CONFIDENTIAL

Paper 3.32=13.20=E4.31 Parallel Architectures

Department of Computing
Imperial College

Examination paper October 13, 1996

First examiner: Second examiner:

1 This question concerns the implementation of the following loop on a shared-memory
multiprocessor:

for i1 = 1 to N do
for j1 =1 to N do
for i2 = 1 to N do
for j2 =1 to N do
if (A[i1,j1] > 0) and (A[i2,j2] > 0)
then
m = classify(100%((j2-3j1)/(i2-11)); /* (nearest int within bounds of ‘line’) */
c = classify(100*(il - mxj1)); /* (nearest int within bounds of ‘line’) */
line[m,c] = line[m,c] + 1;
endif
enddo
enddo
enddo
enddo

Assume that the number of processing elements is small compared to N, and that an
invalidation-based cache coherence protocol is used.

Is loop interchange valid here? Explain.

What synchronisation issues arise in implementing this loop on a shared-memory
multiprocessor?

¢ How can load imbalance be avoided without excessive management overheads?

d What aspects of the memory/cache architecture might influence the performance of a
parallel implementation of this program on a coherent-cache shared-memory
multiprocessor? Consider each of the memory references in the program in turn.

e Briefly sketch how this loop might be implemented efficiently on a coherent-cache
shared-memory multiprocessor.

(The five parts carry, respectively, 10%, 20%, 20%, 20% and 30% of the marks).

(© University of London 1996 Paper 3.32=13.20=E4.31 Parallel Architectures Page 1

2 Consider the following loop:

for i =1 to N do

S1: D[i] = E[i] * B[i+1]
S2: E[i] = D[i] * B[i+1]
enddo

a Draw a diagram to show the dependence structure for this loop. Indicate which array
references are responsible for each dependence.

b Write down a vectorised version of this loop using a suitable high-level notation (such
as Fortran 90).

¢ Assuming N is a multiple of 64, sketch how this loop would be implemented on a
vector pipeline machine (such as a CRAY-1 or DLXV) with 64-word vector registers.

d Sketch a graph showing how the execution time would vary for this loop for increasing
N. Explain your graph with reference to the architecture of a vector pipeline
architecture.

e Sketch very briefly how the loop could be implemented on a coherent-cache
shared-memory multiprocessor. What would influence its performance?

(The four parts carry, respectively, 20%, 10%, 30%, 20% and 20% of the marks).

Turn over ...

(© University of London 1996 Paper 3.32=13.20=E4.31 Parallel Architectures Page 2

This question concerns the performance of the following loop on two advanced static
pipeline implementations of DLX:

for i = 1 to 100 do
A[i] = B[i] + S * B[i-1]
enddo

Consider the following implementation for the DLX machine:
// Use R1 as ptr to B, R2 as ptr to A,

// R3 as iteration count, initially 100, and

// FO as S

loop: LD F4, -8(R1)
LD F2, 0(R1)
SUB R3, R3, #1
MULD F4, F4, FO
ADDI R1, R1, #8
ADDI R2, R2, #8
ADDD F2, F2, F4
SD F2, -8(R2)
BNEQZ R3, loop

For this part of the question, assume a static pipelined implementation of the DLX
processor with one non-pipelined, 2-cycle floating-point add/subtract unit, one
non-pipelined, 4-cycle floating-point multiply unit, and an eight stage integer pipeline

as follows:

IF IS RF EX DF DS TC WB
Initiate Complete Decode Execution Initiate Complete Tag check: Write
I-cache I-cache instr’n and fetch from | data fetch, check for results
access access fetch D-cache and cache hit to registers

registers forward
result

(© University of London 1996

(The MIPS R4000 processor has such a structure; the idea is called “superpipelining”,
and allows the clock period to be smaller than the cache access time).

Draw a diagram showing the execution of one iteration of this loop on this machine,
assuming no cache misses, and assuming no stalls due to control hazards. Explain
carefully where any forwarding or stalls are required. Explain any assumptions you
have to make.

For this part of the question, assume a similar pipeline, but modified so that each
stage can potentially handle a pair of adjacent instructions. In such a “superscalar”
design, two adjacent instructions can be issued per clock cycle provided they have no
dependence, and the first updates only floating-point registers, while the second
updates only integer registers. If these conditions cannot be met, the instructions are
issued one at a time as in part (a).

(The DEC Alpha is an example of such a superscalar, superpipelined design).
Modify the assembly code given above to avoid as many stalls as possible. Explain
carefully what transformations you apply, and why (HINT: consider more than one
iteration).

(The two parts carry, respectively, 50% and 50% of the marks).

Paper 3.32=13.20=E4.31 Parallel Architectures

Page 3

4 The graph below shows the approximate cache miss rate for a certain application, for

increasing cache size:

A
SECH I AN S S S
MlSS I , H H H H H H : : : :
Rate 4%+-

3%+

b

s\

0% F——————— =i
1 2 4 8 16 32 64 128 256 512 1024

Cache size (KBytes)

Suppose the job is running on one processor of a two-processor shared-memory
machine which uses a straightforward bus-based invalidation cache coherency protocol,
with a cache for each processor, and a cache line size of 16 bytes. Assume the
following:

25% of instructions are loads or stores.

The CPI assuming no cache misses is 1.5

The clock rate is 300MHz (clock period 3.33ns)
A cache miss takes 40 cycles (133ns)

=W N

a Calculate the MIPS rate of this application assuming no cache misses.

b Explain two different ways by which it might be possible to improve performance
while reducing the MIPS rate.

¢ Estimate the CPI the system will achieve on this application for cache sizes of 4KB,
32KB and 64KB.

d Suppose that the operating system’s scheduler decides to stop the job, and restart it

on the other CPU. To do this involves a management overhead of 40us (to save the
registers of the process, and to restart the job on the new CPU by setting up the
registers).
Suppose that the new CPU’s cache contains no useful data, so the restarted job will
suffer cache misses which would not have occured if the job had not been migrated.
FEstimate the total delay attributable to additional cache misses each time the job is
migrated, for the three cases when cache size is 4KB, 16KB and 64KB.

(The four parts carry, respectively, 10%, 20%, 30% and 40% of the marks).
End of Paper

(© University of London 1996 Paper 3.32=13.20=E4.31 Parallel Architectures Page 4

