ID pipe stage of simple 5-stage 
pipeline into 2 stages: 
Issue—Decode instructions, check for structural 
hazards 
Read operands—Wait until no data hazards, 
then read operands

Advanced Computer Architecture Chapter 3.16

A Dynamic Algorithm: 
Tomasulo’s Algorithm

For IBM 360/91 (before caches!)
Goal: High Performance without special compilers
Small number of floating point registers (4 in 360) 
prevented interesting compiler scheduling of operations

This led Tomasulo to try to figure out how to get more effective registers 
— renaming in hardware! 

Why study a 1966 Computer? 
The descendents of this have flourished!

Alpha 21264, HP 8000, MIPS 10000/R12000, Pentium II/III/4,  AMD 
K5,K6,Athlon, PowerPC 603/604/G3/G4/G5, …
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IBM360/91

NASA's Space Flight Center in Greenbelt, Md, January 1968 

NASA Center for Computational Sciences

Source: 
http://www.columbia.edu/acis/history
/36091.html

Solid Logic Technology 
(SLT), an IBM invention 
which encapsulated 5-6 
transistors into a small 
module--a transition 
technology between 
discrete transistors and the 
IC
About 12 were made

CPU cycle time: 60 nanoseconds
memory cycle time (to fetch and store 
eight bytes in parallel): 780ns
Standard memory capacity: 2,097,152B 
interleaved 16 ways (magnetic cores)
Up to 6,291,496 bytes of main storage
Up to 16.6-million additions/second
Ca.120K gates, ECL
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Tomasulo Algorithm
Control & buffers distributed with Function Units (FU)

FU buffers called “reservation stations”; have pending operands
Registers in instructions replaced by values or pointers to 
reservation stations(RS); called  register renaming ; 

avoids WAR, WAW hazards
More reservation stations than registers, so can do optimizations 
compilers can’t

Results to FU from RS, not through registers, over Common 
Data Bus that broadcasts results to all FUs
Load and Stores treated as FUs with RSs as well
Integer instructions can go past branches, allowing 
FP ops beyond basic block in FP queue
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Tomasulo Organization

FP addersFP adders

Add1
Add2
Add3

FP multipliersFP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation 
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store 
Buffers

Load1
Load2
Load3
Load4
Load5
Load6
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Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers 
(value to be written)

Note: Qj,Qk=0 => ready
Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will 
write each register, if one exists. Blank when no pending 
instructions that will write that register. 



Page 6

Advanced Computer Architecture Chapter 3.21

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units; 
mark reservation station available

Normal data bus: data + destination (“go to” bus)
Common data bus: data + source (“come from” bus)

64 bits of data + 4 bits of Functional Unit  source address
Write if matches expected Functional Unit (produces result)
Does the broadcast

Example speed: 
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /
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360/91 pipeline 
The IBM 360/91’s pipeline:

See: The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling,by D. W. Anderson, 
F. J. Sparacio, R. M. Tomasulo.  IBM J. R&D (1967), 
http://www.research.ibm.com/journal/rd/111/ibmrd1101C.pdf

11-12 circuit levels per pipeline stage, of 5-6ns each
CPU consists of three physical frames, each having 
dimensions 66" L X 15" D X 78" H
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Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Load1 No
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Clock cycle 
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.
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Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Load1
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Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

2 FU Load2 Load1

Note: Can have multiple loads outstanding
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Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in 
Reservation Stations; MULT issued

• Load1 completing; what is waiting for Load1? 
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Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2? 
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Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)
Add2 No
Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1
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Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6? 
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Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1
Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it? 
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Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
2 Add2 Yes ADDD (M-M) M(A2)

Add3 No
7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

8 FU Mult1 M(A2) Add2 (M-M) Mult2
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Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
1 Add2 Yes ADDD (M-M) M(A2)

Add3 No
6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

9 FU Mult1 M(A2) Add2 (M-M) Mult2
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Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
0 Add2 Yes ADDD (M-M) M(A2)

Add3 No
5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it? 
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Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

11 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Write result of ADDD here?
• All quick instructions complete in this cycle!
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Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

12 FU Mult1 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

13 FU Mult1 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

14 FU Mult1 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

15 FU Mult1 M(A2) (M-M+M(M-M) Mult2

• Mult1 (MULTD) completing; what is waiting for it? 
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Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

16 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete
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Skip a few cycles: Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

55 FU M*F4 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Mult2

• Mult2 (DIVD) is completing; what is waiting for it? 
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Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56 57
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 Yes DIVD M*F4 M(A1)

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Result

• Once again: In-order issue, out-of-order execution and 
out-of-order completion.
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Tomasulo Drawbacks

Complexity
delays of 360/91, MIPS 10000, Alpha 21264, 
IBM PPC 620
Many associative stores (CDB) at high speed

Performance limited by Common Data Bus
Each CDB must go to multiple functional units 
⇒high capacitance, high wiring density
Number of functional units that can complete per cycle limited to 
one!

Multiple CDBs ⇒ more FU logic for parallel assoc stores

Non-precise interrupts!
We will address this later

Advanced Computer Architecture Chapter 3.44

Tomasulo Loop Example
Loop:LD F0 0 R1

MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

This time assume Multiply takes 4 clocks
Assume 1st load takes 8 clocks 
(L1 cache miss), 2nd load takes 1 clock (hit)
To be clear, will show clocks for SUBI, BNEZ

Reality: integer instructions ahead of Fl. Pt. Instructions

Show 2 iterations
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Loop Example
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 Load1 No
1 MULTD F4 F0 F2 Load2 No
1 SD F4 0 R1 Load3 No
2 LD F0 0 R1 Store1 No
2 MULTD F4 F0 F2 Store2 No
2 SD F4 0 R1 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

0 80 Fu

Added Store Buffers

Value of Register used for address, iteration control

Instruction Loop

Iter-
ation
Count

Advanced Computer Architecture Chapter 3.46

Loop Example Cycle 1
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80

Load2 No
Load3 No
Store1 No
Store2 No
Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

1 80 Fu Load1

Advanced Computer Architecture Chapter 3.47

Loop Example Cycle 2
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No

Load3 No
Store1 No
Store2 No
Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

2 80 Fu Load1 Mult1

Advanced Computer Architecture Chapter 3.48

Loop Example Cycle 3
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

3 80 Fu Load1 Mult1

Implicit renaming sets up data flow graph
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Loop Example Cycle 4
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

4 80 Fu Load1 Mult1

Dispatching SUBI Instruction (not in FP queue)
Advanced Computer Architecture Chapter 3.50

Loop Example Cycle 5
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

5 72 Fu Load1 Mult1

And, BNEZ instruction (not in FP queue)

Advanced Computer Architecture Chapter 3.51

Loop Example Cycle 6
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1

Store2 No
Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

6 72 Fu Load2 Mult1

Notice that F0 never sees Load from location 80
Advanced Computer Architecture Chapter 3.52

Loop Example Cycle 7
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 No

Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

7 72 Fu Load2 Mult2

Register file completely detached from computation
First and Second iteration completely overlapped
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Loop Example Cycle 8
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

8 72 Fu Load2 Mult2

Advanced Computer Architecture Chapter 3.54

Loop Example Cycle 9
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

9 72 Fu Load2 Mult2

Load1 completing: who is waiting?
Note: Dispatching SUBI

Advanced Computer Architecture Chapter 3.55

Loop Example Cycle 10
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 10 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

10 64 Fu Load2 Mult2

Load2 completing: who is waiting?
Note: Dispatching BNEZ

Advanced Computer Architecture Chapter 3.56

Loop Example Cycle 11
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

3 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
4 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

11 64 Fu Load3 Mult2

Next load in sequence
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Loop Example Cycle 12
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

2 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
3 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

12 64 Fu Load3 Mult2

Why not issue third multiply?
Advanced Computer Architecture Chapter 3.58

Loop Example Cycle 13
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

1 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
2 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

13 64 Fu Load3 Mult2

Why not issue third store?

Advanced Computer Architecture Chapter 3.59

Loop Example Cycle 14
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

0 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
1 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

14 64 Fu Load3 Mult2

Mult1 completing.  Who is waiting?
Advanced Computer Architecture Chapter 3.60

Loop Example Cycle 15
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8

0 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

15 64 Fu Load3 Mult2

Mult2 completing.  Who is waiting?
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Loop Example Cycle 16
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

16 64 Fu Load3 Mult1

Advanced Computer Architecture Chapter 3.62

Loop Example Cycle 17
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

17 64 Fu Load3 Mult1

Advanced Computer Architecture Chapter 3.63

Loop Example Cycle 18
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

18 64 Fu Load3 Mult1

Advanced Computer Architecture Chapter 3.64

Loop Example Cycle 19
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 19 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

19 56 Fu Load3 Mult1
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Loop Example Cycle 20
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 Yes 56
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 No
2 SD F4 0 R1 8 19 20 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loop

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

20 56 Fu Load1 Mult1

• Once again: In-order issue, out-of-order execution and 
out-of-order completion.

Advanced Computer Architecture Chapter 3.66

Why can Tomasulo overlap iterations of 
loops?

Register renaming
Multiple iterations use different physical destinations for registers 
(dynamic loop unrolling).

Reservation stations 
Permit instruction issue to advance past integer control flow operations
Also buffer old values of registers - totally avoiding the WAR stall 
that we saw in the scoreboard.

Other perspective: Tomasulo building data flow 
dependency graph on the fly.

Advanced Computer Architecture Chapter 3.67

Tomasulo’s scheme offers two major 
advantages

(1) the distribution of the hazard detection logic
distributed reservation stations and the CDB
If multiple instructions waiting on single result, & each instruction 
has other operand, then instructions can be released simultaneously 
by broadcast on CDB 
If a centralized register file were used, the units would have to 
read their results from the registers when register buses are 
available.

(2) the elimination of stalls for WAW and WAR hazards

Advanced Computer Architecture Chapter 3.68

What about Precise Interrupts?

Tomasulo had:

In-order issue, out-of-order execution, and out-of-
order completion

Need to “fix” the out-of-order completion aspect so 
that we can find precise breakpoint in instruction 
stream.
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Relationship between precise 
interrupts and speculation:

Speculation is a form of guessing.
Important for branch prediction:

Need to “take our best shot” at predicting branch direction.

If we speculate and are wrong, need to back up and 
restart execution at point at which we predicted 
incorrectly:

This is exactly same as precise exceptions!

Technique for both precise interrupts/exceptions and 
speculation: in-order completion or commit

Advanced Computer Architecture Chapter 3.70

HW support for precise interrupts
Need HW buffer for results of 
uncommitted instructions: 
reorder buffer

3 fields: instr, destination, value
Use reorder buffer number instead of 
reservation station when execution 
completes
Supplies operands between execution 
complete & commit
(Reorder buffer can be operand 
source => more registers like RS)
Instructions commit
Once instruction commits, 
result is put into register
As a result, easy to undo speculated 
instructions 
on mispredicted branches 
or exceptions

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs
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Four Steps of Speculative 
Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & send 
operands & reorder buffer no. for destination (this stage sometimes called 
“dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch CDB for 
result; when both in reservation station, execute; checks RAW (sometimes 
called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update register 
with result (or store to memory) and remove instr from reorder buffer. 
Mispredicted branch flushes reorder buffer (sometimes called “graduation”)

Advanced Computer Architecture Chapter 3.72

Tomasulo without Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1
Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Issue: •Each instruction is issued in order
•Issue unit collects operands from the two instruction’s source registers
•Result may be a value, or, if value will be computed by an uncompleted 
instruction, the tag of the RS to which it was issued. 
•When instruction 1 is issued, F0 is updated to get result from MUL1
•When instruction 3 is issued, F0 is updated to get result from MUL2
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Tomasulo without Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1

Multiply unit 1
Mul unit 2 Store unit 1

RS Store2

Store unit 2

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Write-back: Common data bus•Instructions may complete out of order
•Result is broadcast on CDB
•Carrying tag of RS to which instruction was originally issued
•All RSs and registers monitor CDB and collect value if tag matches
•Any RS which has both operands and whose FU is free fires.
•When MUL1 completes result goes to store unit but not F0 Advanced Computer Architecture Chapter 3.74

Tomasulo with Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Advanced Computer Architecture Chapter 3.75
Tomasulo with Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Issue: •As before, but ROB entry is also allocated

•ROB entry for each instruction

•Holds destination register + value/tag for where 
it will come from
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Tomasulo with Re-order Buffer

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Write Back:
•As before, but ROB entry with matching tag also updated

•ROB entry for instruction 1 holds value for F0
•ROB entry for instruction 3 holds another value for F0
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Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Operand values/tags

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

value
value
value
valueF3

F2
F1
F0

Commit:
•Commit unit processes ROB entries in issue order

•Each instruction waits in turn and commits when its 
operands are completed

•Committed registers updated with values from ROB
•F0 is updated first with result from MUL1 then result from 
MUL2 Advanced Computer Architecture Chapter 3.78

Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Issue
Opcode

Common data bus

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

3

4

Commit

Tomasulo with Re-order Buffer

value
value
value
valueF3

F2
F1
F0

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3
Operand values/tags

Issue-side registers
(updated speculatively)

Commit-side registers
(updated when speculation resolved)
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Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4

SD F0, X
MUL F0, F1, F21

2

4
5

Issue
Opcode

Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0, Src MUL11

2

4

5

Commit

value
value
value
valueF3

F2
F1
F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

•Now extend example with conditional branch
•Assume predicted Not Taken
•When BEQ reaches head of commit queue, all instructions 
which have been issued but have not yet committed are 
erroneous
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Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4

SD F0, X
MUL F0, F1, F21

2

4
5

Issue
Opcode

Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL24

5

Commit

Value from MUL1
value
value
valueF3

F2
F1
F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

•Misprediction: all ROB entries are trashed

•Issue-side registers reset from commit-side registers

•Correct branch target instruction fetched and issued
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Opcode Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Multiply unit 1
Mul unit 2 Add unit 2

RS Store1

Store unit 1

Tag Value F0

Tag Value F1

Tag Value F2

Tag Value F3

SD F0, Y
MUL F0, F3, F4

SD F0, X
MUL F0, F1, F21

2

4
5

Issue
Opcode

Operand values/tags

Dst null, Src STORE2

Dst F0, Src MUL24

5

Commit

Value from MUL1
value
value
valueF3

F2
F1
F0

BEQ R10, Lab (predNT)3

BEQ R10, Lab3

•Committed F0 holds value from first MUL

•RS of uncompleted speculatively-executed instruction 
cannot be re-used until its FU (eg MUL2) completes

Advanced Computer Architecture Chapter 3.82

What are the hardware complexities with reorder buffer (ROB)?

