332
Advanced Computer Architecture
Chapter 5

Instruction Level Parallelism
- the static scheduling approach

March 2007
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy
and Patterson's Computer Architecture, a quantitative approach (39
and 4" eds), and on the lecture slides of David Patterson and John

Kubiatowicz's Berkeley course

i» Pentium 4 “Netburst”

Page 1

L2 Cache
128 KB

T

|MENG/EDEC

..-u:--u--»--“%uu spaesniais

» AMD Athlon CPU core

e).y tamshar

TEF T R 5% 600

v Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization
® http://www.intel.com/design/pentium4/manuals/24896607.pdf

I Desktop Performance & Optimization for Intel® Pentium® 4 Processor
» ftp://download.intel.com/design/pentium4/papers/24943801.pdf (much shorter!)

I Intel® compilers

» http://www.intel.com/s
oftware/products/compi

lers/
i Intel's VTune
performance analysis
tool

® http://www.intel.com/s
oftware/products/vtune
/

» AMD Athlon x86 Code
Optimization Guide
= http://www.amd.com/us

en/assets/content_type
/white_papers_and_tec
h_docs/22007 .pdf

= (see page 67 for the
nine-step development
of a routine to copy an
array - 570MB/s to
1630MB/s)

Table 1. Approximate Ranges of Potential Application-Level Performance Gains of Several Code

Optimizs

tion Technigues.

Item Category LCoding Technigue Potential Relative Performance Gain
1 Memory Fay Attention 1o Store-To-Load | ~1.1 - 13X
Forwarding Restrictions
2 Memory Avoid Cache Line Splits, MOB Splis_ | <11 — 1.2X
Memory Avoid Alasing =105 - 11X
4 Memory Use 16 Byie Load Store =1.1X
5 Memory Use Optimal Prefeich Instruction Sl - LISX
] Memory Avoid Sparse Diata Structures ~1.1 = 13X
7 Memory Use Hybrid S0A Data Structure -LIX
& Computation Improve Branch Predictability =105~ 11X
9 Computation Minimize 187 Maodes Changes =1.1- 1.3X
10 Computation _| Eliminate x87 FP Exceptions “Li- 13X
1 Computation Enable FTZ/DAZ ~1.1 - 1.3X on SSE applications
12 Computation Replace Long-latency Instructions =11 - 12X
13 Graphics Bus Avoid Partial Writes' Software Write- | ~1.1 - 1.2X
Combining
14 Gengral Integer work oads =L - 12X
15 General Float USIMIY kload: 13- 17X

Example: Pentium 4 memory aliasing
» “There are several cases where addresses with a given stride will
compete for some resource in the memory hierarchy. Note that first-
level cache lines are 64 bytes and second-level cache lines are 128
bytes. Thus the least significant 6 or 7 bits are not considered in alias
comparisons. The aliasing cases are listed below.

=» 2K for data — map to the same first-level cache set (32 sets, 64-byte lines). There are 4
ways in the first-level cache, so if there are more that 4 lines that alias to the same 2K
modulus in the working set, there will be an excess of first-level cache misses.

» 16K for data — will look same to the store-forwarding logic. If there has been a store to an
address which aliases with the load, the load will stall until the store data is available.

= 16K for code — can only be one of these in the trace cache at a time. If two traces whose
starting addresses are 16K apart are in the same working set, the symptom will be a high
trace cache miss rate. Solve this by offsetting one of the addresses by 1 or more bytes.

=» 32K for code or data — map to the same second-level cache set (256 sets, 128-byte
lines). There are 8 ways in the second-level cache, so if there are more than 8 lines that
alias to the same 32K modulus in the working set, there will be an excess of second-level
cache misses.

» 64K for data — can only be one of these in the first-level cache at a time. If a reference
(load or store) occurs that has bits 0-15 of the linear address, which are identical to a
reference (load or store) which is underway, then second reference cannot begin until
first one is kicked out of cache. Avoiding this kind of aliasing can lead to a factor of three
speedup.” (http://www.intel.com/design/pentium4/manuals/24896607.pdf page 2-38)

Overview

i The previous Chapter: Dynamic scheduling, out-
of -order (0-0-0): binarz compatible, exploiting
ILP in hardware: BTB, ROB, Reservation
Stations, ...

i» How much of all this complexity can you shift into
the compiler?

i+ What if you can also change instruction set
architecture?

i VLIW (Very Long Instruction Word)

i» EPIC (Explicitly Parallel Instruction Computer)

» Intel's (and HP's) multi-billion dollar gamble for the future of
computer architecture: Itanium, IA-64

= Started ca.1994..not dead yet - but has it turned a profit?

Review: extreme dynamic ILP
i P6 (Pentium Pro, IT, ITI, AMD Athlon)

= Translate most 80x86 instructions to micro-operations
® Longer pipeline than RISC instructions
=% Dynamically execute micro-operations
i “Netburst” (Pentium 4, ..)
® Much longer pipeline, higher clock rate in same technology as P6
= Trace Cache to capture micro-operations, avoid hardware translation
i Intel Next Generation Microarchitecture
= Shorter pipeline, wider issue, high-bandwidth smart decode instead of trace cache

i How can we take these ideas further?
=» Complexity of issuing multiple instructions per cycle
=» And of committing them
® n-way multi-issue processor with an m-instruction dynamic scheduling window
® m must increase if n is increased
@ Need n register ports

@ Need to compare each of the n instruction’s src and dst regs to determine
dependence

= Predicting and speculating across multiple branches

= With many functional units and registers, wires will be long - need pipeline stage
Just to move the data across the Chip

Running Example

i* This code adds a scalar to a vector:
for (i=1000; i>=0; i=i-1)
x[i] = x[i] + s;

» Assume following latency all examples

Instruction Instruction Execution Latency
producing result using result in cycles in cycles
FP ALV op Another FP ALV op 4 3
FP ALV op Store double 3 2
Load double FP ALU op 1 1
Load double Store double 1 0
Integer op Integer op 1 0

FP Loop: Where are the Hazards? FP Loop Showing Stalls

+ First translate into MIPS code:

Loop: L.D FO,0(R1) ;FO=vector element
-To simplify, assume 8 is lowest address

stall
ADD.D F4,F0,F2 ;add scalar in F2

Loop: L.D FO,0(R1) ;FO=vector element stall

1

2

3
ADD.D F4,F0,F2 ;add scalar from F2 4 "
S.D 0(R1),F4 ;store result 5 sta
DSUBUI R1,R1,8 :decrement pointer 88 (DW) 6 S.D O(RL),F4 ;store result
BNEZ R1,Loop ;branch Rll=zero 7 DSUBUI R1,R1,8 ;decrement pointer 8B (DW)
8
9

NOP ;delayed branch slot BNEZ R1,Loop ;branch Rl!=zero
stall ;delayed branch slot
Where are the stalls? ;::Z;Zi;;o,ll'esu/f fi’fn’;’ﬂﬁr ﬁZ’fi’iic'Zzs
FP ALV op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALV op 1

* 9 clocks: Rewrite code to minimize stalls?

Unroll Loop Four Times

Revised FP Loop Minimizing Stalls (straightforward way)

1 Loop: L.D FO,0(RL) 1 Loop:L.D F0,0(RL) “YC"‘Z Sm“” Rewrite loop to
2 stall 2 ADD.D F4,FO,F2 2 cycles sta PP 5
3 ADD.D F4. FO.E2 3 S.D O(RL),F4 “drop DSUBUI & engz Minimize stalls:
- T 4 L.D F6,-8(R1)
4 DsuBUI R1,R1,8 5 ADD.D F8,F6,F2
5 BNEZ R1,Loop ;delayed branch 6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
6 S.D 8(R1),F4 ;altered when move past DSUBUI 7 L.D F10,-16(R1)
. 8 ADD.D F12,F10,F2
Swap BNEZ and S.D by changing address of S.D 9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
ZInstruction ZInstruction Latency in 10 L.D F14,-24(R1)
producing result using result clock cycles 11 ADD.D F16,F14,F2
FP ALV op Another FP ALU op 3 ig géBBUI ';i‘léilzé;le ter to 4%8
» > ;alter to 4%
FP ALV op Store double 2 14 BNEZ RL.LOOP
Load double FP ALV op 1 15 NOP
6fc|ocks, but just 3 for execution, 3 for loop overhead: How make 15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
aster?

Assumes R1 is multiple of 4

Page 3

Unroll the |

* Four copies of the loop body
+ One copy of increment and test
+ Adjust register-indirect loads using offsets

1 Loop:L.D
2 ADD.D
3 S.D

a4 L.D

5 ADD_D
6 S.D

7 L.D

8 ADD.D
9 S.D
10 L.D
11 ADD.D
12 S.D
13 DSUBUI
14 BNEZ
15 NOP

FO,0(R1)
F4,F0,F2

oop four times

0(R1),F4 ;drop DSUBUI & BNEZ

FO,-8(R1)
F4,F0,F2

-8(R1),F4 ;drop DSUBUI & BNEZ

FO,-16(R1)
F4,F0,F2

-16(R1),F4 ;drop DSUBUI & BNEZ

FO,-24(R1)
F4,F0,F2
-24(R1),F4

R1,R1,#32 ;alter to 4*8

R1,LO0P

* Re-use of registers creates WAR (“anti-dependences”)

+ How ca

n we remove them?

Unrolled Loop That Minimizes Stalls

1 Loop:L.D
2 L.D
3 L.D
4 L.D
5 ADD.D
6 ADD.D
7 ADD.D
8 ADD.D
9 S.D
10 S.D
11 S.D
12 DSUBUI
13 BNEZ
14 S.D

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
0(R1),F4
-8(R1),F8
-16(R1),F12
R1,R1,#32
R1,LOOP
8(R1),F16 ; 8-32 = -24

i What assumptions made
when moved code?

% OK to move store past
DSUBUI even though
changes register

% OK to move loads before
stores: get right data?

% When is it safe for compiler

to do such changes?

14 clock cycles, or 3.5 per iteration

Page 4

Loop unrolling...

1 Loop:L.D FO,0(R1)

2 ADD.D F4,FO0,F2

3 S.D O0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F6,-8(R1)

5 ADD.D F8,F6,F2

6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
7 L.D F10,-16(R1)

8 ADD.D F12,F10,F2

9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
10 L.D F14,-24(R1)

11 ADD.D F16,F14,F2

12 S.D -24(R1),F16

13 DSUBUI R1,R1,#32 ;alter to 4*8

14 BNEZ R1,LOOP

15 NOP

The original “register renaming”

Compiler Perspectives on Code
Movement

I+ Name Dependencies are Hard to discover for Memory
Accesses
» Does 100(R4) = 20(R6)?
=% From different loop iterations, does 20(R6) = 20(R6)?
% Need to solve the “dependence equation”

I Our example required compiler to know that if R1 doesn't
change then:

O(R1) = -8(R1) = -16(R1) = -24(R1)

There were no dependencies between some loads and
stores so they could be moved by each other

Steps Compiler Performed to
Unroll
i Check OK to move the S.D after DSUBUI and BNEZ,
and find amount to adjust S.D offset
i» Determine unrolling the loop would be useful by finding
that the loop iterations were independent
I» Rename registers to avoid name dependencies
I» Eliminate extra test and branch instructions and
adjust the loop termination and iteration code

i» Determine loads and stores in unrolled loop can be
interchanged by observing that the loads and stores
from different iterations are independent

® requires analyzing memory addresses and finding that they do not
refer to the same address.

i» Schedule the code, preserving any dependences
needed to yield same result as the original code

