
Page 1

332
Advanced Computer Architecture

Chapter 2

Caches and Memory Systems

January 2009
Paul H J Kelly

Advanced Computer Architecture Chapter 2.1

These lecture notes are partly based on the course text, Hennessy
and Patterson’s Computer Architecture, a quantitative approach (3rd

and 4th eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Th th t i h

Average memory access time:
AMAT = HitTime + MissRate×MissPenalty

There are three ways to improve cache
performance:

1. Reduce the miss rate,
2 Reduce the miss penalty or

Advanced Computer Architecture Chapter 2.2

2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

We now look at each of these in turn…

Reducing Misses
Classifying Misses: 3 Cs

Compulsory—The first access to a block is not in the cache, so the
block must be brought into the cache. Also called cold start misses or
first reference misses.
(Misses in even an Infinite Cache)(Misses in even an Infinite Cache)

Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

Conflict—If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses) will
occur because a block can be discarded and later retrieved if too many

Advanced Computer Architecture Chapter 2.3

occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

Maybe four: 4th “C”:
Coherence - Misses caused by cache coherence.

0.12

0.14 1-way

2 way

3Cs Absolute Miss Rate (SPEC92)

Conflict

0.02

0.04

0.06

0.08

0.1
2-way

4-way

8-way

Capacity
- misses in fully-associative cache

Advanced Computer Architecture Chapter 2.4

Cache Size (KB)

0

1 2 4 8

16 32 64

12
8

Compulsory
Compulsory misses are
vanishingly
few

- misses in infinite cache

Page 2

0.12

0.14 1-way

2 way
Conflict

2:1 Cache Rule (of thumb!)

0.02

0.04

0.06

0.08

0.1
2-way

4-way

8-way

Capacity
- misses in fully-associative cache

Advanced Computer Architecture Chapter 2.5

Cache Size (KB)

0

1 2 4 8

16 32 64

12
8

Compulsory
- misses in infinite cache

miss rate 1-way associative cache size X
≈ miss rate 2-way associative cache size X/2

3Cs Relative Miss Rate

80%

100%
1-way

2 way
Conflict

20%

40%

60%

2-way
4-way

8-way

Capacity

Advanced Computer Architecture Chapter 2.6

Cache Size (KB)

0%

1 2 4 8

16 32 64

12
8

Compulsory
Flaws: for fixed block size
Good: insight => invention

Same data, shown as
proportion of total

How We Can Reduce Misses?

3 Cs: Compulsory, Capacity, Conflict
In all cases assume total cache size not changed:In all cases, assume total cache size not changed:
What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

Advanced Computer Architecture Chapter 2.7

3) Change Compiler:
Which of 3Cs is obviously affected?

We will look at each of these in turn…

25%

1. Reduce Misses via Larger Block Size

Miss
Rate

5%

10%

15%

20% 1K

4K

16K

64K

256K

Advanced Computer Architecture Chapter 2.8

Block Size (bytes)

0%

5%

16 32 64

12
8

25
6

256K

Bigger blocks allow us to exploit more spatial locality – but...

Page 3

2: Associativity: Average Memory Access Time vs. Miss Rate
Beware: Execution time is
all that really matters

Will Clock Cycle time increase?
Example: suppose clock cycle
time (CCT) =

(KB) 1 2 4 8
Cache Size Associativity

1.10 for 2-way,
1.12 for 4-way,
1.14 for 8-way
vs. CCT = 1.0 for direct
mapped

Although miss rate is improved
by increasing associativity, the
cache hit time is increased

(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43

16 1.29 1.32 1.32 1.32

Advanced Computer Architecture Chapter 2.9

cache hit time is increased
slightly

(Red means A.M.A.T. not improved by
more associativity)

32 1.2 1.24 1.25 1.27
64 1.14 1.2 1.21 1.23

128 1.1 1.17 1.18 1.2
Illustrative benchmark study.
Real clock cycle cost likely
smaller

Another way to reduce associativity conflict
misses: “Victim Cache”

How to combine fast hit time of
direct mapped
yet still avoid conflict misses?
Add buffer to place data
di d d f h DATAdiscarded from cache
Jouppi [1990]: 4-entry victim
cache removed 20% to 95% of
conflicts for a 4 KB direct
mapped data cache
Used in AMD Opteron,
Barcelona, Phenom, IBM Power5,
Power6

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

Advanced Computer Architecture Chapter 2.10

To Next Lower Level In
Hierarchy

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

Jouppi, N. P. 1998. Improving direct-mapped cache performance by the addition of a small fully-associative cache prefetch buffers. In
25 Years of the international Symposia on Computer Architecture (Selected Papers) (Barcelona, Spain, June 27 - July 02, 1998). G. S.
Sohi, Ed. ISCA '98. ACM, New York, NY, 388-397. DOI= http://doi.acm.org/10.1145/285930.285998

HP Fellow
Director, Exascale Computing Lab
Palo Alto

“Pseudo-Associativity”: miss once? Try again!

How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?
Divide cache: on a miss, check other half of cache to see if Divide cache on a miss, check other half of cache to see if
there, if so have a pseudo-hit (slow hit)

Hit Time

Pseudo Hit Time Miss Penalty

Time

Advanced Computer Architecture Chapter 2.11

Use a “way-predictor” to guess which half to try first
Q: what address to use for the two ways?
Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

Better for caches not tied directly to processor (L2)
Used in MIPS R10000 L2 cache, similar in UltraSPARC

Time

(?)

Advanced Computer Architecture Chapter 2.12(Slide from Christos Kozyrakis, http://www.stanford.edu/class/ee282/handouts/L04-Cache2.4pp.pdf)

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In
Proceedings of the 5th international PARLE Conference on
Parallel Architectures and Languages Europe (June 14 - 17,
1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes
In Computer Science, vol. 694. Springer-Verlag, London, 304-
316.

Page 4

Reducing Misses by Hardware Prefetching of
Instructions & Data Extra block placed

in “stream buffer”
After a cache miss,
stream buffer
initiates fetch for initiates fetch for
next block
But it is not
allocated into cache
– to avoid
“pollution”
On miss check

Advanced Computer Architecture Chapter 2.13

On miss, check
stream buffer in
parallel with cache
relies on having
extra memory
bandwidth

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

Multi-way stream-buffer

We can extend this
idea to track multiple
access streams
i l lsimultaneously:

Jouppi [1990] 1 data
stream buffer got 25%
misses from 4KB cache;
4 streams got 43%
Palacharla & Kessler
[1994] for scientific
programs for 8 streams
got 50% to 70% of

Advanced Computer Architecture Chapter 2.14

got 50% to 70% of
misses from
2 64KB, 4-way set
associative caches

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

6. Reducing Misses by
Software Prefetching Data

Data Prefetch
Load data into register (HP PA-RISC loads)
C h P f t h: l d i t h (MIPS IV P PC SPARC 9)Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
Special prefetching instructions cannot cause faults; a form of
speculative execution

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.

Can be incorrect. Frees HW/SW to guess!

Advanced Computer Architecture Chapter 2.15

Can be incorrect. Frees HW/SW to guess!
Issuing Prefetch Instructions takes time

Is cost of prefetch issues < savings in reduced misses?
Higher superscalar reduces difficulty of issue bandwidth
But often, hardware prefetching is just as effective

7. Reducing Misses by Compiler Optimizations

McFarling [1989]* reduced instruction cache misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software
Instructions

By choosing instruction memory layout based on callgraph, branch structure
and profile data
Reorder procedures in memory so as to reduce conflict misses
(actually this really needs the whole program – a link-time optimisation)

Similar (but different) ideas work for data
Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays
Permuting a multidimensional array: improve spatial locality by matching
array layout to traversal order

Advanced Computer Architecture Chapter 2.16

y y
Loop Interchange: change nesting of loops to access data in order stored in
memory
Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap
Blocking: Improve temporal locality by accessing “blocks” of data repeatedly
vs. going down whole columns or rows

* “Program optimization for instruction caches”, ASPLOS89, http://doi.acm.org/10.1145/70082.68200

Page 5

Array Merging - example
/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged array[SIZE];

Advanced Computer Architecture Chapter 2.17

g g _ y[]

Reducing conflicts between val & key (example?)
Improve spatial locality (counter-example?)

(actually this is a transpose: 2*SIZE -> SIZE*2)

Permuting multidimensional arrays to improve spatial locality
Matrix-matrix
multiply on
Pentium 4

“ikj” variant:
for i 76

32

54

10

Row major:
for i
for j
for k
C[ij]+=A[ik]

*B[kj]

1514

1110

1312

98

141062

139

128

51

40

Column major:

Advanced Computer Architecture Chapter 2.18

Traverses A and C in row-major order
If data is actually in column-major order…

151173

Permuting multidimensional arrays to improve spatial locality
Matrix-matrix
multiply on
Pentium 4

“ikj” variant:
for i for i
for j
for k
C[ij]+=A[ik]

*B[kj]

Using a blocked (“quadtree” or “Morton”)
layout gives a compromise between row-major

and column-major

5410

Advanced Computer Architecture Chapter 2.19

Traverses A and C in row-major order
If data is actually in column-major order…

1514

1312

1110

98

7632

Storage layout transformations
Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays
Permuting a multidimensional array: improve spatial locality by
matching array layout to traversal order

Improve spatial locality

Iteration space transformations
Loop Interchange: change nesting of loops to access data in order
stored in memory
Loop Fusion: Combine 2 independent loops that have same looping and
some variables overlap

Advanced Computer Architecture Chapter 2.20

p
Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows (wait for Chapter 4)

Can also improve temporal locality

Page 6

Loop Interchange: example

/* Before */
for (k = 0; k < 100; k = k+1)()

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Advanced Computer Architecture Chapter 2.21

x[i][j] = 2 * x[i][j];

Sequential accesses: instead of striding through
memory every 100 words; improved spatial locality

(actually this is a transpose of the iteration space)

Loop Fusion: example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
f (j 0 j < N j j+1)

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2

S1:

for (j = 0; j < N; j = j+1)
d[i][j] = a[i][j] + c[i][j];

/* After fusion */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

/* After array contraction */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ c = c[i][j];

a = 1/b[i][j] * c;
d[i][j] = a + c;}

S2 S2 S2 S2 S2 S2 S2

S2:

S1:
S2:

S2:

S1:

Advanced Computer Architecture Chapter 2.22

2 misses per access to a & c vs.
one miss per access; improve
spatial locality

[][j] }

The real payoff comes if
fusion enables Array
Contraction: values
transferred in scalar
instead of via array

Fusion is not always so simple
Dependences might not align nicely
Example: one-dimensional filters

f (i 1 i<N i++)for (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2

Advanced Computer Architecture Chapter 2.23

• “Stencil” loops are not directly fusable

for (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2

We make them fusable by shifting:

Loop fusion – code expansion

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i] = (U[i-1] + U[i+1])/2
W[i-1] = (V[i-2] + V[i])/2

}
W[N 1] = (V[N 2] + V[N])/2

Advanced Computer Architecture Chapter 2.24

W[N-1] = (V[N-2] + V[N])/2

The middle loop is fusable
We get lots of little edge bits

Page 7

We make them fusable by shifting:

Loop fusion – code expansion

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i%4] = (U[i-1] + U[i+1])/2
W[i-1] = (V[(i-2)%4] + V[i%4])/2

}
W[N 1] = (V[(N 2)%4] + V[N%4])/2

Advanced Computer Architecture Chapter 2.25

W[N-1] = (V[(N-2)%4] + V[N%4])/2

The middle loop is fusable
We get lots of little edge bits

Contraction is trickier
We need the last two Vs
We need 3 V locations
Quicker to round up to four

Summary: Miss Rate Reduction

3 Cs: C mpuls ry Capacity C nflict

CPUtime = IC × CPI Execution +
Memory accesses

Instruction
× Miss rate × Miss penalty⎛

⎝
⎞
⎠ × Clock cycle time

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

Advanced Computer Architecture Chapter 2.26

7. Reducing Misses by Compiler Optimizations
Prefetching comes in two flavors:

Binding prefetch: Requests load directly into register.
Must be correct address and register!

Non-Binding prefetch: Load into cache.
Can be incorrect. Frees HW/SW to guess!

Th th t i h

Average memory access time:
AMAT = HitTime + MissRate×MissPenalty

There are three ways to improve cache
performance:

1. Reduce the miss rate,
2 Reduce the miss penalty or

Advanced Computer Architecture Chapter 2.27

2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

We now look at each of these in turn…

Write Policy:
Write-Through vs Write-Back

Write-through: all writes update cache and underlying memory/cache
Can always discard cached data - most up-to-date data is in memory
Cache control bit: only a valid bit

Write-back: all writes simply update cache
Can’t just discard cached data - may have to write it back to memory
Cache control bits: both valid and dirty bits

Other Advantages:
Write-through:

memory (or other processors) always have latest data
Simpler management of cache

W it b k

Advanced Computer Architecture Chapter 2.28

Write-back:
much lower bandwidth, since data often overwritten multiple times
Better tolerance to long-latency memory?

Page 8

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

Write allocate: allocate new cache line in cache
Usually means that you have to do a “read miss” to fill in
rest of the cache-line!
Alternative: per/word valid bits

Write non-allocate (or “write-around”):

Advanced Computer Architecture Chapter 2.29

Simply send write data through to underlying
memory/cache - don’t allocate new cache line!

1. Reducing Miss Penalty:
Read Priority over Write on Miss

Consider write-through with write buffers
RAW conflicts with main memory reads on cache
misses

Could simply wait for write buffer to empty,

CPU

in out Could simply wait for write buffer to empty,
before allowing read
Risks serious increase in read miss penalty (old
MIPS 1000 by 50%)
Solution:

• Check write buffer contents before read;
if no conflicts, let the memory access
continue

Write-back also needs buffer to hold
displaced blocks

write
buffer

Cache

Advanced Computer Architecture Chapter 2.30

displaced blocks
Read miss replacing dirty block
Normal: Write dirty block to memory, and then do
the read
Instead copy the dirty block to a write buffer, then
do the read, and then do the write
CPU stall less since restarts as soon as do read

DRAM
(or lower mem)

buffer

Write buffer issues
Size: 2-8 entries are typically sufficient for
caches

But an entry may store a whole cache line
Make sure the write buffer can handle
the typical store bursts…

CPU

in out yp
Analyze your common programs, consider
bandwidth to lower level

Coalescing write buffers
Merge adjacent writes into single entry
Especially useful for write-through caches

Dependency checks
Comparators that check load address
against pending storeswrite

buffer

Cache

Advanced Computer Architecture Chapter 2.31

If match there is a dependency so load
must stall

Optimization: load forwarding
If match and store has its data, forward
data to load…

Integrate with victim cache?

DRAM
(or lower mem)

buffer

2. Reduce Miss Penalty:
Early Restart and Critical Word First

Don’t wait for full block to be loaded before restarting
CPUCPU

Early restart— As soon as the requested word of the block ar rives,
send it to the CPU and let the CPU continue execution
Critical Word First—Request the missed word first from memory and
send it to the CPU as soon as it arrives; let the CPU continue execution
while filling the rest of the words in the block. Also called wrapped
fetch and requested word first

Generally useful only in large blocks,
(l d

Advanced Computer Architecture Chapter 2.32

(Access to contiguous sequential words is very common –
but doesn’t benefit from either scheme – are they
worthwhile?)

block

Page 9

3. Reduce Miss Penalty: Non-blocking
Caches to reduce stalls on misses

Non-blocking cache or lockup-free cache allows data
cache to continue to supply cache hits during a miss

requires full/empty bits on registers or out-of-order execution
requires multi-bank memories

“hit under miss” reduces the effective miss penalty by
working during miss instead of ignoring CPU requests
“hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

Advanced Computer Architecture Chapter 2.33

Significantly increases the complexity of the cache controller as there can
be multiple outstanding memory accesses
Requires multiple memory banks (otherwise cannot support)
Pentium Pro allows 4 outstanding memory misses

Compare:
prefetching: overlap memory access with pre-miss instructions,
Non-blocking cache: overlap memory access with post-miss instructions

What happens on a Cache miss?
For in-order pipeline, 2 options:

Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall … stall Mem Wr
IF ID EX stall stall stall … stall stall Ex Wr

Use Full/Empty bits in registers + MSHR queueUse Full/Empty bits in registers + MSHR queue
MSHR = “Miss Status/Handler Registers” (Kroft*)
Each entry in this queue keeps track of status of outstanding memory
requests to one complete memory line.

