332
Advanced Computer Architecture
Chapter 1

Introduction and review of
Pipelines, Performance, Caches, and Virtual
Memory

January 2009
Paul H J Kelly

These lecture notes are partly based on the course text,
Hennessy and Patterson's Computer Architecture, a
quantitative approach (4" ed), and on the lecture slides of
David Patterson’s Berkeley course (€S252)

Course materials online at
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture
.html

Advanced Computer Architecture Chapter 1. p1

Pre-requisites
This a third-level computer architecture course

The usual path would be to take this course after following a
course based on a textbook like "Computer Organization and
Design” (Patterson and Hennessy, Morgan Kaufmann)

* This course is based on the more advanced book by the same
authors (see next slide)

#* You can take this course provided you're prepared to catch
up if necessary
B

Read chapters 1 to 8 of “"Computer Organization and Design” (COD) if
this material is new to you

E If you have studied computer architecture before, make sure COD
Chapters 2, 6, 7 are familiar

E See also “"Appendix A Pipelining: Basic and Intermediate Concepts” of
course textbook

#® FAST review today of Pipelining, Performance, Caches, and
Virtual Memory

Advanced Computer Architecture Chapter 1. p2

This is a textbook-based course

& Computer Architecture: A Quantitative
Approach (4t Edition)

John L. Hennessy, David A. Patterson

E ~580 pages. Morgan Kaufmann (2007); ISBN:
978-0-12-370490-0
with substantial additional material on CD
B Price: £ 37.99 (Amazon.co.uk, Nov 2006
B Publisher’'s companion web site:
I http://textbooks.elsevier.com/0123704901/
B Textbook includes some vital introductory material as
appendices:
Appendix A: tutorial on pipelining (read it NOW)
Appendix C: tutorial on caching (read it NOW)
B Further appendices (some in book, some in CD) cover
more advanced material (some very relevant to parts of
the course), eg

Networks

COMPUTER RRCHITECTURE

Parallel applications

Implementing Coherence Protocols
Embedded systems

VLIW

Computer arithmetic (esp floating point)

Historical perspectives
Advanced Computer Architecture Chapter 1. p3

T ¥ ¥ ¥ ¥Y¥YY

Who are these guys anyway and why
should I read their book?

RAID-I (1989)
consisted of a Sun
4/280 workstation
with 128 MB of
DRAM, four dual-
string SCSI
controllers, 28
5.25-inch SCSI
disks and
specialized disk
striping software.

John Hennessy:
Founder, MIPS
Computer Systems

President, Stanford
University

(previous president: Condoleezza Rice)

David Patterson

Leader, Berkeley RISC
project (led to Sun's
SPARC)

RAID (redundant arrays
of inexpensive disks)

Professor, University of
California, Berkeley

® Current president of the
ACM

Served on Information
Technology Advisory

Committee to the US
President

http://www.cs.berkeley.edu/~pa
ttrsn/Arch/prototypes2.html

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 micron
NMOS, with a die area of 77 mm?2, ran
at 1 MHz. This chip is probably the
first VLSI RISC.

Advanced Computer Architecture Chapter 1. p4

Administration details

Course web site:

* http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitectu
re.html

F Course textbook: H&P 4t ed
® Read Appendix A right away

* Background for 2008 context..

B See Workshop on Trends in Computing Performance

http://www7. nationalacademies. orq/CSTB/project computing-
performance _workshop. htm/

Advanced Computer Architecture Chapter 1. p5

* Lecturer: Course organisation

E Paul Kelly - Leader, Software Performance Optimisatioffresearch group

Tutorial helper:

E Anton Lokhmotov - postdoctoral researcher: PhD from Cambridge on optimisation
and algorithms for SIMD. Industry experience with Broadcom (VLIW hardware),
Clearspeed (massively-multicore SIMD hardware), Codeplay (compilers for games),
ACE (compilers)

3 hours per week
Nominally two hours of lectures, one hour of classroom tutorials
* We will use the time more flexibly
Assessment:
E Exam

For CS M.Eng. Class, exam will take place in last week of term
® For everyone else, exam will take place early in the summer term

¥ The goal of the course is to teach you how to think about computer
architecture

be il'hgr exam usually includes some architectural ideas not presented in the
ectures

B Coursework
You will be assigned a substantial, laboratory-based exercise
® You will learn about performance tuning for computationally-intensive kernels

® You will learn about using simulators, and experimentally evaluating
hypotheses to understand system performance

® You are encouraged to bring laptops to class to get started and get help
during tutorials

Please do not use computers for anything else during classes

Advanced Computer Architecture Chapter 1. p6

% Chi
E Review of pipelined, in-order * Chb
processor architecture and simple E Multithreading, hyperthreading, SMT
cache structures o . R ‘
* Ch2 B Static instruction scheduling
. B Software pipelining
E Caches in more depth B EPIC/IA-64; instruction-set support for

E Software techniques to improve speculation and register renaming
cache performance & Ché

E Virtual memory
E Benchmarking B GPUs, 6PGPU, and manycore

¥ Fab * Ch7
% Ch3 B Shared-memory multiprocessors
E Cache coherency

B - - .
Dynamic scheduling, out-of -order Iég'z‘i scale cache-coherency: ccNUMA.

B
E Register renaming
B
B

E Instruction-level parallelism

Speculative execution
Branch prediction
E Limits to ILP

+ Cha

E Compiler techniques - loop nest
transformations

E Loop parallelisation, interchange,
tiling/blocking, skewing

Lab-based coursework exercise:
E Simulation study
E “challenge”
E Using performance analysis tools

® Exam:

E Partially based on recent processor
architecture article, which we will study in
advance (see past papers)

Course overview (plan)

Advanced Computer Architecture Chapter 1. p7

* &

*

*

LK 3

A "Typical" RISC

32-bit fixed format instruction (3 formats, see next slide)

32 32-bit general-purpose registers
B (RO contains zero, double-precision/long operands occupy a pair)

Memory access only via load/store instructions
E No instruction both accesses memory and does arithmetic
E All arithmetic is done on registers

3-address, reg-reg arithmetic instruction
E Subw r1,r2,r3 means rl := r2-r3
E registers identifiers always occupy same bits of instruction encoding

Single addressing mode for load/store:
base + displacement

E je register contents are added to constant from instruction word, and
used as address, eg "lw R2,100(r1)" means “r2 := Mem[100+r1]"

¥ noindirection gop: SPARC, MIPS, ARM, HP PA-Risc,
Simple branch conditions DEC Alpha, IBM PowerPC,
Delayed branch CDC 6600, CDC 7600, Cray-1,
Cray-2, Cray-3
Not: Intel IA-32, IA-64 (?),
Motorola 68000,
DEC VAX, PDP-11, IBM
360/370
Eg: VAX matchc, IA32 scas instructions!

Advanced Computer Architecture Chapter 1. p8

Example: MIPS (Note register location)

Register-Register
31 26 25 2120 16 15 1110 65 0
[op | rst | rs2 | Rrd | | opx |

Register-Immediate
31 2625 2120 16 15 0

| Op I Rsi I Rd | immediate |
Branch

31 26 25 2120 16 15 0

| Op | Rs1 Izsz/op)l immediate |
Jump / Call

31 26 25 o

| Op | target |

Q: What is the largest signed immediate operand for “subw r1,r2 X"?
Q: What range of addresses can a conditional branch jump to?

Advanced Computer Architecture Chapter 1. p9

So where do I find a MIPS processor?
MIPS licensees shipped more than 350 million

units during fiscal

ear 2007

(http://www.mips.com/company/about-us/milestones/)

HP 4100 multifunction printer

http://www.zoran.com/. COACH-9 i Q|

ﬁony PS2 and PSP

Digimax L85 di
(1
]

gital camera

e S

SAMSUNG

Digimax L85

e ST

SEe= —

Linksys WRT546 Router (Linux-based)

Advanced Computer Architecture Chapter 1. p10

A machine to execute these instructions
To execute this instruction set we need a machine that fetches
them and does what each instruction says

A "universal” computing device - a simple digital circuit that, with
the right code, can compute anything

Something like:

(’ Instr = Mem[PC]; PC+=4;
rsl = Reg][Instr.rs1];
rs2 = Reg[Instr.rs2];
imm = SignExtend(Instr.imm);

Operandl = if(Instr.op==BRANCH) then PC else rs1;
Operand2 = ifimmediateOperand(Instr.op)) then imm else rs2;
res = ALU(Instr.op, Operandl, Operand2);

switch(Instr.op) {
case BRANCH:
if (rs1==0) then PC=PC+imm; continue;
case STORE:
Mem[res] = rs1; continue;
case LOAD:
Imd = Mem[res];

¥
L Reg[Instr.rd] = if (Instr.op==LOAD) then Imd else res;

hapter 1. p11

Instruction

Instr.
Fetch Reg.

5 Steps of MIPS Datapath

Memory i Write
Access Back

Decodeé Execute
Fetch | Addr. Calc i

Next PC

! Next SEQPC

Imm

Figure 3.1, Page 130, CA:AQA 2e

WB Data

Advanced Computer Architecture Chapter 1. p12

Pipelining the MIPS datapath

! Instr. Decode Execute Memory :Wr'i*re

Instruction
Fetch Reg. Fetch Addr. Calc i Access Back
Next PC i ; i
: Next SEQ PC "

WB Data

We will see more complex pipeline structures later.

For example, the Pentium 4 "Netburst” architecture has 31 stages.

Fiqure 3.1, Page 130, CA:AQA 2e Advanced Computer Architecture Chapter 1. p13

5-stage MIPS pipeline with plpelme buffers

Instruction Insfr Decodeg Execute Memory Wr‘lTe
Fetch i Reg. Fetch i Addr. Calc i Access i Back

Next PC

Next SEQ PC ext SEQ PC

WB Data

* Data station&r‘y control

- local decode for each instruction phase / pipeline stage

Fiaure 3.4 Pace 134 CA:AQA 2e Advanced Computer Architecture Chapter 1. p14

Visualizing Pipelining

Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5: Cycle 6} Cycle 7

Time (clock cyc/es)

s =:
| ottt

¢ Plpelmmg doesnf help Iafency of smgle ms‘truc‘hon ’
4 it helps throughput of entire workload
Pipeline rate limited by slowest pipeline stage
Potential speedup = Number pipe stages
Unbalanced lengths of pipe stages reduces speedup
4 Time to “fill" pipeline and time to “drain” it reduces speedup

Speedup comes from parallelism

E For free - no new hardware
Figure 3.3, Page 133 , CA:AQA 2¢

Advanced Computer Architecture Chapter 1. p15

It's Not That Easy for Computers

#Limits to pipelining: Hazards prevent
next instruction from executing during its
designated clock cycle

E Structural hazards: HW cannot support this
combination of instructions

F Data hazards: Instruction depends on result
of prior instruction still in the pipeline

E Control hazards: Caused by delay between
the fetching of instructions and decisions
about changes in control flow (branches and

Jjumps).

Advanced Computer Architecture Chapter 1. p16

One Memory Port/Structural Hazards
Time (clock cycles)

Cycle 1§Cycle 2 §Cycle 35 Cycle 4§Cycle 5§ Cycle 6iCycle 7}

n i

i Instr 1

,; Instr 2

o| Instr 3 |

f‘ Instr 4 | :

Eg if there is only one memory for both instructions and data
#® Two different stages may need access at same time
Example: IBM/Sony/Toshiba Cell processor

Fiaure 3.6, Pace 142 CA:AQA 2e Advanced Computer Architecture Chapter 1. p17

Fiaure 3.7 Paae 143 CA:AQA 2e

One Memory Port/Structural Hazards
Time (clock cycles)

Cycle 15Cycle 2 ECycIe 35<:yc|e 45Cycle 5E Cycle 6§Cycle 7
1 |Load
n :
‘;’: Instr 1
; Instr 2
~lstarr
i Instr 3 :

¢ Instr 3 cannot be loaded in c-ycle 4
ID stage has nothing to do in cycle 5
EX stage has nothing to do in cycle 6, etc. “Bubble” ropagates

Advanced Compufar Arci ure Chapter 1. p18

Data Hazard on R1

Time (clock cycles)

