
Registers are just arrows

Discussion exercise

How can we design our ISA without registers?

Can we simplify the microarchitecture as a result?

Perhaps encoding dependence directly (so it doesn’t
have to be discovered)

Perhaps avoiding register renaming?

Code is just an encoding for a graph
Load r1 A

Load r2 C

Add r3 r2 #1 // r3 = C+1

Mul r4 r1 r3 // r4 = r3*A

Store r4 D // D = r4

Push A // load from location A, push onto stack

Push B

Add #1 // add 1 to the value on the top of the stack

Mul // multiply the top two items on the stack

Store D // store the value on the top of the stack to memory

Load +3 A // load from location A, send to Mul instruction below

Load +1 C // load from location C, send to Add instruction below

Add +1 #1 // add 1 to the value received, send result to next

Mul +1 // multiply value received by from Add by C, send to store

Store D // store the value received from instruction above

Load A // Load A, drop the value on the conveyor “belt”

Load C // Load C, drop the value on the conveyor “belt”

Add -1 #1 // add 1 to the result of the instruction one instruction earlier

Mul -1 -3 // multiply the results from positions -1 and -3 on the belt

Store -1 D // store the result of the multiply to memory

Register machine

Stack machine

dataflow machine

“belt” machine

A C 1

+

*

St

D

Dataflow instruction sets

• Examples: EDGE (“Explicit Data Graph
Execution), TRIPS, Wavescalar
(and earlier historical designs – Manchester
Dataflow, MIT Dataflow etc)

• Objectives:
– More instructions per cycle

– Larger instruction “window”

– Improved energy efficiency

Bundle instructions into statically-
scheduled dataflow fragments

O-O-O at the fragment level

Window capacity is counted in
fragments

O-O-O “Turing Tax” is paid per
fragment, not per-instruction

https://www.cs.utexas.edu/users/cart/trips/publications/computer04.pdf

https://www.cs.utexas.edu/users/cart/trips/publications/computer04.pdf

“Belt” (see also Fujitsu STRAIGHT)
• Idea:

– every instruction writes to a fresh register

– We have a finite rolling window of registers

– Instructions collect operands using an offset backward to the instruction that produces
what it needs

A Instruction-8
B Instruction-6
C Instruction-5
D Instruction-4
E Instruction-3
F Instruction-2
G Instruction-1
E+F ADD -3 -6 0

value Instruction
-8 B Instruction
-6 C Instruction
-5 D Instruction
-4 E Instruction
-3 F Instruction
-2 G Instruction
-1 E+F ADD -3 -6
0

value Instruction
-8
-6
-5
-4
-3
-2
-1
0

value Instruction

(E+F)*G MUL -1 -2

C Instruction
D Instruction
E Instruction
F Instruction
G Instruction
E+F ADD -3 -6
(E+F)*G MUL -1 -2
G/D DIV -3 -6

Issue #1 Issue #2 Issue #3
• At each instruction, the register window shifts

• Note that the register window now looks like the ROB

• What happens if we need A at issue #2 – it’s fallen out of the window!

• What happens with if-then – when control flow rejoins?

• Hidetsugu Irie et al, STRAIGHT: hazardless processor architecture without register renaming. In Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-51).
DOI:https://doi.org/10.1109/MICRO.2018.00019

• The claim is that this idea massively simplifies the front-end of the
processor, reducing energy and misprediction penalty

References:
• Sinha, Steve & Chatterjee, Satrajit & Ravindran, Kaushik. (2019). BOOST: Berkeley's Out-

of-Order Stack Thingy.
https://www.researchgate.net/publication/228556746_BOOST_Berkeley's_Out-of-
Order_Stack_Thingy

• Hidetsugu Irie et al, STRAIGHT: hazardless processor architecture without register
renaming. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-51). DOI:https://doi.org/10.1109/MICRO.2018.00019

• Mill Computing: https://millcomputing.com/docs/
• Schmit, Herman; Benjamin Levine; Benjamin Ylvisaker (2002). Queue Machines:

Hardware Compilation in Hardware. 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'02):
152. doi:10.1109/FPGA.2002.1106670

• Aaron Smith et al, Compiling for EDGE Architectures. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO '06).
DOI:https://doi.org/10.1109/CGO.2006.10

• Steven Swanson et al, Area-Performance Trade-offs in Tiled Dataflow Architectures.
In Proceedings of the 33rd annual international symposium on Computer
Architecture(ISCA '06). IEEE Computer Society, Washington, DC, USA, 314-326. DOI:
https://doi.org/10.1109/ISCA.2006.10

• INTEL’S EXASCALE DATAFLOW ENGINE DROPS X86 AND VON NEUMANN. Aug 2018,
Timothy Prickett Morgan, https://www.nextplatform.com/2018/08/30/intels-exascale-
dataflow-engine-drops-x86-and-von-neuman/ . See also
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator and US Patent No.
US20180189231A1.

https://www.researchgate.net/publication/228556746_BOOST_Berkeley's_Out-of-Order_Stack_Thingy
https://www.researchgate.net/publication/228556746_BOOST_Berkeley's_Out-of-Order_Stack_Thingy
https://millcomputing.com/docs/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109/FPGA.2002.1106670
https://doi.org/10.1109/ISCA.2006.10
https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-engine-drops-x86-and-von-neuman/
https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-engine-drops-x86-and-von-neuman/
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator

	Slide 1: Registers are just arrows
	Slide 2: Code is just an encoding for a graph
	Slide 3: Dataflow instruction sets
	Slide 4
	Slide 5
	Slide 8: “Belt” (see also Fujitsu STRAIGHT)
	Slide 9
	Slide 10: References:

