
332
Ad d C  A hiAdvanced Computer Architecture

Chapter 3 

Instruction Level Parallelism and 
Dynamic Execution Dynamic Execution 
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Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy 
and Patterson’s Computer Architecture, a quantitative approach (3rd

4th eds), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course (CS252)
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Data Dependence and Hazards
InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it

p

J p I 

I: add r1,r2,r3
J: sub r4,r1,r3

or InstrJ is data dependent on InstrK which is dependent 
on InstrI

C d b   “T D d ” ( il  t )  

, ,

Caused by a “True Dependence” (compiler term)  
If true dependence caused a hazard in the pipeline, called 
a Read After Write (RAW) hazard f W ( W) z
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Data Dependence and Hazards
Dependences are a property of programs
Presence of dependence indicates potential for a 

p

Presence of dependence indicates potential for a 
hazard, but actual hazard and length of any stall is a 
property of the pipeline
I t  f th  d t  d d iImportance of the data dependencies

1) indicates the possibility of a hazard
2) determines order in which results must be calculated2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can 

possibly be exploited
Today looking at HW schemes to avoid hazard
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Name Dependence #1: 
Anti-dependence

Name dependence: when 2 instructions use same 
register or memory location, called a name, but no 
fl  f d  b  h  i i  i d i h 

Anti dependence

flow of data between the instructions associated with 
that name
There are two kinds:There are two kinds
Name dependence #1: anti-dependence/WAR

InstrJ writes operand before InstrI reads it

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6 r1 r7

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”
If anti dependence caused a hazard in the pipeline  called a Write 

K: mul r6,r1,r7
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If anti-dependence caused a hazard in the pipeline, called a Write 
After Read (WAR) hazard



Name Dependence #2: 
Output dependenceOutput dependence

InstrJ writes operand before InstrI writes it.

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

K: mul r6,r1,r7

This also results from the reuse of name r1
If anti-dependence caused a hazard in the pipeline, called 
a Write After Write (WAW) hazard
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ILP and Data HazardsILP and Data Hazards
HW/SW must preserve program order: p p g
order instructions would execute in if executed 
sequentially 1 at a time as determined by original 
source programp g
HW/SW goal: exploit parallelism by preserving program 
order only where it affects the outcome of the program
I t ti  i l d i    d d   t  Instructions involved in a name dependence can execute 
simultaneously if name used in instructions is changed so 
instructions do not conflict

Register renaming resolves name dependence for regs
Either by compiler or by HW
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Control Dependencies

Every instruction is control dependent on some 
set of branches  and  in general  these control set of branches, and, in general, these control 
dependencies must be preserved to preserve 
program order
if p1 {if p1 {
S1;

};
if p2 {
S2;

}}
S1 is control dependent on p1, and S2 is control 
dependent on p2 but not on p1.
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Control Dependence Ignored

Control dependence need not be preserved
willing to execute instructions that should not have been executed, 
thereby violating the control dependences, if can do so without y p
affecting correctness of the program 

Instead, two properties critical to program correctness 
are exception behavior and data flowp
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Exception Behavior

Preserving exception behavior => any changes in 
instruction execution order must not change how 
exceptions are raised in program (=> no new p p g m ( w
exceptions)
Example:

DADDU R2 R3 R4DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:L1:
Problem with moving LW before BEQZ?
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Data Flow

Data flow: actual flow of data values among g
instructions that produce results and those that 
consume them

branches make flow dynamic, determine which instruction is supplier y , pp
of data

Example:
DADDU R1 R2 R3DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L:L: …
OR R7,R1,R8
OR depends on DADDU or DSUBU? 
M   d  fl   i
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Must preserve data flow on execution



Advantages of Dynamic Scheduling
Handles cases when dependences unknown at compile 
time 

(e.g., because they may involve a memory reference)(e.g., because they may involve a memory reference)

It simplifies the compiler 
Allows code that compiled for one pipeline to run 
ffi i l    diff  i li  efficiently on a different pipeline 

Hardware speculation, a technique with significant 
performance advantages, that builds on dynamic performance advantages, that builds on dynamic 
scheduling
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HW Schemes: Instruction ParallelismHW Schemes: Instruction Parallelism
Key idea: Allow instructions behind stall to proceed

DIVD F0 F2 F4DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

Enables out-of-order executionEnables out-of-order execution
and allows out-of-order completion
We will distinguish when an instruction is issued, begins 

i d h  i  l  i  b  execution and when it completes execution; between 
these two times, the instruction is in execution
In a dynamically scheduled pipeline, all instructionsIn a dynamically scheduled pipeline, all instructions
pass through issue stage in order (in-order issue)
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Dynamic Scheduling Step 1

Simple pipeline had 1 stage to check both Simple pipeline had 1 stage to check both 
structural and data hazards: Instruction Decode 
(ID), also called Instruction Issue
Split the ID pipe stage of simple 5 stageSplit the ID pipe stage of simple 5-stage
pipeline into 2 stages:
Issue—Decode instructions, check for structural, f
hazards
Read operands—Wait until no data hazards,
th d dthen read operands
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A Dynamic Algorithm: y g
Tomasulo’s Algorithm

For IBM 360/91 (before caches!)For IBM 360/91 (before caches!)
Goal: High Performance without special compilers
Small number of floating point registers (4 in 360) ma  num r f f at ng p nt r g t r  (  n 6 ) 
prevented interesting compiler scheduling of operations

This led Tomasulo to try to figure out how to get more effective registers 
— renaming in hardware! 

Why study a 1966 Computer? 
The descendents of this have flourished!

Al h  21264  HP 8000  MIP  10000/R12000  P i  II/III/4  C  Alpha 21264, HP 8000, MIPS 10000/R12000, Pentium II/III/4, Core, 
Core2, Nehalem, AMD K5,K6,Athlon, Opteron, Phenom, PowerPC 
603/604/G3/G4/G5, …
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IBM360/91
CPU cycle time: 60 nanoseconds
memory cycle time (to fetch and store 
eight bytes in parallel): 780nseight bytes in parallel): 780ns
Standard memory capacity: 2,097,152B 
interleaved 16 ways (magnetic cores)
Up to 6,291,496 bytes of main storage
Up to 16.6-million additions/second

Solid Logic Technology 
(SLT), an IBM invention 
which encapsulated 5-6 
transistors into a small

Ca.120K gates, ECL

transistors into a small 
module--a transition 
technology between discrete 
transistors and the IC
About 12 were made

NASA Center for Computational Sciences

See:
Some Reflections on Computer Engineering: 

30 Years after the IBM System 360 
Model 91

Michael J. Flynn

Advanced Computer Architecture Chapter 3.15NASA's Space Flight Center in Greenbelt, Md, January 1968 

Source: 
http://www.columbia.edu/acis/history
/36091.html

y
ftp://arith.stanford.edu/tr/micro30.ps.Z



Tomasulo AlgorithmTomasulo Algorithm
Control & buffers distributed with Function Units (FU)

FU buffers called “reservation stations”; have pending operands
Registers in instructions replaced by values or pointers to 
reservation stations(RS); called  register renaming ; reservation stations(RS); called  register renaming ; 

avoids WAR, WAW hazards
More reservation stations than registers, so can do optimizations 
compilers can’tcompilers can t

Results to FU from RS, not through registers, over Common 
Data Bus that broadcasts results to all FUs
Load and Stores treated as FUs with RSs as well
Integer instructions can go past branches, allowing 
FP ops beyond basic block in FP queue
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FP ops beyond basic block in FP queue



Tomasulo Organization
From Mem FP RegistersFP Op

Queue
Load BuffersLoad Buffers

Load1
Load2
Load3
Load4

Store 
Buffers

Load4
Load5
Load6

Add1
Add2
Add3

Mult1
Mult2

Reservation To Mem

FP adders FP multipliers
Stations
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Common Data Bus (CDB)



Tomasulo – closer look at instruction processing
Tag Value F0SD F0, Y4 Tag Value F0

Tag Value F1

Tag Value F2

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Tag Value F2

Tag Value F3Issue
Opcode

Operand values/tags

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1 RS Store2

Multiply unit 1
Mul unit 2 Store unit 1 Store unit 2

IIssue: •Each instruction is issued in order
•Issue unit collects operands from the two instruction’s source registers
•Result may be a value, or, if value will be computed by an uncompleted 
i t ti th t f th RS t hi h it i d
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instruction, the tag of the RS to which it was issued. 
•When instruction 1 is issued, F0 is updated to get result from MUL1
•When instruction 3 is issued, F0 is updated to get result from MUL2



Tag Value F0SD F0, Y4

Tomasulo – closer look at instruction processing
Tag Value F0

Tag Value F1

Tag Value F2

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Tag Value F2

Tag Value F3Issue
Opcode

Operand values/tags

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1 RS Store2

Multiply unit 1
Mul unit 2 Store unit 1 Store unit 2

Write-back: Common data bus•Instructions may complete out of order
•Result is broadcast on CDB
•Carrying tag of RS to which instruction was originally issued
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•Carrying tag of RS to which instruction was originally issued
•All RSs and registers monitor CDB and collect value if tag matches
•Any RS which has both operands and whose FU is free fires.
•When MUL1 completes result goes to store unit but not F0



Reservation Station ComponentsReservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

Store buffers has V field, result to be stored

Qj  Qk: Reservation stations producing source registers Qj, Qk: Reservation stations producing source registers 
(value to be written)

Note: Qj,Qk=0 => ready
St  b ff  l  h  Qi f  RS d i  ltStore buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will 
write each register, if one exists. Blank when no pending 
instructions that will write that re ister  
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instructions that will write that register. 



