Registers are just arrows

Discussion exercise
How can we design our ISA without registers?
Can we simplify the microarchitecture as a result?

Perhaps encoding dependence directly (so it doesn’t
have to be discovered)

Perhaps avoiding register renaming?

Code is just an encoding for a graph

Load r1 A
Load r2 C Register machine
Addr3r2#1//r3=C+1
Mulrdrlr3//rd =r3*A
Storerd D //D=r4

Push A //load from location A, push onto stack
Push B Stack machine
Add #1 //add 1 to the value on the top of the stack

Mul // multiply the top two items on the stack

Store D // store the value on the top of the stack to memory

Load +3 A // load from location A, send to Mul instruction below
Load +1 C // load from location C, send to Add instruction below dataflow machine
Add +1 #1 // add 1 to the value received, send result to next
Mul +1 // multiply value received by from Add by C, send to store
Store D // store the value received from instruction above

Lload A //Load A, drop the value on the conveyor “belt”
Load C // Load C, drop the value on the conveyor “belt”
Add -1 #1 // add 1 to the result of the instruction one instruction earlier
Mul -1 -3 // multiply the results from positions -1 and -3 on the belt
Store -1 D // store the result of the multiply to memory

“belt” machine

Dataflow instruction sets

 Examples: EDGE (“Explicit Data Graph
Execution), TRIPS, Wavescalar

(and earlier historical designs — Manchester
Dataflow, MIT Dataflow etc)

* Objectives:
— More instructions per cycle
— Larger instruction “window”
— Improved energy efficiency

fragment, not per-instruction

(a) TRIPS execution node

(b) TRIPS processor core

(c) TRIPS prototype chip

125 MHz 125 MHz
DDR 250 MHz DDR
=
Input ports \\ T20 | ‘!%48 %48 | 120
pul i NI
L 111 Operand
¥ ¥ _ 1 buffers
CPUO
1 1 ﬁ? 500 MHz
L =
. 7 : £t '.'iE
integer H5 '§§ / 2
He iy -l
i AG CPU 1 B
Router 64 instruction 7 - e
0 buffers 7
Output ports m Interrupts
rterups

Global control:
Protocols: fill, flush, commit
Contains |-cache tags,
block header state, r/w instructions
branch predictor

Register banks:

. 32 registers per bank x 4 threads

D cache banks:
| 16KB 2-way, 1-port, cache-line interleaved banks
TLB, 8 MSHRs, LSQ, dependence pred. per bank Total signal pin — 220 MHZ =
Supports load speculation and distributed commit count: ~1,144 125 MHz (21) 125 MHz
I-cache banks: ;] DDR DDR
16KB 2-way, 1-port L1 instruction cache banks Chip-to-chip:)
Each bank delivers four insts/cycle EI Protocol: OCN extension
64 static rename registers per bank Banks are slaves to global control unit tag store 64b data path each direction
Dynamically forwards interblock values Memory: 4 channels: N/S/E/W
Execution nodes: DDR SDRAM, PC2100 DiMMs likely 2 GB/s each direction on each channel
Single-issue ALU tile 4 channels w/ page interleave Control processor interface: _
Full-integer and floating-point units (no FDIV) Synopsis memory controller MacroCell Slave side of generic memory interface

Buffers 64 instructions (8 insts x 8 blocks) per tile 2 GB/s each channel Source interrupts to get attention
Runs like asynchronous memory

Includes CP command handler
JTAG:

v

s% 4] 120 148&148 1200 40

Protocol: IEEE 1149

4 channels w/ page interleave

Includes scan intercept TAP controller
Used for test and early low-level debug

Figure 1. TRIPS prototype microarchitecture. (a) The prototype chip contains two processing cores, each of which is a 16-wide out-of-order

issue processor that can support up to 1,024 instructions in flight. Each chip also contains 2 Mbytes of integrated L2 cache, organized as 32

banks connected with a lightweight routing network, as well as external interfaces. (b) The processor core is composed of 16 execution

nodes connected by a lightweight network. The compiler builds 128-instruction blocks that are organized into groups of eight instructions per
execution node. (c) Each execution node contains a fully functional ALU, 64 instruction buffers, and a router connecting to the lightweight

inter-ALU network. https://www.cs.utexas.edu/users/cart/trips/publications/computer04.pdf

