
October 2022

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and

Patterson’s Computer Architecture, a quantitative approach (6th ed), and on

the lecture slides of David Patterson’s Berkeley course (CS252)

332

Advanced Computer Architecture

Chapter 1.4

Caches: a quick review of introductory memory system

architecture

Objective: bring everyone up to speed, and also establish some key ideas

that will come up later in the course in more complicated contexts

Course materials online on
https://scientia.doc.ic.ac.uk/2223/modules/60001/materials and
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/

https://scientia.doc.ic.ac.uk/2223/modules/60001/materials
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/

Intel Skylake quad-core die photo

https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png

https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png

Intel Skylake quad-core die photo

https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png

https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png

Intel Skylake quad-core die photo

https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png

https://en.wikichip.org/wiki/File:skylake_(quad-core)_(annotated).png

We finished the last lecture by asking how fast
a pipelined processor can go?

A simple 5-stage pipeline can run at 5-9GHz

Limited by critical path through slowest pipeline stage
logic

Tradeoff: do more per cycle? Or increase clock rate?

Or do more per cycle, in parallel…

At 3GHz, clock period is 330 picoseconds.

The time light takes to go about four inches

About 10 gate delays

for example, the Cell BE is designed for 11 FO4 (“fan-out=4”)
gates per cycle:
www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

Pipeline latches etc account for 3-5 FO4 delays leaving only
5-8 for actual work

How can we build a RAM that can implement
our MEM stage in 5-8 FO4 delays?

http://www.fe.infn.it/~belletti/articles/ISSCC2005-cell.pdf

Life used to be so easy

µProc

60%/yr.

(2X/1.5yr)

DRAM

9%/yr.

(2X/10 yrs)1

10

100

1000
1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

In 1980 a large RAM’s access time was close to the CPU cycle time. 1980s machines

had little or no need for cache. Life is no longer quite so simple.

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<1ns

Cache (perhaps multilevel)
10s-1000s K Bytes
1-10 ns (L1-L3)
~$10/ MByte

Main Memory
G Bytes
100ns- 300ns
$0.01/ MByte

Disk
100s G Bytes,
10 ms

(10,000,000 ns)
$0.00005 Mbyte ($50/TB)

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.00005/ MByte

Registers

Cache

“Main” memory

Disk

Tape

Instructions and Operands

Blocks

Pages

Files

Management:
by programmer/compiler

Transfer unit:
1-16 bytes

by cache controller
8-128 bytes

by Operating System
4K-8K bytes

by user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

~ Exponential increase in access latency, block size, capacity

• The Principle of Locality:
– Programs access a relatively small portion of the

address space at any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is

referenced, it will tend to be referenced again soon
(e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is
referenced, items whose addresses are close by
tend to be referenced soon
(e.g., straightline code, array access)

• Most modern architectures are heavily
reliant (totally reliant?) on locality for
speed

1 KB “Direct Mapped” Cache, 32B blocks
• For a 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0

1

2

3

:

Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Tags: metadata to enable us

to check whether we have a

hit
Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

9

Direct-mapped cache - storage

Data: the cached data itself,

arranged in cache lines/blocks

Cache Index

0

1

2

3

:

Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

9

Compare

HitDirect-mapped cache – read access
Data

1 KB “Direct Mapped” Cache, 32B blocks
• For a 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

Load address issued by processor

13

1 KB Direct Mapped Cache, 32B blocks

0

1

2

3

:

Cache Data

Byte 0

31

Byte 1

Byte 32Byte 33:
Byte 992Byte 1023 :

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Cache location 0 can be occupied
by data from main memory
location 0, 32, 64, … etc.

Cache location 1 can be occupied
by data from main memory
location 1, 33, 65, … etc.

In general, all locations with same
Address<9:4> bits map to the same
location in the cache Which one
should we place in the cache?

How can we tell which one is in
the cache?

Main

Memory

(0)

(32)
:Byte 31

Byte 63

16

Associativity conflicts in a direct-mapped cache
Consider a loop that repeatedly reads
part of two different arrays:

int A[256];

int B[256];

int r = 0;

for (int i=0; i<10; ++i) {

for (int j=0; j<64; ++j) {

r += A[j] + B[j];

}

}

For the accesses to A and B to be
mostly cache hits, we need a cache
big enough to hold 2x64 ints, ie
512B

Consider the 1KB direct-mapped
cache on the previous slide - what
might go wrong?

