
332
Ad d C A hiAdvanced Computer Architecture

Chapter 7

Parallel architectures, shared memory,
and cache coherency and cache coherency

February 2009y
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (3rd and 4th

eds), and on the lecture slides of David Patterson, John Kubiatowicz
and Yujia Jin at Berkeley

Advanced Computer Architecture Chapter 6.1

and Yujia Jin at Berkeley

Overview
Why add another processor?y p
How should they be connected – I/O, memory bus, L2
cache, registers?
C h h th blCache coherency – the problem
Coherency – what are the rules?
Coherency using broadcast – update/invalidateCoherency using broadcast update/invalidate
Coherency using multicast – SMP vs ccNUMA
Distributed directories, home nodes, ownership; the , , p;
ccNUMA design space
Beyond ccNUMA; COMA and Simple COMA
H b id d lHybrids and clusters

Advanced Computer Architecture Chapter 6.2

London e-Science Centre’s “Mars” cluster
408 CPUs:

72 dual 1.8GHz Opteron processors, 2Gb
memory, 80Gb S-ATA disk, Infiniband y
40 dual 1.8GHz Opteron processors, 4Gb
memory, 80Gb S-ATA disk, Gigabit
Ethernet
88 dual 1.8GHz Opteron processors, 2Gb
memory, 80Gb S-STA disk, Gigabit
Ethernet
4 dual 2.2GHz Opteron processors, 4Gb
memory, 36Gb SCSI disk, Gigabit
Ethernet
1 M ll MTS9600 I fi ib d it h 1 Mellanox MTS9600 Infiniband switch
configured with 72 ports
5 Extreme Networks Summit 400-48t
48 port Gigabit Switches

Advanced Computer Architecture Chapter 6.3

48 port Gigabit Switches

NPACI Blue Horizon, San Diego Supercomputer Center

144 eight processor SMP High 144 eight-processor SMP High
Nodes perform the primary compute
functions.
12 two-processor SMP High Nodes 12 two-processor SMP High Nodes
perform service functions.
1,152 Power3 processors in the
compute nodes run at 375 MHz. Each compute nodes run at 375 MHz. Each
processor has a peak performance of
1.500 Mflops (millions of floating-
point operations per second)
576 gigabytes of total system
memory, at 4 GB per compute node
5.1 terabytes -- 5,100 gigabytes --
f i t d di k

• 42 towers, or frames, house the
compute and service nodes. Four racks
house the disk.

of associated disk • 1,500 square feet
• Programmed using MPI (“Message

Passing Interface”)

Advanced Computer Architecture Chapter 6.4

HPCx – Supercomputing service for UK science
Located at Daresbury Labs, Cheshire, operated by University of Located at Daresbury Labs, Cheshire, operated by University of
Edinburgh Parallel Computing Centre
IBM eServer 575 nodes, each 16-way SMP Power5
96 nodes for compute jobs for users, a total 1536 processors

Four chips (8 processors) are
i d i l i hi integrated into a multi-chip
module (MCM)
Two MCMs (16 processors)
c mprise ne framecomprise one frame
Each MCM is configured with
128 MB of L3 cache and 16
GB of main memoryGB of main memory
Total main memory of 32 GB
per frame shared between
16 processors of frame

Advanced Computer Architecture Chapter 6.5

16 processors of frame
frames connected via IBM's
High Performance Switch
(HPS)

HECToR – “High-End Computing Terascale Resource”
Successor to HPCx
Located at University of Located at University of
Edinburgh, operated on behalf
of UK science community
Six-year £133M contract,
includes mid-life upgrades (60-
>250 TeraFLOPS)>250 TeraFLOPS)
Cray XT4: 5664 nodes with 2
cores each, so 11328 AMD
Opteron cores (2.8GHz)
6GB RAM per node (3GB per 6GB RAM per node (3GB per
core, 33TB in the machine)
Cray “Seastar” interconnect (20
x 12 x 24 3D torus), directly
connected to HyperTransport

 i t f P k bimemory interface. Peak bi-
directional bandwidth of
7.6 GB/s
12 I/O nodes connected to
576TB (soon to be increased) of ()
RAID disk storage
OS: Compute Node Linux kernel
for compute nodes, full linux for
I/O
HECT R l i l d l

Advanced Computer Architecture Chapter 6.6

HECToR also includes a large
vector processor extension, using
CRAY X2 technology

http://www.hector.ac.uk

Advanced Computer Architecture Chapter 6.7

SGI Origin 3800 at SARA, Netherlands

1024-CPU system consisting of two 512-CPU SGI Origin 3800 systems. Peak performance of 1
TFlops (1012 floating point operations) per second. 500MHz R14000 CPUs organized in 256 4-
CPU nodes
1 TByte of RAM. 10 TByte of on-line storage & 100 TByte near-line storage

Advanced Computer Architecture Chapter 6.8

45 racks, 32 racks containing CPUs & routers, 8 I/O racks & 5 racks for disks
Each 512-CPU machine offers application program a single, shared memory image

5,120 (640 8-way nodes) 500 MHz NEC CPUs

The “Earth Simulator”
, (y)

8 GFLOPS per CPU (41 TFLOPS total)
2 GB (4 512 MB FPLRAM modules) per CPU (10 TB
total)
shared memory inside the node y
640 × 640 crossbar switch between the nodes
16 GB/s inter-node bandwidth
20 kVA power consumption per node

Occupies purpose-built
b ildi i Y k h CPUs housed in building in Yokohama,
Japan
Operational late
2001/early 2002
Vector CPU using 0 15 μm

CPUs housed in
320 cabinets, 2
8-CPU nodes per
cabinet. The
cabinets are
organized in a ring Vector CPU using 0.15 μm

CMOS process,
descendant of NEC SX-5
Runs Super-UX OS

organized in a ring
around the
interconnect,
which is housed in
another 65
cabinetscabinets
Another layer of
the circle is
formed by disk
array cabinets.

