332
Advanced Computer Architecture
Chapter 2: part 2

Dynamic scheduling, out-of-order execution, register
renaming with speculative execution

October 2022
3.6 pp208-217 and pp234-238 Paul H J Kelly

Hennessy and Patterson 6% ed Section

These lecture notes are partly based on the course text, Hennessy and
Patterson’s Computer Architecture, a quantitative approach (4-6 ed), and
on the lecture slides of David Patterson’s Berkeley course (CS252)

Course materials online on
https://scientia.doc.ic.ac.uk/2223/modules/60001/materials and
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/

https://scientia.doc.ic.ac.uk/2223/modules/60001/materials
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/aca20/

What about Precise Interrupts?

Tomasulo had:

In-order issue, out-of-order execution, and out-of-order
completion

Need to “fix” the out-of-order completion aspect so that we
can find precise breakpoint in instruction stream

— Suppose we have a page fault or a divide-by-zero exception?
Actually we have the same issue with branch speculation...

The answer: add a stage that “commits” the state
In iIssue order

Four Steps of the Speculative Tomasulo Algorithm

1. Issue—aqget instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & send
operands & reorder buffer no. for destination (this stage sometimes called

“dispatch”)
2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for
result; when both in reservation station, execute: checks RAW
(sometimes called “issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When an instruction is at the head of reorder buffer, and its result
IS present:

update the (commit-side) register with the result (or store to
memory), and remove the instruction from the reorder buffer.

Mispredicted branch flushes reorder buffer

(Tag | [Value | FO

[Tag | [Value | F1

A

[Tag | [Value | F2

[Tag | [Value | F3

Operand values/t;gs

>
Common data bus

Tomasulo without Re-order Buffer

(from previous

lecture)

—— [[Vauen ro
O A 1|
[Tag | [Value | F2
[Tag | [Value | F3

Operand values/tags

R N W s

Opcode R R Ye

\ 4
\
o
\
| Y

P
Cemmon data bus

Tomasulo with Re-order Buffer

FO
F1
F2
F3

—— [[Vamens ro
O A 1|
(Tag] [Value] F2
— _ | g WEE F3

T | Operand values/tags

<
l ! !14
Tomasulo with Re-order Buffer

Commit stage 4 FO
And commit-side registersJ F1

F2
F3

R N W s

\4

L N W

>
Cemmon data bus

R N W s

Opcode

FEG (NEuE Fo
O A 1|
(Tag] [Value] F2
[Tag | [Value | F3

Operand values/tz:ags

ISsue: - As before, but ROB entry is also allocated
* One ROB entry for each instruction

« Holds destination register + and either its
result value, or the tag for where it will come
from

>
Cemmon data bus

FO
F1
F2
F3

0

R N W s

Opcode

[Tag | [Value | FO

1

(Tag__] [Value | F1

A

[Tag | [Value | F2

[Tag | [Value | F3

Operand values/tz:ags

Write Back:

» As before, but ROB entry with matching tag is
also updated

* ROB entry for instruction 1 holds value for FO

* ROB entry for instruction 3 holds another value
for FO

FO
F1
F2
F3

>
Cemmon data bus

1

R N W s

Opcode

FEG (NEuE Fo
O A 1|
(Tag] [Value] F2
[Tag | [Value | F3

Operand values/tz:ags

Commit:
« Commit unit processes ROB entries in issue order

* Each instruction waits in turn and commits when its
operands are completed

« Committed registers updated with values from ROB

« Commit-side FO is updated first with result from
MUL1 then result from MUL2

>
Cemmon data bus

FO
F1
F2
F3

2

Issue-side registers
(updated speculatively)

Commit-side registers
(updated when speculation resolved) o

__FO
__Fl
[Tag] [Value | F2
[Tag | [Value | F3

Operand values/tags

R NDNW b~ O

Opcode

* Now extend example with conditional branch
» Assume predicted Not Taken FO

 When BEQ reaches head of commit queue, all F1
instructions which have been issued but have not yet gE2
committed are erroneous F3

__FO
__Fl
[Tag] [Value | F2
[Tag | [Value | F3

Operand values/tags

R NDNW b~ O

Opcode

» Misprediction: all ROB entries are trashed

* Issue-side registers are reset from the commit-side FO
registers F1

F2
» Correct branch target instruction fetched and issued g4

__FO
__Fl
[Tag] [Value | F2
[Tag | [Value | F3

Operand values/tags

R NDNW b~ O

Opcode

« Committed FO holds value from first MUL

* RS of uncompleted speculatively-executed instruction FO
cannot be re-used until its FU (eg MUL2) completes F1
F2

F3

Some subtleties to think about...

* |t's vital to reduce the branch misprediction
penalty. Does the Tomasulo+ROB scheme
described here roll-back as soon as the branch
IS found to be mispredicted?

« This discussion has assumed a single-issue
machine. How can these ideas be extended to
allow multiple instructions to be issued per
cycle?

— Issue
— Monitoring CDBs for completion

— Handling multiple commits per cycle

19

Some subtleties to think about...

« What if a second conditional branch is
encountered, before the outcome of the first is
resolved?

20

Speculating across more than one
branch

—— [NEE Fo
O NEEE 1|
(Tag_] [Value] F2
[Tag | [Value | F3

Operand values/tzj\gs

a

a

R DWW S~ O OO NO

a

A"

Opcode X R ‘

v
A

» Two conditional branches
» We speculate on both branches

21

Speculating across more than one
branch

—— [NEE Fo
O NEEE 1|
(Tag_] [Value] F2
[Tag | [Value | F3

Operand values/tzj\gs

a

a

R DWW S~ O OO NO

a

A"

Opcode X ‘

v

 Two conditional branches
« When we come to commit the first branch we
discover it was mispredicted

22

Speculating across more than one
branch

—— [NEE Fo
O NEEE 1|
(Tag_] [Value] F2
[Tag | [Value | F3

%+ Operand values/tags

a

a

R DWW S~ O OO NO

a

A"

 When we come to commit the first branch we
discover it was mispredicted

» We squash all the issued instructions including the
second branch

23

Some subtleties to think about...

« Stores are buffered in the ROB, and committed only when
the Iinstruction iIs committed.

 Aload can be issued while several stores (perhaps to the
same address) are uncommitted. We need to make sure
the load gets the right data. See:

Shen and Lipasti “Modern Processor Design” pg 271, or
http://home.eng.iastate.edu/~zzhang/courses/cpre585 f03/slides/lecturell.pdf

* This lies beyond the depth we have time to cover properly in
this course, but let’s look at some of the issues

http://home.eng.iastate.edu/~zzhang/courses/cpre585_f03/slides/lecture11.pdf

Stores and loads with speculation

 We need to make sure stores are not sent to memory
until the store instruction is committed

 We need to stall loads until all preceding stores have
committed

- ?
— Or: until all possibly-aliasing stores have committed?

— Or: until the addresses of all preceding uncommitted
stores have been determined

« If/when the addresses of a load and all preceding
uncommitted stores are known...

— And if none of the store addresses match the load
— Then the load can proceed

— If the address of the load matches the address of an

uncommitted store, we can forward the store’s data to
the load

5

—— [Eg [Vamen ro
O A 1|
[Tag | [Value | F2
— _ | G (AT F

— =1~ | Operand values/tags

a

a

R N W s

>
« We need to make sure Cgmmon data bus

stores are not sent to
memory until the store
instruction is committed

« We need to stall loads
until all possibly-
aliasing store addresses
are known

Store-to-load forwarding

26

The Tomasulo scheme works on registers — it derives
dependences between register-register instructions

The registers being used are always known at issue time

Loads and stores use computed addresses, which may or
may not be known at issue time — consider:

11 SD FO O(R3) // store FO at address R3

12 LD R2O0(R1) /[load an address from memory

I3 SD F1 0(R2) /[store F1 to that address

14 LD F20(R3) /[load F1 from address R3

Can we (should we?) forward FO from 11 to i14?

What if R1=R37?

We could wait (as shown in previous slide)

We could speculate! And then check for the
misprediction

We could add a forwarding predictor, to improve the
speculation

Store-to-load forwarding

Memory dependence *speculation™ is the idea that we might
allow a load to proceed* before we know for sure which, if

any, prior uncommitted store instruction writes to its
address**,

(* proceed either by forwarding a value from some store
whose *value* is known, or proceed by going to memory)

(** we may know the load's address but not (all) the
addresses of the older stores. We might not know the load's
address)

Memory dependence speculation is when we use a predictor
to decide when to do this.

