
332
Advanced Computer Architecture

Chapter 4

Compiler issues: dependence analysis,
vectorisation, automatic parallelisationvectorisation, automatic parallelisation

February 2009February 009
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd and 4th

eds) and on the lecture slides of David Patterson and John

Advanced Computer Architecture Chapter 4.1

eds), and on the lecture slides of David Patterson and John
Kubiatowicz’s Berkeley course

Background reading
The material for this part of the course is introduced only very briefly

in Hennessy and Patterson (section 4.4 pp319). A good textbook
which covers it properly is

• Michael Wolfe. High Performance Compilers for
Parallel Computing. Addison Wesley, 1996.

Much of the presentation is taken from the following research paper:

• U. Banerjee. Unimodular transformations of double
loops. In Proceedings of the Third Workshop on p . g f p
Programming Languages and Compilers for Parallel
Computing, Irvine, CA. Pitman/MIT Press, 1990.

Advanced Computer Architecture Chapter 4.2

Banerjee's paper gives a simpified account of the theory in the context
only of perfect doubly-nested loops with well-known dependences.

Introduction
• In this segment of the course we consider compilation issues g p

for loops involving arrays:
• How execution order of a loop is constrained,
• How a compiler can extract dependence information, and
• How this can be used to optimise a program.

Understanding and transforming execution order can help exploit
architectural features:

• Pipelined, superscalar and VLIW processors
• Systems which rely heavily on caches
• Processors with special instructions for vectors (SSE,

AltiV)

Advanced Computer Architecture Chapter 4.3

AltiVec)
• Multiprocessors, multicore, and co-processors/accelerators

Restructuring

• Here we consider a special kind of optimisation, which
is currently performed only by specialist compilers -
“restructuring compilers".

Conventional optimisations must also be performed
Th diff i thiThe difference is this:

Conventional optimisations reduce the amount
f k th t h t d t tiof work the computer has to do at run-time

Restructuring aims to do the work in an
d h h h h

Advanced Computer Architecture Chapter 4.4

order which suits the target architecture
better

/*
* mm: Multiply A by B leaving the We will begin by looking at

Motivation: an example
p y y g

* result in C.
* The result matrix is assumed
* to be initialised to zero

We will begin by looking at
double-precision floating
point matrix multiply

* to be initialised to zero.
*/

void mm1(double A[N][N],

We will investigate the
performance of various
versions in order to ([][]

double B[N][N],
double C[N][N])

{

versions in order to
determine what
transformations a compiler
h ld ppl{

int i, j, k;
for (i = 0; i < N; i++)

j
C A B

j

should apply

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
C[i][j] += A[i][k] * B[k][j];

= ×
i

j

k
ki j

Advanced Computer Architecture Chapter 4.5

C[i][j] += A[i][k] B[k][j];
}

Outside

Let’s experiment with a perfectly ordinary laptop:

Outs
Inside: Pentium 4 processor

p p y y p p
• The experiments were performed on a Toshiba

Satellite Pro 6100 laptop

Advanced Computer Architecture Chapter 4.6

• This machine has a 1.6GHz Intel Pentium 4 Mobile
processor (we’ll look at some other processors shortly)

T21: www.howstuffworks.com, die photo: http://www.sandpile.org/impl/p3.htm

Memory system
Level 1

12K instructions
512KBytes

Pentium 4

Level 1
Instruction

cache Level 2
Cache Main

8KBytesProcessor (instruction
and data)

memory
Level 1
Data

h

8KBytes

8
words

8
words

• L1 Instruction (“trace”) cache: 12K microinstructions

cache
~1.7ns ~20ns ~212ns

words

• L1 Instruction (trace) cache: 12K microinstructions
• L1 Data cache: 8 KB, 4-way, 64 bytes/line, non-blocking, dual-

ported, write-through, pseudo-LRU
L2 ifi d h 512 KB 2 W 64 B t /Li bl ki• L2 unified cache: 512 KB, 2-Way, 64 Byte/Line, non-blocking

Suppose we’re interested in quite big matrices, N=1088

Advanced Computer Architecture Chapter 4.7

pp q g
• The matrix occupies 10882x8 = 9.5MBytes

Each row of the matrix occupies 1088x8 = 8.5KBytes.

Performance

For N=1088, the initial version runs in 130 seconds.

• The matrix multiplication takes 10883 steps, each
involving two floating-point operations, an add and a
multiply i e 2 6x109 “FLOPs”multiply, i.e. 2.6x109 FLOPs
This loop achieves a computation rate of
2600/130=19 8 MFLOPs2600/130=19.8 MFLOPs.

That is one floating-point operation completed every 80 That is, one floating-point operation completed every 80
clock cycles (the chip runs at 1.6GHz)
How are we going to get value for money?

Advanced Computer Architecture Chapter 4.8

g g g y

Interchange loops

for (i = 0; i < N; i++)
for (k = 0; k < N; k++)

for (j = 0; j < N; j++)
C[i][j] += A[i][k] * B[k][j];

}
• 9.6 seconds (267 MFLOPS).
• Why is this such a good idea?
• How might a compiler perform this transformation?p p
• Does it still give the right output?
• Can we do better still?