• Per cache-line: keep info about memory address.
• For each word: register (if any) that is waiting for result.
• Used to “merge” multiple requests to one memory line

New load creates MSHR entry and sets destination register to
“Empty”. Load is “released” from pipeline.
Attempt to use register before result returns causes instruction to

Advanced Computer Architecture Chapter 2.34

Attempt to use register before result returns causes instruction to
block in decode stage.
Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

Out-of-order pipelines already have this functionality
built in… (load queues, etc).

* David Kroft, Lockup-free instruction fetch/prefetch cache organization, ICCA81
http://portal.acm.org/citation.cfm?id=801868

Value of Hit Under Miss for SPEC
Hit Under i Misses

1 4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t o s r p v c 5 7 a

0->1

1->2

2->64

Base

“Hit under n Misses”

0->1
1->2
2->64
Base

AMAT (in cycles)

Advanced Computer Architecture Chapter 2.35

FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

Integer Floating Point

4: Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

Definitions:
l h h d d d h l f

Advanced Computer Architecture Chapter 2.36

Local miss rate— misses in this cache divided by the total number of memory
accesses to this cache (Miss rateL2)
Global miss rate—misses in this cache divided by the total number of memory
accesses generated by the CPU
(Miss RateL1 x Miss RateL2)
Global Miss Rate is what matters

Page 10

Comparing Local and Global Miss Rates
32 KByte 1st level
cache;
Increasing 2nd level
cache

Global miss rate close
t i l l l h to single level cache
rate provided L2 >> L1

Don’t use local miss
rate

L2 not tied to CPU
clock cycle!

Cost & A M A T

Advanced Computer Architecture Chapter 2.37

Cost & A.M.A.T.

Generally Fast Hit
Times and fewer
misses

Since hits are few,
target miss reduction

Fig 5.10 pg416

Reducing Miss Penalty Summary

Four techniques
CPUtime = IC × CPI Execution +

Memory accesses
Instruction

× Miss rate × Miss penalty⎛
⎝

⎞
⎠ × Clock cycle time

Four t chn qu s
Read priority over write on miss
Early Restart and Critical Word First on miss
Non-blocking Caches (Hit under Miss, Miss under Miss)
Second Level Cache

Can be applied recursively to Multilevel Caches
Danger is that time to DRAM will grow with multiple levels in
between

Advanced Computer Architecture Chapter 2.38

between
First attempts at L2 caches can make things worse, since
increased worst case is worse

Th th t i h

yMissPenaltMissRateHitTimeAMAT ×+=

Average memory access time:

There are three ways to improve cache
performance:

1. Reduce the miss rate,
2 Reduce the miss penalty or

Advanced Computer Architecture Chapter 2.39

2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Reducing the time to hit in the cache

Why does the Alpha 21164 have 8KB Instruction and
8KB data cache + 96KB second level cache, all on-
chip?

1.Keep the cache small and simple
2.Keep address translation off the critical path
3.Pipeline the cache access

Advanced Computer Architecture Chapter 2.40

Page 11

2. Fast hits by Avoiding Address
Translation

CPU CPU CPU

TB

$

VA

PA

$

TB

VA

VA

$ TB

VA

PA
Tags

PA

VA
Tags

L2 $

Advanced Computer Architecture Chapter 2.41

MEM

PA

Conventional
Organization

MEM

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

MEM

Overlap $ access
with VA translation:
requires $ index to
remain invariant

across translation

Paging Virtual address space is divided into pages of equal size.
Main Memory is divided into page frames the same size.

Virtual • Running or ready processReal
Memory

Active
Pages

g y p
– some pages in main memory

• Waiting process
– all pages can be on disk

• Paging is transparent to programmer

Paging Mechanism

Real
Memory

Advanced Computer Architecture Chapter 2.42

Swapping
Disc

(1) Address Mapping
(2) Page Transfer

Inactive
Pages

(Review introductory operating systems material
for students lacking CS background)

P W Process
Page Table

Program Address
Main Store

Page P
B+W

Paging - Address Mapping

B

B+W

P= Page No.
W=Word No.
B= Page Frame Addr.

Pointer to
current Page
Table

Advanced Computer Architecture Chapter 2.43

Example: Word addressed machine, W = 8 bits, page size = 256

Amap(P,W) := PPT[P] * 256 + W

Note: The Process Page Table (PPT) itself can be paged
(Review introductory operating systems material

for students lacking CS background)

P W

Program Address
Main Store

Page P
B+W

Paging - Address Mapping

TLB – cache
of PPT

B

B+W

P= Page No.
W=Word No.
B= Page Frame Addr.

If page is absent in
TLB, look in PPT TLB (Translation Lookaside

Buffer) is small cache
containing recently-

Advanced Computer Architecture Chapter 2.44

PPT -
Process
Page Table

Pointer to
current Page
Table

(Review introductory operating systems material
for students lacking CS background)

B

containing recently
accessed page table values
Eg 64-entry fully-
associative
Closely integrated with L1
cache

Page 12

Paging - Page Transfer
What happens when we access a page which is currently not in main
memory (i.e. the page table entry is empty)?

Page Fault → Suspend running process
→ Get page from disk
→ Update page table→ Update page table
→ Resume process (re-execute instruction)
? Can one instruction cause more than one page fault?

The location of a page on disk can be recorded in a separate table or in the page
table itself using a presence bit.

P
Main Memory Page

Presence bit set Note: We can run
another ready

hil th

Advanced Computer Architecture Chapter 2.45

Page
Table
Entry

B1

D0

Frame Location

Disk Page Location

Presence bit clear

process while the
page fault is being
serviced.