Three Stages of Tomasulo AlgorithmThree Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;p y ;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units; 
mark reservation station availablemark reservat on stat on ava lable

Normal data bus: data + destination (“go to” bus)
Common data bus: data + source (“come from” bus)

64 bits of data + 4 bits of Functional Unit  source address
Write if matches expected Functional Unit (produces result)
Does the broadcast

Example speed: 
3 clocks for Fl pt  + -; 10 for * ; 40 clks for /
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3 clocks for Fl .pt. +,-; 10 for  ; 40 clks for /



360/91 pipeline 
The IBM 360/91’s pipeline:

11-12 circuit levels per pipeline stage, of 5-6ns each
CPU consists of three physical frames, each having 
dimensions 66" L X 15" D X 78" H
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See: The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling,by D. W. Anderson, 
F. J. Sparacio, R. M. Tomasulo.  IBM J. R&D (1967), 
http://www.research.ibm.com/journal/rd/111/ibmrd1101C.pdf

dimensions 66  L X 15  D X 78  H



Tomasulo ExampleInstruction stream
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Load1 No
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2 3 Load/Buffers

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 NoFU count 3 FP Adder R SAdd3 No
Mult1 No
Mult2 No

Register result status:

FU count
down

3 FP Adder R.S.
2 FP Mult R.S.

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Clock cycle 
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Clock cycle 
counter



Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 Load2 No
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Load1
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Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 No

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

2 FU Load2 Load1
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Note: Can have multiple loads outstanding



Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 Load1 Yes 34+R2
LD F2 45+ R3 2 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in 
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Note: registers names are removed ( renamed ) in 
Reservation Stations; MULT issued

• Load1 completing; what is waiting for Load1? 



Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 Load2 Yes 45+R3
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2
Add2 No
Add3 No
Mult1 Yes MULTD R(F4) Load2
Mult2 No

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

4 FU Mult1 Load2 M(A1) Add1
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• Load2 completing; what is waiting for Load2? 



Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)
Add2 No
Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

5 FU Mult1 M(A2) M(A1) Add1 Mult2
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• Timer starts down for Add1, Mult1



Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1( )
Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

6 FU Mult1 M(A2) Add2 Add1 Mult2
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• Issue ADDD here despite name dependency on F6? 



Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)
Add2 Yes ADDD M(A2) Add1( )
Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

7 FU Mult1 M(A2) Add2 Add1 Mult2
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• Add1 (SUBD) completing; what is waiting for it? 



Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
2 Add2 Yes ADDD (M-M) M(A2)( ) ( )

Add3 No
7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

8 FU Mult1 M(A2) Add2 (M-M) Mult2

Advanced Computer Architecture Chapter 3.31



Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
1 Add2 Yes ADDD (M-M) M(A2)( ) ( )

Add3 No
6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

9 FU Mult1 M(A2) Add2 (M-M) Mult2
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Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
0 Add2 Yes ADDD (M-M) M(A2)( ) ( )

Add3 No
5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

10 FU Mult1 M(A2) Add2 (M-M) Mult2
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• Add2 (ADDD) completing; what is waiting for it? 



Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

11 FU Mult1 M(A2) (M-M+M(M-M) Mult2

W it  lt f ADDD h ?
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• Write result of ADDD here?
• All quick instructions complete in this cycle!



Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

12 FU Mult1 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

13 FU Mult1 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

14 FU Mult1 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)
Mult2 Yes DIVD M(A1) Mult1

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

15 FU Mult1 M(A2) (M-M+M(M-M) Mult2
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• Mult1 (MULTD) completing; what is waiting for it? 



Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

16 FU M*F4 M(A2) (M-M+M(M-M) Mult2
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• Just waiting for Mult2 (DIVD) to complete



Skip a few cycles: Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

55 FU M*F4 M(A2) (M-M+M(M-M) Mult2
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Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Mult2
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• Mult2 (DIVD) is completing; what is waiting for it? 



Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 No
LD F2 45+ R3 2 4 5 Load2 No
MULTD F0 F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 7 8
DIVD F10 F0 F6 5 56 57
ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 No
Add2 No
Add3 No
Mult1 No
Mult2 Yes DIVD M*F4 M(A1)

Register result status:Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

56 FU M*F4 M(A2) (M-M+M(M-M) Result
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• Once again: In-order issue, out-of-order execution and 
out-of-order completion.



Tomasulo Drawbacks

Complexity
delays of 360/91, MIPS 10000, Alpha 21264, 
IBM PPC 620
Many associative stores (CDB) at high speed

Performance limited by Common Data Bus
Each CDB must go to multiple functional units Each CDB must go to multiple functional units 
⇒high capacitance, high wiring density
Number of functional units that can complete per cycle limited to 
one!

Multiple CDBs ⇒ more FU logic for parallel assoc stores

Non-precise interrupts!
We will address this later
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We will address this later



Tomasulo Loop Examplep p
Loop:LD F0 0 R1

MULTD F4 F0 F2MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

This time assume Multiply takes 4 clocks
Assume 1st load takes 8 clocks 
(L1 cache miss)  2nd load takes 1 clock (hit)(L1 cache miss), 2nd load takes 1 clock (hit)
To be clear, will show clocks for SUBI, BNEZ

Reality: integer instructions ahead of Fl. Pt. Instructions
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Show 2 iterations



Loop Example
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 Load1 No
1 MULTD F4 F0 F2 Load2 No
1 SD F4 0 R1 Load3 No
2 LD F0 0 R1 Store1 No
2 MULTD F4 F0 F2 Store2 No
2 SD F4 0 R1 Store3 No

Iter-
ation
Count 2 SD F4 0 R1 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Added Store Buffers

Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

0 80 Fu

Instruction Loop
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Value of Register used for address, iteration control



Loop Example Cycle 1
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80

Load2 No
Load3 No
Store1 No
Store2 No
Store3 NoStore3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

1 80 Fu Load1
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Loop Example Cycle 2
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No

Load3 No
Store1 No
Store2 No
Store3 NoStore3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

2 80 Fu Load1 Mult1
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Loop Example Cycle 3
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 NoStore3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

3 80 Fu Load1 Mult1
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Implicit renaming sets up data flow graph



Loop Example Cycle 4
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 NoStore3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

4 80 Fu Load1 Mult1
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Dispatching SUBI Instruction (not in FP queue)



Loop Example Cycle 5
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1
Store2 No
Store3 NoStore3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

5 72 Fu Load1 Mult1
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And, BNEZ instruction (not in FP queue)



Loop Example Cycle 6
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1

Store2 No
Store3 NoStore3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

6 72 Fu Load2 Mult1
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Notice that F0 never sees Load from location 80



Loop Example Cycle 7
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 No

Store3 NoStore3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

7 72 Fu Load2 Mult2
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Register file completely detached from computation
First and Second iteration completely overlapped



Loop Example Cycle 8
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

8 72 Fu Load2 Mult2
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Loop Example Cycle 9
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 Load1 Yes 80
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

9 72 Fu Load2 Mult2
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Load1 completing: who is waiting?
Note: Dispatching SUBI



Loop Example Cycle 10
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 Yes 72
1 SD F4 0 R1 3 Load3 No
2 LD F0 0 R1 6 10 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

10 64 Fu Load2 Mult2
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Load2 completing: who is waiting?
Note: Dispatching BNEZ



Loop Example Cycle 11
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

3 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
4 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

11 64 Fu Load3 Mult2
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Next load in sequence



Loop Example Cycle 12
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

2 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
3 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

12 64 Fu Load3 Mult2
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Why not issue third multiply?



Loop Example Cycle 13
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

1 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
2 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

13 64 Fu Load3 Mult2
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Why not issue third store?



Loop Example Cycle 14
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1
2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

0 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8
1 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

14 64 Fu Load3 Mult2
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Mult1 completing.  Who is waiting?



Loop Example Cycle 15
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 Store2 Yes 72 Mult2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 No SUBI R1 R1 #8

0 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop( ) p

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

15 64 Fu Load3 Mult2
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Mult2 completing.  Who is waiting?