Software Pipelining Example

Before: Unrolled 3 times After: Software Pipelined

1 L.D FO0,0(R1) 1 S.D O(R1),F4 ; Stores M[i]
2 ADD.DF4,F0,F2 /2 ADD.D F4,F0,F2 ; Adds to M[i-1]
3 S.D O(RL),F4 3 L.D FO0,-16(R1);Loads M[i-2]
4 L.D F6,-8(R1) 4 DSUBUI R1,R1,#8
5 ADD.DF8,F6,F2 5 BNEZ R1,LOOP
6 S.D -8(R1),F8
7 L.D F10,-16(R1) SW Pipeli
8 ADD.DF12,F10,F2 a W Pipeline
9 S.D -16(R1),F12 o |4
10 DSUBUI R1,R1,#24 g
11 BNEZ R1,LOOP o Time
& Loop Unrolled
o | 4 ; ; ; ; p
+ Symbolic Loop Unrolling ° | .}_.}_.L.L.L.‘

- Maximize result-use distance /
- Less code space than unrolling
- Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

Time

5 cycles per iteration

Page 5

Another possibility:
Software Pipelining

I» Observation: if iterations from loops are independent, then
can get more ILP by taking instructions from different
iterations

I» Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (~ Tomasulo in SW)

Iteration
—0— Jteration R
1 Iteration
Iteration
Iteration
4

Software-
pipelined
iteration

ﬁ_/
Pipeline drains

U A g
Y Y

Pipeline fills Pipeline full

Loop-carried dependences

i» Example: Where are data dependencies?
(A,B,C distinct & non-overlapping)

for (i=0; i<100; i=i+l) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}
1. S2 uses the value, A[i+1], computed by S1 in the same iteration.

2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same is
true of S2 for B[i] and B[i+1].

This is a "loop-carried dependence”: between iterations

i» For our prior example, each iteration was distinct

i» Implies that iterations can't be executed in parallel,
Right????

Associativity in floating point
i (a+b)+c = a+(b+c) ?

I+ Example: Consider 3-digit base-10 floating-point

1+1+1+1+41+1+1+1+ +1+1+1+1+1+1+1+1+1+1+1+1000
1000 ones
1000+1+1+1+1+1+1+1+1+_ +1+1+1+1+1+1+1+1+1+1+1+1

1000 ones

Consequence: many compilers use loop unrolling and
reassociation to enhance parallelism in summations

And results are different!

Page 6

Does a loop-carried dependence
mean there is no parallelism???
b Consider:

for (i=0; i< 8; i=i+1)
A=A+ CLil; 5* S1 */

Could compute:

“Cycle 1": temp0 = C[0] + C[1]:

Y temgl = C[Z + C[S ;

temp2 = C[4] + C[5];
temp3 = C[6] + C[7];

“Cycle 2": temp4 = tempO + templ;
temp5 = temp2 + temp3;

“Cycle 3": A = temp4 + temp5;

» Relies on associative nature of “+".

i See “Parallelizing Complex Scans and Reductions” by Allan Fisher and
Anwar Ghuloum (http://doi.acm.org/10.1145/178243.178255)

What if We Can Change Instruction Set?

i» Superscalar processors decide on the fly how many
instructions to issue
» HW complexity of Number of instructions to issue O(n?)
i» Why not allow compiler to schedule instruction level
parallelism explicitly?
i» Format the instructions in a potential issue packet so
that HW need not check explicitly for dependences

) Recall: Unrolled Loop that Minimizes Stalls
VLIW: Very Large Instruction Word for Scalar

i» Each “instruction” has explicit coding for multiple

operations 1loop: L.D FO,0(R1) LD to ADD.D: 1 Cycle
% In IA-64, grouping called a “packet” 2 L.D F6,-8(R1) ADD.D to S.D: 2 Cycles
% In Transmeta, grouping called a “molecule” (with “atoms” as ops) 3 L.D F10,-16(R1)
. . . . 4 L.D F14,-24(R1)
I* Tradeoff instruction space for simple decoding 5 ADD.D F4,FO,F2
The long instruction word has room for many operations 6 ADD.D F8,F6,F2
® By definition, all the operations the compiler puts in the long instruction 7 ADD.D F12,F10,F2
word are independent => execute in parallel 8 ADD.D F16,F14,F2
% E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch glao gg ngéz)':és
o&l?d:o 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits 1 s D —16(R15,F12
™ . 12 DSUBUI R1,R1,#32
® Need compiling technique that schedules across several branches 13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24
14 clock cycles, or 3.5 per iteration
Recall: Software Pipelining
Loop Unrolling in VLIW
Memory Memory FP FP Int. op/ Clock
reference 1 reference2 operation 1 op.2 branch i Observation: if iterations from loops are independent, then

can get more ILP by taking instructions from different
iterations

L.DFO,0(R1) L.DF6,-8(R1)

L.D F10,-16 T
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D FAFUF2 ADD.D F8,F6,F2

1

2
L.D F26,-48(R1) ADD.DF2F10,F2 ADD.D F16,F14,F2 431 i Software pipelining: reorganizes loops so that each

MM’FZ ADD.D F24,F22,F2 5 iteration is made from instructions chosen from different
TB(R1),F8 6
7
8
9

S.D O(RL),F4 ADD.D F28,F26,F2 iterations of the original loop (~ Tomasulo in SW)
S.D -16(R1),F12 S.D -24(R1),F16
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 "9“0"0“ terati
S.D -0(R1),F28 BNEZ R1,LOOP T terton Hteration
Unrolled 7 times to avoid delays iy Meration
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
. . Software-
Average: 2.5 ops per clock, 50% efficiency pipelined
Note: Need more registers in VLIW (15 vs. 6 in SS) — L

Page 7

Software Pipelining with
Recall: Software Pipelining Example Loop Unrolling in VLIW

Before: Unrolled 3 times After: Software Pipelined Memory Memory FP FP Int. op/ Clock
é IADB . EggéR;g 1 S.D O0(R1),F4 ;Stores M[i] reference 1 reference 2 operation 1 op.2 branch