See Memory dependence prediction - Wikipedia

| think this article (start at page 8) is particularly clear:
https://www.jilp.org/vol2/v2paperl3.pdf

https://en.wikipedia.org/wiki/Memory_dependence_prediction
https://www.jilp.org/vol2/v2paper13.pdf

Design alternatives for 0-0-o processor
architectures

* See:
— The Microarchitecture of the Pentium 4 Processor (Hinton et al,
Intel Tech Jnl Q1 2001)
— The SimpleScalar Tool Set, Version 2.0 (Burger and Austin,
http://www.simplescalar.com/docs/users guide v2.pdf)

— Wattch: a framework for architectural-level power analysis and
optimizations (Brooks et al, ISCA 2000)
www.tortolaproject.com/papers/brooksO0wattch.pdf

* Specifically:
— Register Update Unit (RUU, as in Simplescalar) versus
Re-Order Buffer

— Realisation in Pentium Il and Pentium 4 (“Netburst”)
* Frontend and Retirement Register Alias Tables (RATs)

http://www.simplescalar.com/docs/users_guide_v2.pdf
http://www.tortolaproject.com/papers/brooks00wattch.pdf

Fetch |=——¥ Dispatch =] Scheduler |—»| Exec |=—¥| Writeback |[=—»|Commit

Memory

scheduler Mem

™~

I-Cache D-Cache| D-TLB
\ Virtual memory /

Figure 5. Pipeline for sim-outorder

* Simplescalar is a software simulation of a processor microarchitecture
* It simulates a multi-issue out-of-order design with speculative execution
* Many aspects of the design can be controlled by parameters

 Simplescalar uses a Register Update Unit, which combines ROB and
reservation stations in a single pool

_ 5 _ Issue-side registers
4 [MUL Fo, F3, F4]

Commit-side registers

3 [BEQR10, Lab |
2[sDFO.X |

! [MULFO, F1, F2]

Operands or result
ags

A

Result values/tags

FO E
E— Committed results
B —
w
s & INAIEN] +——

DB updates all operands with matching tag

>

Dispatcher selects next ready entry

Commit selects next completed entry
And updates commit-side registers.
If misprediction detected:
correct fetch
reset committagj=i
update issue-side regs with
values from commit-side

Common Data Bus (CDB)

Register Update Unit (RUU)

>

On completion, result is broadcast on CDB with tag that was assigned when it was issued

31

RUU vs ROB

* In the Tomasulo+ROB desigh shown in these slides,
registers and ROB entries have a tag

— Every register, ROB entry and reservation station
needs a comparator to monitor the CDB

 With the RUU, the tags are the ROB entry numbers
— So the ROB is indexed by the tag on the CDB

— The ROB entry serves are a renamed register for
its instruction’s result

32

I?entiUIn 111 ROB
Data

Status

RAT

EBX

ECX

ES|

EDI

ESP

EBP

RRF

NetBurst RF ROB

Data

Froﬁend RAT

EAX
EBX
ECX
EDX
ES|

EDI

ESP
EBP

Retirement RATN\ .~ >
—EAX_{

EBX_ I
ECX
ENY ..-".................-‘."_"_ L,

E3) ..
EDIL |

ESP _I" Tttt
EBP I T

T
> o
A_L

Status

* A Register Alias Table keeps track of

latest alias for logical registers

* Once retired, data is copied from the

ROB to the RRF

Q: How are registers allocated and freed?

» 128 Register File (RF) is separated
from the ROB - which now only
consists of status fields

* Aunique, in-order sequence number
is allocated for each uop that points
to the corresponding ROB entry

See also Hsien Hsin Lee, GATech, https://slideplayer.com/slide/3388048/. Credit also to Krishna Palem

https://slideplayer.com/slide/3388048/

Pentium 4 (“Netburst”) microarchitecture

L)

