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These lecture notes are partly based on the course text, Hennessy 
and Patterson’s Computer Architecture, a quantitative approach (3rd

and 4th eds), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course

Th   th   t  i  h  

Average memory access time:
AMAT = HitTime + MissRate×MissPenalty

There are three ways to improve cache 
performance:

1. Reduce the miss rate, 
2  Reduce the miss penalty  or
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2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

We now look at each of these in turn…

Reducing Misses
Classifying Misses: 3 Cs

Compulsory—The first access to a block is not in the cache, so the 
block must be brought into the cache. Also called cold start misses or 
first reference misses.
(Misses in even an Infinite Cache)(Misses in even an Infinite Cache)

Capacity—If the cache cannot contain all the blocks needed during 
execution of a program, capacity misses will occur due to blocks being 
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

Conflict—If block-placement strategy is set associative or direct 
mapped, conflict misses (in addition to compulsory & capacity misses) will 
occur because a block can be discarded and later retrieved if too many 
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occur because a block can be discarded and later retrieved if too many 
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

Maybe four: 4th “C”:
Coherence - Misses caused by cache coherence.
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2:1 Cache Rule (of thumb!)

0.02

0.04

0.06

0.08

0.1
2-way

4-way

8-way

Capacity    
- misses in fully-associative cache

Advanced Computer Architecture Chapter 2.5

Cache Size (KB)   
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- misses in infinite cache

miss rate 1-way associative cache size X 
≈ miss rate 2-way associative cache size X/2

3Cs Relative Miss Rate
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Cache Size (KB)   
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Compulsory    
Flaws: for fixed block size
Good: insight => invention

Same data, shown as 
proportion of total

How We Can Reduce Misses?

3 Cs: Compulsory, Capacity, Conflict
In all cases  assume total cache size not changed:In all cases, assume total cache size not changed:
What happens if:

1) Change Block Size: 
Which of 3Cs is obviously affected?

2) Change Associativity: 
Which of 3Cs is obviously affected?
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3) Change Compiler: 
Which of 3Cs is obviously affected?

We will look at each of these in turn…

25%

1. Reduce Misses via Larger Block Size

Miss 
Rate 

5%

10%

15%

20% 1K

4K

16K

64K

256K

Advanced Computer Architecture Chapter 2.8

Block Size (bytes)   
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Bigger blocks allow us to exploit more spatial locality – but...
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2: Associativity: Average Memory Access Time vs. Miss Rate
Beware: Execution time is 
all that really matters

Will Clock Cycle time increase?
Example: suppose clock cycle 
time (CCT) = 

(KB) 1 2 4 8   
Cache Size Associativity

1.10 for 2-way, 
1.12 for 4-way, 
1.14 for 8-way 
vs. CCT = 1.0 for direct 
mapped

Although miss rate is improved 
by increasing associativity, the 
cache hit time is increased 

(KB) 1-way 2-way 4-way 8-way  
1 2.33 2.15 2.07 2.01 
2 1.98 1.86 1.76 1.68 
4 1.72 1.67 1.61 1.53 
8 1.46 1.48 1.47 1.43 

16 1.29 1.32 1.32 1.32 
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cache hit time is increased 
slightly

(Red means A.M.A.T. not improved by 
more associativity)

32 1.2 1.24 1.25 1.27 
64 1.14 1.2 1.21 1.23 

128 1.1 1.17 1.18 1.2 
Illustrative benchmark study.  
Real clock cycle cost likely 
smaller

Another way to reduce associativity conflict 
misses: “Victim Cache”

How to combine fast hit time of 
direct mapped 
yet still avoid conflict misses? 
Add buffer to place data 
di d d f  h DATAdiscarded from cache
Jouppi [1990]: 4-entry victim 
cache removed 20% to 95% of 
conflicts for a 4 KB direct 
mapped data cache
Used in AMD Opteron, 
Barcelona, Phenom, IBM Power5, 
Power6

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator
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To Next Lower Level In
Hierarchy

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

Jouppi, N. P. 1998. Improving direct-mapped cache performance by the addition of a small fully-associative cache prefetch buffers. In 
25 Years of the international Symposia on Computer Architecture (Selected Papers) (Barcelona, Spain, June 27 - July 02, 1998). G. S. 
Sohi, Ed. ISCA '98. ACM, New York, NY, 388-397. DOI= http://doi.acm.org/10.1145/285930.285998

HP Fellow
Director, Exascale Computing Lab
Palo Alto

“Pseudo-Associativity”: miss once? Try again!

How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 
Divide cache: on a miss, check other half of cache to see if Divide cache  on a miss, check other half of cache to see if 
there, if so have a pseudo-hit (slow hit)

Hit Time

Pseudo Hit Time Miss Penalty

Time
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Use a “way-predictor” to guess which half to try first
Q: what address to use for the two ways?
Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

Better for caches not tied directly to  processor (L2)
Used in MIPS R10000 L2 cache, similar in UltraSPARC

Time

(?)