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Com
pare network

How do you find the latest version of a register?
Looks like we need associative comparison network
Could use future file or just use the register result status buffer to track which 
specific reorder buffer has received the value

Need as many ports on ROB as register file

Reorder Table

D
es

t
Re

g

Re
su

lt

Ex
ce

pt
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?

Va
lid
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See S. Weiss and J. E. Smith, “Instruction Issue Logic for Pipelined Supercomputers”.  ISCA, 
1984 (http://citeseer.nj.nec.com/weiss84instruction.html)
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Some subleties…
It’s vital to reduce the branch misprediction penalty.  Does the 
Tomasulo+ROB scheme described here roll-back as soon as the 
branch is found to be mispredicted?

Stores are buffered in the ROB, and committed only when the 
instruction is committed.  A load can be issued while several 
stores (perhaps to the same address) are uncommitted.  We need 
to make sure the load gets the right data.

What if a second conditional branch is encountered, before the 
outcome of the first is resolved?

This discussion has assumed a single-issue machine.  How can 
these ideas be extended to allow multiple instructions to be 
issued per cycle?

Issue
Monitoring CDBs for completion
Handling multiple commits per cycle 
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Tomasulo + ROB: Summary
Reservations stations: implicit register renaming to larger set of 
registers + buffering source operands

Prevents registers as bottleneck
Avoids WAR, WAW hazards of Scoreboard (see textbook)
Allows loop unrolling in HW

Not limited to basic blocks 
(integer units gets ahead, beyond branches)
Today, helps cache misses as well

Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)

Lasting Contributions
Dynamic scheduling
Register renaming
Load/store disambiguation

360/91 descendants are Pentium III, Pentium 4, Pentium M/Core; 
PowerPC 604; MIPS R10000; HP-PA 8000; Alpha 21264 and more
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ResourcesPapers:
Instruction issue logic for high-performance, interruptable pipelined processors.  G. S. 
Sohi, S. Vajapeyam.  International Conference on Computer Architecture, 1987 
(http://doi.acm.org/10.1145/30350.30354)
Towards Kilo-instruction processors. Cristal, Santana, Valero, Martinez ACM Trans. 
Architecture and Code Optimization (http://doi.acm.org/10.1145/1044823.1044825)

Animations:
SATSim Simplescalar

http://www.ece.gatech.edu/research/pica/SATSim/satsim.html
WebHase Tomasulo model:

www.dcs.ed.ac.uk/home/hase/webhase/demo/tomasulo.html
Other WebHase animations – simple pipeline, Scoreboarding etc:

http://www.icsa.informatics.ed.ac.uk/research/groups/hase/javahase/app-list.html
Israel Koren at U Massachussetts Amhurst:

http://www.ecs.umass.edu/ece/koren/architecture/Tomasulo/AppletTomasulo.html
http://www.ecs.umass.edu/ece/koren/architecture/

Processor performance
SPEC benchmarks – see http://www.spec.org/

CPU benchmarks: http://www.spec.org/cpu2000/results/cpu2000.html
HPC benchmarks: http://www.spec.org/hpc2002/results/hpc2002.html

Ace’s hardware SPEC summary:
http://www.aceshardware.com/SPECmine/top.jsp

Other simulators:
Liberty: http://liberty.cs.princeton.edu/
MicroLib: http://microlib.org/ Advanced Computer Architecture Chapter 3.86

360/91 design choices…
Speculation:

“Rather than wait for a valid CC, fetches are initiated for two instruction 
double-words as a hedge against a successful branch. Following this, it is 
assumed that the branch will fail, and a “conditional mode” is established. In 
conditional mode, shown in Fig. 8, instructions are decoded and conditionally 
forwarded to the execution units, and concomitant operand fetches are 
initiated. The execution units are inhibited from completing conditional 
instructions. When a valid condition code appears, the appropriate branching 
action is detected and activates or cancels the conditional instructions.”

Prediction:
[after mispredict] “the role of conditional mode is reversed, i.e., when the 
conditional branch is next encountered, it will be assumed that the branch will 
be taken. The conditionally issued instructions are from the target path 
rather than from the nobranch path as is the case when not in loop mode. A 
cancel requires recovery from the branch guess.”

Right:
Organizationally, primary emphasis is placed on (1) alleviating the disparity 
between storage time and circuit speed, and (2) the development of high 
speed floating-point arithmetic algorithms.

Wrong:
“The complications of conditional mode, coupled with the fact that it is 
primarily aimed at circumventing storage access delays, indicate that a 
careful re-examination of its usefulness will be called for as the access time 
decreases.”
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Tomasulo Algorithm and Branch Prediction

360/91 predicted branches, but lacked full 
speculation: 

Instructions along predicted branch path can complete
But results cannot be forwarded until branch outcome resolved

Speculation with Reorder Buffer allows execution past 
branch, and then discard if branch fails

The key difference is that speculative instructions can pass values to 
each other
just need to hold instructions in buffer until branch can commit
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Case for Branch Prediction when 
Issue N instructions per clock cycle

1. Branches will arrive up to n times faster in an n-issue 
processor 

2. Amdahl’s Law => relative impact of the control stalls 
will be larger with the lower potential CPI in an n-
issue processor 
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7 Branch Prediction Schemes

1. 1-bit Branch-Prediction Buffer
2. 2-bit Branch-Prediction Buffer
3. Correlating Branch Prediction Buffer
4. Tournament Branch Predictor
5. Branch Target Buffer
6. Integrated Instruction Fetch Units
7. Return Address Predictors
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Dynamic Branch Prediction

Performance = ƒ(accuracy, cost of misprediction)
Branch History Table: Lower bits of PC address index 
table of 1-bit values

Says whether or not branch taken last time
No address check (saves HW, but may not be right branch)

Problem: in a loop, 1-bit BHT will cause 
2 mispredictions (avg is 9 iterations before exit):

End of loop case, when it exits instead of looping as before
First time through loop on next time through code, when it predicts 
exit instead of looping
Only 80% accuracy even if loop 90% of the time
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Solution: 2-bit scheme where change prediction only if 
get misprediction twice: (Figure 3.7, p. 198)

Red: stop, not taken
Green: go, taken
Adds hysteresis to decision making process

Dynamic Branch Prediction
(Jim Smith, 1981)

T

T

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
TakenT

NT

T

NT

NT
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The 2-bit branch history table (BHT)

index

2-bit local 
branch 
history

prediction
bit   n....1,0

Program counter

k low-order bits

0

1

2k

Predict
taken

Predict
not-taken

Predict
taken

Predict
not-taken

taken

not
taken

not takentaken

taken

taken

not taken

not taken

(Generalises to n-bit BHT: 
saturating counter)
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n-bit 
BHT -

how well 
does it 
work?