Advanced Computer Architecture Chapter 6.9

The whole thing
occupies a building
65 m long and 50
m wide

Bluegene/L at LLNL
1024 nodes/cabinet 2 CPUs per 1024 nodes/cabinet, 2 CPUs per
node
106,496 nodes in total, 69TiB RAM
32 x 32 x 64 3D torus interconnect
1,024 gigabit-per-second links to a
global parallel file system to support
fast input/output to disk
1.5-3.0 MWatts

Time-lapse movie of Time-lapse movie of
installation of 212,992-
CPU system at Lawrence
Livermore Labs
“classified service in

Advanced Computer Architecture Chapter 6.10

classified service in
support of the National
Nuclear Security
Administration’s stockpile
science mission”

BlueGene/L

~25 KWatts
25 KW

Advanced Computer Architecture Chapter 6.11

https://asc.llnl.gov/publications/sc2007-bgl.pdf
http://bluegene.epfl.ch/HardwareOverviewAndPlanning.pdf

• TOP500 List - Nov 2008
(1-9)

• ranked by their • ranked by their
performance on the
LINPACK Benchmark.

• Rmax and Rpeak values are
i GFl F d il

p
in GFlops. For more details
about other fields, check
the TOP500 description.

• Task is “to solve a as s to so a
dense system of linear
equations. For the
TOP500, we used that
version of the version of the
benchmark that allows
the user to scale the
size of the problem
and to optimize the and to optimize the
software in order to
achieve the best
performance for a
given machine”

Advanced Computer Architecture Chapter 6.12

given machine

• http://www.top500.org

What are parallel computers used for?

Executing loops in parallel
Improve performance of single application
Barrier synchronisation at end of loopBarrier synchronisation at end of loop
Iteration i of loop 2 may read data produced by iteration i of
loop 1 – but perhaps also from other iterations
Example: NaSt3DGPExample NaSt3DGP

High-throughput servers
Eg. database, transaction processing, web server, e-commerce

 f f l lImprove performance of single application
Consists of many mostly-independent transactions
Sharing data
Synchronising to ensure consistency
Transaction roll-back

Mixed multiprocessing workloads

Advanced Computer Architecture Chapter 6.13

Mixed, multiprocessing workloads

Why add another processor?

m
an

ce
Further simultaneous

pe
rf

or
m

instruction issue slots
rarely usable in real code

Number of transistors

Smallest working CPU

Increasing the complexity of a single CPU leads to diminishing
returns

Due to lack of instruction level parallelismDue to lack of instruction-level parallelism
Too many simultaneous accesses to one register file
Forwarding wires between functional units too long - inter-cluster communication
takes >1 cycle

Advanced Computer Architecture Chapter 6.14

takes >1 cycle

Architectural effectiveness of Intel processors
8

7.5M transistors

6

7
#transistors/M

MIPS/MHZ

4

5 SPECint92/MHz

SPECint95/50MHz

4.5M transistors

M
H

z

2

3

1.2M transistors nt
95

=9
.4

7@
23

3

S =4
.0

1

0

1

04 08 80 85 86 88 86 DX SX SL DX SX
DX2
6S

L X4
&66 75 10

0

12
0

13
3

15
0

16
6

20
0

MX M
X

M
X

15
0

23
3

1.2M transistors

SP
E

C
in

•2
18

.9
 M

IP
S

SP
E

C
in

t9
5=

Architectural effectiveness shows performance gained through
hit t th th l k t

40
04

80
08

80
80

80
85

80
86

80
88

80
28

6
80

38
6D

X
80

38
6S

X
80

38
6S

L
Int

el4
86

DX
Int

el4
86

S
Int

elD
X

int
el4

86
S

int
elD

X

Pen
tiu

m
 60

&6
Pen

tiu
m

 7

Pen
tiu

m
 90

/10
Pen

tiu
m

 12
Pen

tiu
m

 13
Pen

tiu
m

 15
Pen

tiu
m

 16
Pen

tiu
m

 20

Pen
tiu

m
 16

6M
M

Pen
tiu

m
 20

0 M
M

Pen
tiu

m
 23

3 M
M

Pen
tiu

m
 P

ro
 15

Pen
tiu

m
 II

23

Advanced Computer Architecture Chapter 6.15Source: http://www.galaxycentre.com/intelcpu.htm and Intel

architecture rather than clock rate
Extra transistors largely devoted to cache, which of course is
essential in allowing high clock rate

Architectural effectiveness of Intel processors
45 60

42M transistors

35

40

50
MIPS/MHZ

#transistors/M

SPECint2000=644@1533MHz

25

30 40

SPECint92/MHz*10

SPECint95/MHz*1000

SPECint2000/MHz*100

SPECint95=2.31@75MHz

SPECint95=6.08@150MHz

SPECint2000=656@2000MHz

(SPECint2000=1085
@3060MHz)

15

20

20

30

h

S C t95 .3 @75 SPECint2000 656@2000MHz

5

10

10

h

9.5M transistors

SPECint92=16.8@25MHz

SPECint92=70.4@60MHz

0

5

40
04

80
08

80
80

80
85

80
86

80
88

80
28

6

03
86

D
X

03
86

S
X

03
86

S
L

el
48

6D
X

el
48

6S
X

nt
el

D
X
2

el
48

6S
L

nt
el

D
X
4

m
60

&
66

tiu
m

 7
5

90
/1

00

um
 1

20

um
 1

33

um
 1

50

um
 1

66

um
 2

00

66
M

M
X

00
 M

M
X

33
 M

M
X

P
ro

 1
50

m
 II

 2
33

45
0M

H
z

73
3M

H
z

hl
on

 X
P

nt
iu

m
 4

0

3.1M transistors

Advanced Computer Architecture Chapter 6.16
Sources: http://www.galaxycentre.com/intelcpu.htm http://www.specbench.org/ www.sandpile.org and Intel

80 80 80

In
te

In
te In

in
te in

P
en

tiu
m

P
en

t

P
en

tiu
m

P
en

ti u

P
en

tiu

P
en

tiu

P
en

tiu

P
en

tiu

P
en

tiu
m

 1
6

P
en

tiu
m

 2
0

P
en

tiu
m

 2
3

P
en

tiu
m

 P

P
en

tiu
m

P
en

tiu
m

 II
I 4

P
en

tiu
m

 II
I 7

A
M

D
 A

th

P
en

Computation Density of Processors

0 4

0.45

0.25

0.3

0.35

0.4

on
 T

ra
ns

is
to

r)

0.1

0.15

0.2

M
O

PS
/M

H
z/

M
ili

o

0

0.05

Pentium MMX
(P55C)

Celeron
(Mendocino)

Pentium III EB Pentium III-S Penitum 4
(Willamette)

Pentium 4
(Northwood)

(M

Serial instruction stream limits parallelism
Power consumption limits performance

Advanced Computer Architecture Chapter 6.17

January 12, 2004 BWRC, UC Berkeley 12

http://bwrc.eecs.berkeley.edu/Presentations/Retreats/Winter_Retreat_2004/

How to add another processor?

