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Advanced Computer Architecture
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Compiler issues: dependence analysis,
vectorisation, automatic parallelisationvectorisation, automatic parallelisation

February 2009February 009
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and 
Patterson’s Computer Architecture, a quantitative approach (3rd and 4th

eds)  and on the lecture slides of David Patterson and John 
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eds), and on the lecture slides of David Patterson and John 
Kubiatowicz’s Berkeley course



Background reading
The material for this part of the course is introduced only very briefly 

in Hennessy and Patterson (section 4.4 pp319). A good textbook 
which covers it properly is 

• Michael Wolfe. High Performance Compilers for 
Parallel Computing. Addison Wesley, 1996.

Much of the presentation is taken from the following research paper:

• U. Banerjee. Unimodular transformations of double 
loops. In Proceedings of the Third Workshop on p . g f p
Programming Languages and Compilers for Parallel 
Computing, Irvine, CA. Pitman/MIT Press, 1990.
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Banerjee's paper gives a simpified account of the theory in the context 
only of perfect doubly-nested loops with well-known dependences.



Introduction
• In this segment of the course we consider compilation issues g p

for loops involving arrays:
• How execution order of a loop is constrained,
• How a compiler can extract dependence information, and
• How this can be used to optimise a program.

Understanding and transforming execution order can help exploit 
architectural features:

• Pipelined, superscalar and VLIW processors
• Systems which rely heavily on caches
• Processors with special instructions for vectors (SSE, 

AltiV )
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AltiVec) 
• Multiprocessors, multicore, and co-processors/accelerators



Restructuring

• Here we consider a special kind of optimisation, which 
is currently performed only by specialist compilers -
“restructuring compilers".

Conventional optimisations must also be performed
Th  diff  i  thiThe difference is this:

Conventional optimisations reduce the amount 
f k th  t  h  t  d  t tiof work the computer has to do at run-time

Restructuring aims to do the work in an 
d  h h  h   h  
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order which suits the target architecture 
better



/*
* mm: Multiply A by B leaving the We will begin by looking at 

Motivation: an example
p y y g

* result in C.
* The result matrix is assumed
* to be initialised to zero

We will begin by looking at 
double-precision floating 
point matrix multiply

* to be initialised to zero.
*/

void mm1(double A[N][N], 

We will investigate the 
performance of various 
versions in order to ( [ ][ ]

double B[N][N], 
double C[N][N]) 

{

versions in order to 
determine what 
transformations a compiler 
h ld ppl{

int i, j, k;
for (i = 0; i < N; i++) 

j
C A B

j

should apply

for (j = 0; j < N; j++) 
for (k = 0; k < N; k++) 
C[i][j] += A[i][k] * B[k][j];

= ×
i

j

k
ki j
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C[i][j] += A[i][k]  B[k][j];
}



Outside

Let’s experiment with a perfectly ordinary laptop:

Outs
Inside: Pentium 4 processor

p p y y p p
• The experiments were performed on a Toshiba 

Satellite Pro 6100 laptop 
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• This machine has a 1.6GHz Intel Pentium 4 Mobile 
processor (we’ll look at some other processors shortly) 

T21: www.howstuffworks.com, die photo: http://www.sandpile.org/impl/p3.htm



Memory system
Level 1

12K instructions
512KBytes

Pentium 4

Level 1
Instruction 

cache Level 2
Cache Main 

8KBytesProcessor (instruction 
and data) 

memory
Level 1
Data 

h

8KBytes

8 
words

8 
words

• L1 Instruction (“trace”) cache: 12K microinstructions

cache
~1.7ns ~20ns ~212ns

words

• L1 Instruction ( trace ) cache: 12K microinstructions
• L1 Data cache: 8 KB, 4-way, 64 bytes/line, non-blocking, dual-

ported, write-through, pseudo-LRU
L2 ifi d h  512 KB  2 W  64 B t /Li  bl ki• L2 unified cache: 512 KB, 2-Way, 64 Byte/Line, non-blocking

Suppose we’re interested in quite big matrices, N=1088
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pp q g
• The matrix occupies 10882x8 = 9.5MBytes

Each row of the matrix occupies 1088x8 = 8.5KBytes.



Performance

For N=1088, the initial version runs in 130 seconds.

• The matrix multiplication takes 10883 steps, each 
involving two floating-point operations, an add and a 
multiply  i e  2 6x109 “FLOPs”multiply, i.e. 2.6x109 FLOPs
This loop achieves a computation rate of 
2600/130=19 8 MFLOPs2600/130=19.8 MFLOPs.