Loop Example Cycle 16
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 No2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1

4 Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

16 64 Fu Load3 Mult1
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Loop Example Cycle 17
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult12 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

17 64 Fu Load3 Mult1
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Loop Example Cycle 18
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 Store3 Yes 64 Mult12 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

18 64 Fu Load3 Mult1
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Loop Example Cycle 19
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2
2 SD F4 0 R1 8 19 Store3 Yes 64 Mult12 SD F4 0 R1 8 19 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

19 56 Fu Load3 Mult1
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Loop Example Cycle 20
Instruction status: E W itInstruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 Yes 56
1 MULTD F4 F0 F2 2 14 15 Load2 No
1 SD F4 0 R1 3 18 19 Load3 Yes 64
2 LD F0 0 R1 6 10 11 Store1 No
2 MULTD F4 F0 F2 7 15 16 Store2 No
2 SD F4 0 R1 8 19 20 Store3 Yes 64 Mult12 SD F4 0 R1 8 19 20 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS 
Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1
Add2 No MULTD F4 F0 F2
Add3 No SD F4 0 R1
Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 No BNEZ R1 Loopp

Register result status
Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

20 56 Fu Load1 Mult1
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• Once again: In-order issue, out-of-order execution and 
out-of-order completion.



Why can Tomasulo overlap iterations of 
loops?p

Register renaming
Multiple iterations use different physical destinations for registers 
(dynamic loop unrolling).

Reservation stations 
Permit instruction issue to advance past integer control flow operationsp g p
Also buffer old values of registers - totally avoiding the WAR stall 
that we saw in the scoreboard.

Oth  ti  T l  b ildi  d t  fl  Other perspective: Tomasulo building data flow 
dependency graph on the fly.
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Tomasulo’s scheme offers two major 
advantagesg

(1) the distribution of the hazard detection logic
distributed reservation stations and the CDB
If multiple instructions waiting on single result, & each instruction 
has other operand, then instructions can be released simultaneously 
by broadcast on CDB 
If a centralized register file were used the units would have toIf a centralized register file were used, the units would have to
read their results from the registers when register buses are
available.

(2) the elimination of stalls for WAW and WAR hazards(2) the elimination of stalls for WAW and WAR hazards
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What about Precise Interrupts?

Tomasulo had:

In-order issue, out-of-order execution, and out-of-u , u f u , u f
order completion

N d  “fi ” h  f d  l i    Need to “fix” the out-of-order completion aspect so 
that we can find precise breakpoint in instruction 
stream.
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Relationship between precise 
interrupts and speculation:p p

Speculation is a form of guessing.
 f  b h dImportant for branch prediction:

Need to “take our best shot” at predicting branch direction.

If we speculate and are wrong, need to back up and If we speculate and are wrong, need to back up and 
restart execution at point at which we predicted 
incorrectly:

This is exactly same as precise exceptions!This is exactly same as precise exceptions!

Technique for both precise interrupts/exceptions and 
speculation: in-order completion or commit

Advanced Computer Architecture Chapter 3.69



HW support for precise interrupts
d H  b ff  f  l  f Need HW buffer for results of 

uncommitted instructions: 
reorder buffer

3 fields: instr, destination, value
Use reorder buffer number instead of 
reservation station when execution 
completes

Reorder
Buffer

FPcompletes
Supplies operands between execution 
complete & commit
(Reorder buffer can be operand 

Op
Queue FP Regs

(Reorder buffer can be operand 
source => more registers like RS)
Instructions commit
Once instruction commits, 

FP Add FP Add

Res Stations Res Stations

result is put into register
As a result, easy to undo speculated 
instructions 
on mispredicted branches 

FP Adder FP Adder
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on mispredicted branches 
or exceptions



Four Steps of Speculative 
Tomasulo AlgorithmTomasulo Algorithm

1.Issue—get instruction from FP Op Queue
If ti  t ti  d d  b ff  l t f  i  i t  & d If reservation station and reorder buffer slot free, issue instr & send 
operands & reorder buffer no. for destination (this stage sometimes called 
“dispatch”)

2.Execution—operate on operands (EX)p p
When both operands ready then execute; if not ready, watch CDB for 
result; when both in reservation station, execute; checks RAW (sometimes 
called “issue”)

3 Write result—finish execution (WB)3.Write result finish execution (WB)
Write on Common Data Bus to all awaiting FUs 
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder resultp g
When instr. at head of reorder buffer & result present, update register 
with result (or store to memory) and remove instr from reorder buffer. 
Mispredicted branch flushes reorder buffer (sometimes called “graduation”)
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Tomasulo without Re-order Buffer
Tag Value F0SD F0, Y4 Tag Value F0

Tag Value F1

Tag Value F2

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Tag Value F2

Tag Value F3Issue
Opcode

Operand values/tags

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1 RS Store2

Multiply unit 1
Mul unit 2 Store unit 1 Store unit 2

IIssue: •Each instruction is issued in order
•Issue unit collects operands from the two instruction’s source registers
•Result may be a value, or, if value will be computed by an uncompleted 
i t ti th t f th RS t hi h it i d
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instruction, the tag of the RS to which it was issued. 
•When instruction 1 is issued, F0 is updated to get result from MUL1
•When instruction 3 is issued, F0 is updated to get result from MUL2

(Copy of 
earlier 
slide)



Tomasulo without Re-order Buffer
Tag Value F0SD F0, Y4 Tag Value F0

Tag Value F1

Tag Value F2

SD F0, Y
MUL F0, F3, F4
SD F0, X
MUL F0, F1, F21

2
3
4

Tag Value F2

Tag Value F3Issue
Opcode

Operand values/tags

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS Store1 RS Store2

Multiply unit 1
Mul unit 2 Store unit 1 Store unit 2

Write-back: Common data bus•Instructions may complete out of order
•Result is broadcast on CDB
•Carrying tag of RS to which instruction was originally issued

Advanced Computer Architecture Chapter 3.73

•Carrying tag of RS to which instruction was originally issued
•All RSs and registers monitor CDB and collect value if tag matches
•Any RS which has both operands and whose FU is free fires.
•When MUL1 completes result goes to store unit but not F0

(Copy of 
earlier 
slide)



Tag Value F0

Tag Value F1

SD F0, Y
MUL F0, F3, F4
SD F0, X2

3
4

Tag Value F2

Tag Value F3

,
MUL F0, F1, F21

Issue
Opcode

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1 RS Store1

Opcode
Operand values/tags

Dst null, Src STORE2

D t F0 S MUL23

4
ese at o stat o U

Multiply unit 1
Mul unit 2 Add unit 2 Store unit 1

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0 Src MUL11

2

3

p y

Common data bus

Dst F0, Src MUL11

Commit

value
lF1

F0

Advanced Computer Architecture Chapter 3.74
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value
value
valueF3

F2
F1



Tag Value F0

Tag Value F1

SD F0, Y
MUL F0, F3, F4
SD F0, X2

3
4

Tag Value F2

Tag Value F3

,
MUL F0, F1, F21

Issue
Opcode

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1 RS Store1

Opcode
Operand values/tags

Dst null, Src STORE2

D t F0 S MUL23

4
ese at o stat o U

Multiply unit 1
Mul unit 2 Add unit 2 Store unit 1

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0 Src MUL11

2

3

p y

Common data bus

Dst F0, Src MUL11

Issue: •As before, but ROB entry is also allocated
Commit

value
lF1

F0

, y

•ROB entry for each instruction

•Holds destination register + value/tag for where 
it will come from
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value
value
valueF3

F2
F1it will come from



Tag Value F0

Tag Value F1

SD F0, Y
MUL F0, F3, F4
SD F0, X2

3
4

Tag Value F2

Tag Value F3

,
MUL F0, F1, F21

Issue
Opcode

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1 RS Store1

Opcode
Operand values/tags

Dst null, Src STORE2

D t F0 S MUL23

4
ese at o stat o U

Multiply unit 1
Mul unit 2 Add unit 2 Store unit 1

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0 Src MUL11

2

3

p y

Common data bus

Dst F0, Src MUL11

Write Back:
Commit

value
lF1

F0

•As before, but ROB entry with matching tag also updated

•ROB entry for instruction 1 holds value for F0
•ROB entry for instruction 3 holds another value for F0

Advanced Computer Architecture Chapter 3.76
Tomasulo with Re-order Buffer

value
value
valueF3

F2
F1•ROB entry for instruction 3 holds another value for F0



Tag Value F0

Tag Value F1

SD F0, Y
MUL F0, F3, F4
SD F0, X2

3
4

Tag Value F2

Tag Value F3

,
MUL F0, F1, F21

Issue
Opcode

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1 RS Store1

Opcode
Operand values/tags

Dst null, Src STORE2

D t F0 S MUL23

4
ese at o stat o U

Multiply unit 1
Mul unit 2 Add unit 2 Store unit 1

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0 Src MUL11

2

3

p y

Common data bus

Dst F0, Src MUL11

Commit:
Commit

value
lF1

F0

•Commit unit processes ROB entries in issue order

•Each instruction waits in turn and commits when its 
operands are completed
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value
value
valueF3

F2
F1

•Committed registers updated with values from ROB
•F0 is updated first with result from MUL1 then result from 
MUL2



SD F0, Y
MUL F0, F3, F4
SD F0, X2

3
4 Tag Value F0

Tag Value F1,
MUL F0, F1, F21

Issue
Opcode

Tag Value F2

Tag Value F3

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1 RS Store1

Opcode

Dst null, Src STORE2

D t F0 S MUL23

4

Operand values/tags

ese at o stat o U

Multiply unit 1
Mul unit 2 Add unit 2 Store unit 1

Dst F0, Src MUL2

Dst null, Src STORE1

Dst F0 Src MUL11

2

3

p y

Common data bus

Dst F0, Src MUL11

Issue side registers
Commit

Issue-side registers
(updated speculatively)

Commit-side registers value
lF1

F0

Advanced Computer Architecture Chapter 3.78
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(updated when speculation resolved) value
value
valueF3

F2
F1



Tag Value F0
SD F0, Y
MUL F0, F3, F44

5

BEQ R10 Lab3
Tag Value F1

Tag Value F2
SD F0, X
MUL F0, F1, F21

2

Issue

BEQ R10, Lab3

Opcode Operand1 Operand2 RS MUL2 RS ADD1 RS Store1

Tag Value F3Issue
Opcode

Operand values/tags

Dst null Src STORE25Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Mul unit 2 Add unit 2

RS Store1

Store unit 1

Dst null, Src STORE2

Dst F0, Src MUL24

5

BEQ R10, Lab (predNT)3

Multiply unit 1
Mul unit 2 Add unit 2 Store unit 1

Dst null, Src STORE1

Dst F0, Src MUL11

2

Commit

valueF0

•Now extend example with conditional branch
•Assume predicted Not Taken
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value
value
valueF3

F2
F1•When BEQ reaches head of commit queue, all instructions 

which have been issued but have not yet committed are 
erroneous



Tag Value F0
SD F0, Y
MUL F0, F3, F44

5

BEQ R10 Lab3
Tag Value F1

Tag Value F2
SD F0, X
MUL F0, F1, F21

2

Issue

BEQ R10, Lab3

Opcode Operand1 Operand2 RS MUL2 RS ADD1 RS Store1

Tag Value F3Issue
Opcode

Operand values/tags

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Mul unit 2 Add unit 2

RS Store1

Store unit 1 Dst null Src STORE25
Multiply unit 1

Mul unit 2 Add unit 2 Store unit 1 Dst null, Src STORE2

Dst F0, Src MUL24

5

BEQ R10, Lab (predNT)3

Commit

Value from MUL1F0

•Misprediction: all ROB entries are trashed

•Issue-side registers reset from commit-side registers
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value
value
valueF3

F2
F1

g g

•Correct branch target instruction fetched and issued



Tag Value F0
SD F0, Y
MUL F0, F3, F44

5

BEQ R10 Lab3
Tag Value F1

Tag Value F2
SD F0, X
MUL F0, F1, F21

2

Issue

BEQ R10, Lab3

Opcode Operand1 Operand2 RS MUL2 RS ADD1 RS Store1

Tag Value F3Issue
Opcode

Operand values/tags

Opcode  Operand1 Operand2
Reservation station MUL1

RS MUL2 RS ADD1

Mul unit 2 Add unit 2

RS Store1

Store unit 1 Dst null Src STORE25
Multiply unit 1

Mul unit 2 Add unit 2 Store unit 1 Dst null, Src STORE2

Dst F0, Src MUL24

5

BEQ R10, Lab (predNT)3

Commit

Value from MUL1F0

•Committed F0 holds value from first MUL

•RS of uncompleted speculatively-executed instruction 
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value
value
valueF3

F2
F1

p p y
cannot be re-used until its FU (eg MUL2) completes



What are the hardware complexities with reorder buffer (ROB)?

Reorder
Buffer

FP

Com
pare ng on

s?

m
 C

ou
nt

er

Op
Queue FP Regs

network

D
es

t 
Re

Re
su

lt

Ex
ce

pt
io

Va
lid

Pr
og

ra
m

FP Adder FP Adder

Res Stations Res StationsReorder Table
FP Adder FP Adder

How do you find the latest version of a register?
Looks like we need associative comparison network
Could use future file or just use the register result status buffer to track which 
specific reorder buffer has received the value

Need as many ports on ROB as register file
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N m ny p n g f

See S. Weiss and J. E. Smith, “Instruction Issue Logic for Pipelined Supercomputers”.  ISCA, 
1984 (http://citeseer.nj.nec.com/weiss84instruction.html)



Some subleties…
It’s vital to reduce the branch misprediction penalty   Does the It s vital to reduce the branch misprediction penalty.  Does the 
Tomasulo+ROB scheme described here roll-back as soon as the 
branch is found to be mispredicted?

Stores are buffered in the ROB, and committed only when the 
instruction is committed.  A load can be issued while several 
stores (perhaps to the same address) are uncommitted.  We need 

 k   h  l d  h  i h  dto make sure the load gets the right data.

What if a second conditional branch is encountered, before the 
outcome of the first is resolved?

This discussion has assumed a single-issue machine.  How can g
these ideas be extended to allow multiple instructions to be 
issued per cycle?

Issue
M it i  CDB  f  l ti
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Monitoring CDBs for completion
Handling multiple commits per cycle 



Tomasulo + ROB: Summary
Reservations stations: implicit register renaming to 
larger set of registers + buffering source operands

Prevents registers as bottleneckPrevents registers as bottleneck
Avoids WAR, WAW hazards of Scoreboard (see textbook)
Allows loop unrolling in HW

Not limited to basic blocks 
(integer units gets ahead, beyond branches)
Today  helps cache misses as wellToday, helps cache misses as well

Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)

Lasting Contributions
Dynamic scheduling
Register renaming
Load/store disambiguation

Advanced Computer Architecture Chapter 3.84



ResourcesPapers:
Instruction issue logic for high-performance, interruptable pipelined processors.  G. S. 
Sohi, S. Vajapeyam.  International Conference on Computer Architecture, 1987 
(http://doi acm org/10 1145/30350 30354)(http://doi.acm.org/10.1145/30350.30354)
Towards Kilo-instruction processors. Cristal, Santana, Valero, Martinez ACM Trans. 
Architecture and Code Optimization (http://doi.acm.org/10.1145/1044823.1044825)

Animations:
 l lSATSim Simplescalar

http://www.ece.gatech.edu/research/pica/SATSim/satsim.html
WebHase Tomasulo model:

www.dcs.ed.ac.uk/home/hase/webhase/demo/tomasulo.html
Other WebHase animations – simple pipeline, Scoreboarding etc:

http://www.icsa.informatics.ed.ac.uk/research/groups/hase/javahase/app-list.html
Israel Koren at U Massachussetts Amhurst:

http://www ecs umass edu/ece/koren/architecture/Tomasulo/AppletTomasulo htmlhttp://www.ecs.umass.edu/ece/koren/architecture/Tomasulo/AppletTomasulo.html
http://www.ecs.umass.edu/ece/koren/architecture/

Processor performance
SPEC benchmarks – see http://www.spec.org/p p g

CPU benchmarks: http://www.spec.org/cpu2000/results/cpu2000.html
HPC benchmarks: http://www.spec.org/hpc2002/results/hpc2002.html

Ace’s hardware SPEC summary:
http://www aceshardware com/SPECmine/top jsp
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http://www.aceshardware.com/SPECmine/top.jsp
Other simulators:

Liberty: http://liberty.cs.princeton.edu/
MicroLib: http://microlib.org/



360/91 design choices…
Speculation:Speculation:

“Rather than wait for a valid CC, fetches are initiated for two instruction 
double-words as a hedge against a successful branch. Following this, it is 
assumed that the branch will fail, and a “conditional mode” is established. In 
conditional mode, shown in Fig. 8, instructions are decoded and conditionally , g , y
forwarded to the execution units, and concomitant operand fetches are 
initiated. The execution units are inhibited from completing conditional 
instructions. When a valid condition code appears, the appropriate branching 
action is detected and activates or cancels the conditional instructions.”

Prediction:Prediction:
[after mispredict] “the role of conditional mode is reversed, i.e., when the 
conditional branch is next encountered, it will be assumed that the branch will 
be taken. The conditionally issued instructions are from the target path 
rather than from the nobranch path as is the case when not in loop mode. A p p
cancel requires recovery from the branch guess.”

Right:
Organizationally, primary emphasis is placed on (1) alleviating the disparity 
between storage time and circuit speed, and (2) the development of high between storage time and circuit speed, and ( ) the development of high 
speed floating-point arithmetic algorithms.

Wrong:
“The complications of conditional mode, coupled with the fact that it is 
primarily aimed at circumventing storage access delays, indicate that a 

Advanced Computer Architecture Chapter 3.86

primarily aimed at circumventing storage access delays, indicate that a 
careful re-examination of its usefulness will be called for as the access time 
decreases.”



Tomasulo Algorithm and Branch Prediction

360/91 predicted branches  but lacked full 360/91 predicted branches, but lacked full 
speculation: 

Instructions along predicted branch path can complete
B t lt  nn t b  f d d ntil b n h t m  l dBut results cannot be forwarded until branch outcome resolved

Speculation with Reorder Buffer allows execution past 
branch, and then discard if branch fails

The key difference is that speculative instructions can pass values to 
each other
just need to hold instructions in buffer until branch can commit
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Case for Branch Prediction when 
Issue N instructions per clock cycleIssue N instructions per clock cycle

1. Branches will arrive up to n times faster in an n-issue
processor

2. Amdahl’s Law => relative impact of the control stalls
will be larger with the lower potential CPI in an n-
issue processorp
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7 Branch Prediction Schemes

1. 1-bit Branch-Prediction Buffer
2. 2-bit Branch-Prediction Buffer
3 C l ti  B h P di ti  B ff3. Correlating Branch Prediction Buffer
4. Tournament Branch Predictor
5 Branch Target Buffer5. Branch Target Buffer
6. Integrated Instruction Fetch Units
7. Return Address Predictors7. Return Address Predictors

Advanced Computer Architecture Chapter 3.89



Dynamic Branch PredictionDynamic Branch Prediction

Performance = ƒ(accuracy  cost of misprediction)Performance = ƒ(accuracy, cost of misprediction)
Branch History Table: Lower bits of PC address index 
table of 1-bit values

S  h th   t b h t k  l t tiSays whether or not branch taken last time
No address check (saves HW, but may not be right branch)

Problem: in a loop, 1-bit BHT will cause 
2 mispredictions (avg is 9 iterations before exit):2 mispredictions (avg is 9 iterations before exit):

End of loop case, when it exits instead of looping as before
First time through loop on next time through code, when it predicts 
exit instead of loopingexit instead of looping
Only 80% accuracy even if loop 90% of the time
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Dynamic Branch Prediction
(Ji  S i h  1981)

Solution: 2-bit scheme where change prediction only if 
t i di ti  t i  (Fi  3 7   198)

(Jim Smith, 1981)

get misprediction twice: (Figure 3.7, p. 198)

T

T

Predict Taken Predict Taken
T

NT

NTT

Predict Not 
Taken

Predict Not 
TakenT

NT
NT

Red: stop, not taken
Green: go  taken

NT

Taken Taken
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Green: go, taken
Adds hysteresis to decision making process



The 2-bit branch history table (BHT)
Program counter

2 bit local
k low-order bits

2-bit local 
branch 
history2k

Predict
taken

Predict
taken

taken
taken

not taken

index

P di t P di t not

not takentaken

not taken

0

1
Predict

not-taken
Predict

not-taken
not
takentaken

Advanced Computer Architecture Chapter 3.92

prediction
bit   n....1,0 (Generalises to n-bit BHT: 

saturating counter)



n-bit 
li

Prediction accuracy of an 4096-entry two-bit prediction buffer versus an infinite buffer for the SPEC89 
benchmarks (H&P Fig 4.15) 

BHT -
how well espresso

eqntott

li

at
io

n

does it 
work?spice

fpppp

gcc

m
ar

k 
ap

pl
ic

a

matrix300

tomcatv

doduc

B
en

ch
m

Unlimited entries

4096 entries

0 2 4 6 8 10 12 14 16 18

Frequency of misprediction

nasa7

Frequency of misprediction

2-bit predictor often very good, sometimes awful
Little evidence that BHT capacity is an issue
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1-bit is usually worse, 3-bit is not usefully better



N-bit BHT - why does it work so well?
n bit BHT pr dict r ss nti ll  b s d n  s tur tin  c unt r: n-bit BHT predictor essentially based on a saturating counter: 
taken increments, not-taken decrements
predict taken if most significant bit is setp g

Most branches are highly 

Predict
taken

Predict
taken

taken
taken

not taken
11 10

Most branches are highly 
biased: either almost-
always taken, or almost-
always not-taken taken taken

not takentaken

taken

not taken

always not taken
Works badly for branches 
which aren’t

Predict
not-taken

Predict
not-taken

not
takentaken

not taken

01 00
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01 00
Often called the “bimodal” 

predictor
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Is local history all there is to it?

The bimodal predictor uses the BHT to record “local 
history” - the prediction information used to predict a 
particular branch is determined only by its memory p u m y y m m y
address
Consider the following sequence: if (C1)  then

S1;
endif
if (C2) th

It is very likely that condition C2 is 
correlated with C1 and that C3 is if (C2) then

S2;
endif

correlated with C1 - and that C3 is 
correlated with C1 and C2
How can we use this observation? endif

if (C3) then
S3;
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;
endif



Global history

Definition: Global history. The taken - not-taken 
history for all previously-executed branches.
Idea: use global history to improve branch predictionIdea: use global history to improve branch prediction
Compromise: use m most recently-executed branches
Implementation: keep an m-bit Branch History Implementat on  keep an m bit Branch History 
Register (BHR) - a shift register recording taken -
not-taken direction of the last m branches
Question: How to combine local information with global Question: How to combine local information with global 
information?
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Program counter
k low-order bits

Branch history register
m bits

2k 2k 2k 2k

n-bit local 
branch history

This is an 
(m,n)
“gselect” 
correlating 
p di t : 

Popular 
choice is 

predictor: 
m global 
bits record 
behaviour 
of last m

index

c o ce s
m=2, 
n=2, so 
four2 2 2 2

of last m
branches
These m
bits are 
used to 
select 

0

1

0

1

0

1

0

1

four 
tables 
each of 

2 2 2 2select 
which of 
the 2m n-
bit BHTs to 
use 

bit   n....1,0 bit   n....1,0
0

prediction

bit   n....1,0
0

bit   n....1,0
0

Select

2x2k bits
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prediction
2m n-bit BHTs



How many bits of branch history should be used?
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Variations
There are many variations on the idea:

gselect: many combinations of n and mg y f
global: use only the global history to index the BHT - ignore the PC 
of the branch being predicted (an extreme (n,m) gselect scheme)
gshare: arrange bimodal predictors in single BHT, but construct its 
i d  b  XORi  l d  PC dd  bi  i h l b l b h hi  index by XORing low-order PC address bits with global branch history 
shift register - claimed to reduce conflicts
Per-address Two-level Adaptive using Per-address pattern history (PAp): 
for each branch, keep a k-bit shift register recording its history, for each branch, keep a k bit shift register recording its history, 
and use this to index a BHT for this branch (see Yeh and Patt, 
1992)

Each suits some programs well but not allEach su ts some programs well but not all
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Horses for courses
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Extreme example - “go”

“go” is a 
SPEC95 
benchmark code pr
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g y p
0% taken and 100% taken

• All known predictors do badly



Some dynamic applications have highly-correlated branches 
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For “go”, optimum BHR size (m) is much larger
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Review: Correlating Branches
Idea: taken/not taken 
of recently executed 
b h  i  l t d t  

Branch address (4 bits)
branches is related to 
behavior of next 
branch (as well as the 
history of that branch 

2-bits per branch 
local predictors

history of that branch 
behavior)

Then behavior of recent 
branches selects between, 

 4 di i  f  PredictionPredictionsay, 4 predictions of next 
branch, updating just that 
prediction 

(2,2) predictor: 2-bit 

PredictionPrediction

(2,2) predictor  2 bit 
global, 2-bit local

2-bit global
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2 bit global 
branch history

(01 = not taken then taken)



Accuracy of Different Schemes
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nasa7 matrix300 tomcatv doducd spice fpppp gcc espresso eqntott li

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

0%



Re-evaluating Correlation

Several of the SPEC benchmarks have less than 
a dozen branches responsible for 90% of taken a dozen branches responsible for 90% of taken 
branches:
program branch % static # = 90%
compress 14% 236 13compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532p g
real gcc 13% 17361 3214
Real programs + OS more like gcc
Small benefits beyond benchmarks for Small benefits beyond benchmarks for 
correlation? problems with branch aliases?
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Predicated Execution
Avoid branch prediction by turning branches into 
conditionally executed instructions:
if (x) then A = B op C else NOP

If false, then neither store result nor cause exception
Expanded ISA of Alpha, MIPS, PowerPC, SPARC have 

x
p p

conditional move; PA-RISC can annul any following instr.
IA-64: 64 1-bit condition fields selected 
so conditional execution of any instruction
Thi  t f m ti  i  ll d “if i ”

A = 
B op C

This transformation is called “if-conversion”

Drawbacks to conditional instructions
Still takes a clock even if “annulled”
Stall if condition evaluated late
Complex conditions reduce effectiveness; 
condition becomes known late in pipeline
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BHT Accuracy

Mispredict because either:
Wrong guess for that branch
Got branch history of wrong branch when index the tableGot branch history of wrong branch when index the table

4096 entry table  programs vary from 1% 
misprediction (nasa7, tomcatv) to 18% (eqntott), with 
spice at 9% and gcc at 12%spice at 9% and gcc at 12%
For SPEC92,
4096 about as good as infinite table
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Tournament Predictors

Motivation for correlating branch predictors is 2-Motivation for correlating branch predictors is 2-
bit predictor failed on important branches; by
adding global information, performance improved
T di 2 di 1 b dTournament predictors: use 2 predictors, 1 based
on global information and 1 based on local
information, and combine with a selector
Hopes to select right predictor for right branch
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Tournament Predictor in Alpha 21264

4K 2-bit counters to choose from among a global predictor
and a local predictorand a local predictor
Global predictor also has 4K entries and is indexed by the
history of the last 12 branches; each entry in the global
predictor is a standard 2-bit predictorp p

12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

Local predictor consists of a 2-level predictor:
Top level a local history table consisting of 1024 10-bit entries;
each 10-bit entry corresponds to the most recent 10 branch
outcomes for the entry. 10-bit history allows patterns 10
branches to be discovered and predicted.p
Next level Selected entry from the local history table is used to
index a table of 1K entries consisting a 3-bit saturating
counters, which provide the local prediction

T t l i 4K*2 4K*2 1K*10 1K*3 29K bit !
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Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)



% of predictions from local 
predictor in Tournament predictor in Tournament 

Prediction Scheme
0% 20% 40% 60% 80% 100%
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spice
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gcc
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li 69%li
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99%

Accuracy of Branch Prediction
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84%
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99%
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fpppp

doduc

Profile-based

98%

98%

77%
88%

li

2-bit counter
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Branch prediction accuracy
Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)



Accuracy v. Size (SPEC89)y ( )
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Need Address 
at Same Time as Predictionat Same Time as Prediction

Branch Target Buffer (BTB): Address of branch index to get prediction 
AND branch address (if taken)

N   h k f  b h h  i  ’    b h dd  (Fi  Note: must check for branch match now, since can’t use wrong branch address (Figure 
3.19, p. 262)

Branch PC Predicted PCPPC of inst
FETC truction

CH

=? Extra 
prediction state

bits
Yes: instruction is 
branch and use 

No: branch not 
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bits
predicted PC as 
next PC

No: branch not 
predicted, proceed normally

(Next PC = PC+4)



Special Case Return Addresses

Register Indirect branch hard to predict address
SPEC89 85% such branches for procedure return
Si  k di i li  f  d    Since stack discipline for procedures, save return 
address in small buffer that acts like a stack: 8 to 16 
entries has small miss rate
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Pitfall: Sometimes bigger and 
d   dumber is better

21264 uses tournament predictor (29 Kbits)
E l     l  b  d  h Earlier 21164 uses a simple 2-bit predictor with 
2K entries (or a total of 4 Kbits)
SPEC95 benchmarks, 21264 outperforms p

21264 avg. 11.5 mispredictions per 1000 instructions
21164 avg. 16.5 mispredictions per 1000 instructions

Reversed for transaction processing (TP) !p g ( )
21264 avg. 17 mispredictions per 1000 instructions
21164 avg. 15 mispredictions per 1000 instructions

TP code much larger & 21164 hold 2X branch TP code much larger & 21164 hold 2X branch 
predictions based on local behavior (2K vs. 1K 
local predictor in the 21264) 
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Warm-up effects and context-switching

In real life, applications are interrupted and some 
other program runs for a while (if only the OS)p g ( y )
This means the branch prediction is regularly trashed
Simple predictors re-learn fast

in 2-bit bimodal predictor, all executions of given branch update 
same 2 bits

Sophisticated predictors re-learn more slowly
for example, in (2,2) gselect predictor, prediction updates are 
spread across 4 BHTs

Selective predictor may choose fast learner predictor p y p
until better predictor warms up
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Dynamic Branch Prediction Summary

Prediction becoming important part of scalar execution
B h H  T bl  2 b  f  l  Branch History Table: 2 bits for loop accuracy

Saturating counter (bimodal) scheme handles highly-biased branches well
Some applications have highly dynamic branches

C l ti  R tl  t d b h  l t d ith t Correlation: Recently executed branches correlated with next 
branch.

Either different branches
Or different executions of same branchesOr different executions of same branches

Tournament Predictor: more resources to competitive solutions and 
pick between them
Branch Target Buffer: include branch address & predictionBranch Target Buffer: include branch address & prediction
Predicated Execution can reduce number of branches, number of 
mispredicted branches
Return address stack for prediction of indirect jump
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Return address stack for prediction of indirect jump



Branch prediction resources

Design tradeoffs for the Alpha EV8 Conditional Branch 
Predictor (André Seznec, Stephen Felix, Venkata 
Krishnan, Yiannakis Sazeides), )

SMT:  4 threads, wide-issue superscalar processor, 8-way issue, 
512 registers (cancelled June 2001 when Alpha dropped)
Paper: http://citeseer.ist.psu.edu/seznec02design.html
Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

Branch prediction in the Pentium family (Agner Fog)
Reverse engineering Pentium branch predictors using direct access to Reverse engineering Pentium branch predictors using direct access to 
BTB
http://www.x86.org/articles/branch/branchprediction.htm

Championship Branch Prediction Competition (CBP-1)  Championship Branch Prediction Competition (CBP-1), 
organised by the Journal of Instruction-level 
Parallelism

http://www jilp org/cbp/
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Getting CPI < 1: 
Issuing Multiple Instructions/Cycleg p y

Vector Processing: Explicit coding of independent loops 
as operations on large vectors of numbersas operations on large vectors of numbers

Multimedia instructions being added to many processors

Superscalar: varying no. instructions/cycle (1 to 8), 
s h dul d b  mpil   b  HW (T m sul )scheduled by compiler or by HW (Tomasulo)

IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

(Very) Long Instruction Words (V)LIW: ( y) g ( )
fixed number of instructions (4-16) scheduled by the 
compiler; put ops into wide templates (TBD)

Intel Architecture-64 (IA-64) 64-bit address( )
Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

Will discuss shortly

Anticipated success of multiple instructions lead to 
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Anticipated success of multiple instructions lead to 
Instructions Per Clock cycle (IPC) vs. CPI



Getting CPI < 1: Issuing
Multiple Instructions/CycleMultiple Instructions/Cycle

Superscalar MIPS: 2 instructions, 1 FP & 1 anything
Fetch 64 bits/clock cycle; Int on left  FP on right– Fetch 64-bits/clock cycle; Int on left, FP on right

– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStagesType PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int  instruction IF ID EX MEM WBInt. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WBFP instruction IF ID EX MEM WB
1 cycle load delay expands to 3 instructions in SS

instruction in right half can’t use it, nor instructions in next slot
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Multiple Issue Issues
issue packet: group of instructions from issue packet  group of instructions from 
fetch unit that could potentially issue in 1 
clock

If instruction causes structural hazard or a data If instruction causes structural hazard or a data 
hazard either due to earlier instruction in execution or 
to earlier instruction in issue packet, then instruction 
does not issue
0 t  N i t ti  i   l k l  f  N i I0 I1 I2 I30 to N instruction issues per clock cycle, for N-issue

Performing issue checks in 1 cycle could 
limit clock cycle time: O(n2-n) comparisons I2

I3

issue stage usually split and pipelined
1st stage decides how many instructions from within 
this packet can issue, 2nd stage examines hazards 
among selected instructions and those already been 

I0
I1

among selected instructions and those already been 
issued
higher branch penalties => prediction accuracy 
important
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Multiple Issue Challenges
Whil  I /FP li  i  i l  f  h  HW   CPI f 0 5 While Integer/FP split is simple for the HW, get CPI of 0.5 
only for programs with:

Exactly 50% FP operations AND No hazards
If more instructions issue at same time, greater difficulty 
of decode and issue:

Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 1 or 
2 i t ti   i  (N i  O(N2 N) i )2 instructions can issue; (N-issue ~O(N2-N) comparisons)
Register file: need 2x reads and 1x writes/cycle
Rename logic: must be able to rename same register multiple times in one 
cycle!  For instance, consider 4-way issue:cyc !  For nstanc , cons r way ssu
add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 ⇒ sub p22, p11, p4
lw  r1, 4(r4) lw  p23, 4(p22)
add r5, r1, r2 add p12, p23, p4add r5, r1, r2 add p12, p23, p4

Result buses: Need to complete multiple instructions/cycle
So, need multiple buses with associated matching logic at every 
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p g g y
reservation station.
Or, need multiple forwarding paths



Dynamic Scheduling in Superscalary g p
The easy way

How to issue two instructions and keep in-order How to issue two instructions and keep in-order 
instruction issue for Tomasulo?

Assume 1 integer + 1 floating point
1 T m l  nt l f  int  1 f  fl tin  p int1 Tomasulo control for integer, 1 for floating point

Issue 2X Clock Rate, so that issue remains in order
Only loads/stores might cause dependency between Only loads/stores might cause dependency between 
integer and FP issue:

Replace load reservation station with a load queue; 
operands must be read in the order they are fetchedp y
Load checks addresses in Store Queue to avoid RAW violation
Store checks addresses in Load Queue to avoid WAR,WAW
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Register renaming, virtual registers 
versus Reorder Buffersversus Reorder Buffers

Alternative to Reorder Buffer is a larger virtual set of 
registers and register renamingregisters and register renaming
Virtual registers hold both architecturally visible 
registers + temporary values

l  f  f d  ff  d  replace functions of reorder buffer and reservation station

Renaming process maps names of architectural 
registers to registers in virtual register setg g g

Changing subset of virtual registers contains architecturally visible 
registers

Simplifies instruction commit: mark register as no mp f mm m g
longer speculative, free register with old value
Adds 40-80 extra registers: Alpha, Pentium,…

Si  limit  n  in t ti n  in x ti n ( d ntil mmit)

Advanced Computer Architecture Chapter 3.126

Size limits no. instructions in execution (used until commit)



How much to speculate?

Speculation Pro: uncover events that would 
th i  t ll th  i li  ( h  i )otherwise stall the pipeline (cache misses)

Speculation Con: speculate costly if exceptional 
event occurs when speculation was incorrectp
Typical solution: speculation allows only low-cost 
exceptional events (1st-level cache miss)
When expensive exceptional event occurs  (2nd-When expensive exceptional event occurs, (2nd
level cache miss or TLB miss) processor waits until 
the instruction causing event is no longer 
speculative before handling the eventp g
Assuming single branch per cycle: aggressive 
designs may speculate across multiple branches!
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Limits to ILP

Conflicting studies of amountf g f m
Benchmarks (vectorized Fortran FP vs. integer C programs)
Hardware sophistication
Compiler sophistication

How much ILP is available using existing mechanisms 
with increasing HW budgets?
Do we need to invent new HW/SW mechanisms to keep Do we need to invent new HW/SW mechanisms to keep 
on processor performance curve?

Eg vector/SIMD instruction set extensions (SSE, Altivec etc)
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Limits to ILP
Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions p p p
3. Jump prediction – all jumps perfectly predicted 
2 & 3 => machine with perfect speculation & an 
unbounded buffer of instructions availableff f
4. Memory-address alias analysis – addresses are known 
& a store can be moved before a load provided 
addresses not equalq

Also: 
unlimited number of instructions issued/clock cycle; 
perfect caches;
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perfect caches;
1 cycle latency for all instructions (FP *,/);



Upper Limit to ILP: Ideal MachineUpper Limit to ILP: Ideal Machine
(H&P3ed Figure 3.35, page 242)
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More Realistic HW: Branch Impact
cf H&P3ed Figure 3.39, Page 248
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Program

Perfect Selective predictor Standard 2-bit Static None

ProfileBHT (512)TournamentPerfect No prediction



More Realistic HW: 
Renaming Register Impact
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H&P3ed Figure 3.42, Page 251
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Program
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More Realistic HW: 
Memory Address Alias Impact

45

50
49

45

49

45

y p
H&P3ed Figure 3.44, Page 252

Change  2000 instr window, 
64 instr issue  8K 2 level FP 4 45

30

35

40
64 instr issue, 8K 2 level 
Prediction, 256 renaming 
registers

FP: 4 - 45
(Fortran,
no heap)

15

20

25

15
16 16Integer: 4 - 9

PC

5

10

15
10

12

7 7
9

4 5 4 4
6 5

3
5

3 3 4 4

IP

Program

0

gcc espresso li fpppp doducd tomcatv

Perfect Global/stack Perfect Inspection None

Advanced Computer Architecture Chapter 3.133

Perfect Global/stack Perfect Inspection None

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.



Realistic HW for ‘00: Window Impact
(Fi  3 45  P  309)
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Limits to ILP - resources

Limits of Control Flow on Parallelism .
Monica S. Lam, Robert P. Wilson. 
19th ISCA, May 1992, pages 19-21. 9 , M y 99 , p g 9 .
Limits of Instruction-Level Parallelism .
David W. Wall. 
DEC WRL Research Report 93/6  Nov  1993 DEC-WRL Research Report 93/6, Nov. 1993 
The Distribution of Instruction-Level and Machine 
Parallelism and Its Effect on Performance .
N  P  J  Norman P. Jouppi. 
IEEE Transactions on Computers, Dec. 1989. 
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How to Exceed ILP Limits of this study?

WAR d WAW h d  th h  li i t d WAR and WAW hazards through memory: eliminated 
WAW and WAR hazards through register renaming, 
but not in memory usage
Unnecessary dependences (compiler not unrolling 
loops so iteration variable dependence)
Overcoming the data flow limit: value prediction  Overcoming the data flow limit: value prediction, 
predicting values and speculating on prediction

Address value prediction and speculation predicts addresses and 
speculates by reordering loads and stores; could provide better speculates by reordering loads and stores; could provide better 
aliasing analysis, only need predict if addresses =

Value Locality and Load Value Prediction.  Mikko H. Lipasti, Christopher B. 
Wilkerson John Paul Shen Slides by Kundan Nepal:
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Wilkerson, John Paul Shen.  Slides by Kundan Nepal:
http://www.lems.brown.edu/~iris/en291s9-04/lectures/kundanvalue_pred.pdf



How to Exceed ILP Limits of this study?

V t  i t tiVector instructions
Next section of this Chapter

Simultaneous Multi-threading
Later section of this Chapter

Multiprocessors
Later ChapterLat r hapt r
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Alternative Model:
Vector ProcessingVector Processing

Vector processors have high-level operations that work on 
linear arrays of numbers: "vectors"

SCALAR VECTOR

y

(1 operation) (N operations)

+

r1 r2 v1 v2

++
r3 v3 vector

length
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add r3, r1, r2 add.vv v3, v1, v2



Properties of Vector Processorsp

Each result independent of previous result
 l  l  l    d d=> long pipeline, compiler ensures no dependencies

=> high clock rate
Vector instructions access memory with known patternVector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over ­ 64 elements
=> no (data) caches required! (Do use instruction cache) no (data) caches required! (Do use instruction cache)
Reduces branches and branch problems in pipelines
Single vector instruction implies lots of work (­ loop)g p p

=> fewer instruction fetches
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Operation & Instruction Count: 
RISC v. Vector Processor

Spec92fp   Operations (Millions) Instructions (M)
Program     RISC  Vector      R / V      RISC    Vector         R / V

RISC v. Vector Processor
(from F. Quintana, U. Barcelona.)

Program     RISC  Vector      R / V      RISC    Vector         R / V
swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71xhydro2d 58 40 1.4x 58 0.8 71x
nasa7 69 41 1.7x 69 2.2 31x
su2cor 51 35 1.4x 51 1.8 29x
tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x
mdljdp2 32 52 0.6x 32 15.8 2x
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Vector reduces ops by 1.2X, instructions by 20X



Styles of Vector Architectures

 t   ll  t  ti  memory-memory vector processors: all  vector operations 
are memory to memory
vector-register processors: all vector operations between g p p
vector registers (except load and store)

Vector equivalent of load-store architectures
Includes all vector machines since late 1980s: m
Cray, Convex, Fujitsu, Hitachi, NEC
We assume vector-register for rest of lectures
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C  f V  PComponents of Vector Processor
Vector Register: fixed length bank holding a single vector

has at least 2 read and 1 write ports
typically 8-32 vector registers, each holding 64-128 64-bit elements

Vector Functional Units (FUs): fully pipelined, start new F (F ) f y p p ,
operation every clock

typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), integer 
add, logical,  shift; may have multiple of same unit

Vector Load-Store Units (LSUs): fully pipelined unit to 
load or store a vector; may have multiple LSUs
Scalar registers: single element for FP scalar or addressScalar registers: single element for FP scalar or address
Cross-bar to connect FUs , LSUs, registers
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“DLXV” Vector Instructions

Instr. Operands Operation Comment
V1 V2 V3   ADDV V1,V2,V3 V1=V2+V3 vector + vector

ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
MULTV V1 V2 V3 V1=V2xV3 vector x vectorMULTV V1,V2,V3 V1=V2xV3 vector x vector
MULSV V1,F0,V2 V1=F0xV2 scalar x vector
LV V1,R1 V1=M[R1..R1+63] load, stride=1LV V1,R1 V1 M[R1..R1 63] load, stride 1
LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
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MOV VM,R1 Vec. Mask = R1 set vector mask



Memory operations

Load/store operations move groups of data between 
registers and memory
Three types of addressingThree types of addressing

Unit stride
Fastest

Non-unit (constant) strideNon-unit (constant) stride
Indexed (gather-scatter)

Vector equivalent of register indirect
Good for sparse arrays of dataGood for sparse arrays of data
Increases number of programs that vectorize

Advanced Computer Architecture Chapter 3.144
32



DAXPY (Y = a * X + Y)
LD     F0,a ;load scalar a
LV     V1,Rx ;load vector X

Assuming vectors X, Y 
are length 64

S l V t MULTS V2,F0,V1 ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV V4,V2,V3 ;add

Scalar vs. Vector

LD F0,a
ADDI R4,Rx,#512 ;last address to 

load 
l  LD F2  0(R )   l d X(i)

SV Ry,V4 ;store the result

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)loop: LD F2, 0(Rx)   ;load X(i)

MULTD F2,F0,F2 ;a*X(i)
LD F4, 0(Ry) ;load Y(i)
ADDD F4 F2  F4 ;a*X(i) + Y(i)

321 (1 5 64) ops (1.8X)
578 (2+9*64) vs.

6 instructions (96X)
ADDD F4,F2, F4 ;a X(i) + Y(i)
SD F4 ,0(Ry) ;store into Y(i)
ADDI Rx,Rx,#8 ;increment index to X
ADDI Ry,Ry,#8 ;increment index to Y

64 operation vectors +       
no loop overhead
also 64X fewer pipeline
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ADDI Ry,Ry,#8 ;increment index to Y
SUB R20,R4,Rx ;compute bound
BNZ R20,loop ;check if done

also 64X fewer pipeline 
hazards



NEC SX-8

35 GFLOPs peak 
per CPU
Eg University of Eg University of 
Stuttgart 
installation:

P k Peak 
Performance 12 
TFlops
72 nodes, 8 CPUs ,
per node
Memory 9.2 TB
Disk 160 TB shared 
di k  72 * 140 GB disk, 72 * 140 GB 
local 
16GB/s node-to-
node interconnect
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Vector Length

What to do when vector length is not exactly 64?   
vector-length register (VLR) controls the length of 
any vector operation  including a vector load or store  any vector operation, including a vector load or store. 
(cannot be > the length of vector registers)

do 10 i = 1, n
10 Y(i) = a * X(i) + Y(i)

Don't know n until runtime! 
n > Max  Vector Length (MVL)?n > Max. Vector Length (MVL)?
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Strip Mining

Suppose Vector Length > Max. Vector Length (MVL)?pp g g ( )
Strip mining: generation of code such that each vector 
operation is done for a size Š to the MVL
1 t l  d  h t i  (  d MVL)  t VL  MVL1st loop do short piece (n mod MVL), rest VL = MVL

low = 1
VL = (n mod MVL)  /*find the odd size piece*/L ( m L) / f p /
do 1 j = 0,(n / MVL)  /*outer loop*/
do 10 i = low,low+VL-1  /*runs for length VL*/

Y(i) = a*X(i) + Y(i)  /*main operation*/Y(i) = a X(i) + Y(i)  / main operation /
10 continue

low = low+VL  /*start of next vector*/
VL = MVL  /*reset the length to max*/
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VL = MVL  / reset the length to max /
1 continue



Common Vector Metrics

R∞: MFLOPS rate on an infinite-length vector
vector “speed of light”
R l pr bl ms d  n t h v  unlimit d v ct r l n ths  nd th  st rt up Real problems do not have unlimited vector lengths, and the start-up 
penalties encountered in real problems will be larger 
(Rn is the MFLOPS rate for a vector of length n)

NN1/2: The vector length needed to reach one-half of R 
a good measure of the impact of start-up

N  Th  t  l th d d t  k  t  d  f t  NV: The vector length needed to make vector mode faster 
than scalar mode 

measures both start-up and speed of scalars relative to vectors, quality of 
i  f l  i    iconnection of scalar unit to vector unit
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Vector Stride

Suppose adjacent elements not sequential in memory
do 10 i = 1,100,

do 10 j = 1,100
A(i,j) = 0.0
do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)
E h       d  (  b  b )Either B or C accesses not adjacent (800 bytes between)
stride: distance separating elements that are to be merged 
into a single vector (caches do unit stride) into a single vector (caches do unit stride) 
=> LVWS (load vector with stride) instruction
Strides => can cause bank conflicts 
(e g  stride = 32 and 16 banks)
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(e.g., stride = 32 and 16 banks)
Think of address per vector element



Vector Opt #1: ChainingSuppose:
MULV V1 V2 V3MULV V1,V2,V3
ADDV V4,V1,V5 ; separate convoy?
chaining: vector register (V1) is not as a single entity but g g (V ) g y u
as a group of individual registers, then pipeline forwarding 
can work on individual elements of a vector
Flexible chaining: allow vector to chain to any other active Flexible chaining: allow vector to chain to any other active 
vector operation => more read/write port
As long as enough HW, increases convoy size

MULV ADDV
64 647 6 Total: 7+64+6+64=141

Pipeline fill

MULV
647
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MULV

ADDV
646 Total: 7+6+64 = 77

Pipeline fill



Vector Opt #2: Conditional Execution
Suppose:

do 100 i = 1, 64
if (A(i) .ne. 0) then

A(i) = A(i) – B(i)
difendif

100 continue
vector-mask control takes a Boolean vector: when vector-vector-mask control takes a Boolean vector: when vector-
mask register is loaded from vector test, vector 
instructions operate only on vector elements whose 
corresponding entries in the vector-mask register are 1corresponding entries in the vector-mask register are 1.
Still requires clock even if result not stored; if still 
performs operation, what about divide by 0?
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Vector Opt #3: Sparse Matrices
Suppose:

do 100 i = 1,n
100 ( (i)) ( (i)) ( (i))100 A(K(i)) = A(K(i)) + C(M(i))

gather (LVI) operation takes an index vector and fetches 
the vector whose elements are at the addresses given by m g y
adding a base address to the offsets given in the index 
vector => a nonsparse vector in a vector register 
After these elements are operated on in dense form   the After these elements are operated on in dense form,  the 
sparse vector can be stored in expanded form by a scatter
store (SVI), using the same index vector
C '  b  d  b  l   '  k  K  l  Can't be done by compiler since can't know Ki elements 
distinct, no dependencies; by compiler directive
Use CVI to create index 0, 1xm, 2xm, ..., 63xm
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Use CVI to create index 0, 1xm, 2xm, ..., 63xm



Vector for Multimedia?
Intel MMX/SSE instruction set extensions

Similar extensions on other processor families, eg PowerPC AltiVec
Idea: pack multiple short-word operands into one long register

Eg 128-bit register
2 64 bit d bl2 64-bit doubles
4 32-bit floats or ints
8 16-bit ints or fixed-point
16 8-bit ints 
Often with media-specific instructions eg saturated arithmetic

++

Claim: overall speedup 1.5 to 2X for 2D/3D graphics, audio, video, 
speech, comm., ...

Initially hand-coded, accessible using special intrinsic functions
Delivered via libraries such as the Intel Performance Primitives (IPP)
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Delivered via libraries such as the Intel Performance Primitives (IPP)
Some support from compilers such as Intel’s, but awkward constraints (eg 
alignment of operands) 



Vector Pitfalls

Pitfall: Concentrating on peak performance and ignoring start-up 
h d  N (l th f t  th  l )  100!overhead: NV (length faster than scalar) > 100!

Pitfall: Increasing vector performance, without comparable increases in 
scalar performance 
(Amdahl's Law)( m )

failure of Cray competitor from his former company
Pitfall: Good processor vector performance without providing good 
memory bandwidth

MMX?MMX?
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Vector Advantages
Easy to get high performance; N operations:y g g p p

are independent
use same functional unit
access disjoint registersj g
access registers in same order as previous instructions
access contiguous memory words or known pattern
can exploit large memory bandwidthcan exploit large memory bandwidth
hide memory latency (and any other latency)

Scalable (get higher performance as more HW resources 
available)available)
Compact: Describe N operations with 1 short instruction 
(v. VLIW)
Predictable (real-time) performance vs. statistical 
performance (cache)
Multimedia ready: choose N * 64b  2N * 32b  4N * 16b  
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Multimedia ready: choose N  64b, 2N  32b, 4N  16b, 
8N * 8b
Mature, developed compiler technology



Vector Summary

Alternate model accommodates long memory latency  Alternate model accommodates long memory latency, 
doesn’t rely on caches as does Out-Of-Order, 
superscalar/VLIW designs
M h i  f  h d   f l i i  Much easier for hardware: more powerful instructions, 
more predictable memory accesses, fewer hazards, fewer 
branches, fewer mispredicted branches,  ...
What % of computation is vectorizable? 
Is vector a good match to new apps such as multimedia, 
DSP?DSP?
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Beyond ILP: Multithreading, Simultaneous 
Multithreading (SMT)g ( )

Cray/Tera MTA
http://www.cray.com/products/system
s/mta/  s/mta/, 
http://www.utc.edu/~jdumas/cs460/pa
persfa01/craymta/

Advanced Computer Architecture Chapter 3.158
(Source: Asanovic http://www.cag.lcs.mit.edu/6.893-f2000/lectures/l06-tera.pdf)
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SMT

Alpha 21464Alpha 21464
One CPU with 
4 Thread 
Processing 
Unit  (TPU )Units (TPUs)
“6% area 
overhead 
over single-
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g
thread 4-
issue CPU”



SMT 
performancep f

Alpha 21464

Intel Pentium 4 
with 
hyperthreading:yp g
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http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf



SMT in the Intel Atom

Intel’s bid to 
steal back 
some of the m f
low-power 
market for 
IA-32 and IA 3  and 
Windows  

dIn-order
2-way SMT
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Conclusion

1985-2000: 1000X performance 
Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

“industry been following a roadmap of ideas known in 1985 
to exploit Instruction Level Parallelism and (real) Moore’s p m ( )
Law to get 1.55X/year” (John Hennessy)

Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order 
execution, …

ILP limits: To make performance progress in future need 
to have explicit parallelism from programmer vs. implicit 
parallelism of ILP exploited by compiler  HW?parallelism of ILP exploited by compiler, HW?
Impact on you: if you care about performance, 
better think about explicitly parallel algorithms 
vs  rely on ILP?
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vs. rely on ILP?