Advanced Computer Architecture Chapter 4.9

What was going on?
C A B

+= ×
i

j

k
k for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

i j

IJK variant computes each element of result matrix C

(; ;)
C[i][j]+=A[i][k]*B[k][j]

IJK variant computes each element of result matrix C
one at a time, as inner product of row of A and column
of B

Traverses A in row-major order B in column-majorTraverses A in row-major order, B in column-major

+= ×
j

j for (i=0; i<N; i++)
for (k=0; k<N; k++)
for (j=0; j<N; j++)

i
ki k

C[i][j]+=A[i][k]*B[k][j]

IKJ variant accumulates partial inner product into a

Advanced Computer Architecture Chapter 4.10

IKJ variant accumulates partial inner product into a
row of result matrix C, using element of A and row of B

Traverses C and B in row-major order

The price of naivety

Matrix Multiplication Speedup (IKJ/IJK)

10
12

r
IJ

K

AMD PIII

6
8

10

IK
J

ov
er

P4 Alpha

Sun

2
4
6

pe
ed

up
:

0
32 64 128 256 512 1024 2048

Problem Size

Sp

Problem Size

• Relative speedup of IKJ version over IJK version (per
hi bl i)

Advanced Computer Architecture Chapter 4.11

machine, per problem size)
• On large problems, the IKJ variant is 2-10 times faster

Blocking (a.k.a. “tiling")
Idea: reorder execution of loop nest so data isn't evicted from cache before p
it's needed again.
Blocking is a combination of two transformations: “strip mining", followed by
interchange; we start with

for (i = 0; i < N; i++)
for (k = 0; k < N; k++){
r = A[i][k];
for (j = 0; j < N; j++)
C[i][j] += r * B[k][j]; }

St i i th k d j lStrip mine the k and j loops:
for (i = 0; i < N; i++)

for (kk = 0; kk < N; kk += S)
for (k = kk; k < min(kk+S,N); k++){
r = A[i][k];
for (jj = 0; jj < N; jj += S)

Advanced Computer Architecture Chapter 4.12

(jj jj jj)
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];

}

Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}
The inner i,k,j loops perform a multiplication of a pair of partial j p p p p p
matrices.
S is chosen so that a S x S submatrix of B and a row of length
S of C can fit in the cache.

Advanced Computer Architecture Chapter 4.13

What is the right value for S?

Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S j S

×
i i

j S k S j S
k
S

+=

Advanced Computer Architecture Chapter 4.14

.

NN
C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S]

Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S j S

×
i i

j S k S j S
k
S

+=

Advanced Computer Architecture Chapter 4.15

.

NN
C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for next jj

Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S j S

×
i i

j S k S j S
k
S

+=

Advanced Computer Architecture Chapter 4.16

.

NN
C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for last jj

Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S

×
i i

j S k S
j S

k
S+=

Advanced Computer Architecture Chapter 4.17

.

NN
for (jj=0:N:S) C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for next kk

Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S

×
i i

j S k S

j S
k+=

Advanced Computer Architecture Chapter 4.18

.

NN
S

for (jj=0:N:S) C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for next kk

Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S)

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++)
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++)
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S

×
i i

j S k S

j S+=

Advanced Computer Architecture Chapter 4.19

.

NN

j S
k
S

for (jj=0:N:S) C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for last kk

14 400

Performance of blocked version: 1.6GHz Pentium 4M (N=1088)

12

300

350

8

10

200

250

300

4

6
150

200

2

4

50

100

0

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

0

Seconds MFLOPs

Advanced Computer Architecture Chapter 4.20

Problem size 1088 1.6GHz Pentium 4 Mobile (gcc3.4.4)

Optimum blocking factor is 144, where we reach 341 MFLOPs

Performance of blocked version: Thinkpad T60 (N=1003)

1.8 GHz Intel Core Duo (Lenovo Thinkpad T60) (gcc3.4.4)

Optimum blocking factor is 48, where we reach 866 MFLOPs
A idi “ i ” d ’ h l

Advanced Computer Architecture Chapter 4.21

Avoiding “min” operator doesn’t help.
On battery power, clock rate drops to 987MHz, so only 469 MFLOPS (48 still
best). In direct proportion to clock rate reduction.

Performance of blocked version: Pentium 3 (N=512)
Blocking Execution MFLOPS
factor time
8 3.815 70.4
16 2.784 96.4
32 2.283 117.6
40 2.193 122.4
48 2 253 119 148 2.253 119.1
56 2.473 108.5
64 3.404 78.9
72 5.608 47.9
80 5.578 48.1
88 5 808 46 288 5.808 46.2
96 5.928 45.3
104 6.309 42.5 The min operators are a performance hit; if we

Advanced Computer Architecture Chapter 4.22

112 5.778 46.5 choose a good blocking factor which divides the
problem size exactly...

Blocksize 32: 2 013 seconds 133 4 MFLOP/s
Thinkpad T21 800MHz Pentium III (VS6.0)

Performance of blocked version: Opteron (N=1088)

Problem size 1088 2.4 GHz AMD Opteron (gcc3.4.3)
Optimum blocking factor is 64, where we reach 692.4 MFLOPs
Si 64 di id 1088 tl id “ i ” t i i 833 6 MFLOP

Advanced Computer Architecture Chapter 4.23

Since 64 divides 1088 exactly, we can avoid “min” operator, giving 833.6 MFLOPs
Using Intel compiler (-Wl,-melf_i386) this reaches 998 MFLOPs
Using AMD’s AMCL library this machine can reach ~4GFLOPS… there is a lot
m re u c n d t impr ve m trix multipl perf rm nce!