IF ID/RF EX MEM WB

i add ri1,r2,r3 [
S

t | sub r4,r1,r3

r.

o | and r6,rl,r7

r

d

e | or rg8,ril,r9

r

xor r10,rl,rll Frere I » Ilg brer]{f 1R |

Figure 3.9, page 147 , CA:AQA 2e Advanced Computer Architecture Chapter 1. p19

Three Generic Data Hazards

Read After Write (RAW)
Instr; tries to read operand before Instr; writes it

<::|: add r1,r2,r3
J: sub r4,r1,r3

Caused by a "Dependence” (in compiler nomenclature).
This hazard results from an actual need for
communication.

Advanced Computer Architecture Chapter 1. p20

Three Generic Data Hazards

+ Write After Read (WAR)
Instr; writes operand before Instr; reads it

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,rl1,r7

Called an “anti-dependence” by compiler writers.
This results from reuse of the name "ri”.

Can't happen in MIPS 5 stage pipeline because:
E All instructions take 5 stages, and
E Reads are always in stage 2, and
E Writes are always in stage 5

Advanced Computer Architecture Chapter 1. p21

Three Generic Data Hazards

Write After Write (WAW)
Instr; writes operand before Instr; writes it.

I: sub ri1,r4,r3
J: add r1,r2,r3
K: mul r6,rl1,r7

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

Can't happen in MIPS 5 stage pipeline because:
E All instructions take 5 stages, and

E Writes are always in stage 5

#+ Will see WAR and WAW in later more complicated pipes

Advanced Computer Architecture Chapter 1. p22

“‘I-MQH

00

Forwarding to Avoid Data Hazard

Figure 3.10, Page 149 , CA:AQA 2e

Time (clock cycles)

add ri1,r2,r3

sub rd4,rl1,r3

and r6,rl1,r7

or r8,r1,r9

xor r10,rl1,rl11

Advanced Computer Architecture Chapter 1. p23

HW Change for Forwarding

Figure 3.20, Page 161, CA:AQA 2e
E Add forwarding ("bypass”) paths

E Add multiplexors to select where ALU operand should come from
E Determine mux control in ID stage
E If source register is the target of an instrn that will not WB in time

NextPC

2

.4 x

o

>

-+

) —

@ 3 Data

] & Memory
<
Immediate — r?:<

Advanced Computer Architecture Chapter 1. p24

I qgua N

S0 QYQ

Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e

Time (clock cycles)

Iw r1, 0(r2)

sub r4,rl1,r6
and r6,rl,r7

or r8,r1,r9

Advanced Computer Architecture Chapter 1. p25

vy N

N0 Q3Q

Data Hazard Even with Forwarding
Figure 3.13, Page 154 , CA:AQA 2e

Time (clock cycles)

lwrl, 0(r2)

subrd,rl,ré

and r6,r1,r7

or r8,r1,r9

EX stage waits in cycle 4 for operand
Following instruction (“and”) waits in ID stage
Missed instruction issue opportunity...

Advanced Computer Architecture Chapter 1. p26

Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f;
assuming a, b, c, d ,e, and f in memory.
Slow code: Fast code:
Lw Rb,b Lw Rb,b
Lw Rc,c Lw Rc,c
STALL LW Re,e Show the stalls
ADD Ra,Rb,Rc ADD Ra,Rb,Rb explicitly
SwW a,R
Lw Re,
Lw Rf,f Lw Rf,f
STALL SW a,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf
SwW d,Rd SW d,Rd

10 cycles (2 stalls) 8 cycles (O stalls)

Advanced Computer Architecture Chapter 1. p27

10:

14:

18:

22:

36:

Control Hazard on Branches
Three Stage Stall

beq rl1,r3,36 I

L
and r2,r3,r5
or r6,rl1,r7

add r8,r1,r9

—
xor rl10,rl1,rl11

Advanced Computer Architecture Chapter 1. p28

Pipelined MIPS Datapath with early branch

determination
Instruction Instr. Decode Execute Memory Write
Fetch i Reg. Fetch i Addr.Calc i Access | Back

Next PC ext
SEQPC

Figure 3.22, page 163, CA:AQA 2/e Advanced Computer Architecture Chapter 1. p29

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
(wasteful - the next instruction is being fetched during ID)