Front-End BTB Instruction P Tr—
(4K Entries) TLB/Prefetcher Skt
¥ yptém
Instruction Decoder Microcode
] ROM
Trace Cach_t_a BTB Trace Cache EN Quad
(512 Entries) (12K pops) Hop Pumped
4
| Allocator / Register Re‘namer | 3.2 GBI/s
| Memory uop Queue | | IntegerlFloatinq Point uop Queue] Bus
[Memory Scheduler | [_Fast | [Slow/General FP Scheduler | [Simple FP] Interf_ace
B T 1 o
| Integer Register File / Bypass Network |« FP Register /| Bypass ! I
A 4 \ 4 \ 4 4 A ‘ * 4 ‘ ‘ * ‘ * ‘ A 1 1 *
AGU AGU 2x ALU 2x ALU Slow ALU FP L2 Cache
MMX FP (256K Byte
Load Store Simple Simple Complex SSE Move 8-way)
Address | | Address Instr. Instr. Instr. SSE?2
|
| | = J — 48GBIs

L1 Data Cache (8Kbyte 4-way)

K 256 bits ’

Basic Pentium lll Processor Misprediction Pipeline

1 2 | 3 4 5
Fetch Fetch lDecode Decode | Decode

6 7 8 9 10
Rename | ROB Rd | Rdy/Sch |Dispatch| Exec

Basic Pentium 4 Processor Misprediction Pipeline

1 ‘ 2
TC h,xt IP

3 ‘ 4 5| 6| 7 ‘ 8| 9 10 11| 12| 13| 14/15 16 | 17 | 18 19 20

TC Fetch Drive|Alloc, Rename | Que Sch | Sch | Sch |Disp|Disp RF | RF | Ex |Flgs |Br Ck Drive
| |

Out-of-order processing — Four instructions per cycle

el lsHll Naive implementation (roughly from cc -3):

void f() {
Int I, a;
for (i=1;
I<=1000000000:;
i++)
a = atl;

Real
example

October 22

X86 code (slightly

tidied but without
register allocation)

movl $1,-4(%ebp)
jmp .L4
L5
movl -4(%ebp),%eax
addl %eax,-8(%ebp)
incl -4(%ebp)
L4:
cmpl $1000000000,-4(%ebp)
jle .L5

36

Unoptimised:

movl $1,-4(%ebp)
jmp .L4
L5
movl -4(%ebp),%eax
addl %eax,-8(%ebp)
incl -4(%ebp)
L4:
cmpl $1000000000,-4(%ebp)
jle .L5

Optimised: 37

movl $1,%edx

L6:

add| %edx,%eax

incl %edx

cmpl $1000000000,%edx
jle .L6

5 instructions in the loop

Execution time on 2.13GHz Intel
Core2Duo: 3.87 seconds (3.87
nanoseconds/iteration, 8.24 cycles)

tober

Time per instruction fell: 0.77 nanoseconds to 0.12
Optimised code runs at four instructions per cycle

4 instructions in the loop, no
references to main memory

Execution time on 2.13GHz
Intel Core2Duo: 0.48 seconds
(0.48 nanoseconds/iteration,
1.02 cycles)

. Wikipedia (): R€ésources
— http://len.wikipedia.org/wiki/Reqgister renaming

* Papers:

— Instruction issue logic for high-performance, interruptable
Ipelined processors. G. S. Sohi, S. VaAapeyam.
nternational Conference on Computer Architecture, 1987

(http://doi.acm.org/10.1145/30350.30354)

— Towards Kilo-instruction processors. Cristal, Santana,
Valero, Martinez ACM Trans. Architecture and Code
Optimization (http://doi.acm.org/10.1145/1044823.1044825)

 Other simulators:
— Simplescalar: www.simplescalar.com/
— Gemb: http://www.gem5.org
— Liberty: http://liberty.cs.princeton.edu/
— SimFlex: http://parsa.epfl.ch/simflex/
— SIMICS: http://www.windriver.com/products/simics/

39

http://en.wikipedia.org/wiki/Register_renaming
http://doi.acm.org/10.1145/30350.30354
http://doi.acm.org/10.1145/1044823.1044825
http://www.simplescalar.com/
http://www.gem5.org/
http://liberty.cs.princeton.edu/
http://parsa.epfl.ch/simflex/
http://www.windriver.com/products/simics/

Dynamic scheduling - summary

* Dynamic instruction scheduling is attractive:

— Reduced dependence on compile-time instruction
scheduling (and compiler knowledge of hardware)

— Handles dynamic stalls due to cache misses

— Register renaming frees architecture from constraints of
the instruction set

 Comes with costs
— Increases pipeline depth, and misprediction latency

— Increased power consumption and area (but not by all that
much if you are careful and clever)

— Increased complexity and risk of design error
— Hard to predict performance, hard to optimise code

40

