332
Advanced Computer Architecture
Chapter 2

Caches and Memory Systems

January 2009
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy
and Patterson's Computer Architecture, a quantitative approach (3
and 4th eds), and on the lecture slides of David Patterson and John

Kubiatowicz's Berkeley course

Reducing Misses
@ Classifying Misses: 3 Cs

.C'ompu/sory—The first access to a block is not in the cache, so the
block must be brought into the cache. Also called col/d start misses or
first reference misses.

(Misses in even an Infinite Cache)

lC'apacify—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

@ Conflic1—1f block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity misses) will
occur because a block can be discarded and later retrieved if too many
blocks map to its set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

@ Maybe four: 4th “C":
@ Coherence - Misses caused by cache coherence.

Average memory access time:
AMAT = HitTime + MissRatexMissPenalty

There are three ways to improve cache
performance:

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

We now look at each of these in turn...

3Cs Absolute Miss Rate (SPEC92)

0.14
0.12

0.1
0.08

0.06 .
Capacity

0.04 - misses in fully-associative cache

0.02

< ©

©
-

Compulsory
- misses in infinite cache

A Cache Size (KB)
Compulsory misses are

vanishingly
few

Page 1

2:1 Cache Rule (of thumbl)

0.14
0.12

0.1
0.08

0.06
Capacity

0.04 - misses in fully-associative cache

0.02

© N
- © N

Compulsory
- misses in infinite cache

Cache Size (KB)

miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

How We Can Reduce Misses?

® 3 Cs: Compulsory, Capacity, Conflict
® In all cases, assume total cache size not changed:
® What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

We will look at each of these in turn...

3Cs Relative Miss Rate

100%

80% Conflict

60% “
40%

20%

0%
Y
CompuI;ory
Same data, shown as
proportion of total

Cache Size (KB)
Flaws: for fixed block size

Good: insight => invention

1. Reduce Misses via Larger Block Size

25%

20%

—— 4K

15%

"
Rate e
10%
— " 64K
0% + T
e 8 ¥ 8 8
- N

Block Size (bytes)

Bigger blocks allow us to exploit more spatial locality - but...

2: Associativity: Average Memory Access Time vs. Miss Rate

®Beware: Execution time is
all that really matters
Will Clock Cycle time increase?
.Examrle suppose clock cycle coche size

fime Associativity
®1.10 for 2-way, (KB) 1-way 2-way 4-way 8-way
@1.14 for 8-way 2 1.98 1.86 1.76 1.68
@vs. CCT = 1.0 for direct 4 172 167 161 153

mapped

@ Although miss rate is improved 8 146 148 147 1.43
by increasing associativity, the 16 129 132 132 132
gﬁ;nﬁ;‘” time is increased 32 12 124 125 127
64 114 12 121 123
128 11 117 118 12

@ TIllustrative benchmark study.
Real clock cycle cost likely
smaller

(Red means A.M.A.T. not improved by
more assocmhvny)

"Pseudo-Associativity”: miss once? Try again!

@How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?

@Divide cache: on a miss, check other half of cache to see if
there, if so have a pseudo-hit (slow hit)

Hit Time

Pseudo Hit Time Miss Penalty

Time

®Use a “way-predictor” to guess which half to try first
®Q: what address to use for the two ways?
@Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

® Better for caches not tied directly to processor (L2)
2 Used in MIPS R10000 L2 cache, similar in UltraSPARC

Page 3

Another way to reduce associativity conflict
misses: "Victim Cache”

@ How to combine fast hit time of
direct mapped
yet still avoid conflict misses?
® Add buffer to place data
discarded from cache TAGS| DATA

& Jouppi [1990]: 4-entry victim
cache removed 20% to 95% of

conflicts for a 4 KB direct /\
mapped data cache \
@Used in AMD Opteron,

Tag and C t One Cache line of Data
Barcelona, Phenom, IBM Power5, | 2%
Poweré6 Tag and Comparator

One Cache line of Data

Tag and Comparator [One Cache line of Data

= Tag and Comparator | One Cache line of Data

HP Fellow To Next Lower Level In
Director, Exascale Computing Lab - Hierarchy L
Palo Alto !

Jouppi, N. P. 1998. Improving direct-mapped cache performam:a by the addition of a smull fully-associative cache prefetch buffers. In
25 Years of the international Symposia on Computer apers, Spain, June 27 - July 02, 1998). 6. S.
Sohi, Ed. ISCA '98. ACM, New York, NY, 388-397. DOI= http://doi.acm.org/10. 1145/235930 285998

Skew Associative Caches

+ |dea: reduce conflict misses by using different indices in each cache way
— N-way cache: conflicts when N+1 blocks have same index bits in address

+ Different indices though hashing

Caihe Cache — E.g. XOR index bits with some tag bits
Wit [° . e — E.g. reorder some index bits
s + Benefit: indices are randomized
s | o coses T Cache — Less likely two blocks have same index(?)
A Way2 — Conflict misses reduced and cache
better utilized
i TR — May be able to reduce associativity

Seznec, A and Bodin, F. 1993. Skewed associative Cachzs In
of the 5th ir IRLE Co :]

e e reoperr o 2 anesonss Fere e 4.7+ Cost: latency of hash function

1993). A. Bode, M. Reeve, and 6. Wolf, Eds. Lecture Nat:s

In Computer Science, vol. 694. Springer-Verlag, London, 304-

316.