Advanced Computer Architecture Chapter 2.12(Slide from Christos Kozyrakis, http://www.stanford.edu/class/ee282/handouts/L04-Cache2.4pp.pdf)

Seznec, A. and Bodin, F. 1993. Skewed-associative Caches. In 
Proceedings of the 5th international PARLE Conference on 
Parallel Architectures and Languages Europe (June 14 - 17, 
1993). A. Bode, M. Reeve, and G. Wolf, Eds. Lecture Notes 
In Computer Science, vol. 694. Springer-Verlag, London, 304-
316.
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Reducing Misses by Hardware Prefetching of 
Instructions & Data Extra block placed 

in “stream buffer”
After a cache miss, 
stream buffer 
initiates fetch for initiates fetch for 
next block
But it is not 
allocated into cache 
– to avoid 
“pollution”
On miss  check 
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On miss, check 
stream buffer in 
parallel with cache
relies on having 
extra memory 
bandwidth

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

Multi-way stream-buffer

We can extend this 
idea to track multiple 
access streams 
i l lsimultaneously:

Jouppi [1990] 1 data 
stream buffer got 25% 
misses from 4KB cache; 
4 streams got 43%
Palacharla & Kessler 
[1994] for scientific 
programs for 8 streams 
got 50% to 70% of 
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got 50% to 70% of 
misses from 
2 64KB, 4-way set 
associative caches

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

6. Reducing Misses by 
Software Prefetching Data

Data Prefetch
Load data into register (HP PA-RISC loads)
C h  P f t h: l d i t  h  (MIPS IV  P PC  SPARC  9)Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
Special prefetching instructions cannot cause faults; a form of 
speculative execution

Prefetching comes in two flavors:
Binding prefetch: Requests load directly into register.

Must be correct address and register!
Non-Binding prefetch: Load into cache.  

Can be incorrect.  Frees HW/SW to guess!
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Can be incorrect.  Frees HW/SW to guess!
Issuing Prefetch Instructions takes time

Is cost of prefetch issues < savings in reduced misses?
Higher superscalar reduces difficulty of issue bandwidth
But often, hardware prefetching is just as effective

7. Reducing Misses by Compiler Optimizations

McFarling [1989]* reduced instruction cache misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software
Instructions

By choosing instruction memory layout based on callgraph, branch structure 
and profile data
Reorder procedures in memory so as to reduce conflict misses
(actually this really needs the whole program – a link-time optimisation)

Similar (but different) ideas work for data
Merging Arrays: improve spatial locality by single array of compound 
elements vs. 2 arrays
Permuting a multidimensional array: improve spatial locality by matching 
array layout to traversal order
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y y
Loop Interchange: change nesting of loops to access data in order stored in 
memory
Loop Fusion: Combine 2 independent loops that have same looping and some 
variables overlap
Blocking: Improve temporal locality by accessing “blocks” of data repeatedly 
vs. going down whole columns or rows

* “Program optimization for instruction caches”, ASPLOS89, http://doi.acm.org/10.1145/70082.68200
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Array Merging - example
/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged array[SIZE];
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g g _ y[ ]

Reducing conflicts between val & key (example?)
Improve spatial locality (counter-example?)

(actually this is a transpose: 2*SIZE -> SIZE*2)

Permuting multidimensional arrays to improve spatial locality
Matrix-matrix
multiply on 
Pentium 4

“ikj” variant:
for i 76

32

54

10

Row major:
for i 
for j 
for k     
C[ij]+=A[ik]

*B[kj]

1514

1110

1312

98

141062

139

128

51

40

Column major:
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Traverses A and C in row-major order
If data is actually in column-major order…

151173

Permuting multidimensional arrays to improve spatial locality
Matrix-matrix
multiply on 
Pentium 4

“ikj” variant:
for i for i 
for j 
for k     
C[ij]+=A[ik]

*B[kj]

Using a blocked (“quadtree” or “Morton”) 
layout gives a compromise between row-major 

and column-major

5410
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Traverses A and C in row-major order
If data is actually in column-major order…

1514

1312

1110

98

7632

Storage layout transformations
Merging Arrays: improve spatial locality by single array of compound 
elements vs. 2 arrays
Permuting a multidimensional array: improve spatial locality by 
matching array layout to traversal order

Improve spatial locality

Iteration space transformations
Loop Interchange: change nesting of loops to access data in order 
stored in memory
Loop Fusion: Combine 2 independent loops that have same looping and 
some variables overlap

Advanced Computer Architecture Chapter 2.20

p
Blocking: Improve temporal locality by accessing “blocks” of data 
repeatedly vs. going down whole columns or rows (wait for Chapter 4)

Can also improve temporal locality
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Loop Interchange: example

/* Before */
for (k = 0; k < 100; k = k+1)( )

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];
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x[i][j] = 2 * x[i][j];

Sequential accesses: instead of striding through 
memory every 100 words; improved spatial locality

(actually this is a transpose of the iteration space)

Loop Fusion: example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
f (j 0 j < N j j+1)

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2

S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2

S1:

for (j = 0; j < N; j = j+1)
d[i][j] = a[i][j] + c[i][j];

/* After fusion */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

/* After array contraction */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ c = c[i][j];

a = 1/b[i][j] * c;
d[i][j] = a + c;}

S2 S2 S2 S2 S2 S2 S2

S2:

S1:
S2:

S2:

S1:
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2 misses per access to a & c vs. 
one miss per access; improve 
spatial locality

[ ][j] }

The real payoff comes if 
fusion enables Array 
Contraction: values 
transferred in scalar 
instead of via array

