
Registers are just arrows

Discussion exercise

How can we design our ISA without registers?

Can we simplify the microarchitecture as a result?

Perhaps encoding dependence directly (so it doesn’t 
have to be discovered)

Perhaps avoiding register renaming?



Code is just an encoding for a graph
Load r1 A

Load r2 C

Add r3 r2 #1 // r3 = C+1

Mul r4 r1 r3 // r4 = r3*A

Store r4 D    // D = r4

Push A     // load from location A, push onto stack

Push B

Add #1 // add 1 to the value on the top of the stack

Mul // multiply the top two items on the stack

Store D   // store the value on the top of the stack to memory

Load +3 A  // load from location A, send to Mul instruction below

Load +1 C  // load from location C, send to Add instruction below

Add +1 #1 // add 1 to the value received, send result to next

Mul +1      // multiply value received by from Add by C, send to store

Store D     // store the value received from instruction above

Load A      // Load A, drop the value on the conveyor “belt”

Load C      // Load C, drop the value on the conveyor “belt”

Add -1 #1 // add 1 to the result of the instruction one instruction earlier

Mul -1 -3  // multiply the results from positions -1 and -3 on the belt

Store -1 D // store the result of the multiply to memory

Register machine

Stack machine

dataflow machine
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Dataflow instruction sets 

• Examples: EDGE (“Explicit Data Graph 
Execution), TRIPS, Wavescalar
(and earlier historical designs – Manchester 
Dataflow, MIT Dataflow etc)

• Objectives:
– More instructions per cycle

– Larger instruction “window”

– Improved energy efficiency

Bundle instructions into statically-
scheduled dataflow fragments

O-O-O at the fragment level

Window capacity is counted in 
fragments

O-O-O “Turing Tax” is paid per 
fragment, not per-instruction



https://www.cs.utexas.edu/users/cart/trips/publications/computer04.pdf



https://www.cs.utexas.edu/users/cart/trips/publications/computer04.pdf



“Belt” (see also Fujitsu STRAIGHT)
• Idea: 

– every instruction writes to a fresh register

– We have a finite rolling window of registers 

– Instructions collect operands using an offset backward to the instruction that produces 
what it needs

A Instruction-8
B Instruction-6
C Instruction-5
D Instruction-4
E Instruction-3
F Instruction-2
G Instruction-1
E+F ADD -3 -6 0

value Instruction
-8 B Instruction
-6 C Instruction
-5 D Instruction
-4 E Instruction
-3 F Instruction
-2 G Instruction
-1 E+F ADD -3 -6 
0

value Instruction
-8
-6
-5
-4
-3
-2
-1
0

value Instruction

(E+F)*G MUL -1 -2 

C Instruction
D Instruction
E Instruction
F Instruction
G Instruction
E+F ADD -3 -6 
(E+F)*G MUL -1 -2 
G/D DIV -3 -6 

Issue #1 Issue #2 Issue #3
• At each instruction, the register window shifts

• Note that the register window now looks like the ROB

• What happens if we need A at issue #2 – it’s fallen out of the window!

• What happens with if-then – when control flow rejoins?



• Hidetsugu Irie et al, STRAIGHT: hazardless processor architecture without register renaming. In Proceedings of the 51st 
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-51). 
DOI:https://doi.org/10.1109/MICRO.2018.00019

• The claim is that this idea massively simplifies the front-end of the 
processor, reducing energy and misprediction penalty
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