0 2 4 6 8 10 12 14 16 18

Frequency of misprediction

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

B
en

ch
m

ar
k 

ap
pl

ic
at

io
n

Prediction accuracy of an 4096-entry two-bit prediction buffer versus an infinite buffer for the SPEC89 
benchmarks (H&P Fig 4.15) 

Unlimited entries

4096 entries

2-bit predictor often very good, sometimes awful
Little evidence that BHT capacity is an issue
1-bit is usually worse, 3-bit is not usefully better

Advanced Computer Architecture Chapter 3.94

N-bit BHT - why does it work so well?
n-bit BHT predictor essentially based on a saturating counter: 
taken increments, not-taken decrements
predict taken if most significant bit is set

Predict
taken

Predict
not-taken

Predict
taken

Predict
not-taken

taken

not
taken

not takentaken

taken

taken

not taken

not taken

11 10

01 00

Most branches are highly 
biased: either almost-
always taken, or almost-
always not-taken
Works badly for branches 
which aren’t

Often called the “bimodal”
predictor
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Bias
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Is local history all there is to it?

The bimodal predictor uses the BHT to record “local 
history” - the prediction information used to predict a 
particular branch is determined only by its memory 
address
Consider the following sequence: if (C1)  then

S1;
endif
if (C2) then

S2;
endif
if (C3) then

S3;
endif

It is very likely that condition C2 is 
correlated with C1 - and that C3 is 
correlated with C1 and C2
How can we use this observation?
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Global history

Definition: Global history. The taken - not-taken 
history for all previously-executed branches.
Idea: use global history to improve branch prediction
Compromise: use m most recently-executed branches
Implementation: keep an m-bit Branch History 
Register (BHR) - a shift register recording taken -
not-taken direction of the last m branches
Question: How to combine local information with global 
information?
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index

bit   n....1,0

Program counter
k low-order bits

0

1

2k

Branch history register
m bits

bit   n....1,0
0

1

2k

prediction

bit   n....1,0
0

1

2k

bit   n....1,0
0

1

2k

Select

n-bit local 
branch history

2m n-bit BHTs

Popular 
choice is 
m=2, 
n=2, so 
four 
tables 
each of 
2x2k bits

2 2 2 2

This is an 
(m,n)
“gselect”
correlating 
predictor: 

m global 
bits record 
behaviour
of last m
branches
These m
bits are 
used to 
select 
which of 
the 2m n-
bit BHTs to 
use 
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How many bits of branch history should be used?

(2,2) is good, (4,2) is better, (10,2) is worse
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There are many variations on the idea:
gselect: many combinations of n and m
global: use only the global history to index the BHT - ignore the PC 
of the branch being predicted (an extreme (n,m) gselect scheme)
gshare: arrange bimodal predictors in single BHT, but construct its 
index by XORing low-order PC address bits with global branch history 
shift register - claimed to reduce conflicts
Per-address Two-level Adaptive using Per-address pattern history (PAp): 
for each branch, keep a k-bit shift register recording its history, 
and use this to index a BHT for this branch (see Yeh and Patt, 
1992)

Each suits some programs well but not all

Variations
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Horses for courses
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Extreme example - “go”

“go” is a 
SPEC95 
benchmark code 
with highly-
dynamic, 
highly-
correlated 
branch 
behaviour

• The bias of “go”s branches is more-or-less evenly spread between 
0% taken and 100% taken

• All known predictors do badly
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Some dynamic applications have highly-correlated branches 

For “go”, optimum BHR size (m) is much larger
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Review: Correlating Branches
Idea: taken/not taken 
of recently executed 
branches is related to 
behavior of next 
branch (as well as the 
history of that branch 
behavior)

Then behavior of recent 
branches selects between, 
say, 4 predictions of next 
branch, updating just that 
prediction 

(2,2) predictor: 2-bit 
global, 2-bit local

Branch address (4 bits)

2-bits per branch 
local predictors

PredictionPrediction

2-bit global 
branch history

(01 = not taken then taken)
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4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(H&P3ed Figure 3.15, p. 206)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT
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Re-evaluating Correlation

Several of the SPEC benchmarks have less than 
a dozen branches responsible for 90% of taken 
branches:
program branch % static # = 90%
compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214
Real programs + OS more like gcc
Small benefits beyond benchmarks for 
correlation? problems with branch aliases?
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Avoid branch prediction by turning branches into 
conditionally executed instructions:
if (x) then A = B op C else NOP

If false, then neither store result nor cause exception
Expanded ISA of Alpha, MIPS, PowerPC, SPARC have 
conditional move; PA-RISC can annul any following instr.
IA-64: 64 1-bit condition fields selected 
so conditional execution of any instruction
This transformation is called “if-conversion”

Drawbacks to conditional instructions
Still takes a clock even if “annulled”
Stall if condition evaluated late
Complex conditions reduce effectiveness; 
condition becomes known late in pipeline

x

A = 
B op C

Predicated Execution
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BHT Accuracy

Mispredict because either:
Wrong guess for that branch
Got branch history of wrong branch when index the table

4096 entry table  programs vary from 1% 
misprediction (nasa7, tomcatv) to 18% (eqntott), with 
spice at 9% and gcc at 12%
For SPEC92,
4096 about as good as infinite table
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Tournament Predictors

Motivation for correlating branch predictors is 2-
bit predictor failed on important branches; by 
adding global information, performance improved
Tournament predictors: use 2 predictors, 1 based 
on global information and 1 based on local 
information, and combine with a selector
Hopes to select right predictor for right branch
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Tournament Predictor in Alpha 21264

4K 2-bit counters to choose from among a global predictor 
and a local predictor
Global predictor also has 4K entries and is indexed by the 
history of the last 12 branches; each entry in the global 
predictor is a standard 2-bit predictor

12-bit pattern: ith bit 0 => ith prior branch not taken; 
ith bit 1 => ith prior branch taken; 

Local predictor consists of a 2-level predictor: 
Top level a local history table consisting of 1024 10-bit entries; 
each 10-bit entry corresponds to the most recent 10 branch 
outcomes for the entry. 10-bit history allows patterns 10 
branches to be discovered and predicted. 
Next level Selected entry from the local history table is used to 
index a table of 1K entries consisting a 3-bit saturating 
counters, which provide the local prediction

Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)
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% of predictions from local 
predictor in Tournament 

Prediction Scheme
98%
100%

94%
90%

55%
76%

72%
63%

37%
69%

0% 20% 40% 60% 80% 100%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

Advanced Computer Architecture Chapter 3.112

94%

96%

98%

98%

97%

100%

70%

82%

77%

82%

84%

99%

88%

86%

88%

86%

95%

99%

0% 20% 40% 60% 80% 100%

gcc

espresso

li

fpppp

doduc

tomcatv

Branch prediction accuracy

Profile-based
2-bit counter
Tournament

Accuracy of Branch Prediction

Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)
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Accuracy v. Size (SPEC89)
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Correlating
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Need Address 
at Same Time as Prediction

Branch Target Buffer (BTB): Address of branch index to get prediction 
AND branch address (if taken)

Note: must check for branch match now, since can’t use wrong branch address (Figure 
3.19, p. 262)

Branch PC Predicted PC

=?