A

B

64x4=256Bytes

ie 8 32B cache
lines

64x4=256Bytes

ie 8 32B cache
lines

A+0

A+32

A+32*2

A+32*3

B+0

B+32

B+32*2

B+32*3

Repeatedly
re-reads 64
values from

both A and B

17

Associativity conflicts in a direct-mapped cache
Consider a loop that repeatedly reads
part of two different arrays:

int A[256];

int B[256];

int r = 0;

for (int i=0; i<10; ++i) {

for (int j=0; j<64; ++j) {

r += A[j] + B[j];

}

}

For the accesses to A and B to be
mostly cache hits, we need a cache
big enough to hold 2x64 ints, ie
512B

Consider the 1KB direct-mapped
cache on the previous slide - what
might go wrong?

Repeatedly
re-reads 64
values from

both A and B

Array B is
located

exactly 1024
bytes after

array A

Array B is
located

exactly 1024
bytes after

array A

Direct-mapped Cache - structure
• Capacity: C bytes (eg 1KB)

• Blocksize: B bytes (eg 32)

• Byte select bits: 0..log(B)-1 (eg 0..4)

• Number of blocks: C/B (eg 32)

• Address size: A (eg 32 bits)

• Cache index size: I=log(C/B) (eg log(32)=5)

• Tag size: A-I-log(B) (eg 32-5-5=22)

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Two-way Set Associative Cache

• N-way set associative: N entries for each Cache Index
– N direct mapped caches operated in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel

– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Disadvantage of Set Associative Cache

• N-way Set Associative Cache v. Direct Mapped Cache:
– N comparators vs. 1

– Extra MUX delay for the data

– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available

BEFORE Hit/Miss:
– Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Example: Intel Pentium 4 Level-1 cache (pre-Prescott)

Capacity: 8K bytes (total amount of data cache can store)

Block: 64 bytes (so there are 8K/64=128 blocks in the cache)

Ways: 4 (addresses with same index bits can be placed in one of 4 ways)

Sets: 32 (=128/4, that is each RAM array holds 32 blocks)

Index: 5 bits (since 25=32 and we need index to select one of the 32 ways)

Tag: 21 bits (=32 minus 5 for index, minus 6 to address byte within block)

Access time: 2 cycles, (.6ns at 3GHz; pipelined, dual-ported [load+store])

4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper

level?

– Block placement

• Q2: How is a block found if it is in the upper

level?

– Block identification

• Q3: Which block should be replaced on a miss?

– Block replacement

• Q4: What happens on a write?

– Write strategy

Q1: Where can a block be placed in the upper level?

0
1
2
3
4
5
6
7

Set 0
2
4
6

0 1

0 1 2 3 4 5 6

In a fully-associative cache, block 12 can be placed in any location in the cache

In a direct-mapped cache, block 12 can only be placed in one cache

location, determined by its low-order address bits –

(12 mod 8) = 4

In a two-way set-associative cache, the set is determined by its low-

order address bits –

(12 mod 4) = 0

Block 12 can be placed in either of the two cache locations in set 0

More associativity:

More comparators – larger, more energy

Better hit rate (diminishing returns)

Reduced storage layout sensitivity – more predictable

7

Q2: How is a block found if it is in the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands tag

Block

Offset

Block Address

IndexTag

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare

Adr Tag

Compare

OR

Hit

Adr Tag

Q3: Which block should be replaced on a miss?

• With Direct Mapped there is no choice

• With Set Associative or Fully Associative we want to

choose

– Ideal: least-soon re-used

– LRU (Least Recently Used) is a popular approximation

– Random is remarkably good in large caches

Assoc: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Benchmark studies show that LRU beats random only with small caches

LRU can be pathologically bad.......

Q4: What happens on a write?

