CONFIDENTIAL

Paper 3.32=E4.53=F2.25=ISE3.9c Parallel
Architectures

Department of Computing
Imperial College

Examination paper March 22, 1995

First examiner: Second examiner:

1 Modern microprocessors stall if the memory system fails to provide an operand within
one or two cycles. Consider the following architectural techniques which have been
proposed to alleviate the stalls which arise when this is not possible:

a Static pipeline architecture with instruction scheduling by the compiler — i.e. the
hardware implements a straightforward load instruction which delivers the operand to
the specified register within some maximum number of instructions, and the compiler
aims to find useful instructions to fill this delay.

b Prefetching. That is, provide a special instruction which preloads the cache with a
value which is expected to be needed soon.

¢ Vector instructions and interleaved memory, for example as found in vector pipeline
machines like DLXV and the Cray 1.

d Multithreading, that is use each processor to run a small set of processes. When one

blocks on access to memory, switch to another.

Make very brief notes on each of these approaches, paying special attention to the
costs of the scheme (both hardware and software), the limits on its effectiveness, and
its impact, if any, on cache design.

(© University of London 1995 Paper 3.32=E4.53=F2.25=ISE3.9c Parallel Architectures Page 1

2a, When a write miss occurs, two policies are possible: a cache line could be allocated
and updated with the value written (called allocate-on-write), or alternatively the
cache could be left unchanged and the value could be written direct to main memory
(no-allocate-on-write).
Give a small example high-level language program which should run substantially
faster using no-allocate-on-write than using allocate-on-write. Explain.

b Some machines (e.g. the Intel i860) have two kinds of load instructions, one which
allocates on load, the other which doesn’t. Give a small example high-level language
program which should run substantially faster using such a no-allocate-on-load
instruction than using an allocate-on-load instruction. Explain.

¢ A computer architect is considering two alternative designs, which turn out to have
similar costs:

A A static-pipeline DLX CPU, 4ns clock and a single, 128K byte cache accessible
with no pipeline stalls.

B A static-pipeline DLX CPU, 2ns clock, with a 4K byte primary cache accessible
with no pipeline stalls, and a 64K byte secondary cache accessible with two
pipeline stall cycles.

The two designs have a similar main memory system, with a 50ns access time. The
application software displays the following characteristics:

¢ Assuming no memory delays, the CPI is 1.5.

e 50% of instructions involve memory access.

o 25% of memory accesses result in misses in the 4K byte primary cache which are
hits in the secondary cache.

o 2% of memory accesses result in misses in the 64K byte secondary cache.

e 1% of memory accesses result in misses in the 128K byte cache.

Compute the instruction processing rate (MIPS) for the two designs. Show your
working and state any assumptions you need to make.

(The three parts carry, respectively, 20%, 20% and 60% of the marks).

Turn over ...

(© University of London 1995 Paper 3.32=E4.53=F2.25=ISE3.9c¢ Parallel Architectures Page 2

3 Cache consistency (sometimes called cache coherency) concerns the problem of
ensuring that the correct value is always used, when caching leads to multiple copies of
a value.

Describe as briefly as possible the cache consistency issues in the following situations
(some of them do overlap—explain):

Hardware support for message passing.

Self-modifying code.

¢ A write-back FIFO buffer, which can queue five words for writing before a write stall
need occur even on a cache miss.

d Virtual memory (suppose that the cache is indexed using a virtual address, and uses
virtual addresses as tags).

Where possible, suggest how the consistency problem might be solved.

(© University of London 1995 Paper 3.32=E4.53=F2.25=ISE3.9¢ Parallel Architectures Page 3

4 Consider the following code fragment:

for i =1 to 4
for j =1 to 4
Sy Ali,j] := A[i,j] * 2;
end
for j =1 to 4
Sy B[i,j] := A[i,j+1] + A[i,j-1];
end
end

a Draw the iteration space for this loop, showing all instances of both Sij and Séj.
Indicate the execution order specified by the program.

b Mark your iteration space diagram to show all dependences.
¢ Discuss whether it is possible to fuse the two inner loops.

d Consider the following loop nest:

for i =1 to N
for j=1toN
Sy Ali,j] := A[i,j] * 2;
end
for j =1 to 4
Sy B[i,j] := A[i,j+1] + A[i,j-1];
end
end

Consider a distributed-memory MIMD machine with P processors, connected by a
message-passing interconnection network (N much larger than P).
Assume that the arrays A and B are distributed columnwise over the processors with
blocksize K = N/P, so that each row A[1,0:N+1] and B[i,0:N+1] is distributed
across the processors.
Give pseudo-code for a typical processor, showing where message passing is required
using the functions send and recv:
e send(m,X[L:U])
Send a message to PE,) containing the array elements X[L], X[L+1], ... X[U-1]
and X[U].
e recv(m,X[L:U])
Receive a message from PE,) and store it in the array locations X[L], X[L+1], ...
X[U-1] and X[U].

(The four parts carry, respectively, 10%, 20%, 30% and 40% of the marks).

(© University of London 1995 Paper 3.32=E4.53=F2.25=ISE3.9c Parallel Architectures Page 4