(Review introductory operating systems material
for students lacking CS background)

Synonyms and homonyms in address translation

Homonyms (same sound different meaning)
same virtual address points to two different physical addresses in
different processes
If you have a virtually-indexed cache flush it between context switches If you have a virtually indexed cache, flush it between context switches
- or include PID in cache tag

Synonyms (different sound same meaning)
different virtual addresses (from the same or different processes) point
to the same physical address
in a virtually addressed cache

a virtual address could be cached twice under different physical
addresses
updates to one cached copy would not be reflected in the other

Advanced Computer Architecture Chapter 2.46

updates to one cached copy would not be reflected in the other
cached copy
solution: make sure synonyms can’t co-exist in the cache, e.g., OS can
forces synonyms to have the same index bits in a direct mapped
cache (sometimes called page colouring)

(a nice explanation in more detail can be found at http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf)

2. Fast hits by Avoiding Address Translation
Send virtual address to cache?

Called Virtually Addressed Cache or just Virtual Cache vs. Physical Cache

Every time process is switched logically must flush the cache; otherwise get
false hitsfalse hits

Cost is time to flush + “compulsory” misses from empty cache
Dealing with aliases (sometimes called synonyms/homonyms);
Two different virtual addresses map to same physical address,
Two different physical addresses mapped to by the same virtual address in
different contexts
I/O must interact with cache, so need virtual address

Solution to aliases

Advanced Computer Architecture Chapter 2.47

Solution to aliases
HW guarantees covers index field & direct mapped, they must be unique;
called page coloring

Solution to cache flush
Add process identifier tag that identifies process as well as address within
process: can’t get a hit if wrong process

2. Fast Cache Hits by Avoiding
Translation: Process ID impact

Black is uniprocess
Light Gray is
multiprocess when
flush cache
Dark Gray is
multiprocess when
use Process ID tag
Y axis: Miss Rates
up to 20%

Advanced Computer Architecture Chapter 2.48

up to 20%
X axis: Cache size
from 2 KB to 1024
KB

Page 13

2. Fast Cache Hits by Avoiding Translation:
Index with Physical Portion of Address

If index is physical part of
address, can start tag access in
parallel with translation so that
can compare to physical tag CPUcan compare to physical tag
Limits cache to page size: what if
want bigger caches and uses same
trick?

Higher associativity

Page coloring
A h fli t if t

TLB Cache

VA

PA
Tags

PA
L2 $

Page number | Page offset

Advanced Computer Architecture Chapter 2.49

A cache conflict occurs if two
cache blocks that have the same
tag (physical address) are mapped
to two different virtual addresses
Make sure OS never creates a
page table mapping with this
property

MEM

3: Fast Hits by pipelining Cache
Case Study: MIPS R4000

8 Stage Pipeline:
IF–first half of fetching of instruction; PC selection happens here as
well as initiation of instruction cache accesswell as initiation of instruction cache access.
IS–second half of access to instruction cache.
RF–instruction decode and register fetch, hazard checking and also
instruction cache hit detection.
EX–execution, which includes effective address calculation, ALU
operation, and branch target computation and condition evaluation.
DF–data fetch, first half of access to data cache.
DS–second half of access to data cache.

Advanced Computer Architecture Chapter 2.50

TC–tag check, determine whether the data cache access hit.
WB–write back for loads and register-register operations.

What is impact on Load delay?
Need 2 instructions between a load and its use!

Case Study: MIPS R4000

IF IS
IF

RF
IS

EX
RF

DF
EX

DS
DF

TC
DS

WB
TC

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

L L n y

IF IS
IF

RF
IS

EX
RF

DF
EX

DS
DF

TC
DS

WB
TC

THREE Cycle
Branch Latency

Advanced Computer Architecture Chapter 2.51

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken

R4000 Performance
Not ideal CPI of 1:

Load stalls (1 or 2 clock cycles)
Branch stalls (2 cycles + unfilled slots)
FP result stallsFP result stalls: RAW data hazard (latency)
FP t t l t ll N t h FP h d (ll li)FP structural stalls: Not enough FP hardware (parallelism)

1.5
2

2.5
3

3.5
4

4.5

Advanced Computer Architecture Chapter 2.52

0
0.5

1

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c

na
sa

7

or
a

sp
ic

e2
g6

su
2c

or

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural
stalls

Page 14

What is the Impact of What You’ve
Learned About Caches?

1960-1985: Speed

1000 CPU

p
= ƒ(no. operations)
1990

Pipelined
Execution &
Fast Clock Rate
Out-of-Order
execution
Superscalar 1

10

100

DRAM

Advanced Computer Architecture Chapter 2.53

p
Instruction Issue

1998: Speed =
ƒ(non-cached memory accesses)
Superscalar, Out-of-Order machines hide L1 data cache miss
(­5 clocks) but not L2 cache miss (­50 clocks)?

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

Processor issues 48-bit
virtual addresses
Separate Instr & Data
TLB & Caches
TLBs fully associative
TLB updates in SW
(“Priv Arch Libr”)

Alpha 21064

(Priv Arch Libr)
Caches 8KB direct
mapped, write thru,
virtually-indexed,
physically tagged
Critical 8 bytes first
Prefetch instr. stream
buffer
4 entry write buffer
between D$ & L2$

Advanced Computer Architecture Chapter 2.54

between D$ & L2$
incorporates victim
buffer: to give read
priority over write
2 MB L2 cache, direct
mapped, WB (off-chip)
256 bit path to main
memory, 4 x 64-bit
modules