That is  one floating-point operation completed every 80 That is, one floating-point operation completed every 80 
clock cycles (the chip runs at 1.6GHz) 
How are we going to get value for money?
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g g g y



Interchange loops

for (i = 0; i < N; i++) 
for (k = 0; k < N; k++) 

for (j = 0; j < N; j++) 
C[i][j] += A[i][k] * B[k][j];

}
• 9.6 seconds (267 MFLOPS).
• Why is this such a good idea?
• How might a compiler perform this transformation?p p
• Does it still give the right output?
• Can we do better still?
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What was going on?
C A B

+= ×
i

j

k
k for (i=0; i<N; i++) 

for (j=0; j<N; j++) 
for (k=0; k<N; k++)

i j

IJK variant computes each element of result matrix C

( ; ; )
C[i][j]+=A[i][k]*B[k][j]

IJK variant computes each element of result matrix C 
one at a time, as inner product of row of A and column 
of B

Traverses A in row-major order B in column-majorTraverses A in row-major order, B in column-major

+= ×
j

j for (i=0; i<N; i++) 
for (k=0; k<N; k++) 
for (j=0; j<N; j++) 

i
ki k

C[i][j]+=A[i][k]*B[k][j]

IKJ variant accumulates partial inner product into a
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IKJ variant accumulates partial inner product into a 
row of result matrix C, using element of A and row of B

Traverses C and B in row-major order



The price of naivety

Matrix Multiplication Speedup (IKJ/IJK)
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• Relative speedup of IKJ version over IJK version (per 
hi   bl  i )
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machine, per problem size)
• On large problems, the IKJ variant is 2-10 times faster



Blocking (a.k.a. “tiling") 
Idea: reorder execution of loop nest so data isn't evicted from cache before p
it's needed again.
Blocking is a combination of two transformations: “strip mining", followed by 
interchange; we start with

for (i = 0; i < N; i++)
for (k = 0; k < N; k++){
r = A[i][k];
for (j = 0; j < N; j++) 
C[i][j] += r * B[k][j]; }

St i  i  th  k d j lStrip mine the k and j loops:
for (i = 0; i < N; i++) 

for (kk = 0; kk < N; kk += S) 
for (k = kk; k < min(kk+S,N); k++){
r = A[i][k];
for (jj = 0; jj < N; jj += S)
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(jj jj jj )
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];

}



Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S) 

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++) 
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}
The inner i,k,j loops perform a multiplication of a pair of partial j p p p p p
matrices.
S is chosen so that a S  x S submatrix of B and a row of length 
S of C can fit in the cache.
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What is the right value for S?



Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S) 

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++) 
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S j S

×
i i

j S k   S j    S
k
S

+=
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.

NN
C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S]



Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S) 

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++) 
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S j S

×
i i

j S k   S j    S
k
S

+=
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.

NN
C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for next jj



Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S) 

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++) 
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S j S

×
i i

j S k   S j    S
k
S

+=
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.

NN
C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for last jj



Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S) 

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++) 
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S

×
i i

j S k   S
j    S

k
S+=
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.

NN
for (jj=0:N:S) C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for next kk



Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S) 

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++) 
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S

×
i i

j S k   S

j    S
k+=
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.

NN
S

for (jj=0:N:S) C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for next kk



Blocking/tiling – stripmine then interchange

Now interchange so blocked loops are outermost:
for (kk = 0; kk < N; kk += S) 

for (jj = 0; jj < N; jj += S)for (jj = 0; jj < N; jj += S)
for (i = 0; i < N; i++) 
for (k = kk; k < min(kk+S,N); k++){

r = A[i][k];
for (j = jj; j < min(jj+S, N); j++) 
C[i][j] += r * B[k][j];C[i][j] += r * B[k][j];

}

j S k S

×
i i

j S k   S

j S+=

Advanced Computer Architecture Chapter 4.19

.

NN

j    S
k
S

for (jj=0:N:S) C[0:N][jj:jj+S] += A[0:N][kk:kk+S] * B[kk:kk+S][jj:jj+S] for last kk
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Performance of blocked version: 1.6GHz Pentium 4M (N=1088) 
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Problem size 1088                    1.6GHz Pentium 4 Mobile (gcc3.4.4) 

Optimum blocking factor is 144, where we reach 341 MFLOPs



Performance of blocked version: Thinkpad T60 (N=1003) 

1.8 GHz Intel Core Duo (Lenovo Thinkpad T60) (gcc3.4.4) 

Optimum blocking factor is 48, where we reach 866 MFLOPs
A idi  “ i ”  d ’  h l
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Avoiding “min” operator doesn’t help.
On battery power, clock rate drops to 987MHz, so only 469 MFLOPS (48 still 
best).  In direct proportion to clock rate reduction.



Performance of blocked version: Pentium 3 (N=512) 
Blocking Execution MFLOPS
factor time
8 3.815 70.4
16 2.784 96.4
32 2.283 117.6
40 2.193 122.4
48 2 253 119 148 2.253 119.1
56 2.473 108.5
64 3.404 78.9
72 5.608 47.9
80 5.578 48.1
88 5 808 46 288 5.808 46.2
96 5.928 45.3
104 6.309 42.5 The min operators are a performance hit; if we 
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112 5.778 46.5 choose a good blocking factor which divides the 
problem size exactly...

