
October 2022

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and

Patterson’s Computer Architecture, a quantitative approach (6th ed), and on

the lecture slides of David Patterson’s Berkeley course (CS252)

332

Advanced Computer Architecture

Chapter 1.1

Introduction

Is this course for you? How will it work? What will you learn?

Course materials online on
https://scientia.doc.ic.ac.uk/2223/modules/60001/materials and
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/

https://scientia.doc.ic.ac.uk/2223/modules/60001/materials
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/

What is this course about?

• How the latest microprocessors
work

• Why they are built that way – and
what are the alternatives?

• How you can make software that
uses the hardware in the best
possible way

• How you can make a compiler that
does it for you

• How you can design a computer
for your problem

• What does a big computer look
like?

• What are the fundamental big
ideas and challenges in computer
architecture?

• What is the scope for theory?

Frontier (Oak
Ridge National
Labs, USA)
https://en.wikipedia.or
g/wiki/Frontier_(superc
omputer)

By OLCF at ORNL -
https://www.flickr.com/photos/olcf/52117623843/, CC BY 2.0,

https://commons.wikimedia.org/w/index.php?curid=119231238

Apple
iPhone 14
hhttps://www.ifixit.
com/News/64865/i
phone-14-
teardown

Intel
Kaby
Lake
(my
laptop)
https://en.
wikichip.org
/wiki/intel/c
ore_i7/i7-
8650u

https://en.wikipedia.org/wiki/Frontier_(supercomputer)

This is a textbook-based course
• Computer Architecture: A Quantitative Approach

(6th Edition)
John L. Hennessy, David A. Patterson

– 936 pages. Morgan Kaufmann (2017)

– ISBN: 9780128119051
– Price: around £70 (shop around!)

– Publisher’s companion web site:

• https://www.elsevier.com/books-and-journals/book-
companion/9780128119051

• Textbook includes some vital introductory material as
appendices:

• Appendix C: tutorial on pipelining (read it NOW)

• Appendix B: tutorial on memory hierarchy (read it
NOW)

– Further appendices (some in book, some online) cover
more advanced material (some very relevant to parts of
the course), eg

• Networks

• Parallel applications

• Embedded systems

• Storage systems

• VLIW

• Computer arithmetic (esp floating point)

• Historical perspectives

https://www.elsevier.com/books-and-journals/book-companion/9780128119051

Who are these guys anyway and why should I

read their book?

• John Hennessy:

Founder, MIPS Computer

Systems

President (2000-2016),

Stanford University

Board member, Cisco, chair

of Alphabet Inc (parent

company of Google)

The “godfather of Silicon

Valley” (Wikipedia)

• David Patterson

Leader, Berkeley RISC

project

RAID (redundant arrays of

inexpensive disks)

Professor, University of

California, Berkeley

President of ACM 2004-6

Served on Information

Technology Advisory

Committee to the US

President

RAID-I (1989)

consisted of a Sun

4/280 workstation

with 128 MB of

DRAM, four dual-

string SCSI

controllers, 28 5.25-

inch SCSI disks

and specialized

disk striping

software.

RISC-I (1982) Contains 44,420

transistors, fabbed in 5 micron NMOS,

with a die area of 77 mm2, ran at 1 MHz.

This chip is probably the first VLSI

RISC.

h
tt

p
:/

/w
w

w
.c

s
.b

e
rk

e
le

y
.e

d
u

/~
p

a
tt
r

s
n

/A
rc

h
/p

ro
to

ty
p

e
s
2

.h
tm

l

By Peg Skorpinski - Subject of pictures emailed it upon request, CC BY-
SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3207893

Joint winners of the 2017 ACM Turing Award
“For pioneering a systematic, quantitative approach to the design and evaluation of

computer architectures with enduring impact on the microprocessor industry”

http://www.cs.berkeley.edu/~pattrsn/Arch/RISC1.jpg

Course organisation
• Lecturer:

– Paul Kelly – Leader, Software Performance Optimisation research group

• With help from PhD students

• Nominally four lecture hours per week, up to two hours “synchronous”

• In the last couple of lectures we will spend some time on exam preparation

• Assessment:

– Exam

• The exam will take place in last week of term

• The goal of the course is to teach you how to think about computer

architecture

• The exam is designed to test your thinking, your understanding – not

your memory – have a look at the past papers

– Coursework

• You will be assigned two coursework exercises

• You will learn about using simulators, and experimentally evaluating

hypotheses to understand system performance

• You will get introduced to the research frontier in the field

• You are welcome to bring laptops to class to get started and get help

with lab work (we may go to the DoC labs when necessary)

Ch1

Review of pipelined, in-order

processor architecture and simple

cache structures

Ch2

Dynamic scheduling, out-of-order

Register renaming

Speculative execution

Ch3

Branch prediction

Ch4

Caches in more depth

Software techniques to improve

cache performance

Virtual memory and protection

Ch5

Side-channel vulnerabilities

Ch6

Static instruction scheduling

Software pipelining

instruction-set support for
speculation and register renaming

Course overview (plan)
Ch7

Multi-threading

Ch8

Data-parallelism, SIMD and vector

Ch9

Graphics processors and manycore

Ch10

Shared-memory multiprocessors

Cache coherency

Atomicity, consistency

Large-scale cache-coherency;
ccNUMA. COMA

Lab-based coursework exercise:

“Exploration”: Simulation study

“Evaluation”: summarise and evaluate
a recent research paper in computer
architecture

Exam:

Partially based on recent processor
architecture article, which we will study
in advance (see past papers)

Main points:

• If you have studied computer architecture before, you should be able to this course

– Do you know what a pipeline stall is? Do you know what a cache miss is?

– You will also need to do some C programming, a little Linux command-line and bash-

scripting

• By the end you will understand the main features and design alternatives in computer

architectures widely used today

– The “microarchitecture” of single cores, for both low power and high performance

– Multicore systems, including how the cores are connected and how memory consistency is

maintained

– Graphics processors – at least from a compute point of view (rather than graphics)

– Large-scale computer systems, supercomputers

• The course’s examinable content is defined by the lecture slides, but you will benefit from

reading more widely

• The textbook provides both more depth and more breadth

• There will be two assessed coursework exercises:

(1)“Exploration” – find a single-core microarchitecture configuration that runs a given program

with the lowest total energy

(2)“Evaluation” – write a brief summary and evaluation of an article from one of this year’s

main computer architecture conferences

• The final exam will be partly based on an article about a recent architecture, which we will study

in detail in class

