
October 2022

Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy and

Patterson’s Computer Architecture, a quantitative approach (4-6th eds), and

on the lecture slides of David Patterson’s Berkeley course (CS252)

332

Advanced Computer Architecture

Chapter 4

Part 2: Branch Target Prediction

Branch Prediction - context

• If we have a branch predictor….

– We want to fetch the correct (predicted) next

instruction without any stalls

– We need the prediction before the preceding

instruction has been decoded

– We need to predict conditional branches

• Direction prediction

– And indirect branches

• Target prediction

Branch Target Buffer
• Need address at same time as prediction

• Especially for indirect branches and virtual method calls

• Note that we must check for branch match, since can’t use wrong branch
address

Branch PC Predicted PC

=?

P
C

 o
f in

s
tru

c
tio

n

F
E

T
C

H

Extra

prediction state

bits

Yes: instruction is

branch and use

predicted PC as

next PC

No: branch not

predicted, proceed normally

(Next PC = PC+4)

BTB is

indexed with
low-order PC
address bits,

tagged with
high-order
bits

Hennessy and Patterson 6th

ed p228-232

Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB
predicts that the
instruction we are fetching
will be a taken branch

Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB
predicts that the
instruction we are fetching
will be a taken branch

When a taken branch is
committed, we update
the BTB with the branch's
target address (and with
the tag of the address of
the branch instruction).

Branch Target Buffer (BTB)
• Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage

• Updated only by taken branches (the direction-predictor determines whether BTB is used)

• If BTB hit and the instruction is a predicted-taken branch

– target from the BTB is used as fetch address in the next cycle

• If BTB miss or the instruction is a predicted-not-taken branch

– PC+N is used as the next fetch address in the next cycle

ICACHE

PC

k

entry PC predicted
target

=

hit? target

BTB

Credit: Onur Mutlu (Note: we could use an n-way set-associative design here)

BTB is

indexed with
low-order PC
address bits,

tagged with
high-order
bits

Target prediction: recall the 5-stage MIPS pipeline

A
d

d
e
r

IF
/ID

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

A
L

U

M
e
m

o
ry

R
e
g
 F

ile M
U

X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e

r

Next

SEQ

PC

RD RD RD

W
B

 D
a
ta

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

F
ig

u
re

 3
.2

2
,

p
a

g
e
 1

6
3
,

C
A

:A
Q

A
 2

/e

A
d

d
e
r

IF
/ID

A
L

U

I-C
a
c
h
e

R
e
g
 F

ile M
U

X

D
-c

a
c
h
e

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e
r

Next

SEQ

PC

RD RD RD

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

Where does branch prediction happen?

BTB

hit

• Branch target prediction happens
in IF stage

• Before we even know if the
instruction is a branch or jump

• Branch Target Buffer (BTB) is
indexed by current PC, yields next
PC

• We check in ID stage whether
BTB prediction was correct

• If not, we over-ride the PC for IF
• And squash the MEM and WB

stages
M

U
X

Detect

mis-

prediction

M
U

X

On misprediction, disable
MEM and WB

11

target address

Combining BTB with direction Prediction

Direction predictor

Cache of Target Addresses (BTB: Branch Target Buffer)

PC + inst size

taken?

Next Fetch

Address

hit?

Credit: Onur Mutlu

PC address bits

Branch context? ??

Tag

(What if branch is predicted-taken but BTB miss?)

13

Combining fast simple predictor with slower bigger predictor

(What if branch is predicted-taken but BTB miss?)

IF
/ID

ID
/E

X

Instruction
fetch

Bigger slower predictor

If slower prediction differs, “re-steer”: squash
first prediction and fetch from improved
prediction

A
d

d
e
r

IF
/ID

A
L

U

I-C
a
c
h
e

R
e
g
 F

ile M
U

X

D
-c

a
c
h
e

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e
r

Next

SEQ

PC

RD RD RD

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

Where does branch prediction happen?

BTB

hit

• If the next branch is
predicted taken

• And BTB has predicted
target

• Fetch from BTB predicted
address

• Then check whether
prediction was correct in
ID stage

M
U

X

Detect

mis-

prediction

M
U

X

On misprediction, disable
MEM and WB

Taken?

Updating the branch prediction

Credit: Onur Mutlu

BTB and
Branch
direction
prediction
are updated
when the
branch
outcome is
committed
(or earlier?)

Return addresses

• A function might be called from different places

• In each case it must return to the right place

• Address of next instruction must be saved and
restored

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

Hennessy and Patterson 6th

ed p232-233

Return addresses

• jsr must save return address somewhere

• On x86 jsr pushes return address onto stack

• ret jumps to the address on the top of the stack

• On MIPS, “jal F” (jump-and-link) jumps to F, and stashes the
current PC in a special register $ra.

• Function returns with an indirect jump “jr $ra”

• If the function body has other calls, compiler must push $ra to
the stack

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

Return addresses

• Return addresses form a stack (even if they are
stored in registers)

• They should be easy to predict!

• We need to add another branch target predictor

• That maintains a hardware stack of return addresses

• Presumably a small stack

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
Jsr H
…

ret

H:
Body of H
...
…
…

ret

• Keep a small hardware stack in
the branch predictor

• Which attempts to mirror the
program’s call-return stack

• Updated when call and return
instructions are executed

• Value at top of stack is used as
predicted next PC when the
BTB predicts that the current
instruction is a RET

A
d

d
e
r

IF
/ID

A
L

U

I-C
a
c
h
e

R
e
g
 F

ile M
U

X

D
-c

a
c
h
e

M
U

X

Sign

Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d

d
e
r

Next

SEQ

PC

RD RD RD

Next PC

A
d
d
re

s
s

RS1

RS2

Imm

M
U

X

ID
/E

X

hit

M
U

X

Detect

mis-

prediction

M
U

X

On misprediction, disable
MEM and WB

RAP
Top of stack

BTB

Taken?

predicted RET?

Is decoded

Instruction

A JSR?

Is decoded

Instruction

A RET?

Confirmed RET so pop RAS stack

Confirmed JSR so push PC to RAS stack
Return Address Predictor

Return Address Predictor - mispredictions

• What happens if the call stack is deeper
than the RAP’s stack?
– On return, the RAP’s stack will be empty!

• Why might the prediction from the RAP
be wrong?
– Maybe the return address was overwritten

– Maybe the stack pointer was changed

– Maybe because we switched to another
thread

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)

Jsr H
…

ret

H:
Body of H
...
…
…

ret

Fixed
small
number
of
entries

Return addresses

• Q: when should the RAS be updated?

• The BTB is updated when a branch is committed

• But if we wait for commit to update the RAS, we might not
have a prediction for the return from H

• Or: if we mispredict that the conditional “IF(C)” is true

– We might have the wrong RAS prediction for the return
from G

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)

Jsr H
…

ret

H:
Body of H
...
…
…

ret

Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one

issue “packet”?

Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one

issue “packet”?

• But all the BTB needs is to predict the next

instruction to fetch – it doesn’t matter which

branch is responsible

• Commonly, a bigger slower branch predictor may

later re-steer the processor if it has a better

prediction that should over-ride the BTB

Dynamic Branch Prediction Summary
• Prediction seems essential (?)