Blocksize 32: 2 013 seconds  133 4 MFLOP/s
Thinkpad T21 800MHz Pentium III (VS6.0) 



Performance of blocked version: Opteron (N=1088) 

Problem size 1088 2.4 GHz AMD Opteron (gcc3.4.3) 
Optimum blocking factor is 64, where we reach 692.4 MFLOPs
Si  64 di id  1088 tl    id “ i ” t  i i  833 6 MFLOP
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Since 64 divides 1088 exactly, we can avoid “min” operator, giving 833.6 MFLOPs
Using Intel compiler (-Wl,-melf_i386) this reaches 998 MFLOPs
Using AMD’s AMCL library this machine can reach ~4GFLOPS… there is a lot 
m re u c n d  t  impr ve m trix multipl  perf rm nce!



Impact….

On Toshiba Satellite Pro 6100 laptop (1.6GHz Pentium 4M):
Original version: 130 seconds (19.8 MFLOP/s) 
Blocked version: 7.55 seconds (341 MFLOP/s) 

We started with a “good" optimising compiler!
Factor of 17 performance improvement.
No reduction in amount of arithmetic performed.

• (Using the Intel library or the ATLAS library does even (Using the Intel library or the ATLAS library does even 
better) 
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How?Dependence
Define:Define:

IN(S): set of memory locns which might be read by some execn of 
statement S
OUT(S): set of memory locns which might be written by some 
execn of statement S

Reordering is constrained by dependences;
There are four types:
• Data (“true") dependence: S1 δ S2

(“S1 must write something 
before S2 can read it”) • Data ( true ) dependence: S1 δ S2

• OUT(S1) ∩ IN(S2) 
Anti dependence: S1   S2

δ (“S1 must read something 
before S2 overwrites it”) 
(“If S1 and S2 might both p

• IN(S1) ∩ OUT(S2) 
• Output dependence: S1 δo S2

( If S1 and S2 might both 
write to a location, S2 must 

write after S1”) 
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• OUT(S1) ∩ OUT(S2) 

• Control dependence: S1 δc S2



How?Dependence
Define:

IN(S)  t f  l  hi h i ht b  d b    f IN(S): set of memory locns which might be read by some execn of 
statement S
OUT(S): set of memory locns which might be written by some 
execn of statement Sexecn of statement S

Reordering is constrained by dependences;
There are four types:There are four types
• Data (“true") dependence: S1 δ S2

• OUT(S1) ∩ IN(S2) 
 d d  1   2 (“S1 must read something 

(“S1 must write something 
before S2 can read it”) 

Anti dependence: S1   S2
• IN(S1) ∩ OUT(S2) 

• Output dependence: S1 δo S2

δ ( S1 must read something 
before S2 overwrites it”) 
(“If S1 and S2 might both 
it  t   l ti  S2 t p p

• OUT(S1) ∩ OUT(S2) 

• Control dependence: S1 δc S2

write to a location, S2 must 
write after S1”) 
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These are static analogues of the dynamic RAW, WAR, WAW and 
control hazards which have to be considered in processor 
architecture



Loop-carried dependencesConsider:

S1 : A[0] := 0
for I = 1 to 8for I = 1 to 8

S2 : A[I] := A[I-1] + B[I]

What does this loop do?

1 1 1 1 1 1 1 1B:

0A:
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Loop-carried dependencesConsider:
0 B[1]

S1 : A[0] := 0
for I = 1 to 8

+
+

0 B[1]
B[2]
B[3]for I = 1 to 8

S2 : A[I] := A[I-1] + B[I] +
+

B[3]
B[4]
B[5]

What does this loop do?

+
+
+

B[5]
B[6]

1 1 1 1 1 1 1 1B:

0 1 2A:

+
+

B[7]
B[8]

In this case, there is a data dependence
This is a loop-carried dependence - the dependence 

  l   i i

+
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p p p
spans a loop  iteration
This loop is inherently sequential



Loop-carried dependencesConsider:

0 B[1]
S1 : A[0] := 0

for I = 1 to 8
+
+

0 B[1]
B[2]
B[3]S2 : A[I] := A[I-1] + B[I]

L  i d

+
+

B[3]
B[4]
B[5]

Dependences cross, from 
Loop carried:

S21 : A[1] := A[0] + B[1]
S22 : A[2] := A[1] + B[2]

+
+
+

B[5]
B[6]

one iteration to next

S2 : A[2] := A[1] + B[2]
S23 : A[3] := A[2] + B[3]
S24 : A[4] := A[3] + B[4]

+
+

B[7]
B[8][ ] [ ] [ ]

S25 : A[5] := A[4] + B[5]
S26 : A[6] := A[5] + B[6]

+
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S27 : A[7] := A[6] + B[7]
S28 : A[8] := A[7] + B[8]



What is a loop-carried 
dependence?