Idea: instead of trying to exploit more instruction-level
parallelism by building a bigger CPU, build two - or more
This only makes sense if the application parallelism This only makes sense if the application parallelism
exists…
Why might it be better?

No need for multiported register file
No need for long-range forwarding
CPUs can take independent control pathsp p
Still need to synchronise and communicate
Program has to be structured appropriately…

Advanced Computer Architecture Chapter 6.18

How to add another processor?
How should the CPUs be connected?
Idea: systems linked by network connected via I/O bus

Eg Fujitsu AP3000, Myrinet, Quadrics

Id CPU/ k li k d b t k ti i Idea: CPU/memory packages linked by network connecting main
memory units

Eg SGI Origin

Idea: CPUs share main memory
Eg Intel Xeon SMP

Idea: CPUs share L2/L3 cacheIdea: CPUs share L2/L3 cache
Eg IBM Power4

Idea: CPUs share L1 cache
Idea: CPUs share registers, functional units

Cray/Tera MTA (multithreaded architecture), Symmetric multithreading (SMT), as
in Hyperthreaded Pentium 4, Alpha 21464, etc

Advanced Computer Architecture Chapter 6.19

yp , p ,

How to program a parallel computer?
Shared memory makes parallel jy p
programming much easier:

for(i=0; I<N; ++i)
par for(j=0; j<M; ++j)

i
j

par_for(j 0; j M; j)
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

par_for(i=0; I<N; ++i)
f (j 0 j M j)

Loop 1:

for(j=0; j<M; ++j)
A[i,j] = (A[i,j-1] + A[i,j])*0.5;

i
j

First loop operates on rows in parallel
Second loop operates on columns in
parallel

i

Loop 2:parallel
With distributed memory we would
have to program message passing to

Loop 2:

Advanced Computer Architecture Chapter 6.20

p g g p g
transpose the array in between
With shared memory… no problem!

Shared-memory parallel - OpenMP
OpenMP is a standard design for language extensions for
shared-memory parallel programming
Language bindings exist for Fortran, C and to some extent Language b nd ngs ex st for Fortran, and to some extent
(eg research prototypes) for C++, Java and C#
Implementation requires compiler support

Example:
for(i=0; I<N; ++i)

#pragma omp parallel for
for(j=0; j<M; ++j)
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

#pragma omp parallel for
par_for(i=0; I<N; ++i)

for(j=0; j<M; ++j)

Advanced Computer Architecture Chapter 6.21

A[i,j] = (A[i,j-1] + A[i,j])*0.5;

Implementing shared-memory parallel loop
if (myThreadId() == 0)for (i=0; i<N; i++) { if (myThreadId() 0)
i = 0;

barrier();
// on each thread

for (i 0; i<N; i) {
C[i] = A[i] + B[i];

}
Barrier(): block
until all threads
reach this point// on each thread

while (true) {
local_i = FetchAndAdd(&i);

reach this point

“self-scheduling” loop
FetchAndAdd() is atomic

if (local_i >= N) break;
C[local_i] = 0.5*(A[local_i] + B[local_i]);

}FetchAndAdd() is atomic
operation to get next un-
executed loop iteration:

Int FetchAndAdd(int *i) {

}
barrier();

Optimisations: () {
lock(i);
r = I;
i = i+1;

Optimisations:
• Work in chunks
• Avoid unnecessary barriers
• Exploit “cache affinity” from loop to loop

Advanced Computer Architecture Chapter 6.22

i i 1;
unlock(i);
return(r);

}

There are smarter ways to implement
FetchAndAdd….

Exploit cache affinity from loop to loop

More OpenMP default(shared) private(i):
All variables except i are
h d b ll th d

#pragma omp parallel for \
d f l (h d) i (i) \

shared by all threads.
schedule(static,chunk):
Iterations of the parallel default(shared) private(i) \

schedule(static,chunk) \
reduction(+:result)

Iterations of the parallel
loop will be distributed in
equal sized blocks to each
thread in the “team” reduction(+:result)

for (i=0; i < n; i++)
result = result + (a[i] * b[i]);

thread in the team
reduction(+:result):
performs a reduction on the result result (a[i] b[i]); p rforms a r uct on on th
variables that appear in its
argument list

A private copy for each variable is A private copy for each variable is
created for each thread. At the
end of the reduction, the
reduction operator is applied to all
private copies of the shared

Advanced Computer Architecture Chapter 6.23

private copies of the shared
variable, and the final result is
written to the global shared
variable. http://www.llnl.gov/computing/tutorials/openMP/#REDUCTION

Distributed-memory parallel - MPI

MPI (“Message-passing Interface) is a standard API for
parallel programming using message passing
Usually implemented as libraryUsually implemented as library
Six basic calls:

MPI_Init - Initialize MPI
MPI_Comm_size - Find out how many processes there are
MPI_Comm_rank - Find out which process I am
MPI_Send - Send a message g
MPI_Recv - Receive a message
MPI_Finalize - Terminate MPI

Key idea: collective operationsKey idea: collective operations
MPI_Bcast - broadcast data from the process with rank "root" to all
other processes of the group.
MPI Reduce – combine values on all processes into a single value using the

Advanced Computer Architecture Chapter 6.24

MPI_Reduce combine values on all processes into a single value using the
operation defined by the parameter op.