(Slide from Christos Kozyrakis, http://www.stanford.edu/class/ee282/handouts/L04-Cache2.4pp.pdf)

Reducing Misses by Hardware Prefetching of
® Extra block placed Instructions & Data
in “stream buffer” From processor To processor
@ After a cache miss, T
stream buffer
initiates fetch for tags data
next block - ey mappad
@ But it is not
allocated into cache

- to avoid —
“pO"UﬁOflu tag and

. COMPAraon cache
® On miss, check h:“ : :::m:::: pess
. Stream buiter
stream bu_ffer' in ~ " e ot e of das (FIFQ Quaue)
parallel with cache g |a| onecacheineof cais | Talenty
@ relies on having ; :l‘ \L ’l\
extra memory “ To next lower cache From naxt lowsr cache
bandwidth

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

6. Reducing Misses by
Software Prefetching Data

@®Data Prefetch
& Load data into register (HP PA-RISC loads)
& Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
& Special prefetching instructions cannot cause faults; a form of
speculative execution
@Prefetching comes in two flavors:
@ Binding prefetch: Requests load directly into register.
® Must be correct address and register!
& Non-Binding prefetch: Load into cache.
® Can be incorrect. Frees HW/SW to guess!
®TIssuing Prefetch Instructions takes time
& Is cost of prefetch issues < savings in reduced misses?
& Higher superscalar reduces difficulty of issue bandwidth
& But often, hardware prefetching is just as effective

Page 4

o
® We can extend this =

Multi-way stream-buffer

T

idea to track multiple
access streams
simultaneously:

@ Jouppi [1990] 1 data
stream buffer got 25%
misses from 4KB cache;
4 streams got 43%

® Palacharla & Kessler
[1994] for scientific
programs for 8 streams
got 50% to 70% of
misses from
2 64KB, 4-way set
associative caches

Direct mappad cachs

From next lowsr cache
To ney lower cache

From Jouppi [1990]: http://doi.acm.org/10.1145/285930.285998

7. Reducing Misses by Compiler Optimizations

® McFarling [1989]* reduced instruction cache misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

® Instructions

@ By choosing instruction memory layout based on callgraph, branch structure
and profile’data

® Reorder procedures in memory so as to reduce conflict misses
® (actually this really needs the whole program - a link-time optimisation)

® Similar (but different) ideas work for data
® Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays

® Permuting a multidimensional array: improve spatial locality by matching
array layout to traversal order

@ Loop Interchange: change nesting of loops to access data in order stored in
memory

® Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap

@ Blocking: Improve temporal locality by accessing “blocks” of data repeatedly
vs. going down whole columns or rows

* “Program optimization for instruction caches”, ASPLOS89, http://doi.acm.org/10.1145/70082.68200

Performance in MFLOP/s

Array Merging - example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;

int key;

}:

struct merge merged_array[SI1ZE];

Reducing conflicts between val & key (example?)
Improve spatial locality (counter-example?)

(actually this is a transpose: 2*SIZE -> SIZE*2)

Permuting multidimensional arrays to improve spatial locality
MMikj on P4: Performance in MFLOP/s @ Matrix-matrix

1000 ' multiply on

900 4

?(I)-.v'-l'\ﬁlajor Deféull Alignmenlt (a) .
Column-Major Default A { Pentium 4
Z-Morton Page-Aligned Unrolled (c) Wt ere .

800 - \Padded-SaP-Z-Morton Page-Aligned Unrolled (d) E lkJ variant:
Stop-at-Page-Z-Morton Page-Aligned Unrolled (e) .
700 | T ifor i
soo L | Usi'ng a blocked (“guadfree" or “Mor‘fof\") . for J
\ | layout gives a compromise between row-major

500 and column-major for k
400 1 CLijl+=A[ik]
300 _ _. *B[kJ]
200 | T ——

- "‘==-~__¢_____‘_ >
100

200 400 600 800 1000 1200 1400 1600 1800 2000
Sauare Root of Datasize
@ Traverses A and C in row-major order

& If data is actually in column-major order...

Page 5

Performance in MFLOP/s

Permuting multidimensional arrays to improve spatial locality

MMikj on P4: Performance in MFLOP/s Y . .
IX- IX
1000 Matrix-matr

900 "'\I . R.Ll;\.v-!\!ajlur ?c_reli.ull -".\Iii;nrnelfl (a) I I rP“eul'llrlzHK zn

800 \/ . B "ikj" variant:
L B Row major: - . .

700 | 1 for i

600 | : for j

500 \ 1 for k

400 1 ClLijl+=A[ik]

300) Column major: *B[kj]

200 -

100 | : s 7 w

200 400 600 800 1000 1200 1400 1600 1800 2000
Sauare Root of Datasize
® Traverses A and C in row-major order

@® If data is actually in column-major order...

@ Storage layout transformations

® Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays

® Permuting a multidimensional array: improve spatial locality by
matching array layout to traversal order

@ Improve spatial locality

® Iteration space transformations

® Loop Interchange: change nesting of loops to access data in order
stored in memory

® Loop Fusion: Combine 2 independent loops that have same looping and
some variables overlap

@& Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows (wait for Chapter 4)

@ Can also improve femporal locality

Loop Interchange: example

/* Before */
for (k = 0; k < 100; k = k+1)
for g = 0; j < 100; j = j+1)
for (i = 0; 1 <5000; i = i+l)
x[i101 = 2 * x[101;
/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; 1 <5000; i = i+l)
for (j = 0; j <100; j = j+1)
x[i10]1 = 2 * x[i101;

Sequential accesses: instead of striding throu Ig
memory every 100 words; improved spatial locality

(actually this is a transpose of the /teration space)

Fusion is not always so simple

B Dependences might not align nicely
B Example: one-dimensional filters

for (i=1; i<N; i++)

TR L LT T T vi= i+ sy

for (i=1; i<N; i++)
WIi] = (V[i-1] + VI[i+1])/2

"Stencil” loops are not directly fusable

Loop Fusion: example OO0
/- setare eococcec

for (i = 0; i <N; i = i+l)
S2: d[il0] = alillil_+ c[il[il; QJJ@T@S’J

for (J = 0; J < N; j = j+1)
/* After fusion */ /* After array contraction */

S1: a[i][i] = /b1l * clillil
for (= 0; jJ <N; j = j+1)
for (i =0; ¥ <N; ¥ =i+l) ‘for(l—o i< N; i =i+1)

for (i = 0; 1 <N; i = i+l)
for (G =0; J <N; j=j+1) for (j =0; j <N; j = j+1)