1 2
p

• Consider two iterations I1 and I2

• A dependence occurs between two statements Sp and Sq (not 
necessarily distinct), when an assignment in Sp

I1 refers to the y g p
same location as a use in Sq

I2

In the example,

• The assignment is "A[I1] := ...”
• The use is "  := A[I -1] ”• The use is ... := A[I2-1] ...
• These refer to the same location when I1 = I2-1
• Thus I1 < I2, ie the assignment is in an earlier iteration

N  
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Notation: S2 δ< S2



Definition: The dependence equation
A dependence occurs A dependence occurs 
• between two statements Sp and Sq (not necessarily distinct), 

• when there exists a pair of loop iterations I1 and I2, 

• such that a memory reference in Sp in I1 may refer to the same location 
as a memory reference in Sq in I2.

• This might occur if Sp and Sq refer to some common array A

• Suppose Sp refers to A[φp(I)]
(φp(I) is some subscript 

expression involving I)pp p f [φp( )]
• Suppose Sq refers to A[φq(I)]

expression involving I) 

• A dependence of some kind occurs between Sp and Sq if there exists a 
solution to the equation

( 1)  (I2)
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φp(I1) = φq(I2) • for integer values of I1 and I2 lying 
within the loop bounds



Types of dependence
If a solution to the dependence equation exists, a dependence of 
some kind occurs

The dependence type depends on what solutions exist

• The solutions consist of a set of pairs (I1,I2) 

• We would appear to have a data dependence if

A[φp(I)] є OUT(Sp)A[φp(I)] є OUT(Sp)
and

A[φq(I)] є IN(Sq) q q

• But we only really have a data dependence if the assignments 
precede the uses, ie

Advanced Computer Architecture Chapter 4.32

• Sp δ< Sq

• if, for each solution pair (I1,I2), I1 < I2



Dependence versus anti-dependence
• If the uses precede the assignments, we actually have an anti-f u p g m , w u y

dependence, ie

if, for each solution pair (I1,I2), I1 > I2

• If there are some solution pairs (I1,I2) with I1 < I2 and some with I1 > 
I2, we write 

If  f  ll l ti  i  (I1 I2)  I1  I2  th   d d  ithi• If, for all solution pairs (I1,I2), I1 = I2, there are dependences within
an iteration of the loop, but there are no loop-carried dependences:

Advanced Computer Architecture Chapter 4.33

=



Dependence distance
In many common examples, the set of solution pairs is characterised easily: 

• Definition: dependence distance
• If, for all solution pairs (I1, I2), 

I1 = I2 - k
then the dependence distance is k

• For example in the loop we considered earlier,

We find that S2 δ< S2 with dependence distance 1.

• ((of course there are many cases where the difference is not constant 
and so the dependence cannot be summarised this way))
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and so the dependence cannot be summarised this way)).



Reuse distance
When optimising for cache performance, it is sometimes useful to 
consider the re-use relationship,

IN(S ) ∩ IN(S )• IN(S1) ∩ IN(S2)

• Here there is no dependence - it doesn't matter which read 
occurs firstoccurs first

• Nonetheless, cache performance can be improved by minimising 
the reuse distance
Th   di t  i  l l t d ti ll  th   The reuse distance is calculated essentially the same way
Eg

for I = 5 to 100f
S1:  B[I] := A[I] * 2
S2:  C[I] := A[I-5] * 10

  h   l d  h d  
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Here we have a loop-carried reuse with distance 5



Nested loops

Up to now we have looked at single loops
Now let’s generalise to loop “nests”
We begin by considering a very common dependence 
pattern, called the “wavefront”: 

Dependence structure?
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Dependence structure?



System of dependence equations
Consider the dependence equations for this loop nest:

There are two potential dependences arising from the three references to A, so 
tw  systems f dependence equati ns t  s lve:two systems of dependence equations to solve:
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• The same loop: Iteration space graph

• For humans the easy way to understand this loop nest is 
to draw the iteration space graph showing the iteration-to draw the iteration space graph showing the iteration
to-iteration dependences:
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The inner loop is not vectorisable since there is a dependence chain 
linking successive iterations.

(to use a vector instruction  need to be able to operate on each element of the (to use a vector instruction, need to be able to operate on each element of the 
vector in parallel) 

• Similarly, the outer loop is not parallel
Thi  l  i  i t h bl  th  t t b tt  l ft t i ht • This loop is interchangeable: the top-to-bottom, left-to-right 
execution order is also valid since all dependence constraints (as shown 
by the arrows) are still satisfied.
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• Interchanging the loop does not improve vectorisability or 
parallelisability



The inner loop is not vectorisable since there is a dependence chain 
linking successive iterations.