#2: Predict Branch Not Taken

E Execute successor instructions in sequence
E “Squash” instructions in pipeline if branch actually taken

E With MIPS we have advantage of late pipeline state update
E 47% MIPS branches are not taken on average

E PC+4 dlready calculated, so use it to get next instruction

#3: Predict Branch Taken

E 53% MIPS branches are taken on average

E But in MIPS instruction set we haven't calculated branch target address
yet (because branches are relative to the PC)

I MIPS still incurs 1 cycle branch penalty

I With some other machines, branch target is known before branch
condition

Advanced Computer Architecture Chapter 1. p30

Four Branch Hazard Alternatives
#4: Delayed Branch

E Define branch to take place AFTER a following instruction

branch instruction
sequential successor,
sequential successor,

........ / Branch delay of length n

sequential successor,
branch target if taken

E 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

E MIPS uses this; eg in

LW R3, #100 If (R1=20)
LW R4, #200 o100
BEQZR1, L1 El B
SW R3, X se
SW R4, X X=100

Ll. ! X:ZOO

| R5 = X

LW R5,X

E "SW R3, X" instruction 1s executed regardless

E "SW R4, X" instruction is executed only if R1 is non-zero
Advanced Computer Architecture Chapter 1. p31

Delayed Branch

* Where to get instructions to fill branch delay slot?
E Before branch instruction
E From the target address: only valuable when branch taken
F From fall through: only valuable when branch not taken

* Compiler effectiveness for single branch delay slot: L1{Farget |«
E Fills about 60% of branch delay slots

E About 80% of instructions executed in branch delay slots
useful in computation

E About 50% (60% x 80%) of slots usefully filled

Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

before
It R1 L1
fallthru

[vs]

Canceling branches

E Branch delay slot instruction is executed but write-back is
disabled if it is not supposed to be executed

E Two variants: branch “likely taken”, branch “likely not-taken”
E allows more slots to be filled

Advanced Computer Architecture Chapter 1. p32

Eliminating hazards with simultaneous multi-threading
#+ If we had no stalls we could finish one instruction
every cycle
#+ If we had no hazards we could do without
forwarding - and decode/control would be simpler
too

Example:
PowerPC
processing
element (PPE)
in the Cell
Broadband
Engine (Sony
#+ IF maintains two Program Counters PlayStation 3)

Even cycle - fetch from PCO
4 0dd cycle - fetch from PC1
#* Thread O reads and writes thread-0 registers

No register-to-register hazards between adjacent
plpel ine Stages Advanced Computer Architecture Chapter 1. p33

Ifetch

So - how fast can this design go?

#+ A simple 5-stage pipeline can run at >3GHz

* Il_im_ifed by critical path through slowest pipeline stage
ogic

Tradeoff: do more per cycle? Or increase clock rate?
E Or do more per cycle, in parallel...

+ At 3GHz, clock period is 330 picoseconds.
E The time light takes to go about four inches

F About 10 gate delays

& for example, the Cell BE is designed for 11 FO4 (“fan-
out=4") gates per cycle:
www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

¥ Pipeline latches etc account for 3-5 FO4 delays leaving
only 5-8 for actual work

How can we build a RAM that can implement our MEM stage in
5-8 FO4 delays?

Advanced Computer Architecture Chapter 1. p34

Life used to be so easy
Processor-DRAM Memory Gap (latency)

1000 """""""""""""""""" “‘ """""" , """"""""""" CcPU 60°/o/yr‘.
Moore's Law,, (2X/1.5yr)

Processor-Memory
Performance Gap:
(grows 50% / year)

»~—DRAM
DRAM 9%/YI".
(2X710 yrs)

[EEY
o
o

Performance
[HEN
o

1980 |
1981 |
1982 |
1983 |
1984 |
1985 |
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

Time
In 1980 a large RAM's access time was close to the CPU cycle time. 1980s

machines had little or no need for cache. Life is no longer quite so simple.
‘Advanced Computer Architecture Chapter 1. p35

