Registers are just arrows

Discussion exercise
How can we design our ISA without registers?
Can we simplify the microarchitecture as a result?

Perhaps encoding dependence directly (so it doesn’t
have to be discovered)

Perhaps avoiding register renaming?



Code is just an encoding for a graph

Load r1 A
Load r2 C Register machine
Addr3r2#1//r3=C+1
Mulrdrlr3//rd =r3*A
Storerd D //D=r4

Push A //load from location A, push onto stack
Push B Stack machine
Add #1 //add 1 to the value on the top of the stack

Mul // multiply the top two items on the stack

Store D // store the value on the top of the stack to memory

Load +3 A // load from location A, send to Mul instruction below
Load +1 C // load from location C, send to Add instruction below dataflow machine
Add +1 #1 // add 1 to the value received, send result to next
Mul +1  // multiply value received by from Add by C, send to store
Store D // store the value received from instruction above

Lload A //Load A, drop the value on the conveyor “belt”
Load C // Load C, drop the value on the conveyor “belt”
Add -1 #1 // add 1 to the result of the instruction one instruction earlier
Mul -1 -3 // multiply the results from positions -1 and -3 on the belt
Store -1 D // store the result of the multiply to memory

“belt” machine




Dataflow instruction sets

 Examples: EDGE (“Explicit Data Graph
Execution), TRIPS, Wavescalar

(and earlier historical designs — Manchester
Dataflow, MIT Dataflow etc)

* Objectives:
— More instructions per cycle
— Larger instruction “window”
— Improved energy efficiency

fragment, not per-instruction




(a) TRIPS execution node

(b) TRIPS processor core

(c) TRIPS prototype chip
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Figure 1. TRIPS prototype microarchitecture. (a) The prototype chip contains two processing cores, each of which is a 16-wide out-of-order

issue processor that can support up to 1,024 instructions in flight. Each chip also contains 2 Mbytes of integrated L2 cache, organized as 32

banks connected with a lightweight routing network, as well as external interfaces. (b) The processor core is composed of 16 execution

nodes connected by a lightweight network. The compiler builds 128-instruction blocks that are organized into groups of eight instructions per
execution node. (c) Each execution node contains a fully functional ALU, 64 instruction buffers, and a router connecting to the lightweight

inter-ALU network. https://www.cs.utexas.edu/users/cart/trips/publications/computer04.pdf



Figure 2. TRIPS code
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“Belt” (see also Fujitsu STRAIGHT)

ldea:

— every instruction writes to a fresh register
— We have a finite rolling window of registers

— Instructions collect operands using an offset backward to the instruction that produces

what it needs
value Instruction value Instruction value Instruction

Instruction Instruction Instruction
Instruction 1NN Instruction I Instruction
Instruction Instruction Instruction
Instruction Instruction Instruction
Instruction Instruction Instruction
Instruction Instruction : ADD -3 -6
Instruction ADD -3-6 (E+F)*3 " "MUL-1 -2
ADD-3-6 KM (E+F*¢ "MUL-1-2 LM G/D DIV -3 -6
Issue #2 Issue #3

At each instruction, the register window shifts

+

Note that the register window now looks like the ROB

What happens if we need A at issue #2 —it’s fallen out of the window!
What happens with if-then — when control flow rejoins?
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Fig. 17. Relative Power of SS and STRAIGHT with various clock frequency

 The claim is that this idea massively simplifies the front-end of the
processor, reducing energy and misprediction penalty

. Hidetsugu Irie et al, STRAIGHT: hazardless processor architecture without register renaming. In Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-51).
DOl:https://doi.org/10.1109/MICR0.2018.00019
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