(to use a vector instruction  need to be able to operate on each element of the (to use a vector instruction, need to be able to operate on each element of the 
vector in parallel) 

• Similarly, the outer loop is not parallel
Thi  l  i  i t h bl  th  t t b tt  l ft t i ht • This loop is interchangeable: the top-to-bottom, left-to-right 
execution order is also valid since all dependence constraints (as shown 
by the arrows) are still satisfied.
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• Interchanging the loop does not improve vectorisability or 
parallelisability



The inner loop is not vectorisable since there is a dependence chain 
linking successive iterations.

(to use a vector instruction  need to be able to operate on each element of the (to use a vector instruction, need to be able to operate on each element of the 
vector in parallel) 

• Similarly, the outer loop is not parallel
Thi  l  i  i t h bl  th  t t b tt  l ft t i ht • This loop is interchangeable: the top-to-bottom, left-to-right 
execution order is also valid since all dependence constraints (as shown 
by the arrows) are still satisfied.
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• Interchanging the loop does not improve vectorisability or 
parallelisability



Interchange: counter-example
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Interchange: counter-example
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Interchange: counter-example

B f  Before 
interchange
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Interchange: counter-example

Aft  After 
interchange:

New 
traversal 
order 
crosses 
d d  
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dependence 
arrows 
backwards



Interchange: condition

• A loop is interchangeable if all dependence constraints 
(as shown by the arrows) are still satisfied by the 
top to bottom  left to right execution order top-to-bottom, left-to-right execution order 

• How can you tell whether a loop can be interchanged?

Look at it's dependence direction vectors:
Is there a dependence direction vector with the Is there a dependence direction vector with the 
form (<,>) ?

• ie there is a dependence distance vector (k1,k2) with 
k1>0 and k2<0 ?

• If so, interchange would be invalid
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Because the arrows would be traversed backwards
All other dependence directions are OK.



SkewingConsider this variation on the wavefront loop:

• The inner loop's control variable runs from k1 to k1+3.
• The iteration space of this loop has 42 iterations just like 

the original loop.
• If we draw the iteration space with each iteration SK1,K2

at coordinate position (K1,K2), it is skewed to form a 
lozenge shape:lozenge shape:

This loop 
performs the 
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performs the 
same computation 
as the original.



Skewing preserves semantics
To see that this loop performs the same computation, lets work out 
its dependence structure.  
First label each iteration with the element of A to which it assigns:

The loop body is 
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p y
A[k1,k2-k1] := A[k1-1,k2-k1]+A[k1,k2-k1-1]

• E.g. iteration S23 does:



Thus the dependence structure of the skewed loop is 
shown by marking the iteration space with all the 
dependences:
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Can this loop nest be vectorised?



Skewing changes effect of interchange
Thus the dependence structure of the skewed loop is 
shown by marking the iteration space with all the 
dependences:
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Original execution order



Thus the dependence structure of the skewed loop is 
Interchange after skewing

shown by marking the iteration space with all the 
dependences:
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Transposed execution order



You can think of loop You can think of loop 
interchange as changing 
the way the iteration 
space is traversed
Alternatively, you can 
thi k f it   h  t  think of it as a change to 
the way the runtime code 
instances are mapped pp
onto the iteration space
Traversal is always 
lexicographic – ie left-to-
right, top-down
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Th  i  l  i   Iterations in each The inner loop is now 
vectorisable, since it 
has no loop-carried 

Iterations in each 
row are 
independent

p
dependence

• The skewed iteration • The skewed iteration 
space has N rows and 
2N-1 columns, but still 
only N2 actual 
statement instances.
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• The loop bounds are now a • The loop bounds are now a 
little complicated:

• For loop bounds N1 and N2:
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Skewing and interchange: summary

Original loop interchangeable 
b   blbut not vectorisable.
We skewed inner loop by outer 
loop by factor 1. Is skewing ever invalid?p y
Still not vectorisable, but 
interchangeable.

• I t h d  k d l  is

Is skewing ever invalid?
Does skewing affect 
interchangeability?
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• Interchanged, skewed loop is
vectorisable.
Bounds of new loop not simple!

Does skewing affect dependence 
distances?
Can you predict value of skewing?



Summary: dependence
Dependence equation for single loop:Dependence equation for single loop:
• Suppose Sp refers to A[φp(I)]
• Suppose S refers to A[φ (I)]Suppose Sq refers to A[φq(I)]

• A dependence of some kind occurs between Sp and Sq if there exists a 
solution to the equation

φp(I1) = φq(I2) 
• for integer values of I1 and I2 lying within the loop boundsfor integer values of I and I lying within the loop bounds

• For doubly-nested loops over multidimensional arrays, 
generalise to system of simultaneous dependence g y p
equations for two iterations, (I1

1, I2
1) and (I1

2, I2
2) 

• Iteration space graph, lexicographic schedule of execution
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Arrows in graph show solutions to dependence equation
• Dependence distance vectors characterise families of 



Summary: transformations
• A loop can be executed in parallel if it has no loop-

carried dependence
A l  t  b  i t h d if th  t d • A loop nest can be interchanged if the transposed 
dependence distance vectors are lexicographically 
forward

• Strip-mining is always valid
• Tiling = strip-mining + interchangeg p g g

Skewing is always valid
• Skewing can expose parallelism by aligning parallel Skew ng can expose parallel sm by al gn ng parallel 

iterations with one of the loops
Skewing can make interchange (and therefore tiling) 
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valid



Matrix representation of loop transformations

• To skew the inner loop by the outer loop by factor 1 
we adjust the loop bounds, and replace I1 by K1, and 
I by K K   That isI2 by K2-K1.  That is,

(K1,K2) = (I1,I2) . U
where U is a 2 x 2 matrix• where U is a 2 x 2 matrix

Th t i  • That is, 
(K1,K2) = (I1,I2) . U = (I1,I2+I1) 

Th  i  t   b k i
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The inverse gets us back again:
(I1,I2) = (K1,K2) . U-1 = (K1,K2-K1) 



• Matrix U maps each statement instance SI1I2 to its 
position in the new iteration space, SK1K2:
Original iteration space:

Transformed iteration space: The The 
dependences 
are subject to 
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j
the same 
transformation.



Using matrices to reason about dependence

Recall that:
• There is a dependence between two iterations (I1

1,I2
1) p ( 1 2 )

and (I1
2,I2

2) if there is a memory location which is 
assigned to in iteration (I1

1,I2
1), and read in iteration 

(I 2 I 2)(I1
2,I2

2).
((unless there is an intervening assignment)) 

• If (I1
1,I2

1) precedes (I1
2,I2

2) it is a data-dependence.
If (I 2 I 2) precedes (I 1 I 1) it is a anti dependence• If (I1

2,I2
2) precedes (I1

1,I2
1) it is a anti-dependence.

• If the location is assigned to in both iterations, it is 
an output-dependence
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an output dependence.

• The dependence distance vector (D1 D2) is (I1
2-



Transforming dependence vectors

• Iterations (I1
1,I2

1) . U and (I1
2,I2

2) .U will also read 
and write the same location.

• The transformation U is valid iff 
(I1

1,I2
1) . U precedes (I1

2,I2
2) . U

whenever there is a dependence between 
(I1

1, I2
1) and (I1

2, I2
2).

• In the transformed loop the dependence distance 
vector is also transformed, to 

(D D ) U

Definition: Lexicographic ordering:
(I1

1,I2
1) precedes (I1

2,I2
2) 
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(D1,D2) . U If I1
1 < I1

2, or I1
1 = I1

2 and I2
1 < I2

2

(“Lexicographic” is dictionary order – both “baz” and “can” precede “cat”) 



Example: loop given earlier

Before transformation we had two dependences:
1. Distance: (1,0), direction: (<,.) 
2. Distance: (0,1), direction: (.,<) 

• After transformation by matrix 

• (i.e. skewing of inner loop by outer) we get:
1. Distance: (1,1), direction: (<,<) 
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2. Distance: (0,1), direction: (.,<) 



We can also represent loop interchange by a matrix 
transformation.
After transforming the skewed loop by matrix 

(i.e. loop interchange) we get:(i.e. loop interchange) we get
1. Distance: (1,1), direction: (<,<) 
2.Distance: (1,0), direction: (<,.)2.Distance: (1,0), direction: ( ,.)
• The transformed iteration space is the transpose of the 

skewed iteration space:p
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Summary
• (I1,I2) . U maps each statement instance (I1,I2) to its new ( 1, 2) p ( 1, 2)

position (K1,K2) in the transformed loop's execution 
sequence

• (D1,D2) . U gives new dependence distance vector, giving 
test for validity
Captures skewin  interchan e and reversalCaptures skewing, interchange and reversal
Compose transformations by matrix multiplication 

U  UU1 . U2

Resulting loop's bounds may be a little tricky
Effi i t l ith  i t [B j 90] t  i i  Efficient algorithms exist [Banerjee90] to maximise 
parallelism by skewing and loop interchanging
Efficient algorithms exist to optimise cache 
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Efficient algorithms exist to optimise cache 
performance by finding the combination of blocking, 
block size, interchange and skewing which leads to the 
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Additional material for background
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A little history…early days at Bell Labs
1940: Russell Ohl develops PN 