{s1:a[illi] = 1/b[i1] * c[i ; { C—C[I][j]
s2: d[i1[i] = a[il[i] + c[i][i];} 51— 1/pri * c:

S2:d[i][j] = a + c:}
2 misses per access to a & c vs.
one miss per access; improve The reql pa off comes if
spatial locality fusion enables Array
Contraction: values
transferred in scalar
instead of via array

Loop fusion - code expansion

E We make them fusable by shifting:

RAERER

1 ' V[1] = (U[0] + U[2)/2
for (i=2; i<N; i++) {

VIi] = (U[i-1] + U[i+1])/2
W[i-1] = (V[i-2] + V[i])/2

WIN-1] = (V[N-2] + V[N])/2

< <

E The middle loop is fusable
F We get lots of little edge bits

Loop fusion - code expansion

E We make them fusable by shifting:

V[1] = (U[0] + U[2])/2

for (i=2; i<N; i++) {
V[i%4] = (U[i-1] + U[i+1])/2
WI[i-1] = (V[(i-2)%4] + V[i%4])/2

} ,
WIN-1] = (V[(N-2)%4] + V[N%A4])/2

Contraction is trickier

We need the last two Vs

E We need 3V locations
Quicker to round up to four

F The middle loop is fusable
E We get lots of little edge bits

Average memory access time:
AMAT = HitTime + MissRatexMissPenalty

There are three ways to imprc
performance:

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

We now look at each of these

Page 7

Summary: Miss Rate Reduction

i Memor!
CPUtime = IC x[cm Memory accesses
Instruction

Miss penalty) x Clock cycle time
@ 3 Cs: Compulsory, Capacity, Conflict

. Reduce Misses via Larger Block Size

. Reduce Misses via Higher Associativity

. Reducing Misses via Victim Cache

. Reducing Misses via Pseudo-Associativity

. Reducing Misses by HW Prefetching Instr, Data

. Reducing Misses by SW Prefetching Data

. Reducing Misses by Compiler Optimizations

® Prefetching comes in two flavors:
@ Binding prefetch: Requests load directly into register.
Must be correct address and register!
& Non-Binding prefetch: Load into cache.
® Can be incorrect. Frees HW/SW to guess!

EEEEEEEEE

NOOhAhwWN=

Write Policy:
Write-Through vs Write-Back

® Write-through: all writes update cache and underlying memory/cache
@ Can always discard cached data - most up-to-date data is in memory
® Cache control bit: only a valid bit
@® Write-back: all writes simply update cache
@ Can't just discard cached data - may have to write it back to memory
® Cache control bits: both valid and dirty bits
® Other Advantages:
@ Write-through:
® memory (or other processors) always have latest data
® Simpler management of cache
@ Write-back:
® much lower bandwidth, since data often overwritten multiple times
® Better tolerance to long-latency memory?

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

® Write allocate: allocate new cache line in cache

@Usually means that you have to do a “read miss” to fill in
rest of the cache-line!

@ Alternative: per/word valid bits
® Write non-allocate (or “write-around”):

@Simply send write data through to underlying
memory/cache - don't allocate new cache line!

Wprite buffer issues

® Size: 2-8 entries are typically sufficient for
caches

cPU ®But an entry may store a whole cache line
. ® Make sure the write buffer can handle
in out the typical store bursts...
A # Analyze \{\our common programs, consider
bandwidth to lower level
® Coalescing write buffers
Cach # Merge adjacent writes into single entry
ache ® Especially useful for write-through caches
T & Dependency checks
write ® Comparators_that check load address
against pending stores
buffer .
@®If match there is a dependency so load
‘ must stall
DRAM @ Optimization: load forwarding

(or lower mem) # If match and store has its data, forward

data to load...

® Integrate with victim cache?

Page 8

1. Reducing Miss Penalty:
Read Priority over Write on Miss

@ Consider write-through with write buffers

RAW conflicts with main memory reads on cache
misses

CPU

in out

® Could simply wait for write buffer to empty,

a before allowing read

® Risks serious increase in read miss penalty (old
MIPS 1000 by 50%)

® Solution:

+ Check write buffer contents before read;
if no conflicts, let the memory access

Cache

I continue

write ® Write-back also needs buffer to hold
buffer displaced blocks

‘ # Read miss replacing dirty block

Normal: Write dirty block to memory, and then do
the read

Instead copy the dirty block to a write buffer, then

DRAM
(or lower mem)

do the read, and then do the write
CPU stall less since restarts as soon as do read

2. Reduce Miss Penalty:
Early Restart and Critical Word First

® Don't wait for full block to be loaded before restarting
CPU

® Early restart—As soon as the requested word of the block ar rives,
send it to the CPU and let the CPU continue execution

® Critical Word First—Request the missed word first from memory and
send it to the CPU as soon as it arrives: let the CPU continue execution
while filling the rest of the words in the block. Also called wrapped
fetch and requested word first

® Generally useful only in large blocks,

® (Access to contiguous sequential words is very common -
but doesnt benefit from either scheme - are they

worthwhile?)

block

3. Reduce Miss Penalty: Non-blocking
Caches to reduce stalls on misses

® Non-blocking cache or lockup-free cache allows data
cache to continue to supply cache hits during a miss
® requires full/empty bits on registers or out-of-order execution
& requires multi-bank memories

® “hit under miss" reduces the effective miss penalty by
working during miss instead of ignoring CPU requests

@ “hit under multiple miss” or “miss under miss" may further
lower the effective miss penalty by overlapping multiple
misses

Significantly increases the complexity of the cache controller as there can
be multiple outstanding memory accesses

® Requires multiple memory banks (otherwise cannot support)
@ Pentium Pro allows 4 outstanding memory misses

Compare:
prefetching: overlap memory access with pre-miss instructions,
Non-blocking cache: overlap memory access with post-miss instructions

Value of Hit Under Miss for SPEC

Hit Under i Misses

Oo>1 0->1
|_FES) 1->2
W 2564 2-564
M sase Base

“Hit under n Misses”

xlisp
ear
doduc
waves
nasa7
ora

s
2
s
g

espresso
compress
mdiisp2
foppp
tomcatv
sSwm256
su2cor
mdljdp2
hydro2d
alvinn
spice2g6

Integer Floating Point

@ FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
@ Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
@ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Page 9

What happens on a Cache miss?
@ For in-order pipeline, 2 options:
® Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall ..

