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These lecture notes are partly based on the course text, Hennessy and 

Patterson’s Computer Architecture, a quantitative approach (4-6th eds), and 

on the lecture slides of David Patterson’s Berkeley course (CS252)
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Chapter 4

Part 2: Branch Target Prediction



Branch Prediction - context

• If we have a branch predictor….

– We want to fetch the correct (predicted) next 

instruction without any stalls

– We need the prediction before the preceding 

instruction has been decoded

– We need to predict conditional branches

• Direction prediction

– And indirect branches

• Target prediction



Branch Target Buffer
• Need address at same time as prediction

• Especially for indirect branches and virtual method calls

• Note that we must check for branch match, since can’t use wrong branch 
address
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Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is 

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB 
predicts that the 
instruction we are fetching 
will be a taken branch



Branch target prediction: BTBs
• re: "In order to predict a branch, we need to know that current instruction is 

branch instruction"

• This doesn't have to be true!
In parallel with every ifetch

Check whether the BTB 
predicts that the 
instruction we are fetching 
will be a taken branch

When a taken branch is 
committed, we update 
the BTB with the branch's 
target address (and with 
the tag of the address of 
the branch instruction).



Branch Target Buffer (BTB)
• Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage

• Updated only by taken branches (the direction-predictor determines whether BTB is used)

• If BTB hit and the instruction is a predicted-taken branch

– target from the BTB is used as fetch address in the next cycle

• If BTB miss or the instruction is a predicted-not-taken branch

– PC+N is used as the next fetch address in the next cycle
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BTB is 

indexed with 
low-order PC 
address bits, 

tagged with 
high-order 
bits



Target prediction: recall the 5-stage MIPS pipeline
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Where does branch prediction happen?

BTB

hit

• Branch target prediction happens 
in IF stage

• Before we even know if the 
instruction is a branch or jump

• Branch Target Buffer (BTB) is 
indexed by current PC, yields next
PC

• We check in ID stage whether 
BTB prediction was correct

• If not, we over-ride the PC for IF
• And squash the MEM and WB 
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target address

Combining BTB with direction Prediction

Direction predictor

Cache of Target Addresses (BTB: Branch Target Buffer)

PC + inst size

taken?

Next Fetch

Address

hit?

Credit: Onur Mutlu

PC address bits

Branch context? ??

Tag

(What if branch is predicted-taken but BTB miss?)
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Combining fast simple predictor with slower bigger predictor 

(What if branch is predicted-taken but BTB miss?)
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If slower prediction differs, “re-steer”: squash 
first prediction and fetch from improved 
prediction
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• If the next branch is 
predicted taken

• And BTB has predicted 
target

• Fetch from BTB predicted 
address

• Then check whether 
prediction was correct in 
ID stage
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Updating the branch prediction

Credit: Onur Mutlu

BTB and 
Branch 
direction 
prediction 
are updated 
when the 
branch 
outcome is 
committed 
(or earlier?)



Return addresses

• A function might be called from different places

• In each case it must return to the right place

• Address of next instruction must be saved and 
restored

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

Hennessy and Patterson 6th

ed p232-233



Return addresses

• jsr must save return address somewhere

• On x86 jsr pushes return address onto stack

• ret jumps to the address on the top of the stack

• On MIPS, “jal F” (jump-and-link) jumps to F, and stashes the 
current PC in a special register $ra.

• Function returns with an indirect jump “jr $ra”

• If the function body has other calls, compiler must push $ra to 
the stack

F:
Body of function F
...
…
…

ret

Jsr F
Next instruction

Jsr F
Next instruction



Return addresses

• Return addresses form a stack (even if they are 
stored in registers)

• They should be easy to predict!

• We need to add another branch target predictor

• That maintains a hardware stack of return addresses

• Presumably a small stack 

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
Jsr H
…

ret

H:
Body of H
...
…
…

ret



• Keep a small hardware stack in 
the branch predictor

• Which attempts to mirror the 
program’s call-return stack

• Updated when call and return 
instructions are executed

• Value at top of stack is used as 
predicted next PC when the 
BTB predicts that the current 
instruction is a RET
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Return Address Predictor - mispredictions

• What happens if the call stack is deeper 
than the RAP’s stack?
– On return, the RAP’s stack will be empty!

• Why might the prediction from the RAP 
be wrong?
– Maybe the return address was overwritten

– Maybe the stack pointer was changed

– Maybe because we switched to another 
thread

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)

Jsr H
…

ret

H:
Body of H
...
…
…

ret

Fixed 
small 
number 
of 
entries



Return addresses

• Q: when should the RAS be updated?

• The BTB is updated when a branch is committed

• But if we wait for commit to update the RAS, we might not 
have a prediction for the return from H

• Or: if we mispredict that the conditional “IF(C)” is true

– We might have the wrong RAS prediction for the return 
from G

F:
Body of function F
...
Jsr G
…

ret

Jsr F
Next instruction

Jsr F
Next instruction

G:
Body of G
...
IF (C)

Jsr H
…

ret

H:
Body of H
...
…
…

ret



Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches 

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one 

issue “packet”?