Memory Hierarchy: Terminology

Hit: data appears in some block X in the upper level
E Hit Rate: the fraction of memory accesses found in the upper level
E Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
Miss: data needs to be retrieved from a block Y in
the lower level
E Miss Rate =1 - (Hit Rate)
F Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor
Hit Time << Miss Penalty
E Typically Aundreds of missed instruction issue opportunities

Lower Level
To Processor | Upper Level Memory
Memory
Blk X
From Processor . BIKY
—_ Advanced Computer Architecture Chapter 1. p36

Levels of the Memory Hierarchy

Upper Level
f"apacifyrm Staging PP
ccess Time
Cost Xfer Unit
e H Management:
Nid ﬁf)%:fg;fres @l programmer/compiler
<1ns . Transfer unit:
Instructions and Operands 1-16 bytes
Cache (perhaps multilevel)
10s-1000s K Bytes Cache gaclhzeacgnfroller
1-10 ns - ytes
$10/ MByte Blocks
Main Memory
G Bytes Operating System
100ns- 300ns Memory 4K-8K bytes
$1/ MByte
Pages
Disk
100s G Bytes, Disk l;:;.;{:gerafor
10 ms
$ (10,000,000 ns) Files
0.0031/ MByte
Tapeinfinite Tape Lower Level
sec-min

$0.0014/ MByte

Advanced Computer Architecture Chapter 1. p37

. . The Principle of Locality
The Principle of Locality:

E Programs access a relatively small portion of the address
space at any instant of time.

Two Different Types of Locality:

F Temporal Locality (Locality in Time): If an item is
referenced, it will tend to be referenced again soon
(e.g., loops, reuse)

¥ Spatial Locality (Locality in Space): If an item is
referenced, items whose addresses are close by tend to
be referenced soon
(e.g., straightline code, array access)

In recent years, architectures have become
increasingly reliant (totally reliant?) on
locality for speed

Advanced Computer Architecture Chapter 1. p38

Cache Measures
* Hit rate: fraction found in that level

B So high that usually talk about Miss rate

E Miss rate fallacy: as MIPS to CPU performance,
miss rate to average memory access time in memory

+ Aver'cl%:a| memory-access time
= Hit time + Miss rate x Miss penalty
(ns or clocks)

* Miss penalty: time to replace a block from
lower level, including time to replace in CPU
B access time: time to lower level
= f(latency to lower level)
B fransfer time: time to transfer block
=f(BW between upper & lower levels)

Advanced Computer Architecture Chapter 1. p39

1 KB Direct Mapped Cache, 32B blocks

For a 2N byte cache:
E The uppermost (32 - N) bits are always the Cache Tag
E The lowest M bits are the Byte Select (Block Size = 2M)
31 9 4 0
| Cache Tag Example: 0x50 | Cache Index | Byte Select |
Ex: 0x01 Ex: 0x00

Stored as part
of the cache “state”

Valid Bit _ Cache Tag Cache Data
|| Byte31] " " |Bytel |Byt40 |0
|| 0x50 Byte 63] " * | Byte 33| Byte 32] 1
|| 2
[| 3
] Byte 1023 * - Byte 99231

Direct-mapped cache - storage

Advanced Computer Architecture Chapter 1. p40

1 KB Direct Mapped Cache, 32B blocks

For a 2N byte cache:
F The uppermost (32 - N) bits are always the Cache Tag
E The lowest M bits are the Byte Select (Block Size = 2M)

31 9 4 0
| Cache Tag Example: 0x50 | Cache Index | Byte Select |
Ex: 0x01 Ex: 0x00
Stored as part | | S
of the cache “state” '
Valid Bit _ Cache Tag Cache Data
|| Byte31] " " |Bytel |ByteO |0
n 0x50 Bytq 63| " " | Bytgq33]| Bytg32| 1
[| | 2
[|| 3
_: Bytd 1023 | Byte992|31
Compare <
. lDa‘ra
D"‘ec'f_mapped cache - read access HlT Advanced Computer Architecture Chapter 1. p41l

(0) 1 KB Direct A{\apped Cache, 32B blocks

Cache location O can be occupied
by data from main memory
location 0, 32, 64, .. etc.

o
)
.
s
.
s # Cache location 1 can be occupied
6
,
.
9

by data from main memory
~ location 1, 33, 65, .. etc.