Impact….

On Toshiba Satellite Pro 6100 laptop (1.6GHz Pentium 4M):
Original version: 130 seconds (19.8 MFLOP/s)
Blocked version: 7.55 seconds (341 MFLOP/s)

We started with a “good" optimising compiler!
Factor of 17 performance improvement.
No reduction in amount of arithmetic performed.

• (Using the Intel library or the ATLAS library does even (Using the Intel library or the ATLAS library does even
better)

Advanced Computer Architecture Chapter 4.24

How?Dependence
Define:Define:

IN(S): set of memory locns which might be read by some execn of
statement S
OUT(S): set of memory locns which might be written by some
execn of statement S

Reordering is constrained by dependences;
There are four types:
• Data (“true") dependence: S1 δ S2

(“S1 must write something
before S2 can read it”) • Data (true) dependence: S1 δ S2

• OUT(S1) ∩ IN(S2)
Anti dependence: S1 S2

δ (“S1 must read something
before S2 overwrites it”)
(“If S1 and S2 might both p

• IN(S1) ∩ OUT(S2)
• Output dependence: S1 δo S2

(If S1 and S2 might both
write to a location, S2 must

write after S1”)

Advanced Computer Architecture Chapter 4.25

• OUT(S1) ∩ OUT(S2)

• Control dependence: S1 δc S2

How?Dependence
Define:

IN(S) t f l hi h i ht b d b f IN(S): set of memory locns which might be read by some execn of
statement S
OUT(S): set of memory locns which might be written by some
execn of statement Sexecn of statement S

Reordering is constrained by dependences;
There are four types:There are four types
• Data (“true") dependence: S1 δ S2

• OUT(S1) ∩ IN(S2)
 d d 1 2 (“S1 must read something

(“S1 must write something
before S2 can read it”)

Anti dependence: S1 S2
• IN(S1) ∩ OUT(S2)

• Output dependence: S1 δo S2

δ (S1 must read something
before S2 overwrites it”)
(“If S1 and S2 might both
it t l ti S2 t p p

• OUT(S1) ∩ OUT(S2)

• Control dependence: S1 δc S2

write to a location, S2 must
write after S1”)

Advanced Computer Architecture Chapter 4.26

These are static analogues of the dynamic RAW, WAR, WAW and
control hazards which have to be considered in processor
architecture

Loop-carried dependencesConsider:

S1 : A[0] := 0
for I = 1 to 8for I = 1 to 8

S2 : A[I] := A[I-1] + B[I]

What does this loop do?

1 1 1 1 1 1 1 1B:

0A:

Advanced Computer Architecture Chapter 4.27

Loop-carried dependencesConsider:
0 B[1]

S1 : A[0] := 0
for I = 1 to 8

+
+

0 B[1]
B[2]
B[3]for I = 1 to 8

S2 : A[I] := A[I-1] + B[I] +
+

B[3]
B[4]
B[5]

What does this loop do?

+
+
+

B[5]
B[6]

1 1 1 1 1 1 1 1B:

0 1 2A:

+
+

B[7]
B[8]

In this case, there is a data dependence
This is a loop-carried dependence - the dependence

 l i i

+

Advanced Computer Architecture Chapter 4.28

p p p
spans a loop iteration
This loop is inherently sequential

Loop-carried dependencesConsider:

0 B[1]
S1 : A[0] := 0

for I = 1 to 8
+
+

0 B[1]
B[2]
B[3]S2 : A[I] := A[I-1] + B[I]

L i d

+
+

B[3]
B[4]
B[5]

Dependences cross, from
Loop carried:

S21 : A[1] := A[0] + B[1]
S22 : A[2] := A[1] + B[2]

+
+
+

B[5]
B[6]

one iteration to next

S2 : A[2] := A[1] + B[2]
S23 : A[3] := A[2] + B[3]
S24 : A[4] := A[3] + B[4]

+
+

B[7]
B[8][] [] []

S25 : A[5] := A[4] + B[5]
S26 : A[6] := A[5] + B[6]

+

Advanced Computer Architecture Chapter 4.29

S27 : A[7] := A[6] + B[7]
S28 : A[8] := A[7] + B[8]

What is a loop-carried
dependence?

1 2
p

• Consider two iterations I1 and I2

• A dependence occurs between two statements Sp and Sq (not
necessarily distinct), when an assignment in Sp

I1 refers to the y g p
same location as a use in Sq

I2

In the example,

• The assignment is "A[I1] := ...”
• The use is " := A[I -1] ”• The use is ... := A[I2-1] ...
• These refer to the same location when I1 = I2-1
• Thus I1 < I2, ie the assignment is in an earlier iteration

N
Advanced Computer Architecture Chapter 4.30

Notation: S2 δ< S2

Definition: The dependence equation
A dependence occurs A dependence occurs
• between two statements Sp and Sq (not necessarily distinct),

• when there exists a pair of loop iterations I1 and I2,

• such that a memory reference in Sp in I1 may refer to the same location
as a memory reference in Sq in I2.