PC of instruction
FETCH

Extra 
prediction state

bits
Yes: instruction is 
branch and use 
predicted PC as 
next PC

No: branch not 
predicted, proceed normally

(Next PC = PC+4)
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Special Case Return Addresses

Register Indirect branch hard to predict address
SPEC89 85% such branches for procedure return
Since stack discipline for procedures, save return 
address in small buffer that acts like a stack: 8 to 16 
entries has small miss rate

Advanced Computer Architecture Chapter 3.116

Pitfall: Sometimes bigger and 
dumber is better

21264 uses tournament predictor (29 Kbits)
Earlier 21164 uses a simple 2-bit predictor with 
2K entries (or a total of 4 Kbits)
SPEC95 benchmarks, 21264 outperforms 

21264 avg. 11.5 mispredictions per 1000 instructions
21164 avg. 16.5 mispredictions per 1000 instructions

Reversed for transaction processing (TP) !
21264 avg. 17 mispredictions per 1000 instructions
21164 avg. 15 mispredictions per 1000 instructions

TP code much larger & 21164 hold 2X branch 
predictions based on local behavior (2K vs. 1K 
local predictor in the 21264) 
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Warm-up effects and context-switching

In real life, applications are interrupted and some 
other program runs for a while (if only the OS)
This means the branch prediction is regularly trashed
Simple predictors re-learn fast

in 2-bit bimodal predictor, all executions of given branch update 
same 2 bits

Sophisticated predictors re-learn more slowly
for example, in (2,2) gselect predictor, prediction updates are 
spread across 4 BHTs

Selective predictor may choose fast learner predictor 
until better predictor warms up
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Warm-up...

Best predictor takes 20,000 instructions to overtake bimodal Zh
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Dynamic Branch Prediction Summary

Prediction becoming important part of scalar execution
Branch History Table: 2 bits for loop accuracy

Saturating counter (bimodal) scheme handles highly-biased branches well
Some applications have highly dynamic branches

Correlation: Recently executed branches correlated with next 
branch.

Either different branches
Or different executions of same branches

Tournament Predictor: more resources to competitive solutions and 
pick between them
Branch Target Buffer: include branch address & prediction
Predicated Execution can reduce number of branches, number of 
mispredicted branches
Return address stack for prediction of indirect jump
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Branch prediction resources

Design tradeoffs for the Alpha EV8 Conditional Branch 
Predictor (André Seznec, Stephen Felix, Venkata
Krishnan, Yiannakis Sazeides)

SMT:  4 threads, wide-issue superscalar processor, 8-way issue, 
512 registers (cancelled June 2001 when Alpha dropped)
Paper: http://citeseer.ist.psu.edu/seznec02design.html
Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

Branch prediction in the Pentium family (Agner Fog)
Reverse engineering Pentium branch predictors using direct access to 
BTB
http://www.x86.org/articles/branch/branchprediction.htm

Championship Branch Prediction Competition (CBP-1), 
organised by the Journal of Instruction-level 
Parallelism

http://www.jilp.org/cbp/
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Getting CPI < 1: 
Issuing Multiple Instructions/Cycle

Vector Processing: Explicit coding of independent loops 
as operations on large vectors of numbers

Multimedia instructions being added to many processors

Superscalar: varying no. instructions/cycle (1 to 8), 
scheduled by compiler or by HW (Tomasulo)

IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

(Very) Long Instruction Words (V)LIW: 
fixed number of instructions (4-16) scheduled by the 
compiler; put ops into wide templates (TBD)

Intel Architecture-64 (IA-64) 64-bit address
Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

Will discuss shortly

Anticipated success of multiple instructions lead to 
Instructions Per Clock cycle (IPC) vs. CPI

Advanced Computer Architecture Chapter 3.122

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
1 cycle load delay expands to 3 instructions in SS

instruction in right half can’t use it, nor instructions in next slot

Advanced Computer Architecture Chapter 3.123

Multiple Issue Issues
issue packet: group of instructions from 
fetch unit that could potentially issue in 1 
clock

If instruction causes structural hazard or a data 
hazard either due to earlier instruction in execution or 
to earlier instruction in issue packet, then instruction 
does not issue
0 to N instruction issues per clock cycle, for N-issue

Performing issue checks in 1 cycle could 
limit clock cycle time: O(n2-n) comparisons

issue stage usually split and pipelined
1st stage decides how many instructions from within 
this packet can issue, 2nd stage examines hazards 
among selected instructions and those already been 
issued
higher branch penalties => prediction accuracy 
important

I0 I1 I2 I3

I0
I1

I2
I3
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Multiple Issue Challenges
While Integer/FP split is simple for the HW, get CPI of 0.5 
only for programs with:

Exactly 50% FP operations AND No hazards
If more instructions issue at same time, greater difficulty 
of decode and issue:

Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 1 or 
2 instructions can issue; (N-issue ~O(N2-N) comparisons)
Register file: need 2x reads and 1x writes/cycle
Rename logic: must be able to rename same register multiple times in one 
cycle!  For instance, consider 4-way issue:
add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 ⇒ sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!
Result buses: Need to complete multiple instructions/cycle

So, need multiple buses with associated matching logic at every 
reservation station.
Or, need multiple forwarding paths
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Dynamic Scheduling in Superscalar
The easy way

How to issue two instructions and keep in-order 
instruction issue for Tomasulo?

Assume 1 integer + 1 floating point
1 Tomasulo control for integer, 1 for floating point

Issue 2X Clock Rate, so that issue remains in order
Only loads/stores might cause dependency between 
integer and FP issue:

Replace load reservation station with a load queue; 
operands must be read in the order they are fetched
Load checks addresses in Store Queue to avoid RAW violation
Store checks addresses in Load Queue to avoid WAR,WAW

Advanced Computer Architecture Chapter 3.126

Register renaming, virtual registers 
versus Reorder Buffers

Alternative to Reorder Buffer is a larger virtual set of 
registers and register renaming
Virtual registers hold both architecturally visible 
registers + temporary values

replace functions of reorder buffer and reservation station

Renaming process maps names of architectural 
registers to registers in virtual register set

Changing subset of virtual registers contains architecturally visible 
registers

Simplifies instruction commit: mark register as no 
longer speculative, free register with old value
Adds 40-80 extra registers: Alpha, Pentium,…

Size limits no. instructions in execution (used until commit)

Advanced Computer Architecture Chapter 3.127

How much to speculate?

Speculation Pro: uncover events that would 
otherwise stall the pipeline (cache misses)
Speculation Con: speculate costly if exceptional 
event occurs when speculation was incorrect
Typical solution: speculation allows only low-cost 
exceptional events (1st-level cache miss)
When expensive exceptional event occurs, (2nd-
level cache miss or TLB miss) processor waits until 
the instruction causing event is no longer 
speculative before handling the event
Assuming single branch per cycle: aggressive 
designs may speculate across multiple branches!

Advanced Computer Architecture Chapter 3.128

Limits to ILP

Conflicting studies of amount
Benchmarks (vectorized Fortran FP vs. integer C programs)
Hardware sophistication
Compiler sophistication

How much ILP is available using existing mechanisms 
with increasing HW budgets?
Do we need to invent new HW/SW mechanisms to keep 
on processor performance curve?

Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
Motorola AltiVec: 128 bit ints and FPs
Supersparc Multimedia ops, etc.
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Limits to ILP
Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted 
2 & 3 => machine with perfect speculation & an 
unbounded buffer of instructions available
4. Memory-address alias analysis – addresses are known 
& a store can be moved before a load provided 
addresses not equal

Also: 
unlimited number of instructions issued/clock cycle; 
perfect caches;
1 cycle latency for all instructions (FP *,/);

Advanced Computer Architecture Chapter 3.130

Upper Limit to ILP: Ideal Machine
(H&P3ed Figure 3.35, page 242)
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Program
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Limits to ILP - resources

Limits of Control Flow on Parallelism .
Monica S. Lam, Robert P. Wilson. 
19th ISCA, May 1992, pages 19-21. 
Limits of Instruction-Level Parallelism .
David W. Wall. 
DEC-WRL Research Report 93/6, Nov. 1993 
The Distribution of Instruction-Level and Machine 
Parallelism and Its Effect on Performance .
Norman P. Jouppi. 
IEEE Transactions on Computers, Dec. 1989. 
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How to Exceed ILP Limits of this study?

WAR and WAW hazards through memory: eliminated 
WAW and WAR hazards through register renaming, 
but not in memory usage
Unnecessary dependences (compiler not unrolling 
loops so iteration variable dependence)
Overcoming the data flow limit: value prediction, 
predicting values and speculating on prediction

Address value prediction and speculation predicts addresses and 
speculates by reordering loads and stores; could provide better 
aliasing analysis, only need predict if addresses =

Value Locality and Load Value Prediction.  Mikko H. Lipasti, Christopher B. 
Wilkerson, John Paul Shen.  Slides by Kundan Nepal:
http://www.lems.brown.edu/~iris/en291s9-04/lectures/kundanvalue_pred.pdf
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How to Exceed ILP Limits of this study?

Vector instructions
Next section of this Chapter

Simultaneous Multi-threading
Later section of this Chapter

Multiprocessors
Later Chapter

Advanced Computer Architecture Chapter 3.138
25

Alternative Model:
Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

add.vv v3, v1, v2

VECTOR
(N operations)

Vector processors have high-level operations that work on 
linear arrays of numbers: "vectors"

Advanced Computer Architecture Chapter 3.139

Properties of Vector Processors

Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate
Vector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over  64 elements
=> no (data) caches required! (Do use instruction cache)
Reduces branches and branch problems in pipelines
Single vector instruction implies lots of work ( loop)

=> fewer instruction fetches

Advanced Computer Architecture Chapter 3.140

Spec92fp   Operations (Millions) Instructions (M)
Program     RISC  Vector      R / V      RISC    Vector         R / V
swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71x
nasa7 69 41 1.7x 69 2.2 31x
su2cor 51 35 1.4x 51 1.8 29x
tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x
mdljdp2 32 52 0.6x 32 15.8 2x

Operation & Instruction Count: 
RISC v. Vector Processor

(from F. Quintana, U. Barcelona.)

Vector reduces ops by 1.2X, instructions by 20X
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Styles of Vector Architectures

memory-memory vector processors: all  vector operations 
are memory to memory
vector-register processors: all vector operations between 
vector registers (except load and store)

Vector equivalent of load-store architectures
Includes all vector machines since late 1980s: 
Cray, Convex, Fujitsu, Hitachi, NEC
We assume vector-register for rest of lectures

Advanced Computer Architecture Chapter 3.142

Components of Vector Processor
Vector Register: fixed length bank holding a single vector

has at least 2 read and 1 write ports
typically 8-32 vector registers, each holding 64-128 64-bit elements

Vector Functional Units (FUs): fully pipelined, start new 
operation every clock

typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), integer 
add, logical,  shift; may have multiple of same unit

Vector Load-Store Units (LSUs): fully pipelined unit to 
load or store a vector; may have multiple LSUs
Scalar registers: single element for FP scalar or address
Cross-bar to connect FUs , LSUs, registers

Advanced Computer Architecture Chapter 3.143

“DLXV” Vector Instructions

Instr. Operands Operation Comment
ADDV V1,V2,V3 V1=V2+V3 vector + vector
ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
MULTV V1,V2,V3 V1=V2xV3 vector x vector
MULSV V1,F0,V2 V1=F0xV2 scalar x vector
LV V1,R1 V1=M[R1..R1+63] load, stride=1
LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
MOV VM,R1 Vec. Mask = R1 set vector mask

Advanced Computer Architecture Chapter 3.144
32

Memory operations

Load/store operations move groups of data between 
registers and memory
Three types of addressing

Unit stride
Fastest

Non-unit (constant) stride
Indexed (gather-scatter)

Vector equivalent of register indirect
Good for sparse arrays of data
Increases number of programs that vectorize
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DAXPY (Y = a * X + Y)

LD F0,a
ADDI R4,Rx,#512 ;last address to 

load 
loop: LD F2, 0(Rx)   ;load X(i)

MULTD F2,F0,F2 ;a*X(i)
LD F4, 0(Ry) ;load Y(i)
ADDD F4,F2, F4 ;a*X(i) + Y(i)
SD F4 ,0(Ry) ;store into Y(i)
ADDI Rx,Rx,#8 ;increment index to X
ADDI Ry,Ry,#8 ;increment index to Y
SUB R20,R4,Rx ;compute bound
BNZ R20,loop ;check if done

LD     F0,a ;load scalar a
LV     V1,Rx ;load vector X
MULTS V2,F0,V1 ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV V4,V2,V3 ;add
SV Ry,V4 ;store the result

Assuming vectors X, Y 
are length 64

Scalar vs. Vector

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)
578 (2+9*64) vs.