10 00%

100.00%

A
lp

ha
S

or
t

TP
C

-B
 (d

b1
) Li S

c

C
om

pr
es

s

O
ra

E
ar

D
od

uc

To
m

ca
tv

M
dl

jp
2

S
pi

ce

S
u2

co
r

Alpha Memory Performance: Miss Rates of SPEC92

Overall
average:
I$ miss = 6%
D$ miss = 32%

0.10%

1.00%

10.00% T

M
is

s
Ra

te I $
D $
L2

8K

8K
2M

D$ miss = 32%
L2 miss = 10%

Advanced Computer Architecture Chapter 2.55

0.01%

0.10%

Integer benchmark
average:
I$ miss = 2%
D$ miss = 13%
L2 miss = 0.6%

Floating-point
benchmark average:
I$ miss = 1%
D$ miss = 21%
L2 miss = 0.3%

Alpha CPI Components
Instruction stall: branch mispredict (green);
Data cache (blue); Instruction cache (yellow); L2$ (pink)
Other: compute + reg conflicts, structural conflicts

1 50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

CP
I

L2
I$
D$
I Stall
Other

Advanced Computer Architecture Chapter 2.56

0.00
0.50
1.00
1.50

A
lp

ha
S

or
t

TP
C

-B
 (d

b1
) Li S

c

C
om

pr
es

s

O
ra

E
ar

D
od

uc

To
m

ca
tv

M
dl

jp
2

Page 15

Cache Optimization Summary

Technique MR MP HT Complexity
L Bl k Si 0e Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
N Bl ki C h 3

m
is

s
ra

te
al

ty

Advanced Computer Architecture Chapter 2.57

Non-Blocking Caches + 3
Second Level Caches + 2

m
is

s
pe

na
Practical exercise: explore memory

hierarchy on your favourite computer
Download Stefan Manegold’s “cache and TLB
calibrator”:

http://www.cwi.nl/~manegold/Calibrator/calibrator.shtml
(or find installed copy in ~phjk/ToyPrograms/C/ManegoldCalibrator)

This program consists of a loop which runs over an
array repeatedly

The size of the array is varied to evaluate cache size
The stride is varied to explore block size

Advanced Computer Architecture Chapter 2.58

Memory hierarchy of a
2.2GHz Intel Pentium 4 Xeon

Memory access latency is close to
1ns when loop reuses array smaller
than 8KB level-1 cache
While array is smaller than 512KB, y ,
access time is 2-8ns, depending on
stride
When array exceeds 512KB,
accesses miss both level-1 and
level-2 caches
Worst case (large stride) suffers
158ns access latency
Q:

Advanced Computer Architecture Chapter 2.59

How many instructions could be
executed in 158ns?
what is the level-1 cache block
size?
What is the level-2 cache block
size?

Instructions for running the Manegold calibrator
Get a copy:

cp /homes/phjk/ToyPrograms/C/ManegoldCalibrator/calibrator.c ./
Compile it:

gcc –O3 –o calibrator calibrator.s
Find out CPU MHz

cat /proc/cpuinfo
Run it; ./calibrator <CPUMHz> <size> <filename>
Eg on media03:

./calibrator 3000 64M media03
Output is delivered to a set of files “media03.*”

Plot postscript graphs using generated gnuplot scripts:

Advanced Computer Architecture Chapter 2.60

Plot postscript graphs using generated gnuplot scripts:
gnuplot media03.cache-miss-latency.gp
gnuplot media03.cache-replace-time.gp
gnuplot media03.TLB-miss-latency.gp

View the generated postscript files:
gv media03.cache-miss-latency.ps &

Page 16

Extra material for interest

Advanced Computer Architecture Chapter 2.61

Main Memory Background
Performance of Main Memory:

Latency: Cache Miss Penalty
Access Time: time between request and word arrives
Cycle Time: time between requestsCycle Time: time between requests

Bandwidth: I/O & Large Block Miss Penalty (L2)

Main Memory is DRAM: Dynamic Random Access Memory
Dynamic since needs to be refreshed periodically (8 ms, 1% time)
Addresses divided into 2 halves (Memory as a 2D matrix):

RAS or Row Access Strobe
CAS or Column Access Strobe

Advanced Computer Architecture Chapter 2.62

Cache uses SRAM: Static Random Access Memory
No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM ­ 4-8,
Cost/Cycle time: SRAM/DRAM ­ 8-16

Main Memory Deep Background

The first real “random-access memory”
technology was based on magnetic
“cores” – tiny ferrite rings threaded
with copper wires

Advanced Computer Architecture Chapter 2.63

with copper wires
That’s why people talk about “Out-of-
Core”, “In-Core,” “Core Dump”
Non-volatile, magnetic
Lost out when 4 Kbit DRAM became
available
Access time 750 ns, cycle time 1500-
3000 ns

http://www.faqs.org/docs/electric/Digital/DIGI_15.html
http://www.psych.usyd.edu.au/pdp-11/core.html

Pulse on sense line if any core flips
its magnetisation state

y/
ex

hi
bi

ts
/s

pa
ce

/s
pa

ce
_2

36
1.

ht
m
l

ry
/c

or
e.

ht
m
l

The first magnetic core memory,
from the IBM 405 Alphabetical

 h h h

ht
tp

:/
/w

ww
-0

3.
ib

m
.c

om
/i
bm

/h
is
to

ry
ht

tp
:/

/w
ww

.c
ol
um

bi
a.

ed
u/

ac
is
/h

is
to

r

Advanced Computer Architecture Chapter 2.64

Accounting Machine. The photo
shows the single drive lines through
the cores in the long direction and
fifty turns in the short direction.
The cores are 150 mil inside
diameter, 240 mil outside, 45 mil
high. This experimental system was
tested successfully in April 1952.