• This might occur if Sp and Sq refer to some common array A

• Suppose Sp refers to A[φp(I)]
(φp(I) is some subscript

expression involving I)pp p f [φp()]
• Suppose Sq refers to A[φq(I)]

expression involving I)

• A dependence of some kind occurs between Sp and Sq if there exists a
solution to the equation

(1) (I2)

Advanced Computer Architecture Chapter 4.31

φp(I1) = φq(I2) • for integer values of I1 and I2 lying
within the loop bounds

Types of dependence
If a solution to the dependence equation exists, a dependence of
some kind occurs

The dependence type depends on what solutions exist

• The solutions consist of a set of pairs (I1,I2)

• We would appear to have a data dependence if

A[φp(I)] є OUT(Sp)A[φp(I)] є OUT(Sp)
and

A[φq(I)] є IN(Sq) q q

• But we only really have a data dependence if the assignments
precede the uses, ie

Advanced Computer Architecture Chapter 4.32

• Sp δ< Sq

• if, for each solution pair (I1,I2), I1 < I2

Dependence versus anti-dependence
• If the uses precede the assignments, we actually have an anti-f u p g m , w u y

dependence, ie

if, for each solution pair (I1,I2), I1 > I2

• If there are some solution pairs (I1,I2) with I1 < I2 and some with I1 >
I2, we write

If f ll l ti i (I1 I2) I1 I2 th d d ithi• If, for all solution pairs (I1,I2), I1 = I2, there are dependences within
an iteration of the loop, but there are no loop-carried dependences:

Advanced Computer Architecture Chapter 4.33

=

Dependence distance
In many common examples, the set of solution pairs is characterised easily:

• Definition: dependence distance
• If, for all solution pairs (I1, I2),

I1 = I2 - k
then the dependence distance is k

• For example in the loop we considered earlier,

We find that S2 δ< S2 with dependence distance 1.

• ((of course there are many cases where the difference is not constant
and so the dependence cannot be summarised this way))

Advanced Computer Architecture Chapter 4.34

and so the dependence cannot be summarised this way)).

Reuse distance
When optimising for cache performance, it is sometimes useful to
consider the re-use relationship,

IN(S) ∩ IN(S)• IN(S1) ∩ IN(S2)

• Here there is no dependence - it doesn't matter which read
occurs firstoccurs first

• Nonetheless, cache performance can be improved by minimising
the reuse distance
Th di t i l l t d ti ll th The reuse distance is calculated essentially the same way
Eg

for I = 5 to 100f
S1: B[I] := A[I] * 2
S2: C[I] := A[I-5] * 10

 h l d h d

Advanced Computer Architecture Chapter 4.35

Here we have a loop-carried reuse with distance 5

Nested loops

Up to now we have looked at single loops
Now let’s generalise to loop “nests”
We begin by considering a very common dependence
pattern, called the “wavefront”:

Dependence structure?

Advanced Computer Architecture Chapter 4.36

Dependence structure?

System of dependence equations
Consider the dependence equations for this loop nest:

There are two potential dependences arising from the three references to A, so
tw systems f dependence equati ns t s lve:two systems of dependence equations to solve:

Advanced Computer Architecture Chapter 4.37

• The same loop: Iteration space graph

• For humans the easy way to understand this loop nest is
to draw the iteration space graph showing the iteration-to draw the iteration space graph showing the iteration
to-iteration dependences:

Advanced Computer Architecture Chapter 4.38

The inner loop is not vectorisable since there is a dependence chain
linking successive iterations.

(to use a vector instruction need to be able to operate on each element of the (to use a vector instruction, need to be able to operate on each element of the
vector in parallel)

• Similarly, the outer loop is not parallel
Thi l i i t h bl th t t b tt l ft t i ht • This loop is interchangeable: the top-to-bottom, left-to-right
execution order is also valid since all dependence constraints (as shown
by the arrows) are still satisfied.

Advanced Computer Architecture Chapter 4.39

• Interchanging the loop does not improve vectorisability or
parallelisability

The inner loop is not vectorisable since there is a dependence chain
linking successive iterations.

(to use a vector instruction need to be able to operate on each element of the (to use a vector instruction, need to be able to operate on each element of the
vector in parallel)

• Similarly, the outer loop is not parallel
Thi l i i t h bl th t t b tt l ft t i ht • This loop is interchangeable: the top-to-bottom, left-to-right
execution order is also valid since all dependence constraints (as shown
by the arrows) are still satisfied.

Advanced Computer Architecture Chapter 4.40

• Interchanging the loop does not improve vectorisability or
parallelisability

The inner loop is not vectorisable since there is a dependence chain
linking successive iterations.

(to use a vector instruction need to be able to operate on each element of the (to use a vector instruction, need to be able to operate on each element of the
vector in parallel)

• Similarly, the outer loop is not parallel
Thi l i i t h bl th t t b tt l ft t i ht • This loop is interchangeable: the top-to-bottom, left-to-right
execution order is also valid since all dependence constraints (as shown
by the arrows) are still satisfied.

Advanced Computer Architecture Chapter 4.41

• Interchanging the loop does not improve vectorisability or
parallelisability

Interchange: counter-example

Advanced Computer Architecture Chapter 4.42

Interchange: counter-example

Advanced Computer Architecture Chapter 4.43

Interchange: counter-example

B f Before
interchange

Advanced Computer Architecture Chapter 4.44

Interchange: counter-example

Aft After
interchange:

New
traversal
order
crosses
d d

Advanced Computer Architecture Chapter 4.45

dependence
arrows
backwards

Interchange: condition

• A loop is interchangeable if all dependence constraints
(as shown by the arrows) are still satisfied by the
top to bottom left to right execution order top-to-bottom, left-to-right execution order

• How can you tell whether a loop can be interchanged?

Look at it's dependence direction vectors:
Is there a dependence direction vector with the Is there a dependence direction vector with the
form (<,>) ?

• ie there is a dependence distance vector (k1,k2) with
k1>0 and k2<0 ?

• If so, interchange would be invalid

Advanced Computer Architecture Chapter 4.46

Because the arrows would be traversed backwards
All other dependence directions are OK.

SkewingConsider this variation on the wavefront loop:

• The inner loop's control variable runs from k1 to k1+3.
• The iteration space of this loop has 42 iterations just like

the original loop.
• If we draw the iteration space with each iteration SK1,K2

at coordinate position (K1,K2), it is skewed to form a
lozenge shape:lozenge shape:

This loop
performs the

Advanced Computer Architecture Chapter 4.47

performs the
same computation
as the original.

Skewing preserves semantics
To see that this loop performs the same computation, lets work out
its dependence structure.
First label each iteration with the element of A to which it assigns:

The loop body is

Advanced Computer Architecture Chapter 4.48

p y
A[k1,k2-k1] := A[k1-1,k2-k1]+A[k1,k2-k1-1]

• E.g. iteration S23 does:

Thus the dependence structure of the skewed loop is
shown by marking the iteration space with all the
dependences:

Advanced Computer Architecture Chapter 4.49
Can this loop nest be vectorised?

Skewing changes effect of interchange
Thus the dependence structure of the skewed loop is
shown by marking the iteration space with all the
dependences:

Advanced Computer Architecture Chapter 4.50
Original execution order

Thus the dependence structure of the skewed loop is
Interchange after skewing

shown by marking the iteration space with all the
dependences:

Advanced Computer Architecture Chapter 4.51
Transposed execution order

You can think of loop You can think of loop
interchange as changing
the way the iteration
space is traversed
Alternatively, you can
thi k f it h t think of it as a change to
the way the runtime code
instances are mapped pp
onto the iteration space
Traversal is always
lexicographic – ie left-to-
right, top-down

Advanced Computer Architecture Chapter 4.52

Th i l i Iterations in each The inner loop is now
vectorisable, since it
has no loop-carried

Iterations in each
row are
independent

p
dependence

• The skewed iteration • The skewed iteration
space has N rows and
2N-1 columns, but still
only N2 actual
statement instances.

Advanced Computer Architecture Chapter 4.53

• The loop bounds are now a • The loop bounds are now a
little complicated:

• For loop bounds N1 and N2:

Advanced Computer Architecture Chapter 4.54

Skewing and interchange: summary

Original loop interchangeable
b blbut not vectorisable.
We skewed inner loop by outer
loop by factor 1. Is skewing ever invalid?p y
Still not vectorisable, but
interchangeable.

• I t h d k d l is

Is skewing ever invalid?
Does skewing affect
interchangeability?

Advanced Computer Architecture Chapter 4.55

• Interchanged, skewed loop is
vectorisable.
Bounds of new loop not simple!

Does skewing affect dependence
distances?
Can you predict value of skewing?

Summary: dependence
Dependence equation for single loop:Dependence equation for single loop:
• Suppose Sp refers to A[φp(I)]
• Suppose S refers to A[φ (I)]Suppose Sq refers to A[φq(I)]

• A dependence of some kind occurs between Sp and Sq if there exists a
solution to the equation

φp(I1) = φq(I2)
• for integer values of I1 and I2 lying within the loop boundsfor integer values of I and I lying within the loop bounds

• For doubly-nested loops over multidimensional arrays,
generalise to system of simultaneous dependence g y p
equations for two iterations, (I1

1, I2
1) and (I1

2, I2
2)

• Iteration space graph, lexicographic schedule of execution

Advanced Computer Architecture Chapter 4.56

Arrows in graph show solutions to dependence equation
• Dependence distance vectors characterise families of

Summary: transformations
• A loop can be executed in parallel if it has no loop-

carried dependence
A l t b i t h d if th t d • A loop nest can be interchanged if the transposed
dependence distance vectors are lexicographically
forward

• Strip-mining is always valid
• Tiling = strip-mining + interchangeg p g g

Skewing is always valid
• Skewing can expose parallelism by aligning parallel Skew ng can expose parallel sm by al gn ng parallel

iterations with one of the loops
Skewing can make interchange (and therefore tiling)

Advanced Computer Architecture Chapter 4.57

valid

Matrix representation of loop transformations

• To skew the inner loop by the outer loop by factor 1
we adjust the loop bounds, and replace I1 by K1, and
I by K K That isI2 by K2-K1. That is,

(K1,K2) = (I1,I2) . U
where U is a 2 x 2 matrix• where U is a 2 x 2 matrix

Th t i • That is,
(K1,K2) = (I1,I2) . U = (I1,I2+I1)

Th i t b k i

Advanced Computer Architecture Chapter 4.58

The inverse gets us back again:
(I1,I2) = (K1,K2) . U-1 = (K1,K2-K1)

• Matrix U maps each statement instance SI1I2 to its
position in the new iteration space, SK1K2:
Original iteration space:

Transformed iteration space: The The
dependences
are subject to

Advanced Computer Architecture Chapter 4.59

j
the same
transformation.