• Write through—The information is written to
both the block in the cache and to the block
in the lower-level memory

• Write back—The information is written only
to the block in the cache. The modified
cache block is written to main memory only
when it is replaced.
– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes

– WB: absorbs repeated writes to same
location

• WT always combined with write buffers so
that we don’t wait for lower level memory

Caches are a big topic

• Cache coherency

– If your data can be in more than one cache, how do you
keep the copies consistent?

• Victim caches

– Stash recently-evicted blocks in a small fully-associative
cache (a “competitive strategy”)

• Prefetching

– Use a predictor to guess which block to fetch next –
before the processor requests it

• And much much more........

What’s at the bottom of the memory hierarchy?
• StorageTek STK 9310 (“Powderhorn”)

– 2,000, 3,000, 4,000, 5,000, or 6,000

cartridge slots per library storage module

(LSM)

– Up to 24 LSMs per library (144,000

cartridges)

– 120 TB (1 LSM) to 28,800 TB capacity (24

LSM)

– Each cartridge holds 300GB, readable up to

40 MB/sec

• Up to 28.8 petabytes

• Ave 4s to load tape

• 2017 product: Oracle SL8500

• Up to 1.2 Exabyte per unit

• Combine up to 32 units into single

robot tape drive system

• http://www.oracle.com/us/products/ser

vers-storage/storage/tape-

storage/034341.pdf

https://www.itnews.com.au/gallery/inside-suns-multi-storey-colorado-data-centre-135385/page1

IBM System Storage Tape Library ts3500 ts4500
From
https://www.youtube.com/watch?v=CVN93H6EuAU&list
=PLp5rLKqrfZu_EvvnFM1HDptl_n0k5Th_q

StorageTek Powderhorn before disassembly, CERN 2007
http://www.flickriver.com/photos/naezmi/2074280052/#large

https://www.youtube.com/watch?v=CVN93H6EuAU&list=PLp5rLKqrfZu_EvvnFM1HDptl_n0k5Th_q
http://www.flickriver.com/photos/naezmi/2074280052/#large

Can we live without cache?

• Interesting exception: Cray/Tera MTA, first
delivered June 1999:

– www.cray.com/products/systems/mta/

• Each CPU switches every cycle between
128 threads

• Each thread can have up to 8 outstanding
memory accesses

• 3D toroidal mesh interconnect

• Memory accesses hashed to spread load
across banks

• MTA-1 fabricated using Gallium Arsenide,
not silicon

• “nearly un-manufacturable” (wikipedia)

• Third-generation Cray XMT:
– http://www.cray.com/Products/XMT.aspx

– YarcData's uRiKA
(http://www.yarcdata.com/products.html)

http://www.karo.com

http://www.cray.com/products/systems/mta/
http://www.cray.com/Products/XMT.aspx
http://www.yarcdata.com/products.html

Without caches we are in trouble

DRAM access times are
commonly >100 cycles

Without locality caches won’t help

Spatial vs temporal locality

Direct-mapped

Set-associative

Associativity conflicts

Policy questions:

Write-through

Write-back

Many more – see next chapter!

Summary:

We will see similar structures,
and issues, in branch
predictors, prefetching etc

We will see similar choices in
cache coherency protocols
for multicore

We will look at various
techniques to exploit
memory parallelism to
overcome this –
especially in GPUs

Next:

Discussion exercise – the “Turing Tax”

Then dynamic scheduling

Then a deeper dive into caches and the
memory hierarchy

In response to a student question:

• There is a tag for each 32-byte cache block (and in the 1KB cache, there
would, as you say, be 32 blocks, since 1024=32x32).

• Two adjacent cache blocks could (normally will) hold 32-byte blocks from
different parts of the memory.

• In a fully-associative cache we would have a tag and a tag comparator for
every 32-byte block.

• In a direct-mapped cache, we have a tag for every block, but only one tag
comparator.

• This is cheaper, faster and lower-power. But in order to make it work, we
use some of the low-order address bits to index the cache - to select just
one cache block. If its tag matches, we have a hit. If not, we
don't. Similarly, when data is allocated into the cache. the same index bits
are used to select the cache block that will be used (perhaps displacing
whatever was there before).

• This means that different addresses that happen to have the same index
bits map to the same cache block. So only one of them can be in the cache
at the same time.