Fusion is not always so simple
Dependences might not align nicely
Example: one-dimensional filters

f (i 1 i<N i++)for (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2
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• “Stencil” loops are not directly fusable

for (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2

We make them fusable by shifting:

Loop fusion – code expansion

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i] = (U[i-1] + U[i+1])/2
W[i-1] = (V[i-2] + V[i])/2

}
W[N 1] = (V[N 2] + V[N])/2
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W[N-1] = (V[N-2] + V[N])/2

The middle loop is fusable
We get lots of little edge bits
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We make them fusable by shifting:

Loop fusion – code expansion

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i%4] = (U[i-1] + U[i+1])/2
W[i-1] = (V[(i-2)%4] + V[i%4])/2

}
W[N 1] = (V[(N 2)%4] + V[N%4])/2
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W[N-1] = (V[(N-2)%4] + V[N%4])/2

The middle loop is fusable
We get lots of little edge bits

Contraction is trickier
We need the last two Vs
We need 3 V locations
Quicker to round up to four

Summary: Miss Rate Reduction

3 Cs: C mpuls ry  Capacity  C nflict

CPUtime = IC × CPI Execution +
Memory accesses

Instruction
× Miss rate × Miss  penalty⎛ 

⎝ 
⎞ 
⎠ × Clock  cycle  time

3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations
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7. Reducing Misses by Compiler Optimizations
Prefetching comes in two flavors:

Binding prefetch: Requests load directly into register.
Must be correct address and register!

Non-Binding prefetch: Load into cache.  
Can be incorrect.  Frees HW/SW to guess!

Th   th   t  i  h  

Average memory access time:
AMAT = HitTime + MissRate×MissPenalty

There are three ways to improve cache 
performance:

1. Reduce the miss rate, 
2  Reduce the miss penalty  or
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2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

We now look at each of these in turn…

Write Policy:
Write-Through vs Write-Back

Write-through: all writes update cache and underlying memory/cache
Can always discard cached data - most up-to-date data is in memory
Cache control bit: only a valid bit

Write-back: all writes simply update cache
Can’t just discard cached data - may have to write it back to memory
Cache control bits: both valid and dirty bits

Other Advantages:
Write-through:

memory (or other processors) always have latest data
Simpler management of cache

W it b k

Advanced Computer Architecture Chapter 2.28

Write-back:
much lower bandwidth, since data often overwritten multiple times
Better tolerance to long-latency memory?
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Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

Write allocate: allocate new cache line in cache
Usually means that you have to do a “read miss” to fill in 
rest of the cache-line!
Alternative: per/word valid bits

Write non-allocate (or “write-around”):
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Simply send write data through to underlying 
memory/cache - don’t allocate new cache line!

1. Reducing Miss Penalty: 
Read Priority over Write on Miss

Consider write-through with write buffers 
RAW conflicts with main memory reads on cache 
misses

Could simply wait for write buffer to empty, 

CPU

in out Could simply wait for write buffer to empty, 
before allowing read
Risks serious increase in read miss penalty (old 
MIPS 1000 by 50% )
Solution:

• Check write buffer contents before read; 
if no conflicts, let the memory access 
continue

Write-back also needs buffer to hold 
displaced blocks

write
buffer

Cache
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displaced blocks
Read miss replacing dirty block
Normal: Write dirty block to memory, and then do 
the read
Instead copy the dirty block to a write buffer, then 
do the read, and then do the write
CPU stall less since restarts as soon as do read

DRAM   
(or lower mem)

buffer

Write buffer issues
Size: 2-8 entries are typically sufficient for 
caches

But an entry may store a whole cache line
Make sure the write buffer can handle 
the typical store bursts…

CPU

in out yp
Analyze your common programs, consider 
bandwidth to lower level

Coalescing write buffers
Merge adjacent writes into single entry
Especially useful for write-through caches

Dependency checks
Comparators that check load address 
against pending storeswrite

buffer

Cache
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If match there is a dependency so load 
must stall

Optimization: load forwarding
If match and store has its data, forward 
data to load…

Integrate with victim cache?

DRAM   
(or lower mem)

buffer

2. Reduce Miss Penalty: 
Early Restart and Critical Word First

Don’t wait for full block to be loaded before restarting 
CPUCPU

Early restart—  As soon as the requested word of the block ar rives, 
send it to the CPU and let the CPU continue execution
Critical Word First—Request the missed word first from memory and 
send it to the CPU as soon as it arrives; let the CPU continue execution 
while filling the rest of the words in the block. Also called wrapped 
fetch and requested word  first

Generally useful only in large blocks, 
(    l d     

Advanced Computer Architecture Chapter 2.32

(Access to contiguous sequential words is very common –
but doesn’t benefit from either scheme – are they 
worthwhile?)

block
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3. Reduce Miss Penalty: Non-blocking 
Caches to reduce stalls on misses

Non-blocking cache or lockup-free cache allows data 
cache to continue to supply cache hits during a miss

requires full/empty bits on registers or out-of-order execution
requires multi-bank memories

“hit under miss”  reduces the effective miss penalty by 
working during miss instead of ignoring CPU requests
“hit under multiple miss” or “miss under miss”  may further 
lower the effective miss penalty by overlapping multiple 
misses
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Significantly increases the complexity of the cache controller as there can 
be multiple outstanding memory accesses
Requires multiple memory banks (otherwise cannot support)
Pentium Pro allows 4 outstanding memory misses

Compare:
prefetching: overlap memory access with pre-miss instructions, 
Non-blocking cache: overlap memory access with post-miss instructions

What happens on a Cache miss?
For in-order pipeline, 2 options:

Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF  ID  EX  Mem stall stall stall … stall Mem   Wr
IF  ID  EX  stall stall stall … stall stall Ex Wr

Use Full/Empty bits in registers + MSHR queueUse Full/Empty bits in registers + MSHR queue
MSHR = “Miss Status/Handler Registers” (Kroft*)
Each entry in this queue keeps track of status of outstanding memory 
requests to one complete memory line.