E In general, all locations with same

10 . Address<9:4> bits map to the same

1 Mal n location in the cache Which one should
12 we place in the cache?

» * . -
: Memor'y tl’?:c(;c;?‘ge tell which one is in
: Cache Data

. Byte 31| - [Byte1 [Byte0] 0

: Byte 63| ** |Byte 33| Byte 32| 1

2‘ 2

. 3

Byte 1023 e Byte 992 | 31

Advanced Computer Architecture Chapter 1. p42

Direct-mapped Cache - structure

Capacity: C bytes (eg 1KB)
Blocksize: B bytes (eg 32)
Byte select bits: 0..log(B)-1 (eg 0..4)
Number of blocks: C/B (eg 32)
Address size: A (eg 32 bits)
Cache index size: I=log(C/B) (eg log(32)=5)
#® Tag size: A-I-log(B) (eg 32-5-5=22)
Cache Index
Valid Cache Tag Cache Data
Cache Block 0

Ao - - - .

|
! l N

L e e

l Cache Block

Hit

Advanced Computer Architecture Chapter 1. p43

Two-way Set Associative Cache

® N-way set associative: N entries for each Cache
Index
E N direct mapped caches operated in parallel (N typically 2 to 4)
#+ Example: Two-way set associative cache
E Cache Index selects a "set” from the cache

E The two tags in the set are compared in parallel
E Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Cache Block

Advanced Computer Architecture Chapter 1. p44

Disadvantage of Set Associative Cache

#* N-way Set Associative Cache v. Direct Mapped Cache:
E N comparators vs. 1
E Extra MUX delay for the data
E Data comes AFTER Hit/Miss
In a direct mapped cache, Cache Block is available BEFORE
Hit/Miss:

¥ Possible to assume a hit and continue. Recover later if miss.

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Adr Tag w

l Cache Block

Advanced Computer Architecture Chapter 1. p45

Basic cache terminology
Example: Intel Pentium 4 Level-1 cache (pre-Prescott)

Capacity: 8K bytes (total amount of data cache can store)

+ Block: 64 bytes (so there are 8K/64=128 blocks in the cache)

Ways: 4 (addresses with same index bits can be placed in one of 4 ways)
Sets: 32 (=128/4, that is each RAM array holds 32 blocks)

Index: 5 bits (since 25=32 and we need index to select one of the 32 ways)
Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)
Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

_____________________________________ 1
Adr Tag @ /'['\

) Cache Block
Hit Advanced Computer Architecture Chapter 1. p46

4 Questions for Memory Hierarchy

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)

Advanced Computer Architecture Chapter 1. p47

Q1: Where can a block be placed in
the upper level?

o e s s s ey e s

In a fully-associative cache, block gachle, b:jogk 12 can ﬁ"'y
12 can be placed in any location in € placed In one cache

the cache 5 location, determined by
its low-order address

bits -
SetQ Ina two-way set-
42; associative cache, the
6 set is determined by its

low-order address bits -
(12mod4)=0
Block 12 can be placed in
either of the two cache
locations in set O

In a direct-mapped

BWN=O

~O

(12 mod 8) = 4

Advanced Computer Architecture Chapter 1. p48

Q2: How is a block found if it is in the upper

level?
Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Adr Tag w

Cache Block

Tag on each block
E No need to check index or block offset

Block Address Block
Tag Index Offset

Increasing associativity shrinks index, expands tag

Advanced Computer Architecture Chapter 1. p49

Q3: Which block should be replaced on a
miss?

Easy for Direct Mapped

Set Associative or Fully Associative:
E Random
E LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way

Size LRU Ran |LRU Ran | LRU Ran
16 KB | 52% 5.7%|4.7% 5.3% [44% 5.0%
64KB | 1.9% 2.0%|15% 1.7% |1.4% 1.5%
256 KB [1.15% 1.17% |1.13% 1.13%|1.12% 1.12%

Benchmark studies show that LRU beats random only with small caches

Advanced Computer Architecture Chapter 1. p50

Q4: What happens on a write?