6 instructions (96X)
64 operation vectors +       
no loop overhead
also 64X fewer pipeline 
hazards

Advanced Computer Architecture Chapter 3.146

NEC SX-8

35 GFLOPs peak 
per CPU
Eg University of 
Stuttgart 
installation:

Peak 
Performance 12 
TFlops
72 nodes, 8 CPUs 
per node
Memory 9.2 TB
Disk 160 TB shared 
disk, 72 * 140 GB 
local 
16GB/s node-to-
node interconnect

Advanced Computer Architecture Chapter 3.147

Virtual Processor Vector Model
Vector operations are SIMD 
(single instruction multiple data)operations
Each element is computed by a virtual processor (VP)
Number of VPs given by vector length

vector control register

Advanced Computer Architecture Chapter 3.148

Vector Architectural State

General
Purpose

Registers

Flag
Registers

(32)

VP0 VP1 VP$vlr-1

vr0
vr1

vr31

vf0
vf1

vf31

$vdw bits

1 bit

Virtual Processors ($vlr)

vcr0
vcr1

vcr31

Control
Registers

32 bits
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Vector Implementation

Vector register file
Each register is an array of elements
Size of each register determines maximum
vector length
Vector length register determines vector length
for a particular operation

Multiple parallel execution units = “lanes”
(sometimes called “pipelines” or “pipes”)

Advanced Computer Architecture Chapter 3.150
34

Vector Terminology: 
4 lanes, 2 vector functional units

(Vector
Functional
Unit)

Advanced Computer Architecture Chapter 3.151

Vector Execution Time

Time = f(vector length, data dependicies, struct. hazards) 
Initiation rate: rate that FU consumes vector elements 
(= number of lanes; usually 1 or  2 on Cray T-90)
Convoy: set of vector instructions that can begin execution 
in same clock (no struct. or data hazards)
Chime: approx. time for a vector operation
m convoys take m chimes; if each vector length is n, then 
they take approx. m x n clock cycles (ignores overhead; 
good approximization for long vectors)

4 conveys, 1 lane, VL=64
=> 4 x 64 - 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X
2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y
3: ADDV V4,V2,V3 ;add
4: SV Ry,V4 ;store the result

Advanced Computer Architecture Chapter 3.152

Start-up time: pipeline latency time (depth of FU 
pipeline); another sources of overhead
Operation Start-up penalty (from CRAY-1)
Vector load/store 12
Vector multply 7
Vector add 6

Assume convoys don't overlap; vector length = n:

Convoy Start 1st result last result
1. LV     0 12 11+n (12+n-1)
2. MULV, LV 12+n 12+n+12 23+2n Load start-up

3. ADDV 24+2n 24+2n+6 29+3n Wait convoy 2

4. SV     30+3n 30+3n+12 41+4n Wait convoy 3
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Why startup time for each vector 
instruction?

Why not overlap startup time of back-to-back vector 
instructions?
Cray machines built from many ECL chips operating at 
high clock rates; hard to do? 
Berkeley vector design (“T0”) didn’t know it wasn’t 
supposed to do overlap, so no startup times for 
functional units (except load)

Advanced Computer Architecture Chapter 3.154

Vector Load/Store Units & Memories
Start-up overheads usually longer fo LSUs
Memory system must sustain (# lanes x word) /clock cycle
Many Vector Procs. use banks (vs. simple interleaving):
1) support multiple loads/stores per cycle 
=> multiple banks & address banks independently
2) support non-sequential accesses (see soon)
Note: No. memory banks > memory latency to avoid stalls

m banks => m words per memory lantecy l clocks
if m < l, then gap in memory pipeline:

clock: 0 … l l+1 l+2 … l+m- 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m

may have 1024 banks in SRAM

Advanced Computer Architecture Chapter 3.155

Vector Length

What to do when vector length is not exactly 64?   
vector-length register (VLR) controls the length of 
any vector operation, including a vector load or store. 
(cannot be > the length of vector registers)

do 10 i = 1, n

10 Y(i) = a * X(i) + Y(i)
Don't know n until runtime! 
n > Max. Vector Length (MVL)?

Advanced Computer Architecture Chapter 3.156

Strip Mining

Suppose Vector Length > Max. Vector Length (MVL)?
Strip mining: generation of code such that each vector 
operation is done for a size Š to the MVL
1st loop do short piece (n mod MVL), rest VL = MVL

low = 1
VL = (n mod MVL)  /*find the odd size piece*/
do 1 j = 0,(n / MVL)  /*outer loop*/
do 10 i = low,low+VL-1  /*runs for length VL*/

Y(i) = a*X(i) + Y(i)  /*main operation*/
10 continue

low = low+VL  /*start of next vector*/
VL = MVL  /*reset the length to max*/

1 continue
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Common Vector Metrics

R∞: MFLOPS rate on an infinite-length vector
vector “speed of light”
Real problems do not have unlimited vector lengths, and the start-up 
penalties encountered in real problems will be larger 
(Rn is the MFLOPS rate for a vector of length n)

N1/2: The vector length needed to reach one-half of R�
a good measure of the impact of start-up

NV: The vector length needed to make vector mode faster 
than scalar mode 

measures both start-up and speed of scalars relative to vectors, quality of 
connection of scalar unit to vector unit

Advanced Computer Architecture Chapter 3.158

Vector Stride

Suppose adjacent elements not sequential in memory
do 10 i = 1,100

do 10 j = 1,100
A(i,j) = 0.0
do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)
Either B or C accesses not adjacent (800 bytes between)
stride: distance separating elements that are to be merged 
into a single vector (caches do unit stride) 
=> LVWS (load vector with stride) instruction
Strides => can cause bank conflicts 
(e.g., stride = 32 and 16 banks)
Think of address per vector element

Advanced Computer Architecture Chapter 3.159

Compiler Vectorization on Cray XMP
Benchmark %FP %FP in vector
ADM 23% 68%
DYFESM 26% 95%
FLO52  41% 100%
MDG 28% 27%
MG3D 31% 86%
OCEAN 28% 58%
QCD 14% 1%
SPICE 16% 7% (1% overall)
TRACK 9% 23%
TRFD 22% 10%

Advanced Computer Architecture Chapter 3.160

Vector Opt #1: ChainingSuppose:
MULV V1,V2,V3
ADDV V4,V1,V5 ; separate convoy?
chaining: vector register (V1) is not as a single entity but 
as a group of individual registers, then pipeline forwarding 
can work on individual elements of a vector
Flexible chaining: allow vector to chain to any other active 
vector operation => more read/write port
As long as enough HW, increases convoy size

MULV ADDV
64 647 6 Total: 7+64+6+64=141

Pipeline fill

MULV

ADDV

64

64

7

6 Total: 7+6+64 = 77
Pipeline fill
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Example Execution of Vector Code
Vector 

Memory Pipeline
Vector 

Multiply Pipeline
Vector 

Adder  Pipeline

8 lanes, vector length 32,
chaining

Scalar

Advanced Computer Architecture Chapter 3.162

Vector Opt #2: Conditional Execution
Suppose:

do 100 i = 1, 64
if (A(i) .ne. 0) then

A(i) = A(i) – B(i)
endif

100 continue
vector-mask control takes a Boolean vector: when vector-
mask register is loaded from vector test, vector 
instructions operate only on vector elements whose 
corresponding entries in the vector-mask register are 1.
Still requires clock even if result not stored; if still 

performs operation, what about divide by 0?

