
NVIDIA Tesla
as Computing Architecturep g

Advanced Computer Architecture, 332

CUDA Execution ModelCUDA Execution Model
CUDA is a C extension

Serial CPU codeSerial CPU code
Parallel GPU code (kernels)

GPU kernel is a C function
Each thread executes kernel code
A group of threads forms a
th d bl k (1D 2D 3D)thread block (1D, 2D or 3D)
Thread blocks are organised into
a grid (1D or 2D)g ()

Threads within the same thread
bl k h i tiblock can synchronise execution

Example: Matrix additionExample: Matrix addition
__global__ void matAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i = blockIdx x * blockDim x + threadIdx x;int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];j j j

}

int main()

{

// Kernel setup

dim3 blockDim(16, 16);

di 3 idDi ((N bl kDi 1) / bl kDidim3 gridDim((N + blockDim.x – 1) / blockDim.x,

(N + blockDim.y – 1) / blockDim.y);

// Kernel invocation

matAdd<<<gridDim, blockDim>>>(A, B, C);matAdd gridDim, blockDim (A, B, C);

}

CUDA Memory ModelCUDA Memory Model
Local memory – private to
each thread (slow if off-chip, (p
fast if register allocated)
Shared memory – shared
between threads in a thread between threads in a thread
block (fast on-chip)
Global memory – shared
between thread blocks in a grid
(slow off-chip)
Constant memory (read-only; y (y;
off-chip but cached)
Texture memory (read-only;
off chip but cached)off-chip but cached)

Tesla architectureTesla architecture
A unified graphics and computing architecture
Scalable array of streaming multiprocessors (SMs)Scalable array of streaming multiprocessors (SMs)
CUDA thread blocks get mapped to SMs
SMs have thread processors private registers shared SMs have thread processors, private registers, shared
memory, etc.

GT200
10 Thread Processing Clusters (TPCs)

3 Streaming Multiprocessors (SMs) per TPC

8 32-bit FPU per SM

1 64-bit FPU per SM

16K 32-bit registers per SM

Up to 1024 threads / 32 warps per SM

8 64-bit memory controllers (512-bit wide
 f)memory interface)

G80
8 Thread Processing Clusters (TPCs)

2 Streaming Multiprocessors (SMs) per TPC

8 32-bit FPU per SM

8K 32-bit registers per SM

Up to 768 threads / 24 warps per SM

6 64-bit memory controllers (384-bit wide
memory interface)memory interface)

GT200 streaming multiprocessorGT200 streaming multiprocessor

GT200 streaming multiprocessorGT200 streaming multiprocessor
Multithreaded instruction fetch and issue unit
8 streaming processors (SP)8 streaming processors (SP)

32-bit ALU and FPU (e.g. bitwise, min, max; FP add, mul, mad)
Branch unit (e.g. cmp)(g p)

2 special-function units (SFU)
Transcendental functions (e.g. reciprocal, sine), interpolation
Interpolation hardware can be used as 4 FP multipliers

16KB shared memory (as fast as registers, if no conflicts)
64-bit FP and integer unit (not in G80)
16K 32-bit registers (only 8K in G80)

Global block schedulerGlobal block scheduler
Reads grid information that is sent from the CPU to the
GPU when a kernel is startedGPU when a kernel is started
Issues thread blocks to SMs that have sufficient resources
for execution (up to 8 blocks per SM)

SM multithreaded instruction unitSM multithreaded instruction unit
Instruction unit creates, manages, schedules and executes
threads in groups of 32 threads called warpsthreads in groups of 32 threads called warps
Warp instructions are fetched into an instruction buffer
Scoreboard qualifies warp instructions for issueq p
Scheduler prioritises ready to issue warp instructions
based on their type and “fairness”
Scheduler issues a warp instruction with highest priority

A hypothetical GPU:yp
• Four warp contexts T0–T3
• 20 cycle compute
• 50 cycle memory access

K. Fatahalian, M. Houston. "A Closer Look at
GPUs," Commun. ACM, 51:10, pp. 50-57.

SM instruction issueSM instruction issue
To optimise for power and performance, GPU units are in
multiple clock domainsmultiple clock domains

Core clock (e.g. 600 MHz) – “slow” cycles
FUs clock (e.g. 1300 MHz) – “fast” cycles
Memory clock (e.g. 1100 MHz)

Issue logic can issue every slow cycle (every 2 fast cycles)
FUs can typically be issued instructions every 4 fast cycles
(1 cycle per 8 threads from a warp)

“Dual” issue to independent
FUs on alternate slow cycles

SM branch managementSM branch management
Threads in a warp start executing from the same address
A warp that executes a branch instruction waits until the A warp that executes a branch instruction waits until the
target address for every thread in the warp is computed
Threads in a warp can take the same branch path ☺p p
Threads in in warp can diverge to different paths

the warp serially executes each path, disabling threads that are
not on that path;
when all paths complete, the threads reconverge

Di er ence nl cc rs ithin a ar different ar s Divergence only occurs within a warp – different warps
execute independently
Minimising divergence is important for performance, but Minimising divergence is important for performance, but
not correctness (cf. cache lines)

GT200 streaming multiprocessorGT200 streaming multiprocessor

TPC memory pipelineTPC memory pipeline
Load and store instructions are
generated in the SMsgenerated in the SMs

Address calculation (register + offset)
Virtual to physical address translation

Issued a warp at a time – executed in
half-warp groups (i.e. 16 accesses at a
ti)time)
Memory coalescing and alignment

Threads with adjacent indices should Threads with adjacent indices should
access adjacent memory locations (i.e.
thread K should access Kth data word)
Accesses should be aligned for half-words

Further informationFurther information
E. Lindholm, J. Nickolls, S. Oberman, J. Montrym. “NVIDIA Tesla: A Unified
Graphics and Computing Architecture”. IEEE Micro 28, 2 (March-April
2008) 39 55 h //d d i /10 1109/MM 2008 312008), 39-55. http://dx.doi.org/10.1109/MM.2008.31

D. Kanter. “NVIDIA’s GT200: Inside a Parallel Processor”.
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242

K. Fatahalian, M. Houston. “GPUs: A Closer Look”. ACM Queue 6, 2 (March-
April 2008), 18-28. http://doi.acm.org/10.1145/1365490.1365498

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J.
Shalf, K. Yelick. “Stencil Computation Optimization and Autotuning on State-
of-the-Art Multicore Architectures”. Supercomputing’08.
http://doi.acm.org/10.1145/1413370.1413375p g