Using matrices to reason about dependence

Recall that:
• There is a dependence between two iterations (I1

1,I2
1) p (1 2)

and (I1
2,I2

2) if there is a memory location which is
assigned to in iteration (I1

1,I2
1), and read in iteration

(I 2 I 2)(I1
2,I2

2).
((unless there is an intervening assignment))

• If (I1
1,I2

1) precedes (I1
2,I2

2) it is a data-dependence.
If (I 2 I 2) precedes (I 1 I 1) it is a anti dependence• If (I1

2,I2
2) precedes (I1

1,I2
1) it is a anti-dependence.

• If the location is assigned to in both iterations, it is
an output-dependence

Advanced Computer Architecture Chapter 4.60

an output dependence.

• The dependence distance vector (D1 D2) is (I1
2-

Transforming dependence vectors

• Iterations (I1
1,I2

1) . U and (I1
2,I2

2) .U will also read
and write the same location.

• The transformation U is valid iff
(I1

1,I2
1) . U precedes (I1

2,I2
2) . U

whenever there is a dependence between
(I1

1, I2
1) and (I1

2, I2
2).

• In the transformed loop the dependence distance
vector is also transformed, to

(D D) U

Definition: Lexicographic ordering:
(I1

1,I2
1) precedes (I1

2,I2
2)

Advanced Computer Architecture Chapter 4.61

(D1,D2) . U If I1
1 < I1

2, or I1
1 = I1

2 and I2
1 < I2

2

(“Lexicographic” is dictionary order – both “baz” and “can” precede “cat”)

Example: loop given earlier

Before transformation we had two dependences:
1. Distance: (1,0), direction: (<,.)
2. Distance: (0,1), direction: (.,<)

• After transformation by matrix

• (i.e. skewing of inner loop by outer) we get:
1. Distance: (1,1), direction: (<,<)

Advanced Computer Architecture Chapter 4.62

2. Distance: (0,1), direction: (.,<)

We can also represent loop interchange by a matrix
transformation.
After transforming the skewed loop by matrix

(i.e. loop interchange) we get:(i.e. loop interchange) we get
1. Distance: (1,1), direction: (<,<)
2.Distance: (1,0), direction: (<,.)2.Distance: (1,0), direction: (,.)
• The transformed iteration space is the transpose of the

skewed iteration space:p

Advanced Computer Architecture Chapter 4.63

Summary
• (I1,I2) . U maps each statement instance (I1,I2) to its new (1, 2) p (1, 2)

position (K1,K2) in the transformed loop's execution
sequence

• (D1,D2) . U gives new dependence distance vector, giving
test for validity
Captures skewin interchan e and reversalCaptures skewing, interchange and reversal
Compose transformations by matrix multiplication

U UU1 . U2

Resulting loop's bounds may be a little tricky
Effi i t l ith i t [B j 90] t i i Efficient algorithms exist [Banerjee90] to maximise
parallelism by skewing and loop interchanging
Efficient algorithms exist to optimise cache

Advanced Computer Architecture Chapter 4.64

Efficient algorithms exist to optimise cache
performance by finding the combination of blocking,
block size, interchange and skewing which leads to the

References
Hennessy and Patterson: Section 4.4 (pp.319)
Background: “conventional” compiler techniques

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and
Tools. Addison Wesley, 1986.
A d A l d J P l b M d C il I l i Andrew Appel and Jens Palsberg, Modern Compiler Implementation.
Cambridge University Press, 2002.
Cooper and Torczon, Engineering a Compiler. Morgan Kaufmann 2004.
Morgan, Building an Optimizing Compiler Morgan, Building an Optimizing Compiler

Textbooks covering restructuring compilers
Michael Wolfe. High Performance Compilers for Parallel Computing. Addison
Wesley, 1996.
Steven Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.
Ken Kennedy and Randy Allen, Optimizing Compilers for Modern Architectures.
Morgan Kaufmann 2001.READ Morgan Kaufmann, 2001.

Research papers:
• D. F. Bacon and S. L. Graham and O. J. Sharp, “Compiler Transformations

for High-Performance Computing”. ACM Computing Surveys V26 N4 Dec 1994

THIS
ONE

Advanced Computer Architecture Chapter 4.65

g p g p g y
http://doi.acm.org/10.1145/197405.197406
U. Banerjee. Unimodular transformations of double loops. In Proceedings of
the Third Workshop on Programming Languages and Compilers for Parallel
Computing, Irvine, CA. Pitman/MIT Press, 1990.

Additional material for background

Advanced Computer Architecture Chapter 4.66

A little history…early days at Bell Labs
1940: Russell Ohl develops PN

First point-
contact9 u p N

junction (accidentally…)
1945: Shockley’s lab
established

contact
transistor
invented at
Bell Labs.
(Source: Bell Labs.)established

1947: Bardeen and Brattain
create point-contact transistor

ith t PN j ti i 18

(Source: Bell Labs.)

with two PN junctions, gain=18
1951: Shockley develops
junction transistor which can

The three inventors
of the transistor:
William Shockleybe manufactured in quantity

1952: British radar expert
GWA Dummer forecasts “solid

William Shockley,
(seated), John
Bardeen (left) and
Walter Brattain GWA Dummer forecasts solid

block [with] layers of
insulating, conducting and
amplifying materials

(right) in 1948; the
three inventors
shared the Nobel
prize in 1956.

Advanced Computer Architecture Chapter 4.67

p fy g
1954: first transistor radio.
Also Texas Instruments makes
first silicon transistor (price Source: http://6371.lcs.mit.edu/Fall96/lectures/L1/P005.html ; See also http://www.maxmon.com/1952ad.htm

p
(Source: Bell Labs.)

This background section is not covered in the lectures

Pre-historic integrated circuits

1958: The first
monolithic integrated monolithic integrated
circuit, about the size of
a finger tip, developed

 b at Texas Instruments by
Jack Kilby. The IC was a
chip of a single chip of a single
Germanium crystal
containing one
t i t transistor, one
capacitor, and one
resistor (Source: Texas

Advanced Computer Architecture Chapter 4.68

(
Instruments)

Source: http://kasap3.usask.ca/server/kasap/photo1.html

1970: Intel
starts
selling a 1K
bit RAM

1971: Intel
int duc s introduces
first
microprocesp
sor, the
4004

4 bit b4-bit buses
Clock rate
108 KHz

Advanced Computer Architecture Chapter 4.69

2300
transistors

• 10μm

By 1998…

IBM Power3
microprocessor
15M transistors

• 0.18μm
copper/SOI copper/SOI
process

• About 270mm2About 270mm

Advanced Computer Architecture Chapter 4.70

Intel Pentium 4
42 M transistors
0.13mm
copper/SOI
process
Clock speeds:
2200 2000MHz2200, 2000MHz
Die size 146
square mm
Power
consumption
55.1W (2200),
52.4W (2000)
Price ($ per chip, ce ($ pe c p,
in 1,000-chip
units, Jan 2002):

US$562 (2200)
US$364 (2000)US$364 (2000)

Advanced Computer Architecture Chapter 4.71

Dual-core Opteron 275

233M
transistors

• 199mm2

90nm
2.2GHz

Advanced Computer Architecture Chapter 4.72

Intel Itanium Montecito

Dual core
2-way
SMT
Launched
July July
2006
List price List price
$3692
(in
1000)1000s)

Advanced Computer Architecture Chapter 4.73http://en wikipedia org/wiki/Montecito (processor)

Wafers

Chips are made from
slices of a single-crystal
silicon ingot
Each slice is about 30cm Each slice is about 30cm
in diameter, and 250-
600 microns thick
Transistors and wiring
are constructed by
h l h hphotolithography

Essentially a
printing/etching process

Advanced Computer Architecture Chapter 4.74

printing/etching process
• With lines ca. 0.045-

0 18μm wide

Highly magnified scanning electron microscope
(SEM) view of IBM's Silicon-On-Insulator (SOI)

Highly magnified scanning electron microscope (SEM) view of IBM's six-level copper interconnect
technology in an integrated circuit chip. The aluminum in transistor interconnections in a silicon chip
has been replaced by copper that has a higher conductivity (by nearly 40%) and also a better ability

(SEM) view of IBM s Silicon On Insulator (SOI)
fabrication: a layer of silicon crystal is grown on
top of a layer of insulating silicon oxide

Advanced Computer Architecture Chapter 4.75

has been replaced by copper that has a higher conductivity (by nearly 40%) and also a better ability
to carry higher current densities without electromigration. Lower copper interconnect resistance
means higher speeds and lower RC constants (Photograph courtesy of IBM Corporation, 1997.)

A single crystal of silicon, a silicon
ingot, grown by the Czochralski
technique. The diameter of this
ingot is 6 inches (Courtesy of Texas
Instruments). State of the art
fabs now use 300mm wafers

Wafer saw: Each wafer is cut into many individual die using a

Advanced Computer Architecture Chapter 4.76

Wafer saw: Each wafer is cut into many individual die using a
diamond-edge saw with a cutting edge about the thickness of a human
hair. (Photograph courtesy of Micron Technology, Inc., Boise, Idaho)

Integrated circuit fabrication is a printing process1. Grow pure silicon crystal

2. Slice into wafers and polish fg
pr

oc
.h

tm

To make wafers| polycrystalline silicon|\ncontaining
elements that can modify its \nconductivity| is melted.
Then the melted\nsilicon is used to grow silicon

2. Slice into wafers and polish

3. Grow surface layer of silicon dioxide (ie glass), either using high-temperature oxygen or chemical vapour deposition

4. Coat surface with photoresist layer, then use mask to selectively expose photoresist to ultraviolet light

5. Etch away silicon dioxide regions not covered by hardened photoresist

ne
ws

/m
fg

pr
oc

/m
f

Then the melted\nsilicon is used to grow silicon
crystals\n(or ingots) that are sliced into wafers.

y g y p

6. Further photolithography steps build up additional layers, such as polysilicon

7. Exposed silicon is doped with small quantities of chemicals which alter its semiconductor behaviour to create transistors

8. Further photolithography steps build layers of metal for wiring ec
h.

or
g/

pu
bl
ic
/n

9. Die are tested, diced, tested and packaged

tp
:/

/w
ww

.s
em

at
e

So
ur

ce
:
ht

t

Advanced Computer Architecture Chapter 4.77

s.
ht

m

Close up of the wafer as it spins
during a testing procedure Checking wafers processing in a vertical fa

ct
ur

in
g_

ph
ot

os

during a testing procedure Checking wafers processing in a vertical
diffusion furnace

ve
/p

ho
to

s/
m
an

uf
pr

es
sr

oo
m
/a

rc
hi
v

A diamond edged sa blade c ts the /w
ww

.i
nt

el
.c

om
/p

Advanced Computer Architecture Chapter 4.78

A diamond edged saw blade cuts the
wafers into the individual die. (Photograph
courtesy of Micron Technology, Inc., Boise, Idaho)

Intel technicians monitor wafers in an automated wet
etch tool. The process cleans the wafers of any
excess process chemicals or contamination.o)

So
ur

ce
:
ht

tp
:/

/

Intel x86/Pentium Family

CPU Year Data

Bus
Max.
Mem.

Transistors Clock MHz Av. MIPS Level-1 Caches

8086 1978 16 1MB 29K 5-10 0.8

80286 1982 16 16MB 134K 8-12 2.7

80386 1985 32 4GB 275K 16-33 680386 1985 32 4GB 275K 16 33 6

80486 1989 32 4GB 1.2M 25-100 20 8Kb

Pentium 1993 64 4GB 3.1M 60-233 100 8K Instr + 8K Data

Pentium Pro 1995 64 64GB 5 5M 150 200 440 8K + 8K Level2Pentium Pro 1995 64 64GB 5.5M
+15.5M

150-200 440 8K + 8K + Level2

Pentium II 1997 64 64GB 7M 266-450 466- 16K+16K + L2

Pentium III 1999 64 64GB 8 2M 500-1000 1000- 16K+16K + L2Pentium III 1999 64 64GB 8.2M 500-1000 1000- 16K+16K + L2

Pentium IV 2001 64 64GB 42M 1300-2000 8K + L2

 On-line manuals: http://x86.ddj.com/intel.doc/386manuals.htm

Advanced Computer Architecture Chapter 4.79

On-line details: http://www.sandpile.org/ia32/index.htm

Integrated Circuits Costs

yieldtest Final
cost Packaging cost Testingcost Die cost IC ++

=

W f

Wafer diam2m/2)(Wafer dia ×ππ

yield Die Wafer per Dies
costWafer cost Die
×

=

 Test_Die
Die_Area 2

Wafer_diam
Die_Area

m/2)(Wafer_dia wafer per Dies −
⋅

×π
−

π
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ×

−×=
−α

α
Die_area sity Defect_Den 1 ld Wafer_yieYield Die

Advanced Computer Architecture Chapter 4.80

Die Cost goes roughly with die area4

⎭⎩

Real World Examples

Chi M t l Li W f D f t A Di / Yi ld Di C tChip Metal Line Wafer Defect Area Dies/ Yield Die Cost
layers width cost /cm2 mm2 wafer

386DX 2 0.90 $900 1.0 43 360 71% $4
486DX2 3 0 80 $1200 1 0 81 181 54% $12486DX2 3 0.80 $1200 1.0 81 181 54% $12
PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272
Pentium 3 0.80 $1500 1.5 296 40 9% $417 $ $

• From "Estimating IC Manufacturing Costs,” by Linley Gwennap, Microprocessor
Report, August 2, 1993, p. 15

Advanced Computer Architecture Chapter 4.81

Moore’s “Law”

Gordon Moore left
Graph extracted from Moore’s 1965 article

Cramming more components
t i t t d i it

Fairchild to found
Intel in 1968 with
Robert Noyce and

onto integrated circuits
By Gordon E. Moore
Electronics, Volume 38, Number 8, April 19, 1965
(See http://www intel com/research/silicon/mooreslaw htm)

Andy Grove,

Advanced Computer Architecture Chapter 4.82

(See http://www.intel.com/research/silicon/mooreslaw.htm)
“With unit cost falling as the number of components per circuit rises, by 1975 economics
may dictate squeezing as many as 65,000 components on a single silicon chip”

Technology Trends: Microprocessor Capacity
CMOS i tCMOS improvements:
• Die size: 2X every 3 yrs
• Line width: halve / 7 yrs

“Graduation Window”

From:
http://www.intel.c
om/technology/mooom/technology/moo
reslaw/
See also
http://download int

Advanced Computer Architecture Chapter 4.83

http://download.int
el.com/research/sil
icon/Gordon_Moore
ISSCC 021003.p