524,000 36-bit words and a total
cycle time of eight microseconds in
each memory (1964 – for the
IBM7094)

So
ur

ce
s:

Page 17

Atlas
First was at
University of University of
Manchester
University of
London had
the second
one
Commissioned
May 1964
Shut down
Sept 1972

Advanced Computer Architecture Chapter 2.65http://www.chilton-computing.org.uk/acl/technology/atlas/overview.htm

Pipelined instruction processing in Atlas

Advanced Computer Architecture Chapter 2.66

Atlas is most famous for pioneering virtual memory
Also

Pipelined execution
Cache memory (“slave store”) – 32 words
Floating point arithmetic hardware

http://www.chilton-computing.org.uk/acl/technology/atlas/overview.htm

DRAM cell design

Advanced Computer Architecture Chapter 2.67

Single transistor
Capacitor stores charge
Decays with time
Destructive read-outhttp://www.research.ibm.com/journal/rd/462/mandelman.html

DRAM array design

Square array of cells
Address split into Row
address and Column address and olumn
Address bits
Row address selects row
of cells to be activated
Cells discharge
Cell state latched by per-
column sense amplifiers

Advanced Computer Architecture Chapter 2.68

column sense amplifiers
Column address selects
data for output
Data must be written
back to selected row

http://www.faculty.iu-bremen.de/birk/lectures/PC101-2003/08dram/Principles/DRAM02.htm

Page 18

4 Key DRAM Timing Parameters
tRAC: minimum time from RAS line falling to the valid
data output.

Quoted as the speed of a DRAM when buyQ p f y
A typical 4Mb DRAM tRAC = 60 ns
Speed of DRAM since on purchase sheet?

tRC: minimum time from the start of one row access
to the start of the next.

tRC = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

tCAC: minimum time from CAS line falling to valid
d t t t

Advanced Computer Architecture Chapter 2.69

data output.
15 ns for a 4Mbit DRAM with a tRAC of 60 ns

tPC: minimum time from the start of one column
access to the start of the next.

35 ns for a 4Mbit DRAM with a tRAC of 60 ns

A
D

OE_L

256K x 8
DRAM9 8

WE_LCAS_LRAS_L

Every DRAM access begins
at:

The assertion of the RAS_L
2 ways to read:
early or late v. CAS

DRAM Read Timing

A Row Address

WE_L

Junk

CAS_L

RAS_L

Col Address Row Address JunkCol Address

DRAM Read Cycle Time

Advanced Computer Architecture Chapter 2.70

OE_L

Read Access
Time

Output Enable
Delay

D High Z Data Out

Early Read Cycle: OE_L asserted before CAS_L Late Read Cycle: OE_L asserted after CAS_L

Junk Data Out High Z

DRAM Performance

A 60 ns (tRAC) DRAM can
perform a row access only every 110 ns (tRC)
perform column access (tCAC) in 15 ns, but time between column

 i t l t 35 (t) accesses is at least 35 ns (tPC).
In practice, external address delays and turning around buses
make it 40 to 50 ns

These times do not include the time to drive the
addresses off the microprocessor nor the memory
controller overhead!

Advanced Computer Architecture Chapter 2.71

DRAM History
DRAMs: capacity +60%/yr, cost –30%/yr

2.5X cells/area, 1.5X die size in ­3 years
2007 DRAM fab line costs $4.6B (2004 prices)

DRAM only: density, leakage v. speed
Rely on increasing no. of computers & memory per computer
(60% market)

SIMM or DIMM is replaceable unit
=> computers use any generation DRAM

Commodity, second source industry
=> high volume, low profit, conservative

Little organization innovation in 20 years

Advanced Computer Architecture Chapter 2.72

Little organization innovation in 20 years
Order of importance: 1) Cost/bit 2) Capacity

First RAMBUS: 10X BW, +30% cost => little impact

“Elpida to Build $4.6B DRAM Fab in Japan” (Electronic News, 6/9/2004)
http://www.reed-electronics.com/electronicnews/article/CA424812.html

Page 19

DRAM Today: 1 Gbit DRAM and more
Infineon (Dresden)

Organisation x4,x8,x16
Clock 133-200 MHz
D t Pi 68Data Pins 68
Die Size 160 mm2

Metal Layers 3
Technology 110nm

Datapoint 2005:

Video: http://registration.infineon.com/registration/video/video.asp

Advanced Computer Architecture Chapter 2.73

Datapoint 2005:
0.7 micron
Hi-k dielectric (Al2O3)
75:1 trench capacitor aspect ratio

Infineon News 2004-12-14 http://www.infineon.com/cgi/ecrm.dll/jsp/showfrontend.do?lang=EN&news_nav_oid=-9979&content_type=NEWS&content_oid=117074
Infineon Samples 1Gbit DDR SDRAMs Electronics News, 8/26/2003 http://www.reed-electronics.com/electronicnews/article/CA318799.html

Fast Memory Systems: DRAM specific
Multiple CAS accesses: several names (page mode)

Extended Data Out (EDO): 30% faster in page mode
New DRAMs to address gap;
what will they cost, will they survive?

RAMBUS: “reinvent DRAM interface”
Each Chip a module vs. slice of memory
Short bus between CPU and chips
Does own refresh
Variable amount of data returned
Originally 1 byte / 2 ns (500 MB/s per chip)
Direct Rambus DRAM (DRDRAM) 16 bits at 400MHz, with a transfer on
both clock edges, leading to 1.6GB/s
20% increase in DRAM area

Synchronous DRAM: 2 banks on chip a clock signal to DRAM transfer

Advanced Computer Architecture Chapter 2.74

Synchronous DRAM: 2 banks on chip, a clock signal to DRAM, transfer
synchronous to system clock (66 - 150 MHz). “Double Data Rate” DDR SDRAM
also transfers on both clock edges
Intel claims RAMBUS Direct (16 b wide) is future PC memory?