IF ID EX stall stall stall ..

stall Mem Wr
stall stall Ex Wr

@ Use Full/Empty bits in registers + MSHR queue

® MSHR = “Miss Status/Handler Registers” (Kr'of'l"’?
Each entry in this queue keeps track of status of outstanding memory
requests fo one complete memory line.
+ Per cache-line: keep info about memory address.
+ For each word: register (if any) that is waiting for result.
+ Used to "merge” multiple requests to one memory line

® New load creates MSHR entr¥ and sets destination register to
“"Empty”. Load is “released” from pipeline.

® Attempt to use register before result returns causes instruction to
block in decode stage.

® Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

® Out-of-order pipelines already have this functionality
built in... (load queues, etc).

* David Kroft, Lockup-free instruction fetch/prefetch cache organization, ICCA81
http://portal.acm.org/citation.cfm?id=801868

4: Add a second-level cache

@ L2 Equations
AMAT = Hit Time_; + Miss Rate ; x Miss Penalty,

Miss Penalty ; = Hit Time_, + Miss Rate , x Miss Penalty,,

AMAT = Hit Time, +
Miss Rate ; x (Hit Time_, +_Miss Rate , + Miss Penalty,,)

@ Definitions:
® Local miss rate— misses in this cache divided by the total number of memory
accesses fo this cache (Miss rate ;)

® Global miss rate—misses in this cache divided by the total number of memory
accesses generated by the CPU
(Miss Rate ; x Miss Rate,,)

® Global Miss Rate is what matters

Comparing Local and Global Miss Rates

@ 32 KByte 1st level
cache;
Increasing 2nd level
cache

@ Global miss rate close
to single level cache o
rate provided L2 >> L1

@ Don't use local miss
rate

| Localmiss rate |

=

® L2 not tied to CPU
clock cycle!

® Cost & AMAT.

Single cache miss rafe I
@ Generally Fast Hit
Times and fewer

misses -
Global miss rate Cache size (KB)

2

Miss rate

@ Since hits are few,
target miss reduction

Fig 5.10 pg416

Average memory access time:

AMAT = HitTime + MissRate x MissPenalt y

There are three ways to improve cache
performance:

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Page 10

Reducing Miss Penalty Summary

Memory accesses

cPUtime = IC x| CPI o Al S Miiss rate x Clock cycle time
N Instruction

@ Four techniques
Read priority over write on miss
@ Early Restart and Critical Word First on miss
® Non-blocking Caches (Hit under Miss, Miss under Miss)
& Second Level Cache
@ Can be applied recursively to Multilevel Caches

@ Danger is that time to DRAM will grow with multiple levels in
between

First attempts at L2 caches can make things worse, since
increased worst case is worse

Reducing the time to hit in the cache

® Why does the Alpha 21164 have 8KB Instruction and
8KB data cache + 96KB second level cache, all on-
chip?

1.Keep the cache small and simple
2.Keep address translation off the critical path
3.Pipeline the cache access

2. Fast hits by Avoiding Address

Translation
CPU CPU CPU
l VA l VA VA
: s] o]
PA VA l -——, | PA
—28
1
l PA l PA MEM
MEM MEM
Overlap $ access
. with VA translation:
Conventional Virtually Addressed Cache requires $ index to
Organization Translate only on miss remain invariant
Synonym Problem across translation

Paging - Address Mapping

Pro?ram Address Yiain Storg
Process
Page Table
_ 3 Page P
B+W

Pointer to *
current Page - -
Table B

P= Page No.

W=Word No.

B=Page Frame Addr.

Example: Word addressed machine, W = 8 bits, page size = 256

Amap(P,W) := PPT[P] * 256 + W

Note: The Process Page Table (PPT) itself can be paged
(Review introductory operating systems material
for students lacking CS background)

Page 11

P . Virtual address space is divided into DaJ€sS of equal size.
ag I ng Main Memory is divided into page frames the same size.

Virtual Real
Memory Memory
--------------- Active
,,,,,,,,,,,,,,, Pages
Inactive
Pages
Swapping

Disc

Pag i NQ -Address Mapping

* Running or ready process
— some pages in main memory
* Waiting process
— all pages can be on disk
» Paging is transparent to programmer

Paging Mechanism

1) Address Mapping
(2) Page Transfer

(Review introductory operating systems material

for students lacking CS background)

Prog ram Address iain Storg
TLB - cache
of PPT
_ Y PageP
¢B+W

Ul =&
P= Page No.
W=Word No. If page is absent in
B= Page Frame Addr. TLB,lookinPPT @ TLB (Translation Lookaside

Buffer) is small cache

———

Pointer to
current Page PPT - B
Table Process

Page Table

containing recently-
accessed page table values

@ Eg 64-entry fully-
associative

@ Closely integrated with L1
cache

(Review introductory operating systems material

for students lacking CS background)

Pag i Ng -Page Transfer

What happens when we access a page which is currently not in main
memory (i.e. the page table entry is empty)?