MPI Example: initialisation ! Compute number of processes and myrank
CALL MPI_COMM_SIZE(comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)

! t i f l l bl k SPMD ! compute size of local block
m = n/p
IF (myrank.LT.(n-p*m)) THEN

m = m+1

SPMD
“Single Program, Multiple Data”
Each processor executes the
program m = m+1

END IF
! Compute neighbors

IF (myrank.EQ.0) THEN

p g
First has to work out what part it
is to play

left = MPI_PROC_NULL
ELSE left = myrank - 1
END IF
IF (k EQ 1)THEN

“myrank” is index of this CPU
“comm” is MPI “communicator” –
abstract index space of p
processors IF (myrank.EQ.p-1)THEN

right = MPI_PROC_NULL
ELSE right = myrank+1
END IF

processors

In this example, array is
partitioned into slices END IF

! Allocate local arrays
ALLOCATE (A(0:n+1,0:m+1), B(n,m))

partitioned into slices

0 1 2 3

Advanced Computer Architecture Chapter 6.25http://www.netlib.org/utk/papers/mpi-book/node51.html

!Main Loop
DO WHILE(.NOT.converged)

! compute boundary iterations so they’re ready to be sent right away
DO i=1, n

Example:
Jacobi2D

Sweep over A
computing B(i,1)=0.25*(A(i-1,j)+A(i+1,j)+A(i,0)+A(i,2))

B(i,m)=0.25*(A(i-1,m)+A(i+1,m)+A(i,m-1)+A(i,m+1))
END DO
! Communicate

computing
moving
average of
neighbouring
four elements

CALL MPI_ISEND(B(1,1),n, MPI_REAL, left, tag, comm, req(1), ierr)
CALL MPI_ISEND(B(1,m),n, MPI_REAL, right, tag, comm, req(2), ierr)
CALL MPI_IRECV(A(1,0),n, MPI_REAL, left, tag, comm, req(3), ierr)
CALL MPI_IRECV(A(1,m+1),n, MPI_REAL, right, tag, comm, req(4), ierr) g g q
! Compute interior
DO j=2, m-1

DO i=1, n
B(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

Compute new
array B from
A, then copy
it back into B

2

(j) ((j) (j) (j) (j))
END DO

END DO
DO j=1, m

DO i=1, n

This version
tries to
overlap

i ti 2,
A(i,j) = B(i,j)

END DO
END DO
! Complete communication

communication
with
computation

Advanced Computer Architecture Chapter 6.26

p
DO i=1, 4

CALL MPI_WAIT(req(i), status(1.i), ierr)
END DO

END DO
http://www.netlib.org/utk/papers/mpi-book/node51.html

B(1:n,1) B(1:n,m)

How to connect processors...
Tradeoffs:Tradeoffs:

close coupling to minimise delays incurred when processors interact
separation to avoid contention for shared resources

R lResult:
spectrum of alternative approaches based on application requirements, cost, and
packaging/integration issues

Currently:
just possible to integrate 2 full-scale CPUs on one chip together with large shared
L2 cache
common to link multiple CPUs on same motherboard with shared bus connecting to
main memory
more aggressive designs use richer interconnection network, perhaps with cache-to-
cache transfer capabilitycache transfer capability

Advanced Computer Architecture Chapter 6.27

Multiple caches… and trouble
Main memory

x

second-level cache second-level cache second-level cache

Interconnection network

First-level cache
x

x
First-level cache First-level cache

x

CPU CPU CPU
Processor 0 Processor 1 Processor 2

Suppose processor 0 loads memory location x
x is fetched from main memory and allocated into processor 0’s cache(s)

Processor 0 Processor 1 Processor 2

Advanced Computer Architecture Chapter 6.28

Multiple caches… and trouble
Main memory

x

second-level cache second-level cache second-level cache

Interconnection network

First-level cache
x

x
First-level cache

x

x
First-level cache

x

CPU

x

CPU CPU
Processor 0 Processor 1 Processor 2

Suppose processor 1 loads memory location x
x is fetched from main memory and allocated into processor 1’s cache(s) as well

Processor 0 Processor 1 Processor 2

Advanced Computer Architecture Chapter 6.29

Multiple caches… and trouble
Main memory

x

second-level cache second-level cache second-level cache

Interconnection network

First-level cache
x

x
First-level cache

x

x
First-level cache

x
CPU

x

CPU CPU
Processor 0 Processor 1 Processor 2

Suppose processor 0 stores to memory location x
Processor 0’s cached copy of x is updated

Processor 0 Processor 1 Processor 2

Advanced Computer Architecture Chapter 6.30

Processor 1 continues to used the old value of x

Multiple caches… and trouble
Main memory

x

second-level cache second-level cache second-level cache

Interconnection network

First-level cache
x

x
First-level cache

x

x
First-level cache

X?x
CPU

x

CPU

X?

CPU
Processor 0 Processor 1 Processor 2

Suppose processor 2 loads memory location x
How does it know whether to get x from main memory,
processor 0 or processor 1?

Processor 0 Processor 1 Processor 2

Advanced Computer Architecture Chapter 6.31

processor 0 or processor 1?

Implementing distributed, shared memory

Two issues:
1. How do you know where to find the latest

i f th h li ?version of the cache line?
2. How do you know when you can use your cached

copy and when you have to look for a more upcopy – and when you have to look for a more up-
to-date version?

We will find answers to this after first thinking about what
a distributed shared memory implementation is

d dsupposed to do…

Advanced Computer Architecture Chapter 6.32

Cache consistency (aka cache coherency)
Goal (?):

“Processors should not continue to use out-of-date data
indefinitely”

G l (?)Goal (?):
“Every load instruction should yield the result of the
most recent store to that address”most recent store to that address

Goal (?): (definition: Sequential Consistency)
“the result of any execution is the same as if the the result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order specified processor appear in this sequence in the order specified
by its program”

(Leslie Lamport, “How to make a multiprocessor computer that correctly executes multiprocess
programs” (IEEE Trans Computers Vol.C-28(9) Sept 1979)

Advanced Computer Architecture Chapter 6.33

Implementing Strong Consistency: update

Idea #1: when a store to address x occurs,
update all the remote cached copies
To do this we need either:

To broadcast every store to every remote cachey y
Or to keep a list of which remote caches hold the
cache line
O t l t k t f h th th Or at least keep a note of whether there are any
remote cached copies of this line

But first how well does this update idea But first…how well does this update idea
work?