Branch prediction and multi-issue

• In a processor that fetches, issues and dispatches 

multiple instructions per cycle…..

• What if we encounter two (or more) branches in one 

issue “packet”?

• But all the BTB needs is to predict the next  

instruction to fetch – it doesn’t matter which 

branch is responsible

• Commonly, a bigger slower branch predictor may 

later re-steer the processor if it has a better 

prediction that should over-ride the BTB



Dynamic Branch Prediction Summary
• Prediction seems essential (?)

• Two questions: branch takenness, branch target

Takenness:

• Branch History Table: 2 bits for loop accuracy
– Saturating counter (bimodal) scheme handles highly-biased branches well

– Some applications have highly dynamic branches

• Correlation: Recently executed branches correlated with next branch.
– Either different branches

– Or different executions of same branches

• Tournament Predictor: try two or more competitive solutions and pick 
between them

• Predicated Execution can reduce number of branches, number of 
mispredicted branches

Target:

• Branch Target Buffer: include branch address & prediction

• BTB update

• Return address stack for prediction of indirect jump

Beyond:

• Prediction mechanisms have many applications beyond branch 
prediction:

– Way prediction, prefetching, store-to-load forwarding, value prediction, etc
• George Z. Chrysos and Joel S. Emer. 1998. Memory dependence prediction using store sets. ISCA98

– Predictors can increase performance, but make it harder to optimize programs

This 
lecture



Branch prediction resources

• Design tradeoffs for the Alpha EV8 Conditional Branch 
Predictor (André Seznec, Stephen Felix, Venkata Krishnan, 
Yiannakis Sazeides)

– SMT:  4 threads, wide-issue superscalar processor, 8-way issue, 512 registers (cancelled June 
2001 when Alpha dropped)

– Paper: http://citeseer.ist.psu.edu/seznec02design.html

– Talk: http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt

• Branch prediction in the Pentium family (Agner Fog)
– Reverse engineering Pentium branch predictors using direct access to BTB

– http://www.x86.org/articles/branch/branchprediction.htm

• Championship Branch Prediction Competition (CBP), 
organised by the Journal of Instruction-level Parallelism

– http://www.jilp.org/cbp/

• The CBP-1 winning entry: TAgged GEometric history length 
predictor (TAGE): for each branch, maintain a predictor for what 
history length (from a geometric progression) works best.

– http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

http://citeseer.ist.psu.edu/seznec02design.html
http://ce.et.tudelft.nl/cecoll/slides/PresDelft0803.ppt
http://www.x86.org/articles/branch/branchprediction.htm
http://www.jilp.org/cbp/
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf


Example:  Branch prediction in Intel Atom, Silvermont and Knights Landing 

• two-level adaptive predictor with a global history table,

• Branch history register has 12 bits

• The pattern history table on the Atom has 4096 entries and is shared between threads

• The branch target buffer has 128 entries, organized as 4 ways by 32 sets

– (size on Silvermont unknown, but probably bigger, and not shared between threads)

• Unconditional jumps make no entry in the global history table, but always-taken and nevertaken
branches do

• Silvermont has branch prediction both at the fetch stage and at the later decode stage in the 
pipeline, where the latter can correct errors in the former

• No special predictor for loops (as there is for some other Intel CPUs)

– Loops are predicted in the same way as other branches

• Penalty for mispredicting a branch is 11-13 clock cycles. 

• It often occurs that a branch has a correct entry in the pattern history table, but no entry in the 
branch target buffer, which is much smaller:

– If a branch is correctly predicted as taken, but no target can be predicted because of a missing 
BTB entry, then the penalty will be approximately 7 clock cycles. 

• Pattern prediction evident for indirect branches on Knights Landing but not on Silvermont.

– Indirect branches are predicted to go to the same target as last time on Silvermont

• Return stack buffer with 8 entries on the Atom and 16 entries on Silvermont and Knights Landing

“The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and 
compiler makers” http://www.agner.org/optimize/microarchitecture.pdf



Piazza question: better predictions 

for indirect branches
• As you say, a BTB should give you a prediction for an indirect branch.
• However it might not be a very good one - the killer app is polymorphic 

calls in object-oriented languages (virtual calls where the target object has 
a different type on different invocations).

• For that we need to add global history to the branch target prediction. We 
did not cover this in the lectures.

• This paper evaluates three alternative schemes:
• Dharmawan, Tubagus & Jeyachandra, E & Rahmadhani, Andri. (2016). 

Techniques to Improve Indirect Branch Prediction. 
10.13140/RG.2.2.24350.02884.

• The state of the art is perhaps represented by this article in the same 
ISCA2020 "Industry" track:

• The IBM z15 High Frequency Mainframe Branch Predictor (computer.org)
(section VI], pg 35-6). Basically they use the branch history to index a 
special BTB (actually they expand the branch history concept to include a 
couple of bits of the PC address of each taken branch in the history).

https://conferences.computer.org/isca/pdfs/ISCA2020-4QlDegUf3fKiwUXfV0KdCm/466100a027/466100a027.pdf