Synonyms and homonyms in address translation

< page Fault) ® Homonyms (same sound different meaning)
age rau —> Suspend running process & same virtual address points o two different physical addresses in
— Get page from disk different processes
— Update page table # If you have a virtually-indexed cache, flush it between context switches
— Resume process (re-execute instruction) - or include PID in cache tag
? Can one instruction cause more than one page fault? @ Synonyms (different sound same meaning)
The location of a page on disk can be recorded in a separate table or in the page @ different virtual addresses (from the same or different processes) point

to the same physical address

table itself using a presence bit.
gap # in a virtually addressed cache

/ Presence bit set Note: We can run ® gé/ciir;l.églegddress could be cached twice under different physical
Main Memory Page another ready o)
Page m Frame Location process while the gggﬁlzscz%;lme cached copy would not be reflected in the other
Tabl is bei e) o
Ezrinre page faglt is being # solution: make sure synonyms can't co-exist in the cache, e.g., OS5 can
y m isk) serviced. forces synonyms to have the same index bits in a direct mapped
Disk Page Location cache (sometimes called page colouring)

Presence bt clear (Review introductory operating systems material

for students Iacking cs background) (a nice explanation in more detail can be found at http://www.ece.cmu.edu/~jhoe/course/ece447/handouts/L22.pdf)

2. Fast Cache Hits by Avoiding

2. Fast hits by Avoiding Address Translati : i
Fast hits by Avoiding Address Translation Translation: Process ID impact

® Send virtual address to cache?
& Called Virtually Addressed Cache or just Virtual Cache vs. Physical Cache

L Evlery h1:i?me process is switched logically must flush the cache; otherwise get @ Black is uniprocess
alse hits . -
® Cost is time to flush + “compulsory” misses from empty cache ¢ ngh‘!’ Gray is
S) N . multiprocess when
@ Dealing with aliases ssomehmes called synonyms/homon msg, flush h
Two different virfual addresses map to same physical address, ush cac e'
Two different physical addresses mapped to by the same virtual address in ® Dark Gray is £
different contexts multiprocess when %:
& I/0 must interact with cache, so need virtual address use Process ID tag
® Y axis: Miss Rates
@ Solution to aliases up to 20%
& HW guarantees covers index field & direct mapped, they must be unique: @ X axis: Cache size
called page coloring from 2 KB to 1024
KB

@ Solution to cache flush

& Add process identifier tag that identifies process as well as address within
process: can't get a hit if wrong process

Page 12

2. Fast Cache Hits by Avoiding Translation: . . RTI
Index with Physical Portion of Address 3 Faszal—sl':s‘s_?z dl;l'-p:/l\l{"lgnsg lf:ggce)

@ If index is physical part of
address, can start tag access in
parallel with translation so that
can compare to physical tag

@ Limits cache to page size: what if
want bigger caches and uses same
trick?

® 8 Stage Pipeline:
® IF-first half of fetching of instruction; PC selection happens here as
well as initiation of instruction cache access.

® IS-second half of access to instruction cache.

@ RF-instruction decode and register fetch, hazard checking and also
instruction cache hit detection.

8 EX-execution, which includes effective address calculation, ALU
operation, and branch target computation and condition evaluation.

® DF-data fetch, first half of access to data cache.
® DS-second half of access to data cache.
@ TC-tag check, determine whether the data cache access hit.

@ Higher associativity

#® Page coloring
® A cache conflict occurs if two

cache blocks that have the same
tag (physical address) are mapped MEM #® WB-write back for loads and register-register operations.
to two different virtual addresses ..

@ What is impact on Load delay?

® Make sure OS never creates a

page table mapping with this ® Need 2 instructions between a load and its use!

property
Case STUdY: MIPS R4000 R4000 Performance
@ Not ideal CPI of 1:
® Load stalls (1 or 2 clock cycles)
B Branch stalls (2 cycles + unfilled slots)
:’W(?LCycle IF %? ?2 E;(%F(1V_VCB [: RAW data hazard (latency)
oad Latency IF IS RF DS :SFP structural stalls: Not enough FP hardware (parallelism)
IF IS DF : 4
IF EX
RF 3.5
Is 3
IF 2.5
2
THREE Cycle IF Is RF Ex] DF Ds T¢ we 15
Branch Latency IF IS RF\ EX DF DS TC : p
(conditions evaluated IF %? ';g EI):(E; B? 0.5
during EX phas ’
uring phase) IS RF Ex 0 s
Delay slot plus two stalls 5 3 g = 3 5 g o 5 >
. . IF IS RF g g g g kS & g
Branch likely cancels delay slot if not taken IF Is 8 g 2 4 5
IF M Base B Load stalls M Branch stalls O FPresuitstals M FP structural

stalls

Page 13

What is the Impact of What You've
Learned About Caches?

® 1960-1985: Speed
= f(no. operations)
® 1990
@ Pipelined
Execution &

1000

100

Alpha 21064 [-

® Processor issues 48-bi
virtual addresses

® Separate Instr & Data
TL

e

P
= e whmaile

aches
TLBs fully associative
TLB updates in SW
("Priv Arch Libr")
Caches 8KB direct
mapped, write thru,
virtually-indexed,
physically tagged

Fast Clock Rate @ Critical 8 bytes first
@ Out-of-Order L Pr‘t;‘f‘efch instr. stream
X uffer
execution .
@ Superscalar 1 @ 4 entry write buffer
InttrctionTssie § 5 9 83 8 55888 G383 883538°¢8 between D$ & L23
AT T T - = - - - - - - - = incorporates victim

buffer: to give read
priority over write
® 2 MB L2 cache, direct
mapped, WB (off-chip)
@ 256 bit path fo
memory, 4 x 64-bit
modules

® 1998: Speed =
f(non-cached memory accesses)

@ Superscalar, Out-of-Order machines hide L1 data cache miss
(-5 clocks) but not L2 cache miss (-50 clocks)?

Alpha Memory Performance: Miss Rates of SPEC92
Alpha CPI Components

Qo o
overall 100.00% T 3 3 2 8 5 9 2 948 5 @ Instruction stall: branch mispredict (green):
vera ' 8 - gui g ® Data cache (blue); Instruction cache (Xellow); L2$ (pink)
average: @ g 8 Z Other: compute + reg conflicts, structural conflicts
1$ miss = 6% Q o

D$ miss = 32% 10.00%

L2 miss = 10% 5.00

oK 4.50

4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

a3
@D $(8K
—-—L12 2M

1.00%

Miss Rate

CPI

0.10%

Integer benchmark
average:

0.01% -+ 1$ miss =2%

D$ miss = 13%

L2 miss = 0.6%

Floating-point
benchmark average:
1$ miss = 1%

D$ miss = 21%

L2 miss = 0.3%

Li

Sc

Ora

Ear
Doduc
Tomcatv
Mdljp2

S
S
[%]
©
R
=3
<

TPC-B (db1)
Compress

Page 14

miss rate

Cache Optimization Summary

Technigue

Larger Block Size

Higger Associativity

Victim Caches
Pseudo-Associative Caches

HW Prefetching of Instr/Data
Compiler Controlled Prefetching
Compiler Reduce Misses

MR MP HT Complexity

+ + + + + + +

nanosacs par iteralion

miss penalty

Priority to Read Misses

Early Restart & Critical Word 1st
Non-Blocking Caches

Second Level Caches

oulhnush2 cache-mess-Elency

[BK]
L

{158}

100 |

[RIURS

pu=
‘ o

220403

Sossmpeoructiscaad s (348)

l}-‘—h.._’ oo
bt i

10908 3y

stride:
256

Pl (PP
M AN TEM BAM
g [bytes]

3 P "
- T - .

4k 18k Bk

cycles por fertion

NWN=IOWNNN=O

+ + + +

Memory hierarchy of a
2.26Hz Intel Pentium 4 Xeon

Memory access latency is close to
1ns when loop reuses array smaller

than 8KB level-1 cache

While array is smaller than 512KB,
access time is 2-8ns, depending on

stride

@ When array exceeds 512KB,

accesses miss both level-1 and
level-2 caches

® Worst case (Iarge stride) suffers
158ns access la

° Q:

ency

® How many instructions could be
executed in 158ns?

@ what is the level-1 cache block
size?

® What is the level-2 cache block
size?

Page 15

Practical exercise: explore memory
hierarchy on your favourite computer

® Download Stefan Manegold's “cache and TLB
calibrator”:
@ http://www.cwi.nl/~manegold/Calibrator/calibrator.shtml
(or find installed copy in ~phjk/ToyPrograms/C/ManegoldCalibrator)

® This program consists of a loop which runs over an
array repeatedly
® The size of the array is varied to evaluate cache size
& The stride is varied to explore block size

Instructions for running the Manegold calibrator

@ Get a copy:
& cp /homes/phjk/ToyPrograms/C/ManegoldCalibrator/calibrator.c ./
@ Compile it:
& gcc -03 -o calibrator calibrator.s
@ Find out CPU MHz
% cat /proc/cpuinfo
® Run it; ./calibrator <CPUMHz> <size> <filename>
@ Eg on media03:
_/calibrator 3000 64M media03
& Output is delivered to a set of files "media03.*"
® Plot postscript graphs using generated gnuplot scripts:
@ gnuplot media03.cache-miss-latency.gp
gnuplot media03.cache-replace-time.gp
gnuplot media03.TLB-miss-latency.gp
@ View the generated postscript files:
® gv media03.cache-miss-latency.ps &

Extra material for interest Main Memory Background

@ Performance of Main Memory:
® Latency: Cache Miss Penalty
® Access Time: time between request and word arrives
@ Cycle Time: time between requests
& Bandwidth: I/0 & Large Block Miss Penalty (L2)

@ Main Memory is DRAM: Dynamic Random Access Memory
& Dynamic since needs to be refreshed periodically (8 ms, 1% time)
Addresses divided into 2 halves (Memory as a 2D matrix):
® RAS or Row Access Strobe
8 CAS or Column Access Strobe

@ Cache uses SRAM: Static Random Access Memory

® No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM - 4-8,
Cost/Cycle time: SRAM/DRAM - 8-16

2361.html

s Main Memory Deep Background
i |
| _ :
: X Drivers . g
Il | ,
V7 [(_ &G i
d — { LE L i L2 ¥ iJ
D i ;
r {
; |
- i g,
! 1" 1/2 Current v .: ;
'® The first real “random-access memory” e Y ' Ll 4 i
technology was based on magnetic r ® The first magnetic core memory, 33
qg;ez P; tiny 'fe;rrre rings fthreaded s from the IBM 405 Alphabetical £
with copper wire i ; y
Accounting Machine. The photo 3
® That's why people talk about “Out-of - . . shows the single drive lines through 5
Core”, "In-Core,” “"Core Dump” Sense/Inhibit Line the cores in the long direction and &
@ Non-volatile, magnetic Pulse on sense line if any core flips fifty turns in the short direction, "« 10 1BM 2361 Core Storage
@ Lost out when 4 Kbit DRAM became its magnetisation state Ihe cores gzg 15|0 mil ic?Sidi5 | @ 524,000 36-bit words and a total
available iameter, mil outside, 45 mi cycle time of eight microseconds in
= . : _ Ittp://unw. fags.ora/docs/electric/Digital/DIGT_15 himl high. This experimental system was each memory (1964 - for the
- Acggsf]shme 750 ns, cycle time 1500 http://www psych.usyd..edu.au/pdp-11/core htl tested successfully in April 1952. IBM7094) ry

Page 16

Pipelined instruction processing in Atlas

University of P ADDITICH A = A4 §
Manchester
University of
London had
the second THRLE FURTHER INSTRUCTIONS
one
Commissioned
May 1964
Shut down
Sept 1972 i

MMICROSECONDS

I]|

T s fveww. ng.org.uk/ac] iew.him
® Atlas is most famous for pioneering virtual memory
@ Also
@ Pipelined execution
& Cache memory (“slave store”) - 32 words
& Floating point arithmetic hardware

. 7.
RAM cell design Addvess e :
DRAM 9 Bue = DRAM array design

Wordline (row)
M, Wordlines
Framsistor ® Square array of cells
| 'Tl Cell node Cell node L Address Sp“f into ROW
p address and Column
bilne e + Address bits
(column) Vﬂmgr Node dielectric
0—> Vi / _ M ® Row address selects row
e = of cells to be activated

® Cells discharge

® Cell state latched by per-
column sense amplifiers

® Column address selects
data for output

@® Data must be written
back to selected row

Cell plate

Schematic of a one-transistor DRAM cell [1]. The array device?‘ali“g “’.‘3_-1'5!”“ and below. Reprinted with permission from [17];
(transistor) 18 addressed by switching the wordline voltage from® 1995 IEEE.
Vyr (wordline-low) to Vy, . (wordline-high), enabling the itlimes e
and the capacitor to exchange charge. In this example, a data state L] 5lﬂ9|2 transistor
of either a “0” (0 V) ora *1” (,;;) is written from the bitline o @ COPOCH'OI‘ stores charge
the storage capacitor. V,, is the electrical bias applied to the p-well. . .

® Decays with time

http://uww.research. ibm.com/ journal/rd/4 html ® Destructive read-out

Sense and Refresh
Amplifiers

http://www_faculty.iu-bremen. de/bir 101 incipl htm

Page 17

4 Key DRAM Timing Parameters

@ t;,.: minimum time from RAS line falling to the valid
data output.
® Quoted as the speed of a DRAM when buy
® A typical 4Mb DRAM t,,. = 60 ns
® Speed of DRAM since on purchase sheet?

@ t,.: minimum time from the start of one row access
to the start of the next.
® tc = 110 ns for a 4Mbit DRAM with a 1y, of 60 ns

@ 1., minimum time from CAS line falling to valid
data output.
® 15 ns for a 4Mbit DRAM with a 1, of 60 ns

@ t,.: minimum time from the start of one column
access to the start of the next.
& 35 ns for a 4Mbit DRAM with a Ty, of 60 ns

DRAM Performance

® A 60 ns (tgsc) DRAM can

@ perform a row access only every 110 ns (f)

@ perform column access (t.4.) in 15 ns, but time between column
accesses is at least 35 ns (tp().

® In practice, external address delays and turning around buses
make it 40 to 50 ns
® These times do not include the time to drive the
addresses off the microprocessor nor the memory
controller overhead!

® Every DRAM access begins
at:
@ The assertion of the RAS_L
@ 2 ways to read:

DRAM Read Timing

RAS*L[lCASJ_ WEiLl IOEfL

early or late v. CAS A 256K x 8 VAN
7;’ DRAM 8 b
|——— DRAM Read Cycle Time ——— S
RASL) / i /
[—— —_
CAS_L ! '

|
1 1

J 1 1 ! 1 1

X RowAddress X CplAddress X Junk X

I [

1! 1 1
A_x RowAddress X CplAddress X Junk

WEL /7T \ \ T | \
[1 | + —_
OEL 1 ! i 1 \ i
1 ! 1 ! 1 —1 !
D Higﬂ Y4 X Juﬁk X Data Out : X : High Z | X IDa\ta Out
1 1 ™1]
! Read_Access . : | : Output Enable o H
. Time 1 | Delay ! !

Early Read Cycle: OE_L asserted before CAS_L Late Read Cycle: OE_L asserted after CAS_L

DRAM History

@ DRAMs: capacity +60%/yr, cost -30%/yr
2.5X cells/area, 1.5X die size in -3 years
® 2007 DRAM fab line costs $4.6B (2004 prices)
@ DRAM only: density, leakage v. speed
@ Rely on increasing no. of computers & memory per computer
(60% market)

@ SIMM or DIMM is replaceable unit
=> computers use any generation DRAM

® Commodity, second source industry
=> high volume, low profit, conservative
@ Little organization innovation in 20 years
@ Order of importance: 1) Cost/bit 2) Capacity
First RAMBUS: 10X BW, +30% cost => little impact

“Elpida to Build $4.6B DRAM Fab in Japan” (Electronic News, 6/9/2004)
http://www.reed. If i icle/CA424812 html

Page 18

DRAM Today: 1 Gbit DRAM and more

Infineon (Dresden)

@ Organisation x4,x8,x16
€ Clock 133-200 MHz
@ Data Pins 68

@ Die Size 160 mm?

@ Metal Layers 3

@ Technology 110nm

Video: http://registration.infineon.com/registration/video/video.asp

Datapoint 2005:

@ 0.7 micron

@ Hi-k dielectric (Al,O5)

@ 75:1 trench capacitor aspect ratio

0id=117074

Infineon News 2004-12-14 http://www.infin dll nav_oid=-
I i 318799 html

fineon. i /jsp. do
Infineon Samples 16bit DDR SDRAMs Electronics News, 8/26/2003 http://www.reed:

Main Memory Organizations
L T

cPU cPU
Cache | Cache |
Memory Memory M y [M v [M v [m v
Bank O Bank 1 Bank 2 Bank 3
® Simple: ® Wide: ® Interleaved:
® CPU, Cache, ® CPU/Mux 1 word; & CPU, Cache, Bus 1 word:
Bus, Memory mux/Caclgle, Bug, &emomle Mo¢;|<u|'¢:‘sI is
i emo words odules); example i
same width (Alpha? 64 bits & 256 word interleaved

(32 or 64 bits) Pt UtraSPARC 512)

Page 19

Fast Memory Systems: DRAM specific

® Multiple CAS accesses: several names (page mode)
® Extended Data Out (EDO): 30% faster in page mode
® New DRAMs to address gap:
what will they cost, will ghey survive?
® RAMBUS: “reinvent DRAM interface”
® Each Chip a module vs. slice of memory
® Short bus between CPU and chips
@ Does own refresh
® Variable amount of data returned
Originally 1 byte / 2 ns (500 MB/s per chip)

¢ Direct Rambus DRAM (DRDRAM) 16 bits at 400MHz, with a transfer on
both clock edges, leading to 1.66B/s

® 20% increase in DRAM area

® Synchronous DRAM: 2 banks on chip, a clock signul to DRAM, transfer
sYnchronous to system clock (66 - 150 MHz). “Double Data Rate” DDR SDRAM
also transfers on both clock edges

® Intel claims RAMBUS Direct (16 b wide) is future PC memory?

® Niche memory or main memory?
® e.g., Video RAM for frame buffers, DRAM + fast serial output

Main Memory Performance

@ Timing model (word size is 32 bits)
1 to send address,
6 access time, 1 to send data
#® Cache Block is 4 words

® Simple M.P. = 4 x (1+6+1) = 32
® Wide M.P. =1+6+1=8
® Interlfeaved M.P. =1 + 6 + 4x1 =11

1 4 k
& L3 T
k I 1
1% (L3 1=

[

Independent Memory Banks Independent Memory Banks

€ Memory banks for independent accesses ® How many banks?
vs. faster sequen‘l’ial accesses number banks < number clocks to access word in bank
® Multiprocessor % For sequential accesses, otherwise will return to original bank before it
®1/0 has next word ready

® (like in vector case)

® Increasing DRAM => fewer chips => harder to have
banks

® CPU with Hit under n Misses, Non-blocking Cache
® Superbank: all memory active on one block transfer (or
Bank) (N N N A N N I O Iy

@ Bank: portion within a superbank that is word interleaved
(or Subbank)

Superbank Bank

Superbank Number Suberbank Offset
Bank Number | Bank Offset

Avoiding Bank Conflicts Fast Bank Number

@ Chinese Remainder Theorem
As long as two sets of integers ai and bi follow these rules
bi=xmod ai,0 < bi<ai,0<Xx<aoxaixaz2x...
and that ai and aj are co-prime if i j, then the integer x has only one

@ Lots of banks

int x[256][512];) } solution (unambiguous mapping):
for (Jf= 0.1 _<O§1?;<J 2;61' +1) i1 ® bank number = by, number of banks = a, (= 3 in example)
or (i =0;: i _ i =1 _) @ address within bank = b;, number of words in bank = a;
x[i101 = 2 > x[i101: (= 8 in example)
® Conflicts occur even with 128 banks, since 512 is multiple of 128, ® N word address 0 to N-1, prime no. banks, words power of 2
conflict on word accesses
® SwW: _qug interchange or declaring array not power of 2 (“array Seq. Interleaved Modulo Interleaved
padding Bank Number: 0 1 2 0 1 2

® HW: Prime number of banks
® bank number = address mod number of banks 0 1 2 0 16 8
® address within bank = address / number of words in bank 3 4 @ 9 1 17
® modulo & divide per memory access with prime no. banks? g 7 18 10 2

® address within bank = address mod number words in bank 12 13 :|I l 13 12 ;:)
® bank number? easy if 2N words per bank 15 16 17 21 13
18 19 20 6 22 1
21 22 23 15 7 23

Page 20

® FLASH More esoteric Storage Technologies?

Need for‘ Error CorreCTlon! @ Mosfet cell with N design: sequential read, high density
— two gates vy ST
@ Motivation: ® One "floating” .
B Failures/time proportional to number of bits! T h] o—l
® As DRAM cells shrink, more vulnerable N o P"log"f‘m" 7C arge (=
@ Went through period in which failure rate was low enough d‘:'"I"e: via </nm a1
without error correction that people didn't do correction tefectric "—HE
® DRAM banks too large now @ Cells can only be o=
#& Servers always corrected memory systems ?"ased ("3531' to O) "—”::
@ Basic idea: add redundancy through parity bits in blocks Commonsource
® Simple but wasteful version: i Time calculation for updating 160K file
® Keep three copies of everything, vote to find right value 3001 203ms) 260(ms) :
® 200% overhead, so not good! [32 word lines
® Common configuration: Random error correction 200 & x 1024 blocks
® SEC-DED (single error correct, double error detect) I T40imal Erasetime &
® One example: 64 data bits + 8 parity bits (11% overhead) 100 | Program time i
® Papers up on reading list from last term tell you how to do these types E . =
of codes _lazs] . Pl | . .
® Really want to handle failures of physical components as well g
® Organization is multiple DRAMs/SIMM, multiple SIMMs PN S - ey eyl S v
® Want to recover from failed DRAM and failed SIMM! i— — N o
® Require: e redundancy to do this e o] i e it 11.7mm
quires more redundancy S i Rhdiags s
Eabiock ams e s s Gbit NAND Flash memory

2 All major vendors thinking about this in high-end machines
bwrc.eecs.berkeley.edu/Classes/ICDesign/ EE241_s02/Lectures/lecture28-Flash.pdf

. o
° FRAM More esoteric Storage Technologies:

@ Perovskite ferroelectric crystal forms dielectric in
capactor, stores bit via phase change

@ 100ns read, 100ns write
&Very low write energy (ca.1nJ)

Main Memory Summary

® Wider Memory
® Interleaved Memory: for sequential or independent

©:Pb©):0 ©:Zr/Ti

[PZT Crystal Structure |

A accesses

Bit Line

h — 'y — W ren I S e zaton | ® Avoiding bank conflicts: SW & HW
: [FRAMProcess | ® DRAM specific optimizations: page mode & Specialty
e DRAM

[Conventional CMOS Bulk] ® Need EI"I‘OI" correction
@ Fully integrated with
logic fab process

@ Currently used in

Additional FRAM process
between conventional CMOS bulk and metalization

G Smartcards/RFID
®
Compatible with conventional CMOS technology ?ﬁf;ﬁ? overtake

and existing CMOS cell libraries
http://www.fma.fujitsu.com/fram/framDocs01.asp?grOut=D

® See also phase
fondsec=D ion change RAM

Page 21