Advanced Computer Architecture Chapter 6.34

Implementing Strong Consistency: update…

Problems with update
1. What about if the cache line is several

d lwords long?
Each update to each word in the line leads to a
broadcastbroadcast

2. What about old data which other
processors are no longer interested in?p g

We’ll keep broadcasting updates indefinitely…
Do we really have to broadcast every store?
It would be nice to know that we have exclusive
access to the cacheline so we don’t have to
broadcast updates…

Advanced Computer Architecture Chapter 6.35

A more cunning plan… invalidation
Suppose instead of updating remote cache lines, we
invalidate them all when a store occurs?
After the first write to a cache line we know there are After the first write to a cache line we know there are
no remote copies – so subsequent writes don’t lead to
communication

 l d l b h dIs invalidate always better than update?
Often
But not if the other processors really need the new data as soon as p y
possible

Note that to exploit this, we need a bit on each cache
line indicating its sharing stateg g
(analogous to write-back vs write-through caches)

Advanced Computer Architecture Chapter 6.36

Update vs invalidate

Update:
May reduce latency of subsequent remoteMay reduce latency of subsequent remote
reads
if any are madeif any are made

Invalidate:
M d t k t ffiMay reduce network traffic
e.g. if same CPU writes to the line before
remote nodes take copies of it

Advanced Computer Architecture Chapter 6.37

The “Berkeley" Protocol
Four cache line states:

INVALID
Broadcast invalidations on bus

unless cache line is
exclusively “owned” (DIRTY)

– INVALID
– VALID : clean, potentially shared, unowned
– SHARED-DIRTY : modified, possibly shared, owned

DIRTY difi d l d
y ()

• Write hit:• Read miss:

– DIRTY : modified, only copy, owned

• No action if line is DIRTY
• If VALID or SHARED-DIRTY,

– If another cache has the
line in SHARED-DIRTY
or DIRTY,

• an invalidation is sent, and
• the local state set to DIRTY

• Write miss:

• it is supplied
• changing state to

SHARED-DIRTY
• Line comes from owner (as with

read miss).
• All other copies set to INVALID,

– Otherwise
• the line comes from

memory. The state of the

Advanced Computer Architecture Chapter 6.38

p ,
and line in requesting cache is
set to DIRTY

y
• line is set to VALID

Berkeley cache
h t l:coherence protocol:

state transition
diagram

The BerkeleyThe Berkeley
protocol is
representative of
how typical bus-
based SMPs work

1. INVALID
2. VALID: clean, potentially shared, unowned
3 SHARED DIRTY difi d ibl h d d

Q: What has to
happen on a
“Bus read

Advanced Computer Architecture Chapter 6.39

3. SHARED-DIRTY: modified, possibly shared, owned
4. DIRTY: modified, only copy, owned

“Bus read
miss”?

The job of the cache controller - snooping
Th pr t c l st t tr nsiti ns r impl m nt d b th c ch The protocol state transitions are implemented by the cache
controller – which “snoops” all the bus traffic
Transitions are triggered either bygg y

the bus (Bus invalidate, Bus write miss, Bus read miss)
The CPU (Read hit, Read miss, Write hit, Write miss)

For every bus transaction, it looks up the directory (cache line
state) information for the specified address

If this processor holds the only valid data (DIRTY), it responds to a “Bus read
miss” by providing the data to the requesting CPU
If the memory copy is out of date, one of the CPUs will have the cache line in the
SHARED DIRTY state (because it updated it last) – so must provide data to SHARED-DIRTY state (because it updated it last) – so must provide data to
requesting CPU
State transition diagram doesn’t show what happens when a cache line is displaced…

Advanced Computer Architecture Chapter 6.40

Berkeley protocol - summary
Invalidate is usually better than updateInvalidate is usually better than update
Cache line state “DIRTY” bit records whether remote
copies exist

If t i i lid t d b b d ti b If so, remote copies are invalidated by broadcasting message on bus –
cache controllers snoop all traffic

Where to get the up-to-date data from?
Broadcast read miss request on the bus
If this CPUs copy is DIRTY, it responds
If no cache copies exist, main memory responds
If several copies exist, the CPU which holds it in “SHARED-DIRTY” state
responds
If a SHARED-DIRTY cache line is displaced, … need a plan

How well does it work?
See extensive analysis in Hennessy and Patterson

Advanced Computer Architecture Chapter 6.41

Snoop Cache Extensions
Extensions:

Fourth State: Ownership
Remote Write or

Miss due to
address conflict

CPU Read hit

address conflict
Invalid

Shared
(read/only) CPU Read

CPU Write

• Shared-> Modified,
need invalidate only
(upgrade request), don’t
read memory

Place read miss
on bus

Remote
Read
Place Data

Remote
Write

or Miss due to
address conflict

CPU Write
Place Write
Miss on bus
Remote Read
Write back

read memory
Berkeley Protocol

• Clean exclusive state (no
miss for private data on

on bus

Place Data
on Bus?

address conflict
Write back block

Modified

CPU Write

Exclusive
(d/ l)

Write back
block

m f r pr at ata n
write)
MESI Protocol

• Cache supplies data when
shared state

Place Write
Miss on
Bus(read/write)

CPU read hit
CPU write hit

(read/only)

CPU Write
Place Write

shared state
(no memory access)
Illinois Protocol

Bus

Advanced Computer Architecture Chapter 6.42

Miss on Bus? CPU Read hit

Snooping Cache Variations

BerkeleBasic Illinois MESIBerkeley
Protocol

Owned Exclusive
Owned Shared

Basic
Protocol

Exclusive

Illinois
Protocol
Private Dirty
Private Clean

MESI
Protocol

Modified (private,!=Memory)
eXclusive (private =Memory)Owned Shared

Shared
Invalid

Exclusive
Shared
Invalid

Private Clean
Shared
Invalid

O d t i b i lid t ti

eXclusive (private,=Memory)
Shared (shared,=Memory)

Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
If d d f th h th Sh dIf read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

Advanced Computer Architecture Chapter 6.43

Implementation Complications
Write Races:

Cannot update cache until bus is obtained
Otherwise, another processor may get bus first, Otherwise, another processor may get bus first,
and then write the same cache block!

Two step process:
Arbitrate for bus
Pl b d l Place miss on bus and complete operation

If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.
Split transaction bus:Split transaction bus:

Bus transaction is not atomic:
can have multiple outstanding transactions for a block
Multiple misses can interleave,
allowing two caches to grab block in the Exclusive stateallowing two caches to grab block in the Exclusive state
Must track and prevent multiple misses for one block

Must support interventions and invalidations

Advanced Computer Architecture Chapter 6.44

Implementing Snooping Caches

Multiple processors must be on bus, access to both p p m ,
addresses and data
Add a few new commands to perform coherency,
in addition to read and writen add t on to read and wr te
Processors continuously snoop on address bus

If address matches tag, either invalidate or update
Since every bus transaction checks cache tags Since every bus transaction checks cache tags,
could interfere with CPU just to check:

solution 1: duplicate set of tags for L1 caches just to allow checks in parallel
with CPUw th CPU
solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

block size, associativity of L2 affects L1

Advanced Computer Architecture Chapter 6.45

Implementing Snooping Caches

Bus serializes writes, getting bus ensures no one else can Bus serializes writes, getting bus ensures no one else can
perform memory operation
On a miss in a write-back cache, may have the desired copy
and it’s dirty so must replyand it s dirty, so must reply
Add extra state bit to cache to determine shared or not
Add 4th state (MESI)Add 4th state (MESI)

Advanced Computer Architecture Chapter 6.46

Large-Scale Shared-Memory Multiprocessors

Bus inevitably becomes a bottleneck when many processors
are used

Use a more general interconnection networkUse a more general interconnection network
So snooping does not work

DRAM memory is also distributed
E h d ll t f l l DRAMEach node allocates space from local DRAM
Copies of remote data are made in cache

Major design issues:j g
How to find and represent the “directory" of each line?
How to find a copy of a line?

As a case study we will look at S3 MP (Sun's ScalableAs a case study, we will look at S3.MP (Sun s Scalable
Shared memory Multi-Processor, a CC-NUMA (cache-
coherent non-uniform memory access) architecture

Advanced Computer Architecture Chapter 6.47

Larger MPs

Separate Memory per Processor
L l R i llLocal or Remote access via memory controller
1 Cache Coherency solution: non-cached pages
Alternative: directory per cache that tracks state of every block in every y p y y
cache

Which caches have a copies of block, dirty vs. clean, ...

Info per memory block vs. per cache block?
PLUS: In memory => simpler protocol (centralized/one location)
MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

Prevent directory as bottleneck?
di ib di i i h h k i k f hi h P distribute directory entries with memory, each keeping track of which Procs
have copies of their blocks

Advanced Computer Architecture Chapter 6.48

Distributed Directory MPs

Processor
+cache

Processor
+cache

Processor
+cache

Processor
+cache

Memory

Directory

I/O Memory

Directory

I/O Memory

Directory

I/O Memory

Directory

I/O

DiDiDiDi

Interconnection network

Memory

Directory

I/OMemory

Directory

I/OMemory

Directory

I/OMemory

Directory

I/O

Processor
+cache

Processor
+cache

Processor
+cache

Processor
+cache

Advanced Computer Architecture Chapter 6.49

Directory Protocol
l P l h Similar to Snoopy Protocol: Three states

Shared: ≥ 1 processors have data, memory up-to-date
Uncached (no processor has it; not valid in any cache) p y
Exclusive: 1 processor (owner) has data;

memory out-of-date

In addition to cache state, must track which ,
processors have data when in the shared state (usually
bit vector, 1 if processor has copy)
Keep it simple(r):Keep it simple(r):

Writes to non-exclusive data
=> write miss
Processor blocks until access completesProcessor blocks until access completes
Assume messages received
and acted upon in order sent

Advanced Computer Architecture Chapter 6.50

Directory Protocol

No bus and don’t want to broadcast:
interconnect no longer single arbitration point
ll h li it all messages have explicit responses

Terms: typically 3 processors involved
Local node where a request originatesLocal node where a request originates
Home node where the memory location
of an address resides
Remote node has a copy of a cache Remote node has a copy of a cache
block, whether exclusive or shared

Example messages on next slide: p g
P = processor number, A = address

Advanced Computer Architecture Chapter 6.51

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A;
make P a read sharer and arrange to send data back

W it i L l h H m di t P AWrite miss Local cache Home directory P, A
Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches AInvalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directoryFetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory; invalidate the
block in the cacheblock in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A Data

Advanced Computer Architecture Chapter 6.52

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

State Transition Diagram for an
Individual Cache Block in a Individual Cache Block in a

Directory Based System
States identical to snoopy case; transactions very
similar.
Transitions caused by read misses write misses Transitions caused by read misses, write misses,
invalidates, data fetch requests
Generates read miss & write miss msg to home
di tdirectory.
Write misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch p g p
requests.
Note: on a write, a cache block is bigger, so need to
read the full cache block

Advanced Computer Architecture Chapter 6.53

read the full cache block

CPU -Cache State Machine CPU Read hit

State machine
for CPU requests
for each
memory block

Invalidate
Sharedmemory block

Invalid state
if in
memory

Invalid (read/only) CPU Read
Send Read Miss

message CPU read miss:y

Fetch/Invalidate

g
CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message

CPU read miss:
Send Read Miss

Fetch/Invalidate
send Data Write Back message

to home directory

to home directory
Fetch: send Data Write Back
message to home directory

CPU read miss: send Data
Exclusive
(read/write

)CPU read hit CPU write miss:

CPU read miss: send Data
Write Back message and read
miss to home directory

Advanced Computer Architecture Chapter 6.54

)CPU read hit
CPU write hit

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

State Transition Diagram for the
Di t Directory

S t t & t t th t iti Same states & structure as the transition
diagram for an individual cache
2 actions: update of directory state & send p y
msgs to statisfy requests
Tracks all copies of memory block.
Al i di i h d h Also indicates an action that updates the
sharing set, Sharers, as well as sending a
message.

Advanced Computer Architecture Chapter 6.55

Directory State Machine
Read miss:

State machine
for Directory requests for
each
memory block

Read miss:
Sharers = {P}

d D t V l

Sharers += {P};
send Data Value Reply

memory block
Uncached state
if in memory Uncached

Shared
(read only)

send Data Value
Reply

Data Write Back:
Sh {}

Write Miss:
send Invalidate
to Sharers;

Write Miss:
Sharers = {P};
send Data

Sharers = {}
(Write back block)

to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Value Reply
msg

Exclusive
(read/write

y g
Read miss:
Sharers += {P};
send Fetch;

d D t V l R l
Write Miss:
Sharers = {P};

Advanced Computer Architecture Chapter 6.56

(read/write
)

send Data Value Reply
msg to remote cache
(Write back block)

Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

Example Directory Protocol
Message sent to directory causes two actions:Message sent to directory causes two actions

Update the directory
More messages to satisfy request

Block is in Uncached state: the copy in memory is the Block is in Uncached state: the copy in memory is the
current value; only possible requests for that block are:

Read miss: requesting processor sent data from memory &requestor
made only sharing node; state of block made Sharedmade only sharing node; state of block made Shared.
Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only valid
copy is cached. Sharers indicates the identity of the owner. py y

Block is Shared => the memory value is up-to-date:
Read miss: requesting processor is sent back the data from memory &
requesting processor is added to the sharing set.q g p g
Write miss: requesting processor is sent the value. All processors in the
set Sharers are sent invalidate messages, & Sharers is set to identity of
requesting processor. The state of the block is made Exclusive.

