NVIDIA Tesla
as Computing Architecture

Advanced Computer Architecture, 332

CUDA Execution Model

» CUDA is a C extension cpusm,, o
Serial CPU code o R~
Parallel GPU code (kernels) Kernel Biock | [Biock | [Biock

* 00 | (10 (20

» GPU kernel is a C function

Each thread executes kernel code b

A group of threads forms a | Grif,,z"
thread block (1D, 2D or 3D) o

m
a

Block ' Block
(0,1 (1.1 21

Thread blocks are organised into 2 | —
Block (1, 1) _

a grid (1D or 2D)

Threads within the same thread
block can synchronise execution

Example: Matrix addition

__global _ void matAdd(float A[N][N], float B[N][N], float C[N][ND

int 1 = blockldx.x * blockDim.x + threadldx.x;
int J = blockldx.y * blockDim.y + threadldx.y;
IT (I <N & jJ <N)

Crollal = Alnlij1 + BIillil;

int main()
{
// Kernel setup
dim3 blockDim(16, 16);
dim3 gridDim((N + blockDim.x — 1) / blockDim.x,
(N + blockDim.y — 1) / blockDim.y);
// Kernel i1nvocation
matAdd<<<gridDim, blockDim>>>(A, B, C);

CUDA Memory Model

Local memory — private to
each thread (slow if off-chip,
fast if register allocated)

Shared memory — shared
between threads in a thread
block (fast on-chip)

Global memory — shared
between thread blocks in a grid
(slow off-chip)

Constant memory (read-only;
off-chip but cached)

Texture memory (read-only;
off-chip but cached)

GPU Grid

Block (0, 0)

-

Block (1, 0)

-

Thread (0,0) Thread (1, 0)

Thread (0, 0) Thread (1, 0)

CPU

Tesla architecture

» A unified graphics and computing architecture
» Scalable array of streaming multiprocessors (SMs)
» CUDA thread blocks get mapped to SMs

» SMs have thread processors, private registers, shared
memory, etc.

Global Block Scheduler GT200

TPC O | GT200
: l } » 10 Thread Processing Clusters (TPCs)

SM Controller 0 SM Controller 1 SM Controller 9

3 Streaming Multiprocessors (SMs) per TPC

4
B S EEE oo

» | 64-bit FPU per SM

» 16K 32-bit registers per SM

» Up to 1024 threads / 32 warps per SM

» 8 64-bit memory controllers (512-bit wide

SODR3 | [GODR3 memory interface)
Controller | | Controller

PCl-Express 2.0 x16

GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3
Memory Memaory Memaory Memaory Memaory Memaory
Controller | | Controller | | Controller| | Controller | { Controller] | Controller

Global Block Scheduler G80
TPC O G80 ,
! 1 1 » 8Thread Processing Clusters (TPCs)
SM Controlier 0 | || SM Controlier | S\ Confroller 7 » 2 Streaming Multiprocessors (SMs) per TPC

» 8 32-bit FPU per SM
» 8K 32-bit registers per SM
» Up to 768 threads / 24 warps per SM

» 6 64-bit memory controllers (384-bit wide
memory interface)

PCIl-Express x16

GDDR3
Memory
Controller | L Controller Controller

GT200 streaming multiprocessor

Global Block Scheduler -‘—i Instruction Cache

“t~1 warp instruction
¥

| 32+ Entry Warp
Instruction Buffer

)

1 thread block ™~

~ 1 warp instruction
¥

SM Thread Select Logic
Scoreboarding

“t~1 warp instruction

4 L

B4R . 16KB
Reqgister File Shared Memory

To Memory
Pipeline

v

Port 0 Port 1

GT200 streaming multiprocessor

Multithreaded instruction fetch and issue unit

8 streaming processors (SP)
32-bit ALU and FPU (e.g. bitwise, min, max; FP add, mul, mad)
Branch unit (e.g. cmp)

2 special-function units (SFU)
Transcendental functions (e.g. reciprocal, sine), interpolation

Interpolation hardware can be used as 4 FP multipliers
| 6KB shared memory (as fast as registers, if no conflicts)
64-bit FP and integer unit (not in G80)
|6K 32-bit registers (only 8K in G80)

Global block scheduler

» Reads grid information that is sent from the CPU to the
GPU when a kernel is started

» Issues thread blocks to SMs that have sufficient resources
for execution (up to 8 blocks per SM)

SM multithreaded instruction unit

» Instruction unit creates, manages, schedules and executes
threads in groups of 32 threads called warps

» Warp instructions are fetched into an instruction buffer
» Scoreboard qualifies warp instructions for issue

» Scheduler prioritises ready to issue warp instructions
based on their type and “fairness”

» Scheduler issues a warp instruction with highest priority

M executing ready (not executing) I stalled

A hypothetical GPU:

* Four warp contexts TO-T3
20 cycle compute

* 50 cycle memory access

K. Fatahalian, M. Houston. "A Closer Look at
GPUs," Commun. ACM, 51:10, pp. 50-57.

SM 1nstruction issue

» To optimise for power and performance, GPU units are in
multiple clock domains

Core clock (e.g. 600 MHz) —“slow” cycles
FUs clock (e.g. 1300 MHz) —“fast” cycles
Memory clock (e.g. 1100 MHz)

» Issue logic can issue every slow cycle (every 2 fast cycles)

» FUs can typically be issued instructions every 4 fast cycles
(I cycle per 8 threads from a warp)

Issue MAD MUL MAD MUL

“Dual” issue to independent
—— FUs on alternate slow cycles

FPU MAD MAD

SFU MUL MUL

SM branch management

» Threads in a warp start executing from the same address

» A warp that executes a branch instruction waits until the
target address for every thread in the warp is computed

» Threads in a warp can take the same branch path ©

» Threads in in warp can diverge to different paths

the warp serially executes each path, disabling threads that are
not on that path;

when all paths complete, the threads reconverge

» Divergence only occurs within a warp — different warps
execute independently

» Minimising divergence is important for performance, but
not correctness (cf. cache lines)

GT200 streaming multiprocessor

Global Block Scheduler -‘—i Instruction Cache

“t~1 warp instruction
¥

| 32+ Entry Warp
Instruction Buffer

)

1 thread block ™~

~ 1 warp instruction
¥

SM Thread Select Logic
Scoreboarding

“t~1 warp instruction

4 L

B4R . 16KB
Reqgister File Shared Memory

To Memory
Pipeline

v

Port 0 Port 1

TPC memory pipeline

From SM 0,1,2

» Load and store instructions are
generated in the SMs
Address calculation (register + offset)
Virtual to physical address translation
» Issued a warp at a time — executed in

half-warp groups (i.e. 16 accesses at a
time)

» Memory coalescing and alignhment

Threads with adjacent indices should
access adjacent memory locations (i.e.
thread K should access Kth data word) o4 bis

Accesses should be aligned for half-words

v

Further information

E. Lindholm, J. Nickolls, S. Oberman, . Montrym.“NVIDIA Tesla: A Unified
Graphics and Computing Architecture”. IEEE Micro 28,2 (March-April
2008), 39-55.

D. Kanter. “NVIDIA’s GT200: Inside a Parallel Processor”.

K. Fatahalian, M. Houston.“GPUs: A Closer Look”. ACM Queue 6,2 (March-
April 2008), 18-28.
K. Datta, M. Murphy,V. Volkoy, S.Williams, |. Carter, L. Oliker, D. Patterson, J.

Shalf, K. Yelick.*Stencil Computation Optimization and Autotuning on State-
of-the-Art Multicore Architectures”. Supercomputing’08.

Core Intel AMD sSun STI NVIDIA
Architecture Core2 Barcelona MNiagaraZ? Cell eDP SPE GT200 SM
Tope super scalar | super scalar MT SIMD MT
YI out of order | out of order dual issue' dual issue SIMD
Process 63nm f3nm bonm f3nm f3nm
Clock (GHz) 266 2350 .16 320 1.3
DP GFlop/s 10.7 9.2 1.16 12.8 2.6
Local-Store — — — 256KB 16KB™"
L1 Data Cache 32ZKB odKB KB — —
private L2 cache — J12ZKB — — —
System Xeon E3355 | Opteron 2356 | UlraSparc TS140 T2+ | QS22 PowerXCell 51 GeForce
(Clovertown) | (Barcelona) (Victoria Falls) iCell Blade) GTX2580
Heterogeneous no no no multicore multichip
bdockets 2 2 2 2 1
Cores per Socket 4 4 B Bi+1) 30 (= 8)
ared T T3 cache 4 4MB 2=2MB 2= 4MB
shared LY/L3 cache ishared by 2) | (shared by 4 ishared by &) - o
DF GFlop/s B33 736 187 2048 T8
Primary memary HW prefetch | HW prefetch Multithreading DMA Multithreading
parallelism paradigm = with coalescing
DEAM 21533 read) 21,33 42 66(read) 512 [41 (device)
Bandwidth (GB/s) 10.66(write) o 21.33(write) T 4 (PCle)
DFP Flop:Byte Ratio 266 345 0.29 4.00 0.33
| [T L ~ 1GB ';di.""r'jl.:{':l
DRAM Capacity 16GB 16GB 32GB 32GB 4GB (host)
System Power (Watts)® 33 350 610 2704 450 (236)
Chip Power (Watts) 2 120 295 2x84 290 165
Threading Pthreads Pthreads Pthreads libspe 2.1 CUDA 2.0
Compiler we 100 gec 4. 1.2 ece 4.0.4 xlc 5.2 mvee 002 1221

Table 1. Architectural summary of evaluated platforms. TEach of the two thread groups may issue up to one instruction.
**16 KB local-store shared by all concurrent CUDM thread blocks on the SM. *Cell Bladecenter power running Linpack
averaged per blade. (www.green300.0rg) "All system power is measured with a digital power meter while under a full
computational load. YChip power is based on the maximum Thermal Design Power (TDP) from the manufacturer’s
datasheets. *GTX280 system power shown for the entire system under load (450W) and GTX280 card itself (236W).