- -0, 2 ADD.D F4,FO0,F2 ; Adds to M[i-1] L.D FO,-48(R1) ST O(R1),F4 ADD.D F4,F0,F2 1
3 S.D O0(R1),F4 3 L.D FO0,-16(R1); Loads M[i-2] L.D F6,-56(R1) ST -8(R1),F8 ADD.D F8,F6,F2 DSUBUIRLRL#24 2
4 L.D F6,-8(R1) 4 DSUBUIRL,R1,#8 L.D F10,-40(R1) ST 8(R1),F12 ADD.D F12,F10,F2 BNEZ R1,LOOP 3
5 ADD.D F8,F6,F2 5 BNEZ R1,LOOP
6 S.D -8(R1),F8 I Software pipelined across 9 iterations of original loop
7 L.D F10,-16(R1) o # In each iteration of above loop, we:
8 ADD.D F12,F10,F2 aQ SW Pipeline ® Store to m,m-8,m-16 (iterations I-3,1-2,I-1)
9 S.D -16(R1),F12 o @ Compute for m-24,m-32,m-40 (iterations 1,1+1,1+2)
10 DSUBUIR1,R1,#24 °‘ ® Load from m-48,m-56,m-64 (iterations 1+3,1+4,1+5)
11 BNEZ R1,LOOP § Time” g I 9results in 9 cycles, or 1 clock per iteration

5 L,°°p unrolle I Average: 3.3 ops per clock, 66% efficiency
i X > |/ % K ; ; i . . T
« Symbolic Loop Unrolling o | .}_.}_.L.L.[.‘ Note: Need fewer registers for software pipelining

_ Maximize result-use distance / (only using 7 registers here, was using 15)

— Less code space than unrolling
— Fill & drain pipe only once per loop
vs. once per each unrolled iteration in loop unrolling

Time

Trace Scheduling Advantages of HW (Tomasulo) vs.

i Parallelism across IF branches vs. LOOP branches? SW (VLIW) SPeCU|01'|0n
v Two steps:
» Trace Selection HW advan‘l'ages:
. E%"gs_lﬁfei!:)alf;qsﬁﬂdﬁi *;f; %‘r]‘s;acr 3f'ﬁ§k§r§%’.%§3ﬁ) =» HW better at memory disa'mb'iguaTion since knows actual addresses
long sequence of straight-line code » HW better at branch prediction since lower overhead
» Trace Compaction = HW maintains precise exception model
® Squeeze trace into few VLIW instructions ®» HW does not execute bookkeeping instructions
® Need bookkeeping code in case prediction is wrong = Same software works across multiple implementations
b This is a form of compjlt.ar-?enem'red speculat.ion) ‘ = Smaller code size (not as many nops filling blank instructions)
L fmﬂlﬁﬁqﬂgﬁf generate “fixup” code to handle cases in which trace is not the » SW advan *age s:
» Needs extra registers: undoes bad guess by discarding = Window of instructions that is examined for parallelism much higher
» Subtle compiler bugs mean wrong answer = Much less hardware involved in VLIW (unless you are Intel..!)
vs. poorer performance; no hardware interlocks = More involved types of speculation can be done more easily
= Speculation can be based on large-scale program behavior, not just local
information

Page 8

Superscalar v. VLIW

» Smaller code size
I Binary compatibility
across generations of

hardware i» Simplified Hardware for

decoding, issuing
instructions

» No Interlock Hardware
(compiler checks?)

I» More registers, but
simplified Hardware for
Register Ports (multiple
independent register
files?)

Problems with First Generation VLIW

» Increase in code size

= generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops

= whenever VLIW instructions are not full, unused functional units
translate to wasted bits in instruction encoding
i» Operated in lock-step; no hazard detection HW

= a stall in any functional unit pipeline caused entire processor to
stall, since all functional units must be kept synchronized

=» Com jl:r might know functional unit latencies, but caches harder to
predic
i» Binary code compatibility

» Pure VLIW => different numbers of functional units and unit
latencies require different versions of the code

Page 9

Real VLIW
VLIW Minisupercomputers/Superminicomputers:
i Multiflow TRACE 7/300, 14/300, 28/300 [Josh Fisher]
I Multiflow TRACE /500 [Bob Colwell]
w Cydrome Cydra 5 [Bob Rau]
i IBM Yorktown VLIW Computer (research machine)

Single-Chip VLIW Processors:
i Intel iWarp

Single-Chip VLIW Media (throughput) Processors:
i Trimedia, Chromatic, Micro-Unity
i DSP Processors (TT TMS320C6x)

Hybrids...
i Intel/HP EPIC IA-64 (Explicitly Parallel Instruction Comp.)
i Transmeta Crusoe (x86 on VLIW??)

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

Intel/HP TA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

v TA-64: instruction set architecture; EPIC is type
= EPIC = 2nd generation VLIW?
i Itanium™ first implementation
= Highly parallel and deeply pipelined hardware at 800Mhz
» 6-wide, 10-stage pipeline
= Not competitive
I Ttanium 2
» 6-wide, 8-stage pipeline
=» 16KB L1I, 16KB L1D (one cycle), 256KB L2 (5 cycle), 3MB L3 (12 cycle), all on-die
= http://www.intel.com/products/server/processors/server/itanium2/

= Competitive for some applications (eg SPEC FP)
W 128 64-bit integer registers + 128 82-bit floating point registers
= Not separate register files per functional unit as in old VLIW
w Hardware checks dependencies
(interlocks => binary compatibility over time)

i+ Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

Hardware Support for Exposing
More Parallelism at Compile-Time

To help trace scheduling and software pipelining, the Itanium
instruction set includes several interesting mechanisms:

I Predicated execution

i Speculative, non-faulting Load instruction
Ik Software-assisted branch prediction

v Register stack

i Rotating register frame

I+ Software-assisted memory hierarchy

=»Job creation scheme for compiler engineers

IA64: Speculative, Non-Faulting Load

Id.s r1=[a]
inst 1
inst 2
unsafe _
use=ri
code
motion ' br
/ \. I/\
Id r1=[a] chk.s use{ Idri=[a]
use=r1 +——J use=r1

b Speculatively-loaded data can be consumed prior to check
b “speculation” status is propagated with speculated data

b Any instruction that uses a speculative result also becomes
®» (i.e. suppressed exceptions)

b chk.s checks the entire dataflow sequence for exceptions

http://www.stanford. edu/class/ee382a/handouts/L13-Vector. pdf

Page 10

TA64: Speculative, Non-Faulting Load

ld.s r1=[a]

inst 1
unsafe inst 2

code
motion

)
Id r1=[a] chk.s i1 1d r1=[a]
use=r1 use=r

D

i Id.s fetches speculatively from memory
®i.e. any exception due to Id.s is suppressed

i If Id.s r did not cause an exception then chk.s ris an
NOP, else a branch is taken to some compensation code

http://www.stanford.edu/class/ee382a/handouts/L13-Vector.pdf

TA64: Speculative "Advanced"” Load

{ns; ; potential {d.at ;1=[x]
ins o ins
|
. anasing inst 2
L) |
~ st [?]
Id r1=[x]4
use=ri ld.c r1=[x]
use=r{

» Id.a starts the monitoring of any store to the same
address as the advanced load

i» If no aliasing has occurred since Id.a, Id.c is a NOP
I» If aliasing has occurred, Id.c re-loads from memory

IA64: Branch prediction

I+ Static branch hints can be encoded with every branch
® taken vs. not-taken
= whether to allocate an entry in the dynamic BP hardware

k SW and HW has joint control of BP hardware

= "brp” (branch prediction) instruction can be issued ahead of the actual
branch to preset the contents of BHT and TBT

Ttanium-1 used a 512-entry 2-level BHT and 64-entry BTB
I+ TAR (Target Address Register)

= a small, fully-associative BTAC-like structure
= contents are controlled entirely by a “prepare-to-branch” inst.
= a hit in TAR overrides all other predictions

v RSB (Return Address Stack)

®» Procedure return addr is pushed (or popped) when a procedure is called
(or when it returns)

= Predicts nPC when executing register-indirect branches

IA-64 Registers

i» The integer registers are configured to help
accelerate procedure calls using a register stack

= mechanism similar to that developed in the Berkeley RISC-I
processor and used in the SPARC architecture.

= Registers 0-31 are always accessible and addressed as 0-31

= Registers 32-128 are used as a register stack and each procedure is
allocated a set of registers (from O to 96)

= The new register stack frame is created for a called procedure by
renaming the registers in hardware;

= a special register called the current frame pointer (CFM) points to
the set of registers to be used by a given procedure

i» 8 64-bit Branch registers used to hold branch
destination addresses for indirect branches

i» 64 1-bit predicate registers

IA64: Software-Assisted Memory Hierarchies

[1| 2 S5 ¢
] N Nain
] Memory
NT | NT

L; : ; 5 .N TL3 i

i» ISA provides for separate storages for “temporal” vs
“non-temporal” data, each with its own multiple level of
hierarchies

I» Load and Store instructions can give hints about where
cached copies should be held after a cache miss

Intel/HP TA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

I» Instruction group: a sequence of consecutive instructions
with no register data dependences

® All the instructions in a group could be executed in parallel, if sufficient
hardware resources existed and if any dependences through memory were
preserved

% An instruction group can be arbitrarily long, but the compiler must explicitly
indicate the boundary between one instruction group and another by placing
a stop between 2 instructions that belong to different groups
Il TA-64 instructions are encoded in bundles, which are 128
bits wide.
= Each bundle consists of a 5-bit template field and 3 instructions, each 41
bits in length
w 3 Instructions in 128 bit “groups”; field determines if instructions
dependent or independent
®» Smaller code size than old VLIW, larger than x86/RISC
#» Groups can be linked to show independence > 3 instr

Page 11

5 Types of Execution in Bundle

Execution Instruction Instruction Example

Unit Slot type Description Instructions

I-unit A Integer ALU add, subtract, and, or, cmp
I Non-ALU Int shifts, bit tests, moves

M-unit A Integer ALU add, subtract, and, or, cmp
M Memory access Loads, stores for int/FP regs

F-unit F Floating point Floating point instructions

B-unit B Branches Conditional branches, calls

L+X L+X Extended Extended immediates, stops

- 5-bit template field within each bundle describes both the

presence of any stops associated with the bundle and the
execution unit type required by each instruction within the
bundle (see Fig 4.12 page 271)

How Register Rotation Helps Software
Pipelining

The concept of a software pipelining branch:

L1: 1d4 r35 =[r4],4 // post-increment by 4
st4 [r5]1=r37,4 // post-increment by 4
br.ctop L1 ;;

The br.ctop instruction in the example rotates
the general registers (actually br.ctop does more as we shall see)

Therefore the value stored into r35 is read in r37 two
iterations (and two rotations) later.

The register rotation eliminated a dependence between
the load and the store instructions, and allowed the loop to
execute in one cycle.

b Register rotation is useful for procedure calls
i It's also useful for software-pipelined loops

b The logical-to-physical register mapping is shifted by 1 each time
the branch ("br.ctop”) is executed

htm

d023

fiPipel

/TF.

http://www.cs. ualberta.

Page 12

IA-64 Registers

i» Both the integer and floating point registers support
register rotation for registers 32-128.

I» Register rotation is designed to ease the task of
register allocation in software pipelined loops

i» When combined with dpr-edicaﬁon, possible to avoid the
need for unrolling and for separate prologue and
epilogue code for a software pipelined loop

®» makes the SW-pipelining usable for loops with smaller numbers of
iterations, where the overheads would traditionally negate many of
the advantages

Software Pipelining Example in the IA-64

13
mov pr.rot =0 // Clear all rotating predicate registers §
cmp.eq p16,p0 =r0,r0 // Set pl16=1 3
mov ar.lc =4 // Set loop counter to n-1 H
mov ar.ec =3 // Set epilog counter to 3 S
loop:
(p16) Idl r32 =[r12],1 // Stage 1: load x v
(p17) addr34 =1,r33 // Stage 2: y=x+1 3
(p18) stl[r13] =r35,1 // Stage 3: store y
br.ctop loop // Branch back
i “"Stage” predicate mechanism allows successive stages of the
software pipeline to be filled on start-up and drained when the
loop terminates
i The software pipeline branch “"br.ctop” rotates the predicate

registers, and injects a 1 into p16
» Thus enabling one stage at a time, for execution of prologue

» When loop trip count is reached, “br.ctop” inijects 0 into p16,
disabling one stage at a time, then finally falls-through

http://www.cs. ualberta.

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF - HW SupSof tPipeline/

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF - HWSupSoftPipeline/

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =[r12],1 <==m
(p17) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory
x1
X2
X3
x4
X5

General Registers (Physical)
32 33 34 35 36 37 38 39

b [[[[][]

32 33 34 35 36 37 38 39
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
[[5]

RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =[r12],1
(p17) addr34 =1,r33
(p18) stl [r13] =r35,1 <=
br.ctop loop
Memory

x1

X2

x3

x4

x5

General Registers (Physical)
32 33 34 35 36 37 38 39
baf [T 1111}

32 33 34 35 36 37 38 39
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
&l [s5]

RRB

Page 13

http://www.cs.ualberta.ca/~amaral/courses/680/webslides/TF -HW SupSof Pipeline/

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =[r12],1
(p17) addr34 =1,r33 <=
(p18) stl[r13] =r35,1
br.ctop loop
Memory

x1

X2

x3

x4

X5

General Registers (Physical)
32 33 34 35 36 37 38 39
bal [[[[][]

32 33 34 35 36 37 38 39
General Registers (Logical)

Predicate Registers

16 17 18
LC EC
[[3]

RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =[r12],1
(p17) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop <=
Memory

X1

X2

X3

x4

x5

General Registers (Physical)
32 33 34 35 36 37 38 39
baf [[T 111}

33 34 35 36 37 38 39 32
General Registers (Logical)

Predicate Registers

® [Eo]o]

16 17 18
LC EC
[a]

RRB

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1

g e T e ‘)3(;-‘34 ‘35 ‘36 ‘37 ‘38 ‘39 ‘32 ‘
(p18) Ztrl cEtr;S]Io: rs.1 P General Registers (Logical)
. E\)/Iem'cj)ry Predicate Registers

X1 16 17 18

x2 LC EC

X3 . EI

x4

x5 F\ﬁ

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 x1|v1 2
(17 addrss —Lrss | [L[Del
18) stl [r13] =r35,1 33 34 35 36 37 38 39 32
(p ’ General Registers (Logical)
br.ctop loop
Memory Predicate Registers
16 17 18
x1 LC EC
X2
xa EIE]
x4
xS RRB

Page 14

Software Pipelining Example in the IA-64

General Registers (Physical)
loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 <= ‘Xl‘ ‘ ‘ ‘ ‘ ‘ \xz\
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1

33 34 35 36 37 3gf 39 32
General Registers (logical)

br.ctop loop B
Memory Predicate Registers
— LT 16 17 18
X1 | e
............ Lc .
X2 sanpunnnns
< H [
x4
= RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 x1|v1 X2
abal [1 1 | el
18) st [r13] =r35,1 33 34 35 36 37 38 39 32
(Gl g <= General Registers (Logical)
br.ctop loop
Memory Predicate Registers
16 17 18
X1
X2 LC EC
xa 3]
x4
x5 RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12], 1 xl.l 2
(GIO) Gl s, S) 33 35 ‘36 ‘37 ‘38 ‘39 ‘32 ‘
(p18) stl[r13] =r35,1 General Registers (Logical
br.ctop loop < 9 (Logical)
Memory Predicate Registers
16 17 18
xL LC EC
X2
x3 [s] [s]
x4
xS RRB

Software Pipelining Example in the IA-64

=[r12], 1

loop:

(p16) Idl r32

(pl17) addr34 =1,r33
(p18) stl[r13] =r35,1

<=

General Registers (Physical)
32 33 34 35 36 37 38 39

abal [[| [ale

34 35 36 37 38% 39 32 33
General Registers (Logical)

br.ctop loop ;
Memory Predicate Regjsters
1 16 1718
X !
LC EC
X2
g P - I B [z
x4
= RRB

Page 15

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =1[r12],1 Xl.1 2
(IR Cuiel s) 34 36 ‘37 ‘38 ‘39 ‘32 ‘33 ‘
(p18) stl[r13] =r35,1 General Registers (Logical
br.ctop loop <= ‘ (Logical)
Memory Predicate Registers
16 17 18
xL LC EC
X2
x3 2] [5]
x4
xS RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
Epi% «Is(tjc:drr3324 -]Izrjé]?; ! <= |y2|y1| ‘ ‘ ‘ |X3‘X2‘
p =1,

(p18) stl[r13] =r35,1 34 35 36 37 38 39 32 33

General Registers (Logical)

br.ctop loop
Memory Predicate Registers
1 16 17 18
X
LC EC
X2
S 2 [
x4
= RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
16 Idl r32 =1[ri12],1
G s S TR
(p18) stl[r13] =r35,1 G General Registers (Logical)
br.ctop loop H
Memory i Predicate Registers
1 ; 16 17 18

X ;

= LC EC

- = B =

x4

xS RRB

Hidden slides...

i» Some hidden slides are not in handout

I We continue with start of pipeline drain phase

Page 16

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 belva] | [| [xalx2]
(IR Cuiel s) 34 35 36 37 38 39 32 33
(p18) stl[r13] =r35,1 General Registers (Logical
br.ctop loop < 9 (Logical)
Memory Predicate Registers
16 17 18
xL LC EC
X2
x3 v 2] [5]
x4
xS RRB

Software Pipelining Example in the IA-64

General Registers (Physical)

loop: 32 33 34 35 36 37 38 39
(p16) Idl r32 =[r12],1 = e
(p18) stl[r13] =r35,1 General Registers (Logical)
br.ctop loop <=
Memory Predicate Registers
1 16 17 18
X
= LC EC
X3 vyl .
x4 y2
X5 y3 RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(pl7) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop <
Memory
x1
X2
X‘31 yl
X
y2
x5 v3

General Registers (Physical)
32 33 34 35 36 37 38 39

yelyr] | KSB@[y4ly3]

37 38 39 32 33 34 35 36
General Registers (Logical)

Predicate Registers

<0

16 17 18
LC EC
o] [z]

RRB

Software Pipelining Example in the IA-64

loop:
(p16) Idl r32 =1[r12],1
(p17) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop <
Memory
x1
X2
x3
yl
x4 y2
X5 y3
y4
y5

General Registers (Physical)
32 33 34 35 36 37 38 39

belyr] [[Blys|yalys]
37 38 39 32 33 34 35 36
General Registers (Logical)

Predicate Registers

<0 [ofo]o]

16 17 18
LC EC
[o] [o]

RRB

Software Pipelining Example in the IA-64

loop:

General Registers (Physical)
32 33 34 35 36 37 38 39

v2lyi] | BElys[yalys]
36 37 38 39 32 33 34 35
General Registers (Logical)

<=
Predicate Registers
<®)
16 17 18
LC EC
vi [o]
y2
y3 RRB
y4 .

(p16) Idl r32 =[r12],1
(pl17) addr34 =1,r33
(p18) stl[r13] =r35,1
br.ctop loop
Memory
x1
X2
X3
x4
x5
I Caches

= 32KB L1 (2 cycle)
» 96KB L2 (7 cycle)
=% 2 or 4 MB L3 (off chip)

» 133 MHz 64-bit bus
b SpecFP: 711
r SpecInt: 404

1A%32
Control
L e

| FPU
1

Page 17

i 36-bit addresses (64GB

i JA-64 Control
Y e r
: Integer Units (i
L i
e 2, TLEL Bk
W i ==

Bus

— 1 ¥ 1
Core Processor Die

Itanium™ Processor Silicon
(Copyright: Intel at Hotchips 00)

4 x 1IMB L3 cache

Ttanium™ EPIC Design Maximizes SW-HW Synergy

Architecture Features programmed by compiler

Branch Explicit g;z?c'iter Predication Data & Control
Hints Parallelism & Rotation Speculation Hints

1
|
Memory |
1
I
1

i

Itanium processor 10-stage
pipeline

i Front-end (stages IPG, Fetch, and Rotate):
prefetches up to 32 bytes per clock (2 bundles)
into a prefetch buffer, which can hold up to 8
bundles (24 instructions)

= Branch prediction is done using a multilevel adaptive
predictor like P6 microarchitecture

b Instruction delivery (stages EXP and REN):
distributes up to 6 instructions to the 9
functional units

= Implements registers renaming for both rotation and register
stacking.

Page 18

10 Stage In-Order Core Pipeline
(Copyright: Intel at Hotchips 00)

WORD-LINE
DECODE

EXPAND _ RENAME REGISTER READ

REN DET / WRB

INST POINTER ROLA

GENERATION

FETCH EXCEPTION WRITE-BACK

RETECT

Itanium processor 10-stage

, épiEeIine
v Operand delivery (WLD and REG): accesses

register file, performs register bypassing,
accesses and updates a register scoreboard, and
checks predicate dependences.

#» Scoreboard used to detect when individual instructions can
proceed, so that a stall of 1 instruction in a bundle need not
cause the entire bundle to stall

i» Execution (EXE, DET, and WRB): executes
instructions through ALUs and load/store units,
detects exceptions and posts NaTs, retires
instructions and performs write-back

% Deferred exception handling for speculative instructions is
supported by providing the equivalent of poison bits, called
NaTs for Not a Thing, for the GPRs (which makes the GPRs
effectively 65 bits wide), and NaT Val (Not a Thing Value) for
FPRs (already 82 bits wides)

Floating Il"anium 2

Branch Paint Pipeline
Unit Unit Control Integer Unit i Caches
A2 Inte_ger = 32KB L1 (1 cycle)
Engine i Register = 256KB L2 (5 cycle)
' & File = 3 MB L3 (on chip)
16KB LI Multimedia * 200 MHz 128-bit Bus
Cache

Unit k SpecFP: 1356
r SpecInt: 810

Advanced el Clock
Load i 44-bit addresses
Address R 16KB LID (18TB)
Table Cache

 221M transistors
Data » 19.5 x 21.6 mm

Translation ™ http://cpus.hp.com/tec
hnical_references/

Hardware
Page
Walker

Lookaside
Buffer

~ ! Y
256KB L2 Cache Bus Logic 3MBL3 Cache [3Tags
and Control

EPIC/IA-64/Itanium principles

b Start loads early
= advance loads - move above stores when alias analyis is incomplete
= speculative loads - move above branches
b Predication to eliminate many conditional branches
=» 64 predicate registers
= almost every instruction is predicated
i register rich
=» 128 integer registers (64 bits each)
=» 128 floating-point registers
Independence architecture
=» VLIW flavor, but fully interlocked (i.e., no delay slots)
= three 41-bit instruction syllables per 128-bit "bundle"

=» each bundle contains 5 "template bits" which specify independence of following
syllables (within bundle and between bundles)

b unbundled branch architecture
= eight branch registers
= multiway branches
i Rotating register files
= lower 48 of the predicate registers rotate
=» lower 96 of the integer registers rotate

Page 19

Comments on Itanium

i~ Remarkably, the Itanium has many of the features
more commonly associated with the dynamically-
scheduled pipelines
= strong emphasis on branch prediction, register renaming,
scoreboarding, a deep pipeline with many stages before
execution (to handle instruction alignment, renaming, etc.), and
several stages following execution to handle exception detection
I~ Surprising that an approach whose goal is to rely
on compiler technology and simpler HW seems to
be at least as complex as dynamically scheduled
processors!

Itanium Timeline

FTYTYTTTTT ¥ ¥ ¥F¥Y7°%°7

FTYTTFTTFTTITITT

1981: Bob Rau leads Polycyclic Architecture project at TRW/ESL

1983: Josh Fisher describes ELI-512 VLIW design and trace scheduling

1983-1988: Rau at Cydrome works on VLIW design called Cydra-5, but company folds 1988
1984-1990: Fisher at Multiflow works on VLIW design called Trace, but company folds 1990

1988: Dick Lampman at HP hires Bob Rau and Mike Schlansker from Cydrome and also gets IP
rights from Cydrome

1989: Rau & Schlansker begin FAST (Fine-grained Architecture & Software Technologies) research
project at HP: later develop HP PlayDoh architecture

1990-1993: Bill Worley leads PA-WW (Precision Architecture Wide-Word) effort at HP Labs to b
successor to PA-RISC architecture; also called SP-PA (Super-Parallel Processor Architecture) &
SWS (SuperWorkStation)

HP hires Josh Fisher, input to PA-WW

Input to PA-WW from Hitachi team, led by Yasuyuki Okada

1991: Hans Mulder joins Intel to start work on a 64-bit architecture
1992: Worley recommends HP seek a semiconductor manufacturing partner
1993: HP starts effort to develop PA-WW as a product

Dec 1993: HP investigates partnership with Intel

June 1994: announcement of cooperation between HP & Intel: PA-WW starting point for joint
design; John Crawford of Intel leads joint team

1997: the term EPIC is coined

Oct 1997: Microprocessor Forum presentations by Intel and HP

July 1998: Carole Dulong of Intel, "The IA-64 Architecture at Work," IEEE Computer
Feb 1999: release of ISA details of IA-64

2001: Intel marketing prefers IPF (Itanium Processor Family) to IA-64

May 2001 - Itanium (Merced)

July 2002 - Itanium 2 (McKinley)

Aug 2004: “Itanium sales fall $13.4bn shy of $14bn forecast” (The Register)

Dec 2004: HP transfers last of Itanium develobment to Intel

(based on http://www.cs.clemson.edu/~mark/epic. K¥m/

Top 20 SPEC systems

Ttanium - rumours exaggerated?

Top 20 SPECint2000 Top 20 SPECp2000
MHz Processor int peak int base Full results MHz Processor fp peak fp base Full results
I 2933 Core 2 Duo EE ing 5108 HTIML 2300 POWERS+ 5642 3369 HTML
2 3000 Xeon Slxx 3oz 3088 HTML 1600 D Itanium 2 3098 3098 HTML
3 2666 Core I Duo 2848 3000 Xeon S1xx 3056 2811 HIML
4 2660 Xeon 30xx 2835 2933 Core JDuo EE 3050 3048 HIML
3 3000 Opreron 9 2660 Neon 30xx 3044 2763 HTML
6 2800 Athlen 64 FX 2061 1600 Tanawan 2 3017 3017 HIML
7 1800 Opteron AM2 1960 2667 Core 2 Duo 2850)
& 2300 POWERS+ 1900 1900 POWERS 2706
U 3733 Pentium 4 E 1872 3000 Crperon 2497
10 3500 Pentium 4 Xeon 1856 2800 Opteron AM2 2462
11 2260 Pentiwm M 1839 3733 Pentium 4 E

2 3600 Pentiv D 1814
13 2167 Core Duo 1804
14 3600 Pentiwm 4 1774

2500 Athlon 64 FX
2700 PowerPC 970MP
2160 SPARCSH4 WV

15 3466 Pentium 4 EE 1772 3730 Pentium 4 Neon
16 2700 PowerPC 9T0MP 1706 3600 Pentium D
17 2600 Ahlon 64 1706 3600 Pentium 4
18 2000 Peatium 4 Xeon LV 1668 2600 Athlon 64 1829
’ : 19 2160 SPARCE4 V 1620 1700 POWER4+ 1776
NASA's 10,240-processor Columbia supercomputer is built from 20 Altix systems, ea 20 1600 Inivn 2 1590 3466 Pentium 4EE 1724 HTML d
powered by 512 Intel Itanium 2 processors. Peak performance 42.7 TeraFlops. Runs3 With Auto-parallelisation A‘ies_ Har wPur'e
Linux. (Image courtesy of Silicon Graphics, Inc.) £ analysis of SPEC
= Top 20 SPECim2000 Top 20 SPECTp2000 benchmark data

MHz Processor int peak int base Full results MHz Processor fp peak fp base Full results | hitp://www.aces
- Japan Atomic Energy Research Institute (TAERI) (2048 processors eventually) 2100 POWERS* 4051 3210 HIML hardware.com/S

'l
1
i : ;. : it f 2 3000 Opteron 3538 2851 HIML - A
- Leibniz Rechenzentrum Computing Center (LRZ) at the Bavarian Academy of Sciences and Humanities, Munich y . S PECmine/top. js|
(3328 processors eventually) 3 2600 Opteron AM2 3338 2711 HIML rECmine/Top. Jsp
4 1200 UltraSPARC 111 Cu 1344 1074 HIML

SGI has similar contracts at

Summary#1: Hardware versus Software

Speculation Mechanisms Summary#2: Hardware versus

Software Speculation Mechanisms

, ont'd
i To speculate extensively, must be able to » Compiler-based approaches may benefit from 'ﬁ':e
disambiguate memory references ability to see further in the code sequence, resulting
® Much easier in HW than in SW for code with pointers in better code scheduling
i HW-based speculation works better when control flow _ : . : :
is unpredictable, and when HW-based branch w H\?,/ based s .ﬁulah:n W:h dynamic s$hedu’!‘|.ng does d
prediction is superior to SW-based branch prediction not require dirteren? code sequences To achieve goo
done at compile time performance for different implementations of an
= Mispredictions mean wasted speculation architecture))
i HW-based speculation maintains precise exception * may be the most important in the long run?

model even for speculated instructions

i» HW-based speculation does not require compensation
or bookkeeping code

Page 20

Summary #3: Software Scheduling

I» Instruction Level Parallelism (ILP) found either by compiler
or hardware.

v Loop level parallelism is easiest to see

=% SW dependencies/compiler sophistication determine if compiler can unroll
loops

= Memory dependencies hardest to determine => Memory disambiguation
= Very sophisticated transformations available

v Trace Scheduling to Parallelize If statements
I Superscalar and VLIW: CPI < 1 (IPC > 1)

=% Dynamic issue vs. Static issue
= More instructions issue at same fime => larger hazard penalty

®» Limitation is often number of instructions that you can successfully fetch
and decode per cycle

Page 21