Niche memory or main memory?
e.g., Video RAM for frame buffers, DRAM + fast serial output

Main Memory Organizations

CPU

Cache

CPU

Cache

CPU

Cache

Memory

Bus

Memory

Bus

Memory

Bank 0

Bus

Memory

Bank 1

Memory

Bank 2

Memory

Bank 3

Advanced Computer Architecture Chapter 2.75

Simple:
CPU, Cache,
Bus, Memory
same width
(32 or 64 bits)

Wide:
CPU/Mux 1 word;
Mux/Cache, Bus,
Memory N words
(Alpha: 64 bits & 256
bits; UtraSPARC 512)

Interleaved:
CPU, Cache, Bus 1 word:
Memory N Modules
(4 Modules); example is
word interleaved

Main Memory Performance

Timing model (word size is 32 bits)
1 to send address,
6 access time, 1 to send data
Cache Block is 4 words

Simple M.P. = 4 x (1+6+1) = 32
Wide M.P. = 1 + 6 + 1 = 8
Interleaved M.P. = 1 + 6 + 4x1 = 11

Advanced Computer Architecture Chapter 2.76

Page 20

Independent Memory Banks

Memory banks for independent accesses
vs. faster sequential accesses

Multiprocessor
I/O
CPU with Hit under n Misses, Non-blocking Cache

Superbank: all memory active on one block transfer (or
Bank)
Bank: portion within a superbank that is word interleaved
(or Subbank)

Advanced Computer Architecture Chapter 2.77

(or Subbank)

Superbank Bank

…

Superbank Number Superbank Offset
Bank Number Bank Offset

Independent Memory Banks
How many banks?
number banks ≤ number clocks to access word in bank

For sequential accesses otherwise will return to ori inal bank before it For sequential accesses, otherwise will return to original bank before it
has next word ready
(like in vector case)

Increasing DRAM => fewer chips => harder to have
banks

Advanced Computer Architecture Chapter 2.78

Avoiding Bank Conflicts
Lots of banks

int x[256][512];
f (j 0 j < 512 j j+1)for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)
x[i][j] = 2 * x[i][j];

Conflicts occur even with 128 banks, since 512 is multiple of 128,
conflict on word accesses
SW: loop interchange or declaring array not power of 2 (“array
padding”)
HW: Prime number of banks

Advanced Computer Architecture Chapter 2.79

HW Prime number of banks
bank number = address mod number of banks
address within bank = address / number of words in bank
modulo & divide per memory access with prime no. banks?
address within bank = address mod number words in bank
bank number? easy if 2N words per bank

Chinese Remainder Theorem
As long as two sets of integers ai and bi follow these rules

and that ai and aj are co-prime if i ≠ j, then the integer x has only one
solution (unambiguous mapping):

b i = x mod a i, 0 ≤ b i < a i, 0 ≤ x < a 0 × a1 × a 2 ×…

Fast Bank Number

bank number = b0, number of banks = a0 (= 3 in example)
address within bank = b1, number of words in bank = a1
(= 8 in example)
N word address 0 to N-1, prime no. banks, words power of 2

Seq. Interleaved Modulo Interleaved
Bank Number: 0 1 2 0 1 2

Address within

Advanced Computer Architecture Chapter 2.80

Bank: 0 0 1 2 0 16 8
1 3 4 5 9 1 17
2 6 7 8 18 10 2
3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23

Page 21

Need for Error Correction!
Motivation:

Failures/time proportional to number of bits!
As DRAM cells shrink, more vulnerable

Went through period in which failure rate was low enough
without error correction that people didn’t do correction

DRAM banks too large now
Servers always corrected memory systems

Basic idea: add redundancy through parity bits
Simple but wasteful version:

Keep three copies of everything, vote to find right value
200% overhead, so not good!

Common configuration: Random error correction
SEC-DED (single error correct, double error detect)
One example: 64 data bits + 8 parity bits (11% overhead)

Advanced Computer Architecture Chapter 2.81

One example: 64 data bits + 8 parity bits (11% overhead)
Papers up on reading list from last term tell you how to do these types
of codes

Really want to handle failures of physical components as well
Organization is multiple DRAMs/SIMM, multiple SIMMs
Want to recover from failed DRAM and failed SIMM!
Requires more redundancy to do this
All major vendors thinking about this in high-end machines

FLASH
Mosfet cell with
two gates
One “floating”
To program, charge
tunnels via <7nm
dielectric
Cells can only be

More esoteric Storage Technologies?
NAND design: sequential read, high density

Cells can only be
erased (reset to 0)
in blocks

Advanced Computer Architecture Chapter 2.82

1 Gbit NAND Flash memory
bwrc.eecs.berkeley.edu/Classes/ICDesign/ EE241_s02/Lectures/lecture28-Flash.pdf

FRAM
Perovskite ferroelectric crystal forms dielectric in
capactor, stores bit via phase change
100ns read, 100ns write
Very low write energy (ca.1nJ)

More esoteric Storage Technologies?

Advanced Computer Architecture Chapter 2.83
http://www.fma.fujitsu.com/fram/framDocs01.asp?grOut=Documentation&sec=Documentation

Fully integrated with
logic fab process
Currently used in
Smartcards/RFID
Soon to overtake
Flash?
See also phase
change RAM

Main Memory Summary

Wider Memory
Interleaved Memory: for sequential or independent
accesses
Avoiding bank conflicts: SW & HW
DRAM specific optimizations: page mode & Specialty
DRAM
Need Error correction

Advanced Computer Architecture Chapter 2.84

Need Error correction