* Write through—The information is written
to both the block in the cache and to the
block in the lower-level memory

* Write back—The information is written only
to the block in the cache. The modified
cache block is written to main memory only
when it is replaced.

E is block clean or dirty?

Pros and Cons of each?
E WT: read misses cannot result in writes
E WB: no repeated writes to same location

WT always combined with write buffers so
that don't wait for lower level memory

Advanced Computer Architecture Chapter 1. p51

Write Buffer for Write Through

Cache
Processor | DRAM
| | | | |
Write Buffer
A Write Buffer is needed between the Cache and

Memory
E Processor: writes data into the cache and the write buffer
E Memory controller: write contents of the buffer to memory

* Write buffer is just a FIFO:

F Typical number of entries: 4

E Works fine if: Store frequency (w.r.t. time) << 1 / DRAM
write cycle

Memory system designer’s nightmare:
E Store frequency (w.r.t. time) -> 1 / DRAM write cycle
E Write buffer saturation

Advanced Computer Architecture Chapter 1. p52

. # StorageTek STK 9310
A Modern Memory Hierarchy ("Powderhorn”) Large-scale storage

® 2,000, 3,000, 4,000, : LEd
By taking advantage of the principle of locality: 5,000, or 6,000 — —‘—Miw___ _l _ = |

- . .) cartridge slots per
E Present the user with as much memory as is available in the library storage module
cheapest technology. (LSM)

E Provide access at the speed offered by the fastest technology. Up to 24 LSMs per
library (144,000

cartridges)
B 120 TB (1 LSM) to
Processor Eng\s)oo TB capacity (24
E Each cartridge holds
Control Tertiary 30068, readable up to
|1 Secondary Storage 40 MB/sec
" . storage || pisk/T:
Second Main (Disk) (Disk/Tape)
Py o Level Memor:
patapath| & || | 8 = ot y # Up to 28.8 petabytes
@ O ache (DRAM)
g |32 (SRAM) # Ave 4s to load tape
w
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
Size (bytes): 100s Ks Ms (105 ms) (1OS SEC) http://www.b2net.co.uk/storagetek/storagetek powderhorn 9310 tape_library.htm
Gs Ts http://en.wikipedia.org/wiki/Tape_library
http://www.ibm.qassociates.co.uk/storage-tape-enterprise-tape-drive-J1A-specifications.htm
Advanced Computer Architecture Chapter 1. p53 Advanced Computer Architecture Chapter 1. p54
Can we live without cache? * Ch5

E Multithreading, hyperthreading, SMT

#+ Interesting exception: Cray/Tera MTA, B Static instruction schedulin
first delivered June 1999: + Ch2 E Software pipelining ?
. B www.cray.com/products/systems/mta/ E Caches in more depth E EPIC/IA-64: instruction-set support for
[\ E Software techniques to improve speculation and register renaming
| ® Each CPU switches every cycle between gache; performarice ¢ Ché
. , 128 threads M il membey B GPUs, GPGPU, and manycore
/ E Benchmarking ‘ ‘
I Fab ® Ch7
#* Each thread can have up to 8 + Ch3 E Shared-memory multiprocessors

outstanding memory accesses B Cache coherency

E Instruction-level parallelism
E Large-scale cache-coherency: ccNUMA.

. . E Dynamic scheduling, out-of-order
3D toroidal mesh interconnect Y fing COMA
E Register renaming
E Speculative execution
* Memory accessed hashed to spread load B Branch prediction .
across banks B Limits to ILP ® Lab-based coursework exercise:
+ E Simulation study
* MTA-1 fabricated using Gallium cha | h | * “challenge”
" e E Compiler techniques - loop nest B f :
Arsenide, not silicon fransformations Using performance analysis tools
#* “nearly un-manufacturable” (wikipedia) E Loop ;;arallglisaﬁon, iinterchange, ¢ Exam:
tiling/blocking, skewing E Partially based on recent processor
. . architecture article, which we will study in
Third-generation Cray XMT: advance (see past papers)

E http://www.cray.com/Products/XMT .aspx

http://www.i Advanced Computer Architecture Chapter 1. p55

Where we are going...

Advanced Computer Architecture Chapter 1. p56