• Two questions: branch takenness, branch target

Takenness:

• Branch History Table: 2 bits for loop accuracy
– Saturating counter (bimodal) scheme handles highly-biased branches well

– Some applications have highly dynamic branches

• Correlation: Recently executed branches correlated with next branch.
– Either different branches

– Or different executions of same branches

• Tournament Predictor: try two or more competitive solutions and pick
between them

• Predicated Execution can reduce number of branches, number of
mispredicted branches

Target:

• Branch Target Buffer: include branch address & prediction

• BTB update

• Return address stack for prediction of indirect jump

Beyond:

• Prediction mechanisms have many applications beyond branch
prediction:

– Way prediction, prefetching, store-to-load forwarding, value prediction, etc
• George Z. Chrysos and Joel S. Emer. 1998. Memory dependence prediction using store sets. ISCA98

– Predictors can increase performance, but make it harder to optimize programs

This
lecture

Branch prediction resources

• Design tradeoffs for the Alpha EV8 Conditional Branch
Predictor (André Seznec, Stephen Felix, Venkata Krishnan,
Yiannakis Sazeides)

– SMT: 4 threads, wide-issue superscalar processor, 8-way issue, 512 registers (cancelled June
2001 when Alpha dropped)

– Paper: http://citeseer.ist.psu.edu/seznec02design.html

– Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

• Branch prediction in the Pentium family (Agner Fog)
– Reverse engineering Pentium branch predictors using direct access to BTB

– http://www.x86.org/articles/branch/branchprediction.htm

• Championship Branch Prediction Competition (CBP),
organised by the Journal of Instruction-level Parallelism

– http://www.jilp.org/cbp/

• The CBP-1 winning entry: TAgged GEometric history length
predictor (TAGE): for each branch, maintain a predictor for what
history length (from a geometric progression) works best.

– http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

http://citeseer.ist.psu.edu/seznec02design.html
http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt
http://www.x86.org/articles/branch/branchprediction.htm
http://www.jilp.org/cbp/
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

Example: Branch prediction in Intel Atom, Silvermont and Knights Landing

• two-level adaptive predictor with a global history table,

• Branch history register has 12 bits

• The pattern history table on the Atom has 4096 entries and is shared between threads

• The branch target buffer has 128 entries, organized as 4 ways by 32 sets

– (size on Silvermont unknown, but probably bigger, and not shared between threads)

• Unconditional jumps make no entry in the global history table, but always-taken and nevertaken
branches do

• Silvermont has branch prediction both at the fetch stage and at the later decode stage in the
pipeline, where the latter can correct errors in the former

• No special predictor for loops (as there is for some other Intel CPUs)

– Loops are predicted in the same way as other branches

• Penalty for mispredicting a branch is 11-13 clock cycles.

• It often occurs that a branch has a correct entry in the pattern history table, but no entry in the
branch target buffer, which is much smaller:

– If a branch is correctly predicted as taken, but no target can be predicted because of a missing
BTB entry, then the penalty will be approximately 7 clock cycles.

• Pattern prediction evident for indirect branches on Knights Landing but not on Silvermont.

– Indirect branches are predicted to go to the same target as last time on Silvermont

• Return stack buffer with 8 entries on the Atom and 16 entries on Silvermont and Knights Landing

“The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and
compiler makers” http://www.agner.org/optimize/microarchitecture.pdf

Piazza question: better predictions

for indirect branches
• As you say, a BTB should give you a prediction for an indirect branch.
• However it might not be a very good one - the killer app is polymorphic

calls in object-oriented languages (virtual calls where the target object has
a different type on different invocations).

• For that we need to add global history to the branch target prediction. We
did not cover this in the lectures.

• This paper evaluates three alternative schemes:
• Dharmawan, Tubagus & Jeyachandra, E & Rahmadhani, Andri. (2016).

Techniques to Improve Indirect Branch Prediction.
10.13140/RG.2.2.24350.02884.

• The state of the art is perhaps represented by this article in the same
ISCA2020 "Industry" track:

• The IBM z15 High Frequency Mainframe Branch Predictor (computer.org)
(section VI], pg 35-6). Basically they use the branch history to index a
special BTB (actually they expand the branch history concept to include a
couple of bits of the PC address of each taken branch in the history).

https://conferences.computer.org/isca/pdfs/ISCA2020-4QlDegUf3fKiwUXfV0KdCm/466100a027/466100a027.pdf