• Per cache-line: keep info about memory address.
• For each word: register (if any) that is waiting for result.
• Used to “merge” multiple requests to one memory line

New load creates MSHR entry and sets destination register to 
“Empty”.  Load is “released” from pipeline.
Attempt to use register before result returns causes instruction to 
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Attempt to use register before result returns causes instruction to 
block in decode stage.
Limited “out-of-order” execution with respect to loads. 
Popular with in-order superscalar architectures.

Out-of-order pipelines already have this functionality 
built in… (load queues, etc).

* David Kroft, Lockup-free instruction fetch/prefetch cache organization, ICCA81 
http://portal.acm.org/citation.cfm?id=801868

Value of Hit Under Miss for SPEC
Hit Under i Misses
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FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss
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4: Add a second-level cache

L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2)

Definitions:
l    h  h  d d d  h  l  f  
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Local miss rate— misses in this cache divided by the total number of memory 
accesses to this cache (Miss rateL2)
Global miss rate—misses in this cache divided by the total number of memory 
accesses generated by the CPU
(Miss RateL1 x Miss RateL2) 
Global Miss Rate is what matters
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Comparing Local and Global Miss Rates
32 KByte 1st level 
cache;
Increasing 2nd level 
cache

Global miss rate close 
t  i l  l l h  to single level cache 
rate provided L2 >> L1

Don’t use local miss 
rate

L2 not tied to CPU 
clock cycle!

Cost & A M A T
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Cost & A.M.A.T.

Generally Fast Hit 
Times and fewer 
misses

Since hits are few, 
target miss reduction

Fig 5.10 pg416

Reducing Miss Penalty Summary

Four techniques
CPUtime = IC × CPI Execution +

Memory accesses
Instruction

× Miss rate × Miss  penalty⎛ 
⎝ 

⎞ 
⎠ × Clock  cycle  time

Four t chn qu s
Read priority over write on miss
Early Restart and Critical Word First on miss
Non-blocking Caches (Hit under Miss, Miss under Miss)
Second Level Cache

Can be applied recursively to Multilevel Caches
Danger is that time to DRAM will grow with multiple levels in 
between
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between
First attempts at L2 caches can make things worse, since 
increased worst case is worse

Th   th   t  i  h  

yMissPenaltMissRateHitTimeAMAT ×+=

Average memory access time:

There are three ways to improve cache 
performance:

1. Reduce the miss rate, 
2  Reduce the miss penalty  or
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2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

Reducing the time to hit in the cache

Why does the Alpha 21164 have 8KB Instruction and 
8KB data cache + 96KB second level cache, all on-
chip?

1.Keep the cache small and simple
2.Keep address translation off the critical path
3.Pipeline the cache access

Advanced Computer Architecture Chapter 2.40
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2. Fast hits by Avoiding Address 
Translation 

CPU CPU CPU

TB

$

VA

PA

$

TB

VA

VA

$ TB

VA

PA
Tags

PA

VA
Tags

L2 $
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MEM

PA

Conventional
Organization

MEM

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

MEM

Overlap $ access
with VA translation:
requires $ index to
remain invariant

across translation

Paging Virtual address space is divided into pages of equal size.
Main Memory is divided into page frames the same size.

Virtual • Running or ready  processReal
Memory 

Active 
Pages

g y p
– some pages in main memory

• Waiting process
– all pages can be on disk

• Paging is transparent to programmer

Paging Mechanism

Real 
Memory 
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Swapping 
Disc 

(1) Address Mapping
(2) Page Transfer

Inactive 
Pages

(Review introductory operating systems material 
for students lacking CS background)

P W Process 
Page Table 

Program Address
Main Store

Page P
B+W

Paging - Address Mapping

B

B+W

P= Page No.
W=Word No.
B= Page  Frame Addr.

Pointer to 
current Page 
Table 
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Example:  Word addressed machine, W = 8 bits, page size = 256

Amap(P,W) := PPT[P] * 256  +  W

Note:  The Process Page Table (PPT) itself can be paged
(Review introductory operating systems material 

for students lacking CS background)

P W

Program Address
Main Store

Page P
B+W

Paging - Address Mapping

TLB – cache 
of PPT 

B

B+W

P= Page No.
W=Word No.
B= Page  Frame Addr.

If page is absent in 
TLB, look in PPT TLB (Translation Lookaside 

Buffer) is small cache 
containing recently-

Advanced Computer Architecture Chapter 2.44

PPT -
Process 
Page Table 

Pointer to 
current Page 
Table 

(Review introductory operating systems material 
for students lacking CS background)

B

containing recently
accessed page table values
Eg 64-entry fully-
associative
Closely integrated with L1 
cache
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Paging - Page Transfer
What happens when we access a page which is currently not in main 
memory (i.e. the page table entry is empty)?

Page Fault → Suspend running process
→ Get page from disk
→ Update page table→ Update page table
→ Resume process (re-execute instruction)
? Can one instruction cause more than one page fault?

The location of a page on disk can be recorded in a separate table or in the page 
table itself using a presence bit.

P
Main Memory Page 

Presence bit set Note: We can run 
another ready 

hil th
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Page 
Table 
Entry 

B1

D0

Frame Location 

Disk Page Location

Presence bit clear

process while the 
page fault is being 
serviced. 

(Review introductory operating systems material 
for students lacking CS background)

Synonyms and homonyms in address translation

Homonyms (same sound different meaning)
same virtual address points to two different physical addresses in 
different processes
If you have a virtually-indexed cache  flush it between context switches If you have a virtually indexed cache, flush it between context switches 
- or include PID in cache tag

Synonyms (different sound same meaning)
different virtual addresses (from the same or different processes) point 
to the same physical address
in a virtually addressed cache

a virtual address could be cached twice under different physical 
addresses
updates to one cached copy would not be reflected in the other 
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updates to one cached copy would not be reflected in the other 
cached copy
solution: make sure synonyms can’t co-exist in the cache, e.g., OS can 
forces synonyms to have the same index bits in a direct mapped 
cache (sometimes called page colouring)

(a nice explanation in more detail can be found at http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf)

2. Fast hits by Avoiding Address Translation
Send virtual address to cache? 

Called Virtually Addressed Cache or just Virtual Cache vs.  Physical Cache

Every time process is switched logically must flush the cache; otherwise get 
false hitsfalse hits

Cost is time to flush + “compulsory” misses from empty cache
Dealing with aliases (sometimes called synonyms/homonyms); 
Two different virtual addresses map  to same physical address,
Two different physical addresses mapped to by the same virtual address in 
different contexts
I/O must interact with cache, so need virtual address

Solution to aliases
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Solution to aliases
HW guarantees covers index field & direct mapped, they must be unique;
called page coloring

Solution to cache flush
Add process identifier tag that identifies process as well as address within 
process: can’t get a hit if wrong process

2. Fast Cache Hits by Avoiding 
Translation: Process ID impact

Black is uniprocess
Light Gray is 
multiprocess when 
flush cache
Dark Gray is 
multiprocess when 
use Process ID tag
Y axis: Miss Rates 
up to 20%

Advanced Computer Architecture Chapter 2.48

up to 20%
X axis: Cache size 
from 2 KB to 1024 
KB
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2. Fast Cache Hits by Avoiding Translation: 
Index with Physical Portion of Address

If index is physical part of 
address, can start tag access in 
parallel with translation so that 
can compare to physical tag CPUcan compare to physical tag
Limits cache to page size: what if 
want bigger caches and uses same 
trick?

Higher associativity 

Page coloring
A h  fli t  if t  

TLB Cache

VA

PA
Tags

PA
L2 $

Page number | Page offset
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A cache conflict occurs if two 
cache blocks that have the same 
tag (physical address) are mapped 
to two different virtual addresses 
Make sure OS never creates a 
page table mapping with this 
property

MEM

3: Fast Hits by pipelining Cache
Case Study: MIPS R4000 

8 Stage Pipeline:
IF–first half of fetching of instruction; PC selection happens here as 
well as initiation of instruction cache accesswell as initiation of instruction cache access.
IS–second half of access to instruction cache. 
RF–instruction decode and register fetch, hazard checking and also 
instruction cache hit detection.
EX–execution, which includes effective address calculation, ALU 
operation, and branch target computation and condition evaluation.
DF–data fetch, first half of access to data cache.
DS–second half of access to data cache.
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TC–tag check, determine whether the data cache access hit.
WB–write back for loads and register-register operations.

What is impact on Load delay? 
Need 2 instructions between a load and its use!

Case Study: MIPS R4000

IF IS
IF

RF
IS

EX
RF

DF
EX

DS
DF

TC
DS

WB
TC

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

L L n y

IF IS
IF

RF
IS

EX
RF

DF
EX

DS
DF

TC
DS

WB
TC

THREE Cycle
Branch Latency
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IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken

R4000 Performance
Not ideal CPI of 1:

Load stalls (1 or 2 clock cycles)
Branch stalls (2 cycles + unfilled slots)
FP result stallsFP result stalls: RAW data hazard (latency)
FP t t l t ll  N t h FP h d  ( ll li )FP structural stalls: Not enough FP hardware (parallelism)

1.5
2

2.5
3

3.5
4

4.5
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Base Load stalls Branch stalls FP result stalls FP structural
stalls
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What is the Impact of What You’ve 
Learned About Caches?

1960-1985: Speed 

1000 CPU

p
= ƒ(no. operations)
1990

Pipelined 
Execution & 
Fast Clock Rate
Out-of-Order 
execution
Superscalar 1

10

100

DRAM
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p
Instruction Issue

1998: Speed = 
ƒ(non-cached memory accesses)
Superscalar, Out-of-Order machines hide L1 data cache miss 
(­5 clocks) but not L2 cache miss (­50 clocks)?

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

Processor issues 48-bit 
virtual addresses
Separate Instr & Data 
TLB & Caches
TLBs fully associative
TLB updates in SW
(“Priv Arch Libr”)

Alpha 21064

( Priv Arch Libr )
Caches 8KB direct 
mapped, write thru, 
virtually-indexed, 
physically tagged
Critical 8 bytes first
Prefetch instr. stream 
buffer
4 entry write buffer 
between D$ & L2$ 
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between D$ & L2$ 
incorporates victim 
buffer: to give read 
priority over write
2 MB L2 cache, direct 
mapped, WB (off-chip)
256 bit path to main 
memory,  4 x 64-bit 
modules

10 00%

100.00%
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M
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S
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ce

S
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co
r

Alpha Memory Performance: Miss Rates of SPEC92

Overall 
average:
I$ miss = 6%
D$ miss = 32%

0.10%

1.00%

10.00% T

M
is

s 
Ra

te I $
D $
L2

8K

8K
2M

D$ miss = 32%
L2 miss = 10%
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0.01%

0.10%

Integer benchmark 
average:
I$ miss = 2%
D$ miss = 13%
L2 miss = 0.6%

Floating-point 
benchmark average:
I$ miss = 1%
D$ miss = 21%
L2 miss = 0.3%

Alpha CPI Components
Instruction stall: branch mispredict (green);
Data cache (blue); Instruction cache (yellow); L2$ (pink) 
Other: compute + reg conflicts, structural conflicts

1 50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

CP
I

L2
I$
D$
I Stall
Other
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Cache Optimization Summary

Technique MR MP HT Complexity
L  Bl k Si 0e Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
N Bl ki  C h 3

m
is

s 
ra

te
al

ty
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Non-Blocking Caches + 3
Second Level  Caches + 2

m
is

s 
pe

na
Practical exercise: explore memory 

hierarchy on your favourite computer
Download Stefan Manegold’s “cache and TLB 
calibrator”:

http://www.cwi.nl/~manegold/Calibrator/calibrator.shtml
(or find installed copy in ~phjk/ToyPrograms/C/ManegoldCalibrator)

This program consists of a loop which runs over an 
array repeatedly

The size of the array is varied to evaluate cache size
The stride is varied to explore block size
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Memory hierarchy of a 
2.2GHz Intel Pentium 4 Xeon

Memory access latency is close to 
1ns when loop reuses array smaller 
than 8KB level-1 cache
While array is smaller than 512KB, y ,
access time is 2-8ns, depending on 
stride
When array exceeds 512KB, 
accesses miss both level-1 and 
level-2 caches
Worst case (large stride) suffers 
158ns access latency
Q:
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How many instructions could be 
executed in 158ns?
what is the level-1 cache block 
size?
What is the level-2 cache block 
size?

Instructions for running the Manegold calibrator
Get a copy:

cp /homes/phjk/ToyPrograms/C/ManegoldCalibrator/calibrator.c ./
Compile it:

gcc –O3 –o calibrator calibrator.s
Find out CPU MHz 

cat /proc/cpuinfo
Run it; ./calibrator <CPUMHz> <size> <filename>
Eg on media03:

./calibrator 3000 64M media03
Output is delivered to a set of files “media03.*”

Plot postscript graphs using generated gnuplot scripts:
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Plot postscript graphs using generated gnuplot scripts:
gnuplot media03.cache-miss-latency.gp
gnuplot media03.cache-replace-time.gp
gnuplot media03.TLB-miss-latency.gp

View the generated postscript files:
gv media03.cache-miss-latency.ps &
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Extra material for interest 

Advanced Computer Architecture Chapter 2.61

Main Memory Background
Performance of Main Memory: 

Latency: Cache Miss Penalty
Access Time: time between request and word arrives
Cycle Time: time between requestsCycle Time: time between requests

Bandwidth: I/O & Large Block Miss Penalty (L2)

Main Memory is DRAM: Dynamic Random Access Memory
Dynamic since needs to be refreshed periodically (8 ms, 1% time)
Addresses divided into 2 halves (Memory as a 2D matrix):

RAS or Row Access Strobe
CAS or Column Access Strobe
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Cache uses SRAM: Static Random Access Memory
No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM ­ 4-8, 
Cost/Cycle time: SRAM/DRAM ­ 8-16

Main Memory Deep Background

The first real “random-access memory” 
technology was based on magnetic 
“cores” – tiny ferrite rings threaded 
with copper wires
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with copper wires
That’s why people talk about “Out-of-
Core”, “In-Core,” “Core Dump”
Non-volatile, magnetic
Lost out when 4 Kbit DRAM became 
available
Access time 750 ns, cycle time 1500-
3000 ns

http://www.faqs.org/docs/electric/Digital/DIGI_15.html
http://www.psych.usyd.edu.au/pdp-11/core.html

Pulse on sense line if any core flips 
its magnetisation state 
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Accounting Machine. The photo 
shows the single drive lines through 
the cores in the long direction and 
fifty turns in the short direction. 
The cores are 150 mil inside 
diameter, 240 mil outside, 45 mil 
high. This experimental system was 
tested successfully in April 1952. 

524,000 36-bit words and a total 
cycle time of eight microseconds in 
each memory (1964 – for the 
IBM7094)

So
ur

ce
s:
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Atlas
First was at 
University of University of 
Manchester
University of 
London had 
the second 
one 
Commissioned 
May 1964
Shut down 
Sept 1972

Advanced Computer Architecture Chapter 2.65http://www.chilton-computing.org.uk/acl/technology/atlas/overview.htm

Pipelined instruction processing in Atlas
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Atlas is most famous for pioneering virtual memory
Also

Pipelined execution
Cache memory (“slave store”) – 32 words
Floating point arithmetic hardware

http://www.chilton-computing.org.uk/acl/technology/atlas/overview.htm

DRAM cell design
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Single transistor 
Capacitor stores charge
Decays with time
Destructive read-outhttp://www.research.ibm.com/journal/rd/462/mandelman.html

DRAM array design

Square array of cells
Address split into Row 
address and Column address and olumn 
Address bits
Row address selects row 
of cells to be activated
Cells discharge
Cell state latched by per-
column sense amplifiers
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column sense amplifiers
Column address selects 
data for output
Data must be written 
back to selected row

http://www.faculty.iu-bremen.de/birk/lectures/PC101-2003/08dram/Principles/DRAM02.htm
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4 Key DRAM Timing Parameters
tRAC: minimum time from RAS line falling to the valid 
data output. 

Quoted as the speed of a DRAM when buyQ p f y
A typical 4Mb DRAM tRAC = 60 ns
Speed of DRAM since on purchase sheet?

tRC: minimum time from the start of one row access 
to the start of the next. 

tRC = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

tCAC: minimum time from CAS line falling to valid 
d t  t t  

Advanced Computer Architecture Chapter 2.69

data output. 
15 ns for a 4Mbit DRAM with a tRAC of 60 ns

tPC: minimum time from the start of one column 
access to the start of the next. 

35 ns for a 4Mbit DRAM with a tRAC of 60 ns

A
D

OE_L

256K x 8
DRAM9 8

WE_LCAS_LRAS_L

Every DRAM access begins 
at:

The assertion of the RAS_L
2 ways to read: 
early or late v. CAS 

DRAM Read Timing

A Row Address

WE_L

Junk

CAS_L

RAS_L

Col Address Row Address JunkCol Address

DRAM Read Cycle Time
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OE_L

Read Access
Time

Output Enable
Delay

D High Z Data Out

Early Read Cycle: OE_L asserted before CAS_L Late Read Cycle: OE_L asserted after CAS_L

Junk Data Out High Z

DRAM Performance

A 60 ns (tRAC) DRAM can 
perform a row access only every 110 ns (tRC) 
perform column access (tCAC) in 15 ns, but time between column 

 i  t l t 35  (t )  accesses is at least 35 ns (tPC). 
In practice, external address delays and turning around buses 
make it 40 to 50 ns

These times do not include the time to drive the 
addresses off the microprocessor nor the memory 
controller overhead!
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DRAM History
DRAMs: capacity +60%/yr, cost –30%/yr

2.5X cells/area, 1.5X die size in ­3 years
2007 DRAM fab line costs $4.6B (2004 prices)

DRAM only: density, leakage v. speed
Rely on increasing no. of computers & memory per computer 
(60% market)

SIMM or DIMM is replaceable unit 
=> computers use any generation DRAM

Commodity, second source industry 
=> high volume, low profit, conservative

Little organization innovation in 20 years
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Little organization innovation in 20 years
Order of importance: 1) Cost/bit 2) Capacity

First RAMBUS: 10X BW, +30% cost => little impact

“Elpida to Build $4.6B DRAM Fab in Japan” (Electronic News, 6/9/2004 )
http://www.reed-electronics.com/electronicnews/article/CA424812.html
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DRAM Today: 1 Gbit DRAM and more
Infineon (Dresden)

Organisation x4,x8,x16
Clock 133-200 MHz
D t  Pi 68Data Pins 68
Die Size 160 mm2

Metal Layers 3
Technology 110nm

Datapoint 2005:

Video: http://registration.infineon.com/registration/video/video.asp
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Datapoint 2005:
0.7 micron 
Hi-k dielectric (Al2O3)
75:1 trench capacitor aspect ratio

Infineon News 2004-12-14 http://www.infineon.com/cgi/ecrm.dll/jsp/showfrontend.do?lang=EN&news_nav_oid=-9979&content_type=NEWS&content_oid=117074
Infineon Samples 1Gbit DDR SDRAMs  Electronics News, 8/26/2003  http://www.reed-electronics.com/electronicnews/article/CA318799.html

Fast Memory Systems: DRAM specific
Multiple CAS accesses: several names (page mode)

Extended Data Out (EDO): 30% faster in page mode
New DRAMs to address gap; 
what will they cost, will they survive?

RAMBUS: “reinvent DRAM interface”
Each Chip a module vs. slice of memory
Short bus between CPU and chips
Does own refresh
Variable amount of data returned
Originally 1 byte / 2 ns (500 MB/s per chip)
Direct Rambus DRAM (DRDRAM) 16 bits at 400MHz, with a transfer on 
both clock edges, leading to 1.6GB/s
20% increase in DRAM area

Synchronous DRAM: 2 banks on chip  a clock signal to DRAM  transfer 
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Synchronous DRAM: 2 banks on chip, a clock signal to DRAM, transfer 
synchronous to system clock (66 - 150 MHz).  “Double Data Rate” DDR SDRAM 
also transfers on both clock edges
Intel claims RAMBUS Direct (16 b wide) is future PC memory?

Niche memory or main memory?
e.g., Video RAM for frame buffers, DRAM + fast serial output

Main Memory Organizations

CPU

Cache

CPU

Cache

CPU

Cache

Memory

Bus

Memory

Bus

Memory

Bank 0

Bus

Memory

Bank 1

Memory

Bank 2

Memory

Bank 3
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Simple: 
CPU, Cache, 
Bus, Memory 
same width 
(32 or 64 bits)

Wide: 
CPU/Mux 1 word; 
Mux/Cache, Bus, 
Memory N words 
(Alpha: 64 bits & 256 
bits; UtraSPARC 512)

Interleaved: 
CPU, Cache, Bus 1 word: 
Memory N Modules
(4 Modules); example is 
word interleaved

Main Memory Performance

Timing model (word size is 32 bits)
1 to send address, 
6 access time, 1 to send data
Cache Block is 4 words

Simple M.P. = 4 x (1+6+1) = 32
Wide M.P. = 1 + 6 + 1 = 8
Interleaved M.P. = 1 + 6 + 4x1  = 11

Advanced Computer Architecture Chapter 2.76
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Independent Memory Banks

Memory banks for independent accesses 
vs. faster sequential accesses

Multiprocessor
I/O
CPU with Hit under n Misses, Non-blocking Cache

Superbank: all memory active on one block transfer (or 
Bank)
Bank: portion within a superbank that is word interleaved 
(or Subbank)
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(or Subbank)

Superbank Bank

…

Superbank Number Superbank Offset
Bank Number Bank Offset

Independent Memory Banks
How many banks?
number banks ≤ number clocks to access word in bank

For sequential accesses  otherwise will return to ori inal bank before it For sequential accesses, otherwise will return to original bank before it 
has next word ready
(like in vector case)

Increasing DRAM => fewer chips => harder to have 
banks
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Avoiding Bank Conflicts
Lots of banks

int x[256][512];
f (j 0 j < 512 j j+1)for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)
x[i][j] = 2 * x[i][j];

Conflicts occur even with 128 banks, since 512 is multiple of 128, 
conflict on word accesses
SW: loop interchange or declaring array not power of 2 (“array 
padding”)
HW: Prime number of banks
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HW  Prime number of banks
bank number =  address mod number of banks
address within bank = address / number of words in bank
modulo & divide per memory access with prime no. banks?
address within bank = address mod number words in bank
bank number? easy if 2N words per bank

Chinese Remainder Theorem
As long as two sets of integers ai and bi follow these rules

and that ai and aj are co-prime if i ≠ j, then the integer x has only one 
solution (unambiguous mapping):

b i = x mod a i, 0 ≤ b i < a i, 0 ≤ x < a 0 × a1 × a 2 ×…

Fast Bank Number

bank number = b0, number of banks = a0 (= 3 in example)
address within bank = b1, number of words in bank = a1
(= 8 in example)
N word address 0 to N-1, prime no. banks, words power of 2

Seq. Interleaved Modulo Interleaved
Bank Number: 0 1 2 0 1 2

Address within 
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Bank: 0 0 1 2 0 16 8
1 3 4 5 9 1 17
2 6 7 8 18 10 2
3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23
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Need for Error Correction!
Motivation:

Failures/time proportional to number of bits!
As DRAM cells shrink, more vulnerable

Went through period in which failure rate was low enough 
without error correction that people didn’t do correction

DRAM banks too large now
Servers always corrected memory systems

Basic idea: add redundancy through parity bits
Simple but wasteful version:

Keep three copies of everything, vote to find right value
200% overhead, so not good! 

Common configuration: Random error correction
SEC-DED (single error correct, double error detect)
One example: 64 data bits + 8 parity bits (11% overhead)
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One example: 64 data bits + 8 parity bits (11% overhead)
Papers up on reading list from last term tell you how to do these types 
of codes

Really want to handle failures of physical components as well
Organization is multiple DRAMs/SIMM, multiple SIMMs
Want to recover from failed DRAM and failed SIMM!
Requires more redundancy to do this
All major vendors thinking about this in high-end machines

FLASH
Mosfet cell with 
two gates
One “floating”
To program, charge 
tunnels via <7nm 
dielectric
Cells can only be 

More esoteric Storage Technologies?
NAND design: sequential read, high density

Cells can only be 
erased (reset to 0) 
in blocks
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1 Gbit NAND Flash memory
bwrc.eecs.berkeley.edu/Classes/ICDesign/ EE241_s02/Lectures/lecture28-Flash.pdf 

FRAM
Perovskite ferroelectric crystal forms dielectric in 
capactor, stores bit via phase change
100ns read, 100ns write
Very low write energy (ca.1nJ)

More esoteric Storage Technologies?
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http://www.fma.fujitsu.com/fram/framDocs01.asp?grOut=Documentation&sec=Documentation

Fully integrated with
logic fab process
Currently used in 
Smartcards/RFID
Soon to overtake 
Flash?
See also phase 
change RAM

Main Memory Summary

Wider Memory
Interleaved Memory: for sequential or independent 
accesses
Avoiding bank conflicts: SW & HW
DRAM specific optimizations: page mode & Specialty 
DRAM
Need Error correction
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Need Error correction