Advanced Computer Architecture Chapter 6.57

Example Directory Protocol
Block is Exclusive: current value of the block is held in the
cache of the processor identified by the set Sharers (the
owner) => three possible directory requests:w) p y qu

Read miss: owner processor sent data fetch message, causing state of block in
owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers which still contains Identity of requesting processor is added to set Sharers, which still contains
the identity of the processor that was the owner (since it still has a readable
copy). State is shared.
Data write-back: owner processor is replacing the block and hence must write it p p g
back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now Uncached,
and the Sharer set is empty.
Write miss: block has a new owner A message is sent to old owner causing the Write miss: block has a new owner. A message is sent to old owner causing the
cache to send the value of the block to the directory from which it is sent to
the requesting processor, which becomes the new owner. Sharers is set to
identity of new owner, and state of block is made Exclusive.

Advanced Computer Architecture Chapter 6.58

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

Processor 1 Processor 2 Interconnect MemoryDirectory

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Advanced Computer Architecture Chapter 6.59

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl A1 10 DaRp P1 A1 0

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1
P2: Read A1

P2 W it 20 t A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Advanced Computer Architecture Chapter 6.60

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Advanced Computer Architecture Chapter 6.61

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

10
10

P2: Write 40 to A2 10

A1 and A2 map to the same cache block

Write Back

Advanced Computer Architecture Chapter 6.62

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 10

A1 and A2 map to the same cache block

Advanced Computer Architecture Chapter 6.63

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Processor 1 Processor 2 Interconnect MemoryDirectory

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

A1A1

P2: Write 20 to A1
p { }

Excl. A1 20 WrMs P2 A1 10
Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0
WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

A1 and A2 map to the same cache block

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Advanced Computer Architecture Chapter 6.64

Implementing a Directory

We assume operations atomic, but they are not;
reality is much harder; must avoid deadlock when
run out of buffers in network (see H&P 3rd ed run out of buffers in network (see H&P 3rd ed
Appendix E)

Optimizations:
read miss or write miss in Exclusive: send data directly to read miss or write miss in Exclusive send data directly to
requestor from owner vs. 1st to memory and then from memory to
requestor

Advanced Computer Architecture Chapter 6.65

Synchronization

Why Synchronize? Need to know when it is safe
for different processes to use shared data

Issues for Synchronization:
Uninterruptable instruction to fetch and update memory (atomic
operation);
User level synchronization operation using this primitive;
For large scale MPs, synchronization can be a bottleneck;
techniques to reduce contention and latency of synchronization

Advanced Computer Architecture Chapter 6.66

Uninterruptable Instruction to Fetch and
Update Memoryp y

Atomic exchange: interchange a value in a register for a value in memoryAtomic exchange: interchange a value in a register for a value in memory
0 => synchronization variable is free
1 => synchronization variable is locked and unavailable

Set register to 1 & swapg p
New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

Key is that exchange operation is indivisible

Test-and-set: tests a value and sets it if the value passes the test
Fetch-and-increment: it returns the value of a memory location and y
atomically increments it

0 => synchronization variable is free

Advanced Computer Architecture Chapter 6.67

Uninterruptable Instruction to
Fetch and Update Memoryp y

Hard to have read & write in 1 instruction: use 2 instead
Load linked (or load locked) + store conditional

Load linked returns the initial value
Store conditional returns 1 if it succeeds (no other store to same memory
location since preceeding load) and 0 otherwise

E l d i t i ith LL & SCExample doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1); load linked
sc R3,0(R1); store conditional, ();
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

Example doing fetch & increment with LL & SC:
ll R2 0(R1) l d li k d

A
l
p

try: ll R2,0(R1); load linked
addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

p
h
a
,

Advanced Computer Architecture Chapter 6.68

A
R

User Level Synchronization—
Operation Using this Primitivep g

Spin locks: processor continuously tries to acquire, spinning
around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

What about MP with cache coherency?
Want to spin on cache copy to avoid full memory latency
Likely to get cache hits for such variables

Problem: exchange includes a write, which invalidates all other
copies; this generates considerable bus traffic
Solution: start by simply repeatedly reading the variable; when Solution: start by simply repeatedly reading the variable; when
it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3 lockit ;not free=>spin

Advanced Computer Architecture Chapter 6.69

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

Another MP Issue:
Memory Consistency Modelsy y

What is consistency? When must a processor see the new
value? e.g. seems thatvalue? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...f () f ()

Impossible for both if statements L1 & L2 to be true?
What if write invalidate is delayed & processor continues?

M i t d l Memory consistency models:
what are the rules for such cases?
Sequential consistency: result of any execution is the same as q y f y m
if the accesses of each processor were kept in order and the
accesses among different processors were interleaved =>
assignments before ifs above

Advanced Computer Architecture Chapter 6.70

ass gnments before fs above
SC: delay all memory accesses until all invalidates done

Memory Consistency Model
Weak consistency schemes offer faster execution than sequential
consistencyconsistency
Several processors provide fence instructions to enforce sequential
consistency when an instruction stream passes such a point. Expensive!
N t ll n issu f m st p ms; Not really an issue for most programs;
they are synchronized

A program is synchronized if all access to shared data are ordered by synchronization
operationsp

write (x)
...
release (s) {unlock}
...

i () {l k}acquire (s) {lock}
...
read(x)

Only those programs willing to be nondeterministic are not synchronized: y p g g y
“data race”: outcome f(proc. speed)
Several Relaxed Models for Memory Consistency since most programs are
synchronized; characterized by their attitude towards: RAR, WAR, RAW,

Advanced Computer Architecture Chapter 6.71

WAW
to different addresses

Summary

Caches contain all information on state of cached memory
blocks
Snooping and Directory Protocols similar; bus makes Snooping and Directory Protocols similar; bus makes
snooping easier because of broadcast (snooping => uniform
memory access)
D h d k k f Directory has extra data structure to keep track of state
of all cache blocks
Distributing directory => scalable shared address Distributing directory scalable shared address
multiprocessor
=> Cache coherent, Non uniform memory access

Advanced Computer Architecture Chapter 6.72

Case study:
Sun’s S3MPSun s S3MP

Protocol Basics
S3.MP uses distributed
singly-linked sharing lists,
with static homes

Each line has a “home"
node, which stores the root
of the directory

Requests are sent to the
home node

Home either has a copy of
the line, or knows a node

Advanced Computer Architecture Chapter 6.73

which does

S3MP: Read Requests
Simple case: initially only the home has the data:Simple case: initially only the home has the data:

C dCurved arrows
show
messages, bold g
straight
arrows show
pointers

Home replies with the data creating a

pointers

Advanced Computer Architecture Chapter 6.74

• Home replies with the data, creating a
sharing chain containing just the reader

S3MP: Read Requests -
tremote

More interesting case: some otherMore interesting case: some other
processor has the data

Home passes request to first processor
in chain, adding requester into the
h i li t

Advanced Computer Architecture Chapter 6.75

sharing list

S3MP -
WritesWrites

If the line is exclusive (i.e. dirty bit is set) no message is required
Else send a write-request to the home

Home sends an invalidation message down the chain
Each copy is invalidated (other than that of the requester)
Final node in chain acknowledges the requester and the home

Chain is locked for the duration of the invalidation

Advanced Computer Architecture Chapter 6.76

When a read or

S3MP - Replacements
When a read or
write requires a
line to be copied
into the cache from
another node, an
existing line may
need to be
replacedreplaced
Must remove it
from the sharing
listlist
Must not lose last
copy of the line

Advanced Computer Architecture Chapter 6.77

Finding your data

How does a CPU find a valid copy of a specified
address’s data?

1. Translate virtual address to physical1. Translate virtual address to physical
2. Physical address includes bits which identify “home” node
3. Home node is where DRAM for this address resides
4 But current valid copy may not be there – may be in another CPU’s 4. But current valid copy may not be there may be in another CPU s

cache
5. Home node holds pointer to sharing chain, so always knows where valid

copy can be found

Advanced Computer Architecture Chapter 6.78

ccNUMA summary
S3MP’s cache coherency protocol implements strong y p p g
consistency

Many recent designs implement a weaker consistency model…

S3MP uses a singly-linked sharing chainS3MP uses a singly linked sharing chain
Widely-shared data – long chains – long invalidations, nasty replacements
“Widely shared data is rare”

I l lifIn real life:
IEEE Scalable Coherent Interconnect (SCI): doubly-linked sharing list
SGI Origin 2000: bit vector sharing list

Real Origin 2000 systems in service with 256 CPUs
Sun E10000: hybrid multiple buses for invalidations, separate switched
network for data transfers

Many E10000s in service, often with 64 CPUs

Advanced Computer Architecture Chapter 6.79

Beyond ccNUMA

COMA: cache-only memory architecture
Data migrates into local DRAM of CPUs where it is being used
Handles very large working sets cleanlyHandles very large working sets cleanly
Replacement from DRAM is messy: have to make sure someone still has a
copy
Scope for interesting OS/architecture hybridp g y
System slows down if total memory requirement approaches RAM
available, since space for replication is reduced

Examples: DDM, KSR-1/2, rumours from IBM…E mp DDM, K / , m f m M

Advanced Computer Architecture Chapter 6.80

Clustered architectures
Idea: systems linked by network connected via I/O bus

E PC l t ith M i t Q d i i t ti t kEg PC cluster with Myrinet or Quadrics interconnection network
Eg Quadrics+PCI-Express: 900MB/s (500MB/s for 2KB messages), 3us latency

Idea: systems linked by network connected via memory interface
E C S tEg Cray Seastar

Idea: CPU/memory packages linked by network connecting main memory units
Eg SGI Origin, nVidia Tesla?

Idea: CPUs share L2/L3 cache
Eg IBM Power4,5,6, Intel Core2, Nehalem, AMD Opteron, Phenom

Idea: CPUs share L1 cache

C i Id d (l t) ll th b t th ti

Idea: CPUs share registers, functional units
IBM Power5,6, PentiumIV(hyperthreading), Intel Atom, Alpha 21464/EV8, Cray/Tera MTA
(multithreaded architecture) , nVidia Tesla

• Cunning Idea: do (almost) all the above at the same time
• Eg IBM SP/Power6: 2 CPUs/chip, 2-way SMT, “semi-shared” 4M/core

L2, shared 32MB L3, multichip module packages/links 4 chips/node,

Advanced Computer Architecture Chapter 6.81

p p g p
with L3 and DRAM for each CPU on same board, with high-speed
(ccNUMA) link to other nodes – assembled into a cluster of 8-way nodes
linked by proprietary network http://www.realworldtech.com/page.cfm?ArticleID=RWT101606194731

Which cache should the cache controller control?

L1 cache is already very busy with CPU traffic
L2 cache also very busy…
L3 h d ’ l h h l f L3 cache doesn’t always have the current value for a
cache line

1. Although L1 cache is normally write-through, L2 is normally write-back
2. Some data may bypass L3 (and perhaps L2) cache (eg when stream-

prefetched)

– In Power4, cache controller manages L2 cache – all , g
external invalidations/requests

– L3 cache improves access to DRAM for accesses both
from CPU and from networkfrom CPU and from network

Advanced Computer Architecture Chapter 6.82

Summary and Conclusions
Caches are essential to gain the maximum performance fromCaches are essential to gain the maximum performance from
modern microprocessors
The performance of a cache is close to that of SRAM but at the
cost of DRAMcost of DRAM
Caches can be used to form the basis of a parallel computer
Bus-based multiprocessors do not scale well: max < 10 nodesBus based multiprocessors do not scale well: max < 10 nodes
Larger-scale shared-memory multiprocessors require more
complicated networks and protocols
CC-NUMA is becoming popular since systems can be built from
commodity components (chips, boards, OSs) and use existing
software
e.g. HP/Convex, Sequent, Data General, SGI, Sun, IBM

Advanced Computer Architecture Chapter 6.83