Advanced Computer Architecture Chapter 3.163

Vector Opt #3: Sparse Matrices
Suppose:

do 100 i = 1,n

100 A(K(i)) = A(K(i)) + C(M(i))
gather (LVI) operation takes an index vector and fetches 
the vector whose elements are at the addresses given by 
adding a base address to the offsets given in the index 
vector => a nonsparse vector in a vector register 
After these elements are operated on in dense form,  the 
sparse vector can be stored in expanded form by a scatter
store (SVI), using the same index vector
Can't be done by compiler since can't know Ki elements 
distinct, no dependencies; by compiler directive
Use CVI to create index 0, 1xm, 2xm, ..., 63xm
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Sparse Matrix Example

Cache (1993) vs. Vector (1988)
IBM RS6000 Cray YMP

Clock 72 MHz 167 MHz
Cache 256 KB 0.25 KB
Linpack 140 MFLOPS 160 (1.1)
Sparse Matrix 17 MFLOPS 125 (7.3)

(Cholesky Blocked )
Cache: 1 address per cache block (32B to 64B)
Vector: 1 address per element (4B)
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Applications
Limited to scientific computing?

Multimedia Processing (compress., graphics, audio synth, image proc.)

Standard benchmark kernels (Matrix Multiply, FFT, Convolution, 
Sort)
Lossy Compression (JPEG, MPEG video and audio)
Lossless Compression (Zero removal, RLE, Differencing, LZW)
Cryptography (RSA, DES/IDEA, SHA/MD5)
Speech and handwriting recognition
Operating systems/Networking (memcpy, memset, parity, checksum)
Databases (hash/join, data mining, image/video serving)
Language run-time support (stdlib, garbage collection)
even SPECint95

Advanced Computer Architecture Chapter 3.166

Vector for Multimedia?
Intel MMX/SSE instruction set extensions

Similar extensions on other processor families, eg PowerPC AltiVec
Idea: pack multiple short-word operands into one long register

Eg 128-bit register
2 64-bit doubles
4 32-bit floats or ints
8 16-bit ints or fixed-point
16 8-bit ints
Often with media-specific instructions eg saturated arithmetic

Claim: overall speedup 1.5 to 2X for 2D/3D graphics, audio, video, 
speech, comm., ...

Initially hand-coded, accessible using special intrinsic functions
Delivered via libraries such as the Intel Performance Primitives (IPP)
Some support from compilers such as Intel’s, but awkward constraints (eg
alignment of operands) 

+
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Mediaprocessing: 
Vectorizable? Vector Lengths?

Kernel Vector length
Matrix transpose/multiply # vertices at once
DCT (video, communication) image width
FFT (audio) 256-1024
Motion estimation (video) image width, iw/16
Gamma correction (video) image width
Haar transform (media mining) image width
Median filter (image processing) image width
Separable convolution (img. proc.) image width

(from Pradeep Dubey - IBM,
http://www.research.ibm.com/people/p/pradeep/tutor.html)
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Vector Pitfalls

Pitfall: Concentrating on peak performance and ignoring start-up 
overhead: NV (length faster than scalar) > 100!
Pitfall: Increasing vector performance, without comparable increases in 
scalar performance 
(Amdahl's Law)

failure of Cray competitor from his former company
Pitfall: Good processor vector performance without providing good 
memory bandwidth

MMX?
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Vector Advantages
Easy to get high performance; N operations:

are independent
use same functional unit
access disjoint registers
access registers in same order as previous instructions
access contiguous memory words or known pattern
can exploit large memory bandwidth
hide memory latency (and any other latency)

Scalable (get higher performance as more HW resources available)
Compact: Describe N operations with 1 short instruction (v. VLIW)
Predictable (real-time) performance vs. statistical performance (cache)
Multimedia ready: choose N * 64b, 2N * 32b, 4N * 16b, 8N * 8b
Mature, developed compiler technology
Vector Disadvantage: Out of Fashion
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Vector Summary

Alternate model accommodates long memory latency, 
doesn’t rely on caches as does Out-Of-Order, 
superscalar/VLIW designs
Much easier for hardware: more powerful instructions, 
more predictable memory accesses, fewer hazards, fewer 
branches, fewer mispredicted branches,  ...
What % of computation is vectorizable? 
Is vector a good match to new apps such as multimedia, 
DSP?
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Beyond ILP: Multithreading, Simultaneous 
Multithreading (SMT)

Cray/Tera MTA
http://www.cray.com/products/system
s/mta/, 
http://www.utc.edu/~jdumas/cs460/pa
persfa01/craymta/

(Source: Asanovic http://www.cag.lcs.mit.edu/6.893-f2000/lectures/l06-tera.pdf)
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SMT

Alpha 21464
One CPU with 
4 Thread 
Processing 
Units (TPUs)
“6% area 
overhead 
over single-
thread 4-
issue CPU”
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SMT 
performance

Alpha 21464

Intel Pentium 4 
with 
hyperthreading:

http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
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Beyond ILP: Multithreading, Simultaneous Multithreading (SMT)

MLX1 - A Tiny Multithreaded 586 
Core for Smart Mobile Devices

http://www.cs.washington.edu/researc
h/smt/memoryLogix.pdf

“A tiny ‘synthesis-friendly’ 586 core for SoC
solutions”
For smart mobile devices that demand high 
MIPS / W
Uses SMT to deliver more performance in 
smaller die area
Leverages from the PC platform”
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SMT in a network processorClearwater Networks CNP810SP 
http://www.zytek.com/~melvin/clearwater.html
8 threads execute simultaneously, utilizing 
variable number of resources on a cycle by cycle 
basis. 
In each cycle 0-3 instructions can be executed 
from each of the threads depending on instruction 
dependencies and availability of resources
Maximum IPC of the entire core is 10
In each cycle two threads are selected for fetch 
and their respective program counters (PCs) are 
supplied to the dual-ported instruction cache
Each port supplies eight instructions, so there is a 
maximum fetch bandwidth of 16 instructions
The two threads chosen for fetch in each cycle 
are the two that have the fewest number of 
instructions in their respective IQs
The 8 threads are divided into two clusters of 4 
for ease of implementation. 
Thus the dispatch logic is split into two groups 
where each group dispatches up to six instructions 
from four different threads
Eight function units are grouped into two sets of 
four, each set dedicated to a single cluster
There are also two ports to the data cache that 
are shared by both clusters. 
A maximum of 10 instructions can be dispatched 
in each cycle. The function units are fully 
bypassed so that dependent instructions can be 
dispatched in successive cycles. 
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Conclusion

1985-2000: 1000X performance 
Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

“industry been following a roadmap of ideas known in 1985 
to exploit Instruction Level Parallelism and (real) Moore’s 
Law to get 1.55X/year”

Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order 
execution, …

ILP limits: To make performance progress in future need 
to have explicit parallelism from programmer vs. implicit 
parallelism of ILP exploited by compiler, HW?

Otherwise drop to old rate of 1.3X per year?
Less than 1.3X because of processor-memory performance gap?

Impact on you: if you care about performance, 
better think about explicitly parallel algorithms 
vs. rely on ILP?