First point-
contact9 u p N

junction (accidentally…) 
1945: Shockley’s lab 
established

contact 
transistor 
invented at 
Bell Labs.
(Source: Bell Labs.)established

1947: Bardeen and Brattain 
create point-contact transistor 

ith t  PN j ti  i 18

(Source: Bell Labs.)

with two PN junctions, gain=18
1951: Shockley develops 
junction transistor which can 

The three inventors 
of the transistor: 
William Shockleybe manufactured in quantity

1952: British radar expert 
GWA Dummer forecasts “solid 

William Shockley, 
(seated), John 
Bardeen (left) and 
Walter Brattain GWA Dummer forecasts solid 

block [with] layers of 
insulating, conducting and 
amplifying materials

(right) in 1948; the 
three inventors 
shared the  Nobel 
prize in 1956.
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p fy g
1954: first transistor radio.  
Also Texas Instruments makes 
first silicon transistor (price Source: http://6371.lcs.mit.edu/Fall96/lectures/L1/P005.html ; See also http://www.maxmon.com/1952ad.htm

p
(Source: Bell Labs.) 

This background section is not covered in the lectures



Pre-historic integrated circuits

1958: The first 
monolithic integrated monolithic integrated 
circuit, about the size of 
a finger tip, developed 

   b  at Texas Instruments by 
Jack Kilby. The IC was a 
chip of a single chip of a single 
Germanium crystal 
containing one 
t i t   transistor, one 
capacitor, and one 
resistor (Source: Texas 
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(
Instruments) 

Source: http://kasap3.usask.ca/server/kasap/photo1.html



1970: Intel 
starts 
selling a 1K 
bit RAM

1971: Intel 
int duc s introduces 
first 
microprocesp
sor, the 
4004

4 bit b4-bit buses
Clock rate 
108 KHz
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2300 
transistors

• 10μm 



By 1998…

IBM Power3 
microprocessor
15M transistors

• 0.18μm 
copper/SOI copper/SOI 
process 

• About 270mm2About 270mm
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Intel Pentium 4
42 M transistors
0.13mm 
copper/SOI 
process
Clock speeds: 
2200 2000MHz2200, 2000MHz
Die size 146 
square mm
Power 
consumption 
55.1W (2200), 
52.4W (2000) 
Price ($ per chip, ce ($ pe c p,
in 1,000-chip 
units, Jan 2002):

US$562 (2200) 
US$364 (2000)US$364 (2000) 
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Dual-core Opteron 275

233M 
transistors

• 199mm2

90nm
2.2GHz
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Intel Itanium Montecito

Dual core
2-way 
SMT
Launched 
July July 
2006
List price List price 
$3692 
(in 
1000 )1000s) 

Advanced Computer Architecture Chapter 4.73http://en wikipedia org/wiki/Montecito (processor)



Wafers

Chips are made from 
slices of a single-crystal 
silicon ingot
Each slice is about 30cm Each slice is about 30cm 
in diameter, and 250-
600 microns thick
Transistors and wiring 
are constructed by 
h l h hphotolithography

Essentially a 
printing/etching process
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printing/etching process
• With lines ca. 0.045-

0 18μm wide



Highly magnified scanning electron microscope 
(SEM) view of IBM's Silicon-On-Insulator (SOI) 

Highly magnified scanning electron microscope (SEM) view of IBM's six-level copper interconnect 
technology in an integrated circuit chip. The aluminum in transistor interconnections in a silicon chip 
has been replaced by copper that has a higher conductivity (by nearly 40%) and also a better ability

(SEM) view of IBM s Silicon On Insulator (SOI) 
fabrication: a layer of silicon crystal is grown on 
top of a layer of insulating silicon oxide
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has been replaced by copper that has a higher conductivity (by nearly 40%) and also a better ability 
to carry higher current densities without electromigration. Lower copper interconnect resistance 
means higher speeds and lower RC constants (Photograph courtesy of IBM Corporation, 1997.) 



A single crystal of silicon, a silicon 
ingot, grown by the Czochralski 
technique. The diameter of this 
ingot is 6 inches (Courtesy of Texas 
Instruments).  State of the art 
fabs now use 300mm wafers

Wafer saw: Each wafer is cut into many individual die using a 
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Wafer saw: Each wafer is cut into many individual die using a 
diamond-edge saw with a cutting edge about the thickness of a human 
hair. (Photograph courtesy of Micron Technology, Inc., Boise, Idaho) 



Integrated circuit fabrication is a printing process1. Grow pure silicon crystal

2. Slice into wafers and polish fg
pr

oc
.h

tm

To make wafers| polycrystalline silicon|\ncontaining 
elements that can modify its \nconductivity| is melted.  
Then the melted\nsilicon is used to grow silicon 

2. Slice into wafers and polish

3. Grow surface layer of silicon dioxide (ie glass), either using high-temperature oxygen or chemical vapour deposition

4. Coat surface with photoresist layer, then use mask to selectively expose photoresist to ultraviolet light

5. Etch away silicon dioxide regions not covered by hardened photoresist

ne
ws

/m
fg

pr
oc

/m
f

Then the melted\nsilicon is used to grow silicon 
crystals\n(or ingots) that are sliced into wafers.

y g y p

6. Further photolithography steps build up additional layers, such as polysilicon

7. Exposed silicon is doped with small quantities of chemicals which alter its semiconductor behaviour to create transistors

8. Further photolithography steps build layers of metal for wiring ec
h.

or
g/

pu
bl
ic
/n

9. Die are tested, diced, tested and packaged

tp
:/

/w
ww

.s
em
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e

So
ur

ce
: 
ht

t
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Close up of the wafer as it spins 
during a testing procedure Checking wafers processing in a vertical fa

ct
ur

in
g_

ph
ot

os

during a testing procedure Checking wafers processing in a vertical 
diffusion furnace

ve
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A diamond edged sa blade c ts the /w
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.i
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/p
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A diamond edged saw blade cuts the 
wafers into the individual die. (Photograph 
courtesy of Micron Technology, Inc., Boise, Idaho) 

Intel technicians monitor wafers in an automated wet 
etch tool. The process cleans the wafers of any 
excess process chemicals or contamination.o) 

So
ur

ce
: 
ht

tp
:/

/



Intel x86/Pentium Family
 
 
CPU Year Data 

Bus 
Max. 
Mem. 

Transistors Clock MHz Av. MIPS Level-1 Caches  

8086 1978 16 1MB 29K 5-10 0.8   

80286 1982 16 16MB 134K 8-12 2.7   

80386 1985 32 4GB 275K 16-33 680386 1985 32 4GB 275K 16 33 6  

80486 1989 32 4GB 1.2M 25-100 20 8Kb  

Pentium 1993 64 4GB 3.1M 60-233 100 8K Instr + 8K Data  

Pentium Pro 1995 64 64GB 5 5M 150 200 440 8K + 8K Level2Pentium Pro 1995 64 64GB 5.5M
+15.5M 

150-200 440 8K  + 8K + Level2  

Pentium II 1997 64 64GB 7M 266-450 466- 16K+16K + L2  

Pentium III 1999 64 64GB 8 2M 500-1000 1000- 16K+16K + L2Pentium III 1999 64 64GB 8.2M 500-1000 1000- 16K+16K + L2  

Pentium IV 2001 64 64GB 42M 1300-2000  8K + L2  
 
 On-line manuals: http://x86.ddj.com/intel.doc/386manuals.htm
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On-line details: http://www.sandpile.org/ia32/index.htm



Integrated Circuits Costs

yieldtest  Final
cost Packaging cost   Testingcost  Die cost IC ++

=

W f  

Wafer diam2m/2)(Wafer dia ×ππ

yield Die Wafer per  Dies
costWafer  cost  Die
×

=
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Die_Area  2
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⋅

×π
−

π
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ×
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Die Cost goes roughly with die area4

⎭⎩



Real World Examples

Chi M t l Li W f D f t A Di / Yi ld Di C tChip Metal Line Wafer Defect Area Dies/ Yield Die Cost
layers width cost /cm2 mm2 wafer

386DX 2 0.90 $900 1.0 43 360 71% $4 
486DX2 3 0 80 $1200 1 0 81 181 54% $12486DX2 3 0.80 $1200 1.0 81 181 54% $12 
PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53 
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73 
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149 
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272 
Pentium 3 0.80 $1500 1.5 296 40 9% $417 $ $

• From "Estimating IC Manufacturing Costs,” by Linley Gwennap, Microprocessor 
Report, August 2, 1993, p. 15
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Moore’s “Law”

Gordon Moore left 
Graph extracted from Moore’s 1965 article

Cramming more components
t i t t d i it

Fairchild to found 
Intel in 1968 with 
Robert Noyce and 

onto integrated circuits
By Gordon E. Moore
Electronics, Volume 38, Number 8, April 19, 1965
(See http://www intel com/research/silicon/mooreslaw htm)

Andy Grove, 
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(See http://www.intel.com/research/silicon/mooreslaw.htm)
“With unit cost falling as the number of components per circuit rises, by 1975 economics 
may dictate squeezing as many as 65,000 components on a single silicon chip”



Technology Trends: Microprocessor Capacity
CMOS i tCMOS improvements:
• Die size: 2X  every 3 yrs
• Line width: halve / 7 yrs

“Graduation Window”

From:
http://www.intel.c
om/technology/mooom/technology/moo
reslaw/
See also
http://download int
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http://download.int
el.com/research/sil
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ISSCC 021003.p