Figure 2. TRIPS code

~
7 N N (0 read 13 | example. (a) In the
- y]
(a) C code snippet (b) RISC assembly (c) Dataflow graph € code snippet,
/l'y, z'in registers // RO contains 0 the compiler
//R1 contains y @ allocates the input
X=y*2; // R4 contains z X \X int p
of (x> 7){ // R3 contains 7 fhtegery to a
y+=T; register. (b) In the
2=3; E:U|Ii:{|;2hg1l._12 :;:: J; ? y 7)2 ’ MIPS-like assembly
} e R2, R3, if (x > ,
X+=y; addi R1,R1,#7 //y+=7 code, the variable x
addi R4, RO, #5 fz=5 is saved in register
/I x, z are live registers L1:add RS, R2,R1 //x+=y 5. (c) The compiler
_ y | S/ converts the original
branch to a test
) instruction and
(d) TRIPS instruction placement rstraction an
_ y uses the result to
reslid r4 regd r3 predicate the
write r4 write rd - N control-dependent
@ @ (e) TRIPS instruction block (2 x 2 x 2) instructions, which
@ @ Block header appear as dotted
read r4, [1,0,0] read 13, [0.1.1] [1,0.1] lines in the datafiow
’ wO: write r4 wi: write r5 yraph: (d) Each
@ Instruction block node m the 2x 2
- _ - add w1 muli #2 [0,0,1] [0,1,0] execution node
Corresponding instruction positions: addi #7 [0,0,1] tgti #7 [1,0,0] [0,0,0] [1,1,0] [1,1,1] array holds up to
[0,0,1] [0,1,1] NOP two buffered
[0,0,0] [0,1,0] mov [0,0,1] instructions. (e) The
(1,0,1] \ — / compiler generates
[1,0,0] in target form,
~ ~ which correspond
to the map of
instruction
locations at the

https://www.cs.utexas.edu/users/cart/trips/publications/computer04.pdf bottom of part (d)

“Belt” (see also Fujitsu STRAIGHT)

ldea:

— every instruction writes to a fresh register
— We have a finite rolling window of registers

— Instructions collect operands using an offset backward to the instruction that produces

what it needs
value Instruction value Instruction value Instruction

Instruction Instruction Instruction
Instruction 1NN Instruction I Instruction
Instruction Instruction Instruction
Instruction Instruction Instruction
Instruction Instruction Instruction
Instruction Instruction : ADD -3 -6
Instruction ADD -3-6 (E+F)*3 " "MUL-1 -2
ADD-3-6 KM (E+F*¢ "MUL-1-2 LM G/D DIV -3 -6
Issue #2 Issue #3

At each instruction, the register window shifts

+

Note that the register window now looks like the ROB

What happens if we need A at issue #2 —it’s fallen out of the window!
What happens with if-then — when control flow rejoins?

4.5
4 ass _

3.5 B STRAIGHT

1.5

SIS N B B

1.0x 2.5x 4.0x 1.0x 2.5x 4.0x 1.0x 2.5x 4.0x

Relative Power (normalized to SS 1.0x)
N

Rename Logic Register File Other Modules
Modules and Clock Frequency

Fig. 17. Relative Power of SS and STRAIGHT with various clock frequency

 The claim is that this idea massively simplifies the front-end of the
processor, reducing energy and misprediction penalty

. Hidetsugu Irie et al, STRAIGHT: hazardless processor architecture without register renaming. In Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-51).
DOl:https://doi.org/10.1109/MICR0.2018.00019

References:

Sinha, Steve & Chatterjee, Satrajit & Ravindran, Kaushik. (2019). BOOST: Berkeley's Out-
of-Order Stack Thingy.

https://www.researchgate.net/publication/228556746 BOOST Berkeley's Out-of-
Order Stack Thingy

Hidetsugu Irie et al, STRAIGHT: hazardless processor architecture without register
renaming. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-51). DOI:https://doi.org/10.1109/MICR0.2018.00019

Mill Computing: https://millcomputing.com/docs/

Schmit, Herman; Benjamin Levine; Benjamin Ylvisaker (2002). Queue Machines:
Hardware Compilation in Hardware. 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'02):

152. doi:10.1109/FPGA.2002.1106670

Aaron Smith et al, Compiling for EDGE Architectures. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO '06).
DOI:https://doi.org/10.1109/CG0.2006.10

Steven Swanson et al, Area-Performance Trade-offs in Tiled Dataflow Architectures.
In Proceedings of the 33rd annual international symposium on Computer
Architecture(ISCA '06). IEEE Computer Society, Washington, DC, USA, 314-326. DOI:
https://doi.org/10.1109/1SCA.2006.10

INTEL'S EXASCALE DATAFLOW ENGINE DROPS X86 AND VON NEUMANN. Aug 2018,
Timothy Prickett Morgan, https://www.nextplatform.com/2018/08/30/intels-exascale-
dataflow-engine-drops-x86-and-von-neuman/. See also
https://en.wikichip.org/wiki/intel/configurable spatial accelerator and US Patent No.
US20180189231A1.

https://www.researchgate.net/publication/228556746_BOOST_Berkeley's_Out-of-Order_Stack_Thingy
https://www.researchgate.net/publication/228556746_BOOST_Berkeley's_Out-of-Order_Stack_Thingy
https://millcomputing.com/docs/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109/FPGA.2002.1106670
https://doi.org/10.1109/ISCA.2006.10
https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-engine-drops-x86-and-von-neuman/
https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-engine-drops-x86-and-von-neuman/
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator

	Slide 1: Registers are just arrows
	Slide 2: Code is just an encoding for a graph
	Slide 3: Dataflow instruction sets
	Slide 4
	Slide 5
	Slide 8: “Belt” (see also Fujitsu STRAIGHT)
	Slide 9
	Slide 10: References:

